1 /** 2 * udc.c - Core UDC Framework 3 * 4 * Copyright (C) 2010 Texas Instruments 5 * Author: Felipe Balbi <balbi@ti.com> 6 * 7 * This program is free software: you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 of 9 * the License as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/device.h> 23 #include <linux/list.h> 24 #include <linux/err.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/workqueue.h> 27 28 #include <linux/usb/ch9.h> 29 #include <linux/usb/gadget.h> 30 #include <linux/usb.h> 31 32 #include "trace.h" 33 34 /** 35 * struct usb_udc - describes one usb device controller 36 * @driver - the gadget driver pointer. For use by the class code 37 * @dev - the child device to the actual controller 38 * @gadget - the gadget. For use by the class code 39 * @list - for use by the udc class driver 40 * @vbus - for udcs who care about vbus status, this value is real vbus status; 41 * for udcs who do not care about vbus status, this value is always true 42 * 43 * This represents the internal data structure which is used by the UDC-class 44 * to hold information about udc driver and gadget together. 45 */ 46 struct usb_udc { 47 struct usb_gadget_driver *driver; 48 struct usb_gadget *gadget; 49 struct device dev; 50 struct list_head list; 51 bool vbus; 52 }; 53 54 static struct class *udc_class; 55 static LIST_HEAD(udc_list); 56 static LIST_HEAD(gadget_driver_pending_list); 57 static DEFINE_MUTEX(udc_lock); 58 59 static int udc_bind_to_driver(struct usb_udc *udc, 60 struct usb_gadget_driver *driver); 61 62 /* ------------------------------------------------------------------------- */ 63 64 /** 65 * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint 66 * @ep:the endpoint being configured 67 * @maxpacket_limit:value of maximum packet size limit 68 * 69 * This function should be used only in UDC drivers to initialize endpoint 70 * (usually in probe function). 71 */ 72 void usb_ep_set_maxpacket_limit(struct usb_ep *ep, 73 unsigned maxpacket_limit) 74 { 75 ep->maxpacket_limit = maxpacket_limit; 76 ep->maxpacket = maxpacket_limit; 77 78 trace_usb_ep_set_maxpacket_limit(ep, 0); 79 } 80 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit); 81 82 /** 83 * usb_ep_enable - configure endpoint, making it usable 84 * @ep:the endpoint being configured. may not be the endpoint named "ep0". 85 * drivers discover endpoints through the ep_list of a usb_gadget. 86 * 87 * When configurations are set, or when interface settings change, the driver 88 * will enable or disable the relevant endpoints. while it is enabled, an 89 * endpoint may be used for i/o until the driver receives a disconnect() from 90 * the host or until the endpoint is disabled. 91 * 92 * the ep0 implementation (which calls this routine) must ensure that the 93 * hardware capabilities of each endpoint match the descriptor provided 94 * for it. for example, an endpoint named "ep2in-bulk" would be usable 95 * for interrupt transfers as well as bulk, but it likely couldn't be used 96 * for iso transfers or for endpoint 14. some endpoints are fully 97 * configurable, with more generic names like "ep-a". (remember that for 98 * USB, "in" means "towards the USB master".) 99 * 100 * returns zero, or a negative error code. 101 */ 102 int usb_ep_enable(struct usb_ep *ep) 103 { 104 int ret = 0; 105 106 if (ep->enabled) 107 goto out; 108 109 ret = ep->ops->enable(ep, ep->desc); 110 if (ret) { 111 ret = ret; 112 goto out; 113 } 114 115 ep->enabled = true; 116 117 out: 118 trace_usb_ep_enable(ep, ret); 119 120 return ret; 121 } 122 EXPORT_SYMBOL_GPL(usb_ep_enable); 123 124 /** 125 * usb_ep_disable - endpoint is no longer usable 126 * @ep:the endpoint being unconfigured. may not be the endpoint named "ep0". 127 * 128 * no other task may be using this endpoint when this is called. 129 * any pending and uncompleted requests will complete with status 130 * indicating disconnect (-ESHUTDOWN) before this call returns. 131 * gadget drivers must call usb_ep_enable() again before queueing 132 * requests to the endpoint. 133 * 134 * returns zero, or a negative error code. 135 */ 136 int usb_ep_disable(struct usb_ep *ep) 137 { 138 int ret = 0; 139 140 if (!ep->enabled) 141 goto out; 142 143 ret = ep->ops->disable(ep); 144 if (ret) { 145 ret = ret; 146 goto out; 147 } 148 149 ep->enabled = false; 150 151 out: 152 trace_usb_ep_disable(ep, ret); 153 154 return ret; 155 } 156 EXPORT_SYMBOL_GPL(usb_ep_disable); 157 158 /** 159 * usb_ep_alloc_request - allocate a request object to use with this endpoint 160 * @ep:the endpoint to be used with with the request 161 * @gfp_flags:GFP_* flags to use 162 * 163 * Request objects must be allocated with this call, since they normally 164 * need controller-specific setup and may even need endpoint-specific 165 * resources such as allocation of DMA descriptors. 166 * Requests may be submitted with usb_ep_queue(), and receive a single 167 * completion callback. Free requests with usb_ep_free_request(), when 168 * they are no longer needed. 169 * 170 * Returns the request, or null if one could not be allocated. 171 */ 172 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep, 173 gfp_t gfp_flags) 174 { 175 struct usb_request *req = NULL; 176 177 req = ep->ops->alloc_request(ep, gfp_flags); 178 179 trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM); 180 181 return req; 182 } 183 EXPORT_SYMBOL_GPL(usb_ep_alloc_request); 184 185 /** 186 * usb_ep_free_request - frees a request object 187 * @ep:the endpoint associated with the request 188 * @req:the request being freed 189 * 190 * Reverses the effect of usb_ep_alloc_request(). 191 * Caller guarantees the request is not queued, and that it will 192 * no longer be requeued (or otherwise used). 