xref: /openbmc/linux/drivers/usb/gadget/udc/core.c (revision cb3908c133f1285069673f11ad651d14ae0406cf)
1 // SPDX-License-Identifier: GPL-2.0
2 /**
3  * udc.c - Core UDC Framework
4  *
5  * Copyright (C) 2010 Texas Instruments
6  * Author: Felipe Balbi <balbi@ti.com>
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/device.h>
12 #include <linux/list.h>
13 #include <linux/err.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/workqueue.h>
17 
18 #include <linux/usb/ch9.h>
19 #include <linux/usb/gadget.h>
20 #include <linux/usb.h>
21 
22 #include "trace.h"
23 
24 /**
25  * struct usb_udc - describes one usb device controller
26  * @driver - the gadget driver pointer. For use by the class code
27  * @dev - the child device to the actual controller
28  * @gadget - the gadget. For use by the class code
29  * @list - for use by the udc class driver
30  * @vbus - for udcs who care about vbus status, this value is real vbus status;
31  * for udcs who do not care about vbus status, this value is always true
32  *
33  * This represents the internal data structure which is used by the UDC-class
34  * to hold information about udc driver and gadget together.
35  */
36 struct usb_udc {
37 	struct usb_gadget_driver	*driver;
38 	struct usb_gadget		*gadget;
39 	struct device			dev;
40 	struct list_head		list;
41 	bool				vbus;
42 };
43 
44 static struct class *udc_class;
45 static LIST_HEAD(udc_list);
46 static LIST_HEAD(gadget_driver_pending_list);
47 static DEFINE_MUTEX(udc_lock);
48 
49 static int udc_bind_to_driver(struct usb_udc *udc,
50 		struct usb_gadget_driver *driver);
51 
52 /* ------------------------------------------------------------------------- */
53 
54 /**
55  * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
56  * @ep:the endpoint being configured
57  * @maxpacket_limit:value of maximum packet size limit
58  *
59  * This function should be used only in UDC drivers to initialize endpoint
60  * (usually in probe function).
61  */
62 void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
63 					      unsigned maxpacket_limit)
64 {
65 	ep->maxpacket_limit = maxpacket_limit;
66 	ep->maxpacket = maxpacket_limit;
67 
68 	trace_usb_ep_set_maxpacket_limit(ep, 0);
69 }
70 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit);
71 
72 /**
73  * usb_ep_enable - configure endpoint, making it usable
74  * @ep:the endpoint being configured.  may not be the endpoint named "ep0".
75  *	drivers discover endpoints through the ep_list of a usb_gadget.
76  *
77  * When configurations are set, or when interface settings change, the driver
78  * will enable or disable the relevant endpoints.  while it is enabled, an
79  * endpoint may be used for i/o until the driver receives a disconnect() from
80  * the host or until the endpoint is disabled.
81  *
82  * the ep0 implementation (which calls this routine) must ensure that the
83  * hardware capabilities of each endpoint match the descriptor provided
84  * for it.  for example, an endpoint named "ep2in-bulk" would be usable
85  * for interrupt transfers as well as bulk, but it likely couldn't be used
86  * for iso transfers or for endpoint 14.  some endpoints are fully
87  * configurable, with more generic names like "ep-a".  (remember that for
88  * USB, "in" means "towards the USB master".)
89  *
90  * This routine must be called in process context.
91  *
92  * returns zero, or a negative error code.
93  */
94 int usb_ep_enable(struct usb_ep *ep)
95 {
96 	int ret = 0;
97 
98 	if (ep->enabled)
99 		goto out;
100 
101 	ret = ep->ops->enable(ep, ep->desc);
102 	if (ret)
103 		goto out;
104 
105 	ep->enabled = true;
106 
107 out:
108 	trace_usb_ep_enable(ep, ret);
109 
110 	return ret;
111 }
112 EXPORT_SYMBOL_GPL(usb_ep_enable);
113 
114 /**
115  * usb_ep_disable - endpoint is no longer usable
116  * @ep:the endpoint being unconfigured.  may not be the endpoint named "ep0".
117  *
118  * no other task may be using this endpoint when this is called.
119  * any pending and uncompleted requests will complete with status
120  * indicating disconnect (-ESHUTDOWN) before this call returns.
121  * gadget drivers must call usb_ep_enable() again before queueing
122  * requests to the endpoint.
123  *
124  * This routine must be called in process context.
125  *
126  * returns zero, or a negative error code.
127  */
128 int usb_ep_disable(struct usb_ep *ep)
129 {
130 	int ret = 0;
131 
132 	if (!ep->enabled)
133 		goto out;
134 
135 	ret = ep->ops->disable(ep);
136 	if (ret)
137 		goto out;
138 
139 	ep->enabled = false;
140 
141 out:
142 	trace_usb_ep_disable(ep, ret);
143 
144 	return ret;
145 }
146 EXPORT_SYMBOL_GPL(usb_ep_disable);
147 
148 /**
149  * usb_ep_alloc_request - allocate a request object to use with this endpoint
150  * @ep:the endpoint to be used with with the request
151  * @gfp_flags:GFP_* flags to use
152  *
153  * Request objects must be allocated with this call, since they normally
154  * need controller-specific setup and may even need endpoint-specific
155  * resources such as allocation of DMA descriptors.
156  * Requests may be submitted with usb_ep_queue(), and receive a single
157  * completion callback.  Free requests with usb_ep_free_request(), when
158  * they are no longer needed.
159  *
160  * Returns the request, or null if one could not be allocated.
161  */
162 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
163 						       gfp_t gfp_flags)
164 {
165 	struct usb_request *req = NULL;
166 
167 	req = ep->ops->alloc_request(ep, gfp_flags);
168 
169 	trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM);
170 
171 	return req;
172 }
173 EXPORT_SYMBOL_GPL(usb_ep_alloc_request);
174 
175 /**
176  * usb_ep_free_request - frees a request object
177  * @ep:the endpoint associated with the request
178  * @req:the request being freed
179  *
180  * Reverses the effect of usb_ep_alloc_request().
181  * Caller guarantees the request is not queued, and that it will
182  * no longer be requeued (or otherwise used).
183  */
184 void usb_ep_free_request(struct usb_ep *ep,
185 				       struct usb_request *req)
186 {
187 	trace_usb_ep_free_request(ep, req, 0);
188 	ep->ops->free_request(ep, req);
189 }
190 EXPORT_SYMBOL_GPL(usb_ep_free_request);
191 
192 /**
193  * usb_ep_queue - queues (submits) an I/O request to an endpoint.
194  * @ep:the endpoint associated with the request
195  * @req:the request being submitted
196  * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
197  *	pre-allocate all necessary memory with the request.
198  *
199  * This tells the device controller to perform the specified request through
200  * that endpoint (reading or writing a buffer).  When the request completes,
201  * including being canceled by usb_ep_dequeue(), the request's completion
202  * routine is called to return the request to the driver.  Any endpoint
203  * (except control endpoints like ep0) may have more than one transfer
204  * request queued; they complete in FIFO order.  Once a gadget driver
205  * submits a request, that request may not be examined or modified until it
206  * is given back to that driver through the completion callback.
