xref: /openbmc/linux/drivers/usb/gadget/udc/core.c (revision bc5aa3a0)
1 /**
2  * udc.c - Core UDC Framework
3  *
4  * Copyright (C) 2010 Texas Instruments
5  * Author: Felipe Balbi <balbi@ti.com>
6  *
7  * This program is free software: you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2  of
9  * the License as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/list.h>
24 #include <linux/err.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/workqueue.h>
27 
28 #include <linux/usb/ch9.h>
29 #include <linux/usb/gadget.h>
30 #include <linux/usb.h>
31 
32 #include "trace.h"
33 
34 /**
35  * struct usb_udc - describes one usb device controller
36  * @driver - the gadget driver pointer. For use by the class code
37  * @dev - the child device to the actual controller
38  * @gadget - the gadget. For use by the class code
39  * @list - for use by the udc class driver
40  * @vbus - for udcs who care about vbus status, this value is real vbus status;
41  * for udcs who do not care about vbus status, this value is always true
42  *
43  * This represents the internal data structure which is used by the UDC-class
44  * to hold information about udc driver and gadget together.
45  */
46 struct usb_udc {
47 	struct usb_gadget_driver	*driver;
48 	struct usb_gadget		*gadget;
49 	struct device			dev;
50 	struct list_head		list;
51 	bool				vbus;
52 };
53 
54 static struct class *udc_class;
55 static LIST_HEAD(udc_list);
56 static LIST_HEAD(gadget_driver_pending_list);
57 static DEFINE_MUTEX(udc_lock);
58 
59 static int udc_bind_to_driver(struct usb_udc *udc,
60 		struct usb_gadget_driver *driver);
61 
62 /* ------------------------------------------------------------------------- */
63 
64 /**
65  * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
66  * @ep:the endpoint being configured
67  * @maxpacket_limit:value of maximum packet size limit
68  *
69  * This function should be used only in UDC drivers to initialize endpoint
70  * (usually in probe function).
71  */
72 void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
73 					      unsigned maxpacket_limit)
74 {
75 	ep->maxpacket_limit = maxpacket_limit;
76 	ep->maxpacket = maxpacket_limit;
77 
78 	trace_usb_ep_set_maxpacket_limit(ep, 0);
79 }
80 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit);
81 
82 /**
83  * usb_ep_enable - configure endpoint, making it usable
84  * @ep:the endpoint being configured.  may not be the endpoint named "ep0".
85  *	drivers discover endpoints through the ep_list of a usb_gadget.
86  *
87  * When configurations are set, or when interface settings change, the driver
88  * will enable or disable the relevant endpoints.  while it is enabled, an
89  * endpoint may be used for i/o until the driver receives a disconnect() from
90  * the host or until the endpoint is disabled.
91  *
92  * the ep0 implementation (which calls this routine) must ensure that the
93  * hardware capabilities of each endpoint match the descriptor provided
94  * for it.  for example, an endpoint named "ep2in-bulk" would be usable
95  * for interrupt transfers as well as bulk, but it likely couldn't be used
96  * for iso transfers or for endpoint 14.  some endpoints are fully
97  * configurable, with more generic names like "ep-a".  (remember that for
98  * USB, "in" means "towards the USB master".)
99  *
100  * returns zero, or a negative error code.
101  */
102 int usb_ep_enable(struct usb_ep *ep)
103 {
104 	int ret = 0;
105 
106 	if (ep->enabled)
107 		goto out;
108 
109 	ret = ep->ops->enable(ep, ep->desc);
110 	if (ret) {
111 		ret = ret;
112 		goto out;
113 	}
114 
115 	ep->enabled = true;
116 
117 out:
118 	trace_usb_ep_enable(ep, ret);
119 
120 	return ret;
121 }
122 EXPORT_SYMBOL_GPL(usb_ep_enable);
123 
124 /**
125  * usb_ep_disable - endpoint is no longer usable
126  * @ep:the endpoint being unconfigured.  may not be the endpoint named "ep0".
127  *
128  * no other task may be using this endpoint when this is called.
129  * any pending and uncompleted requests will complete with status
130  * indicating disconnect (-ESHUTDOWN) before this call returns.
131  * gadget drivers must call usb_ep_enable() again before queueing
132  * requests to the endpoint.
133  *
134  * returns zero, or a negative error code.
135  */
136 int usb_ep_disable(struct usb_ep *ep)
137 {
138 	int ret = 0;
139 
140 	if (!ep->enabled)
141 		goto out;
142 
143 	ret = ep->ops->disable(ep);
144 	if (ret) {
145 		ret = ret;
146 		goto out;
147 	}
148 
149 	ep->enabled = false;
150 
151 out:
152 	trace_usb_ep_disable(ep, ret);
153 
154 	return ret;
155 }
156 EXPORT_SYMBOL_GPL(usb_ep_disable);
157 
158 /**
159  * usb_ep_alloc_request - allocate a request object to use with this endpoint
160  * @ep:the endpoint to be used with with the request
161  * @gfp_flags:GFP_* flags to use
162  *
163  * Request objects must be allocated with this call, since they normally
164  * need controller-specific setup and may even need endpoint-specific
165  * resources such as allocation of DMA descriptors.
166  * Requests may be submitted with usb_ep_queue(), and receive a single
167  * completion callback.  Free requests with usb_ep_free_request(), when
168  * they are no longer needed.
169  *
170  * Returns the request, or null if one could not be allocated.
171  */
172 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
173 						       gfp_t gfp_flags)
174 {
175 	struct usb_request *req = NULL;
176 
177 	req = ep->ops->alloc_request(ep, gfp_flags);
178 
179 	trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM);
180 
181 	return req;
182 }
183 EXPORT_SYMBOL_GPL(usb_ep_alloc_request);
184 
185 /**
186  * usb_ep_free_request - frees a request object
187  * @ep:the endpoint associated with the request
188  * @req:the request being freed
189  *
190  * Reverses the effect of usb_ep_alloc_request().
191  * Caller guarantees the request is not queued, and that it will
192  * no longer be requeued (or otherwise used).
193  */
194 void usb_ep_free_request(struct usb_ep *ep,
195 				       struct usb_request *req)
196 {
197 	ep->ops->free_request(ep, req);
198 	trace_usb_ep_free_request(ep, req, 0);
199 }
200 EXPORT_SYMBOL_GPL(usb_ep_free_request);
201 
202 /**
203  * usb_ep_queue - queues (submits) an I/O request to an endpoint.
