1 // SPDX-License-Identifier: GPL-2.0 2 /** 3 * udc.c - Core UDC Framework 4 * 5 * Copyright (C) 2010 Texas Instruments 6 * Author: Felipe Balbi <balbi@ti.com> 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/device.h> 12 #include <linux/list.h> 13 #include <linux/err.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/sched/task_stack.h> 16 #include <linux/workqueue.h> 17 18 #include <linux/usb/ch9.h> 19 #include <linux/usb/gadget.h> 20 #include <linux/usb.h> 21 22 #include "trace.h" 23 24 /** 25 * struct usb_udc - describes one usb device controller 26 * @driver - the gadget driver pointer. For use by the class code 27 * @dev - the child device to the actual controller 28 * @gadget - the gadget. For use by the class code 29 * @list - for use by the udc class driver 30 * @vbus - for udcs who care about vbus status, this value is real vbus status; 31 * for udcs who do not care about vbus status, this value is always true 32 * 33 * This represents the internal data structure which is used by the UDC-class 34 * to hold information about udc driver and gadget together. 35 */ 36 struct usb_udc { 37 struct usb_gadget_driver *driver; 38 struct usb_gadget *gadget; 39 struct device dev; 40 struct list_head list; 41 bool vbus; 42 }; 43 44 static struct class *udc_class; 45 static LIST_HEAD(udc_list); 46 static LIST_HEAD(gadget_driver_pending_list); 47 static DEFINE_MUTEX(udc_lock); 48 49 static int udc_bind_to_driver(struct usb_udc *udc, 50 struct usb_gadget_driver *driver); 51 52 /* ------------------------------------------------------------------------- */ 53 54 /** 55 * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint 56 * @ep:the endpoint being configured 57 * @maxpacket_limit:value of maximum packet size limit 58 * 59 * This function should be used only in UDC drivers to initialize endpoint 60 * (usually in probe function). 61 */ 62 void usb_ep_set_maxpacket_limit(struct usb_ep *ep, 63 unsigned maxpacket_limit) 64 { 65 ep->maxpacket_limit = maxpacket_limit; 66 ep->maxpacket = maxpacket_limit; 67 68 trace_usb_ep_set_maxpacket_limit(ep, 0); 69 } 70 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit); 71 72 /** 73 * usb_ep_enable - configure endpoint, making it usable 74 * @ep:the endpoint being configured. may not be the endpoint named "ep0". 75 * drivers discover endpoints through the ep_list of a usb_gadget. 76 * 77 * When configurations are set, or when interface settings change, the driver 78 * will enable or disable the relevant endpoints. while it is enabled, an 79 * endpoint may be used for i/o until the driver receives a disconnect() from 80 * the host or until the endpoint is disabled. 81 * 82 * the ep0 implementation (which calls this routine) must ensure that the 83 * hardware capabilities of each endpoint match the descriptor provided 84 * for it. for example, an endpoint named "ep2in-bulk" would be usable 85 * for interrupt transfers as well as bulk, but it likely couldn't be used 86 * for iso transfers or for endpoint 14. some endpoints are fully 87 * configurable, with more generic names like "ep-a". (remember that for 88 * USB, "in" means "towards the USB master".) 89 * 90 * This routine must be called in process context. 91 * 92 * returns zero, or a negative error code. 93 */ 94 int usb_ep_enable(struct usb_ep *ep) 95 { 96 int ret = 0; 97 98 if (ep->enabled) 99 goto out; 100 101 /* UDC drivers can't handle endpoints with maxpacket size 0 */ 102 if (usb_endpoint_maxp(ep->desc) == 0) { 103 /* 104 * We should log an error message here, but we can't call 105 * dev_err() because there's no way to find the gadget 106 * given only ep. 107 */ 108 ret = -EINVAL; 109 goto out; 110 } 111 112 ret = ep->ops->enable(ep, ep->desc); 113 if (ret) 114 goto out; 115 116 ep->enabled = true; 117 118 out: 119 trace_usb_ep_enable(ep, ret); 120 121 return ret; 122 } 123 EXPORT_SYMBOL_GPL(usb_ep_enable); 124 125 /** 126 * usb_ep_disable - endpoint is no longer usable 127 * @ep:the endpoint being unconfigured. may not be the endpoint named "ep0". 128 * 129 * no other task may be using this endpoint when this is called. 130 * any pending and uncompleted requests will complete with status 131 * indicating disconnect (-ESHUTDOWN) before this call returns. 132 * gadget drivers must call usb_ep_enable() again before queueing 133 * requests to the endpoint. 134 * 135 * This routine must be called in process context. 136 * 137 * returns zero, or a negative error code. 138 */ 139 int usb_ep_disable(struct usb_ep *ep) 140 { 141 int ret = 0; 142 143 if (!ep->enabled) 144 goto out; 145 146 ret = ep->ops->disable(ep); 147 if (ret) 148 goto out; 149 150 ep->enabled = false; 151 152 out: 153 trace_usb_ep_disable(ep, ret); 154 155 return ret; 156 } 157 EXPORT_SYMBOL_GPL(usb_ep_disable); 158 159 /** 160 * usb_ep_alloc_request - allocate a request object to use with this endpoint 161 * @ep:the endpoint to be used with with the request 162 * @gfp_flags:GFP_* flags to use 163 * 164 * Request objects must be allocated with this call, since they normally 165 * need controller-specific setup and may even need endpoint-specific 166 * resources such as allocation of DMA descriptors. 167 * Requests may be submitted with usb_ep_queue(), and receive a single 168 * completion callback. Free requests with usb_ep_free_request(), when 169 * they are no longer needed. 170 * 171 * Returns the request, or null if one could not be allocated. 172 */ 173 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep, 174 gfp_t gfp_flags) 175 { 176 struct usb_request *req = NULL; 177 178 req = ep->ops->alloc_request(ep, gfp_flags); 179 180 trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM); 181 182 return req; 183 } 184 EXPORT_SYMBOL_GPL(usb_ep_alloc_request); 185 186 /** 187 * usb_ep_free_request - frees a request object 188 * @ep:the endpoint associated with the request 189 * @req:the request being freed 190 * 191 * Reverses the effect of usb_ep_alloc_request(). 192 * Caller guarantees the request is not queued, and that it will 193 * no longer be requeued (or otherwise used). 194 */ 195 void usb_ep_free_request(struct usb_ep *ep, 196 struct usb_request *req) 197 { 198 trace_usb_ep_free_request(ep, req, 0); 199 ep->ops->free_request(ep, req); 200 } 201 EXPORT_SYMBOL_GPL(usb_ep_free_request); 202 203 /** 204 * usb_ep_queue - queues (submits) an I/O request to an endpoint. 