207  *
208  * Each request is turned into one or more packets.  The controller driver
209  * never merges adjacent requests into the same packet.  OUT transfers
210  * will sometimes use data that's already buffered in the hardware.
211  * Drivers can rely on the fact that the first byte of the request's buffer
212  * always corresponds to the first byte of some USB packet, for both
213  * IN and OUT transfers.
214  *
215  * Bulk endpoints can queue any amount of data; the transfer is packetized
216  * automatically.  The last packet will be short if the request doesn't fill it
217  * out completely.  Zero length packets (ZLPs) should be avoided in portable
218  * protocols since not all usb hardware can successfully handle zero length
219  * packets.  (ZLPs may be explicitly written, and may be implicitly written if
220  * the request 'zero' flag is set.)  Bulk endpoints may also be used
221  * for interrupt transfers; but the reverse is not true, and some endpoints
222  * won't support every interrupt transfer.  (Such as 768 byte packets.)
223  *
224  * Interrupt-only endpoints are less functional than bulk endpoints, for
225  * example by not supporting queueing or not handling buffers that are
226  * larger than the endpoint's maxpacket size.  They may also treat data
227  * toggle differently.
228  *
229  * Control endpoints ... after getting a setup() callback, the driver queues
230  * one response (even if it would be zero length).  That enables the
231  * status ack, after transferring data as specified in the response.  Setup
232  * functions may return negative error codes to generate protocol stalls.
233  * (Note that some USB device controllers disallow protocol stall responses
234  * in some cases.)  When control responses are deferred (the response is
235  * written after the setup callback returns), then usb_ep_set_halt() may be
236  * used on ep0 to trigger protocol stalls.  Depending on the controller,
237  * it may not be possible to trigger a status-stage protocol stall when the
238  * data stage is over, that is, from within the response's completion
239  * routine.
240  *
241  * For periodic endpoints, like interrupt or isochronous ones, the usb host
242  * arranges to poll once per interval, and the gadget driver usually will
243  * have queued some data to transfer at that time.
244  *
245  * Note that @req's ->complete() callback must never be called from
246  * within usb_ep_queue() as that can create deadlock situations.
247  *
248  * This routine may be called in interrupt context.
249  *
250  * Returns zero, or a negative error code.  Endpoints that are not enabled
251  * report errors; errors will also be
252  * reported when the usb peripheral is disconnected.
253  *
254  * If and only if @req is successfully queued (the return value is zero),
255  * @req->complete() will be called exactly once, when the Gadget core and
256  * UDC are finished with the request.  When the completion function is called,
257  * control of the request is returned to the device driver which submitted it.
258  * The completion handler may then immediately free or reuse @req.
259  */
260 int usb_ep_queue(struct usb_ep *ep,
261 			       struct usb_request *req, gfp_t gfp_flags)
262 {
263 	int ret = 0;
264 
265 	if (WARN_ON_ONCE(!ep->enabled && ep->address)) {
266 		ret = -ESHUTDOWN;
267 		goto out;
268 	}
269 
270 	ret = ep->ops->queue(ep, req, gfp_flags);
271 
272 out:
273 	trace_usb_ep_queue(ep, req, ret);
274 
275 	return ret;
276 }
277 EXPORT_SYMBOL_GPL(usb_ep_queue);
278 
279 /**
280  * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
281  * @ep:the endpoint associated with the request
282  * @req:the request being canceled
283  *
284  * If the request is still active on the endpoint, it is dequeued and
285  * eventually its completion routine is called (with status -ECONNRESET);
286  * else a negative error code is returned.  This routine is asynchronous,
287  * that is, it may return before the completion routine runs.
288  *
289  * Note that some hardware can't clear out write fifos (to unlink the request
290  * at the head of the queue) except as part of disconnecting from usb. Such
291  * restrictions prevent drivers from supporting configuration changes,
292  * even to configuration zero (a "chapter 9" requirement).
293  *
294  * This routine may be called in interrupt context.
295  */
296 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
297 {
298 	int ret;
299 
300 	ret = ep->ops->dequeue(ep, req);
301 	trace_usb_ep_dequeue(ep, req, ret);
302 
303 	return ret;
304 }
305 EXPORT_SYMBOL_GPL(usb_ep_dequeue);
306 
307 /**
308  * usb_ep_set_halt - sets the endpoint halt feature.
309  * @ep: the non-isochronous endpoint being stalled
310  *
311  * Use this to stall an endpoint, perhaps as an error report.
312  * Except for control endpoints,
313  * the endpoint stays halted (will not stream any data) until the host
314  * clears this feature; drivers may need to empty the endpoint's request
315  * queue first, to make sure no inappropriate transfers happen.
316  *
317  * Note that while an endpoint CLEAR_FEATURE will be invisible to the
318  * gadget driver, a SET_INTERFACE will not be.  To reset endpoints for the
319  * current altsetting, see usb_ep_clear_halt().  When switching altsettings,
320  * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
321  *
322  * This routine may be called in interrupt context.
323  *
324  * Returns zero, or a negative error code.  On success, this call sets
325  * underlying hardware state that blocks data transfers.
326  * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
327  * transfer requests are still queued, or if the controller hardware
328  * (usually a FIFO) still holds bytes that the host hasn't collected.
329  */
330 int usb_ep_set_halt(struct usb_ep *ep)
331 {
332 	int ret;
333 
334 	ret = ep->ops->set_halt(ep, 1);
335 	trace_usb_ep_set_halt(ep, ret);
336 
337 	return ret;
338 }
339 EXPORT_SYMBOL_GPL(usb_ep_set_halt);
340 
341 /**
342  * usb_ep_clear_halt - clears endpoint halt, and resets toggle
343  * @ep:the bulk or interrupt endpoint being reset
344  *
345  * Use this when responding to the standard usb "set interface" request,
346  * for endpoints that aren't reconfigured, after clearing any other state
347  * in the endpoint's i/o queue.
348  *
349  * This routine may be called in interrupt context.
350  *
351  * Returns zero, or a negative error code.  On success, this call clears
352  * the underlying hardware state reflecting endpoint halt and data toggle.
353  * Note that some hardware can't support this request (like pxa2xx_udc),
354  * and accordingly can't correctly implement interface altsettings.
355  */
356 int usb_ep_clear_halt(struct usb_ep *ep)
357 {
358 	int ret;
359 
360 	ret = ep->ops->set_halt(ep, 0);
361 	trace_usb_ep_clear_halt(ep, ret);
362 
363 	return ret;
364 }
365 EXPORT_SYMBOL_GPL(usb_ep_clear_halt);
366 
367 /**
368  * usb_ep_set_wedge - sets the halt feature and ignores clear requests
369  * @ep: the endpoint being wedged
370  *
371  * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
372  * requests. If the gadget driver clears the halt status, it will
373  * automatically unwedge the endpoint.