204  * @ep:the endpoint associated with the request
205  * @req:the request being submitted
206  * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
207  *	pre-allocate all necessary memory with the request.
208  *
209  * This tells the device controller to perform the specified request through
210  * that endpoint (reading or writing a buffer).  When the request completes,
211  * including being canceled by usb_ep_dequeue(), the request's completion
212  * routine is called to return the request to the driver.  Any endpoint
213  * (except control endpoints like ep0) may have more than one transfer
214  * request queued; they complete in FIFO order.  Once a gadget driver
215  * submits a request, that request may not be examined or modified until it
216  * is given back to that driver through the completion callback.
217  *
218  * Each request is turned into one or more packets.  The controller driver
219  * never merges adjacent requests into the same packet.  OUT transfers
220  * will sometimes use data that's already buffered in the hardware.
221  * Drivers can rely on the fact that the first byte of the request's buffer
222  * always corresponds to the first byte of some USB packet, for both
223  * IN and OUT transfers.
224  *
225  * Bulk endpoints can queue any amount of data; the transfer is packetized
226  * automatically.  The last packet will be short if the request doesn't fill it
227  * out completely.  Zero length packets (ZLPs) should be avoided in portable
228  * protocols since not all usb hardware can successfully handle zero length
229  * packets.  (ZLPs may be explicitly written, and may be implicitly written if
230  * the request 'zero' flag is set.)  Bulk endpoints may also be used
231  * for interrupt transfers; but the reverse is not true, and some endpoints
232  * won't support every interrupt transfer.  (Such as 768 byte packets.)
233  *
234  * Interrupt-only endpoints are less functional than bulk endpoints, for
235  * example by not supporting queueing or not handling buffers that are
236  * larger than the endpoint's maxpacket size.  They may also treat data
237  * toggle differently.
238  *
239  * Control endpoints ... after getting a setup() callback, the driver queues
240  * one response (even if it would be zero length).  That enables the
241  * status ack, after transferring data as specified in the response.  Setup
242  * functions may return negative error codes to generate protocol stalls.
243  * (Note that some USB device controllers disallow protocol stall responses
244  * in some cases.)  When control responses are deferred (the response is
245  * written after the setup callback returns), then usb_ep_set_halt() may be
246  * used on ep0 to trigger protocol stalls.  Depending on the controller,
247  * it may not be possible to trigger a status-stage protocol stall when the
248  * data stage is over, that is, from within the response's completion
249  * routine.
250  *
251  * For periodic endpoints, like interrupt or isochronous ones, the usb host
252  * arranges to poll once per interval, and the gadget driver usually will
253  * have queued some data to transfer at that time.
254  *
255  * Returns zero, or a negative error code.  Endpoints that are not enabled
256  * report errors; errors will also be
257  * reported when the usb peripheral is disconnected.
258  */
259 int usb_ep_queue(struct usb_ep *ep,
260 			       struct usb_request *req, gfp_t gfp_flags)
261 {
262 	int ret = 0;
263 
264 	if (WARN_ON_ONCE(!ep->enabled && ep->address)) {
265 		ret = -ESHUTDOWN;
266 		goto out;
267 	}
268 
269 	ret = ep->ops->queue(ep, req, gfp_flags);
270 
271 out:
272 	trace_usb_ep_queue(ep, req, ret);
273 
274 	return ret;
275 }
276 EXPORT_SYMBOL_GPL(usb_ep_queue);
277 
278 /**
279  * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
280  * @ep:the endpoint associated with the request
281  * @req:the request being canceled
282  *
283  * If the request is still active on the endpoint, it is dequeued and its
284  * completion routine is called (with status -ECONNRESET); else a negative
285  * error code is returned. This is guaranteed to happen before the call to
286  * usb_ep_dequeue() returns.
287  *
288  * Note that some hardware can't clear out write fifos (to unlink the request
289  * at the head of the queue) except as part of disconnecting from usb. Such
290  * restrictions prevent drivers from supporting configuration changes,
291  * even to configuration zero (a "chapter 9" requirement).
292  */
293 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
294 {
295 	int ret;
296 
297 	ret = ep->ops->dequeue(ep, req);
298 	trace_usb_ep_dequeue(ep, req, ret);
299 
300 	return ret;
301 }
302 EXPORT_SYMBOL_GPL(usb_ep_dequeue);
303 
304 /**
305  * usb_ep_set_halt - sets the endpoint halt feature.
306  * @ep: the non-isochronous endpoint being stalled
307  *
308  * Use this to stall an endpoint, perhaps as an error report.
309  * Except for control endpoints,
310  * the endpoint stays halted (will not stream any data) until the host
311  * clears this feature; drivers may need to empty the endpoint's request
312  * queue first, to make sure no inappropriate transfers happen.
313  *
314  * Note that while an endpoint CLEAR_FEATURE will be invisible to the
315  * gadget driver, a SET_INTERFACE will not be.  To reset endpoints for the
316  * current altsetting, see usb_ep_clear_halt().  When switching altsettings,
317  * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
318  *
319  * Returns zero, or a negative error code.  On success, this call sets
320  * underlying hardware state that blocks data transfers.
321  * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
322  * transfer requests are still queued, or if the controller hardware
323  * (usually a FIFO) still holds bytes that the host hasn't collected.
324  */
325 int usb_ep_set_halt(struct usb_ep *ep)
326 {
327 	int ret;
328 
329 	ret = ep->ops->set_halt(ep, 1);
330 	trace_usb_ep_set_halt(ep, ret);
331 
332 	return ret;
333 }
334 EXPORT_SYMBOL_GPL(usb_ep_set_halt);
335 
336 /**
337  * usb_ep_clear_halt - clears endpoint halt, and resets toggle
338  * @ep:the bulk or interrupt endpoint being reset
339  *
340  * Use this when responding to the standard usb "set interface" request,
341  * for endpoints that aren't reconfigured, after clearing any other state
342  * in the endpoint's i/o queue.
343  *
344  * Returns zero, or a negative error code.  On success, this call clears
345  * the underlying hardware state reflecting endpoint halt and data toggle.
346  * Note that some hardware can't support this request (like pxa2xx_udc),
347  * and accordingly can't correctly implement interface altsettings.
348  */
349 int usb_ep_clear_halt(struct usb_ep *ep)
350 {
351 	int ret;
352 
353 	ret = ep->ops->set_halt(ep, 0);
354 	trace_usb_ep_clear_halt(ep, ret);
355 
356 	return ret;
357 }
358 EXPORT_SYMBOL_GPL(usb_ep_clear_halt);
359 
360 /**
361  * usb_ep_set_wedge - sets the halt feature and ignores clear requests
362  * @ep: the endpoint being wedged
363  *
364  * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
365  * requests. If the gadget driver clears the halt status, it will
366  * automatically unwedge the endpoint.
