1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * udc.c - Core UDC Framework 4 * 5 * Copyright (C) 2010 Texas Instruments 6 * Author: Felipe Balbi <balbi@ti.com> 7 */ 8 9 #define pr_fmt(fmt) "UDC core: " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/device.h> 14 #include <linux/list.h> 15 #include <linux/idr.h> 16 #include <linux/err.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/sched/task_stack.h> 19 #include <linux/workqueue.h> 20 21 #include <linux/usb/ch9.h> 22 #include <linux/usb/gadget.h> 23 #include <linux/usb.h> 24 25 #include "trace.h" 26 27 static DEFINE_IDA(gadget_id_numbers); 28 29 static const struct bus_type gadget_bus_type; 30 31 /** 32 * struct usb_udc - describes one usb device controller 33 * @driver: the gadget driver pointer. For use by the class code 34 * @dev: the child device to the actual controller 35 * @gadget: the gadget. For use by the class code 36 * @list: for use by the udc class driver 37 * @vbus: for udcs who care about vbus status, this value is real vbus status; 38 * for udcs who do not care about vbus status, this value is always true 39 * @started: the UDC's started state. True if the UDC had started. 40 * @allow_connect: Indicates whether UDC is allowed to be pulled up. 41 * Set/cleared by gadget_(un)bind_driver() after gadget driver is bound or 42 * unbound. 43 * @vbus_work: work routine to handle VBUS status change notifications. 44 * @connect_lock: protects udc->started, gadget->connect, 45 * gadget->allow_connect and gadget->deactivate. The routines 46 * usb_gadget_connect_locked(), usb_gadget_disconnect_locked(), 47 * usb_udc_connect_control_locked(), usb_gadget_udc_start_locked() and 48 * usb_gadget_udc_stop_locked() are called with this lock held. 49 * 50 * This represents the internal data structure which is used by the UDC-class 51 * to hold information about udc driver and gadget together. 52 */ 53 struct usb_udc { 54 struct usb_gadget_driver *driver; 55 struct usb_gadget *gadget; 56 struct device dev; 57 struct list_head list; 58 bool vbus; 59 bool started; 60 bool allow_connect; 61 struct work_struct vbus_work; 62 struct mutex connect_lock; 63 }; 64 65 static const struct class udc_class; 66 static LIST_HEAD(udc_list); 67 68 /* Protects udc_list, udc->driver, driver->is_bound, and related calls */ 69 static DEFINE_MUTEX(udc_lock); 70 71 /* ------------------------------------------------------------------------- */ 72 73 /** 74 * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint 75 * @ep:the endpoint being configured 76 * @maxpacket_limit:value of maximum packet size limit 77 * 78 * This function should be used only in UDC drivers to initialize endpoint 79 * (usually in probe function). 80 */ 81 void usb_ep_set_maxpacket_limit(struct usb_ep *ep, 82 unsigned maxpacket_limit) 83 { 84 ep->maxpacket_limit = maxpacket_limit; 85 ep->maxpacket = maxpacket_limit; 86 87 trace_usb_ep_set_maxpacket_limit(ep, 0); 88 } 89 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit); 90 91 /** 92 * usb_ep_enable - configure endpoint, making it usable 93 * @ep:the endpoint being configured. may not be the endpoint named "ep0". 94 * drivers discover endpoints through the ep_list of a usb_gadget. 95 * 96 * When configurations are set, or when interface settings change, the driver 97 * will enable or disable the relevant endpoints. while it is enabled, an 98 * endpoint may be used for i/o until the driver receives a disconnect() from 99 * the host or until the endpoint is disabled. 100 * 101 * the ep0 implementation (which calls this routine) must ensure that the 102 * hardware capabilities of each endpoint match the descriptor provided 103 * for it. for example, an endpoint named "ep2in-bulk" would be usable 104 * for interrupt transfers as well as bulk, but it likely couldn't be used 105 * for iso transfers or for endpoint 14. some endpoints are fully 106 * configurable, with more generic names like "ep-a". (remember that for 107 * USB, "in" means "towards the USB host".) 108 * 109 * This routine may be called in an atomic (interrupt) context. 110 * 111 * returns zero, or a negative error code. 112 */ 113 int usb_ep_enable(struct usb_ep *ep) 114 { 115 int ret = 0; 116 117 if (ep->enabled) 118 goto out; 119 120 /* UDC drivers can't handle endpoints with maxpacket size 0 */ 121 if (usb_endpoint_maxp(ep->desc) == 0) { 122 /* 123 * We should log an error message here, but we can't call 124 * dev_err() because there's no way to find the gadget 125 * given only ep. 126 */ 127 ret = -EINVAL; 128 goto out; 129 } 130 131 ret = ep->ops->enable(ep, ep->desc); 132 if (ret) 133 goto out; 134 135 ep->enabled = true; 136 137 out: 138 trace_usb_ep_enable(ep, ret); 139 140 return ret; 141 } 142 EXPORT_SYMBOL_GPL(usb_ep_enable); 143 144 /** 145 * usb_ep_disable - endpoint is no longer usable 146 * @ep:the endpoint being unconfigured. may not be the endpoint named "ep0". 147 * 148 * no other task may be using this endpoint when this is called. 149 * any pending and uncompleted requests will complete with status 150 * indicating disconnect (-ESHUTDOWN) before this call returns. 151 * gadget drivers must call usb_ep_enable() again before queueing 152 * requests to the endpoint. 153 * 154 * This routine may be called in an atomic (interrupt) context. 155 * 156 * returns zero, or a negative error code. 157 */ 158 int usb_ep_disable(struct usb_ep *ep) 159 { 160 int ret = 0; 161 162 if (!ep->enabled) 163 goto out; 164 165 ret = ep->ops->disable(ep); 166 if (ret) 167 goto out; 168 169 ep->enabled = false; 170 171 out: 172 trace_usb_ep_disable(ep, ret); 173 174 return ret; 175 } 176 EXPORT_SYMBOL_GPL(usb_ep_disable); 177 178 /** 179 * usb_ep_alloc_request - allocate a request object to use with this endpoint 180 * @ep:the endpoint to be used with with the request 181 * @gfp_flags:GFP_* flags to use 182 * 183 * Request objects must be allocated with this call, since they normally 184 * need controller-specific setup and may even need endpoint-specific 185 * resources such as allocation of DMA descriptors. 186 * Requests may be submitted with usb_ep_queue(), and receive a single 187 * completion callback. Free requests with usb_ep_free_request(), when 188 * they are no longer needed. 189 * 190 * Returns the request, or null if one could not be allocated. 191 */ 192 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep, 193 gfp_t gfp_flags) 194 { 195 struct usb_request *req = NULL; 196 197 req = ep->ops->alloc_request(ep, gfp_flags); 198 199 trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM); 200 201 return req; 202 } 203 EXPORT_SYMBOL_GPL(usb_ep_alloc_request); 204 205 /** 206 * usb_ep_free_request - frees a request object 207 * @ep:the endpoint associated with the request 208 * @req:the request being freed 209 * 210 * Reverses the effect of usb_ep_alloc_request(). 211 * Caller guarantees the request is not queued, and that it will 212 * no longer be requeued (or otherwise used). 213 */ 214 void usb_ep_free_request(struct usb_ep *ep, 215 struct usb_request *req) 216 { 217 trace_usb_ep_free_request(ep, req, 0); 218 ep->ops->free_request(ep, req); 219 } 220 EXPORT_SYMBOL_GPL(usb_ep_free_request); 221 222 /** 223 * usb_ep_queue - queues (submits) an I/O request to an endpoint. 224 * @ep:the endpoint associated with the request 225 * @req:the request being submitted 226 * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't 227 * pre-allocate all necessary memory with the request. 