1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * udc.c - Core UDC Framework 4 * 5 * Copyright (C) 2010 Texas Instruments 6 * Author: Felipe Balbi <balbi@ti.com> 7 */ 8 9 #define pr_fmt(fmt) "UDC core: " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/device.h> 14 #include <linux/list.h> 15 #include <linux/idr.h> 16 #include <linux/err.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/sched/task_stack.h> 19 #include <linux/workqueue.h> 20 21 #include <linux/usb/ch9.h> 22 #include <linux/usb/gadget.h> 23 #include <linux/usb.h> 24 25 #include "trace.h" 26 27 static DEFINE_IDA(gadget_id_numbers); 28 29 static struct bus_type gadget_bus_type; 30 31 /** 32 * struct usb_udc - describes one usb device controller 33 * @driver: the gadget driver pointer. For use by the class code 34 * @dev: the child device to the actual controller 35 * @gadget: the gadget. For use by the class code 36 * @list: for use by the udc class driver 37 * @vbus: for udcs who care about vbus status, this value is real vbus status; 38 * for udcs who do not care about vbus status, this value is always true 39 * @started: the UDC's started state. True if the UDC had started. 40 * 41 * This represents the internal data structure which is used by the UDC-class 42 * to hold information about udc driver and gadget together. 43 */ 44 struct usb_udc { 45 struct usb_gadget_driver *driver; 46 struct usb_gadget *gadget; 47 struct device dev; 48 struct list_head list; 49 bool vbus; 50 bool started; 51 }; 52 53 static struct class *udc_class; 54 static LIST_HEAD(udc_list); 55 56 /* Protects udc_list, udc->driver, driver->is_bound, and related calls */ 57 static DEFINE_MUTEX(udc_lock); 58 59 /* ------------------------------------------------------------------------- */ 60 61 /** 62 * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint 63 * @ep:the endpoint being configured 64 * @maxpacket_limit:value of maximum packet size limit 65 * 66 * This function should be used only in UDC drivers to initialize endpoint 67 * (usually in probe function). 68 */ 69 void usb_ep_set_maxpacket_limit(struct usb_ep *ep, 70 unsigned maxpacket_limit) 71 { 72 ep->maxpacket_limit = maxpacket_limit; 73 ep->maxpacket = maxpacket_limit; 74 75 trace_usb_ep_set_maxpacket_limit(ep, 0); 76 } 77 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit); 78 79 /** 80 * usb_ep_enable - configure endpoint, making it usable 81 * @ep:the endpoint being configured. may not be the endpoint named "ep0". 82 * drivers discover endpoints through the ep_list of a usb_gadget. 83 * 84 * When configurations are set, or when interface settings change, the driver 85 * will enable or disable the relevant endpoints. while it is enabled, an 86 * endpoint may be used for i/o until the driver receives a disconnect() from 87 * the host or until the endpoint is disabled. 88 * 89 * the ep0 implementation (which calls this routine) must ensure that the 90 * hardware capabilities of each endpoint match the descriptor provided 91 * for it. for example, an endpoint named "ep2in-bulk" would be usable 92 * for interrupt transfers as well as bulk, but it likely couldn't be used 93 * for iso transfers or for endpoint 14. some endpoints are fully 94 * configurable, with more generic names like "ep-a". (remember that for 95 * USB, "in" means "towards the USB host".) 96 * 97 * This routine may be called in an atomic (interrupt) context. 98 * 99 * returns zero, or a negative error code. 100 */ 101 int usb_ep_enable(struct usb_ep *ep) 102 { 103 int ret = 0; 104 105 if (ep->enabled) 106 goto out; 107 108 /* UDC drivers can't handle endpoints with maxpacket size 0 */ 109 if (usb_endpoint_maxp(ep->desc) == 0) { 110 /* 111 * We should log an error message here, but we can't call 112 * dev_err() because there's no way to find the gadget 113 * given only ep. 114 */ 115 ret = -EINVAL; 116 goto out; 117 } 118 119 ret = ep->ops->enable(ep, ep->desc); 120 if (ret) 121 goto out; 122 123 ep->enabled = true; 124 125 out: 126 trace_usb_ep_enable(ep, ret); 127 128 return ret; 129 } 130 EXPORT_SYMBOL_GPL(usb_ep_enable); 131 132 /** 133 * usb_ep_disable - endpoint is no longer usable 134 * @ep:the endpoint being unconfigured. may not be the endpoint named "ep0". 135 * 136 * no other task may be using this endpoint when this is called. 137 * any pending and uncompleted requests will complete with status 138 * indicating disconnect (-ESHUTDOWN) before this call returns. 139 * gadget drivers must call usb_ep_enable() again before queueing 140 * requests to the endpoint. 141 * 142 * This routine may be called in an atomic (interrupt) context. 143 * 144 * returns zero, or a negative error code. 145 */ 146 int usb_ep_disable(struct usb_ep *ep) 147 { 148 int ret = 0; 149 150 if (!ep->enabled) 151 goto out; 152 153 ret = ep->ops->disable(ep); 154 if (ret) 155 goto out; 156 157 ep->enabled = false; 158 159 out: 160 trace_usb_ep_disable(ep, ret); 161 162 return ret; 163 } 164 EXPORT_SYMBOL_GPL(usb_ep_disable); 165 166 /** 167 * usb_ep_alloc_request - allocate a request object to use with this endpoint 168 * @ep:the endpoint to be used with with the request 169 * @gfp_flags:GFP_* flags to use 170 * 171 * Request objects must be allocated with this call, since they normally 172 * need controller-specific setup and may even need endpoint-specific 173 * resources such as allocation of DMA descriptors. 174 * Requests may be submitted with usb_ep_queue(), and receive a single 175 * completion callback. Free requests with usb_ep_free_request(), when 176 * they are no longer needed. 177 * 178 * Returns the request, or null if one could not be allocated. 179 */ 180 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep, 181 gfp_t gfp_flags) 182 { 183 struct usb_request *req = NULL; 184 185 req = ep->ops->alloc_request(ep, gfp_flags); 186 187 trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM); 188 189 return req; 190 } 191 EXPORT_SYMBOL_GPL(usb_ep_alloc_request); 192 193 /** 194 * usb_ep_free_request - frees a request object 195 * @ep:the endpoint associated with the request 196 * @req:the request being freed 197 * 198 * Reverses the effect of usb_ep_alloc_request(). 199 * Caller guarantees the request is not queued, and that it will 200 * no longer be requeued (or otherwise used). 201 */ 202 void usb_ep_free_request(struct usb_ep *ep, 203 struct usb_request *req) 204 { 205 trace_usb_ep_free_request(ep, req, 0); 206 ep->ops->free_request(ep, req); 207 } 208 EXPORT_SYMBOL_GPL(usb_ep_free_request); 209 210 /** 211 * usb_ep_queue - queues (submits) an I/O request to an endpoint. 212 * @ep:the endpoint associated with the request 213 * @req:the request being submitted 214 * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't 215 * pre-allocate all necessary memory with the request. 