205 * @ep:the endpoint associated with the request 206 * @req:the request being submitted 207 * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't 208 * pre-allocate all necessary memory with the request. 209 * 210 * This tells the device controller to perform the specified request through 211 * that endpoint (reading or writing a buffer). When the request completes, 212 * including being canceled by usb_ep_dequeue(), the request's completion 213 * routine is called to return the request to the driver. Any endpoint 214 * (except control endpoints like ep0) may have more than one transfer 215 * request queued; they complete in FIFO order. Once a gadget driver 216 * submits a request, that request may not be examined or modified until it 217 * is given back to that driver through the completion callback. 218 * 219 * Each request is turned into one or more packets. The controller driver 220 * never merges adjacent requests into the same packet. OUT transfers 221 * will sometimes use data that's already buffered in the hardware. 222 * Drivers can rely on the fact that the first byte of the request's buffer 223 * always corresponds to the first byte of some USB packet, for both 224 * IN and OUT transfers. 225 * 226 * Bulk endpoints can queue any amount of data; the transfer is packetized 227 * automatically. The last packet will be short if the request doesn't fill it 228 * out completely. Zero length packets (ZLPs) should be avoided in portable 229 * protocols since not all usb hardware can successfully handle zero length 230 * packets. (ZLPs may be explicitly written, and may be implicitly written if 231 * the request 'zero' flag is set.) Bulk endpoints may also be used 232 * for interrupt transfers; but the reverse is not true, and some endpoints 233 * won't support every interrupt transfer. (Such as 768 byte packets.) 234 * 235 * Interrupt-only endpoints are less functional than bulk endpoints, for 236 * example by not supporting queueing or not handling buffers that are 237 * larger than the endpoint's maxpacket size. They may also treat data 238 * toggle differently. 239 * 240 * Control endpoints ... after getting a setup() callback, the driver queues 241 * one response (even if it would be zero length). That enables the 242 * status ack, after transferring data as specified in the response. Setup 243 * functions may return negative error codes to generate protocol stalls. 244 * (Note that some USB device controllers disallow protocol stall responses 245 * in some cases.) When control responses are deferred (the response is 246 * written after the setup callback returns), then usb_ep_set_halt() may be 247 * used on ep0 to trigger protocol stalls. Depending on the controller, 248 * it may not be possible to trigger a status-stage protocol stall when the 249 * data stage is over, that is, from within the response's completion 250 * routine. 251 * 252 * For periodic endpoints, like interrupt or isochronous ones, the usb host 253 * arranges to poll once per interval, and the gadget driver usually will 254 * have queued some data to transfer at that time. 255 * 256 * Note that @req's ->complete() callback must never be called from 257 * within usb_ep_queue() as that can create deadlock situations. 258 * 259 * This routine may be called in interrupt context. 260 * 261 * Returns zero, or a negative error code. Endpoints that are not enabled 262 * report errors; errors will also be 263 * reported when the usb peripheral is disconnected. 264 * 265 * If and only if @req is successfully queued (the return value is zero), 266 * @req->complete() will be called exactly once, when the Gadget core and 267 * UDC are finished with the request. When the completion function is called, 268 * control of the request is returned to the device driver which submitted it. 269 * The completion handler may then immediately free or reuse @req. 270 */ 271 int usb_ep_queue(struct usb_ep *ep, 272 struct usb_request *req, gfp_t gfp_flags) 273 { 274 int ret = 0; 275 276 if (WARN_ON_ONCE(!ep->enabled && ep->address)) { 277 ret = -ESHUTDOWN; 278 goto out; 279 } 280 281 ret = ep->ops->queue(ep, req, gfp_flags); 282 283 out: 284 trace_usb_ep_queue(ep, req, ret); 285 286 return ret; 287 } 288 EXPORT_SYMBOL_GPL(usb_ep_queue); 289 290 /** 291 * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint 292 * @ep:the endpoint associated with the request 293 * @req:the request being canceled 294 * 295 * If the request is still active on the endpoint, it is dequeued and 296 * eventually its completion routine is called (with status -ECONNRESET); 297 * else a negative error code is returned. This routine is asynchronous, 298 * that is, it may return before the completion routine runs. 299 * 300 * Note that some hardware can't clear out write fifos (to unlink the request 301 * at the head of the queue) except as part of disconnecting from usb. Such 302 * restrictions prevent drivers from supporting configuration changes, 303 * even to configuration zero (a "chapter 9" requirement). 304 * 305 * This routine may be called in interrupt context. 306 */ 307 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 308 { 309 int ret; 310 311 ret = ep->ops->dequeue(ep, req); 312 trace_usb_ep_dequeue(ep, req, ret); 313 314 return ret; 315 } 316 EXPORT_SYMBOL_GPL(usb_ep_dequeue); 317 318 /** 319 * usb_ep_set_halt - sets the endpoint halt feature. 320 * @ep: the non-isochronous endpoint being stalled 321 * 322 * Use this to stall an endpoint, perhaps as an error report. 323 * Except for control endpoints, 324 * the endpoint stays halted (will not stream any data) until the host 325 * clears this feature; drivers may need to empty the endpoint's request 326 * queue first, to make sure no inappropriate transfers happen. 327 * 328 * Note that while an endpoint CLEAR_FEATURE will be invisible to the 329 * gadget driver, a SET_INTERFACE will not be. To reset endpoints for the 330 * current altsetting, see usb_ep_clear_halt(). When switching altsettings, 331 * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints. 332 * 333 * This routine may be called in interrupt context. 