228 * 229 * This tells the device controller to perform the specified request through 230 * that endpoint (reading or writing a buffer). When the request completes, 231 * including being canceled by usb_ep_dequeue(), the request's completion 232 * routine is called to return the request to the driver. Any endpoint 233 * (except control endpoints like ep0) may have more than one transfer 234 * request queued; they complete in FIFO order. Once a gadget driver 235 * submits a request, that request may not be examined or modified until it 236 * is given back to that driver through the completion callback. 237 * 238 * Each request is turned into one or more packets. The controller driver 239 * never merges adjacent requests into the same packet. OUT transfers 240 * will sometimes use data that's already buffered in the hardware. 241 * Drivers can rely on the fact that the first byte of the request's buffer 242 * always corresponds to the first byte of some USB packet, for both 243 * IN and OUT transfers. 244 * 245 * Bulk endpoints can queue any amount of data; the transfer is packetized 246 * automatically. The last packet will be short if the request doesn't fill it 247 * out completely. Zero length packets (ZLPs) should be avoided in portable 248 * protocols since not all usb hardware can successfully handle zero length 249 * packets. (ZLPs may be explicitly written, and may be implicitly written if 250 * the request 'zero' flag is set.) Bulk endpoints may also be used 251 * for interrupt transfers; but the reverse is not true, and some endpoints 252 * won't support every interrupt transfer. (Such as 768 byte packets.) 253 * 254 * Interrupt-only endpoints are less functional than bulk endpoints, for 255 * example by not supporting queueing or not handling buffers that are 256 * larger than the endpoint's maxpacket size. They may also treat data 257 * toggle differently. 258 * 259 * Control endpoints ... after getting a setup() callback, the driver queues 260 * one response (even if it would be zero length). That enables the 261 * status ack, after transferring data as specified in the response. Setup 262 * functions may return negative error codes to generate protocol stalls. 263 * (Note that some USB device controllers disallow protocol stall responses 264 * in some cases.) When control responses are deferred (the response is 265 * written after the setup callback returns), then usb_ep_set_halt() may be 266 * used on ep0 to trigger protocol stalls. Depending on the controller, 267 * it may not be possible to trigger a status-stage protocol stall when the 268 * data stage is over, that is, from within the response's completion 269 * routine. 270 * 271 * For periodic endpoints, like interrupt or isochronous ones, the usb host 272 * arranges to poll once per interval, and the gadget driver usually will 273 * have queued some data to transfer at that time. 274 * 275 * Note that @req's ->complete() callback must never be called from 276 * within usb_ep_queue() as that can create deadlock situations. 277 * 278 * This routine may be called in interrupt context. 279 * 280 * Returns zero, or a negative error code. Endpoints that are not enabled 281 * report errors; errors will also be 282 * reported when the usb peripheral is disconnected. 283 * 284 * If and only if @req is successfully queued (the return value is zero), 285 * @req->complete() will be called exactly once, when the Gadget core and 286 * UDC are finished with the request. When the completion function is called, 287 * control of the request is returned to the device driver which submitted it. 288 * The completion handler may then immediately free or reuse @req. 289 */ 290 int usb_ep_queue(struct usb_ep *ep, 291 struct usb_request *req, gfp_t gfp_flags) 292 { 293 int ret = 0; 294 295 if (!ep->enabled && ep->address) { 296 pr_debug("USB gadget: queue request to disabled ep 0x%x (%s)\n", 297 ep->address, ep->name); 298 ret = -ESHUTDOWN; 299 goto out; 300 } 301 302 ret = ep->ops->queue(ep, req, gfp_flags); 303 304 out: 305 trace_usb_ep_queue(ep, req, ret); 306 307 return ret; 308 } 309 EXPORT_SYMBOL_GPL(usb_ep_queue); 310 311 /** 312 * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint 313 * @ep:the endpoint associated with the request 314 * @req:the request being canceled 315 * 316 * If the request is still active on the endpoint, it is dequeued and 317 * eventually its completion routine is called (with status -ECONNRESET); 318 * else a negative error code is returned. This routine is asynchronous, 319 * that is, it may return before the completion routine runs. 320 * 321 * Note that some hardware can't clear out write fifos (to unlink the request 322 * at the head of the queue) except as part of disconnecting from usb. Such 323 * restrictions prevent drivers from supporting configuration changes, 324 * even to configuration zero (a "chapter 9" requirement). 325 * 326 * This routine may be called in interrupt context. 327 */ 328 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 329 { 330 int ret; 331 332 ret = ep->ops->dequeue(ep, req); 333 trace_usb_ep_dequeue(ep, req, ret); 334 335 return ret; 336 } 337 EXPORT_SYMBOL_GPL(usb_ep_dequeue); 338 339 /** 340 * usb_ep_set_halt - sets the endpoint halt feature. 341 * @ep: the non-isochronous endpoint being stalled 342 * 343 * Use this to stall an endpoint, perhaps as an error report. 344 * Except for control endpoints, 345 * the endpoint stays halted (will not stream any data) until the host 346 * clears this feature; drivers may need to empty the endpoint's request 347 * queue first, to make sure no inappropriate transfers happen. 348 * 349 * Note that while an endpoint CLEAR_FEATURE will be invisible to the 350 * gadget driver, a SET_INTERFACE will not be. To reset endpoints for the 351 * current altsetting, see usb_ep_clear_halt(). When switching altsettings, 352 * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints. 353 * 354 * This routine may be called in interrupt context. 355 * 356 * Returns zero, or a negative error code. On success, this call sets 357 * underlying hardware state that blocks data transfers. 358 * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any 359 * transfer requests are still queued, or if the controller hardware 360 * (usually a FIFO) still holds bytes that the host hasn't collected. 361 */ 362 int usb_ep_set_halt(struct usb_ep *ep) 363 { 364 int ret; 365 366 ret = ep->ops->set_halt(ep, 1); 367 trace_usb_ep_set_halt(ep, ret); 368 369 return ret; 370 } 371 EXPORT_SYMBOL_GPL(usb_ep_set_halt); 372 373 /** 374 * usb_ep_clear_halt - clears endpoint halt, and resets toggle 375 * @ep:the bulk or interrupt endpoint being reset 376 * 377 * Use this when responding to the standard usb "set interface" request, 378 * for endpoints that aren't reconfigured, after clearing any other state 379 * in the endpoint's i/o queue. 380 * 381 * This routine may be called in interrupt context. 382 * 383 * Returns zero, or a negative error code. On success, this call clears 384 * the underlying hardware state reflecting endpoint halt and data toggle. 385 * Note that some hardware can't support this request (like pxa2xx_udc), 386 * and accordingly can't correctly implement interface altsettings. 387 */ 388 int usb_ep_clear_halt(struct usb_ep *ep) 389 { 390 int ret; 391 392 ret = ep->ops->set_halt(ep, 0); 393 trace_usb_ep_clear_halt(ep, ret); 394 395 return ret; 396 } 397 EXPORT_SYMBOL_GPL(usb_ep_clear_halt); 398 399 /** 400 * usb_ep_set_wedge - sets the halt feature and ignores clear requests 401 * @ep: the endpoint being wedged 402 * 403 * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT) 404 * requests. If the gadget driver clears the halt status, it will 405 * automatically unwedge the endpoint. 