xref: /openbmc/linux/drivers/usb/gadget/udc/core.c (revision bbaf1ff0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * udc.c - Core UDC Framework
4  *
5  * Copyright (C) 2010 Texas Instruments
6  * Author: Felipe Balbi <balbi@ti.com>
7  */
8 
9 #define pr_fmt(fmt)	"UDC core: " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/list.h>
15 #include <linux/idr.h>
16 #include <linux/err.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/sched/task_stack.h>
19 #include <linux/workqueue.h>
20 
21 #include <linux/usb/ch9.h>
22 #include <linux/usb/gadget.h>
23 #include <linux/usb.h>
24 
25 #include "trace.h"
26 
27 static DEFINE_IDA(gadget_id_numbers);
28 
29 static const struct bus_type gadget_bus_type;
30 
31 /**
32  * struct usb_udc - describes one usb device controller
33  * @driver: the gadget driver pointer. For use by the class code
34  * @dev: the child device to the actual controller
35  * @gadget: the gadget. For use by the class code
36  * @list: for use by the udc class driver
37  * @vbus: for udcs who care about vbus status, this value is real vbus status;
38  * for udcs who do not care about vbus status, this value is always true
39  * @started: the UDC's started state. True if the UDC had started.
40  * @allow_connect: Indicates whether UDC is allowed to be pulled up.
41  * Set/cleared by gadget_(un)bind_driver() after gadget driver is bound or
42  * unbound.
43  * @connect_lock: protects udc->started, gadget->connect,
44  * gadget->allow_connect and gadget->deactivate. The routines
45  * usb_gadget_connect_locked(), usb_gadget_disconnect_locked(),
46  * usb_udc_connect_control_locked(), usb_gadget_udc_start_locked() and
47  * usb_gadget_udc_stop_locked() are called with this lock held.
48  *
49  * This represents the internal data structure which is used by the UDC-class
50  * to hold information about udc driver and gadget together.
51  */
52 struct usb_udc {
53 	struct usb_gadget_driver	*driver;
54 	struct usb_gadget		*gadget;
55 	struct device			dev;
56 	struct list_head		list;
57 	bool				vbus;
58 	bool				started;
59 	bool				allow_connect;
60 	struct work_struct		vbus_work;
61 	struct mutex			connect_lock;
62 };
63 
64 static struct class *udc_class;
65 static LIST_HEAD(udc_list);
66 
67 /* Protects udc_list, udc->driver, driver->is_bound, and related calls */
68 static DEFINE_MUTEX(udc_lock);
69 
70 /* ------------------------------------------------------------------------- */
71 
72 /**
73  * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
74  * @ep:the endpoint being configured
75  * @maxpacket_limit:value of maximum packet size limit
76  *
77  * This function should be used only in UDC drivers to initialize endpoint
78  * (usually in probe function).
79  */
80 void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
81 					      unsigned maxpacket_limit)
82 {
83 	ep->maxpacket_limit = maxpacket_limit;
84 	ep->maxpacket = maxpacket_limit;
85 
86 	trace_usb_ep_set_maxpacket_limit(ep, 0);
87 }
88 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit);
89 
90 /**
91  * usb_ep_enable - configure endpoint, making it usable
92  * @ep:the endpoint being configured.  may not be the endpoint named "ep0".
93  *	drivers discover endpoints through the ep_list of a usb_gadget.
94  *
95  * When configurations are set, or when interface settings change, the driver
96  * will enable or disable the relevant endpoints.  while it is enabled, an
97  * endpoint may be used for i/o until the driver receives a disconnect() from
98  * the host or until the endpoint is disabled.
99  *
100  * the ep0 implementation (which calls this routine) must ensure that the
101  * hardware capabilities of each endpoint match the descriptor provided
102  * for it.  for example, an endpoint named "ep2in-bulk" would be usable
103  * for interrupt transfers as well as bulk, but it likely couldn't be used
104  * for iso transfers or for endpoint 14.  some endpoints are fully
105  * configurable, with more generic names like "ep-a".  (remember that for
106  * USB, "in" means "towards the USB host".)
107  *
108  * This routine may be called in an atomic (interrupt) context.
109  *
110  * returns zero, or a negative error code.
111  */
112 int usb_ep_enable(struct usb_ep *ep)
113 {
114 	int ret = 0;
115 
116 	if (ep->enabled)
117 		goto out;
118 
119 	/* UDC drivers can't handle endpoints with maxpacket size 0 */
120 	if (usb_endpoint_maxp(ep->desc) == 0) {
121 		/*
122 		 * We should log an error message here, but we can't call
123 		 * dev_err() because there's no way to find the gadget
124 		 * given only ep.