193 */ 194 void usb_ep_free_request(struct usb_ep *ep, 195 struct usb_request *req) 196 { 197 ep->ops->free_request(ep, req); 198 trace_usb_ep_free_request(ep, req, 0); 199 } 200 EXPORT_SYMBOL_GPL(usb_ep_free_request); 201 202 /** 203 * usb_ep_queue - queues (submits) an I/O request to an endpoint. 204 * @ep:the endpoint associated with the request 205 * @req:the request being submitted 206 * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't 207 * pre-allocate all necessary memory with the request. 208 * 209 * This tells the device controller to perform the specified request through 210 * that endpoint (reading or writing a buffer). When the request completes, 211 * including being canceled by usb_ep_dequeue(), the request's completion 212 * routine is called to return the request to the driver. Any endpoint 213 * (except control endpoints like ep0) may have more than one transfer 214 * request queued; they complete in FIFO order. Once a gadget driver 215 * submits a request, that request may not be examined or modified until it 216 * is given back to that driver through the completion callback. 217 * 218 * Each request is turned into one or more packets. The controller driver 219 * never merges adjacent requests into the same packet. OUT transfers 220 * will sometimes use data that's already buffered in the hardware. 221 * Drivers can rely on the fact that the first byte of the request's buffer 222 * always corresponds to the first byte of some USB packet, for both 223 * IN and OUT transfers. 224 * 225 * Bulk endpoints can queue any amount of data; the transfer is packetized 226 * automatically. The last packet will be short if the request doesn't fill it 227 * out completely. Zero length packets (ZLPs) should be avoided in portable 228 * protocols since not all usb hardware can successfully handle zero length 229 * packets. (ZLPs may be explicitly written, and may be implicitly written if 230 * the request 'zero' flag is set.) Bulk endpoints may also be used 231 * for interrupt transfers; but the reverse is not true, and some endpoints 232 * won't support every interrupt transfer. (Such as 768 byte packets.) 233 * 234 * Interrupt-only endpoints are less functional than bulk endpoints, for 235 * example by not supporting queueing or not handling buffers that are 236 * larger than the endpoint's maxpacket size. They may also treat data 237 * toggle differently. 238 * 239 * Control endpoints ... after getting a setup() callback, the driver queues 240 * one response (even if it would be zero length). That enables the 241 * status ack, after transferring data as specified in the response. Setup 242 * functions may return negative error codes to generate protocol stalls. 243 * (Note that some USB device controllers disallow protocol stall responses 244 * in some cases.) When control responses are deferred (the response is 245 * written after the setup callback returns), then usb_ep_set_halt() may be 246 * used on ep0 to trigger protocol stalls. Depending on the controller, 247 * it may not be possible to trigger a status-stage protocol stall when the 248 * data stage is over, that is, from within the response's completion 249 * routine. 250 * 251 * For periodic endpoints, like interrupt or isochronous ones, the usb host 252 * arranges to poll once per interval, and the gadget driver usually will 253 * have queued some data to transfer at that time. 254 * 255 * Returns zero, or a negative error code. Endpoints that are not enabled 256 * report errors; errors will also be 257 * reported when the usb peripheral is disconnected. 258 */ 259 int usb_ep_queue(struct usb_ep *ep, 260 struct usb_request *req, gfp_t gfp_flags) 261 { 262 int ret = 0; 263 264 if (WARN_ON_ONCE(!ep->enabled && ep->address)) { 265 ret = -ESHUTDOWN; 266 goto out; 267 } 268 269 ret = ep->ops->queue(ep, req, gfp_flags); 270 271 out: 272 trace_usb_ep_queue(ep, req, ret); 273 274 return ret; 275 } 276 EXPORT_SYMBOL_GPL(usb_ep_queue); 277 278 /** 279 * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint 280 * @ep:the endpoint associated with the request 281 * @req:the request being canceled 282 * 283 * If the request is still active on the endpoint, it is dequeued and its 284 * completion routine is called (with status -ECONNRESET); else a negative 285 * error code is returned. This is guaranteed to happen before the call to 286 * usb_ep_dequeue() returns. 287 * 288 * Note that some hardware can't clear out write fifos (to unlink the request 289 * at the head of the queue) except as part of disconnecting from usb. Such 290 * restrictions prevent drivers from supporting configuration changes, 291 * even to configuration zero (a "chapter 9" requirement). 292 */ 293 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 294 { 295 int ret; 296 297 ret = ep->ops->dequeue(ep, req); 298 trace_usb_ep_dequeue(ep, req, ret); 299 300 return ret; 301 } 302 EXPORT_SYMBOL_GPL(usb_ep_dequeue); 303 304 /** 305 * usb_ep_set_halt - sets the endpoint halt feature. 306 * @ep: the non-isochronous endpoint being stalled 307 * 308 * Use this to stall an endpoint, perhaps as an error report. 309 * Except for control endpoints, 310 * the endpoint stays halted (will not stream any data) until the host 311 * clears this feature; drivers may need to empty the endpoint's request 312 * queue first, to make sure no inappropriate transfers happen. 313 * 314 * Note that while an endpoint CLEAR_FEATURE will be invisible to the 315 * gadget driver, a SET_INTERFACE will not be. To reset endpoints for the 316 * current altsetting, see usb_ep_clear_halt(). When switching altsettings, 317 * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints. 318 * 319 * Returns zero, or a negative error code. On success, this call sets 320 * underlying hardware state that blocks data transfers. 