374  *
375  * This routine may be called in interrupt context.
376  *
377  * Returns zero on success, else negative errno.
378  */
379 int usb_ep_set_wedge(struct usb_ep *ep)
380 {
381 	int ret;
382 
383 	if (ep->ops->set_wedge)
384 		ret = ep->ops->set_wedge(ep);
385 	else
386 		ret = ep->ops->set_halt(ep, 1);
387 
388 	trace_usb_ep_set_wedge(ep, ret);
389 
390 	return ret;
391 }
392 EXPORT_SYMBOL_GPL(usb_ep_set_wedge);
393 
394 /**
395  * usb_ep_fifo_status - returns number of bytes in fifo, or error
396  * @ep: the endpoint whose fifo status is being checked.
397  *
398  * FIFO endpoints may have "unclaimed data" in them in certain cases,
399  * such as after aborted transfers.  Hosts may not have collected all
400  * the IN data written by the gadget driver (and reported by a request
401  * completion).  The gadget driver may not have collected all the data
402  * written OUT to it by the host.  Drivers that need precise handling for
403  * fault reporting or recovery may need to use this call.
404  *
405  * This routine may be called in interrupt context.
406  *
407  * This returns the number of such bytes in the fifo, or a negative
408  * errno if the endpoint doesn't use a FIFO or doesn't support such
409  * precise handling.
410  */
411 int usb_ep_fifo_status(struct usb_ep *ep)
412 {
413 	int ret;
414 
415 	if (ep->ops->fifo_status)
416 		ret = ep->ops->fifo_status(ep);
417 	else
418 		ret = -EOPNOTSUPP;
419 
420 	trace_usb_ep_fifo_status(ep, ret);
421 
422 	return ret;
423 }
424 EXPORT_SYMBOL_GPL(usb_ep_fifo_status);
425 
426 /**
427  * usb_ep_fifo_flush - flushes contents of a fifo
428  * @ep: the endpoint whose fifo is being flushed.
429  *
430  * This call may be used to flush the "unclaimed data" that may exist in
431  * an endpoint fifo after abnormal transaction terminations.  The call
432  * must never be used except when endpoint is not being used for any
433  * protocol translation.
434  *
435  * This routine may be called in interrupt context.
436  */
437 void usb_ep_fifo_flush(struct usb_ep *ep)
438 {
439 	if (ep->ops->fifo_flush)
440 		ep->ops->fifo_flush(ep);
441 
442 	trace_usb_ep_fifo_flush(ep, 0);
443 }
444 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush);
445 
446 /* ------------------------------------------------------------------------- */
447 
448 /**
449  * usb_gadget_frame_number - returns the current frame number
450  * @gadget: controller that reports the frame number
451  *
452  * Returns the usb frame number, normally eleven bits from a SOF packet,
453  * or negative errno if this device doesn't support this capability.
454  */
455 int usb_gadget_frame_number(struct usb_gadget *gadget)
456 {
457 	int ret;
458 
459 	ret = gadget->ops->get_frame(gadget);
460 
461 	trace_usb_gadget_frame_number(gadget, ret);
462 
463 	return ret;
464 }
465 EXPORT_SYMBOL_GPL(usb_gadget_frame_number);
466 
467 /**
468  * usb_gadget_wakeup - tries to wake up the host connected to this gadget
469  * @gadget: controller used to wake up the host
470  *
471  * Returns zero on success, else negative error code if the hardware
472  * doesn't support such attempts, or its support has not been enabled
473  * by the usb host.  Drivers must return device descriptors that report
474  * their ability to support this, or hosts won't enable it.
475  *
476  * This may also try to use SRP to wake the host and start enumeration,
477  * even if OTG isn't otherwise in use.  OTG devices may also start
478  * remote wakeup even when hosts don't explicitly enable it.
479  */
480 int usb_gadget_wakeup(struct usb_gadget *gadget)
481 {
482 	int ret = 0;
483 
484 	if (!gadget->ops->wakeup) {
485 		ret = -EOPNOTSUPP;
486 		goto out;
487 	}
488 
489 	ret = gadget->ops->wakeup(gadget);
490 
491 out:
492 	trace_usb_gadget_wakeup(gadget, ret);
493 
494 	return ret;
495 }
496 EXPORT_SYMBOL_GPL(usb_gadget_wakeup);
497 
498 /**
499  * usb_gadget_set_selfpowered - sets the device selfpowered feature.
500  * @gadget:the device being declared as self-powered
501  *
502  * this affects the device status reported by the hardware driver
503  * to reflect that it now has a local power supply.
504  *
505  * returns zero on success, else negative errno.
506  */
507 int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
508 {
509 	int ret = 0;
510 
511 	if (!gadget->ops->set_selfpowered) {
512 		ret = -EOPNOTSUPP;
513 		goto out;
514 	}
515 
516 	ret = gadget->ops->set_selfpowered(gadget, 1);
517 
518 out:
519 	trace_usb_gadget_set_selfpowered(gadget, ret);
520 
521 	return ret;
522 }
523 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered);
524 
525 /**
526  * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
527  * @gadget:the device being declared as bus-powered
528  *
529  * this affects the device status reported by the hardware driver.
530  * some hardware may not support bus-powered operation, in which
531  * case this feature's value can never change.
532  *
533  * returns zero on success, else negative errno.
534  */
535 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
536 {
537 	int ret = 0;
538 
539 	if (!gadget->ops->set_selfpowered) {
540 		ret = -EOPNOTSUPP;
541 		goto out;
542 	}
543 
544 	ret = gadget->ops->set_selfpowered(gadget, 0);
545 
546 out:
547 	trace_usb_gadget_clear_selfpowered(gadget, ret);
548 
549 	return ret;
550 }
551 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered);
552 
553 /**
554  * usb_gadget_vbus_connect - Notify controller that VBUS is powered
555  * @gadget:The device which now has VBUS power.
556  * Context: can sleep
557  *
558  * This call is used by a driver for an external transceiver (or GPIO)
559  * that detects a VBUS power session starting.  Common responses include
560  * resuming the controller, activating the D+ (or D-) pullup to let the
561  * host detect that a USB device is attached, and starting to draw power
562  * (8mA or possibly more, especially after SET_CONFIGURATION).
563  *
564  * Returns zero on success, else negative errno.
565  */
566 int usb_gadget_vbus_connect(struct usb_gadget *gadget)
567 {
568 	int ret = 0;
569 
570 	if (!gadget->ops->vbus_session) {
571 		ret = -EOPNOTSUPP;
572 		goto out;
573 	}
574 
575 	ret = gadget->ops->vbus_session(gadget, 1);
576 
577 out:
578 	trace_usb_gadget_vbus_connect(gadget, ret);
579 
580 	return ret;
581 }
582 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect);
583 
584 /**
585  * usb_gadget_vbus_draw - constrain controller's VBUS power usage
586  * @gadget:The device whose VBUS usage is being described
587  * @mA:How much current to draw, in milliAmperes.  This should be twice
588  *	the value listed in the configuration descriptor bMaxPower field.