125 		 */
126 		ret = -EINVAL;
127 		goto out;
128 	}
129 
130 	ret = ep->ops->enable(ep, ep->desc);
131 	if (ret)
132 		goto out;
133 
134 	ep->enabled = true;
135 
136 out:
137 	trace_usb_ep_enable(ep, ret);
138 
139 	return ret;
140 }
141 EXPORT_SYMBOL_GPL(usb_ep_enable);
142 
143 /**
144  * usb_ep_disable - endpoint is no longer usable
145  * @ep:the endpoint being unconfigured.  may not be the endpoint named "ep0".
146  *
147  * no other task may be using this endpoint when this is called.
148  * any pending and uncompleted requests will complete with status
149  * indicating disconnect (-ESHUTDOWN) before this call returns.
150  * gadget drivers must call usb_ep_enable() again before queueing
151  * requests to the endpoint.
152  *
153  * This routine may be called in an atomic (interrupt) context.
154  *
155  * returns zero, or a negative error code.
156  */
157 int usb_ep_disable(struct usb_ep *ep)
158 {
159 	int ret = 0;
160 
161 	if (!ep->enabled)
162 		goto out;
163 
164 	ret = ep->ops->disable(ep);
165 	if (ret)
166 		goto out;
167 
168 	ep->enabled = false;
169 
170 out:
171 	trace_usb_ep_disable(ep, ret);
172 
173 	return ret;
174 }
175 EXPORT_SYMBOL_GPL(usb_ep_disable);
176 
177 /**
178  * usb_ep_alloc_request - allocate a request object to use with this endpoint
179  * @ep:the endpoint to be used with with the request
180  * @gfp_flags:GFP_* flags to use
181  *
182  * Request objects must be allocated with this call, since they normally
183  * need controller-specific setup and may even need endpoint-specific
184  * resources such as allocation of DMA descriptors.
185  * Requests may be submitted with usb_ep_queue(), and receive a single
186  * completion callback.  Free requests with usb_ep_free_request(), when
187  * they are no longer needed.
188  *
189  * Returns the request, or null if one could not be allocated.
190  */
191 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
192 						       gfp_t gfp_flags)
193 {
194 	struct usb_request *req = NULL;
195 
196 	req = ep->ops->alloc_request(ep, gfp_flags);
197 
198 	trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM);
199 
200 	return req;
201 }
202 EXPORT_SYMBOL_GPL(usb_ep_alloc_request);
203 
204 /**
205  * usb_ep_free_request - frees a request object
206  * @ep:the endpoint associated with the request
207  * @req:the request being freed
208  *
209  * Reverses the effect of usb_ep_alloc_request().
210  * Caller guarantees the request is not queued, and that it will
211  * no longer be requeued (or otherwise used).
212  */
213 void usb_ep_free_request(struct usb_ep *ep,
214 				       struct usb_request *req)
215 {
216 	trace_usb_ep_free_request(ep, req, 0);
217 	ep->ops->free_request(ep, req);
218 }
219 EXPORT_SYMBOL_GPL(usb_ep_free_request);
220 
221 /**
222  * usb_ep_queue - queues (submits) an I/O request to an endpoint.
223  * @ep:the endpoint associated with the request
224  * @req:the request being submitted
225  * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
226  *	pre-allocate all necessary memory with the request.
227  *
228  * This tells the device controller to perform the specified request through
229  * that endpoint (reading or writing a buffer).  When the request completes,
230  * including being canceled by usb_ep_dequeue(), the request's completion
231  * routine is called to return the request to the driver.  Any endpoint
232  * (except control endpoints like ep0) may have more than one transfer
233  * request queued; they complete in FIFO order.  Once a gadget driver
234  * submits a request, that request may not be examined or modified until it
235  * is given back to that driver through the completion callback.
236  *
237  * Each request is turned into one or more packets.  The controller driver
238  * never merges adjacent requests into the same packet.  OUT transfers
239  * will sometimes use data that's already buffered in the hardware.
240  * Drivers can rely on the fact that the first byte of the request's buffer
241  * always corresponds to the first byte of some USB packet, for both
242  * IN and OUT transfers.
243  *
244  * Bulk endpoints can queue any amount of data; the transfer is packetized
245  * automatically.  The last packet will be short if the request doesn't fill it
246  * out completely.  Zero length packets (ZLPs) should be avoided in portable
247  * protocols since not all usb hardware can successfully handle zero length
248  * packets.  (ZLPs may be explicitly written, and may be implicitly written if
249  * the request 'zero' flag is set.)  Bulk endpoints may also be used
250  * for interrupt transfers; but the reverse is not true, and some endpoints
251  * won't support every interrupt transfer.  (Such as 768 byte packets.)