406 * 407 * This routine may be called in interrupt context. 408 * 409 * Returns zero on success, else negative errno. 410 */ 411 int usb_ep_set_wedge(struct usb_ep *ep) 412 { 413 int ret; 414 415 if (ep->ops->set_wedge) 416 ret = ep->ops->set_wedge(ep); 417 else 418 ret = ep->ops->set_halt(ep, 1); 419 420 trace_usb_ep_set_wedge(ep, ret); 421 422 return ret; 423 } 424 EXPORT_SYMBOL_GPL(usb_ep_set_wedge); 425 426 /** 427 * usb_ep_fifo_status - returns number of bytes in fifo, or error 428 * @ep: the endpoint whose fifo status is being checked. 429 * 430 * FIFO endpoints may have "unclaimed data" in them in certain cases, 431 * such as after aborted transfers. Hosts may not have collected all 432 * the IN data written by the gadget driver (and reported by a request 433 * completion). The gadget driver may not have collected all the data 434 * written OUT to it by the host. Drivers that need precise handling for 435 * fault reporting or recovery may need to use this call. 436 * 437 * This routine may be called in interrupt context. 438 * 439 * This returns the number of such bytes in the fifo, or a negative 440 * errno if the endpoint doesn't use a FIFO or doesn't support such 441 * precise handling. 442 */ 443 int usb_ep_fifo_status(struct usb_ep *ep) 444 { 445 int ret; 446 447 if (ep->ops->fifo_status) 448 ret = ep->ops->fifo_status(ep); 449 else 450 ret = -EOPNOTSUPP; 451 452 trace_usb_ep_fifo_status(ep, ret); 453 454 return ret; 455 } 456 EXPORT_SYMBOL_GPL(usb_ep_fifo_status); 457 458 /** 459 * usb_ep_fifo_flush - flushes contents of a fifo 460 * @ep: the endpoint whose fifo is being flushed. 461 * 462 * This call may be used to flush the "unclaimed data" that may exist in 463 * an endpoint fifo after abnormal transaction terminations. The call 464 * must never be used except when endpoint is not being used for any 465 * protocol translation. 466 * 467 * This routine may be called in interrupt context. 468 */ 469 void usb_ep_fifo_flush(struct usb_ep *ep) 470 { 471 if (ep->ops->fifo_flush) 472 ep->ops->fifo_flush(ep); 473 474 trace_usb_ep_fifo_flush(ep, 0); 475 } 476 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush); 477 478 /* ------------------------------------------------------------------------- */ 479 480 /** 481 * usb_gadget_frame_number - returns the current frame number 482 * @gadget: controller that reports the frame number 483 * 484 * Returns the usb frame number, normally eleven bits from a SOF packet, 485 * or negative errno if this device doesn't support this capability. 486 */ 487 int usb_gadget_frame_number(struct usb_gadget *gadget) 488 { 489 int ret; 490 491 ret = gadget->ops->get_frame(gadget); 492 493 trace_usb_gadget_frame_number(gadget, ret); 494 495 return ret; 496 } 497 EXPORT_SYMBOL_GPL(usb_gadget_frame_number); 498 499 /** 500 * usb_gadget_wakeup - tries to wake up the host connected to this gadget 501 * @gadget: controller used to wake up the host 502 * 503 * Returns zero on success, else negative error code if the hardware 504 * doesn't support such attempts, or its support has not been enabled 505 * by the usb host. Drivers must return device descriptors that report 506 * their ability to support this, or hosts won't enable it. 507 * 508 * This may also try to use SRP to wake the host and start enumeration, 509 * even if OTG isn't otherwise in use. OTG devices may also start 510 * remote wakeup even when hosts don't explicitly enable it. 511 */ 512 int usb_gadget_wakeup(struct usb_gadget *gadget) 513 { 514 int ret = 0; 515 516 if (!gadget->ops->wakeup) { 517 ret = -EOPNOTSUPP; 518 goto out; 519 } 520 521 ret = gadget->ops->wakeup(gadget); 522 523 out: 524 trace_usb_gadget_wakeup(gadget, ret); 525 526 return ret; 527 } 528 EXPORT_SYMBOL_GPL(usb_gadget_wakeup); 529 530 /** 531 * usb_gadget_set_remote_wakeup - configures the device remote wakeup feature. 532 * @gadget:the device being configured for remote wakeup 533 * @set:value to be configured. 534 * 535 * set to one to enable remote wakeup feature and zero to disable it. 536 * 537 * returns zero on success, else negative errno. 538 */ 539 int usb_gadget_set_remote_wakeup(struct usb_gadget *gadget, int set) 540 { 541 int ret = 0; 542 543 if (!gadget->ops->set_remote_wakeup) { 544 ret = -EOPNOTSUPP; 545 goto out; 546 } 547 548 ret = gadget->ops->set_remote_wakeup(gadget, set); 549 550 out: 551 trace_usb_gadget_set_remote_wakeup(gadget, ret); 552 553 return ret; 554 } 555 EXPORT_SYMBOL_GPL(usb_gadget_set_remote_wakeup); 556 557 /** 558 * usb_gadget_set_selfpowered - sets the device selfpowered feature. 559 * @gadget:the device being declared as self-powered 560 * 561 * this affects the device status reported by the hardware driver 562 * to reflect that it now has a local power supply. 563 * 564 * returns zero on success, else negative errno. 565 */ 566 int usb_gadget_set_selfpowered(struct usb_gadget *gadget) 567 { 568 int ret = 0; 569 570 if (!gadget->ops->set_selfpowered) { 571 ret = -EOPNOTSUPP; 572 goto out; 573 } 574 575 ret = gadget->ops->set_selfpowered(gadget, 1); 576 577 out: 578 trace_usb_gadget_set_selfpowered(gadget, ret); 579 580 return ret; 581 } 582 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered); 583 584 /** 585 * usb_gadget_clear_selfpowered - clear the device selfpowered feature. 586 * @gadget:the device being declared as bus-powered 587 * 588 * this affects the device status reported by the hardware driver. 589 * some hardware may not support bus-powered operation, in which 590 * case this feature's value can never change. 591 * 592 * returns zero on success, else negative errno. 593 */ 594 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget) 595 { 596 int ret = 0; 597 598 if (!gadget->ops->set_selfpowered) { 599 ret = -EOPNOTSUPP; 600 goto out; 601 } 602 603 ret = gadget->ops->set_selfpowered(gadget, 0); 604 605 out: 606 trace_usb_gadget_clear_selfpowered(gadget, ret); 607 608 return ret; 609 } 610 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered); 611 612 /** 613 * usb_gadget_vbus_connect - Notify controller that VBUS is powered 614 * @gadget:The device which now has VBUS power. 615 * Context: can sleep 616 * 617 * This call is used by a driver for an external transceiver (or GPIO) 618 * that detects a VBUS power session starting. Common responses include 619 * resuming the controller, activating the D+ (or D-) pullup to let the 620 * host detect that a USB device is attached, and starting to draw power 621 * (8mA or possibly more, especially after SET_CONFIGURATION). 622 * 623 * Returns zero on success, else negative errno. 624 */ 625 int usb_gadget_vbus_connect(struct usb_gadget *gadget) 626 { 627 int ret = 0; 628 629 if (!gadget->ops->vbus_session) { 630 ret = -EOPNOTSUPP; 631 goto out; 632 } 633 634 ret = gadget->ops->vbus_session(gadget, 1); 635 636 out: 637 trace_usb_gadget_vbus_connect(gadget, ret); 638 639 return ret; 640 } 641 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect); 642 643 /** 644 * usb_gadget_vbus_draw - constrain controller's VBUS power usage 645 * @gadget:The device whose VBUS usage is being described 646 * @mA:How much current to draw, in milliAmperes. This should be twice 647 * the value listed in the configuration descriptor bMaxPower field. 648 * 649 * This call is used by gadget drivers during SET_CONFIGURATION calls, 650 * reporting how much power the device may consume. For example, this 651 * could affect how quickly batteries are recharged. 