367  *
368  * Returns zero on success, else negative errno.
369  */
370 int usb_ep_set_wedge(struct usb_ep *ep)
371 {
372 	int ret;
373 
374 	if (ep->ops->set_wedge)
375 		ret = ep->ops->set_wedge(ep);
376 	else
377 		ret = ep->ops->set_halt(ep, 1);
378 
379 	trace_usb_ep_set_wedge(ep, ret);
380 
381 	return ret;
382 }
383 EXPORT_SYMBOL_GPL(usb_ep_set_wedge);
384 
385 /**
386  * usb_ep_fifo_status - returns number of bytes in fifo, or error
387  * @ep: the endpoint whose fifo status is being checked.
388  *
389  * FIFO endpoints may have "unclaimed data" in them in certain cases,
390  * such as after aborted transfers.  Hosts may not have collected all
391  * the IN data written by the gadget driver (and reported by a request
392  * completion).  The gadget driver may not have collected all the data
393  * written OUT to it by the host.  Drivers that need precise handling for
394  * fault reporting or recovery may need to use this call.
395  *
396  * This returns the number of such bytes in the fifo, or a negative
397  * errno if the endpoint doesn't use a FIFO or doesn't support such
398  * precise handling.
399  */
400 int usb_ep_fifo_status(struct usb_ep *ep)
401 {
402 	int ret;
403 
404 	if (ep->ops->fifo_status)
405 		ret = ep->ops->fifo_status(ep);
406 	else
407 		ret = -EOPNOTSUPP;
408 
409 	trace_usb_ep_fifo_status(ep, ret);
410 
411 	return ret;
412 }
413 EXPORT_SYMBOL_GPL(usb_ep_fifo_status);
414 
415 /**
416  * usb_ep_fifo_flush - flushes contents of a fifo
417  * @ep: the endpoint whose fifo is being flushed.
418  *
419  * This call may be used to flush the "unclaimed data" that may exist in
420  * an endpoint fifo after abnormal transaction terminations.  The call
421  * must never be used except when endpoint is not being used for any
422  * protocol translation.
423  */
424 void usb_ep_fifo_flush(struct usb_ep *ep)
425 {
426 	if (ep->ops->fifo_flush)
427 		ep->ops->fifo_flush(ep);
428 
429 	trace_usb_ep_fifo_flush(ep, 0);
430 }
431 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush);
432 
433 /* ------------------------------------------------------------------------- */
434 
435 /**
436  * usb_gadget_frame_number - returns the current frame number
437  * @gadget: controller that reports the frame number
438  *
439  * Returns the usb frame number, normally eleven bits from a SOF packet,
440  * or negative errno if this device doesn't support this capability.
441  */
442 int usb_gadget_frame_number(struct usb_gadget *gadget)
443 {
444 	int ret;
445 
446 	ret = gadget->ops->get_frame(gadget);
447 
448 	trace_usb_gadget_frame_number(gadget, ret);
449 
450 	return ret;
451 }
452 EXPORT_SYMBOL_GPL(usb_gadget_frame_number);
453 
454 /**
455  * usb_gadget_wakeup - tries to wake up the host connected to this gadget
456  * @gadget: controller used to wake up the host
457  *
458  * Returns zero on success, else negative error code if the hardware
459  * doesn't support such attempts, or its support has not been enabled
460  * by the usb host.  Drivers must return device descriptors that report
461  * their ability to support this, or hosts won't enable it.
462  *
463  * This may also try to use SRP to wake the host and start enumeration,
464  * even if OTG isn't otherwise in use.  OTG devices may also start
465  * remote wakeup even when hosts don't explicitly enable it.
466  */
467 int usb_gadget_wakeup(struct usb_gadget *gadget)
468 {
469 	int ret = 0;
470 
471 	if (!gadget->ops->wakeup) {
472 		ret = -EOPNOTSUPP;
473 		goto out;
474 	}
475 
476 	ret = gadget->ops->wakeup(gadget);
477 
478 out:
479 	trace_usb_gadget_wakeup(gadget, ret);
480 
481 	return ret;
482 }
483 EXPORT_SYMBOL_GPL(usb_gadget_wakeup);
484 
485 /**
486  * usb_gadget_set_selfpowered - sets the device selfpowered feature.
487  * @gadget:the device being declared as self-powered
488  *
489  * this affects the device status reported by the hardware driver
490  * to reflect that it now has a local power supply.
491  *
492  * returns zero on success, else negative errno.
493  */
494 int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
495 {
496 	int ret = 0;
497 
498 	if (!gadget->ops->set_selfpowered) {
499 		ret = -EOPNOTSUPP;
500 		goto out;
501 	}
502 
503 	ret = gadget->ops->set_selfpowered(gadget, 1);
504 
505 out:
506 	trace_usb_gadget_set_selfpowered(gadget, ret);
507 
508 	return ret;
509 }
510 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered);
511 
512 /**
513  * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
514  * @gadget:the device being declared as bus-powered
515  *
516  * this affects the device status reported by the hardware driver.
517  * some hardware may not support bus-powered operation, in which
518  * case this feature's value can never change.
519  *
520  * returns zero on success, else negative errno.
521  */
522 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
523 {
524 	int ret = 0;
525 
526 	if (!gadget->ops->set_selfpowered) {
527 		ret = -EOPNOTSUPP;
528 		goto out;
529 	}
530 
531 	ret = gadget->ops->set_selfpowered(gadget, 0);
532 
533 out:
534 	trace_usb_gadget_clear_selfpowered(gadget, ret);
535 
536 	return ret;
537 }
538 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered);
539 
540 /**
541  * usb_gadget_vbus_connect - Notify controller that VBUS is powered
542  * @gadget:The device which now has VBUS power.
543  * Context: can sleep
544  *
545  * This call is used by a driver for an external transceiver (or GPIO)
546  * that detects a VBUS power session starting.  Common responses include
547  * resuming the controller, activating the D+ (or D-) pullup to let the
548  * host detect that a USB device is attached, and starting to draw power
549  * (8mA or possibly more, especially after SET_CONFIGURATION).
550  *
551  * Returns zero on success, else negative errno.