589  *
590  * This call is used by gadget drivers during SET_CONFIGURATION calls,
591  * reporting how much power the device may consume.  For example, this
592  * could affect how quickly batteries are recharged.
593  *
594  * Returns zero on success, else negative errno.
595  */
596 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
597 {
598 	int ret = 0;
599 
600 	if (!gadget->ops->vbus_draw) {
601 		ret = -EOPNOTSUPP;
602 		goto out;
603 	}
604 
605 	ret = gadget->ops->vbus_draw(gadget, mA);
606 	if (!ret)
607 		gadget->mA = mA;
608 
609 out:
610 	trace_usb_gadget_vbus_draw(gadget, ret);
611 
612 	return ret;
613 }
614 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw);
615 
616 /**
617  * usb_gadget_vbus_disconnect - notify controller about VBUS session end
618  * @gadget:the device whose VBUS supply is being described
619  * Context: can sleep
620  *
621  * This call is used by a driver for an external transceiver (or GPIO)
622  * that detects a VBUS power session ending.  Common responses include
623  * reversing everything done in usb_gadget_vbus_connect().
624  *
625  * Returns zero on success, else negative errno.
626  */
627 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
628 {
629 	int ret = 0;
630 
631 	if (!gadget->ops->vbus_session) {
632 		ret = -EOPNOTSUPP;
633 		goto out;
634 	}
635 
636 	ret = gadget->ops->vbus_session(gadget, 0);
637 
638 out:
639 	trace_usb_gadget_vbus_disconnect(gadget, ret);
640 
641 	return ret;
642 }
643 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect);
644 
645 /**
646  * usb_gadget_connect - software-controlled connect to USB host
647  * @gadget:the peripheral being connected
648  *
649  * Enables the D+ (or potentially D-) pullup.  The host will start
650  * enumerating this gadget when the pullup is active and a VBUS session
651  * is active (the link is powered).  This pullup is always enabled unless
652  * usb_gadget_disconnect() has been used to disable it.
653  *
654  * Returns zero on success, else negative errno.
655  */
656 int usb_gadget_connect(struct usb_gadget *gadget)
657 {
658 	int ret = 0;
659 
660 	if (!gadget->ops->pullup) {
661 		ret = -EOPNOTSUPP;
662 		goto out;
663 	}
664 
665 	if (gadget->deactivated) {
666 		/*
667 		 * If gadget is deactivated we only save new state.
668 		 * Gadget will be connected automatically after activation.
669 		 */
670 		gadget->connected = true;
671 		goto out;
672 	}
673 
674 	ret = gadget->ops->pullup(gadget, 1);
675 	if (!ret)
676 		gadget->connected = 1;
677 
678 out:
679 	trace_usb_gadget_connect(gadget, ret);
680 
681 	return ret;
682 }
683 EXPORT_SYMBOL_GPL(usb_gadget_connect);
684 
685 /**
686  * usb_gadget_disconnect - software-controlled disconnect from USB host
687  * @gadget:the peripheral being disconnected
688  *
689  * Disables the D+ (or potentially D-) pullup, which the host may see
690  * as a disconnect (when a VBUS session is active).  Not all systems
691  * support software pullup controls.
692  *
693  * Following a successful disconnect, invoke the ->disconnect() callback
694  * for the current gadget driver so that UDC drivers don't need to.
695  *
696  * Returns zero on success, else negative errno.
697  */
698 int usb_gadget_disconnect(struct usb_gadget *gadget)
699 {
700 	int ret = 0;
701 
702 	if (!gadget->ops->pullup) {
703 		ret = -EOPNOTSUPP;
704 		goto out;
705 	}
706 
707 	if (gadget->deactivated) {
708 		/*
709 		 * If gadget is deactivated we only save new state.
710 		 * Gadget will stay disconnected after activation.
711 		 */
712 		gadget->connected = false;
713 		goto out;
714 	}
715 
716 	ret = gadget->ops->pullup(gadget, 0);
717 	if (!ret) {
718 		gadget->connected = 0;
719 		gadget->udc->driver->disconnect(gadget);
720 	}
721 
722 out:
723 	trace_usb_gadget_disconnect(gadget, ret);
724 
725 	return ret;
726 }
727 EXPORT_SYMBOL_GPL(usb_gadget_disconnect);
728 
729 /**
730  * usb_gadget_deactivate - deactivate function which is not ready to work
731  * @gadget: the peripheral being deactivated
732  *
733  * This routine may be used during the gadget driver bind() call to prevent
734  * the peripheral from ever being visible to the USB host, unless later
735  * usb_gadget_activate() is called.  For example, user mode components may
736  * need to be activated before the system can talk to hosts.
737  *
738  * Returns zero on success, else negative errno.
739  */
740 int usb_gadget_deactivate(struct usb_gadget *gadget)
741 {
742 	int ret = 0;
743 
744 	if (gadget->deactivated)
745 		goto out;
746 
747 	if (gadget->connected) {
748 		ret = usb_gadget_disconnect(gadget);
749 		if (ret)
750 			goto out;
751 
752 		/*
753 		 * If gadget was being connected before deactivation, we want
754 		 * to reconnect it in usb_gadget_activate().
755 		 */
756 		gadget->connected = true;
757 	}
758 	gadget->deactivated = true;
759 
760 out:
761 	trace_usb_gadget_deactivate(gadget, ret);
762 
763 	return ret;
764 }
765 EXPORT_SYMBOL_GPL(usb_gadget_deactivate);
766 
767 /**
768  * usb_gadget_activate - activate function which is not ready to work
769  * @gadget: the peripheral being activated
770  *
771  * This routine activates gadget which was previously deactivated with
772  * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
773  *
774  * Returns zero on success, else negative errno.
775  */
776 int usb_gadget_activate(struct usb_gadget *gadget)
777 {
778 	int ret = 0;
779 
780 	if (!gadget->deactivated)
781 		goto out;
782 
783 	gadget->deactivated = false;
784 
785 	/*
786 	 * If gadget has been connected before deactivation, or became connected
787 	 * while it was being deactivated, we call usb_gadget_connect().