252  *
253  * Interrupt-only endpoints are less functional than bulk endpoints, for
254  * example by not supporting queueing or not handling buffers that are
255  * larger than the endpoint's maxpacket size.  They may also treat data
256  * toggle differently.
257  *
258  * Control endpoints ... after getting a setup() callback, the driver queues
259  * one response (even if it would be zero length).  That enables the
260  * status ack, after transferring data as specified in the response.  Setup
261  * functions may return negative error codes to generate protocol stalls.
262  * (Note that some USB device controllers disallow protocol stall responses
263  * in some cases.)  When control responses are deferred (the response is
264  * written after the setup callback returns), then usb_ep_set_halt() may be
265  * used on ep0 to trigger protocol stalls.  Depending on the controller,
266  * it may not be possible to trigger a status-stage protocol stall when the
267  * data stage is over, that is, from within the response's completion
268  * routine.
269  *
270  * For periodic endpoints, like interrupt or isochronous ones, the usb host
271  * arranges to poll once per interval, and the gadget driver usually will
272  * have queued some data to transfer at that time.
273  *
274  * Note that @req's ->complete() callback must never be called from
275  * within usb_ep_queue() as that can create deadlock situations.
276  *
277  * This routine may be called in interrupt context.
278  *
279  * Returns zero, or a negative error code.  Endpoints that are not enabled
280  * report errors; errors will also be
281  * reported when the usb peripheral is disconnected.
282  *
283  * If and only if @req is successfully queued (the return value is zero),
284  * @req->complete() will be called exactly once, when the Gadget core and
285  * UDC are finished with the request.  When the completion function is called,
286  * control of the request is returned to the device driver which submitted it.
287  * The completion handler may then immediately free or reuse @req.
288  */
289 int usb_ep_queue(struct usb_ep *ep,
290 			       struct usb_request *req, gfp_t gfp_flags)
291 {
292 	int ret = 0;
293 
294 	if (WARN_ON_ONCE(!ep->enabled && ep->address)) {
295 		ret = -ESHUTDOWN;
296 		goto out;
297 	}
298 
299 	ret = ep->ops->queue(ep, req, gfp_flags);
300 
301 out:
302 	trace_usb_ep_queue(ep, req, ret);
303 
304 	return ret;
305 }
306 EXPORT_SYMBOL_GPL(usb_ep_queue);
307 
308 /**
309  * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
310  * @ep:the endpoint associated with the request
311  * @req:the request being canceled
312  *
313  * If the request is still active on the endpoint, it is dequeued and
314  * eventually its completion routine is called (with status -ECONNRESET);
315  * else a negative error code is returned.  This routine is asynchronous,
316  * that is, it may return before the completion routine runs.
317  *
318  * Note that some hardware can't clear out write fifos (to unlink the request
319  * at the head of the queue) except as part of disconnecting from usb. Such
320  * restrictions prevent drivers from supporting configuration changes,
321  * even to configuration zero (a "chapter 9" requirement).
322  *
323  * This routine may be called in interrupt context.
324  */
325 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
326 {
327 	int ret;
328 
329 	ret = ep->ops->dequeue(ep, req);
330 	trace_usb_ep_dequeue(ep, req, ret);
331 
332 	return ret;
333 }
334 EXPORT_SYMBOL_GPL(usb_ep_dequeue);
335 
336 /**
337  * usb_ep_set_halt - sets the endpoint halt feature.
338  * @ep: the non-isochronous endpoint being stalled
339  *
340  * Use this to stall an endpoint, perhaps as an error report.
341  * Except for control endpoints,
342  * the endpoint stays halted (will not stream any data) until the host
343  * clears this feature; drivers may need to empty the endpoint's request
344  * queue first, to make sure no inappropriate transfers happen.
345  *
346  * Note that while an endpoint CLEAR_FEATURE will be invisible to the
347  * gadget driver, a SET_INTERFACE will not be.  To reset endpoints for the
348  * current altsetting, see usb_ep_clear_halt().  When switching altsettings,
349  * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
350  *
351  * This routine may be called in interrupt context.
352  *
353  * Returns zero, or a negative error code.  On success, this call sets
354  * underlying hardware state that blocks data transfers.
355  * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
356  * transfer requests are still queued, or if the controller hardware
357  * (usually a FIFO) still holds bytes that the host hasn't collected.