321 * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any 322 * transfer requests are still queued, or if the controller hardware 323 * (usually a FIFO) still holds bytes that the host hasn't collected. 324 */ 325 int usb_ep_set_halt(struct usb_ep *ep) 326 { 327 int ret; 328 329 ret = ep->ops->set_halt(ep, 1); 330 trace_usb_ep_set_halt(ep, ret); 331 332 return ret; 333 } 334 EXPORT_SYMBOL_GPL(usb_ep_set_halt); 335 336 /** 337 * usb_ep_clear_halt - clears endpoint halt, and resets toggle 338 * @ep:the bulk or interrupt endpoint being reset 339 * 340 * Use this when responding to the standard usb "set interface" request, 341 * for endpoints that aren't reconfigured, after clearing any other state 342 * in the endpoint's i/o queue. 343 * 344 * Returns zero, or a negative error code. On success, this call clears 345 * the underlying hardware state reflecting endpoint halt and data toggle. 346 * Note that some hardware can't support this request (like pxa2xx_udc), 347 * and accordingly can't correctly implement interface altsettings. 348 */ 349 int usb_ep_clear_halt(struct usb_ep *ep) 350 { 351 int ret; 352 353 ret = ep->ops->set_halt(ep, 0); 354 trace_usb_ep_clear_halt(ep, ret); 355 356 return ret; 357 } 358 EXPORT_SYMBOL_GPL(usb_ep_clear_halt); 359 360 /** 361 * usb_ep_set_wedge - sets the halt feature and ignores clear requests 362 * @ep: the endpoint being wedged 363 * 364 * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT) 365 * requests. If the gadget driver clears the halt status, it will 366 * automatically unwedge the endpoint. 367 * 368 * Returns zero on success, else negative errno. 369 */ 370 int usb_ep_set_wedge(struct usb_ep *ep) 371 { 372 int ret; 373 374 if (ep->ops->set_wedge) 375 ret = ep->ops->set_wedge(ep); 376 else 377 ret = ep->ops->set_halt(ep, 1); 378 379 trace_usb_ep_set_wedge(ep, ret); 380 381 return ret; 382 } 383 EXPORT_SYMBOL_GPL(usb_ep_set_wedge); 384 385 /** 386 * usb_ep_fifo_status - returns number of bytes in fifo, or error 387 * @ep: the endpoint whose fifo status is being checked. 388 * 389 * FIFO endpoints may have "unclaimed data" in them in certain cases, 390 * such as after aborted transfers. Hosts may not have collected all 391 * the IN data written by the gadget driver (and reported by a request 392 * completion). The gadget driver may not have collected all the data 393 * written OUT to it by the host. Drivers that need precise handling for 394 * fault reporting or recovery may need to use this call. 395 * 396 * This returns the number of such bytes in the fifo, or a negative 397 * errno if the endpoint doesn't use a FIFO or doesn't support such 398 * precise handling. 399 */ 400 int usb_ep_fifo_status(struct usb_ep *ep) 401 { 402 int ret; 403 404 if (ep->ops->fifo_status) 405 ret = ep->ops->fifo_status(ep); 406 else 407 ret = -EOPNOTSUPP; 408 409 trace_usb_ep_fifo_status(ep, ret); 410 411 return ret; 412 } 413 EXPORT_SYMBOL_GPL(usb_ep_fifo_status); 414 415 /** 416 * usb_ep_fifo_flush - flushes contents of a fifo 417 * @ep: the endpoint whose fifo is being flushed. 418 * 419 * This call may be used to flush the "unclaimed data" that may exist in 420 * an endpoint fifo after abnormal transaction terminations. The call 421 * must never be used except when endpoint is not being used for any 422 * protocol translation. 423 */ 424 void usb_ep_fifo_flush(struct usb_ep *ep) 425 { 426 if (ep->ops->fifo_flush) 427 ep->ops->fifo_flush(ep); 428 429 trace_usb_ep_fifo_flush(ep, 0); 430 } 431 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush); 432 433 /* ------------------------------------------------------------------------- */ 434 435 /** 436 * usb_gadget_frame_number - returns the current frame number 437 * @gadget: controller that reports the frame number 438 * 439 * Returns the usb frame number, normally eleven bits from a SOF packet, 440 * or negative errno if this device doesn't support this capability. 441 */ 442 int usb_gadget_frame_number(struct usb_gadget *gadget) 443 { 444 int ret; 445 446 ret = gadget->ops->get_frame(gadget); 447 448 trace_usb_gadget_frame_number(gadget, ret); 449 450 return ret; 451 } 452 EXPORT_SYMBOL_GPL(usb_gadget_frame_number); 453 454 /** 455 * usb_gadget_wakeup - tries to wake up the host connected to this gadget 456 * @gadget: controller used to wake up the host 457 * 458 * Returns zero on success, else negative error code if the hardware 459 * doesn't support such attempts, or its support has not been enabled 460 * by the usb host. Drivers must return device descriptors that report 461 * their ability to support this, or hosts won't enable it. 462 * 463 * This may also try to use SRP to wake the host and start enumeration, 464 * even if OTG isn't otherwise in use. OTG devices may also start 465 * remote wakeup even when hosts don't explicitly enable it. 466 */ 467 int usb_gadget_wakeup(struct usb_gadget *gadget) 468 { 469 int ret = 0; 470 471 if (!gadget->ops->wakeup) { 472 ret = -EOPNOTSUPP; 473 goto out; 474 } 475 476 ret = gadget->ops->wakeup(gadget); 477 478 out: 479 trace_usb_gadget_wakeup(gadget, ret); 480 481 return ret; 482 } 483 EXPORT_SYMBOL_GPL(usb_gadget_wakeup); 484 485 /** 486 * usb_gadget_set_selfpowered - sets the device selfpowered feature. 487 * @gadget:the device being declared as self-powered 488 * 489 * this affects the device status reported by the hardware driver 490 * to reflect that it now has a local power supply. 491 * 492 * returns zero on success, else negative errno. 493 */ 494 int usb_gadget_set_selfpowered(struct usb_gadget *gadget) 495 { 496 int ret = 0; 497 498 if (!gadget->ops->set_selfpowered) { 499 ret = -EOPNOTSUPP; 500 goto out; 501 } 502 503 ret = gadget->ops->set_selfpowered(gadget, 1); 504 505 out: 506 trace_usb_gadget_set_selfpowered(gadget, ret); 507 508 return ret; 509 } 510 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered); 511 512 /** 513 * usb_gadget_clear_selfpowered - clear the device selfpowered feature. 