552  */
553 int usb_gadget_vbus_connect(struct usb_gadget *gadget)
554 {
555 	int ret = 0;
556 
557 	if (!gadget->ops->vbus_session) {
558 		ret = -EOPNOTSUPP;
559 		goto out;
560 	}
561 
562 	ret = gadget->ops->vbus_session(gadget, 1);
563 
564 out:
565 	trace_usb_gadget_vbus_connect(gadget, ret);
566 
567 	return ret;
568 }
569 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect);
570 
571 /**
572  * usb_gadget_vbus_draw - constrain controller's VBUS power usage
573  * @gadget:The device whose VBUS usage is being described
574  * @mA:How much current to draw, in milliAmperes.  This should be twice
575  *	the value listed in the configuration descriptor bMaxPower field.
576  *
577  * This call is used by gadget drivers during SET_CONFIGURATION calls,
578  * reporting how much power the device may consume.  For example, this
579  * could affect how quickly batteries are recharged.
580  *
581  * Returns zero on success, else negative errno.
582  */
583 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
584 {
585 	int ret = 0;
586 
587 	if (!gadget->ops->vbus_draw) {
588 		ret = -EOPNOTSUPP;
589 		goto out;
590 	}
591 
592 	ret = gadget->ops->vbus_draw(gadget, mA);
593 	if (!ret)
594 		gadget->mA = mA;
595 
596 out:
597 	trace_usb_gadget_vbus_draw(gadget, ret);
598 
599 	return ret;
600 }
601 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw);
602 
603 /**
604  * usb_gadget_vbus_disconnect - notify controller about VBUS session end
605  * @gadget:the device whose VBUS supply is being described
606  * Context: can sleep
607  *
608  * This call is used by a driver for an external transceiver (or GPIO)
609  * that detects a VBUS power session ending.  Common responses include
610  * reversing everything done in usb_gadget_vbus_connect().
611  *
612  * Returns zero on success, else negative errno.
613  */
614 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
615 {
616 	int ret = 0;
617 
618 	if (!gadget->ops->vbus_session) {
619 		ret = -EOPNOTSUPP;
620 		goto out;
621 	}
622 
623 	ret = gadget->ops->vbus_session(gadget, 0);
624 
625 out:
626 	trace_usb_gadget_vbus_disconnect(gadget, ret);
627 
628 	return ret;
629 }
630 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect);
631 
632 /**
633  * usb_gadget_connect - software-controlled connect to USB host
634  * @gadget:the peripheral being connected
635  *
636  * Enables the D+ (or potentially D-) pullup.  The host will start
637  * enumerating this gadget when the pullup is active and a VBUS session
638  * is active (the link is powered).  This pullup is always enabled unless
639  * usb_gadget_disconnect() has been used to disable it.
640  *
641  * Returns zero on success, else negative errno.
642  */
643 int usb_gadget_connect(struct usb_gadget *gadget)
644 {
645 	int ret = 0;
646 
647 	if (!gadget->ops->pullup) {
648 		ret = -EOPNOTSUPP;
649 		goto out;
650 	}
651 
652 	if (gadget->deactivated) {
653 		/*
654 		 * If gadget is deactivated we only save new state.
655 		 * Gadget will be connected automatically after activation.
656 		 */
657 		gadget->connected = true;
658 		goto out;
659 	}
660 
661 	ret = gadget->ops->pullup(gadget, 1);
662 	if (!ret)
663 		gadget->connected = 1;
664 
665 out:
666 	trace_usb_gadget_connect(gadget, ret);
667 
668 	return ret;
669 }
670 EXPORT_SYMBOL_GPL(usb_gadget_connect);
671 
672 /**
673  * usb_gadget_disconnect - software-controlled disconnect from USB host
674  * @gadget:the peripheral being disconnected
675  *
676  * Disables the D+ (or potentially D-) pullup, which the host may see
677  * as a disconnect (when a VBUS session is active).  Not all systems
678  * support software pullup controls.
679  *
680  * Returns zero on success, else negative errno.
681  */
682 int usb_gadget_disconnect(struct usb_gadget *gadget)
683 {
684 	int ret = 0;
685 
686 	if (!gadget->ops->pullup) {
687 		ret = -EOPNOTSUPP;
688 		goto out;
689 	}
690 
691 	if (gadget->deactivated) {
692 		/*
693 		 * If gadget is deactivated we only save new state.
694 		 * Gadget will stay disconnected after activation.
695 		 */
696 		gadget->connected = false;
697 		goto out;
698 	}
699 
700 	ret = gadget->ops->pullup(gadget, 0);
701 	if (!ret)
702 		gadget->connected = 0;
703 
704 out:
705 	trace_usb_gadget_disconnect(gadget, ret);
706 
707 	return ret;
708 }
709 EXPORT_SYMBOL_GPL(usb_gadget_disconnect);
710 
711 /**
712  * usb_gadget_deactivate - deactivate function which is not ready to work
713  * @gadget: the peripheral being deactivated
714  *
715  * This routine may be used during the gadget driver bind() call to prevent
716  * the peripheral from ever being visible to the USB host, unless later
717  * usb_gadget_activate() is called.  For example, user mode components may
718  * need to be activated before the system can talk to hosts.
719  *
720  * Returns zero on success, else negative errno.
721  */
722 int usb_gadget_deactivate(struct usb_gadget *gadget)
723 {
724 	int ret = 0;
725 
726 	if (gadget->deactivated)
727 		goto out;
728 
729 	if (gadget->connected) {
730 		ret = usb_gadget_disconnect(gadget);
731 		if (ret)
732 			goto out;
733 
734 		/*
735 		 * If gadget was being connected before deactivation, we want
736 		 * to reconnect it in usb_gadget_activate().
737 		 */
738 		gadget->connected = true;
739 	}
740 	gadget->deactivated = true;
741 
742 out:
743 	trace_usb_gadget_deactivate(gadget, ret);
744 
745 	return ret;
746 }
747 EXPORT_SYMBOL_GPL(usb_gadget_deactivate);
748 
749 /**
750  * usb_gadget_activate - activate function which is not ready to work
751  * @gadget: the peripheral being activated
752  *
753  * This routine activates gadget which was previously deactivated with
754  * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
755  *
756  * Returns zero on success, else negative errno.
757  */
758 int usb_gadget_activate(struct usb_gadget *gadget)
759 {
760 	int ret = 0;
761 
762 	if (!gadget->deactivated)
763 		goto out;
764 
765 	gadget->deactivated = false;
766 
767 	/*
768 	 * If gadget has been connected before deactivation, or became connected
769 	 * while it was being deactivated, we call usb_gadget_connect().