334 * 335 * Returns zero, or a negative error code. On success, this call sets 336 * underlying hardware state that blocks data transfers. 337 * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any 338 * transfer requests are still queued, or if the controller hardware 339 * (usually a FIFO) still holds bytes that the host hasn't collected. 340 */ 341 int usb_ep_set_halt(struct usb_ep *ep) 342 { 343 int ret; 344 345 ret = ep->ops->set_halt(ep, 1); 346 trace_usb_ep_set_halt(ep, ret); 347 348 return ret; 349 } 350 EXPORT_SYMBOL_GPL(usb_ep_set_halt); 351 352 /** 353 * usb_ep_clear_halt - clears endpoint halt, and resets toggle 354 * @ep:the bulk or interrupt endpoint being reset 355 * 356 * Use this when responding to the standard usb "set interface" request, 357 * for endpoints that aren't reconfigured, after clearing any other state 358 * in the endpoint's i/o queue. 359 * 360 * This routine may be called in interrupt context. 361 * 362 * Returns zero, or a negative error code. On success, this call clears 363 * the underlying hardware state reflecting endpoint halt and data toggle. 364 * Note that some hardware can't support this request (like pxa2xx_udc), 365 * and accordingly can't correctly implement interface altsettings. 366 */ 367 int usb_ep_clear_halt(struct usb_ep *ep) 368 { 369 int ret; 370 371 ret = ep->ops->set_halt(ep, 0); 372 trace_usb_ep_clear_halt(ep, ret); 373 374 return ret; 375 } 376 EXPORT_SYMBOL_GPL(usb_ep_clear_halt); 377 378 /** 379 * usb_ep_set_wedge - sets the halt feature and ignores clear requests 380 * @ep: the endpoint being wedged 381 * 382 * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT) 383 * requests. If the gadget driver clears the halt status, it will 384 * automatically unwedge the endpoint. 385 * 386 * This routine may be called in interrupt context. 387 * 388 * Returns zero on success, else negative errno. 389 */ 390 int usb_ep_set_wedge(struct usb_ep *ep) 391 { 392 int ret; 393 394 if (ep->ops->set_wedge) 395 ret = ep->ops->set_wedge(ep); 396 else 397 ret = ep->ops->set_halt(ep, 1); 398 399 trace_usb_ep_set_wedge(ep, ret); 400 401 return ret; 402 } 403 EXPORT_SYMBOL_GPL(usb_ep_set_wedge); 404 405 /** 406 * usb_ep_fifo_status - returns number of bytes in fifo, or error 407 * @ep: the endpoint whose fifo status is being checked. 408 * 409 * FIFO endpoints may have "unclaimed data" in them in certain cases, 410 * such as after aborted transfers. Hosts may not have collected all 411 * the IN data written by the gadget driver (and reported by a request 412 * completion). The gadget driver may not have collected all the data 413 * written OUT to it by the host. Drivers that need precise handling for 414 * fault reporting or recovery may need to use this call. 415 * 416 * This routine may be called in interrupt context. 417 * 418 * This returns the number of such bytes in the fifo, or a negative 419 * errno if the endpoint doesn't use a FIFO or doesn't support such 420 * precise handling. 421 */ 422 int usb_ep_fifo_status(struct usb_ep *ep) 423 { 424 int ret; 425 426 if (ep->ops->fifo_status) 427 ret = ep->ops->fifo_status(ep); 428 else 429 ret = -EOPNOTSUPP; 430 431 trace_usb_ep_fifo_status(ep, ret); 432 433 return ret; 434 } 435 EXPORT_SYMBOL_GPL(usb_ep_fifo_status); 436 437 /** 438 * usb_ep_fifo_flush - flushes contents of a fifo 439 * @ep: the endpoint whose fifo is being flushed. 440 * 441 * This call may be used to flush the "unclaimed data" that may exist in 442 * an endpoint fifo after abnormal transaction terminations. The call 443 * must never be used except when endpoint is not being used for any 444 * protocol translation. 445 * 446 * This routine may be called in interrupt context. 447 */ 448 void usb_ep_fifo_flush(struct usb_ep *ep) 449 { 450 if (ep->ops->fifo_flush) 451 ep->ops->fifo_flush(ep); 452 453 trace_usb_ep_fifo_flush(ep, 0); 454 } 455 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush); 456 457 /* ------------------------------------------------------------------------- */ 458 459 /** 460 * usb_gadget_frame_number - returns the current frame number 461 * @gadget: controller that reports the frame number 462 * 463 * Returns the usb frame number, normally eleven bits from a SOF packet, 464 * or negative errno if this device doesn't support this capability. 465 */ 466 int usb_gadget_frame_number(struct usb_gadget *gadget) 467 { 468 int ret; 469 470 ret = gadget->ops->get_frame(gadget); 471 472 trace_usb_gadget_frame_number(gadget, ret); 473 474 return ret; 475 } 476 EXPORT_SYMBOL_GPL(usb_gadget_frame_number); 477 478 /** 479 * usb_gadget_wakeup - tries to wake up the host connected to this gadget 480 * @gadget: controller used to wake up the host 481 * 482 * Returns zero on success, else negative error code if the hardware 483 * doesn't support such attempts, or its support has not been enabled 484 * by the usb host. Drivers must return device descriptors that report 485 * their ability to support this, or hosts won't enable it. 486 * 487 * This may also try to use SRP to wake the host and start enumeration, 488 * even if OTG isn't otherwise in use. OTG devices may also start 489 * remote wakeup even when hosts don't explicitly enable it. 490 */ 491 int usb_gadget_wakeup(struct usb_gadget *gadget) 492 { 493 int ret = 0; 494 495 if (!gadget->ops->wakeup) { 496 ret = -EOPNOTSUPP; 497 goto out; 498 } 499 500 ret = gadget->ops->wakeup(gadget); 501 502 out: 503 trace_usb_gadget_wakeup(gadget, ret); 504 505 return ret; 506 } 507 EXPORT_SYMBOL_GPL(usb_gadget_wakeup); 508 509 /** 510 * usb_gadget_set_selfpowered - sets the device selfpowered feature. 511 * @gadget:the device being declared as self-powered 512 * 513 * this affects the device status reported by the hardware driver 514 * to reflect that it now has a local power supply. 515 * 516 * returns zero on success, else negative errno. 517 */ 518 int usb_gadget_set_selfpowered(struct usb_gadget *gadget) 519 { 520 int ret = 0; 521 522 if (!gadget->ops->set_selfpowered) { 523 ret = -EOPNOTSUPP; 524 goto out; 525 } 526 527 ret = gadget->ops->set_selfpowered(gadget, 1); 528 529 out: 530 trace_usb_gadget_set_selfpowered(gadget, ret); 531 532 return ret; 533 } 534 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered); 535 536 /** 537 * usb_gadget_clear_selfpowered - clear the device selfpowered feature. 