216 * 217 * This tells the device controller to perform the specified request through 218 * that endpoint (reading or writing a buffer). When the request completes, 219 * including being canceled by usb_ep_dequeue(), the request's completion 220 * routine is called to return the request to the driver. Any endpoint 221 * (except control endpoints like ep0) may have more than one transfer 222 * request queued; they complete in FIFO order. Once a gadget driver 223 * submits a request, that request may not be examined or modified until it 224 * is given back to that driver through the completion callback. 225 * 226 * Each request is turned into one or more packets. The controller driver 227 * never merges adjacent requests into the same packet. OUT transfers 228 * will sometimes use data that's already buffered in the hardware. 229 * Drivers can rely on the fact that the first byte of the request's buffer 230 * always corresponds to the first byte of some USB packet, for both 231 * IN and OUT transfers. 232 * 233 * Bulk endpoints can queue any amount of data; the transfer is packetized 234 * automatically. The last packet will be short if the request doesn't fill it 235 * out completely. Zero length packets (ZLPs) should be avoided in portable 236 * protocols since not all usb hardware can successfully handle zero length 237 * packets. (ZLPs may be explicitly written, and may be implicitly written if 238 * the request 'zero' flag is set.) Bulk endpoints may also be used 239 * for interrupt transfers; but the reverse is not true, and some endpoints 240 * won't support every interrupt transfer. (Such as 768 byte packets.) 241 * 242 * Interrupt-only endpoints are less functional than bulk endpoints, for 243 * example by not supporting queueing or not handling buffers that are 244 * larger than the endpoint's maxpacket size. They may also treat data 245 * toggle differently. 246 * 247 * Control endpoints ... after getting a setup() callback, the driver queues 248 * one response (even if it would be zero length). That enables the 249 * status ack, after transferring data as specified in the response. Setup 250 * functions may return negative error codes to generate protocol stalls. 251 * (Note that some USB device controllers disallow protocol stall responses 252 * in some cases.) When control responses are deferred (the response is 253 * written after the setup callback returns), then usb_ep_set_halt() may be 254 * used on ep0 to trigger protocol stalls. Depending on the controller, 255 * it may not be possible to trigger a status-stage protocol stall when the 256 * data stage is over, that is, from within the response's completion 257 * routine. 258 * 259 * For periodic endpoints, like interrupt or isochronous ones, the usb host 260 * arranges to poll once per interval, and the gadget driver usually will 261 * have queued some data to transfer at that time. 262 * 263 * Note that @req's ->complete() callback must never be called from 264 * within usb_ep_queue() as that can create deadlock situations. 265 * 266 * This routine may be called in interrupt context. 267 * 268 * Returns zero, or a negative error code. Endpoints that are not enabled 269 * report errors; errors will also be 270 * reported when the usb peripheral is disconnected. 271 * 272 * If and only if @req is successfully queued (the return value is zero), 273 * @req->complete() will be called exactly once, when the Gadget core and 274 * UDC are finished with the request. When the completion function is called, 275 * control of the request is returned to the device driver which submitted it. 276 * The completion handler may then immediately free or reuse @req. 277 */ 278 int usb_ep_queue(struct usb_ep *ep, 279 struct usb_request *req, gfp_t gfp_flags) 280 { 281 int ret = 0; 282 283 if (WARN_ON_ONCE(!ep->enabled && ep->address)) { 284 ret = -ESHUTDOWN; 285 goto out; 286 } 287 288 ret = ep->ops->queue(ep, req, gfp_flags); 289 290 out: 291 trace_usb_ep_queue(ep, req, ret); 292 293 return ret; 294 } 295 EXPORT_SYMBOL_GPL(usb_ep_queue); 296 297 /** 298 * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint 299 * @ep:the endpoint associated with the request 300 * @req:the request being canceled 301 * 302 * If the request is still active on the endpoint, it is dequeued and 303 * eventually its completion routine is called (with status -ECONNRESET); 304 * else a negative error code is returned. This routine is asynchronous, 305 * that is, it may return before the completion routine runs. 306 * 307 * Note that some hardware can't clear out write fifos (to unlink the request 308 * at the head of the queue) except as part of disconnecting from usb. Such 309 * restrictions prevent drivers from supporting configuration changes, 310 * even to configuration zero (a "chapter 9" requirement). 311 * 312 * This routine may be called in interrupt context. 313 */ 314 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 315 { 316 int ret; 317 318 ret = ep->ops->dequeue(ep, req); 319 trace_usb_ep_dequeue(ep, req, ret); 320 321 return ret; 322 } 323 EXPORT_SYMBOL_GPL(usb_ep_dequeue); 324 325 /** 326 * usb_ep_set_halt - sets the endpoint halt feature. 327 * @ep: the non-isochronous endpoint being stalled 328 * 329 * Use this to stall an endpoint, perhaps as an error report. 330 * Except for control endpoints, 331 * the endpoint stays halted (will not stream any data) until the host 332 * clears this feature; drivers may need to empty the endpoint's request 333 * queue first, to make sure no inappropriate transfers happen. 334 * 335 * Note that while an endpoint CLEAR_FEATURE will be invisible to the 336 * gadget driver, a SET_INTERFACE will not be. To reset endpoints for the 337 * current altsetting, see usb_ep_clear_halt(). When switching altsettings, 338 * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints. 339 * 340 * This routine may be called in interrupt context. 341 * 342 * Returns zero, or a negative error code. On success, this call sets 343 * underlying hardware state that blocks data transfers. 344 * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any 345 * transfer requests are still queued, or if the controller hardware 346 * (usually a FIFO) still holds bytes that the host hasn't collected. 347 */ 348 int usb_ep_set_halt(struct usb_ep *ep) 349 { 350 int ret; 351 352 ret = ep->ops->set_halt(ep, 1); 353 trace_usb_ep_set_halt(ep, ret); 354 355 return ret; 356 } 357 EXPORT_SYMBOL_GPL(usb_ep_set_halt); 358 359 /** 360 * usb_ep_clear_halt - clears endpoint halt, and resets toggle 361 * @ep:the bulk or interrupt endpoint being reset 362 * 363 * Use this when responding to the standard usb "set interface" request, 364 * for endpoints that aren't reconfigured, after clearing any other state 365 * in the endpoint's i/o queue. 366 * 367 * This routine may be called in interrupt context. 368 * 369 * Returns zero, or a negative error code. On success, this call clears 370 * the underlying hardware state reflecting endpoint halt and data toggle. 371 * Note that some hardware can't support this request (like pxa2xx_udc), 372 * and accordingly can't correctly implement interface altsettings. 