652 * 653 * Returns zero on success, else negative errno. 654 */ 655 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA) 656 { 657 int ret = 0; 658 659 if (!gadget->ops->vbus_draw) { 660 ret = -EOPNOTSUPP; 661 goto out; 662 } 663 664 ret = gadget->ops->vbus_draw(gadget, mA); 665 if (!ret) 666 gadget->mA = mA; 667 668 out: 669 trace_usb_gadget_vbus_draw(gadget, ret); 670 671 return ret; 672 } 673 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw); 674 675 /** 676 * usb_gadget_vbus_disconnect - notify controller about VBUS session end 677 * @gadget:the device whose VBUS supply is being described 678 * Context: can sleep 679 * 680 * This call is used by a driver for an external transceiver (or GPIO) 681 * that detects a VBUS power session ending. Common responses include 682 * reversing everything done in usb_gadget_vbus_connect(). 683 * 684 * Returns zero on success, else negative errno. 685 */ 686 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget) 687 { 688 int ret = 0; 689 690 if (!gadget->ops->vbus_session) { 691 ret = -EOPNOTSUPP; 692 goto out; 693 } 694 695 ret = gadget->ops->vbus_session(gadget, 0); 696 697 out: 698 trace_usb_gadget_vbus_disconnect(gadget, ret); 699 700 return ret; 701 } 702 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect); 703 704 static int usb_gadget_connect_locked(struct usb_gadget *gadget) 705 __must_hold(&gadget->udc->connect_lock) 706 { 707 int ret = 0; 708 709 if (!gadget->ops->pullup) { 710 ret = -EOPNOTSUPP; 711 goto out; 712 } 713 714 if (gadget->deactivated || !gadget->udc->allow_connect || !gadget->udc->started) { 715 /* 716 * If the gadget isn't usable (because it is deactivated, 717 * unbound, or not yet started), we only save the new state. 718 * The gadget will be connected automatically when it is 719 * activated/bound/started. 720 */ 721 gadget->connected = true; 722 goto out; 723 } 724 725 ret = gadget->ops->pullup(gadget, 1); 726 if (!ret) 727 gadget->connected = 1; 728 729 out: 730 trace_usb_gadget_connect(gadget, ret); 731 732 return ret; 733 } 734 735 /** 736 * usb_gadget_connect - software-controlled connect to USB host 737 * @gadget:the peripheral being connected 738 * 739 * Enables the D+ (or potentially D-) pullup. The host will start 740 * enumerating this gadget when the pullup is active and a VBUS session 741 * is active (the link is powered). 742 * 743 * Returns zero on success, else negative errno. 744 */ 745 int usb_gadget_connect(struct usb_gadget *gadget) 746 { 747 int ret; 748 749 mutex_lock(&gadget->udc->connect_lock); 750 ret = usb_gadget_connect_locked(gadget); 751 mutex_unlock(&gadget->udc->connect_lock); 752 753 return ret; 754 } 755 EXPORT_SYMBOL_GPL(usb_gadget_connect); 756 757 static int usb_gadget_disconnect_locked(struct usb_gadget *gadget) 758 __must_hold(&gadget->udc->connect_lock) 759 { 760 int ret = 0; 761 762 if (!gadget->ops->pullup) { 763 ret = -EOPNOTSUPP; 764 goto out; 765 } 766 767 if (!gadget->connected) 768 goto out; 769 770 if (gadget->deactivated || !gadget->udc->started) { 771 /* 772 * If gadget is deactivated we only save new state. 773 * Gadget will stay disconnected after activation. 774 */ 775 gadget->connected = false; 776 goto out; 777 } 778 779 ret = gadget->ops->pullup(gadget, 0); 780 if (!ret) 781 gadget->connected = 0; 782 783 mutex_lock(&udc_lock); 784 if (gadget->udc->driver) 785 gadget->udc->driver->disconnect(gadget); 786 mutex_unlock(&udc_lock); 787 788 out: 789 trace_usb_gadget_disconnect(gadget, ret); 790 791 return ret; 792 } 793 794 /** 795 * usb_gadget_disconnect - software-controlled disconnect from USB host 796 * @gadget:the peripheral being disconnected 797 * 798 * Disables the D+ (or potentially D-) pullup, which the host may see 799 * as a disconnect (when a VBUS session is active). Not all systems 800 * support software pullup controls. 801 * 802 * Following a successful disconnect, invoke the ->disconnect() callback 803 * for the current gadget driver so that UDC drivers don't need to. 804 * 805 * Returns zero on success, else negative errno. 806 */ 807 int usb_gadget_disconnect(struct usb_gadget *gadget) 808 { 809 int ret; 810 811 mutex_lock(&gadget->udc->connect_lock); 812 ret = usb_gadget_disconnect_locked(gadget); 813 mutex_unlock(&gadget->udc->connect_lock); 814 815 return ret; 816 } 817 EXPORT_SYMBOL_GPL(usb_gadget_disconnect); 818 819 /** 820 * usb_gadget_deactivate - deactivate function which is not ready to work 821 * @gadget: the peripheral being deactivated 822 * 823 * This routine may be used during the gadget driver bind() call to prevent 824 * the peripheral from ever being visible to the USB host, unless later 825 * usb_gadget_activate() is called. For example, user mode components may 826 * need to be activated before the system can talk to hosts. 827 * 828 * This routine may sleep; it must not be called in interrupt context 829 * (such as from within a gadget driver's disconnect() callback). 830 * 831 * Returns zero on success, else negative errno. 832 */ 833 int usb_gadget_deactivate(struct usb_gadget *gadget) 834 { 835 int ret = 0; 836 837 mutex_lock(&gadget->udc->connect_lock); 838 if (gadget->deactivated) 839 goto unlock; 840 841 if (gadget->connected) { 842 ret = usb_gadget_disconnect_locked(gadget); 843 if (ret) 844 goto unlock; 845 846 /* 847 * If gadget was being connected before deactivation, we want 848 * to reconnect it in usb_gadget_activate(). 849 */ 850 gadget->connected = true; 851 } 852 gadget->deactivated = true; 853 854 unlock: 855 mutex_unlock(&gadget->udc->connect_lock); 856 trace_usb_gadget_deactivate(gadget, ret); 857 858 return ret; 859 } 860 EXPORT_SYMBOL_GPL(usb_gadget_deactivate); 861 862 /** 863 * usb_gadget_activate - activate function which is not ready to work 864 * @gadget: the peripheral being activated 865 * 866 * This routine activates gadget which was previously deactivated with 867 * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed. 868 * 869 * This routine may sleep; it must not be called in interrupt context. 870 * 871 * Returns zero on success, else negative errno. 872 */ 873 int usb_gadget_activate(struct usb_gadget *gadget) 874 { 875 int ret = 0; 876 877 mutex_lock(&gadget->udc->connect_lock); 878 if (!gadget->deactivated) 879 goto unlock; 880 881 gadget->deactivated = false; 882 883 /* 884 * If gadget has been connected before deactivation, or became connected 885 * while it was being deactivated, we call usb_gadget_connect(). 886 */ 887 if (gadget->connected) 888 ret = usb_gadget_connect_locked(gadget); 889 890 unlock: 891 mutex_unlock(&gadget->udc->connect_lock); 892 trace_usb_gadget_activate(gadget, ret); 893 894 return ret; 895 } 896 EXPORT_SYMBOL_GPL(usb_gadget_activate); 897 898 /* ------------------------------------------------------------------------- */ 899 900 #ifdef CONFIG_HAS_DMA 901 902 int usb_gadget_map_request_by_dev(struct device *dev, 903 struct usb_request *req, int is_in) 904 { 905 if (req->length == 0) 906 return 0; 907 908 if (req->num_sgs) { 909 int mapped; 910 911 mapped = dma_map_sg(dev, req->sg, req->num_sgs, 912 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 913 if (mapped == 0) { 914 dev_err(dev, "failed to map SGs\n"); 915 return -EFAULT; 916 } 917 918 req->num_mapped_sgs = mapped; 919 } else { 920 if (is_vmalloc_addr(req->buf)) { 921 dev_err(dev, "buffer is not dma capable\n"); 922 return -EFAULT; 923 } else if (object_is_on_stack(req->buf)) { 924 dev_err(dev, "buffer is on stack\n"); 925 return -EFAULT; 926 } 927 928 req->dma = dma_map_single(dev, req->buf, req->length, 929 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 