538 * @gadget:the device being declared as bus-powered 539 * 540 * this affects the device status reported by the hardware driver. 541 * some hardware may not support bus-powered operation, in which 542 * case this feature's value can never change. 543 * 544 * returns zero on success, else negative errno. 545 */ 546 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget) 547 { 548 int ret = 0; 549 550 if (!gadget->ops->set_selfpowered) { 551 ret = -EOPNOTSUPP; 552 goto out; 553 } 554 555 ret = gadget->ops->set_selfpowered(gadget, 0); 556 557 out: 558 trace_usb_gadget_clear_selfpowered(gadget, ret); 559 560 return ret; 561 } 562 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered); 563 564 /** 565 * usb_gadget_vbus_connect - Notify controller that VBUS is powered 566 * @gadget:The device which now has VBUS power. 567 * Context: can sleep 568 * 569 * This call is used by a driver for an external transceiver (or GPIO) 570 * that detects a VBUS power session starting. Common responses include 571 * resuming the controller, activating the D+ (or D-) pullup to let the 572 * host detect that a USB device is attached, and starting to draw power 573 * (8mA or possibly more, especially after SET_CONFIGURATION). 574 * 575 * Returns zero on success, else negative errno. 576 */ 577 int usb_gadget_vbus_connect(struct usb_gadget *gadget) 578 { 579 int ret = 0; 580 581 if (!gadget->ops->vbus_session) { 582 ret = -EOPNOTSUPP; 583 goto out; 584 } 585 586 ret = gadget->ops->vbus_session(gadget, 1); 587 588 out: 589 trace_usb_gadget_vbus_connect(gadget, ret); 590 591 return ret; 592 } 593 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect); 594 595 /** 596 * usb_gadget_vbus_draw - constrain controller's VBUS power usage 597 * @gadget:The device whose VBUS usage is being described 598 * @mA:How much current to draw, in milliAmperes. This should be twice 599 * the value listed in the configuration descriptor bMaxPower field. 600 * 601 * This call is used by gadget drivers during SET_CONFIGURATION calls, 602 * reporting how much power the device may consume. For example, this 603 * could affect how quickly batteries are recharged. 604 * 605 * Returns zero on success, else negative errno. 606 */ 607 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA) 608 { 609 int ret = 0; 610 611 if (!gadget->ops->vbus_draw) { 612 ret = -EOPNOTSUPP; 613 goto out; 614 } 615 616 ret = gadget->ops->vbus_draw(gadget, mA); 617 if (!ret) 618 gadget->mA = mA; 619 620 out: 621 trace_usb_gadget_vbus_draw(gadget, ret); 622 623 return ret; 624 } 625 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw); 626 627 /** 628 * usb_gadget_vbus_disconnect - notify controller about VBUS session end 629 * @gadget:the device whose VBUS supply is being described 630 * Context: can sleep 631 * 632 * This call is used by a driver for an external transceiver (or GPIO) 633 * that detects a VBUS power session ending. Common responses include 634 * reversing everything done in usb_gadget_vbus_connect(). 635 * 636 * Returns zero on success, else negative errno. 637 */ 638 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget) 639 { 640 int ret = 0; 641 642 if (!gadget->ops->vbus_session) { 643 ret = -EOPNOTSUPP; 644 goto out; 645 } 646 647 ret = gadget->ops->vbus_session(gadget, 0); 648 649 out: 650 trace_usb_gadget_vbus_disconnect(gadget, ret); 651 652 return ret; 653 } 654 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect); 655 656 /** 657 * usb_gadget_connect - software-controlled connect to USB host 658 * @gadget:the peripheral being connected 659 * 660 * Enables the D+ (or potentially D-) pullup. The host will start 661 * enumerating this gadget when the pullup is active and a VBUS session 662 * is active (the link is powered). This pullup is always enabled unless 663 * usb_gadget_disconnect() has been used to disable it. 664 * 665 * Returns zero on success, else negative errno. 666 */ 667 int usb_gadget_connect(struct usb_gadget *gadget) 668 { 669 int ret = 0; 670 671 if (!gadget->ops->pullup) { 672 ret = -EOPNOTSUPP; 673 goto out; 674 } 675 676 if (gadget->deactivated) { 677 /* 678 * If gadget is deactivated we only save new state. 679 * Gadget will be connected automatically after activation. 680 */ 681 gadget->connected = true; 682 goto out; 683 } 684 685 ret = gadget->ops->pullup(gadget, 1); 686 if (!ret) 687 gadget->connected = 1; 688 689 out: 690 trace_usb_gadget_connect(gadget, ret); 691 692 return ret; 693 } 694 EXPORT_SYMBOL_GPL(usb_gadget_connect); 695 696 /** 697 * usb_gadget_disconnect - software-controlled disconnect from USB host 698 * @gadget:the peripheral being disconnected 699 * 700 * Disables the D+ (or potentially D-) pullup, which the host may see 701 * as a disconnect (when a VBUS session is active). Not all systems 702 * support software pullup controls. 703 * 704 * Following a successful disconnect, invoke the ->disconnect() callback 705 * for the current gadget driver so that UDC drivers don't need to. 706 * 707 * Returns zero on success, else negative errno. 708 */ 709 int usb_gadget_disconnect(struct usb_gadget *gadget) 710 { 711 int ret = 0; 712 713 if (!gadget->ops->pullup) { 714 ret = -EOPNOTSUPP; 715 goto out; 716 } 717 718 if (gadget->deactivated) { 719 /* 720 * If gadget is deactivated we only save new state. 721 * Gadget will stay disconnected after activation. 722 */ 723 gadget->connected = false; 724 goto out; 725 } 726 727 ret = gadget->ops->pullup(gadget, 0); 728 if (!ret) { 729 gadget->connected = 0; 730 gadget->udc->driver->disconnect(gadget); 731 } 732 733 out: 734 trace_usb_gadget_disconnect(gadget, ret); 735 736 return ret; 737 } 738 EXPORT_SYMBOL_GPL(usb_gadget_disconnect); 739 740 /** 741 * usb_gadget_deactivate - deactivate function which is not ready to work 742 * @gadget: the peripheral being deactivated 743 * 744 * This routine may be used during the gadget driver bind() call to prevent 745 * the peripheral from ever being visible to the USB host, unless later 746 * usb_gadget_activate() is called. For example, user mode components may 747 * need to be activated before the system can talk to hosts. 748 * 749 * Returns zero on success, else negative errno. 