788 	 */
789 	if (gadget->connected)
790 		ret = usb_gadget_connect(gadget);
791 
792 out:
793 	trace_usb_gadget_activate(gadget, ret);
794 
795 	return ret;
796 }
797 EXPORT_SYMBOL_GPL(usb_gadget_activate);
798 
799 /* ------------------------------------------------------------------------- */
800 
801 #ifdef	CONFIG_HAS_DMA
802 
803 int usb_gadget_map_request_by_dev(struct device *dev,
804 		struct usb_request *req, int is_in)
805 {
806 	if (req->length == 0)
807 		return 0;
808 
809 	if (req->num_sgs) {
810 		int     mapped;
811 
812 		mapped = dma_map_sg(dev, req->sg, req->num_sgs,
813 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
814 		if (mapped == 0) {
815 			dev_err(dev, "failed to map SGs\n");
816 			return -EFAULT;
817 		}
818 
819 		req->num_mapped_sgs = mapped;
820 	} else {
821 		if (is_vmalloc_addr(req->buf)) {
822 			dev_err(dev, "buffer is not dma capable\n");
823 			return -EFAULT;
824 		} else if (object_is_on_stack(req->buf)) {
825 			dev_err(dev, "buffer is on stack\n");
826 			return -EFAULT;
827 		}
828 
829 		req->dma = dma_map_single(dev, req->buf, req->length,
830 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
831 
832 		if (dma_mapping_error(dev, req->dma)) {
833 			dev_err(dev, "failed to map buffer\n");
834 			return -EFAULT;
835 		}
836 
837 		req->dma_mapped = 1;
838 	}
839 
840 	return 0;
841 }
842 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev);
843 
844 int usb_gadget_map_request(struct usb_gadget *gadget,
845 		struct usb_request *req, int is_in)
846 {
847 	return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in);
848 }
849 EXPORT_SYMBOL_GPL(usb_gadget_map_request);
850 
851 void usb_gadget_unmap_request_by_dev(struct device *dev,
852 		struct usb_request *req, int is_in)
853 {
854 	if (req->length == 0)
855 		return;
856 
857 	if (req->num_mapped_sgs) {
858 		dma_unmap_sg(dev, req->sg, req->num_sgs,
859 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
860 
861 		req->num_mapped_sgs = 0;
862 	} else if (req->dma_mapped) {
863 		dma_unmap_single(dev, req->dma, req->length,
864 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
865 		req->dma_mapped = 0;
866 	}
867 }
868 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev);
869 
870 void usb_gadget_unmap_request(struct usb_gadget *gadget,
871 		struct usb_request *req, int is_in)
872 {
873 	usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in);
874 }
875 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request);
876 
877 #endif	/* CONFIG_HAS_DMA */
878 
879 /* ------------------------------------------------------------------------- */
880 
881 /**
882  * usb_gadget_giveback_request - give the request back to the gadget layer
883  * Context: in_interrupt()
884  *
885  * This is called by device controller drivers in order to return the
886  * completed request back to the gadget layer.
887  */
888 void usb_gadget_giveback_request(struct usb_ep *ep,
889 		struct usb_request *req)
890 {
891 	if (likely(req->status == 0))
892 		usb_led_activity(USB_LED_EVENT_GADGET);
893 
894 	trace_usb_gadget_giveback_request(ep, req, 0);
895 
896 	req->complete(ep, req);
897 }
898 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request);
899 
900 /* ------------------------------------------------------------------------- */
901 
902 /**
903  * gadget_find_ep_by_name - returns ep whose name is the same as sting passed
904  *	in second parameter or NULL if searched endpoint not found
905  * @g: controller to check for quirk
906  * @name: name of searched endpoint
907  */
908 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name)
909 {
910 	struct usb_ep *ep;
911 
912 	gadget_for_each_ep(ep, g) {
913 		if (!strcmp(ep->name, name))
914 			return ep;
915 	}
916 
917 	return NULL;
918 }
919 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name);
920 
921 /* ------------------------------------------------------------------------- */
922 
923 int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
924 		struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
925 		struct usb_ss_ep_comp_descriptor *ep_comp)
926 {
927 	u8		type;
928 	u16		max;
929 	int		num_req_streams = 0;
930 
931 	/* endpoint already claimed? */
932 	if (ep->claimed)
933 		return 0;
934 
935 	type = usb_endpoint_type(desc);
936 	max = usb_endpoint_maxp(desc);
937 
938 	if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in)
939 		return 0;
940 	if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out)
941 		return 0;
942 
943 	if (max > ep->maxpacket_limit)
944 		return 0;
945 
946 	/* "high bandwidth" works only at high speed */
947 	if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1)
948 		return 0;
949 
950 	switch (type) {
951 	case USB_ENDPOINT_XFER_CONTROL:
952 		/* only support ep0 for portable CONTROL traffic */
953 		return 0;
954 	case USB_ENDPOINT_XFER_ISOC:
955 		if (!ep->caps.type_iso)
956 			return 0;
957 		/* ISO:  limit 1023 bytes full speed, 1024 high/super speed */
958 		if (!gadget_is_dualspeed(gadget) && max > 1023)
959 			return 0;
960 		break;
961 	case USB_ENDPOINT_XFER_BULK:
962 		if (!ep->caps.type_bulk)
963 			return 0;
964 		if (ep_comp && gadget_is_superspeed(gadget)) {
965 			/* Get the number of required streams from the
966 			 * EP companion descriptor and see if the EP
967 			 * matches it
968 			 */
969 			num_req_streams = ep_comp->bmAttributes & 0x1f;
970 			if (num_req_streams > ep->max_streams)
971 				return 0;
972 		}
973 		break;
974 	case USB_ENDPOINT_XFER_INT:
975 		/* Bulk endpoints handle interrupt transfers,
976 		 * except the toggle-quirky iso-synch kind
977 		 */
978 		if (!ep->caps.type_int && !ep->caps.type_bulk)
979 			return 0;
980 		/* INT:  limit 64 bytes full speed, 1024 high/super speed */
981 		if (!gadget_is_dualspeed(gadget) && max > 64)
982 			return 0;
983 		break;
984 	}
985 
986 	return 1;
987 }
988 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc);
989 
990 /* ------------------------------------------------------------------------- */
991 
992 static void usb_gadget_state_work(struct work_struct *work)
993 {
994 	struct usb_gadget *gadget = work_to_gadget(work);
995 	struct usb_udc *udc = gadget->udc;
996 
997 	if (udc)
998 		sysfs_notify(&udc->dev.kobj, NULL, "state");
999 }
1000 
1001 void usb_gadget_set_state(struct usb_gadget *gadget,
1002 		enum usb_device_state state)
1003 {
1004 	gadget->state = state;
1005 	schedule_work(&gadget->work);
1006 }
1007 EXPORT_SYMBOL_GPL(usb_gadget_set_state);
1008 
1009 /* ------------------------------------------------------------------------- */
1010 
1011 static void usb_udc_connect_control(struct usb_udc *udc)
1012 {
1013 	if (udc->vbus)
1014 		usb_gadget_connect(udc->gadget);
1015 	else
1016 		usb_gadget_disconnect(udc->gadget);
1017 }
1018 
1019 /**
1020  * usb_udc_vbus_handler - updates the udc core vbus status, and try to
1021  * connect or disconnect gadget
1022  * @gadget: The gadget which vbus change occurs
1023  * @status: The vbus status
1024  *
1025  * The udc driver calls it when it wants to connect or disconnect gadget
1026  * according to vbus status.