770 	 */
771 	if (gadget->connected)
772 		ret = usb_gadget_connect(gadget);
773 
774 out:
775 	trace_usb_gadget_activate(gadget, ret);
776 
777 	return ret;
778 }
779 EXPORT_SYMBOL_GPL(usb_gadget_activate);
780 
781 /* ------------------------------------------------------------------------- */
782 
783 #ifdef	CONFIG_HAS_DMA
784 
785 int usb_gadget_map_request_by_dev(struct device *dev,
786 		struct usb_request *req, int is_in)
787 {
788 	if (req->length == 0)
789 		return 0;
790 
791 	if (req->num_sgs) {
792 		int     mapped;
793 
794 		mapped = dma_map_sg(dev, req->sg, req->num_sgs,
795 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
796 		if (mapped == 0) {
797 			dev_err(dev, "failed to map SGs\n");
798 			return -EFAULT;
799 		}
800 
801 		req->num_mapped_sgs = mapped;
802 	} else {
803 		req->dma = dma_map_single(dev, req->buf, req->length,
804 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
805 
806 		if (dma_mapping_error(dev, req->dma)) {
807 			dev_err(dev, "failed to map buffer\n");
808 			return -EFAULT;
809 		}
810 	}
811 
812 	return 0;
813 }
814 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev);
815 
816 int usb_gadget_map_request(struct usb_gadget *gadget,
817 		struct usb_request *req, int is_in)
818 {
819 	return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in);
820 }
821 EXPORT_SYMBOL_GPL(usb_gadget_map_request);
822 
823 void usb_gadget_unmap_request_by_dev(struct device *dev,
824 		struct usb_request *req, int is_in)
825 {
826 	if (req->length == 0)
827 		return;
828 
829 	if (req->num_mapped_sgs) {
830 		dma_unmap_sg(dev, req->sg, req->num_sgs,
831 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
832 
833 		req->num_mapped_sgs = 0;
834 	} else {
835 		dma_unmap_single(dev, req->dma, req->length,
836 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
837 	}
838 }
839 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev);
840 
841 void usb_gadget_unmap_request(struct usb_gadget *gadget,
842 		struct usb_request *req, int is_in)
843 {
844 	usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in);
845 }
846 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request);
847 
848 #endif	/* CONFIG_HAS_DMA */
849 
850 /* ------------------------------------------------------------------------- */
851 
852 /**
853  * usb_gadget_giveback_request - give the request back to the gadget layer
854  * Context: in_interrupt()
855  *
856  * This is called by device controller drivers in order to return the
857  * completed request back to the gadget layer.
858  */
859 void usb_gadget_giveback_request(struct usb_ep *ep,
860 		struct usb_request *req)
861 {
862 	if (likely(req->status == 0))
863 		usb_led_activity(USB_LED_EVENT_GADGET);
864 
865 	trace_usb_gadget_giveback_request(ep, req, 0);
866 
867 	req->complete(ep, req);
868 }
869 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request);
870 
871 /* ------------------------------------------------------------------------- */
872 
873 /**
874  * gadget_find_ep_by_name - returns ep whose name is the same as sting passed
875  *	in second parameter or NULL if searched endpoint not found
876  * @g: controller to check for quirk
877  * @name: name of searched endpoint
878  */
879 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name)
880 {
881 	struct usb_ep *ep;
882 
883 	gadget_for_each_ep(ep, g) {
884 		if (!strcmp(ep->name, name))
885 			return ep;
886 	}
887 
888 	return NULL;
889 }
890 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name);
891 
892 /* ------------------------------------------------------------------------- */
893 
894 int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
895 		struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
896 		struct usb_ss_ep_comp_descriptor *ep_comp)
897 {
898 	u8		type;
899 	u16		max;
900 	int		num_req_streams = 0;
901 
902 	/* endpoint already claimed? */
903 	if (ep->claimed)
904 		return 0;
905 
906 	type = usb_endpoint_type(desc);
907 	max = 0x7ff & usb_endpoint_maxp(desc);
908 
909 	if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in)
910 		return 0;
911 	if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out)
912 		return 0;
913 
914 	if (max > ep->maxpacket_limit)
915 		return 0;
916 
917 	/* "high bandwidth" works only at high speed */
918 	if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp(desc) & (3<<11))
919 		return 0;
920 
921 	switch (type) {
922 	case USB_ENDPOINT_XFER_CONTROL:
923 		/* only support ep0 for portable CONTROL traffic */
924 		return 0;
925 	case USB_ENDPOINT_XFER_ISOC:
926 		if (!ep->caps.type_iso)
927 			return 0;
928 		/* ISO:  limit 1023 bytes full speed, 1024 high/super speed */
929 		if (!gadget_is_dualspeed(gadget) && max > 1023)
930 			return 0;
931 		break;
932 	case USB_ENDPOINT_XFER_BULK:
933 		if (!ep->caps.type_bulk)
934 			return 0;
935 		if (ep_comp && gadget_is_superspeed(gadget)) {
936 			/* Get the number of required streams from the
937 			 * EP companion descriptor and see if the EP
938 			 * matches it
939 			 */
940 			num_req_streams = ep_comp->bmAttributes & 0x1f;
941 			if (num_req_streams > ep->max_streams)
942 				return 0;
943 		}
944 		break;
945 	case USB_ENDPOINT_XFER_INT:
946 		/* Bulk endpoints handle interrupt transfers,
947 		 * except the toggle-quirky iso-synch kind
948 		 */
949 		if (!ep->caps.type_int && !ep->caps.type_bulk)
950 			return 0;
951 		/* INT:  limit 64 bytes full speed, 1024 high/super speed */
952 		if (!gadget_is_dualspeed(gadget) && max > 64)
953 			return 0;
954 		break;
955 	}
956 
957 	return 1;
958 }
959 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc);
960 
961 /* ------------------------------------------------------------------------- */
962 
963 static void usb_gadget_state_work(struct work_struct *work)
964 {
965 	struct usb_gadget *gadget = work_to_gadget(work);
966 	struct usb_udc *udc = gadget->udc;
967 
968 	if (udc)
969 		sysfs_notify(&udc->dev.kobj, NULL, "state");
970 }
971 
972 void usb_gadget_set_state(struct usb_gadget *gadget,
973 		enum usb_device_state state)
974 {
975 	gadget->state = state;
976 	schedule_work(&gadget->work);
977 }
978 EXPORT_SYMBOL_GPL(usb_gadget_set_state);
979 
980 /* ------------------------------------------------------------------------- */
981 
982 static void usb_udc_connect_control(struct usb_udc *udc)
983 {
984 	if (udc->vbus)
985 		usb_gadget_connect(udc->gadget);
986 	else
987 		usb_gadget_disconnect(udc->gadget);
988 }
989 
990 /**
991  * usb_udc_vbus_handler - updates the udc core vbus status, and try to
992  * connect or disconnect gadget
993  * @gadget: The gadget which vbus change occurs
994  * @status: The vbus status
995  *
996  * The udc driver calls it when it wants to connect or disconnect gadget
997  * according to vbus status.