358  */
359 int usb_ep_set_halt(struct usb_ep *ep)
360 {
361 	int ret;
362 
363 	ret = ep->ops->set_halt(ep, 1);
364 	trace_usb_ep_set_halt(ep, ret);
365 
366 	return ret;
367 }
368 EXPORT_SYMBOL_GPL(usb_ep_set_halt);
369 
370 /**
371  * usb_ep_clear_halt - clears endpoint halt, and resets toggle
372  * @ep:the bulk or interrupt endpoint being reset
373  *
374  * Use this when responding to the standard usb "set interface" request,
375  * for endpoints that aren't reconfigured, after clearing any other state
376  * in the endpoint's i/o queue.
377  *
378  * This routine may be called in interrupt context.
379  *
380  * Returns zero, or a negative error code.  On success, this call clears
381  * the underlying hardware state reflecting endpoint halt and data toggle.
382  * Note that some hardware can't support this request (like pxa2xx_udc),
383  * and accordingly can't correctly implement interface altsettings.
384  */
385 int usb_ep_clear_halt(struct usb_ep *ep)
386 {
387 	int ret;
388 
389 	ret = ep->ops->set_halt(ep, 0);
390 	trace_usb_ep_clear_halt(ep, ret);
391 
392 	return ret;
393 }
394 EXPORT_SYMBOL_GPL(usb_ep_clear_halt);
395 
396 /**
397  * usb_ep_set_wedge - sets the halt feature and ignores clear requests
398  * @ep: the endpoint being wedged
399  *
400  * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
401  * requests. If the gadget driver clears the halt status, it will
402  * automatically unwedge the endpoint.
403  *
404  * This routine may be called in interrupt context.
405  *
406  * Returns zero on success, else negative errno.
407  */
408 int usb_ep_set_wedge(struct usb_ep *ep)
409 {
410 	int ret;
411 
412 	if (ep->ops->set_wedge)
413 		ret = ep->ops->set_wedge(ep);
414 	else
415 		ret = ep->ops->set_halt(ep, 1);
416 
417 	trace_usb_ep_set_wedge(ep, ret);
418 
419 	return ret;
420 }
421 EXPORT_SYMBOL_GPL(usb_ep_set_wedge);
422 
423 /**
424  * usb_ep_fifo_status - returns number of bytes in fifo, or error
425  * @ep: the endpoint whose fifo status is being checked.
426  *
427  * FIFO endpoints may have "unclaimed data" in them in certain cases,
428  * such as after aborted transfers.  Hosts may not have collected all
429  * the IN data written by the gadget driver (and reported by a request
430  * completion).  The gadget driver may not have collected all the data
431  * written OUT to it by the host.  Drivers that need precise handling for
432  * fault reporting or recovery may need to use this call.
433  *
434  * This routine may be called in interrupt context.
435  *
436  * This returns the number of such bytes in the fifo, or a negative
437  * errno if the endpoint doesn't use a FIFO or doesn't support such
438  * precise handling.
439  */
440 int usb_ep_fifo_status(struct usb_ep *ep)
441 {
442 	int ret;
443 
444 	if (ep->ops->fifo_status)
445 		ret = ep->ops->fifo_status(ep);
446 	else
447 		ret = -EOPNOTSUPP;
448 
449 	trace_usb_ep_fifo_status(ep, ret);
450 
451 	return ret;
452 }
453 EXPORT_SYMBOL_GPL(usb_ep_fifo_status);
454 
455 /**
456  * usb_ep_fifo_flush - flushes contents of a fifo
457  * @ep: the endpoint whose fifo is being flushed.
458  *
459  * This call may be used to flush the "unclaimed data" that may exist in
460  * an endpoint fifo after abnormal transaction terminations.  The call
461  * must never be used except when endpoint is not being used for any
462  * protocol translation.
463  *
464  * This routine may be called in interrupt context.
465  */
466 void usb_ep_fifo_flush(struct usb_ep *ep)
467 {
468 	if (ep->ops->fifo_flush)
469 		ep->ops->fifo_flush(ep);
470 
471 	trace_usb_ep_fifo_flush(ep, 0);
472 }
473 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush);
474 
475 /* ------------------------------------------------------------------------- */
476 
477 /**
478  * usb_gadget_frame_number - returns the current frame number
479  * @gadget: controller that reports the frame number
480  *
481  * Returns the usb frame number, normally eleven bits from a SOF packet,
482  * or negative errno if this device doesn't support this capability.