373 */ 374 int usb_ep_clear_halt(struct usb_ep *ep) 375 { 376 int ret; 377 378 ret = ep->ops->set_halt(ep, 0); 379 trace_usb_ep_clear_halt(ep, ret); 380 381 return ret; 382 } 383 EXPORT_SYMBOL_GPL(usb_ep_clear_halt); 384 385 /** 386 * usb_ep_set_wedge - sets the halt feature and ignores clear requests 387 * @ep: the endpoint being wedged 388 * 389 * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT) 390 * requests. If the gadget driver clears the halt status, it will 391 * automatically unwedge the endpoint. 392 * 393 * This routine may be called in interrupt context. 394 * 395 * Returns zero on success, else negative errno. 396 */ 397 int usb_ep_set_wedge(struct usb_ep *ep) 398 { 399 int ret; 400 401 if (ep->ops->set_wedge) 402 ret = ep->ops->set_wedge(ep); 403 else 404 ret = ep->ops->set_halt(ep, 1); 405 406 trace_usb_ep_set_wedge(ep, ret); 407 408 return ret; 409 } 410 EXPORT_SYMBOL_GPL(usb_ep_set_wedge); 411 412 /** 413 * usb_ep_fifo_status - returns number of bytes in fifo, or error 414 * @ep: the endpoint whose fifo status is being checked. 415 * 416 * FIFO endpoints may have "unclaimed data" in them in certain cases, 417 * such as after aborted transfers. Hosts may not have collected all 418 * the IN data written by the gadget driver (and reported by a request 419 * completion). The gadget driver may not have collected all the data 420 * written OUT to it by the host. Drivers that need precise handling for 421 * fault reporting or recovery may need to use this call. 422 * 423 * This routine may be called in interrupt context. 424 * 425 * This returns the number of such bytes in the fifo, or a negative 426 * errno if the endpoint doesn't use a FIFO or doesn't support such 427 * precise handling. 428 */ 429 int usb_ep_fifo_status(struct usb_ep *ep) 430 { 431 int ret; 432 433 if (ep->ops->fifo_status) 434 ret = ep->ops->fifo_status(ep); 435 else 436 ret = -EOPNOTSUPP; 437 438 trace_usb_ep_fifo_status(ep, ret); 439 440 return ret; 441 } 442 EXPORT_SYMBOL_GPL(usb_ep_fifo_status); 443 444 /** 445 * usb_ep_fifo_flush - flushes contents of a fifo 446 * @ep: the endpoint whose fifo is being flushed. 447 * 448 * This call may be used to flush the "unclaimed data" that may exist in 449 * an endpoint fifo after abnormal transaction terminations. The call 450 * must never be used except when endpoint is not being used for any 451 * protocol translation. 452 * 453 * This routine may be called in interrupt context. 454 */ 455 void usb_ep_fifo_flush(struct usb_ep *ep) 456 { 457 if (ep->ops->fifo_flush) 458 ep->ops->fifo_flush(ep); 459 460 trace_usb_ep_fifo_flush(ep, 0); 461 } 462 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush); 463 464 /* ------------------------------------------------------------------------- */ 465 466 /** 467 * usb_gadget_frame_number - returns the current frame number 468 * @gadget: controller that reports the frame number 469 * 470 * Returns the usb frame number, normally eleven bits from a SOF packet, 471 * or negative errno if this device doesn't support this capability. 472 */ 473 int usb_gadget_frame_number(struct usb_gadget *gadget) 474 { 475 int ret; 476 477 ret = gadget->ops->get_frame(gadget); 478 479 trace_usb_gadget_frame_number(gadget, ret); 480 481 return ret; 482 } 483 EXPORT_SYMBOL_GPL(usb_gadget_frame_number); 484 485 /** 486 * usb_gadget_wakeup - tries to wake up the host connected to this gadget 487 * @gadget: controller used to wake up the host 488 * 489 * Returns zero on success, else negative error code if the hardware 490 * doesn't support such attempts, or its support has not been enabled 491 * by the usb host. Drivers must return device descriptors that report 492 * their ability to support this, or hosts won't enable it. 493 * 494 * This may also try to use SRP to wake the host and start enumeration, 495 * even if OTG isn't otherwise in use. OTG devices may also start 496 * remote wakeup even when hosts don't explicitly enable it. 497 */ 498 int usb_gadget_wakeup(struct usb_gadget *gadget) 499 { 500 int ret = 0; 501 502 if (!gadget->ops->wakeup) { 503 ret = -EOPNOTSUPP; 504 goto out; 505 } 506 507 ret = gadget->ops->wakeup(gadget); 508 509 out: 510 trace_usb_gadget_wakeup(gadget, ret); 511 512 return ret; 513 } 514 EXPORT_SYMBOL_GPL(usb_gadget_wakeup); 515 516 /** 517 * usb_gadget_set_selfpowered - sets the device selfpowered feature. 518 * @gadget:the device being declared as self-powered 519 * 520 * this affects the device status reported by the hardware driver 521 * to reflect that it now has a local power supply. 522 * 523 * returns zero on success, else negative errno. 524 */ 525 int usb_gadget_set_selfpowered(struct usb_gadget *gadget) 526 { 527 int ret = 0; 528 529 if (!gadget->ops->set_selfpowered) { 530 ret = -EOPNOTSUPP; 531 goto out; 532 } 533 534 ret = gadget->ops->set_selfpowered(gadget, 1); 535 536 out: 537 trace_usb_gadget_set_selfpowered(gadget, ret); 538 539 return ret; 540 } 541 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered); 542 543 /** 544 * usb_gadget_clear_selfpowered - clear the device selfpowered feature. 545 * @gadget:the device being declared as bus-powered 546 * 547 * this affects the device status reported by the hardware driver. 548 * some hardware may not support bus-powered operation, in which 549 * case this feature's value can never change. 550 * 551 * returns zero on success, else negative errno. 552 */ 553 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget) 554 { 555 int ret = 0; 556 557 if (!gadget->ops->set_selfpowered) { 558 ret = -EOPNOTSUPP; 559 goto out; 560 } 561 562 ret = gadget->ops->set_selfpowered(gadget, 0); 563 564 out: 565 trace_usb_gadget_clear_selfpowered(gadget, ret); 566 567 return ret; 568 } 569 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered); 570 571 /** 572 * usb_gadget_vbus_connect - Notify controller that VBUS is powered 573 * @gadget:The device which now has VBUS power. 574 * Context: can sleep 575 * 576 * This call is used by a driver for an external transceiver (or GPIO) 577 * that detects a VBUS power session starting. Common responses include 578 * resuming the controller, activating the D+ (or D-) pullup to let the 579 * host detect that a USB device is attached, and starting to draw power 580 * (8mA or possibly more, especially after SET_CONFIGURATION). 581 * 582 * Returns zero on success, else negative errno. 583 */ 584 int usb_gadget_vbus_connect(struct usb_gadget *gadget) 585 { 586 int ret = 0; 587 588 if (!gadget->ops->vbus_session) { 589 ret = -EOPNOTSUPP; 590 goto out; 591 } 592 593 ret = gadget->ops->vbus_session(gadget, 1); 594 595 out: 596 trace_usb_gadget_vbus_connect(gadget, ret); 597 598 return ret; 599 } 600 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect); 601 602 /** 603 * usb_gadget_vbus_draw - constrain controller's VBUS power usage 604 * @gadget:The device whose VBUS usage is being described 605 * @mA:How much current to draw, in milliAmperes. This should be twice 606 * the value listed in the configuration descriptor bMaxPower field. 