998  */
999 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status)
1000 {
1001 	struct usb_udc *udc = gadget->udc;
1002 
1003 	if (udc) {
1004 		udc->vbus = status;
1005 		usb_udc_connect_control(udc);
1006 	}
1007 }
1008 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler);
1009 
1010 /**
1011  * usb_gadget_udc_reset - notifies the udc core that bus reset occurs
1012  * @gadget: The gadget which bus reset occurs
1013  * @driver: The gadget driver we want to notify
1014  *
1015  * If the udc driver has bus reset handler, it needs to call this when the bus
1016  * reset occurs, it notifies the gadget driver that the bus reset occurs as
1017  * well as updates gadget state.
1018  */
1019 void usb_gadget_udc_reset(struct usb_gadget *gadget,
1020 		struct usb_gadget_driver *driver)
1021 {
1022 	driver->reset(gadget);
1023 	usb_gadget_set_state(gadget, USB_STATE_DEFAULT);
1024 }
1025 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset);
1026 
1027 /**
1028  * usb_gadget_udc_start - tells usb device controller to start up
1029  * @udc: The UDC to be started
1030  *
1031  * This call is issued by the UDC Class driver when it's about
1032  * to register a gadget driver to the device controller, before
1033  * calling gadget driver's bind() method.
1034  *
1035  * It allows the controller to be powered off until strictly
1036  * necessary to have it powered on.
1037  *
1038  * Returns zero on success, else negative errno.
1039  */
1040 static inline int usb_gadget_udc_start(struct usb_udc *udc)
1041 {
1042 	return udc->gadget->ops->udc_start(udc->gadget, udc->driver);
1043 }
1044 
1045 /**
1046  * usb_gadget_udc_stop - tells usb device controller we don't need it anymore
1047  * @gadget: The device we want to stop activity
1048  * @driver: The driver to unbind from @gadget
1049  *
1050  * This call is issued by the UDC Class driver after calling
1051  * gadget driver's unbind() method.
1052  *
1053  * The details are implementation specific, but it can go as
1054  * far as powering off UDC completely and disable its data
1055  * line pullups.
1056  */
1057 static inline void usb_gadget_udc_stop(struct usb_udc *udc)
1058 {
1059 	udc->gadget->ops->udc_stop(udc->gadget);
1060 }
1061 
1062 /**
1063  * usb_udc_release - release the usb_udc struct
1064  * @dev: the dev member within usb_udc
1065  *
1066  * This is called by driver's core in order to free memory once the last
1067  * reference is released.
1068  */
1069 static void usb_udc_release(struct device *dev)
1070 {
1071 	struct usb_udc *udc;
1072 
1073 	udc = container_of(dev, struct usb_udc, dev);
1074 	dev_dbg(dev, "releasing '%s'\n", dev_name(dev));
1075 	kfree(udc);
1076 }
1077 
1078 static const struct attribute_group *usb_udc_attr_groups[];
1079 
1080 static void usb_udc_nop_release(struct device *dev)
1081 {
1082 	dev_vdbg(dev, "%s\n", __func__);
1083 }
1084 
1085 /**
1086  * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list
1087  * @parent: the parent device to this udc. Usually the controller driver's
1088  * device.
1089  * @gadget: the gadget to be added to the list.
1090  * @release: a gadget release function.
1091  *
1092  * Returns zero on success, negative errno otherwise.
1093  */
1094 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget,
1095 		void (*release)(struct device *dev))
1096 {
1097 	struct usb_udc		*udc;
1098 	struct usb_gadget_driver *driver;
1099 	int			ret = -ENOMEM;
1100 
1101 	udc = kzalloc(sizeof(*udc), GFP_KERNEL);
1102 	if (!udc)
1103 		goto err1;
1104 
1105 	dev_set_name(&gadget->dev, "gadget");
1106 	INIT_WORK(&gadget->work, usb_gadget_state_work);
1107 	gadget->dev.parent = parent;
1108 
1109 	if (release)
1110 		gadget->dev.release = release;
1111 	else
1112 		gadget->dev.release = usb_udc_nop_release;
1113 
1114 	ret = device_register(&gadget->dev);
1115 	if (ret)
1116 		goto err2;
1117 
1118 	device_initialize(&udc->dev);
1119 	udc->dev.release = usb_udc_release;
1120 	udc->dev.class = udc_class;
1121 	udc->dev.groups = usb_udc_attr_groups;
1122 	udc->dev.parent = parent;
1123 	ret = dev_set_name(&udc->dev, "%s", kobject_name(&parent->kobj));
1124 	if (ret)
1125 		goto err3;
1126 
1127 	udc->gadget = gadget;
1128 	gadget->udc = udc;
1129 
1130 	mutex_lock(&udc_lock);
1131 	list_add_tail(&udc->list, &udc_list);
1132 
1133 	ret = device_add(&udc->dev);
1134 	if (ret)
1135 		goto err4;
1136 
1137 	usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED);
1138 	udc->vbus = true;
1139 
1140 	/* pick up one of pending gadget drivers */
1141 	list_for_each_entry(driver, &gadget_driver_pending_list, pending) {
1142 		if (!driver->udc_name || strcmp(driver->udc_name,
1143 						dev_name(&udc->dev)) == 0) {
1144 			ret = udc_bind_to_driver(udc, driver);
1145 			if (ret != -EPROBE_DEFER)
1146 				list_del(&driver->pending);
1147 			if (ret)
1148 				goto err5;
1149 			break;
1150 		}
1151 	}
1152 
1153 	mutex_unlock(&udc_lock);
1154 
1155 	return 0;
1156 
1157 err5:
1158 	device_del(&udc->dev);
1159 
1160 err4:
1161 	list_del(&udc->list);
1162 	mutex_unlock(&udc_lock);
1163 
1164 err3:
1165 	put_device(&udc->dev);
1166 	device_del(&gadget->dev);
1167 
1168 err2:
1169 	put_device(&gadget->dev);
1170 	kfree(udc);
1171 
1172 err1:
1173 	return ret;
1174 }
1175 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release);
1176 
1177 /**
1178  * usb_get_gadget_udc_name - get the name of the first UDC controller
1179  * This functions returns the name of the first UDC controller in the system.