750 */ 751 int usb_gadget_deactivate(struct usb_gadget *gadget) 752 { 753 int ret = 0; 754 755 if (gadget->deactivated) 756 goto out; 757 758 if (gadget->connected) { 759 ret = usb_gadget_disconnect(gadget); 760 if (ret) 761 goto out; 762 763 /* 764 * If gadget was being connected before deactivation, we want 765 * to reconnect it in usb_gadget_activate(). 766 */ 767 gadget->connected = true; 768 } 769 gadget->deactivated = true; 770 771 out: 772 trace_usb_gadget_deactivate(gadget, ret); 773 774 return ret; 775 } 776 EXPORT_SYMBOL_GPL(usb_gadget_deactivate); 777 778 /** 779 * usb_gadget_activate - activate function which is not ready to work 780 * @gadget: the peripheral being activated 781 * 782 * This routine activates gadget which was previously deactivated with 783 * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed. 784 * 785 * Returns zero on success, else negative errno. 786 */ 787 int usb_gadget_activate(struct usb_gadget *gadget) 788 { 789 int ret = 0; 790 791 if (!gadget->deactivated) 792 goto out; 793 794 gadget->deactivated = false; 795 796 /* 797 * If gadget has been connected before deactivation, or became connected 798 * while it was being deactivated, we call usb_gadget_connect(). 799 */ 800 if (gadget->connected) 801 ret = usb_gadget_connect(gadget); 802 803 out: 804 trace_usb_gadget_activate(gadget, ret); 805 806 return ret; 807 } 808 EXPORT_SYMBOL_GPL(usb_gadget_activate); 809 810 /* ------------------------------------------------------------------------- */ 811 812 #ifdef CONFIG_HAS_DMA 813 814 int usb_gadget_map_request_by_dev(struct device *dev, 815 struct usb_request *req, int is_in) 816 { 817 if (req->length == 0) 818 return 0; 819 820 if (req->num_sgs) { 821 int mapped; 822 823 mapped = dma_map_sg(dev, req->sg, req->num_sgs, 824 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 825 if (mapped == 0) { 826 dev_err(dev, "failed to map SGs\n"); 827 return -EFAULT; 828 } 829 830 req->num_mapped_sgs = mapped; 831 } else { 832 if (is_vmalloc_addr(req->buf)) { 833 dev_err(dev, "buffer is not dma capable\n"); 834 return -EFAULT; 835 } else if (object_is_on_stack(req->buf)) { 836 dev_err(dev, "buffer is on stack\n"); 837 return -EFAULT; 838 } 839 840 req->dma = dma_map_single(dev, req->buf, req->length, 841 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 842 843 if (dma_mapping_error(dev, req->dma)) { 844 dev_err(dev, "failed to map buffer\n"); 845 return -EFAULT; 846 } 847 848 req->dma_mapped = 1; 849 } 850 851 return 0; 852 } 853 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev); 854 855 int usb_gadget_map_request(struct usb_gadget *gadget, 856 struct usb_request *req, int is_in) 857 { 858 return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in); 859 } 860 EXPORT_SYMBOL_GPL(usb_gadget_map_request); 861 862 void usb_gadget_unmap_request_by_dev(struct device *dev, 863 struct usb_request *req, int is_in) 864 { 865 if (req->length == 0) 866 return; 867 868 if (req->num_mapped_sgs) { 869 dma_unmap_sg(dev, req->sg, req->num_sgs, 870 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 871 872 req->num_mapped_sgs = 0; 873 } else if (req->dma_mapped) { 874 dma_unmap_single(dev, req->dma, req->length, 875 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 876 req->dma_mapped = 0; 877 } 878 } 879 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev); 880 881 void usb_gadget_unmap_request(struct usb_gadget *gadget, 882 struct usb_request *req, int is_in) 883 { 884 usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in); 885 } 886 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request); 887 888 #endif /* CONFIG_HAS_DMA */ 889 890 /* ------------------------------------------------------------------------- */ 891 892 /** 893 * usb_gadget_giveback_request - give the request back to the gadget layer 894 * Context: in_interrupt() 895 * 896 * This is called by device controller drivers in order to return the 897 * completed request back to the gadget layer. 898 */ 899 void usb_gadget_giveback_request(struct usb_ep *ep, 900 struct usb_request *req) 901 { 902 if (likely(req->status == 0)) 903 usb_led_activity(USB_LED_EVENT_GADGET); 904 905 trace_usb_gadget_giveback_request(ep, req, 0); 906 907 req->complete(ep, req); 908 } 909 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request); 910 911 /* ------------------------------------------------------------------------- */ 912 913 /** 914 * gadget_find_ep_by_name - returns ep whose name is the same as sting passed 915 * in second parameter or NULL if searched endpoint not found 916 * @g: controller to check for quirk 917 * @name: name of searched endpoint 918 */ 919 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name) 920 { 921 struct usb_ep *ep; 922 923 gadget_for_each_ep(ep, g) { 924 if (!strcmp(ep->name, name)) 925 return ep; 926 } 927 928 return NULL; 929 } 930 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name); 931 932 /* ------------------------------------------------------------------------- */ 933 934 int usb_gadget_ep_match_desc(struct usb_gadget *gadget, 935 struct usb_ep *ep, struct usb_endpoint_descriptor *desc, 936 struct usb_ss_ep_comp_descriptor *ep_comp) 937 { 938 u8 type; 939 u16 max; 940 int num_req_streams = 0; 941 942 /* endpoint already claimed? */ 943 if (ep->claimed) 944 return 0; 945 946 type = usb_endpoint_type(desc); 947 max = usb_endpoint_maxp(desc); 948 949 if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in) 950 return 0; 951 if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out) 952 return 0; 953 954 if (max > ep->maxpacket_limit) 955 return 0; 956 957 /* "high bandwidth" works only at high speed */ 958 if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1) 959 return 0; 960 961 switch (type) { 962 case USB_ENDPOINT_XFER_CONTROL: 963 /* only support ep0 for portable CONTROL traffic */ 964 return 0; 965 case USB_ENDPOINT_XFER_ISOC: 966 if (!ep->caps.type_iso) 967 return 0; 968 /* ISO: limit 1023 bytes full speed, 1024 high/super speed */ 969 if (!gadget_is_dualspeed(gadget) && max > 1023) 970 return 0; 971 break; 972 case USB_ENDPOINT_XFER_BULK: 973 if (!ep->caps.type_bulk) 974 return 0; 975 if (ep_comp && gadget_is_superspeed(gadget)) { 976 /* Get the number of required streams from the 977 * EP companion descriptor and see if the EP 978 * matches it 979 */ 980 num_req_streams = ep_comp->bmAttributes & 