607 * 608 * This call is used by gadget drivers during SET_CONFIGURATION calls, 609 * reporting how much power the device may consume. For example, this 610 * could affect how quickly batteries are recharged. 611 * 612 * Returns zero on success, else negative errno. 613 */ 614 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA) 615 { 616 int ret = 0; 617 618 if (!gadget->ops->vbus_draw) { 619 ret = -EOPNOTSUPP; 620 goto out; 621 } 622 623 ret = gadget->ops->vbus_draw(gadget, mA); 624 if (!ret) 625 gadget->mA = mA; 626 627 out: 628 trace_usb_gadget_vbus_draw(gadget, ret); 629 630 return ret; 631 } 632 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw); 633 634 /** 635 * usb_gadget_vbus_disconnect - notify controller about VBUS session end 636 * @gadget:the device whose VBUS supply is being described 637 * Context: can sleep 638 * 639 * This call is used by a driver for an external transceiver (or GPIO) 640 * that detects a VBUS power session ending. Common responses include 641 * reversing everything done in usb_gadget_vbus_connect(). 642 * 643 * Returns zero on success, else negative errno. 644 */ 645 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget) 646 { 647 int ret = 0; 648 649 if (!gadget->ops->vbus_session) { 650 ret = -EOPNOTSUPP; 651 goto out; 652 } 653 654 ret = gadget->ops->vbus_session(gadget, 0); 655 656 out: 657 trace_usb_gadget_vbus_disconnect(gadget, ret); 658 659 return ret; 660 } 661 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect); 662 663 /** 664 * usb_gadget_connect - software-controlled connect to USB host 665 * @gadget:the peripheral being connected 666 * 667 * Enables the D+ (or potentially D-) pullup. The host will start 668 * enumerating this gadget when the pullup is active and a VBUS session 669 * is active (the link is powered). 670 * 671 * Returns zero on success, else negative errno. 672 */ 673 int usb_gadget_connect(struct usb_gadget *gadget) 674 { 675 int ret = 0; 676 677 if (!gadget->ops->pullup) { 678 ret = -EOPNOTSUPP; 679 goto out; 680 } 681 682 if (gadget->deactivated) { 683 /* 684 * If gadget is deactivated we only save new state. 685 * Gadget will be connected automatically after activation. 686 */ 687 gadget->connected = true; 688 goto out; 689 } 690 691 ret = gadget->ops->pullup(gadget, 1); 692 if (!ret) 693 gadget->connected = 1; 694 695 out: 696 trace_usb_gadget_connect(gadget, ret); 697 698 return ret; 699 } 700 EXPORT_SYMBOL_GPL(usb_gadget_connect); 701 702 /** 703 * usb_gadget_disconnect - software-controlled disconnect from USB host 704 * @gadget:the peripheral being disconnected 705 * 706 * Disables the D+ (or potentially D-) pullup, which the host may see 707 * as a disconnect (when a VBUS session is active). Not all systems 708 * support software pullup controls. 709 * 710 * Following a successful disconnect, invoke the ->disconnect() callback 711 * for the current gadget driver so that UDC drivers don't need to. 712 * 713 * Returns zero on success, else negative errno. 714 */ 715 int usb_gadget_disconnect(struct usb_gadget *gadget) 716 { 717 int ret = 0; 718 719 if (!gadget->ops->pullup) { 720 ret = -EOPNOTSUPP; 721 goto out; 722 } 723 724 if (!gadget->connected) 725 goto out; 726 727 if (gadget->deactivated) { 728 /* 729 * If gadget is deactivated we only save new state. 730 * Gadget will stay disconnected after activation. 731 */ 732 gadget->connected = false; 733 goto out; 734 } 735 736 ret = gadget->ops->pullup(gadget, 0); 737 if (!ret) 738 gadget->connected = 0; 739 740 mutex_lock(&udc_lock); 741 if (gadget->udc->driver) 742 gadget->udc->driver->disconnect(gadget); 743 mutex_unlock(&udc_lock); 744 745 out: 746 trace_usb_gadget_disconnect(gadget, ret); 747 748 return ret; 749 } 750 EXPORT_SYMBOL_GPL(usb_gadget_disconnect); 751 752 /** 753 * usb_gadget_deactivate - deactivate function which is not ready to work 754 * @gadget: the peripheral being deactivated 755 * 756 * This routine may be used during the gadget driver bind() call to prevent 757 * the peripheral from ever being visible to the USB host, unless later 758 * usb_gadget_activate() is called. For example, user mode components may 759 * need to be activated before the system can talk to hosts. 760 * 761 * Returns zero on success, else negative errno. 762 */ 763 int usb_gadget_deactivate(struct usb_gadget *gadget) 764 { 765 int ret = 0; 766 767 if (gadget->deactivated) 768 goto out; 769 770 if (gadget->connected) { 771 ret = usb_gadget_disconnect(gadget); 772 if (ret) 773 goto out; 774 775 /* 776 * If gadget was being connected before deactivation, we want 777 * to reconnect it in usb_gadget_activate(). 778 */ 779 gadget->connected = true; 780 } 781 gadget->deactivated = true; 782 783 out: 784 trace_usb_gadget_deactivate(gadget, ret); 785 786 return ret; 787 } 788 EXPORT_SYMBOL_GPL(usb_gadget_deactivate); 789 790 /** 791 * usb_gadget_activate - activate function which is not ready to work 792 * @gadget: the peripheral being activated 793 * 794 * This routine activates gadget which was previously deactivated with 795 * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed. 796 * 797 * Returns zero on success, else negative errno. 798 */ 799 int usb_gadget_activate(struct usb_gadget *gadget) 800 { 801 int ret = 0; 802 803 if (!gadget->deactivated) 804 goto out; 805 806 gadget->deactivated = false; 807 808 /* 809 * If gadget has been connected before deactivation, or became connected 810 * while it was being deactivated, we call usb_gadget_connect(). 811 */ 812 if (gadget->connected) 813 ret = usb_gadget_connect(gadget); 814 815 out: 816 trace_usb_gadget_activate(gadget, ret); 817 818 return ret; 819 } 820 EXPORT_SYMBOL_GPL(usb_gadget_activate); 821 822 /* ------------------------------------------------------------------------- */ 823 824 #ifdef CONFIG_HAS_DMA 825 826 int usb_gadget_map_request_by_dev(struct device *dev, 827 struct usb_request *req, int is_in) 828 { 829 if (req->length == 0) 830 return 0; 831 832 if (req->num_sgs) { 833 int mapped; 834 835 mapped = dma_map_sg(dev, req->sg, req->num_sgs, 836 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 837 if (mapped == 0) { 838 dev_err(dev, "failed to map SGs\n"); 839 return -EFAULT; 840 } 841 842 req->num_mapped_sgs = mapped; 843 } else { 844 if (is_vmalloc_addr(req->buf)) { 845 dev_err(dev, "buffer is not dma capable\n"); 846 return -EFAULT; 847 } else if (object_is_on_stack(req->buf)) { 848 dev_err(dev, "buffer is on stack\n"); 849 return -EFAULT; 850 } 851 852 req->dma = dma_map_single(dev, req->buf, req->length, 853 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 854 855 if (dma_mapping_error(dev, req->dma)) { 856 dev_err(dev, "failed to map buffer\n"); 857 return -EFAULT; 858 } 859 860 req->dma_mapped = 1; 861 } 862 863 return 0; 864 } 865 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev); 866 867 int usb_gadget_map_request(struct usb_gadget *gadget, 868 struct usb_request *req, int is_in) 869 { 870 return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in); 