930 931 if (dma_mapping_error(dev, req->dma)) { 932 dev_err(dev, "failed to map buffer\n"); 933 return -EFAULT; 934 } 935 936 req->dma_mapped = 1; 937 } 938 939 return 0; 940 } 941 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev); 942 943 int usb_gadget_map_request(struct usb_gadget *gadget, 944 struct usb_request *req, int is_in) 945 { 946 return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in); 947 } 948 EXPORT_SYMBOL_GPL(usb_gadget_map_request); 949 950 void usb_gadget_unmap_request_by_dev(struct device *dev, 951 struct usb_request *req, int is_in) 952 { 953 if (req->length == 0) 954 return; 955 956 if (req->num_mapped_sgs) { 957 dma_unmap_sg(dev, req->sg, req->num_sgs, 958 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 959 960 req->num_mapped_sgs = 0; 961 } else if (req->dma_mapped) { 962 dma_unmap_single(dev, req->dma, req->length, 963 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 964 req->dma_mapped = 0; 965 } 966 } 967 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev); 968 969 void usb_gadget_unmap_request(struct usb_gadget *gadget, 970 struct usb_request *req, int is_in) 971 { 972 usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in); 973 } 974 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request); 975 976 #endif /* CONFIG_HAS_DMA */ 977 978 /* ------------------------------------------------------------------------- */ 979 980 /** 981 * usb_gadget_giveback_request - give the request back to the gadget layer 982 * @ep: the endpoint to be used with with the request 983 * @req: the request being given back 984 * 985 * This is called by device controller drivers in order to return the 986 * completed request back to the gadget layer. 987 */ 988 void usb_gadget_giveback_request(struct usb_ep *ep, 989 struct usb_request *req) 990 { 991 if (likely(req->status == 0)) 992 usb_led_activity(USB_LED_EVENT_GADGET); 993 994 trace_usb_gadget_giveback_request(ep, req, 0); 995 996 req->complete(ep, req); 997 } 998 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request); 999 1000 /* ------------------------------------------------------------------------- */ 1001 1002 /** 1003 * gadget_find_ep_by_name - returns ep whose name is the same as sting passed 1004 * in second parameter or NULL if searched endpoint not found 1005 * @g: controller to check for quirk 1006 * @name: name of searched endpoint 1007 */ 1008 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name) 1009 { 1010 struct usb_ep *ep; 1011 1012 gadget_for_each_ep(ep, g) { 1013 if (!strcmp(ep->name, name)) 1014 return ep; 1015 } 1016 1017 return NULL; 1018 } 1019 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name); 1020 1021 /* ------------------------------------------------------------------------- */ 1022 1023 int usb_gadget_ep_match_desc(struct usb_gadget *gadget, 1024 struct usb_ep *ep, struct usb_endpoint_descriptor *desc, 1025 struct usb_ss_ep_comp_descriptor *ep_comp) 1026 { 1027 u8 type; 1028 u16 max; 1029 int num_req_streams = 0; 1030 1031 /* endpoint already claimed? */ 1032 if (ep->claimed) 1033 return 0; 1034 1035 type = usb_endpoint_type(desc); 1036 max = usb_endpoint_maxp(desc); 1037 1038 if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in) 1039 return 0; 1040 if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out) 1041 return 0; 1042 1043 if (max > ep->maxpacket_limit) 1044 return 0; 1045 1046 /* "high bandwidth" works only at high speed */ 1047 if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1) 1048 return 0; 1049 1050 switch (type) { 1051 case USB_ENDPOINT_XFER_CONTROL: 1052 /* only support ep0 for portable CONTROL traffic */ 1053 return 0; 1054 case USB_ENDPOINT_XFER_ISOC: 1055 if (!ep->caps.type_iso) 1056 return 0; 1057 /* ISO: limit 1023 bytes full speed, 1024 high/super speed */ 1058 if (!gadget_is_dualspeed(gadget) && max > 1023) 1059 return 0; 1060 break; 1061 case USB_ENDPOINT_XFER_BULK: 1062 if (!ep->caps.type_bulk) 1063 return 0; 1064 if (ep_comp && gadget_is_superspeed(gadget)) { 1065 /* Get the number of required streams from the 1066 * EP companion descriptor and see if the EP 1067 * matches it 1068 */ 1069 num_req_streams = ep_comp->bmAttributes & 0x1f; 1070 if (num_req_streams > ep->max_streams) 1071 return 0; 1072 } 1073 break; 1074 case USB_ENDPOINT_XFER_INT: 1075 /* Bulk endpoints handle interrupt transfers, 1076 * except the toggle-quirky iso-synch kind 1077 */ 1078 if (!ep->caps.type_int && !ep->caps.type_bulk) 1079 return 0; 1080 /* INT: limit 64 bytes full speed, 1024 high/super speed */ 1081 if (!gadget_is_dualspeed(gadget) && max > 64) 1082 return 0; 1083 break; 1084 } 1085 1086 return 1; 1087 } 1088 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc); 1089 1090 /** 1091 * usb_gadget_check_config - checks if the UDC can support the binded 1092 * configuration 1093 * @gadget: controller to check the USB configuration 1094 * 1095 * Ensure that a UDC is able to support the requested resources by a 1096 * configuration, and that there are no resource limitations, such as 1097 * internal memory allocated to all requested endpoints. 1098 * 1099 * Returns zero on success, else a negative errno. 1100 */ 1101 int usb_gadget_check_config(struct usb_gadget *gadget) 1102 { 1103 if (gadget->ops->check_config) 1104 return gadget->ops->check_config(gadget); 1105 return 0; 1106 } 1107 EXPORT_SYMBOL_GPL(usb_gadget_check_config); 1108 1109 /* ------------------------------------------------------------------------- */ 1110 1111 static void usb_gadget_state_work(struct work_struct *work) 1112 { 1113 struct usb_gadget *gadget = work_to_gadget(work); 1114 struct usb_udc *udc = gadget->udc; 1115 1116 if (udc) 1117 sysfs_notify(&udc->dev.kobj, NULL, "state"); 1118 } 1119 1120 void usb_gadget_set_state(struct usb_gadget *gadget, 1121 enum usb_device_state state) 1122 { 1123 gadget->state = state; 1124 schedule_work(&gadget->work); 1125 } 1126 EXPORT_SYMBOL_GPL(usb_gadget_set_state); 1127 1128 /* ------------------------------------------------------------------------- */ 1129 1130 /* Acquire connect_lock before calling this function. */ 1131 static void usb_udc_connect_control_locked(struct usb_udc *udc) __must_hold(&udc->connect_lock) 1132 { 1133 if (udc->vbus) 1134 usb_gadget_connect_locked(udc->gadget); 1135 else 1136 usb_gadget_disconnect_locked(udc->gadget); 1137 } 1138 1139 static void vbus_event_work(struct work_struct *work) 1140 { 1141 struct usb_udc *udc = container_of(work, struct usb_udc, vbus_work); 1142 1143 mutex_lock(&udc->connect_lock); 1144 usb_udc_connect_control_locked(udc); 1145 mutex_unlock(&udc->connect_lock); 1146 } 1147 1148 /** 1149 * usb_udc_vbus_handler - updates the udc core vbus status, and try to 1150 * connect or disconnect gadget 1151 * @gadget: The gadget which vbus change occurs 1152 * @status: The vbus status 1153 * 1154 * The udc driver calls it when it wants to connect or disconnect gadget 1155 * according to vbus status. 1156 * 1157 * This function can be invoked from interrupt context by irq handlers of 1158 * the gadget drivers, however, usb_udc_connect_control() has to run in 1159 * non-atomic context due to the following: 1160 * a. Some of the gadget driver implementations expect the ->pullup 1161 * callback to be invoked in non-atomic context. 1162 * b. usb_gadget_disconnect() acquires udc_lock which is a mutex. 1163 * Hence offload invocation of usb_udc_connect_control() to workqueue. 