1180  * Please note that this interface is usefull only for legacy drivers which
1181  * assume that there is only one UDC controller in the system and they need to
1182  * get its name before initialization. There is no guarantee that the UDC
1183  * of the returned name will be still available, when gadget driver registers
1184  * itself.
1185  *
1186  * Returns pointer to string with UDC controller name on success, NULL
1187  * otherwise. Caller should kfree() returned string.
1188  */
1189 char *usb_get_gadget_udc_name(void)
1190 {
1191 	struct usb_udc *udc;
1192 	char *name = NULL;
1193 
1194 	/* For now we take the first available UDC */
1195 	mutex_lock(&udc_lock);
1196 	list_for_each_entry(udc, &udc_list, list) {
1197 		if (!udc->driver) {
1198 			name = kstrdup(udc->gadget->name, GFP_KERNEL);
1199 			break;
1200 		}
1201 	}
1202 	mutex_unlock(&udc_lock);
1203 	return name;
1204 }
1205 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name);
1206 
1207 /**
1208  * usb_add_gadget_udc - adds a new gadget to the udc class driver list
1209  * @parent: the parent device to this udc. Usually the controller
1210  * driver's device.
1211  * @gadget: the gadget to be added to the list
1212  *
1213  * Returns zero on success, negative errno otherwise.
1214  */
1215 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget)
1216 {
1217 	return usb_add_gadget_udc_release(parent, gadget, NULL);
1218 }
1219 EXPORT_SYMBOL_GPL(usb_add_gadget_udc);
1220 
1221 static void usb_gadget_remove_driver(struct usb_udc *udc)
1222 {
1223 	dev_dbg(&udc->dev, "unregistering UDC driver [%s]\n",
1224 			udc->driver->function);
1225 
1226 	kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1227 
1228 	usb_gadget_disconnect(udc->gadget);
1229 	udc->driver->disconnect(udc->gadget);
1230 	udc->driver->unbind(udc->gadget);
1231 	usb_gadget_udc_stop(udc);
1232 
1233 	udc->driver = NULL;
1234 	udc->dev.driver = NULL;
1235 	udc->gadget->dev.driver = NULL;
1236 }
1237 
1238 /**
1239  * usb_del_gadget_udc - deletes @udc from udc_list
1240  * @gadget: the gadget to be removed.
1241  *
1242  * This, will call usb_gadget_unregister_driver() if
1243  * the @udc is still busy.
1244  */
1245 void usb_del_gadget_udc(struct usb_gadget *gadget)
1246 {
1247 	struct usb_udc *udc = gadget->udc;
1248 
1249 	if (!udc)
1250 		return;
1251 
1252 	dev_vdbg(gadget->dev.parent, "unregistering gadget\n");
1253 
1254 	mutex_lock(&udc_lock);
1255 	list_del(&udc->list);
1256 
1257 	if (udc->driver) {
1258 		struct usb_gadget_driver *driver = udc->driver;
1259 
1260 		usb_gadget_remove_driver(udc);
1261 		list_add(&driver->pending, &gadget_driver_pending_list);
1262 	}
1263 	mutex_unlock(&udc_lock);
1264 
1265 	kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE);
1266 	flush_work(&gadget->work);
1267 	device_unregister(&udc->dev);
1268 	device_unregister(&gadget->dev);
1269 }
1270 EXPORT_SYMBOL_GPL(usb_del_gadget_udc);
1271 
1272 /* ------------------------------------------------------------------------- */
1273 
1274 static int udc_bind_to_driver(struct usb_udc *udc, struct usb_gadget_driver *driver)
1275 {
1276 	int ret;
1277 
1278 	dev_dbg(&udc->dev, "registering UDC driver [%s]\n",
1279 			driver->function);
1280 
1281 	udc->driver = driver;
1282 	udc->dev.driver = &driver->driver;
1283 	udc->gadget->dev.driver = &driver->driver;
1284 
1285 	ret = driver->bind(udc->gadget, driver);
1286 	if (ret)
1287 		goto err1;
1288 	ret = usb_gadget_udc_start(udc);
1289 	if (ret) {
1290 		driver->unbind(udc->gadget);
1291 		goto err1;
1292 	}
1293 	usb_udc_connect_control(udc);
1294 
1295 	kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1296 	return 0;
1297 err1:
1298 	if (ret != -EISNAM)
1299 		dev_err(&udc->dev, "failed to start %s: %d\n",
1300 			udc->driver->function, ret);
1301 	udc->driver = NULL;
1302 	udc->dev.driver = NULL;
1303 	udc->gadget->dev.driver = NULL;
1304 	return ret;
1305 }
1306 
1307 int usb_gadget_probe_driver(struct usb_gadget_driver *driver)
1308 {
1309 	struct usb_udc		*udc = NULL;
1310 	int			ret = -ENODEV;
1311 
1312 	if (!driver || !driver->bind || !driver->setup)
1313 		return -EINVAL;
1314 
1315 	mutex_lock(&udc_lock);
1316 	if (driver->udc_name) {
1317 		list_for_each_entry(udc, &udc_list, list) {
1318 			ret = strcmp(driver->udc_name, dev_name(&udc->dev));
1319 			if (!ret)
1320 				break;
1321 		}
1322 		if (!ret && !udc->driver)
1323 			goto found;
1324 	} else {
1325 		list_for_each_entry(udc, &udc_list, list) {
1326 			/* For now we take the first one */
1327 			if (!udc->driver)
1328 				goto found;
1329 		}
1330 	}
1331 
1332 	if (!driver->match_existing_only) {
1333 		list_add_tail(&driver->pending, &gadget_driver_pending_list);
1334 		pr_info("udc-core: couldn't find an available UDC - added [%s] to list of pending drivers\n",
1335 			driver->function);
1336 		ret = 0;
1337 	}
1338 
1339 	mutex_unlock(&udc_lock);
1340 	return ret;
1341 found:
1342 	ret = udc_bind_to_driver(udc, driver);
1343 	mutex_unlock(&udc_lock);
1344 	return ret;
1345 }
1346 EXPORT_SYMBOL_GPL(usb_gadget_probe_driver);
1347 
1348 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
1349 {
1350 	struct usb_udc		*udc = NULL;
1351 	int			ret = -ENODEV;
1352 
1353 	if (!driver || !driver->unbind)