514 * @gadget:the device being declared as bus-powered 515 * 516 * this affects the device status reported by the hardware driver. 517 * some hardware may not support bus-powered operation, in which 518 * case this feature's value can never change. 519 * 520 * returns zero on success, else negative errno. 521 */ 522 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget) 523 { 524 int ret = 0; 525 526 if (!gadget->ops->set_selfpowered) { 527 ret = -EOPNOTSUPP; 528 goto out; 529 } 530 531 ret = gadget->ops->set_selfpowered(gadget, 0); 532 533 out: 534 trace_usb_gadget_clear_selfpowered(gadget, ret); 535 536 return ret; 537 } 538 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered); 539 540 /** 541 * usb_gadget_vbus_connect - Notify controller that VBUS is powered 542 * @gadget:The device which now has VBUS power. 543 * Context: can sleep 544 * 545 * This call is used by a driver for an external transceiver (or GPIO) 546 * that detects a VBUS power session starting. Common responses include 547 * resuming the controller, activating the D+ (or D-) pullup to let the 548 * host detect that a USB device is attached, and starting to draw power 549 * (8mA or possibly more, especially after SET_CONFIGURATION). 550 * 551 * Returns zero on success, else negative errno. 552 */ 553 int usb_gadget_vbus_connect(struct usb_gadget *gadget) 554 { 555 int ret = 0; 556 557 if (!gadget->ops->vbus_session) { 558 ret = -EOPNOTSUPP; 559 goto out; 560 } 561 562 ret = gadget->ops->vbus_session(gadget, 1); 563 564 out: 565 trace_usb_gadget_vbus_connect(gadget, ret); 566 567 return ret; 568 } 569 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect); 570 571 /** 572 * usb_gadget_vbus_draw - constrain controller's VBUS power usage 573 * @gadget:The device whose VBUS usage is being described 574 * @mA:How much current to draw, in milliAmperes. This should be twice 575 * the value listed in the configuration descriptor bMaxPower field. 576 * 577 * This call is used by gadget drivers during SET_CONFIGURATION calls, 578 * reporting how much power the device may consume. For example, this 579 * could affect how quickly batteries are recharged. 580 * 581 * Returns zero on success, else negative errno. 582 */ 583 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA) 584 { 585 int ret = 0; 586 587 if (!gadget->ops->vbus_draw) { 588 ret = -EOPNOTSUPP; 589 goto out; 590 } 591 592 ret = gadget->ops->vbus_draw(gadget, mA); 593 if (!ret) 594 gadget->mA = mA; 595 596 out: 597 trace_usb_gadget_vbus_draw(gadget, ret); 598 599 return ret; 600 } 601 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw); 602 603 /** 604 * usb_gadget_vbus_disconnect - notify controller about VBUS session end 605 * @gadget:the device whose VBUS supply is being described 606 * Context: can sleep 607 * 608 * This call is used by a driver for an external transceiver (or GPIO) 609 * that detects a VBUS power session ending. Common responses include 610 * reversing everything done in usb_gadget_vbus_connect(). 611 * 612 * Returns zero on success, else negative errno. 613 */ 614 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget) 615 { 616 int ret = 0; 617 618 if (!gadget->ops->vbus_session) { 619 ret = -EOPNOTSUPP; 620 goto out; 621 } 622 623 ret = gadget->ops->vbus_session(gadget, 0); 624 625 out: 626 trace_usb_gadget_vbus_disconnect(gadget, ret); 627 628 return ret; 629 } 630 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect); 631 632 /** 633 * usb_gadget_connect - software-controlled connect to USB host 634 * @gadget:the peripheral being connected 635 * 636 * Enables the D+ (or potentially D-) pullup. The host will start 637 * enumerating this gadget when the pullup is active and a VBUS session 638 * is active (the link is powered). This pullup is always enabled unless 639 * usb_gadget_disconnect() has been used to disable it. 640 * 641 * Returns zero on success, else negative errno. 642 */ 643 int usb_gadget_connect(struct usb_gadget *gadget) 644 { 645 int ret = 0; 646 647 if (!gadget->ops->pullup) { 648 ret = -EOPNOTSUPP; 649 goto out; 650 } 651 652 if (gadget->deactivated) { 653 /* 654 * If gadget is deactivated we only save new state. 655 * Gadget will be connected automatically after activation. 656 */ 657 gadget->connected = true; 658 goto out; 659 } 660 661 ret = gadget->ops->pullup(gadget, 1); 662 if (!ret) 663 gadget->connected = 1; 664 665 out: 666 trace_usb_gadget_connect(gadget, ret); 667 668 return ret; 669 } 670 EXPORT_SYMBOL_GPL(usb_gadget_connect); 671 672 /** 673 * usb_gadget_disconnect - software-controlled disconnect from USB host 674 * @gadget:the peripheral being disconnected 675 * 676 * Disables the D+ (or potentially D-) pullup, which the host may see 677 * as a disconnect (when a VBUS session is active). Not all systems 678 * support software pullup controls. 679 * 680 * Returns zero on success, else negative errno. 681 */ 682 int usb_gadget_disconnect(struct usb_gadget *gadget) 683 { 684 int ret = 0; 685 686 if (!gadget->ops->pullup) { 687 ret = -EOPNOTSUPP; 688 goto out; 689 } 690 691 if (gadget->deactivated) { 692 /* 693 * If gadget is deactivated we only save new state. 694 * Gadget will stay disconnected after activation. 695 */ 696 gadget->connected = false; 697 goto out; 698 } 699 700 ret = gadget->ops->pullup(gadget, 0); 701 if (!ret) 702 gadget->connected = 0; 703 704 out: 705 trace_usb_gadget_disconnect(gadget, ret); 706 707 return ret; 708 } 709 EXPORT_SYMBOL_GPL(usb_gadget_disconnect); 710 711 /** 712 * usb_gadget_deactivate - deactivate function which is not ready to work 713 * @gadget: the peripheral being deactivated 714 * 715 * This routine may be used during the gadget driver bind() call to prevent 716 * the peripheral from ever being visible to the USB host, unless later 717 * usb_gadget_activate() is called. For example, user mode components may 718 * need to be activated before the system can talk to hosts. 