871 } 872 EXPORT_SYMBOL_GPL(usb_gadget_map_request); 873 874 void usb_gadget_unmap_request_by_dev(struct device *dev, 875 struct usb_request *req, int is_in) 876 { 877 if (req->length == 0) 878 return; 879 880 if (req->num_mapped_sgs) { 881 dma_unmap_sg(dev, req->sg, req->num_sgs, 882 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 883 884 req->num_mapped_sgs = 0; 885 } else if (req->dma_mapped) { 886 dma_unmap_single(dev, req->dma, req->length, 887 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 888 req->dma_mapped = 0; 889 } 890 } 891 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev); 892 893 void usb_gadget_unmap_request(struct usb_gadget *gadget, 894 struct usb_request *req, int is_in) 895 { 896 usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in); 897 } 898 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request); 899 900 #endif /* CONFIG_HAS_DMA */ 901 902 /* ------------------------------------------------------------------------- */ 903 904 /** 905 * usb_gadget_giveback_request - give the request back to the gadget layer 906 * @ep: the endpoint to be used with with the request 907 * @req: the request being given back 908 * 909 * This is called by device controller drivers in order to return the 910 * completed request back to the gadget layer. 911 */ 912 void usb_gadget_giveback_request(struct usb_ep *ep, 913 struct usb_request *req) 914 { 915 if (likely(req->status == 0)) 916 usb_led_activity(USB_LED_EVENT_GADGET); 917 918 trace_usb_gadget_giveback_request(ep, req, 0); 919 920 req->complete(ep, req); 921 } 922 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request); 923 924 /* ------------------------------------------------------------------------- */ 925 926 /** 927 * gadget_find_ep_by_name - returns ep whose name is the same as sting passed 928 * in second parameter or NULL if searched endpoint not found 929 * @g: controller to check for quirk 930 * @name: name of searched endpoint 931 */ 932 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name) 933 { 934 struct usb_ep *ep; 935 936 gadget_for_each_ep(ep, g) { 937 if (!strcmp(ep->name, name)) 938 return ep; 939 } 940 941 return NULL; 942 } 943 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name); 944 945 /* ------------------------------------------------------------------------- */ 946 947 int usb_gadget_ep_match_desc(struct usb_gadget *gadget, 948 struct usb_ep *ep, struct usb_endpoint_descriptor *desc, 949 struct usb_ss_ep_comp_descriptor *ep_comp) 950 { 951 u8 type; 952 u16 max; 953 int num_req_streams = 0; 954 955 /* endpoint already claimed? */ 956 if (ep->claimed) 957 return 0; 958 959 type = usb_endpoint_type(desc); 960 max = usb_endpoint_maxp(desc); 961 962 if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in) 963 return 0; 964 if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out) 965 return 0; 966 967 if (max > ep->maxpacket_limit) 968 return 0; 969 970 /* "high bandwidth" works only at high speed */ 971 if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1) 972 return 0; 973 974 switch (type) { 975 case USB_ENDPOINT_XFER_CONTROL: 976 /* only support ep0 for portable CONTROL traffic */ 977 return 0; 978 case USB_ENDPOINT_XFER_ISOC: 979 if (!ep->caps.type_iso) 980 return 0; 981 /* ISO: limit 1023 bytes full speed, 1024 high/super speed */ 982 if (!gadget_is_dualspeed(gadget) && max > 1023) 983 return 0; 984 break; 985 case USB_ENDPOINT_XFER_BULK: 986 if (!ep->caps.type_bulk) 987 return 0; 988 if (ep_comp && gadget_is_superspeed(gadget)) { 989 /* Get the number of required streams from the 990 * EP companion descriptor and see if the EP 991 * matches it 992 */ 993 num_req_streams = ep_comp->bmAttributes & 0x1f; 994 if (num_req_streams > ep->max_streams) 995 return 0; 996 } 997 break; 998 case USB_ENDPOINT_XFER_INT: 999 /* Bulk endpoints handle interrupt transfers, 1000 * except the toggle-quirky iso-synch kind 1001 */ 1002 if (!ep->caps.type_int && !ep->caps.type_bulk) 1003 return 0; 1004 /* INT: limit 64 bytes full speed, 1024 high/super speed */ 1005 if (!gadget_is_dualspeed(gadget) && max > 64) 1006 return 0; 1007 break; 1008 } 1009 1010 return 1; 1011 } 1012 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc); 1013 1014 /** 1015 * usb_gadget_check_config - checks if the UDC can support the binded 1016 * configuration 1017 * @gadget: controller to check the USB configuration 1018 * 1019 * Ensure that a UDC is able to support the requested resources by a 1020 * configuration, and that there are no resource limitations, such as 1021 * internal memory allocated to all requested endpoints. 1022 * 1023 * Returns zero on success, else a negative errno. 1024 */ 1025 int usb_gadget_check_config(struct usb_gadget *gadget) 1026 { 1027 if (gadget->ops->check_config) 1028 return gadget->ops->check_config(gadget); 1029 return 0; 1030 } 1031 EXPORT_SYMBOL_GPL(usb_gadget_check_config); 1032 1033 /* ------------------------------------------------------------------------- */ 1034 1035 static void usb_gadget_state_work(struct work_struct *work) 1036 { 1037 struct usb_gadget *gadget = work_to_gadget(work); 1038 struct usb_udc *udc = gadget->udc; 1039 1040 if (udc) 1041 sysfs_notify(&udc->dev.kobj, NULL, "state"); 1042 } 1043 1044 void usb_gadget_set_state(struct usb_gadget *gadget, 1045 enum usb_device_state state) 1046 { 1047 gadget->state = state; 1048 schedule_work(&gadget->work); 1049 } 1050 EXPORT_SYMBOL_GPL(usb_gadget_set_state); 1051 1052 /* ------------------------------------------------------------------------- */ 1053 1054 static void usb_udc_connect_control(struct usb_udc *udc) 1055 { 1056 if (udc->vbus) 1057 usb_gadget_connect(udc->gadget); 1058 else 1059 usb_gadget_disconnect(udc->gadget); 1060 } 1061 1062 /** 1063 * usb_udc_vbus_handler - updates the udc core vbus status, and try to 1064 * connect or disconnect gadget 1065 * @gadget: The gadget which vbus change occurs 1066 * @status: The vbus status 1067 * 1068 * The udc driver calls it when it wants to connect or disconnect gadget 1069 * according to vbus status. 1070 */ 1071 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status) 1072 { 1073 struct usb_udc *udc = gadget->udc; 1074 1075 if (udc) { 1076 udc->vbus = status; 1077 usb_udc_connect_control(udc); 1078 } 1079 } 1080 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler); 1081 1082 /** 1083 * usb_gadget_udc_reset - notifies the udc core that bus reset occurs 1084 * @gadget: The gadget which bus reset occurs 1085 * @driver: The gadget driver we want to notify 1086 * 1087 * If the udc driver has bus reset handler, it needs to call this when the bus 1088 * reset occurs, it notifies the gadget driver that the bus reset occurs as 1089 * well as updates gadget state. 