1164 */ 1165 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status) 1166 { 1167 struct usb_udc *udc = gadget->udc; 1168 1169 if (udc) { 1170 udc->vbus = status; 1171 schedule_work(&udc->vbus_work); 1172 } 1173 } 1174 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler); 1175 1176 /** 1177 * usb_gadget_udc_reset - notifies the udc core that bus reset occurs 1178 * @gadget: The gadget which bus reset occurs 1179 * @driver: The gadget driver we want to notify 1180 * 1181 * If the udc driver has bus reset handler, it needs to call this when the bus 1182 * reset occurs, it notifies the gadget driver that the bus reset occurs as 1183 * well as updates gadget state. 1184 */ 1185 void usb_gadget_udc_reset(struct usb_gadget *gadget, 1186 struct usb_gadget_driver *driver) 1187 { 1188 driver->reset(gadget); 1189 usb_gadget_set_state(gadget, USB_STATE_DEFAULT); 1190 } 1191 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset); 1192 1193 /** 1194 * usb_gadget_udc_start_locked - tells usb device controller to start up 1195 * @udc: The UDC to be started 1196 * 1197 * This call is issued by the UDC Class driver when it's about 1198 * to register a gadget driver to the device controller, before 1199 * calling gadget driver's bind() method. 1200 * 1201 * It allows the controller to be powered off until strictly 1202 * necessary to have it powered on. 1203 * 1204 * Returns zero on success, else negative errno. 1205 * 1206 * Caller should acquire connect_lock before invoking this function. 1207 */ 1208 static inline int usb_gadget_udc_start_locked(struct usb_udc *udc) 1209 __must_hold(&udc->connect_lock) 1210 { 1211 int ret; 1212 1213 if (udc->started) { 1214 dev_err(&udc->dev, "UDC had already started\n"); 1215 return -EBUSY; 1216 } 1217 1218 ret = udc->gadget->ops->udc_start(udc->gadget, udc->driver); 1219 if (!ret) 1220 udc->started = true; 1221 1222 return ret; 1223 } 1224 1225 /** 1226 * usb_gadget_udc_stop_locked - tells usb device controller we don't need it anymore 1227 * @udc: The UDC to be stopped 1228 * 1229 * This call is issued by the UDC Class driver after calling 1230 * gadget driver's unbind() method. 1231 * 1232 * The details are implementation specific, but it can go as 1233 * far as powering off UDC completely and disable its data 1234 * line pullups. 1235 * 1236 * Caller should acquire connect lock before invoking this function. 1237 */ 1238 static inline void usb_gadget_udc_stop_locked(struct usb_udc *udc) 1239 __must_hold(&udc->connect_lock) 1240 { 1241 if (!udc->started) { 1242 dev_err(&udc->dev, "UDC had already stopped\n"); 1243 return; 1244 } 1245 1246 udc->gadget->ops->udc_stop(udc->gadget); 1247 udc->started = false; 1248 } 1249 1250 /** 1251 * usb_gadget_udc_set_speed - tells usb device controller speed supported by 1252 * current driver 1253 * @udc: The device we want to set maximum speed 1254 * @speed: The maximum speed to allowed to run 1255 * 1256 * This call is issued by the UDC Class driver before calling 1257 * usb_gadget_udc_start() in order to make sure that we don't try to 1258 * connect on speeds the gadget driver doesn't support. 1259 */ 1260 static inline void usb_gadget_udc_set_speed(struct usb_udc *udc, 1261 enum usb_device_speed speed) 1262 { 1263 struct usb_gadget *gadget = udc->gadget; 1264 enum usb_device_speed s; 1265 1266 if (speed == USB_SPEED_UNKNOWN) 1267 s = gadget->max_speed; 1268 else 1269 s = min(speed, gadget->max_speed); 1270 1271 if (s == USB_SPEED_SUPER_PLUS && gadget->ops->udc_set_ssp_rate) 1272 gadget->ops->udc_set_ssp_rate(gadget, gadget->max_ssp_rate); 1273 else if (gadget->ops->udc_set_speed) 1274 gadget->ops->udc_set_speed(gadget, s); 1275 } 1276 1277 /** 1278 * usb_gadget_enable_async_callbacks - tell usb device controller to enable asynchronous callbacks 1279 * @udc: The UDC which should enable async callbacks 1280 * 1281 * This routine is used when binding gadget drivers. It undoes the effect 1282 * of usb_gadget_disable_async_callbacks(); the UDC driver should enable IRQs 1283 * (if necessary) and resume issuing callbacks. 1284 * 1285 * This routine will always be called in process context. 1286 */ 1287 static inline void usb_gadget_enable_async_callbacks(struct usb_udc *udc) 1288 { 1289 struct usb_gadget *gadget = udc->gadget; 1290 1291 if (gadget->ops->udc_async_callbacks) 1292 gadget->ops->udc_async_callbacks(gadget, true); 1293 } 1294 1295 /** 1296 * usb_gadget_disable_async_callbacks - tell usb device controller to disable asynchronous callbacks 1297 * @udc: The UDC which should disable async callbacks 1298 * 1299 * This routine is used when unbinding gadget drivers. It prevents a race: 1300 * The UDC driver doesn't know when the gadget driver's ->unbind callback 1301 * runs, so unless it is told to disable asynchronous callbacks, it might 1302 * issue a callback (such as ->disconnect) after the unbind has completed. 1303 * 1304 * After this function runs, the UDC driver must suppress all ->suspend, 1305 * ->resume, ->disconnect, ->reset, and ->setup callbacks to the gadget driver 1306 * until async callbacks are again enabled. A simple-minded but effective 1307 * way to accomplish this is to tell the UDC hardware not to generate any 1308 * more IRQs. 1309 * 1310 * Request completion callbacks must still be issued. However, it's okay 1311 * to defer them until the request is cancelled, since the pull-up will be 1312 * turned off during the time period when async callbacks are disabled. 1313 * 1314 * This routine will always be called in process context. 1315 */ 1316 static inline void usb_gadget_disable_async_callbacks(struct usb_udc *udc) 1317 { 1318 struct usb_gadget *gadget = udc->gadget; 1319 1320 if (gadget->ops->udc_async_callbacks) 1321 gadget->ops->udc_async_callbacks(gadget, false); 1322 } 1323 1324 /** 1325 * usb_udc_release - release the usb_udc struct 1326 * @dev: the dev member within usb_udc 1327 * 1328 * This is called by driver's core in order to free memory once the last 1329 * reference is released. 1330 */ 1331 static void usb_udc_release(struct device *dev) 1332 { 1333 struct usb_udc *udc; 1334 1335 udc = container_of(dev, struct usb_udc, dev); 1336 dev_dbg(dev, "releasing '%s'\n", dev_name(dev)); 1337 kfree(udc); 1338 } 1339 1340 static const struct attribute_group *usb_udc_attr_groups[]; 1341 1342 static void usb_udc_nop_release(struct device *dev) 1343 { 1344 dev_vdbg(dev, "%s\n", __func__); 1345 } 1346 1347 /** 1348 * usb_initialize_gadget - initialize a gadget and its embedded struct device 1349 * @parent: the parent device to this udc. Usually the controller driver's 1350 * device. 1351 * @gadget: the gadget to be initialized. 1352 * @release: a gadget release function. 1353 */ 1354 void usb_initialize_gadget(struct device *parent, struct usb_gadget *gadget, 1355 void (*release)(struct device *dev)) 1356 { 1357 INIT_WORK(&gadget->work, usb_gadget_state_work); 1358 gadget->dev.parent = parent; 1359 1360 if (release) 1361 gadget->dev.release = release; 1362 else 1363 gadget->dev.release = usb_udc_nop_release; 1364 1365 device_initialize(&gadget->dev); 1366 gadget->dev.bus = &gadget_bus_type; 1367 } 1368 EXPORT_SYMBOL_GPL(usb_initialize_gadget); 1369 1370 /** 1371 * usb_add_gadget - adds a new gadget to the udc class driver list 1372 * @gadget: the gadget to be added to the list. 1373 * 1374 * Returns zero on success, negative errno otherwise. 1375 * Does not do a final usb_put_gadget() if an error occurs. 