719 * 720 * Returns zero on success, else negative errno. 721 */ 722 int usb_gadget_deactivate(struct usb_gadget *gadget) 723 { 724 int ret = 0; 725 726 if (gadget->deactivated) 727 goto out; 728 729 if (gadget->connected) { 730 ret = usb_gadget_disconnect(gadget); 731 if (ret) 732 goto out; 733 734 /* 735 * If gadget was being connected before deactivation, we want 736 * to reconnect it in usb_gadget_activate(). 737 */ 738 gadget->connected = true; 739 } 740 gadget->deactivated = true; 741 742 out: 743 trace_usb_gadget_deactivate(gadget, ret); 744 745 return ret; 746 } 747 EXPORT_SYMBOL_GPL(usb_gadget_deactivate); 748 749 /** 750 * usb_gadget_activate - activate function which is not ready to work 751 * @gadget: the peripheral being activated 752 * 753 * This routine activates gadget which was previously deactivated with 754 * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed. 755 * 756 * Returns zero on success, else negative errno. 757 */ 758 int usb_gadget_activate(struct usb_gadget *gadget) 759 { 760 int ret = 0; 761 762 if (!gadget->deactivated) 763 goto out; 764 765 gadget->deactivated = false; 766 767 /* 768 * If gadget has been connected before deactivation, or became connected 769 * while it was being deactivated, we call usb_gadget_connect(). 770 */ 771 if (gadget->connected) 772 ret = usb_gadget_connect(gadget); 773 774 out: 775 trace_usb_gadget_activate(gadget, ret); 776 777 return ret; 778 } 779 EXPORT_SYMBOL_GPL(usb_gadget_activate); 780 781 /* ------------------------------------------------------------------------- */ 782 783 #ifdef CONFIG_HAS_DMA 784 785 int usb_gadget_map_request_by_dev(struct device *dev, 786 struct usb_request *req, int is_in) 787 { 788 if (req->length == 0) 789 return 0; 790 791 if (req->num_sgs) { 792 int mapped; 793 794 mapped = dma_map_sg(dev, req->sg, req->num_sgs, 795 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 796 if (mapped == 0) { 797 dev_err(dev, "failed to map SGs\n"); 798 return -EFAULT; 799 } 800 801 req->num_mapped_sgs = mapped; 802 } else { 803 req->dma = dma_map_single(dev, req->buf, req->length, 804 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 805 806 if (dma_mapping_error(dev, req->dma)) { 807 dev_err(dev, "failed to map buffer\n"); 808 return -EFAULT; 809 } 810 } 811 812 return 0; 813 } 814 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev); 815 816 int usb_gadget_map_request(struct usb_gadget *gadget, 817 struct usb_request *req, int is_in) 818 { 819 return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in); 820 } 821 EXPORT_SYMBOL_GPL(usb_gadget_map_request); 822 823 void usb_gadget_unmap_request_by_dev(struct device *dev, 824 struct usb_request *req, int is_in) 825 { 826 if (req->length == 0) 827 return; 828 829 if (req->num_mapped_sgs) { 830 dma_unmap_sg(dev, req->sg, req->num_sgs, 831 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 832 833 req->num_mapped_sgs = 0; 834 } else { 835 dma_unmap_single(dev, req->dma, req->length, 836 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 837 } 838 } 839 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev); 840 841 void usb_gadget_unmap_request(struct usb_gadget *gadget, 842 struct usb_request *req, int is_in) 843 { 844 usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in); 845 } 846 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request); 847 848 #endif /* CONFIG_HAS_DMA */ 849 850 /* ------------------------------------------------------------------------- */ 851 852 /** 853 * usb_gadget_giveback_request - give the request back to the gadget layer 854 * Context: in_interrupt() 855 * 856 * This is called by device controller drivers in order to return the 857 * completed request back to the gadget layer. 858 */ 859 void usb_gadget_giveback_request(struct usb_ep *ep, 860 struct usb_request *req) 861 { 862 if (likely(req->status == 0)) 863 usb_led_activity(USB_LED_EVENT_GADGET); 864 865 trace_usb_gadget_giveback_request(ep, req, 0); 866 867 req->complete(ep, req); 868 } 869 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request); 870 871 /* ------------------------------------------------------------------------- */ 872 873 /** 874 * gadget_find_ep_by_name - returns ep whose name is the same as sting passed 875 * in second parameter or NULL if searched endpoint not found 876 * @g: controller to check for quirk 877 * @name: name of searched endpoint 878 */ 879 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name) 880 { 881 struct usb_ep *ep; 882 883 gadget_for_each_ep(ep, g) { 884 if (!strcmp(ep->name, name)) 885 return ep; 886 } 887 888 return NULL; 889 } 890 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name); 891 892 /* ------------------------------------------------------------------------- */ 893 894 int usb_gadget_ep_match_desc(struct usb_gadget *gadget, 895 struct usb_ep *ep, struct usb_endpoint_descriptor *desc, 896 struct usb_ss_ep_comp_descriptor *ep_comp) 897 { 898 u8 type; 899 u16 max; 900 int num_req_streams = 0; 901 902 /* endpoint already claimed? */ 903 if (ep->claimed) 904 return 0; 905 906 type = usb_endpoint_type(desc); 907 max = 0x7ff & usb_endpoint_maxp(desc); 908 909 if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in) 910 return 0; 911 if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out) 912 return 0; 913 914 if (max > ep->maxpacket_limit) 915 return 0; 916 917 /* "high bandwidth" works only at high speed */ 918 if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp(desc) & (3<<11)) 919 return 0; 920 921 switch (type) { 922 case USB_ENDPOINT_XFER_CONTROL: 923 /* only support ep0 for portable CONTROL traffic */ 924 return 0; 925 case USB_ENDPOINT_XFER_ISOC: 926 if (!ep->caps.type_iso) 