1090 */ 1091 void usb_gadget_udc_reset(struct usb_gadget *gadget, 1092 struct usb_gadget_driver *driver) 1093 { 1094 driver->reset(gadget); 1095 usb_gadget_set_state(gadget, USB_STATE_DEFAULT); 1096 } 1097 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset); 1098 1099 /** 1100 * usb_gadget_udc_start - tells usb device controller to start up 1101 * @udc: The UDC to be started 1102 * 1103 * This call is issued by the UDC Class driver when it's about 1104 * to register a gadget driver to the device controller, before 1105 * calling gadget driver's bind() method. 1106 * 1107 * It allows the controller to be powered off until strictly 1108 * necessary to have it powered on. 1109 * 1110 * Returns zero on success, else negative errno. 1111 */ 1112 static inline int usb_gadget_udc_start(struct usb_udc *udc) 1113 { 1114 int ret; 1115 1116 if (udc->started) { 1117 dev_err(&udc->dev, "UDC had already started\n"); 1118 return -EBUSY; 1119 } 1120 1121 ret = udc->gadget->ops->udc_start(udc->gadget, udc->driver); 1122 if (!ret) 1123 udc->started = true; 1124 1125 return ret; 1126 } 1127 1128 /** 1129 * usb_gadget_udc_stop - tells usb device controller we don't need it anymore 1130 * @udc: The UDC to be stopped 1131 * 1132 * This call is issued by the UDC Class driver after calling 1133 * gadget driver's unbind() method. 1134 * 1135 * The details are implementation specific, but it can go as 1136 * far as powering off UDC completely and disable its data 1137 * line pullups. 1138 */ 1139 static inline void usb_gadget_udc_stop(struct usb_udc *udc) 1140 { 1141 if (!udc->started) { 1142 dev_err(&udc->dev, "UDC had already stopped\n"); 1143 return; 1144 } 1145 1146 udc->gadget->ops->udc_stop(udc->gadget); 1147 udc->started = false; 1148 } 1149 1150 /** 1151 * usb_gadget_udc_set_speed - tells usb device controller speed supported by 1152 * current driver 1153 * @udc: The device we want to set maximum speed 1154 * @speed: The maximum speed to allowed to run 1155 * 1156 * This call is issued by the UDC Class driver before calling 1157 * usb_gadget_udc_start() in order to make sure that we don't try to 1158 * connect on speeds the gadget driver doesn't support. 1159 */ 1160 static inline void usb_gadget_udc_set_speed(struct usb_udc *udc, 1161 enum usb_device_speed speed) 1162 { 1163 struct usb_gadget *gadget = udc->gadget; 1164 enum usb_device_speed s; 1165 1166 if (speed == USB_SPEED_UNKNOWN) 1167 s = gadget->max_speed; 1168 else 1169 s = min(speed, gadget->max_speed); 1170 1171 if (s == USB_SPEED_SUPER_PLUS && gadget->ops->udc_set_ssp_rate) 1172 gadget->ops->udc_set_ssp_rate(gadget, gadget->max_ssp_rate); 1173 else if (gadget->ops->udc_set_speed) 1174 gadget->ops->udc_set_speed(gadget, s); 1175 } 1176 1177 /** 1178 * usb_gadget_enable_async_callbacks - tell usb device controller to enable asynchronous callbacks 1179 * @udc: The UDC which should enable async callbacks 1180 * 1181 * This routine is used when binding gadget drivers. It undoes the effect 1182 * of usb_gadget_disable_async_callbacks(); the UDC driver should enable IRQs 1183 * (if necessary) and resume issuing callbacks. 1184 * 1185 * This routine will always be called in process context. 1186 */ 1187 static inline void usb_gadget_enable_async_callbacks(struct usb_udc *udc) 1188 { 1189 struct usb_gadget *gadget = udc->gadget; 1190 1191 if (gadget->ops->udc_async_callbacks) 1192 gadget->ops->udc_async_callbacks(gadget, true); 1193 } 1194 1195 /** 1196 * usb_gadget_disable_async_callbacks - tell usb device controller to disable asynchronous callbacks 1197 * @udc: The UDC which should disable async callbacks 1198 * 1199 * This routine is used when unbinding gadget drivers. It prevents a race: 1200 * The UDC driver doesn't know when the gadget driver's ->unbind callback 1201 * runs, so unless it is told to disable asynchronous callbacks, it might 1202 * issue a callback (such as ->disconnect) after the unbind has completed. 1203 * 1204 * After this function runs, the UDC driver must suppress all ->suspend, 1205 * ->resume, ->disconnect, ->reset, and ->setup callbacks to the gadget driver 1206 * until async callbacks are again enabled. A simple-minded but effective 1207 * way to accomplish this is to tell the UDC hardware not to generate any 1208 * more IRQs. 1209 * 1210 * Request completion callbacks must still be issued. However, it's okay 1211 * to defer them until the request is cancelled, since the pull-up will be 1212 * turned off during the time period when async callbacks are disabled. 1213 * 1214 * This routine will always be called in process context. 1215 */ 1216 static inline void usb_gadget_disable_async_callbacks(struct usb_udc *udc) 1217 { 1218 struct usb_gadget *gadget = udc->gadget; 1219 1220 if (gadget->ops->udc_async_callbacks) 1221 gadget->ops->udc_async_callbacks(gadget, false); 1222 } 1223 1224 /** 1225 * usb_udc_release - release the usb_udc struct 1226 * @dev: the dev member within usb_udc 1227 * 1228 * This is called by driver's core in order to free memory once the last 1229 * reference is released. 1230 */ 1231 static void usb_udc_release(struct device *dev) 1232 { 1233 struct usb_udc *udc; 1234 1235 udc = container_of(dev, struct usb_udc, dev); 1236 dev_dbg(dev, "releasing '%s'\n", dev_name(dev)); 1237 kfree(udc); 1238 } 1239 1240 static const struct attribute_group *usb_udc_attr_groups[]; 1241 1242 static void usb_udc_nop_release(struct device *dev) 1243 { 1244 dev_vdbg(dev, "%s\n", __func__); 1245 } 1246 1247 /** 1248 * usb_initialize_gadget - initialize a gadget and its embedded struct device 1249 * @parent: the parent device to this udc. Usually the controller driver's 1250 * device. 1251 * @gadget: the gadget to be initialized. 1252 * @release: a gadget release function. 1253 */ 1254 void usb_initialize_gadget(struct device *parent, struct usb_gadget *gadget, 1255 void (*release)(struct device *dev)) 1256 { 1257 INIT_WORK(&gadget->work, usb_gadget_state_work); 1258 gadget->dev.parent = parent; 1259 1260 if (release) 1261 gadget->dev.release = release; 1262 else 1263 gadget->dev.release = usb_udc_nop_release; 1264 1265 device_initialize(&gadget->dev); 1266 gadget->dev.bus = &gadget_bus_type; 1267 } 1268 EXPORT_SYMBOL_GPL(usb_initialize_gadget); 1269 1270 /** 1271 * usb_add_gadget - adds a new gadget to the udc class driver list 1272 * @gadget: the gadget to be added to the list. 1273 * 1274 * Returns zero on success, negative errno otherwise. 1275 * Does not do a final usb_put_gadget() if an error occurs. 1276 */ 1277 int usb_add_gadget(struct usb_gadget *gadget) 1278 { 1279 struct usb_udc *udc; 1280 int ret = -ENOMEM; 1281 1282 udc = kzalloc(sizeof(*udc), GFP_KERNEL); 1283 if (!udc) 1284 goto error; 1285 1286 device_initialize(&udc->dev); 1287 udc->dev.release = usb_udc_release; 1288 udc->dev.class = udc_class; 1289 udc->dev.groups = usb_udc_attr_groups; 1290 udc->dev.parent = gadget->dev.parent; 1291 ret = dev_set_name(&udc->dev, "%s", 1292 kobject_name(&gadget->dev.parent->kobj)); 1293 if (ret) 1294 goto err_put_udc; 1295 1296 udc->gadget = gadget; 1297 gadget->udc = udc; 1298 1299 udc->started = false; 1300 1301 mutex_lock(&udc_lock); 1302 list_add_tail(&udc->list, &udc_list); 1303 mutex_unlock(&udc_lock); 1304 1305 ret = device_add(&udc->dev); 1306 if (ret) 1307 goto err_unlist_udc; 1308 1309 usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED); 1310 udc->vbus = true; 1311 1312 ret = ida_alloc(&gadget_id_numbers, GFP_KERNEL); 1313 if (ret < 0) 1314 goto err_del_udc; 1315 gadget->id_number = ret; 1316 dev_set_name(&gadget->dev, "gadget.