483  */
484 int usb_gadget_frame_number(struct usb_gadget *gadget)
485 {
486 	int ret;
487 
488 	ret = gadget->ops->get_frame(gadget);
489 
490 	trace_usb_gadget_frame_number(gadget, ret);
491 
492 	return ret;
493 }
494 EXPORT_SYMBOL_GPL(usb_gadget_frame_number);
495 
496 /**
497  * usb_gadget_wakeup - tries to wake up the host connected to this gadget
498  * @gadget: controller used to wake up the host
499  *
500  * Returns zero on success, else negative error code if the hardware
501  * doesn't support such attempts, or its support has not been enabled
502  * by the usb host.  Drivers must return device descriptors that report
503  * their ability to support this, or hosts won't enable it.
504  *
505  * This may also try to use SRP to wake the host and start enumeration,
506  * even if OTG isn't otherwise in use.  OTG devices may also start
507  * remote wakeup even when hosts don't explicitly enable it.
508  */
509 int usb_gadget_wakeup(struct usb_gadget *gadget)
510 {
511 	int ret = 0;
512 
513 	if (!gadget->ops->wakeup) {
514 		ret = -EOPNOTSUPP;
515 		goto out;
516 	}
517 
518 	ret = gadget->ops->wakeup(gadget);
519 
520 out:
521 	trace_usb_gadget_wakeup(gadget, ret);
522 
523 	return ret;
524 }
525 EXPORT_SYMBOL_GPL(usb_gadget_wakeup);
526 
527 /**
528  * usb_gadget_set_remote_wakeup - configures the device remote wakeup feature.
529  * @gadget:the device being configured for remote wakeup
530  * @set:value to be configured.
531  *
532  * set to one to enable remote wakeup feature and zero to disable it.
533  *
534  * returns zero on success, else negative errno.
535  */
536 int usb_gadget_set_remote_wakeup(struct usb_gadget *gadget, int set)
537 {
538 	int ret = 0;
539 
540 	if (!gadget->ops->set_remote_wakeup) {
541 		ret = -EOPNOTSUPP;
542 		goto out;
543 	}
544 
545 	ret = gadget->ops->set_remote_wakeup(gadget, set);
546 
547 out:
548 	trace_usb_gadget_set_remote_wakeup(gadget, ret);
549 
550 	return ret;
551 }
552 EXPORT_SYMBOL_GPL(usb_gadget_set_remote_wakeup);
553 
554 /**
555  * usb_gadget_set_selfpowered - sets the device selfpowered feature.
556  * @gadget:the device being declared as self-powered
557  *
558  * this affects the device status reported by the hardware driver
559  * to reflect that it now has a local power supply.
560  *
561  * returns zero on success, else negative errno.
562  */
563 int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
564 {
565 	int ret = 0;
566 
567 	if (!gadget->ops->set_selfpowered) {
568 		ret = -EOPNOTSUPP;
569 		goto out;
570 	}
571 
572 	ret = gadget->ops->set_selfpowered(gadget, 1);
573 
574 out:
575 	trace_usb_gadget_set_selfpowered(gadget, ret);
576 
577 	return ret;
578 }
579 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered);
580 
581 /**
582  * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
583  * @gadget:the device being declared as bus-powered
584  *
585  * this affects the device status reported by the hardware driver.
586  * some hardware may not support bus-powered operation, in which
587  * case this feature's value can never change.
588  *
589  * returns zero on success, else negative errno.
590  */
591 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
592 {
593 	int ret = 0;
594 
595 	if (!gadget->ops->set_selfpowered) {
596 		ret = -EOPNOTSUPP;
597 		goto out;
598 	}
599 
600 	ret = gadget->ops->set_selfpowered(gadget, 0);
601 
602 out:
603 	trace_usb_gadget_clear_selfpowered(gadget, ret);
604 
605 	return ret;
606 }
607 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered);
608 
609 /**
610  * usb_gadget_vbus_connect - Notify controller that VBUS is powered
611  * @gadget:The device which now has VBUS power.
612  * Context: can sleep
613  *
614  * This call is used by a driver for an external transceiver (or GPIO)
615  * that detects a VBUS power session starting.  Common responses include
616  * resuming the controller, activating the D+ (or D-) pullup to let the
617  * host detect that a USB device is attached, and starting to draw power
618  * (8mA or possibly more, especially after SET_CONFIGURATION).
619  *
620  * Returns zero on success, else negative errno.
621  */
622 int usb_gadget_vbus_connect(struct usb_gadget *gadget)
623 {
624 	int ret = 0;
625 
626 	if (!gadget->ops->vbus_session) {
627 		ret = -EOPNOTSUPP;
628 		goto out;
629 	}
630 
631 	ret = gadget->ops->vbus_session(gadget, 1);
632 
633 out:
634 	trace_usb_gadget_vbus_connect(gadget, ret);
635 
636 	return ret;
637 }
638 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect);
639 
640 /**
641  * usb_gadget_vbus_draw - constrain controller's VBUS power usage
642  * @gadget:The device whose VBUS usage is being described
643  * @mA:How much current to draw, in milliAmperes.  This should be twice
644  *	the value listed in the configuration descriptor bMaxPower field.