1376 */ 1377 int usb_add_gadget(struct usb_gadget *gadget) 1378 { 1379 struct usb_udc *udc; 1380 int ret = -ENOMEM; 1381 1382 udc = kzalloc(sizeof(*udc), GFP_KERNEL); 1383 if (!udc) 1384 goto error; 1385 1386 device_initialize(&udc->dev); 1387 udc->dev.release = usb_udc_release; 1388 udc->dev.class = &udc_class; 1389 udc->dev.groups = usb_udc_attr_groups; 1390 udc->dev.parent = gadget->dev.parent; 1391 ret = dev_set_name(&udc->dev, "%s", 1392 kobject_name(&gadget->dev.parent->kobj)); 1393 if (ret) 1394 goto err_put_udc; 1395 1396 udc->gadget = gadget; 1397 gadget->udc = udc; 1398 mutex_init(&udc->connect_lock); 1399 1400 udc->started = false; 1401 1402 mutex_lock(&udc_lock); 1403 list_add_tail(&udc->list, &udc_list); 1404 mutex_unlock(&udc_lock); 1405 INIT_WORK(&udc->vbus_work, vbus_event_work); 1406 1407 ret = device_add(&udc->dev); 1408 if (ret) 1409 goto err_unlist_udc; 1410 1411 usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED); 1412 udc->vbus = true; 1413 1414 ret = ida_alloc(&gadget_id_numbers, GFP_KERNEL); 1415 if (ret < 0) 1416 goto err_del_udc; 1417 gadget->id_number = ret; 1418 dev_set_name(&gadget->dev, "gadget.%d", ret); 1419 1420 ret = device_add(&gadget->dev); 1421 if (ret) 1422 goto err_free_id; 1423 1424 return 0; 1425 1426 err_free_id: 1427 ida_free(&gadget_id_numbers, gadget->id_number); 1428 1429 err_del_udc: 1430 flush_work(&gadget->work); 1431 device_del(&udc->dev); 1432 1433 err_unlist_udc: 1434 mutex_lock(&udc_lock); 1435 list_del(&udc->list); 1436 mutex_unlock(&udc_lock); 1437 1438 err_put_udc: 1439 put_device(&udc->dev); 1440 1441 error: 1442 return ret; 1443 } 1444 EXPORT_SYMBOL_GPL(usb_add_gadget); 1445 1446 /** 1447 * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list 1448 * @parent: the parent device to this udc. Usually the controller driver's 1449 * device. 1450 * @gadget: the gadget to be added to the list. 1451 * @release: a gadget release function. 1452 * 1453 * Returns zero on success, negative errno otherwise. 1454 * Calls the gadget release function in the latter case. 1455 */ 1456 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget, 1457 void (*release)(struct device *dev)) 1458 { 1459 int ret; 1460 1461 usb_initialize_gadget(parent, gadget, release); 1462 ret = usb_add_gadget(gadget); 1463 if (ret) 1464 usb_put_gadget(gadget); 1465 return ret; 1466 } 1467 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release); 1468 1469 /** 1470 * usb_get_gadget_udc_name - get the name of the first UDC controller 1471 * This functions returns the name of the first UDC controller in the system. 1472 * Please note that this interface is usefull only for legacy drivers which 1473 * assume that there is only one UDC controller in the system and they need to 1474 * get its name before initialization. There is no guarantee that the UDC 1475 * of the returned name will be still available, when gadget driver registers 1476 * itself. 1477 * 1478 * Returns pointer to string with UDC controller name on success, NULL 1479 * otherwise. Caller should kfree() returned string. 1480 */ 1481 char *usb_get_gadget_udc_name(void) 1482 { 1483 struct usb_udc *udc; 1484 char *name = NULL; 1485 1486 /* For now we take the first available UDC */ 1487 mutex_lock(&udc_lock); 1488 list_for_each_entry(udc, &udc_list, list) { 1489 if (!udc->driver) { 1490 name = kstrdup(udc->gadget->name, GFP_KERNEL); 1491 break; 1492 } 1493 } 1494 mutex_unlock(&udc_lock); 1495 return name; 1496 } 1497 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name); 1498 1499 /** 1500 * usb_add_gadget_udc - adds a new gadget to the udc class driver list 1501 * @parent: the parent device to this udc. Usually the controller 1502 * driver's device. 1503 * @gadget: the gadget to be added to the list 1504 * 1505 * Returns zero on success, negative errno otherwise. 1506 */ 1507 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget) 1508 { 1509 return usb_add_gadget_udc_release(parent, gadget, NULL); 1510 } 1511 EXPORT_SYMBOL_GPL(usb_add_gadget_udc); 1512 1513 /** 1514 * usb_del_gadget - deletes a gadget and unregisters its udc 1515 * @gadget: the gadget to be deleted. 1516 * 1517 * This will unbind @gadget, if it is bound. 1518 * It will not do a final usb_put_gadget(). 1519 */ 1520 void usb_del_gadget(struct usb_gadget *gadget) 1521 { 1522 struct usb_udc *udc = gadget->udc; 1523 1524 if (!udc) 1525 return; 1526 1527 dev_vdbg(gadget->dev.parent, "unregistering gadget\n"); 1528 1529 mutex_lock(&udc_lock); 1530 list_del(&udc->list); 1531 mutex_unlock(&udc_lock); 1532 1533 kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE); 1534 flush_work(&gadget->work); 1535 device_del(&gadget->dev); 1536 ida_free(&gadget_id_numbers, gadget->id_number); 1537 cancel_work_sync(&udc->vbus_work); 1538 device_unregister(&udc->dev); 1539 } 1540 EXPORT_SYMBOL_GPL(usb_del_gadget); 1541 1542 /** 1543 * usb_del_gadget_udc - unregisters a gadget 1544 * @gadget: the gadget to be unregistered. 1545 * 1546 * Calls usb_del_gadget() and does a final usb_put_gadget(). 1547 */ 1548 void usb_del_gadget_udc(struct usb_gadget *gadget) 1549 { 1550 usb_del_gadget(gadget); 1551 usb_put_gadget(gadget); 1552 } 1553 EXPORT_SYMBOL_GPL(usb_del_gadget_udc); 1554 1555 /* ------------------------------------------------------------------------- */ 1556 1557 static int gadget_match_driver(struct device *dev, struct device_driver *drv) 1558 { 1559 struct usb_gadget *gadget = dev_to_usb_gadget(dev); 1560 struct usb_udc *udc = gadget->udc; 1561 struct usb_gadget_driver *driver = container_of(drv, 1562 struct usb_gadget_driver, driver); 1563 1564 /* If the driver specifies a udc_name, it must match the UDC's name */ 1565 if (driver->udc_name && 1566 strcmp(driver->udc_name, dev_name(&udc->dev)) != 0) 1567 return 0; 1568 1569 /* If the driver is already bound to a gadget, it doesn't match */ 1570 if (driver->is_bound) 1571 return 0; 1572 1573 /* Otherwise any gadget driver matches any UDC */ 1574 return 1; 1575 } 1576 1577 static int gadget_bind_driver(struct device *dev) 1578 { 1579 struct usb_gadget *gadget = dev_to_usb_gadget(dev); 1580 struct usb_udc *udc = gadget->udc; 1581 struct usb_gadget_driver *driver = container_of(dev->driver, 1582 struct usb_gadget_driver, driver); 1583 int ret = 0; 1584 1585 mutex_lock(&udc_lock); 1586 if (driver->is_bound) { 1587 mutex_unlock(&udc_lock); 1588 return -ENXIO; /* Driver binds to only one gadget */ 1589 } 1590 driver->is_bound = true; 1591 udc->driver = driver; 1592 mutex_unlock(&udc_lock); 1593 1594 dev_dbg(&udc->dev, "binding gadget driver [%s]\n", driver->function); 1595 1596 usb_gadget_udc_set_speed(udc, driver->max_speed); 1597 1598 ret = driver->bind(udc->gadget, driver); 1599 if (ret) 1600 goto err_bind; 1601 1602 mutex_lock(&udc->connect_lock); 1603 ret = usb_gadget_udc_start_locked(udc); 1604 if (ret) { 1605 mutex_unlock(&udc->connect_lock); 1606 goto err_start; 1607 } 1608 usb_gadget_enable_async_callbacks(udc); 1609 udc->allow_connect = true; 1610 usb_udc_connect_control_locked(udc); 1611 mutex_unlock(&udc->connect_lock); 1612 1613 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE); 1614 return 0; 1615 1616 err_start: 1617 driver->unbind(udc->gadget); 1618 1619 err_bind: 1620 if (ret != -EISNAM) 1621 dev_err(&udc->dev, "failed to start %s: %d\n", 1622 driver->function, ret); 1623 1624 mutex_lock(&udc_lock); 1625 udc->driver = NULL; 1626 driver->is_bound = false; 1627 mutex_unlock(&udc_lock); 1628 1629 return ret; 1630 } 1631 1632 static void gadget_unbind_driver(struct device *dev) 1633 { 1634 struct usb_gadget *gadget = dev_to_usb_gadget(dev); 1635 struct usb_udc *udc = gadget->udc; 1636 struct usb_gadget_driver *driver = udc->driver; 1637 1638 dev_dbg(&udc->dev, "unbinding gadget driver [%s]\n", driver->function); 1639 1640 udc->allow_connect = false; 1641 cancel_work_sync(&udc->vbus_work); 