%d", ret); 1317 1318 ret = device_add(&gadget->dev); 1319 if (ret) 1320 goto err_free_id; 1321 1322 return 0; 1323 1324 err_free_id: 1325 ida_free(&gadget_id_numbers, gadget->id_number); 1326 1327 err_del_udc: 1328 flush_work(&gadget->work); 1329 device_del(&udc->dev); 1330 1331 err_unlist_udc: 1332 mutex_lock(&udc_lock); 1333 list_del(&udc->list); 1334 mutex_unlock(&udc_lock); 1335 1336 err_put_udc: 1337 put_device(&udc->dev); 1338 1339 error: 1340 return ret; 1341 } 1342 EXPORT_SYMBOL_GPL(usb_add_gadget); 1343 1344 /** 1345 * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list 1346 * @parent: the parent device to this udc. Usually the controller driver's 1347 * device. 1348 * @gadget: the gadget to be added to the list. 1349 * @release: a gadget release function. 1350 * 1351 * Returns zero on success, negative errno otherwise. 1352 * Calls the gadget release function in the latter case. 1353 */ 1354 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget, 1355 void (*release)(struct device *dev)) 1356 { 1357 int ret; 1358 1359 usb_initialize_gadget(parent, gadget, release); 1360 ret = usb_add_gadget(gadget); 1361 if (ret) 1362 usb_put_gadget(gadget); 1363 return ret; 1364 } 1365 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release); 1366 1367 /** 1368 * usb_get_gadget_udc_name - get the name of the first UDC controller 1369 * This functions returns the name of the first UDC controller in the system. 1370 * Please note that this interface is usefull only for legacy drivers which 1371 * assume that there is only one UDC controller in the system and they need to 1372 * get its name before initialization. There is no guarantee that the UDC 1373 * of the returned name will be still available, when gadget driver registers 1374 * itself. 1375 * 1376 * Returns pointer to string with UDC controller name on success, NULL 1377 * otherwise. Caller should kfree() returned string. 1378 */ 1379 char *usb_get_gadget_udc_name(void) 1380 { 1381 struct usb_udc *udc; 1382 char *name = NULL; 1383 1384 /* For now we take the first available UDC */ 1385 mutex_lock(&udc_lock); 1386 list_for_each_entry(udc, &udc_list, list) { 1387 if (!udc->driver) { 1388 name = kstrdup(udc->gadget->name, GFP_KERNEL); 1389 break; 1390 } 1391 } 1392 mutex_unlock(&udc_lock); 1393 return name; 1394 } 1395 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name); 1396 1397 /** 1398 * usb_add_gadget_udc - adds a new gadget to the udc class driver list 1399 * @parent: the parent device to this udc. Usually the controller 1400 * driver's device. 1401 * @gadget: the gadget to be added to the list 1402 * 1403 * Returns zero on success, negative errno otherwise. 1404 */ 1405 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget) 1406 { 1407 return usb_add_gadget_udc_release(parent, gadget, NULL); 1408 } 1409 EXPORT_SYMBOL_GPL(usb_add_gadget_udc); 1410 1411 /** 1412 * usb_del_gadget - deletes a gadget and unregisters its udc 1413 * @gadget: the gadget to be deleted. 1414 * 1415 * This will unbind @gadget, if it is bound. 1416 * It will not do a final usb_put_gadget(). 1417 */ 1418 void usb_del_gadget(struct usb_gadget *gadget) 1419 { 1420 struct usb_udc *udc = gadget->udc; 1421 1422 if (!udc) 1423 return; 1424 1425 dev_vdbg(gadget->dev.parent, "unregistering gadget\n"); 1426 1427 mutex_lock(&udc_lock); 1428 list_del(&udc->list); 1429 mutex_unlock(&udc_lock); 1430 1431 kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE); 1432 flush_work(&gadget->work); 1433 device_del(&gadget->dev); 1434 ida_free(&gadget_id_numbers, gadget->id_number); 1435 device_unregister(&udc->dev); 1436 } 1437 EXPORT_SYMBOL_GPL(usb_del_gadget); 1438 1439 /** 1440 * usb_del_gadget_udc - unregisters a gadget 1441 * @gadget: the gadget to be unregistered. 1442 * 1443 * Calls usb_del_gadget() and does a final usb_put_gadget(). 1444 */ 1445 void usb_del_gadget_udc(struct usb_gadget *gadget) 1446 { 1447 usb_del_gadget(gadget); 1448 usb_put_gadget(gadget); 1449 } 1450 EXPORT_SYMBOL_GPL(usb_del_gadget_udc); 1451 1452 /* ------------------------------------------------------------------------- */ 1453 1454 static int gadget_match_driver(struct device *dev, struct device_driver *drv) 1455 { 1456 struct usb_gadget *gadget = dev_to_usb_gadget(dev); 1457 struct usb_udc *udc = gadget->udc; 1458 struct usb_gadget_driver *driver = container_of(drv, 1459 struct usb_gadget_driver, driver); 1460 1461 /* If the driver specifies a udc_name, it must match the UDC's name */ 1462 if (driver->udc_name && 1463 strcmp(driver->udc_name, dev_name(&udc->dev)) != 0) 1464 return 0; 1465 1466 /* If the driver is already bound to a gadget, it doesn't match */ 1467 if (driver->is_bound) 1468 return 0; 1469 1470 /* Otherwise any gadget driver matches any UDC */ 1471 return 1; 1472 } 1473 1474 static int gadget_bind_driver(struct device *dev) 1475 { 1476 struct usb_gadget *gadget = dev_to_usb_gadget(dev); 1477 struct usb_udc *udc = gadget->udc; 1478 struct usb_gadget_driver *driver = container_of(dev->driver, 1479 struct usb_gadget_driver, driver); 1480 int ret = 0; 1481 1482 mutex_lock(&udc_lock); 1483 if (driver->is_bound) { 1484 mutex_unlock(&udc_lock); 1485 return -ENXIO; /* Driver binds to only one gadget */ 1486 } 1487 driver->is_bound = true; 1488 udc->driver = driver; 1489 mutex_unlock(&udc_lock); 1490 1491 dev_dbg(&udc->dev, "binding gadget driver [%s]\n", driver->function); 1492 1493 usb_gadget_udc_set_speed(udc, driver->max_speed); 1494 1495 ret = driver->bind(udc->gadget, driver); 1496 if (ret) 1497 goto err_bind; 1498 1499 ret = usb_gadget_udc_start(udc); 1500 if (ret) 1501 goto err_start; 1502 usb_gadget_enable_async_callbacks(udc); 1503 usb_udc_connect_control(udc); 1504 1505 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE); 1506 return 0; 1507 1508 err_start: 1509 driver->unbind(udc->gadget); 1510 1511 err_bind: 1512 if (ret != -EISNAM) 1513 dev_err(&udc->dev, "failed to start %s: %d\n", 1514 driver->function, ret); 1515 1516 mutex_lock(&udc_lock); 1517 udc->driver = NULL; 1518 driver->is_bound = false; 1519 mutex_unlock(&udc_lock); 1520 1521 return ret; 1522 } 1523 1524 static void gadget_unbind_driver(struct device *dev) 1525 { 1526 struct usb_gadget *gadget = dev_to_usb_gadget(dev); 1527 struct usb_udc *udc = gadget->udc; 1528 struct usb_gadget_driver *driver = udc->driver; 1529 1530 dev_dbg(&udc->dev, "unbinding gadget driver [%s]\n", driver->function); 1531 1532 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE); 1533 1534 usb_gadget_disconnect(gadget); 1535 usb_gadget_disable_async_callbacks(udc); 1536 if (gadget->irq) 1537 synchronize_irq(gadget->irq); 1538 udc->driver->unbind(gadget); 1539 