0x1f; 981 if (num_req_streams > ep->max_streams) 982 return 0; 983 } 984 break; 985 case USB_ENDPOINT_XFER_INT: 986 /* Bulk endpoints handle interrupt transfers, 987 * except the toggle-quirky iso-synch kind 988 */ 989 if (!ep->caps.type_int && !ep->caps.type_bulk) 990 return 0; 991 /* INT: limit 64 bytes full speed, 1024 high/super speed */ 992 if (!gadget_is_dualspeed(gadget) && max > 64) 993 return 0; 994 break; 995 } 996 997 return 1; 998 } 999 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc); 1000 1001 /* ------------------------------------------------------------------------- */ 1002 1003 static void usb_gadget_state_work(struct work_struct *work) 1004 { 1005 struct usb_gadget *gadget = work_to_gadget(work); 1006 struct usb_udc *udc = gadget->udc; 1007 1008 if (udc) 1009 sysfs_notify(&udc->dev.kobj, NULL, "state"); 1010 } 1011 1012 void usb_gadget_set_state(struct usb_gadget *gadget, 1013 enum usb_device_state state) 1014 { 1015 gadget->state = state; 1016 schedule_work(&gadget->work); 1017 } 1018 EXPORT_SYMBOL_GPL(usb_gadget_set_state); 1019 1020 /* ------------------------------------------------------------------------- */ 1021 1022 static void usb_udc_connect_control(struct usb_udc *udc) 1023 { 1024 if (udc->vbus) 1025 usb_gadget_connect(udc->gadget); 1026 else 1027 usb_gadget_disconnect(udc->gadget); 1028 } 1029 1030 /** 1031 * usb_udc_vbus_handler - updates the udc core vbus status, and try to 1032 * connect or disconnect gadget 1033 * @gadget: The gadget which vbus change occurs 1034 * @status: The vbus status 1035 * 1036 * The udc driver calls it when it wants to connect or disconnect gadget 1037 * according to vbus status. 1038 */ 1039 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status) 1040 { 1041 struct usb_udc *udc = gadget->udc; 1042 1043 if (udc) { 1044 udc->vbus = status; 1045 usb_udc_connect_control(udc); 1046 } 1047 } 1048 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler); 1049 1050 /** 1051 * usb_gadget_udc_reset - notifies the udc core that bus reset occurs 1052 * @gadget: The gadget which bus reset occurs 1053 * @driver: The gadget driver we want to notify 1054 * 1055 * If the udc driver has bus reset handler, it needs to call this when the bus 1056 * reset occurs, it notifies the gadget driver that the bus reset occurs as 1057 * well as updates gadget state. 1058 */ 1059 void usb_gadget_udc_reset(struct usb_gadget *gadget, 1060 struct usb_gadget_driver *driver) 1061 { 1062 driver->reset(gadget); 1063 usb_gadget_set_state(gadget, USB_STATE_DEFAULT); 1064 } 1065 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset); 1066 1067 /** 1068 * usb_gadget_udc_start - tells usb device controller to start up 1069 * @udc: The UDC to be started 1070 * 1071 * This call is issued by the UDC Class driver when it's about 1072 * to register a gadget driver to the device controller, before 1073 * calling gadget driver's bind() method. 1074 * 1075 * It allows the controller to be powered off until strictly 1076 * necessary to have it powered on. 1077 * 1078 * Returns zero on success, else negative errno. 1079 */ 1080 static inline int usb_gadget_udc_start(struct usb_udc *udc) 1081 { 1082 return udc->gadget->ops->udc_start(udc->gadget, udc->driver); 1083 } 1084 1085 /** 1086 * usb_gadget_udc_stop - tells usb device controller we don't need it anymore 1087 * @gadget: The device we want to stop activity 1088 * @driver: The driver to unbind from @gadget 1089 * 1090 * This call is issued by the UDC Class driver after calling 1091 * gadget driver's unbind() method. 1092 * 1093 * The details are implementation specific, but it can go as 1094 * far as powering off UDC completely and disable its data 1095 * line pullups. 1096 */ 1097 static inline void usb_gadget_udc_stop(struct usb_udc *udc) 1098 { 1099 udc->gadget->ops->udc_stop(udc->gadget); 1100 } 1101 1102 /** 1103 * usb_gadget_udc_set_speed - tells usb device controller speed supported by 1104 * current driver 1105 * @udc: The device we want to set maximum speed 1106 * @speed: The maximum speed to allowed to run 1107 * 1108 * This call is issued by the UDC Class driver before calling 1109 * usb_gadget_udc_start() in order to make sure that we don't try to 1110 * connect on speeds the gadget driver doesn't support. 1111 */ 1112 static inline void usb_gadget_udc_set_speed(struct usb_udc *udc, 1113 enum usb_device_speed speed) 1114 { 1115 if (udc->gadget->ops->udc_set_speed) { 1116 enum usb_device_speed s; 1117 1118 s = min(speed, udc->gadget->max_speed); 1119 udc->gadget->ops->udc_set_speed(udc->gadget, s); 1120 } 1121 } 1122 1123 /** 1124 * usb_udc_release - release the usb_udc struct 1125 * @dev: the dev member within usb_udc 1126 * 1127 * This is called by driver's core in order to free memory once the last 1128 * reference is released. 1129 */ 1130 static void usb_udc_release(struct device *dev) 1131 { 1132 struct usb_udc *udc; 1133 1134 udc = container_of(dev, struct usb_udc, dev); 1135 dev_dbg(dev, "releasing '%s'\n", dev_name(dev)); 1136 kfree(udc); 1137 } 1138 1139 static const struct attribute_group *usb_udc_attr_groups[]; 1140 1141 static void usb_udc_nop_release(struct device *dev) 1142 { 1143 dev_vdbg(dev, "%s\n", __func__); 1144 } 1145 1146 /* should be called with udc_lock held */ 1147 static int check_pending_gadget_drivers(struct usb_udc *udc) 1148 { 1149 struct usb_gadget_driver *driver; 1150 int ret = 0; 1151 1152 list_for_each_entry(driver, &gadget_driver_pending_list, pending) 1153 if (!driver->udc_name || strcmp(driver->udc_name, 1154 dev_name(&udc->dev)) == 0) { 1155 ret = udc_bind_to_driver(udc, driver); 1156 if (ret != -EPROBE_DEFER) 1157 list_del_init(&driver->pending); 1158 break; 1159 } 1160 1161 return ret; 1162 } 1163 1164 /** 1165 * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list 1166 * @parent: the parent device to this udc. Usually the controller driver's 1167 * device. 1168 * @gadget: the gadget to be added to the list. 1169 * @release: a gadget release function. 1170 * 1171 * Returns zero on success, negative errno otherwise. 