1642 mutex_lock(&udc->connect_lock); 1643 usb_gadget_disconnect_locked(gadget); 1644 usb_gadget_disable_async_callbacks(udc); 1645 if (gadget->irq) 1646 synchronize_irq(gadget->irq); 1647 mutex_unlock(&udc->connect_lock); 1648 1649 udc->driver->unbind(gadget); 1650 1651 mutex_lock(&udc->connect_lock); 1652 usb_gadget_udc_stop_locked(udc); 1653 mutex_unlock(&udc->connect_lock); 1654 1655 mutex_lock(&udc_lock); 1656 driver->is_bound = false; 1657 udc->driver = NULL; 1658 mutex_unlock(&udc_lock); 1659 1660 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE); 1661 } 1662 1663 /* ------------------------------------------------------------------------- */ 1664 1665 int usb_gadget_register_driver_owner(struct usb_gadget_driver *driver, 1666 struct module *owner, const char *mod_name) 1667 { 1668 int ret; 1669 1670 if (!driver || !driver->bind || !driver->setup) 1671 return -EINVAL; 1672 1673 driver->driver.bus = &gadget_bus_type; 1674 driver->driver.owner = owner; 1675 driver->driver.mod_name = mod_name; 1676 ret = driver_register(&driver->driver); 1677 if (ret) { 1678 pr_warn("%s: driver registration failed: %d\n", 1679 driver->function, ret); 1680 return ret; 1681 } 1682 1683 mutex_lock(&udc_lock); 1684 if (!driver->is_bound) { 1685 if (driver->match_existing_only) { 1686 pr_warn("%s: couldn't find an available UDC or it's busy\n", 1687 driver->function); 1688 ret = -EBUSY; 1689 } else { 1690 pr_info("%s: couldn't find an available UDC\n", 1691 driver->function); 1692 ret = 0; 1693 } 1694 } 1695 mutex_unlock(&udc_lock); 1696 1697 if (ret) 1698 driver_unregister(&driver->driver); 1699 return ret; 1700 } 1701 EXPORT_SYMBOL_GPL(usb_gadget_register_driver_owner); 1702 1703 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver) 1704 { 1705 if (!driver || !driver->unbind) 1706 return -EINVAL; 1707 1708 driver_unregister(&driver->driver); 1709 return 0; 1710 } 1711 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver); 1712 1713 /* ------------------------------------------------------------------------- */ 1714 1715 static ssize_t srp_store(struct device *dev, 1716 struct device_attribute *attr, const char *buf, size_t n) 1717 { 1718 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1719 1720 if (sysfs_streq(buf, "1")) 1721 usb_gadget_wakeup(udc->gadget); 1722 1723 return n; 1724 } 1725 static DEVICE_ATTR_WO(srp); 1726 1727 static ssize_t soft_connect_store(struct device *dev, 1728 struct device_attribute *attr, const char *buf, size_t n) 1729 { 1730 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1731 ssize_t ret; 1732 1733 device_lock(&udc->gadget->dev); 1734 if (!udc->driver) { 1735 dev_err(dev, "soft-connect without a gadget driver\n"); 1736 ret = -EOPNOTSUPP; 1737 goto out; 1738 } 1739 1740 if (sysfs_streq(buf, "connect")) { 1741 mutex_lock(&udc->connect_lock); 1742 usb_gadget_udc_start_locked(udc); 1743 usb_gadget_connect_locked(udc->gadget); 1744 mutex_unlock(&udc->connect_lock); 1745 } else if (sysfs_streq(buf, "disconnect")) { 1746 mutex_lock(&udc->connect_lock); 1747 usb_gadget_disconnect_locked(udc->gadget); 1748 usb_gadget_udc_stop_locked(udc); 1749 mutex_unlock(&udc->connect_lock); 1750 } else { 1751 dev_err(dev, "unsupported command '%s'\n", buf); 1752 ret = -EINVAL; 1753 goto out; 1754 } 1755 1756 ret = n; 1757 out: 1758 device_unlock(&udc->gadget->dev); 1759 return ret; 1760 } 1761 static DEVICE_ATTR_WO(soft_connect); 1762 1763 static ssize_t state_show(struct device *dev, struct device_attribute *attr, 1764 char *buf) 1765 { 1766 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1767 struct usb_gadget *gadget = udc->gadget; 1768 1769 return sprintf(buf, "%s\n", usb_state_string(gadget->state)); 1770 } 1771 static DEVICE_ATTR_RO(state); 1772 1773 static ssize_t function_show(struct device *dev, struct device_attribute *attr, 1774 char *buf) 1775 { 1776 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1777 struct usb_gadget_driver *drv; 1778 int rc = 0; 1779 1780 mutex_lock(&udc_lock); 1781 drv = udc->driver; 1782 if (drv && drv->function) 1783 rc = scnprintf(buf, PAGE_SIZE, "%s\n", drv->function); 1784 mutex_unlock(&udc_lock); 1785 return rc; 1786 } 1787 static DEVICE_ATTR_RO(function); 1788 1789 #define USB_UDC_SPEED_ATTR(name, param) \ 1790 ssize_t name##_show(struct device *dev, \ 1791 struct device_attribute *attr, char *buf) \ 1792 { \ 1793 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \ 1794 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 1795 usb_speed_string(udc->gadget->param)); \ 1796 } \ 1797 static DEVICE_ATTR_RO(name) 1798 1799 static USB_UDC_SPEED_ATTR(current_speed, speed); 1800 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed); 1801 1802 #define USB_UDC_ATTR(name) \ 1803 ssize_t name##_show(struct device *dev, \ 1804 struct device_attribute *attr, char *buf) \ 1805 { \ 1806 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \ 1807 struct usb_gadget *gadget = udc->gadget; \ 1808 \ 1809 return scnprintf(buf, PAGE_SIZE, "%d\n", gadget->name); \ 1810 } \ 1811 static DEVICE_ATTR_RO(name) 1812 1813 static USB_UDC_ATTR(is_otg); 1814 static USB_UDC_ATTR(is_a_peripheral); 1815 static USB_UDC_ATTR(b_hnp_enable); 1816 static USB_UDC_ATTR(a_hnp_support); 1817 static USB_UDC_ATTR(a_alt_hnp_support); 1818 static USB_UDC_ATTR(is_selfpowered); 1819 1820 static struct attribute *usb_udc_attrs[] = { 1821 &dev_attr_srp.attr, 1822 &dev_attr_soft_connect.attr, 1823 &dev_attr_state.attr, 1824 &dev_attr_function.attr, 1825 &dev_attr_current_speed.attr, 1826 &dev_attr_maximum_speed.attr, 1827 1828 &dev_attr_is_otg.attr, 1829 &dev_attr_is_a_peripheral.attr, 1830 &dev_attr_b_hnp_enable.attr, 1831 &dev_attr_a_hnp_support.attr, 1832 &dev_attr_a_alt_hnp_support.attr, 1833 &dev_attr_is_selfpowered.attr, 1834 NULL, 1835 }; 1836 1837 static const struct attribute_group usb_udc_attr_group = { 1838 .attrs = usb_udc_attrs, 1839 }; 1840 1841 static const struct attribute_group *usb_udc_attr_groups[] = { 1842 &usb_udc_attr_group, 1843 NULL, 1844 }; 1845 1846 static int usb_udc_uevent(const struct device *dev, struct kobj_uevent_env *env) 1847 { 1848 const struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1849 int ret; 1850 1851 ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name); 1852 if (ret) { 1853 dev_err(dev, "failed to add uevent USB_UDC_NAME\n"); 1854 return ret; 1855 } 1856 1857 mutex_lock(&udc_lock); 1858 if (udc->driver) 1859 ret = add_uevent_var(env, "USB_UDC_DRIVER=%s", 1860 udc->driver->function); 1861 mutex_unlock(&udc_lock); 1862 if (ret) { 1863 dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n"); 1864 return ret; 1865 } 1866 1867 return 0; 1868 } 1869 1870 static const struct class udc_class = { 1871 .name = "udc", 1872 .dev_uevent = usb_udc_uevent, 1873 }; 1874 1875 static const struct bus_type gadget_bus_type = { 1876 .name = "gadget", 1877 .probe = gadget_bind_driver, 1878 .remove = gadget_unbind_driver, 1879 .match = gadget_match_driver, 1880 }; 1881 1882 static int __init usb_udc_init(void) 1883 { 1884 int rc; 1885 1886 rc = class_register(&udc_class); 1887 if (rc) 1888 return rc; 1889 1890 rc = bus_register(&gadget_bus_type); 1891 if (rc) 1892 class_unregister(&udc_class); 1893 return rc; 1894 } 1895 subsys_initcall(usb_udc_init); 1896 1897 static void __exit usb_udc_exit(void) 1898 { 1899 bus_unregister(&gadget_bus_type); 1900 class_unregister(&udc_class); 1901 } 1902 module_exit(usb_udc_exit); 1903 1904 MODULE_DESCRIPTION("UDC Framework"); 1905 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>"); 1906 MODULE_LICENSE("GPL v2"); 1907