usb_gadget_udc_stop(udc); 1540 1541 mutex_lock(&udc_lock); 1542 driver->is_bound = false; 1543 udc->driver = NULL; 1544 mutex_unlock(&udc_lock); 1545 } 1546 1547 /* ------------------------------------------------------------------------- */ 1548 1549 int usb_gadget_register_driver_owner(struct usb_gadget_driver *driver, 1550 struct module *owner, const char *mod_name) 1551 { 1552 int ret; 1553 1554 if (!driver || !driver->bind || !driver->setup) 1555 return -EINVAL; 1556 1557 driver->driver.bus = &gadget_bus_type; 1558 driver->driver.owner = owner; 1559 driver->driver.mod_name = mod_name; 1560 ret = driver_register(&driver->driver); 1561 if (ret) { 1562 pr_warn("%s: driver registration failed: %d\n", 1563 driver->function, ret); 1564 return ret; 1565 } 1566 1567 mutex_lock(&udc_lock); 1568 if (!driver->is_bound) { 1569 if (driver->match_existing_only) { 1570 pr_warn("%s: couldn't find an available UDC or it's busy\n", 1571 driver->function); 1572 ret = -EBUSY; 1573 } else { 1574 pr_info("%s: couldn't find an available UDC\n", 1575 driver->function); 1576 ret = 0; 1577 } 1578 } 1579 mutex_unlock(&udc_lock); 1580 1581 if (ret) 1582 driver_unregister(&driver->driver); 1583 return ret; 1584 } 1585 EXPORT_SYMBOL_GPL(usb_gadget_register_driver_owner); 1586 1587 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver) 1588 { 1589 if (!driver || !driver->unbind) 1590 return -EINVAL; 1591 1592 driver_unregister(&driver->driver); 1593 return 0; 1594 } 1595 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver); 1596 1597 /* ------------------------------------------------------------------------- */ 1598 1599 static ssize_t srp_store(struct device *dev, 1600 struct device_attribute *attr, const char *buf, size_t n) 1601 { 1602 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1603 1604 if (sysfs_streq(buf, "1")) 1605 usb_gadget_wakeup(udc->gadget); 1606 1607 return n; 1608 } 1609 static DEVICE_ATTR_WO(srp); 1610 1611 static ssize_t soft_connect_store(struct device *dev, 1612 struct device_attribute *attr, const char *buf, size_t n) 1613 { 1614 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1615 ssize_t ret; 1616 1617 device_lock(&udc->gadget->dev); 1618 if (!udc->driver) { 1619 dev_err(dev, "soft-connect without a gadget driver\n"); 1620 ret = -EOPNOTSUPP; 1621 goto out; 1622 } 1623 1624 if (sysfs_streq(buf, "connect")) { 1625 usb_gadget_udc_start(udc); 1626 usb_gadget_connect(udc->gadget); 1627 } else if (sysfs_streq(buf, "disconnect")) { 1628 usb_gadget_disconnect(udc->gadget); 1629 usb_gadget_udc_stop(udc); 1630 } else { 1631 dev_err(dev, "unsupported command '%s'\n", buf); 1632 ret = -EINVAL; 1633 goto out; 1634 } 1635 1636 ret = n; 1637 out: 1638 device_unlock(&udc->gadget->dev); 1639 return ret; 1640 } 1641 static DEVICE_ATTR_WO(soft_connect); 1642 1643 static ssize_t state_show(struct device *dev, struct device_attribute *attr, 1644 char *buf) 1645 { 1646 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1647 struct usb_gadget *gadget = udc->gadget; 1648 1649 return sprintf(buf, "%s\n", usb_state_string(gadget->state)); 1650 } 1651 static DEVICE_ATTR_RO(state); 1652 1653 static ssize_t function_show(struct device *dev, struct device_attribute *attr, 1654 char *buf) 1655 { 1656 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1657 struct usb_gadget_driver *drv; 1658 int rc = 0; 1659 1660 mutex_lock(&udc_lock); 1661 drv = udc->driver; 1662 if (drv && drv->function) 1663 rc = scnprintf(buf, PAGE_SIZE, "%s\n", drv->function); 1664 mutex_unlock(&udc_lock); 1665 return rc; 1666 } 1667 static DEVICE_ATTR_RO(function); 1668 1669 #define USB_UDC_SPEED_ATTR(name, param) \ 1670 ssize_t name##_show(struct device *dev, \ 1671 struct device_attribute *attr, char *buf) \ 1672 { \ 1673 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \ 1674 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 1675 usb_speed_string(udc->gadget->param)); \ 1676 } \ 1677 static DEVICE_ATTR_RO(name) 1678 1679 static USB_UDC_SPEED_ATTR(current_speed, speed); 1680 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed); 1681 1682 #define USB_UDC_ATTR(name) \ 1683 ssize_t name##_show(struct device *dev, \ 1684 struct device_attribute *attr, char *buf) \ 1685 { \ 1686 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \ 1687 struct usb_gadget *gadget = udc->gadget; \ 1688 \ 1689 return scnprintf(buf, PAGE_SIZE, "%d\n", gadget->name); \ 1690 } \ 1691 static DEVICE_ATTR_RO(name) 1692 1693 static USB_UDC_ATTR(is_otg); 1694 static USB_UDC_ATTR(is_a_peripheral); 1695 static USB_UDC_ATTR(b_hnp_enable); 1696 static USB_UDC_ATTR(a_hnp_support); 1697 static USB_UDC_ATTR(a_alt_hnp_support); 1698 static USB_UDC_ATTR(is_selfpowered); 1699 1700 static struct attribute *usb_udc_attrs[] = { 1701 &dev_attr_srp.attr, 1702 &dev_attr_soft_connect.attr, 1703 &dev_attr_state.attr, 1704 &dev_attr_function.attr, 1705 &dev_attr_current_speed.attr, 1706 &dev_attr_maximum_speed.attr, 1707 1708 &dev_attr_is_otg.attr, 1709 &dev_attr_is_a_peripheral.attr, 1710 &dev_attr_b_hnp_enable.attr, 1711 &dev_attr_a_hnp_support.attr, 1712 &dev_attr_a_alt_hnp_support.attr, 1713 &dev_attr_is_selfpowered.attr, 1714 NULL, 1715 }; 1716 1717 static const struct attribute_group usb_udc_attr_group = { 1718 .attrs = usb_udc_attrs, 1719 }; 1720 1721 static const struct attribute_group *usb_udc_attr_groups[] = { 1722 &usb_udc_attr_group, 1723 NULL, 1724 }; 1725 1726 static int usb_udc_uevent(const struct device *dev, struct kobj_uevent_env *env) 1727 { 1728 const struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1729 int ret; 1730 1731 ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name); 1732 if (ret) { 1733 dev_err(dev, "failed to add uevent USB_UDC_NAME\n"); 1734 return ret; 1735 } 1736 1737 mutex_lock(&udc_lock); 1738 if (udc->driver) 1739 ret = add_uevent_var(env, "USB_UDC_DRIVER=%s", 1740 udc->driver->function); 1741 mutex_unlock(&udc_lock); 1742 if (ret) { 1743 dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n"); 1744 return ret; 1745 } 1746 1747 return 0; 1748 } 1749 1750 static struct bus_type gadget_bus_type = { 1751 .name = "gadget", 1752 .probe = gadget_bind_driver, 1753 .remove = gadget_unbind_driver, 1754 .match = gadget_match_driver, 1755 }; 1756 1757 static int __init usb_udc_init(void) 1758 { 1759 int rc; 1760 1761 udc_class = class_create(THIS_MODULE, "udc"); 1762 if (IS_ERR(udc_class)) { 1763 pr_err("failed to create udc class --> %ld\n", 1764 PTR_ERR(udc_class)); 1765 return PTR_ERR(udc_class); 1766 } 1767 1768 udc_class->dev_uevent = usb_udc_uevent; 1769 1770 rc = bus_register(&gadget_bus_type); 1771 if (rc) 1772 class_destroy(udc_class); 1773 return rc; 1774 } 1775 subsys_initcall(usb_udc_init); 1776 1777 static void __exit usb_udc_exit(void) 1778 { 1779 bus_unregister(&gadget_bus_type); 1780 class_destroy(udc_class); 1781 } 1782 module_exit(usb_udc_exit); 1783 1784 MODULE_DESCRIPTION("UDC Framework"); 1785 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>"); 1786 MODULE_LICENSE("GPL v2"); 1787