645  *
646  * This call is used by gadget drivers during SET_CONFIGURATION calls,
647  * reporting how much power the device may consume.  For example, this
648  * could affect how quickly batteries are recharged.
649  *
650  * Returns zero on success, else negative errno.
651  */
652 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
653 {
654 	int ret = 0;
655 
656 	if (!gadget->ops->vbus_draw) {
657 		ret = -EOPNOTSUPP;
658 		goto out;
659 	}
660 
661 	ret = gadget->ops->vbus_draw(gadget, mA);
662 	if (!ret)
663 		gadget->mA = mA;
664 
665 out:
666 	trace_usb_gadget_vbus_draw(gadget, ret);
667 
668 	return ret;
669 }
670 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw);
671 
672 /**
673  * usb_gadget_vbus_disconnect - notify controller about VBUS session end
674  * @gadget:the device whose VBUS supply is being described
675  * Context: can sleep
676  *
677  * This call is used by a driver for an external transceiver (or GPIO)
678  * that detects a VBUS power session ending.  Common responses include
679  * reversing everything done in usb_gadget_vbus_connect().
680  *
681  * Returns zero on success, else negative errno.
682  */
683 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
684 {
685 	int ret = 0;
686 
687 	if (!gadget->ops->vbus_session) {
688 		ret = -EOPNOTSUPP;
689 		goto out;
690 	}
691 
692 	ret = gadget->ops->vbus_session(gadget, 0);
693 
694 out:
695 	trace_usb_gadget_vbus_disconnect(gadget, ret);
696 
697 	return ret;
698 }
699 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect);
700 
701 static int usb_gadget_connect_locked(struct usb_gadget *gadget)
702 	__must_hold(&gadget->udc->connect_lock)
703 {
704 	int ret = 0;
705 
706 	if (!gadget->ops->pullup) {
707 		ret = -EOPNOTSUPP;
708 		goto out;
709 	}
710 
711 	if (gadget->deactivated || !gadget->udc->allow_connect || !gadget->udc->started) {
712 		/*
713 		 * If the gadget isn't usable (because it is deactivated,
714 		 * unbound, or not yet started), we only save the new state.
715 		 * The gadget will be connected automatically when it is
716 		 * activated/bound/started.
717 		 */
718 		gadget->connected = true;
719 		goto out;
720 	}
721 
722 	ret = gadget->ops->pullup(gadget, 1);
723 	if (!ret)
724 		gadget->connected = 1;
725 
726 out:
727 	trace_usb_gadget_connect(gadget, ret);
728 
729 	return ret;
730 }
731 
732 /**
733  * usb_gadget_connect - software-controlled connect to USB host
734  * @gadget:the peripheral being connected
735  *
736  * Enables the D+ (or potentially D-) pullup.  The host will start
737  * enumerating this gadget when the pullup is active and a VBUS session
738  * is active (the link is powered).
739  *
740  * Returns zero on success, else negative errno.
741  */
742 int usb_gadget_connect(struct usb_gadget *gadget)
743 {
744 	int ret;
745 
746 	mutex_lock(&gadget->udc->connect_lock);
747 	ret = usb_gadget_connect_locked(gadget);
748 	mutex_unlock(&gadget->udc->connect_lock);
749 
750 	return ret;
751 }
752 EXPORT_SYMBOL_GPL(usb_gadget_connect);
753 
754 static int usb_gadget_disconnect_locked(struct usb_gadget *gadget)
755 	__must_hold(&gadget->udc->connect_lock)
756 {
757 	int ret = 0;
758 
759 	if (!gadget->ops->pullup) {
760 		ret = -EOPNOTSUPP;
761 		goto out;
762 	}
763 
764 	if (!gadget->connected)
765 		goto out;
766 
767 	if (gadget->deactivated || !gadget->udc->started) {
768 		/*
769 		 * If gadget is deactivated we only save new state.
770 		 * Gadget will stay disconnected after activation.