1354 		return -EINVAL;
1355 
1356 	mutex_lock(&udc_lock);
1357 	list_for_each_entry(udc, &udc_list, list)
1358 		if (udc->driver == driver) {
1359 			usb_gadget_remove_driver(udc);
1360 			usb_gadget_set_state(udc->gadget,
1361 					USB_STATE_NOTATTACHED);
1362 			ret = 0;
1363 			break;
1364 		}
1365 
1366 	if (ret) {
1367 		list_del(&driver->pending);
1368 		ret = 0;
1369 	}
1370 	mutex_unlock(&udc_lock);
1371 	return ret;
1372 }
1373 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver);
1374 
1375 /* ------------------------------------------------------------------------- */
1376 
1377 static ssize_t usb_udc_srp_store(struct device *dev,
1378 		struct device_attribute *attr, const char *buf, size_t n)
1379 {
1380 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1381 
1382 	if (sysfs_streq(buf, "1"))
1383 		usb_gadget_wakeup(udc->gadget);
1384 
1385 	return n;
1386 }
1387 static DEVICE_ATTR(srp, S_IWUSR, NULL, usb_udc_srp_store);
1388 
1389 static ssize_t usb_udc_softconn_store(struct device *dev,
1390 		struct device_attribute *attr, const char *buf, size_t n)
1391 {
1392 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1393 
1394 	if (!udc->driver) {
1395 		dev_err(dev, "soft-connect without a gadget driver\n");
1396 		return -EOPNOTSUPP;
1397 	}
1398 
1399 	if (sysfs_streq(buf, "connect")) {
1400 		usb_gadget_udc_start(udc);
1401 		usb_gadget_connect(udc->gadget);
1402 	} else if (sysfs_streq(buf, "disconnect")) {
1403 		usb_gadget_disconnect(udc->gadget);
1404 		udc->driver->disconnect(udc->gadget);
1405 		usb_gadget_udc_stop(udc);
1406 	} else {
1407 		dev_err(dev, "unsupported command '%s'\n", buf);
1408 		return -EINVAL;
1409 	}
1410 
1411 	return n;
1412 }
1413 static DEVICE_ATTR(soft_connect, S_IWUSR, NULL, usb_udc_softconn_store);
1414 
1415 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
1416 			  char *buf)
1417 {
1418 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1419 	struct usb_gadget	*gadget = udc->gadget;
1420 
1421 	return sprintf(buf, "%s\n", usb_state_string(gadget->state));
1422 }
1423 static DEVICE_ATTR_RO(state);
1424 
1425 #define USB_UDC_SPEED_ATTR(name, param)					\
1426 ssize_t name##_show(struct device *dev,					\
1427 		struct device_attribute *attr, char *buf)		\
1428 {									\
1429 	struct usb_udc *udc = container_of(dev, struct usb_udc, dev);	\
1430 	return snprintf(buf, PAGE_SIZE, "%s\n",				\
1431 			usb_speed_string(udc->gadget->param));		\
1432 }									\
1433 static DEVICE_ATTR_RO(name)
1434 
1435 static USB_UDC_SPEED_ATTR(current_speed, speed);
1436 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed);
1437 
1438 #define USB_UDC_ATTR(name)					\
1439 ssize_t name##_show(struct device *dev,				\
1440 		struct device_attribute *attr, char *buf)	\
1441 {								\
1442 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev); \
1443 	struct usb_gadget	*gadget = udc->gadget;		\
1444 								\
1445 	return snprintf(buf, PAGE_SIZE, "%d\n", gadget->name);	\
1446 }								\
1447 static DEVICE_ATTR_RO(name)
1448 
1449 static USB_UDC_ATTR(is_otg);
1450 static USB_UDC_ATTR(is_a_peripheral);
1451 static USB_UDC_ATTR(b_hnp_enable);
1452 static USB_UDC_ATTR(a_hnp_support);
1453 static USB_UDC_ATTR(a_alt_hnp_support);
1454 static USB_UDC_ATTR(is_selfpowered);
1455 
1456 static struct attribute *usb_udc_attrs[] = {
1457 	&dev_attr_srp.attr,
1458 	&dev_attr_soft_connect.attr,
1459 	&dev_attr_state.attr,
1460 	&dev_attr_current_speed.attr,
1461 	&dev_attr_maximum_speed.attr,
1462 
1463 	&dev_attr_is_otg.attr,
1464 	&dev_attr_is_a_peripheral.attr,
1465 	&dev_attr_b_hnp_enable.attr,
1466 	&dev_attr_a_hnp_support.attr,
1467 	&dev_attr_a_alt_hnp_support.attr,
1468 	&dev_attr_is_selfpowered.attr,
1469 	NULL,
1470 };
1471 
1472 static const struct attribute_group usb_udc_attr_group = {
1473 	.attrs = usb_udc_attrs,
1474 };
1475 
1476 static const struct attribute_group *usb_udc_attr_groups[] = {
1477 	&usb_udc_attr_group,
1478 	NULL,
1479 };
1480 
1481 static int usb_udc_uevent(struct device *dev, struct kobj_uevent_env *env)
1482 {
1483 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1484 	int			ret;
1485 
1486 	ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name);
1487 	if (ret) {
1488 		dev_err(dev, "failed to add uevent USB_UDC_NAME\n");
1489 		return ret;
1490 	}
1491 
1492 	if (udc->driver) {
1493 		ret = add_uevent_var(env, "USB_UDC_DRIVER=%s",
1494 				udc->driver->function);
1495 		if (ret) {
1496 			dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n");
1497 			return ret;
1498 		}
1499 	}
1500 
1501 	return 0;
1502 }
1503 
1504 static int __init usb_udc_init(void)
1505 {
1506 	udc_class = class_create(THIS_MODULE, "udc");
1507 	if (IS_ERR(udc_class)) {
1508 		pr_err("failed to create udc class --> %ld\n",
1509 				PTR_ERR(udc_class));
1510 		return PTR_ERR(udc_class);
1511 	}
1512 
1513 	udc_class->dev_uevent = usb_udc_uevent;
1514 	return 0;
1515 }
1516 subsys_initcall(usb_udc_init);
1517 
1518 static void __exit usb_udc_exit(void)
1519 {
1520 	class_destroy(udc_class);
1521 }
1522 module_exit(usb_udc_exit);
1523 
1524 MODULE_DESCRIPTION("UDC Framework");
1525 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>");
1526 MODULE_LICENSE("GPL v2");
1527