1172 * Calls the gadget release function in the latter case. 1173 */ 1174 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget, 1175 void (*release)(struct device *dev)) 1176 { 1177 struct usb_udc *udc; 1178 int ret = -ENOMEM; 1179 1180 dev_set_name(&gadget->dev, "gadget"); 1181 INIT_WORK(&gadget->work, usb_gadget_state_work); 1182 gadget->dev.parent = parent; 1183 1184 if (release) 1185 gadget->dev.release = release; 1186 else 1187 gadget->dev.release = usb_udc_nop_release; 1188 1189 device_initialize(&gadget->dev); 1190 1191 udc = kzalloc(sizeof(*udc), GFP_KERNEL); 1192 if (!udc) 1193 goto err_put_gadget; 1194 1195 device_initialize(&udc->dev); 1196 udc->dev.release = usb_udc_release; 1197 udc->dev.class = udc_class; 1198 udc->dev.groups = usb_udc_attr_groups; 1199 udc->dev.parent = parent; 1200 ret = dev_set_name(&udc->dev, "%s", kobject_name(&parent->kobj)); 1201 if (ret) 1202 goto err_put_udc; 1203 1204 ret = device_add(&gadget->dev); 1205 if (ret) 1206 goto err_put_udc; 1207 1208 udc->gadget = gadget; 1209 gadget->udc = udc; 1210 1211 mutex_lock(&udc_lock); 1212 list_add_tail(&udc->list, &udc_list); 1213 1214 ret = device_add(&udc->dev); 1215 if (ret) 1216 goto err_unlist_udc; 1217 1218 usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED); 1219 udc->vbus = true; 1220 1221 /* pick up one of pending gadget drivers */ 1222 ret = check_pending_gadget_drivers(udc); 1223 if (ret) 1224 goto err_del_udc; 1225 1226 mutex_unlock(&udc_lock); 1227 1228 return 0; 1229 1230 err_del_udc: 1231 device_del(&udc->dev); 1232 1233 err_unlist_udc: 1234 list_del(&udc->list); 1235 mutex_unlock(&udc_lock); 1236 1237 device_del(&gadget->dev); 1238 1239 err_put_udc: 1240 put_device(&udc->dev); 1241 1242 err_put_gadget: 1243 put_device(&gadget->dev); 1244 return ret; 1245 } 1246 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release); 1247 1248 /** 1249 * usb_get_gadget_udc_name - get the name of the first UDC controller 1250 * This functions returns the name of the first UDC controller in the system. 1251 * Please note that this interface is usefull only for legacy drivers which 1252 * assume that there is only one UDC controller in the system and they need to 1253 * get its name before initialization. There is no guarantee that the UDC 1254 * of the returned name will be still available, when gadget driver registers 1255 * itself. 1256 * 1257 * Returns pointer to string with UDC controller name on success, NULL 1258 * otherwise. Caller should kfree() returned string. 1259 */ 1260 char *usb_get_gadget_udc_name(void) 1261 { 1262 struct usb_udc *udc; 1263 char *name = NULL; 1264 1265 /* For now we take the first available UDC */ 1266 mutex_lock(&udc_lock); 1267 list_for_each_entry(udc, &udc_list, list) { 1268 if (!udc->driver) { 1269 name = kstrdup(udc->gadget->name, GFP_KERNEL); 1270 break; 1271 } 1272 } 1273 mutex_unlock(&udc_lock); 1274 return name; 1275 } 1276 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name); 1277 1278 /** 1279 * usb_add_gadget_udc - adds a new gadget to the udc class driver list 1280 * @parent: the parent device to this udc. Usually the controller 1281 * driver's device. 1282 * @gadget: the gadget to be added to the list 1283 * 1284 * Returns zero on success, negative errno otherwise. 1285 */ 1286 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget) 1287 { 1288 return usb_add_gadget_udc_release(parent, gadget, NULL); 1289 } 1290 EXPORT_SYMBOL_GPL(usb_add_gadget_udc); 1291 1292 static void usb_gadget_remove_driver(struct usb_udc *udc) 1293 { 1294 dev_dbg(&udc->dev, "unregistering UDC driver [%s]\n", 1295 udc->driver->function); 1296 1297 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE); 1298 1299 usb_gadget_disconnect(udc->gadget); 1300 udc->driver->unbind(udc->gadget); 1301 usb_gadget_udc_stop(udc); 1302 1303 udc->driver = NULL; 1304 udc->dev.driver = NULL; 1305 udc->gadget->dev.driver = NULL; 1306 } 1307 1308 /** 1309 * usb_del_gadget_udc - deletes @udc from udc_list 1310 * @gadget: the gadget to be removed. 1311 * 1312 * This, will call usb_gadget_unregister_driver() if 1313 * the @udc is still busy. 1314 */ 1315 void usb_del_gadget_udc(struct usb_gadget *gadget) 1316 { 1317 struct usb_udc *udc = gadget->udc; 1318 1319 if (!udc) 1320 return; 1321 1322 dev_vdbg(gadget->dev.parent, "unregistering gadget\n"); 1323 1324 mutex_lock(&udc_lock); 1325 list_del(&udc->list); 1326 1327 if (udc->driver) { 1328 struct usb_gadget_driver *driver = udc->driver; 1329 1330 usb_gadget_remove_driver(udc); 1331 list_add(&driver->pending, &gadget_driver_pending_list); 1332 } 1333 mutex_unlock(&udc_lock); 1334 1335 kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE); 1336 flush_work(&gadget->work); 1337 device_unregister(&udc->dev); 1338 device_unregister(&gadget->dev); 1339 memset(&gadget->dev, 0x00, sizeof(gadget->dev)); 1340 } 1341 EXPORT_SYMBOL_GPL(usb_del_gadget_udc); 1342 1343 /* ------------------------------------------------------------------------- */ 1344 1345 static int udc_bind_to_driver(struct usb_udc *udc, struct usb_gadget_driver *driver) 1346 { 1347 int ret; 1348 1349 dev_dbg(&udc->dev, "registering UDC driver [%s]\n", 1350 driver->function); 1351 1352 udc->driver = driver; 1353 udc->dev.driver = &driver->driver; 1354 udc->gadget->dev.driver = &driver->driver; 1355 1356 usb_gadget_udc_set_speed(udc, driver->max_speed); 1357 1358 ret = driver->bind(udc->gadget, driver); 1359 if (ret) 1360 goto err1; 1361 ret = usb_gadget_udc_start(udc); 1362 if (ret) { 1363 driver->unbind(udc->gadget); 1364 goto err1; 1365 } 1366 usb_udc_connect_control(udc); 1367 1368 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE); 1369 return 0; 1370 err1: 1371 if (ret != -EISNAM) 1372 dev_err(&udc->dev, "failed to start %s: %d\n", 1373 udc->driver->function, ret); 1374 udc->driver = NULL; 1375 udc->dev.driver = NULL; 1376 udc->gadget->dev.driver = NULL; 1377 return ret; 1378 } 1379 1380 int usb_gadget_probe_driver(struct usb_gadget_driver *driver) 1381 { 1382 struct usb_udc *udc = NULL; 1383 int ret = -ENODEV; 1384 1385 if (!driver || !driver->bind || !driver->setup) 1386 return -EINVAL; 1387 1388 mutex_lock(&udc_lock); 1389 if (driver->udc_name) { 1390 list_for_each_entry(udc, &udc_list, list) { 1391 ret = strcmp(driver->udc_name, dev_name(&udc->dev)); 1392 if (!ret) 1393 break; 1394 } 1395 if (ret) 1396 ret = -ENODEV; 1397 else if (udc->driver) 1398 ret = -EBUSY; 1399 else 1400 goto found; 1401 } else { 1402 list_for_each_entry(udc, &udc_list, list) { 