771 		 */
772 		gadget->connected = false;
773 		goto out;
774 	}
775 
776 	ret = gadget->ops->pullup(gadget, 0);
777 	if (!ret)
778 		gadget->connected = 0;
779 
780 	mutex_lock(&udc_lock);
781 	if (gadget->udc->driver)
782 		gadget->udc->driver->disconnect(gadget);
783 	mutex_unlock(&udc_lock);
784 
785 out:
786 	trace_usb_gadget_disconnect(gadget, ret);
787 
788 	return ret;
789 }
790 
791 /**
792  * usb_gadget_disconnect - software-controlled disconnect from USB host
793  * @gadget:the peripheral being disconnected
794  *
795  * Disables the D+ (or potentially D-) pullup, which the host may see
796  * as a disconnect (when a VBUS session is active).  Not all systems
797  * support software pullup controls.
798  *
799  * Following a successful disconnect, invoke the ->disconnect() callback
800  * for the current gadget driver so that UDC drivers don't need to.
801  *
802  * Returns zero on success, else negative errno.
803  */
804 int usb_gadget_disconnect(struct usb_gadget *gadget)
805 {
806 	int ret;
807 
808 	mutex_lock(&gadget->udc->connect_lock);
809 	ret = usb_gadget_disconnect_locked(gadget);
810 	mutex_unlock(&gadget->udc->connect_lock);
811 
812 	return ret;
813 }
814 EXPORT_SYMBOL_GPL(usb_gadget_disconnect);
815 
816 /**
817  * usb_gadget_deactivate - deactivate function which is not ready to work
818  * @gadget: the peripheral being deactivated
819  *
820  * This routine may be used during the gadget driver bind() call to prevent
821  * the peripheral from ever being visible to the USB host, unless later
822  * usb_gadget_activate() is called.  For example, user mode components may
823  * need to be activated before the system can talk to hosts.
824  *
825  * Returns zero on success, else negative errno.
826  */
827 int usb_gadget_deactivate(struct usb_gadget *gadget)
828 {
829 	int ret = 0;
830 
831 	mutex_lock(&gadget->udc->connect_lock);
832 	if (gadget->deactivated)
833 		goto unlock;
834 
835 	if (gadget->connected) {
836 		ret = usb_gadget_disconnect_locked(gadget);
837 		if (ret)
838 			goto unlock;
839 
840 		/*
841 		 * If gadget was being connected before deactivation, we want
842 		 * to reconnect it in usb_gadget_activate().
843 		 */
844 		gadget->connected = true;
845 	}
846 	gadget->deactivated = true;
847 
848 unlock:
849 	mutex_unlock(&gadget->udc->connect_lock);
850 	trace_usb_gadget_deactivate(gadget, ret);
851 
852 	return ret;
853 }
854 EXPORT_SYMBOL_GPL(usb_gadget_deactivate);
855 
856 /**
857  * usb_gadget_activate - activate function which is not ready to work
858  * @gadget: the peripheral being activated
859  *
860  * This routine activates gadget which was previously deactivated with
861  * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
862  *
863  * Returns zero on success, else negative errno.
864  */
865 int usb_gadget_activate(struct usb_gadget *gadget)
866 {
867 	int ret = 0;
868 
869 	mutex_lock(&gadget->udc->connect_lock);
870 	if (!gadget->deactivated)
871 		goto unlock;
872 
873 	gadget->deactivated = false;
874 
875 	/*
876 	 * If gadget has been connected before deactivation, or became connected
877 	 * while it was being deactivated, we call usb_gadget_connect().
878 	 */
879 	if (gadget->connected)
880 		ret = usb_gadget_connect_locked(gadget);
881 	mutex_unlock(&gadget->udc->connect_lock);
882 
883 unlock:
884 	mutex_unlock(&gadget->udc->connect_lock);
885 	trace_usb_gadget_activate(gadget, ret);
886 
887 	return ret;
888 }
889 EXPORT_SYMBOL_GPL(usb_gadget_activate);
890 
891 /* ------------------------------------------------------------------------- */
892 
893 #ifdef	CONFIG_HAS_DMA
894 
895 int usb_gadget_map_request_by_dev(struct device *dev,
896 		struct usb_request *req, int is_in)
897 {
898 	if (req->length == 0)
899 		return 0;
900 
901 	if (req->num_sgs) {
902 		int     mapped;
903 
904 		mapped = dma_map_sg(dev, req->sg, req->num_sgs,
905 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
906 		if (mapped == 0) {
907 			dev_err(dev, "failed to map SGs\n");
908 			return -EFAULT;
909 		}
910 
911 		req->num_mapped_sgs = mapped;
912 	} else {
913 		if (is_vmalloc_addr(req->buf)) {
914 			dev_err(dev, "buffer is not dma capable\n");
915 			return -EFAULT;
916 		} else if (object_is_on_stack(req->buf)) {
917 			dev_err(dev, "buffer is on stack\n");
918 			return -EFAULT;
919 		}
920 
921 		req->dma = dma_map_single(dev, req->buf, req->length,
922 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