1027  */
1028 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status)
1029 {
1030 	struct usb_udc *udc = gadget->udc;
1031 
1032 	if (udc) {
1033 		udc->vbus = status;
1034 		usb_udc_connect_control(udc);
1035 	}
1036 }
1037 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler);
1038 
1039 /**
1040  * usb_gadget_udc_reset - notifies the udc core that bus reset occurs
1041  * @gadget: The gadget which bus reset occurs
1042  * @driver: The gadget driver we want to notify
1043  *
1044  * If the udc driver has bus reset handler, it needs to call this when the bus
1045  * reset occurs, it notifies the gadget driver that the bus reset occurs as
1046  * well as updates gadget state.
1047  */
1048 void usb_gadget_udc_reset(struct usb_gadget *gadget,
1049 		struct usb_gadget_driver *driver)
1050 {
1051 	driver->reset(gadget);
1052 	usb_gadget_set_state(gadget, USB_STATE_DEFAULT);
1053 }
1054 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset);
1055 
1056 /**
1057  * usb_gadget_udc_start - tells usb device controller to start up
1058  * @udc: The UDC to be started
1059  *
1060  * This call is issued by the UDC Class driver when it's about
1061  * to register a gadget driver to the device controller, before
1062  * calling gadget driver's bind() method.
1063  *
1064  * It allows the controller to be powered off until strictly
1065  * necessary to have it powered on.
1066  *
1067  * Returns zero on success, else negative errno.
1068  */
1069 static inline int usb_gadget_udc_start(struct usb_udc *udc)
1070 {
1071 	return udc->gadget->ops->udc_start(udc->gadget, udc->driver);
1072 }
1073 
1074 /**
1075  * usb_gadget_udc_stop - tells usb device controller we don't need it anymore
1076  * @gadget: The device we want to stop activity
1077  * @driver: The driver to unbind from @gadget
1078  *
1079  * This call is issued by the UDC Class driver after calling
1080  * gadget driver's unbind() method.
1081  *
1082  * The details are implementation specific, but it can go as
1083  * far as powering off UDC completely and disable its data
1084  * line pullups.
1085  */
1086 static inline void usb_gadget_udc_stop(struct usb_udc *udc)
1087 {
1088 	udc->gadget->ops->udc_stop(udc->gadget);
1089 }
1090 
1091 /**
1092  * usb_gadget_udc_set_speed - tells usb device controller speed supported by
1093  *    current driver
1094  * @udc: The device we want to set maximum speed
1095  * @speed: The maximum speed to allowed to run
1096  *
1097  * This call is issued by the UDC Class driver before calling
1098  * usb_gadget_udc_start() in order to make sure that we don't try to
1099  * connect on speeds the gadget driver doesn't support.
1100  */
1101 static inline void usb_gadget_udc_set_speed(struct usb_udc *udc,
1102 					    enum usb_device_speed speed)
1103 {
1104 	if (udc->gadget->ops->udc_set_speed) {
1105 		enum usb_device_speed s;
1106 
1107 		s = min(speed, udc->gadget->max_speed);
1108 		udc->gadget->ops->udc_set_speed(udc->gadget, s);
1109 	}
1110 }
1111 
1112 /**
1113  * usb_udc_release - release the usb_udc struct
1114  * @dev: the dev member within usb_udc
1115  *
1116  * This is called by driver's core in order to free memory once the last
1117  * reference is released.
1118  */
1119 static void usb_udc_release(struct device *dev)
1120 {
1121 	struct usb_udc *udc;
1122 
1123 	udc = container_of(dev, struct usb_udc, dev);
1124 	dev_dbg(dev, "releasing '%s'\n", dev_name(dev));
1125 	kfree(udc);
1126 }
1127 
1128 static const struct attribute_group *usb_udc_attr_groups[];
1129 
1130 static void usb_udc_nop_release(struct device *dev)
1131 {
1132 	dev_vdbg(dev, "%s\n", __func__);
1133 }
1134 
1135 /* should be called with udc_lock held */
1136 static int check_pending_gadget_drivers(struct usb_udc *udc)
1137 {
1138 	struct usb_gadget_driver *driver;
1139 	int ret = 0;
1140 
1141 	list_for_each_entry(driver, &gadget_driver_pending_list, pending)
1142 		if (!driver->udc_name || strcmp(driver->udc_name,
1143 						dev_name(&udc->dev)) == 0) {
1144 			ret = udc_bind_to_driver(udc, driver);
1145 			if (ret != -EPROBE_DEFER)
1146 				list_del(&driver->pending);
1147 			break;
1148 		}
1149 
1150 	return ret;
1151 }
1152 
1153 /**
1154  * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list
1155  * @parent: the parent device to this udc. Usually the controller driver's
1156  * device.
1157  * @gadget: the gadget to be added to the list.
1158  * @release: a gadget release function.
1159  *
1160  * Returns zero on success, negative errno otherwise.
1161  * Calls the gadget release function in the latter case.
1162  */
1163 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget,
1164 		void (*release)(struct device *dev))
1165 {
1166 	struct usb_udc		*udc;
1167 	int			ret = -ENOMEM;
1168 
1169 	dev_set_name(&gadget->dev, "gadget");
1170 	INIT_WORK(&gadget->work, usb_gadget_state_work);
1171 	gadget->dev.parent = parent;
1172 
1173 	if (release)
1174 		gadget->dev.release = release;
1175 	else
1176 		gadget->dev.release = usb_udc_nop_release;
1177 
1178 	device_initialize(&gadget->dev);
1179 
1180 	udc = kzalloc(sizeof(*udc), GFP_KERNEL);
1181 	if (!udc)
1182 		goto err_put_gadget;
1183 
1184 	device_initialize(&udc->dev);
1185 	udc->dev.release = usb_udc_release;
1186 	udc->dev.class = udc_class;
1187 	udc->dev.groups = usb_udc_attr_groups;
1188 	udc->dev.parent = parent;
1189 	ret = dev_set_name(&udc->dev, "%s", kobject_name(&parent->kobj));
1190 	if (ret)
1191 		goto err_put_udc;
1192 
1193 	ret = device_add(&gadget->dev);
1194 	if (ret)
1195 		goto err_put_udc;
1196 
1197 	udc->gadget = gadget;
1198 	gadget->udc = udc;
1199 
1200 	mutex_lock(&udc_lock);
1201 	list_add_tail(&udc->list, &udc_list);
1202 
1203 	ret = device_add(&udc->dev);
1204 	if (ret)
1205 		goto err_unlist_udc;
1206 
1207 	usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED);
1208 	udc->vbus = true;
1209 
1210 	/* pick up one of pending gadget drivers */
1211 	ret = check_pending_gadget_drivers(udc);
1212 	if (ret)
1213 		goto err_del_udc;
1214 
1215 	mutex_unlock(&udc_lock);
1216 
1217 	return 0;
1218 
1219  err_del_udc:
1220 	device_del(&udc->dev);
1221 
1222  err_unlist_udc:
1223 	list_del(&udc->list);
1224 	mutex_unlock(&udc_lock);
1225 
1226 	device_del(&gadget->dev);
1227 
1228  err_put_udc:
1229 	put_device(&udc->dev);
1230 
1231  err_put_gadget:
1232 	put_device(&gadget->dev);
1233 	return ret;
1234 }
1235 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release);
1236 
1237 /**
1238  * usb_get_gadget_udc_name - get the name of the first UDC controller
1239  * This functions returns the name of the first UDC controller in the system.