927 return 0; 928 /* ISO: limit 1023 bytes full speed, 1024 high/super speed */ 929 if (!gadget_is_dualspeed(gadget) && max > 1023) 930 return 0; 931 break; 932 case USB_ENDPOINT_XFER_BULK: 933 if (!ep->caps.type_bulk) 934 return 0; 935 if (ep_comp && gadget_is_superspeed(gadget)) { 936 /* Get the number of required streams from the 937 * EP companion descriptor and see if the EP 938 * matches it 939 */ 940 num_req_streams = ep_comp->bmAttributes & 0x1f; 941 if (num_req_streams > ep->max_streams) 942 return 0; 943 } 944 break; 945 case USB_ENDPOINT_XFER_INT: 946 /* Bulk endpoints handle interrupt transfers, 947 * except the toggle-quirky iso-synch kind 948 */ 949 if (!ep->caps.type_int && !ep->caps.type_bulk) 950 return 0; 951 /* INT: limit 64 bytes full speed, 1024 high/super speed */ 952 if (!gadget_is_dualspeed(gadget) && max > 64) 953 return 0; 954 break; 955 } 956 957 return 1; 958 } 959 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc); 960 961 /* ------------------------------------------------------------------------- */ 962 963 static void usb_gadget_state_work(struct work_struct *work) 964 { 965 struct usb_gadget *gadget = work_to_gadget(work); 966 struct usb_udc *udc = gadget->udc; 967 968 if (udc) 969 sysfs_notify(&udc->dev.kobj, NULL, "state"); 970 } 971 972 void usb_gadget_set_state(struct usb_gadget *gadget, 973 enum usb_device_state state) 974 { 975 gadget->state = state; 976 schedule_work(&gadget->work); 977 } 978 EXPORT_SYMBOL_GPL(usb_gadget_set_state); 979 980 /* ------------------------------------------------------------------------- */ 981 982 static void usb_udc_connect_control(struct usb_udc *udc) 983 { 984 if (udc->vbus) 985 usb_gadget_connect(udc->gadget); 986 else 987 usb_gadget_disconnect(udc->gadget); 988 } 989 990 /** 991 * usb_udc_vbus_handler - updates the udc core vbus status, and try to 992 * connect or disconnect gadget 993 * @gadget: The gadget which vbus change occurs 994 * @status: The vbus status 995 * 996 * The udc driver calls it when it wants to connect or disconnect gadget 997 * according to vbus status. 998 */ 999 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status) 1000 { 1001 struct usb_udc *udc = gadget->udc; 1002 1003 if (udc) { 1004 udc->vbus = status; 1005 usb_udc_connect_control(udc); 1006 } 1007 } 1008 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler); 1009 1010 /** 1011 * usb_gadget_udc_reset - notifies the udc core that bus reset occurs 1012 * @gadget: The gadget which bus reset occurs 1013 * @driver: The gadget driver we want to notify 1014 * 1015 * If the udc driver has bus reset handler, it needs to call this when the bus 1016 * reset occurs, it notifies the gadget driver that the bus reset occurs as 1017 * well as updates gadget state. 1018 */ 1019 void usb_gadget_udc_reset(struct usb_gadget *gadget, 1020 struct usb_gadget_driver *driver) 1021 { 1022 driver->reset(gadget); 1023 usb_gadget_set_state(gadget, USB_STATE_DEFAULT); 1024 } 1025 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset); 1026 1027 /** 1028 * usb_gadget_udc_start - tells usb device controller to start up 1029 * @udc: The UDC to be started 1030 * 1031 * This call is issued by the UDC Class driver when it's about 1032 * to register a gadget driver to the device controller, before 1033 * calling gadget driver's bind() method. 1034 * 1035 * It allows the controller to be powered off until strictly 1036 * necessary to have it powered on. 1037 * 1038 * Returns zero on success, else negative errno. 1039 */ 1040 static inline int usb_gadget_udc_start(struct usb_udc *udc) 1041 { 1042 return udc->gadget->ops->udc_start(udc->gadget, udc->driver); 1043 } 1044 1045 /** 1046 * usb_gadget_udc_stop - tells usb device controller we don't need it anymore 1047 * @gadget: The device we want to stop activity 1048 * @driver: The driver to unbind from @gadget 1049 * 1050 * This call is issued by the UDC Class driver after calling 1051 * gadget driver's unbind() method. 1052 * 1053 * The details are implementation specific, but it can go as 1054 * far as powering off UDC completely and disable its data 1055 * line pullups. 1056 */ 1057 static inline void usb_gadget_udc_stop(struct usb_udc *udc) 1058 { 1059 udc->gadget->ops->udc_stop(udc->gadget); 1060 } 1061 1062 /** 1063 * usb_udc_release - release the usb_udc struct 1064 * @dev: the dev member within usb_udc 1065 * 1066 * This is called by driver's core in order to free memory once the last 1067 * reference is released. 1068 */ 1069 static void usb_udc_release(struct device *dev) 1070 { 1071 struct usb_udc *udc; 1072 1073 udc = container_of(dev, struct usb_udc, dev); 1074 dev_dbg(dev, "releasing '%s'\n", dev_name(dev)); 1075 kfree(udc); 1076 } 1077 1078 static const struct attribute_group *usb_udc_attr_groups[]; 1079 1080 static void usb_udc_nop_release(struct device *dev) 1081 { 1082 dev_vdbg(dev, "%s\n", __func__); 1083 } 1084 1085 /** 1086 * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list 1087 * @parent: the parent device to this udc. Usually the controller driver's 1088 * device. 1089 * @gadget: the gadget to be added to the list. 1090 * @release: a gadget release function. 1091 * 1092 * Returns zero on success, negative errno otherwise. 