1403 /* For now we take the first one */ 1404 if (!udc->driver) 1405 goto found; 1406 } 1407 } 1408 1409 if (!driver->match_existing_only) { 1410 list_add_tail(&driver->pending, &gadget_driver_pending_list); 1411 pr_info("udc-core: couldn't find an available UDC - added [%s] to list of pending drivers\n", 1412 driver->function); 1413 ret = 0; 1414 } 1415 1416 mutex_unlock(&udc_lock); 1417 return ret; 1418 found: 1419 ret = udc_bind_to_driver(udc, driver); 1420 mutex_unlock(&udc_lock); 1421 return ret; 1422 } 1423 EXPORT_SYMBOL_GPL(usb_gadget_probe_driver); 1424 1425 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver) 1426 { 1427 struct usb_udc *udc = NULL; 1428 int ret = -ENODEV; 1429 1430 if (!driver || !driver->unbind) 1431 return -EINVAL; 1432 1433 mutex_lock(&udc_lock); 1434 list_for_each_entry(udc, &udc_list, list) { 1435 if (udc->driver == driver) { 1436 usb_gadget_remove_driver(udc); 1437 usb_gadget_set_state(udc->gadget, 1438 USB_STATE_NOTATTACHED); 1439 1440 /* Maybe there is someone waiting for this UDC? */ 1441 check_pending_gadget_drivers(udc); 1442 /* 1443 * For now we ignore bind errors as probably it's 1444 * not a valid reason to fail other's gadget unbind 1445 */ 1446 ret = 0; 1447 break; 1448 } 1449 } 1450 1451 if (ret) { 1452 list_del(&driver->pending); 1453 ret = 0; 1454 } 1455 mutex_unlock(&udc_lock); 1456 return ret; 1457 } 1458 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver); 1459 1460 /* ------------------------------------------------------------------------- */ 1461 1462 static ssize_t srp_store(struct device *dev, 1463 struct device_attribute *attr, const char *buf, size_t n) 1464 { 1465 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1466 1467 if (sysfs_streq(buf, "1")) 1468 usb_gadget_wakeup(udc->gadget); 1469 1470 return n; 1471 } 1472 static DEVICE_ATTR_WO(srp); 1473 1474 static ssize_t soft_connect_store(struct device *dev, 1475 struct device_attribute *attr, const char *buf, size_t n) 1476 { 1477 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1478 1479 if (!udc->driver) { 1480 dev_err(dev, "soft-connect without a gadget driver\n"); 1481 return -EOPNOTSUPP; 1482 } 1483 1484 if (sysfs_streq(buf, "connect")) { 1485 usb_gadget_udc_start(udc); 1486 usb_gadget_connect(udc->gadget); 1487 } else if (sysfs_streq(buf, "disconnect")) { 1488 usb_gadget_disconnect(udc->gadget); 1489 usb_gadget_udc_stop(udc); 1490 } else { 1491 dev_err(dev, "unsupported command '%s'\n", buf); 1492 return -EINVAL; 1493 } 1494 1495 return n; 1496 } 1497 static DEVICE_ATTR_WO(soft_connect); 1498 1499 static ssize_t state_show(struct device *dev, struct device_attribute *attr, 1500 char *buf) 1501 { 1502 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1503 struct usb_gadget *gadget = udc->gadget; 1504 1505 return sprintf(buf, "%s\n", usb_state_string(gadget->state)); 1506 } 1507 static DEVICE_ATTR_RO(state); 1508 1509 static ssize_t function_show(struct device *dev, struct device_attribute *attr, 1510 char *buf) 1511 { 1512 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1513 struct usb_gadget_driver *drv = udc->driver; 1514 1515 if (!drv || !drv->function) 1516 return 0; 1517 return scnprintf(buf, PAGE_SIZE, "%s\n", drv->function); 1518 } 1519 static DEVICE_ATTR_RO(function); 1520 1521 #define USB_UDC_SPEED_ATTR(name, param) \ 1522 ssize_t name##_show(struct device *dev, \ 1523 struct device_attribute *attr, char *buf) \ 1524 { \ 1525 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \ 1526 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 1527 usb_speed_string(udc->gadget->param)); \ 1528 } \ 1529 static DEVICE_ATTR_RO(name) 1530 1531 static USB_UDC_SPEED_ATTR(current_speed, speed); 1532 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed); 1533 1534 #define USB_UDC_ATTR(name) \ 1535 ssize_t name##_show(struct device *dev, \ 1536 struct device_attribute *attr, char *buf) \ 1537 { \ 1538 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \ 1539 struct usb_gadget *gadget = udc->gadget; \ 1540 \ 1541 return scnprintf(buf, PAGE_SIZE, "%d\n", gadget->name); \ 1542 } \ 1543 static DEVICE_ATTR_RO(name) 1544 1545 static USB_UDC_ATTR(is_otg); 1546 static USB_UDC_ATTR(is_a_peripheral); 1547 static USB_UDC_ATTR(b_hnp_enable); 1548 static USB_UDC_ATTR(a_hnp_support); 1549 static USB_UDC_ATTR(a_alt_hnp_support); 1550 static USB_UDC_ATTR(is_selfpowered); 1551 1552 static struct attribute *usb_udc_attrs[] = { 1553 &dev_attr_srp.attr, 1554 &dev_attr_soft_connect.attr, 1555 &dev_attr_state.attr, 1556 &dev_attr_function.attr, 1557 &dev_attr_current_speed.attr, 1558 &dev_attr_maximum_speed.attr, 1559 1560 &dev_attr_is_otg.attr, 1561 &dev_attr_is_a_peripheral.attr, 1562 &dev_attr_b_hnp_enable.attr, 1563 &dev_attr_a_hnp_support.attr, 1564 &dev_attr_a_alt_hnp_support.attr, 1565 &dev_attr_is_selfpowered.attr, 1566 NULL, 1567 }; 1568 1569 static const struct attribute_group usb_udc_attr_group = { 1570 .attrs = usb_udc_attrs, 1571 }; 1572 1573 static const struct attribute_group *usb_udc_attr_groups[] = { 1574 &usb_udc_attr_group, 1575 NULL, 1576 }; 1577 1578 static int usb_udc_uevent(struct device *dev, struct kobj_uevent_env *env) 1579 { 1580 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1581 int ret; 1582 1583 ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name); 1584 if (ret) { 1585 dev_err(dev, "failed to add uevent USB_UDC_NAME\n"); 1586 return ret; 1587 } 1588 1589 if (udc->driver) { 1590 ret = add_uevent_var(env, "USB_UDC_DRIVER=%s", 1591 udc->driver->function); 1592 if (ret) { 1593 dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n"); 1594 return ret; 1595 } 1596 } 1597 1598 return 0; 1599 } 1600 1601 static int __init usb_udc_init(void) 1602 { 1603 udc_class = class_create(THIS_MODULE, "udc"); 1604 if (IS_ERR(udc_class)) { 1605 pr_err("failed to create udc class --> %ld\n", 1606 PTR_ERR(udc_class)); 1607 return PTR_ERR(udc_class); 1608 } 1609 1610 udc_class->dev_uevent = usb_udc_uevent; 1611 return 0; 1612 } 1613 subsys_initcall(usb_udc_init); 1614 1615 static void __exit usb_udc_exit(void) 1616 { 1617 class_destroy(udc_class); 1618 } 1619 module_exit(usb_udc_exit); 1620 1621 MODULE_DESCRIPTION("UDC Framework"); 1622 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>"); 1623 MODULE_LICENSE("GPL v2"); 1624