1240  * Please note that this interface is usefull only for legacy drivers which
1241  * assume that there is only one UDC controller in the system and they need to
1242  * get its name before initialization. There is no guarantee that the UDC
1243  * of the returned name will be still available, when gadget driver registers
1244  * itself.
1245  *
1246  * Returns pointer to string with UDC controller name on success, NULL
1247  * otherwise. Caller should kfree() returned string.
1248  */
1249 char *usb_get_gadget_udc_name(void)
1250 {
1251 	struct usb_udc *udc;
1252 	char *name = NULL;
1253 
1254 	/* For now we take the first available UDC */
1255 	mutex_lock(&udc_lock);
1256 	list_for_each_entry(udc, &udc_list, list) {
1257 		if (!udc->driver) {
1258 			name = kstrdup(udc->gadget->name, GFP_KERNEL);
1259 			break;
1260 		}
1261 	}
1262 	mutex_unlock(&udc_lock);
1263 	return name;
1264 }
1265 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name);
1266 
1267 /**
1268  * usb_add_gadget_udc - adds a new gadget to the udc class driver list
1269  * @parent: the parent device to this udc. Usually the controller
1270  * driver's device.
1271  * @gadget: the gadget to be added to the list
1272  *
1273  * Returns zero on success, negative errno otherwise.
1274  */
1275 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget)
1276 {
1277 	return usb_add_gadget_udc_release(parent, gadget, NULL);
1278 }
1279 EXPORT_SYMBOL_GPL(usb_add_gadget_udc);
1280 
1281 static void usb_gadget_remove_driver(struct usb_udc *udc)
1282 {
1283 	dev_dbg(&udc->dev, "unregistering UDC driver [%s]\n",
1284 			udc->driver->function);
1285 
1286 	kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1287 
1288 	usb_gadget_disconnect(udc->gadget);
1289 	udc->driver->unbind(udc->gadget);
1290 	usb_gadget_udc_stop(udc);
1291 
1292 	udc->driver = NULL;
1293 	udc->dev.driver = NULL;
1294 	udc->gadget->dev.driver = NULL;
1295 }
1296 
1297 /**
1298  * usb_del_gadget_udc - deletes @udc from udc_list
1299  * @gadget: the gadget to be removed.
1300  *
1301  * This, will call usb_gadget_unregister_driver() if
1302  * the @udc is still busy.
1303  */
1304 void usb_del_gadget_udc(struct usb_gadget *gadget)
1305 {
1306 	struct usb_udc *udc = gadget->udc;
1307 
1308 	if (!udc)
1309 		return;
1310 
1311 	dev_vdbg(gadget->dev.parent, "unregistering gadget\n");
1312 
1313 	mutex_lock(&udc_lock);
1314 	list_del(&udc->list);
1315 
1316 	if (udc->driver) {
1317 		struct usb_gadget_driver *driver = udc->driver;
1318 
1319 		usb_gadget_remove_driver(udc);
1320 		list_add(&driver->pending, &gadget_driver_pending_list);
1321 	}
1322 	mutex_unlock(&udc_lock);
1323 
1324 	kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE);
1325 	flush_work(&gadget->work);
1326 	device_unregister(&udc->dev);
1327 	device_unregister(&gadget->dev);
1328 	memset(&gadget->dev, 0x00, sizeof(gadget->dev));
1329 }
1330 EXPORT_SYMBOL_GPL(usb_del_gadget_udc);
1331 
1332 /* ------------------------------------------------------------------------- */
1333 
1334 static int udc_bind_to_driver(struct usb_udc *udc, struct usb_gadget_driver *driver)
1335 {
1336 	int ret;
1337 
1338 	dev_dbg(&udc->dev, "registering UDC driver [%s]\n",
1339 			driver->function);
1340 
1341 	udc->driver = driver;
1342 	udc->dev.driver = &driver->driver;
1343 	udc->gadget->dev.driver = &driver->driver;
1344 
1345 	usb_gadget_udc_set_speed(udc, driver->max_speed);
1346 
1347 	ret = driver->bind(udc->gadget, driver);
1348 	if (ret)
1349 		goto err1;
1350 	ret = usb_gadget_udc_start(udc);
1351 	if (ret) {
1352 		driver->unbind(udc->gadget);
1353 		goto err1;
1354 	}
1355 	usb_udc_connect_control(udc);
1356 
1357 	kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1358 	return 0;
1359 err1:
1360 	if (ret != -EISNAM)
1361 		dev_err(&udc->dev, "failed to start %s: %d\n",
1362 			udc->driver->function, ret);
1363 	udc->driver = NULL;
1364 	udc->dev.driver = NULL;
1365 	udc->gadget->dev.driver = NULL;
1366 	return ret;
1367 }
1368 
1369 int usb_gadget_probe_driver(struct usb_gadget_driver *driver)
1370 {
1371 	struct usb_udc		*udc = NULL;
1372 	int			ret = -ENODEV;
1373 
1374 	if (!driver || !driver->bind || !driver->setup)
1375 		return -EINVAL;
1376 
1377 	mutex_lock(&udc_lock);
1378 	if (driver->udc_name) {
1379 		list_for_each_entry(udc, &udc_list, list) {
1380 			ret = strcmp(driver->udc_name, dev_name(&udc->dev));
1381 			if (!ret)
1382 				break;
1383 		}
1384 		if (ret)
1385 			ret = -ENODEV;
1386 		else if (udc->driver)
1387 			ret = -EBUSY;
1388 		else
1389 			goto found;
1390 	} else {
1391 		list_for_each_entry(udc, &udc_list, list) {
1392 			/* For now we take the first one */
1393 			if (!udc->driver)
1394 				goto found;
1395 		}
1396 	}
1397 
1398 	if (!driver->match_existing_only) {
1399 		list_add_tail(&driver->pending, &gadget_driver_pending_list);
1400 		pr_info("udc-core: couldn't find an available UDC - added [%s] to list of pending drivers\n",
1401 			driver->function);
1402 		ret = 0;
1403 	}
1404 
1405 	mutex_unlock(&udc_lock);
1406 	return ret;
1407 found:
1408 	ret = udc_bind_to_driver(udc, driver);
1409 	mutex_unlock(&udc_lock);
1410 	return ret;
1411 }
1412 EXPORT_SYMBOL_GPL(usb_gadget_probe_driver);
1413 
1414 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
1415 {
1416 	struct usb_udc		*udc = NULL;
1417 	int			ret = -ENODEV;
1418 
1419 	if (!driver || !driver->unbind)
1420 		return -EINVAL;
1421 
1422 	mutex_lock(&udc_lock);
1423 	list_for_each_entry(udc, &udc_list, list) {
1424 		if (udc->driver == driver) {
1425 			usb_gadget_remove_driver(udc);