1093 */ 1094 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget, 1095 void (*release)(struct device *dev)) 1096 { 1097 struct usb_udc *udc; 1098 struct usb_gadget_driver *driver; 1099 int ret = -ENOMEM; 1100 1101 udc = kzalloc(sizeof(*udc), GFP_KERNEL); 1102 if (!udc) 1103 goto err1; 1104 1105 dev_set_name(&gadget->dev, "gadget"); 1106 INIT_WORK(&gadget->work, usb_gadget_state_work); 1107 gadget->dev.parent = parent; 1108 1109 if (release) 1110 gadget->dev.release = release; 1111 else 1112 gadget->dev.release = usb_udc_nop_release; 1113 1114 ret = device_register(&gadget->dev); 1115 if (ret) 1116 goto err2; 1117 1118 device_initialize(&udc->dev); 1119 udc->dev.release = usb_udc_release; 1120 udc->dev.class = udc_class; 1121 udc->dev.groups = usb_udc_attr_groups; 1122 udc->dev.parent = parent; 1123 ret = dev_set_name(&udc->dev, "%s", kobject_name(&parent->kobj)); 1124 if (ret) 1125 goto err3; 1126 1127 udc->gadget = gadget; 1128 gadget->udc = udc; 1129 1130 mutex_lock(&udc_lock); 1131 list_add_tail(&udc->list, &udc_list); 1132 1133 ret = device_add(&udc->dev); 1134 if (ret) 1135 goto err4; 1136 1137 usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED); 1138 udc->vbus = true; 1139 1140 /* pick up one of pending gadget drivers */ 1141 list_for_each_entry(driver, &gadget_driver_pending_list, pending) { 1142 if (!driver->udc_name || strcmp(driver->udc_name, 1143 dev_name(&udc->dev)) == 0) { 1144 ret = udc_bind_to_driver(udc, driver); 1145 if (ret != -EPROBE_DEFER) 1146 list_del(&driver->pending); 1147 if (ret) 1148 goto err5; 1149 break; 1150 } 1151 } 1152 1153 mutex_unlock(&udc_lock); 1154 1155 return 0; 1156 1157 err5: 1158 device_del(&udc->dev); 1159 1160 err4: 1161 list_del(&udc->list); 1162 mutex_unlock(&udc_lock); 1163 1164 err3: 1165 put_device(&udc->dev); 1166 device_del(&gadget->dev); 1167 1168 err2: 1169 put_device(&gadget->dev); 1170 kfree(udc); 1171 1172 err1: 1173 return ret; 1174 } 1175 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release); 1176 1177 /** 1178 * usb_get_gadget_udc_name - get the name of the first UDC controller 1179 * This functions returns the name of the first UDC controller in the system. 1180 * Please note that this interface is usefull only for legacy drivers which 1181 * assume that there is only one UDC controller in the system and they need to 1182 * get its name before initialization. There is no guarantee that the UDC 1183 * of the returned name will be still available, when gadget driver registers 1184 * itself. 1185 * 1186 * Returns pointer to string with UDC controller name on success, NULL 1187 * otherwise. Caller should kfree() returned string. 1188 */ 1189 char *usb_get_gadget_udc_name(void) 1190 { 1191 struct usb_udc *udc; 1192 char *name = NULL; 1193 1194 /* For now we take the first available UDC */ 1195 mutex_lock(&udc_lock); 1196 list_for_each_entry(udc, &udc_list, list) { 1197 if (!udc->driver) { 1198 name = kstrdup(udc->gadget->name, GFP_KERNEL); 1199 break; 1200 } 1201 } 1202 mutex_unlock(&udc_lock); 1203 return name; 1204 } 1205 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name); 1206 1207 /** 1208 * usb_add_gadget_udc - adds a new gadget to the udc class driver list 1209 * @parent: the parent device to this udc. Usually the controller 1210 * driver's device. 1211 * @gadget: the gadget to be added to the list 1212 * 1213 * Returns zero on success, negative errno otherwise. 1214 */ 1215 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget) 1216 { 1217 return usb_add_gadget_udc_release(parent, gadget, NULL); 1218 } 1219 EXPORT_SYMBOL_GPL(usb_add_gadget_udc); 1220 1221 static void usb_gadget_remove_driver(struct usb_udc *udc) 1222 { 1223 dev_dbg(&udc->dev, "unregistering UDC driver [%s]\n", 1224 udc->driver->function); 1225 1226 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE); 1227 1228 usb_gadget_disconnect(udc->gadget); 1229 udc->driver->disconnect(udc->gadget); 1230 udc->driver->unbind(udc->gadget); 1231 usb_gadget_udc_stop(udc); 1232 1233 udc->driver = NULL; 1234 udc->dev.driver = NULL; 1235 udc->gadget->dev.driver = NULL; 1236 } 1237 1238 /** 1239 * usb_del_gadget_udc - deletes @udc from udc_list 1240 * @gadget: the gadget to be removed. 1241 * 1242 * This, will call usb_gadget_unregister_driver() if 1243 * the @udc is still busy. 1244 */ 1245 void usb_del_gadget_udc(struct usb_gadget *gadget) 1246 { 1247 struct usb_udc *udc = gadget->udc; 1248 1249 if (!udc) 1250 return; 1251 1252 dev_vdbg(gadget->dev.parent, "unregistering gadget\n"); 1253 1254 mutex_lock(&udc_lock); 1255 list_del(&udc->list); 1256 1257 if (udc->driver) { 1258 struct usb_gadget_driver *driver = udc->driver; 1259 1260 usb_gadget_remove_driver(udc); 1261 list_add(&driver->pending, &gadget_driver_pending_list); 1262 } 1263 mutex_unlock(&udc_lock); 1264 1265 kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE); 1266 flush_work(&gadget->work); 1267 device_unregister(&udc->dev); 1268 device_unregister(&gadget->dev); 1269 } 1270 EXPORT_SYMBOL_GPL(usb_del_gadget_udc); 1271 1272 /* ------------------------------------------------------------------------- */ 1273 1274 static int udc_bind_to_driver(struct usb_udc *udc, struct usb_gadget_driver *driver) 1275 { 1276 int ret; 1277 1278 dev_dbg(&udc->dev, "registering UDC driver [%s]\n", 1279 driver->function); 1280 1281 udc->driver = driver; 1282 udc->dev.driver = &driver->driver; 1283 udc->gadget->dev.driver = &driver->driver; 1284 1285 ret = driver->bind(udc->gadget, driver); 1286 if (ret) 1287 goto err1; 1288 ret = usb_gadget_udc_start(udc); 1289 if (ret) { 1290 driver->unbind(udc->gadget); 1291 goto err1; 1292 } 1293 usb_udc_connect_control(udc); 1294 1295 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE); 1296 return 0; 1297 err1: 1298 if (ret != -EISNAM) 1299 dev_err(&udc->dev, "failed to start %s: %d\n", 1300 udc->driver->function, ret); 1301 udc->driver = NULL; 1302 udc->dev.driver = NULL; 1303 udc->gadget->dev.driver = NULL; 1304 return ret; 1305 } 1306 1307 int usb_gadget_probe_driver(struct usb_gadget_driver *driver) 1308 { 1309 struct usb_udc *udc = NULL; 1310 int ret = -ENODEV; 1311 1312 if (!driver || !driver->bind || !driver->setup) 1313 return -EINVAL; 1314 1315 mutex_lock(&udc_lock); 1316 if (driver->udc_name) { 1317 list_for_each_entry(udc, &udc_list, list) { 1318 ret = strcmp(driver->udc_name, dev_name(&udc->dev)); 1319 if (!ret) 1320 break; 1321 } 1322 if (!ret && !udc->driver) 1323 goto found; 1324 } else { 1325 list_for_each_entry(udc, &udc_list, list) { 1326 /* For now we take the first one */ 1327 if (!udc->driver) 1328 goto found; 1329 } 1330 } 1331 1332 if (!driver->match_existing_only) { 1333 list_add_tail(&driver->pending, &gadget_driver_pending_list); 1334 pr_info("udc-core: couldn't find an available UDC - added [%s] to list of pending drivers\n", 1335 driver->function); 1336 ret = 0; 1337 } 1338 1339 mutex_unlock(&udc_lock); 1340 return ret; 1341 found: 1342 ret = udc_bind_to_driver(udc, driver); 1343 mutex_unlock(&udc_lock); 1344 return ret; 1345 } 1346 EXPORT_SYMBOL_GPL(usb_gadget_probe_driver); 1347 1348 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver) 1349 { 1350 struct usb_udc *udc = NULL; 1351 int ret = -ENODEV; 1352 1353 if (!driver || !driver->unbind) 1354 return -EINVAL; 1355 1356 mutex_lock(&udc_lock); 1357 list_for_each_entry(udc, &udc_list, list) 1358 if (udc->driver == driver) { 1359 usb_gadget_remove_driver(udc); 1360 usb_gadget_set_state(udc->gadget, 1361 USB_STATE_NOTATTACHED); 1362 ret = 0; 1363 break; 1364 } 1365 1366 if (ret) { 1367 list_del(&driver->pending); 1368 ret = 0; 1369 } 1370 mutex_unlock(&udc_lock); 1371 return ret; 1372 } 1373 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver); 1374 1375 /* ------------------------------------------------------------------------- */ 1376 1377 static ssize_t usb_udc_srp_store(struct device *dev, 1378 struct device_attribute *attr, const char *buf, size_t n) 1379 { 1380 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1381 1382 if (sysfs_streq(buf, "1")) 1383 usb_gadget_wakeup(udc->gadget); 1384 1385 return n; 1386 } 1387 static DEVICE_ATTR(srp, S_IWUSR, NULL, usb_udc_srp_store); 1388 1389 static ssize_t usb_udc_softconn_store(struct device *dev, 1390 struct device_attribute *attr, const char *buf, size_t n) 1391 { 1392 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1393 1394 if (!udc->driver) { 1395 dev_err(dev, "soft-connect without a gadget driver\n"); 1396 return -EOPNOTSUPP; 1397 } 1398 1399 if (sysfs_streq(buf, "connect")) { 1400 usb_gadget_udc_start(udc); 1401 usb_gadget_connect(udc->gadget); 1402 } else if (sysfs_streq(buf, "disconnect")) { 1403 usb_gadget_disconnect(udc->gadget); 1404 udc->driver->disconnect(udc->gadget); 1405 usb_gadget_udc_stop(udc); 1406 } else { 1407 dev_err(dev, "unsupported command '%s'\n", buf); 1408 return -EINVAL; 1409 } 1410 1411 return n; 1412 } 1413 static DEVICE_ATTR(soft_connect, S_IWUSR, NULL, usb_udc_softconn_store); 1414 1415 static ssize_t state_show(struct device *dev, struct device_attribute *attr, 1416 char *buf) 1417 { 1418 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1419 struct usb_gadget *gadget = udc->gadget; 1420 1421 return sprintf(buf, "%s\n", usb_state_string(gadget->state)); 1422 } 1423 static DEVICE_ATTR_RO(state); 1424 1425 #define USB_UDC_SPEED_ATTR(name, param) \ 1426 ssize_t name##_show(struct device *dev, \ 1427 struct device_attribute *attr, char *buf) \ 1428 { \ 1429 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \ 1430 return snprintf(buf, PAGE_SIZE, "%s\n", \ 1431 usb_speed_string(udc->gadget->param)); \ 1432 } \ 1433 static DEVICE_ATTR_RO(name) 1434 1435 static USB_UDC_SPEED_ATTR(current_speed, speed); 1436 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed); 1437 1438 #define USB_UDC_ATTR(name) \ 1439 ssize_t name##_show(struct device *dev, \ 1440 struct device_attribute *attr, char *buf) \ 1441 { \ 1442 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \ 1443 struct usb_gadget *gadget = udc->gadget; \ 1444 \ 1445 return snprintf(buf, PAGE_SIZE, "%d\n", gadget->name); \ 1446 } \ 1447 static DEVICE_ATTR_RO(name) 1448 1449 static USB_UDC_ATTR(is_otg); 1450 static USB_UDC_ATTR(is_a_peripheral); 1451 static USB_UDC_ATTR(b_hnp_enable); 1452 static USB_UDC_ATTR(a_hnp_support); 1453 static USB_UDC_ATTR(a_alt_hnp_support); 1454 static USB_UDC_ATTR(is_selfpowered); 1455 1456 static struct attribute *usb_udc_attrs[] = { 1457 &dev_attr_srp.attr, 1458 &dev_attr_soft_connect.attr, 1459 &dev_attr_state.attr, 1460 &dev_attr_current_speed.attr, 1461 &dev_attr_maximum_speed.attr, 1462 1463 &dev_attr_is_otg.attr, 1464 &dev_attr_is_a_peripheral.attr, 1465 &dev_attr_b_hnp_enable.attr, 1466 &dev_attr_a_hnp_support.attr, 1467 &dev_attr_a_alt_hnp_support.attr, 1468 &dev_attr_is_selfpowered.attr, 1469 NULL, 1470 }; 1471 1472 static const struct attribute_group usb_udc_attr_group = { 1473 .attrs = usb_udc_attrs, 1474 }; 1475 1476 static const struct attribute_group *usb_udc_attr_groups[] = { 1477 &usb_udc_attr_group, 1478 NULL, 1479 }; 1480 1481 static int usb_udc_uevent(struct device *dev, struct kobj_uevent_env *env) 1482 { 1483 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1484 int ret; 1485 1486 ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name); 1487 if (ret) { 1488 dev_err(dev, "failed to add uevent USB_UDC_NAME\n"); 1489 return ret; 1490 } 1491 1492 if (udc->driver) { 1493 ret = add_uevent_var(env, "USB_UDC_DRIVER=%s", 1494 udc->driver->function); 1495 if (ret) { 1496 dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n"); 1497 return ret; 1498 } 1499 } 1500 1501 return 0; 1502 } 1503 1504 static int __init usb_udc_init(void) 1505 { 1506 udc_class = class_create(THIS_MODULE, "udc"); 1507 if (IS_ERR(udc_class)) { 1508 pr_err("failed to create udc class --> %ld\n", 1509 PTR_ERR(udc_class)); 1510 return PTR_ERR(udc_class); 1511 } 1512 1513 udc_class->dev_uevent = usb_udc_uevent; 1514 return 0; 1515 } 1516 subsys_initcall(usb_udc_init); 1517 1518 static void __exit usb_udc_exit(void) 1519 { 1520 class_destroy(udc_class); 1521 } 1522 module_exit(usb_udc_exit); 1523 1524 MODULE_DESCRIPTION("UDC Framework"); 1525 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>"); 1526 MODULE_LICENSE("GPL v2"); 1527