1426 			usb_gadget_set_state(udc->gadget,
1427 					     USB_STATE_NOTATTACHED);
1428 
1429 			/* Maybe there is someone waiting for this UDC? */
1430 			check_pending_gadget_drivers(udc);
1431 			/*
1432 			 * For now we ignore bind errors as probably it's
1433 			 * not a valid reason to fail other's gadget unbind
1434 			 */
1435 			ret = 0;
1436 			break;
1437 		}
1438 	}
1439 
1440 	if (ret) {
1441 		list_del(&driver->pending);
1442 		ret = 0;
1443 	}
1444 	mutex_unlock(&udc_lock);
1445 	return ret;
1446 }
1447 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver);
1448 
1449 /* ------------------------------------------------------------------------- */
1450 
1451 static ssize_t srp_store(struct device *dev,
1452 		struct device_attribute *attr, const char *buf, size_t n)
1453 {
1454 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1455 
1456 	if (sysfs_streq(buf, "1"))
1457 		usb_gadget_wakeup(udc->gadget);
1458 
1459 	return n;
1460 }
1461 static DEVICE_ATTR_WO(srp);
1462 
1463 static ssize_t soft_connect_store(struct device *dev,
1464 		struct device_attribute *attr, const char *buf, size_t n)
1465 {
1466 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1467 
1468 	if (!udc->driver) {
1469 		dev_err(dev, "soft-connect without a gadget driver\n");
1470 		return -EOPNOTSUPP;
1471 	}
1472 
1473 	if (sysfs_streq(buf, "connect")) {
1474 		usb_gadget_udc_start(udc);
1475 		usb_gadget_connect(udc->gadget);
1476 	} else if (sysfs_streq(buf, "disconnect")) {
1477 		usb_gadget_disconnect(udc->gadget);
1478 		usb_gadget_udc_stop(udc);
1479 	} else {
1480 		dev_err(dev, "unsupported command '%s'\n", buf);
1481 		return -EINVAL;
1482 	}
1483 
1484 	return n;
1485 }
1486 static DEVICE_ATTR_WO(soft_connect);
1487 
1488 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
1489 			  char *buf)
1490 {
1491 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1492 	struct usb_gadget	*gadget = udc->gadget;
1493 
1494 	return sprintf(buf, "%s\n", usb_state_string(gadget->state));
1495 }
1496 static DEVICE_ATTR_RO(state);
1497 
1498 static ssize_t function_show(struct device *dev, struct device_attribute *attr,
1499 			     char *buf)
1500 {
1501 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1502 	struct usb_gadget_driver *drv = udc->driver;
1503 
1504 	if (!drv || !drv->function)
1505 		return 0;
1506 	return scnprintf(buf, PAGE_SIZE, "%s\n", drv->function);
1507 }
1508 static DEVICE_ATTR_RO(function);
1509 
1510 #define USB_UDC_SPEED_ATTR(name, param)					\
1511 ssize_t name##_show(struct device *dev,					\
1512 		struct device_attribute *attr, char *buf)		\
1513 {									\
1514 	struct usb_udc *udc = container_of(dev, struct usb_udc, dev);	\
1515 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1516 			usb_speed_string(udc->gadget->param));		\
1517 }									\
1518 static DEVICE_ATTR_RO(name)
1519 
1520 static USB_UDC_SPEED_ATTR(current_speed, speed);
1521 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed);
1522 
1523 #define USB_UDC_ATTR(name)					\
1524 ssize_t name##_show(struct device *dev,				\
1525 		struct device_attribute *attr, char *buf)	\
1526 {								\
1527 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev); \
1528 	struct usb_gadget	*gadget = udc->gadget;		\
1529 								\
1530 	return scnprintf(buf, PAGE_SIZE, "%d\n", gadget->name);	\
1531 }								\
1532 static DEVICE_ATTR_RO(name)
1533 
1534 static USB_UDC_ATTR(is_otg);
1535 static USB_UDC_ATTR(is_a_peripheral);
1536 static USB_UDC_ATTR(b_hnp_enable);
1537 static USB_UDC_ATTR(a_hnp_support);
1538 static USB_UDC_ATTR(a_alt_hnp_support);
1539 static USB_UDC_ATTR(is_selfpowered);
1540 
1541 static struct attribute *usb_udc_attrs[] = {
1542 	&dev_attr_srp.attr,
1543 	&dev_attr_soft_connect.attr,
1544 	&dev_attr_state.attr,
1545 	&dev_attr_function.attr,
1546 	&dev_attr_current_speed.attr,
1547 	&dev_attr_maximum_speed.attr,
1548 
1549 	&dev_attr_is_otg.attr,
1550 	&dev_attr_is_a_peripheral.attr,
1551 	&dev_attr_b_hnp_enable.attr,
1552 	&dev_attr_a_hnp_support.attr,
1553 	&dev_attr_a_alt_hnp_support.attr,
1554 	&dev_attr_is_selfpowered.attr,
1555 	NULL,
1556 };
1557 
1558 static const struct attribute_group usb_udc_attr_group = {
1559 	.attrs = usb_udc_attrs,
1560 };
1561 
1562 static const struct attribute_group *usb_udc_attr_groups[] = {
1563 	&usb_udc_attr_group,
1564 	NULL,
1565 };
1566 
1567 static int usb_udc_uevent(struct device *dev, struct kobj_uevent_env *env)
1568 {
1569 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1570 	int			ret;
1571 
1572 	ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name);
1573 	if (ret) {
1574 		dev_err(dev, "failed to add uevent USB_UDC_NAME\n");
1575 		return ret;
1576 	}
1577 
1578 	if (udc->driver) {
1579 		ret = add_uevent_var(env, "USB_UDC_DRIVER=%s",
1580 				udc->driver->function);
1581 		if (ret) {
1582 			dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n");
1583 			return ret;
1584 		}
1585 	}
1586 
1587 	return 0;
1588 }
1589 
1590 static int __init usb_udc_init(void)
1591 {
1592 	udc_class = class_create(THIS_MODULE, "udc");
1593 	if (IS_ERR(udc_class)) {
1594 		pr_err("failed to create udc class --> %ld\n",
1595 				PTR_ERR(udc_class));
1596 		return PTR_ERR(udc_class);
1597 	}
1598 
1599 	udc_class->dev_uevent = usb_udc_uevent;
1600 	return 0;
1601 }
1602 subsys_initcall(usb_udc_init);
1603 
1604 static void __exit usb_udc_exit(void)
1605 {
1606 	class_destroy(udc_class);
1607 }
1608 module_exit(usb_udc_exit);
1609 
1610 MODULE_DESCRIPTION("UDC Framework");
1611 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>");
1612 MODULE_LICENSE("GPL v2");
1613