923 
924 		if (dma_mapping_error(dev, req->dma)) {
925 			dev_err(dev, "failed to map buffer\n");
926 			return -EFAULT;
927 		}
928 
929 		req->dma_mapped = 1;
930 	}
931 
932 	return 0;
933 }
934 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev);
935 
936 int usb_gadget_map_request(struct usb_gadget *gadget,
937 		struct usb_request *req, int is_in)
938 {
939 	return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in);
940 }
941 EXPORT_SYMBOL_GPL(usb_gadget_map_request);
942 
943 void usb_gadget_unmap_request_by_dev(struct device *dev,
944 		struct usb_request *req, int is_in)
945 {
946 	if (req->length == 0)
947 		return;
948 
949 	if (req->num_mapped_sgs) {
950 		dma_unmap_sg(dev, req->sg, req->num_sgs,
951 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
952 
953 		req->num_mapped_sgs = 0;
954 	} else if (req->dma_mapped) {
955 		dma_unmap_single(dev, req->dma, req->length,
956 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
957 		req->dma_mapped = 0;
958 	}
959 }
960 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev);
961 
962 void usb_gadget_unmap_request(struct usb_gadget *gadget,
963 		struct usb_request *req, int is_in)
964 {
965 	usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in);
966 }
967 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request);
968 
969 #endif	/* CONFIG_HAS_DMA */
970 
971 /* ------------------------------------------------------------------------- */
972 
973 /**
974  * usb_gadget_giveback_request - give the request back to the gadget layer
975  * @ep: the endpoint to be used with with the request
976  * @req: the request being given back
977  *
978  * This is called by device controller drivers in order to return the
979  * completed request back to the gadget layer.
980  */
981 void usb_gadget_giveback_request(struct usb_ep *ep,
982 		struct usb_request *req)
983 {
984 	if (likely(req->status == 0))
985 		usb_led_activity(USB_LED_EVENT_GADGET);
986 
987 	trace_usb_gadget_giveback_request(ep, req, 0);
988 
989 	req->complete(ep, req);
990 }
991 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request);
992 
993 /* ------------------------------------------------------------------------- */
994 
995 /**
996  * gadget_find_ep_by_name - returns ep whose name is the same as sting passed
997  *	in second parameter or NULL if searched endpoint not found
998  * @g: controller to check for quirk
999  * @name: name of searched endpoint
1000  */
1001 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name)
1002 {
1003 	struct usb_ep *ep;
1004 
1005 	gadget_for_each_ep(ep, g) {
1006 		if (!strcmp(ep->name, name))
1007 			return ep;
1008 	}
1009 
1010 	return NULL;
1011 }
1012 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name);
1013 
1014 /* ------------------------------------------------------------------------- */
1015 
1016 int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
1017 		struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
1018 		struct usb_ss_ep_comp_descriptor *ep_comp)
1019 {
1020 	u8		type;
1021 	u16		max;
1022 	int		num_req_streams = 0;
1023 
1024 	/* endpoint already claimed? */
1025 	if (ep->claimed)
1026 		return 0;
1027 
1028 	type = usb_endpoint_type(desc);
1029 	max = usb_endpoint_maxp(desc);
1030 
1031 	if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in)
1032 		return 0;
1033 	if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out)
1034 		return 0;
1035 
1036 	if (max > ep->maxpacket_limit)
1037 		return 0;
1038 
1039 	/* "high bandwidth" works only at high speed */
1040 	if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1)
1041 		return 0;
1042 
1043 	switch (type) {
1044 	case USB_ENDPOINT_XFER_CONTROL:
1045 		/* only support ep0 for portable CONTROL traffic */
1046 		return 0;
1047 	case USB_ENDPOINT_XFER_ISOC:
1048 		if (!ep->caps.type_iso)
1049 			return 0;
1050 		/* ISO:  limit 1023 bytes full speed, 1024 high/super speed */
1051 		if (!gadget_is_dualspeed(gadget) && max > 1023)
1052 			return 0;
1053 		break;
1054 	case USB_ENDPOINT_XFER_BULK:
1055 		if (!ep->caps.type_bulk)
1056 			return 0;
1057 		if (ep_comp && gadget_is_superspeed(gadget)) {
1058 			/* Get the number of required streams from the
1059 			 * EP companion descriptor and see if the EP
1060 			 * matches it
1061 			 */
1062 			num_req_streams = ep_comp->bmAttributes & 0x1f;
1063 			if (num_req_streams > ep->max_streams)
1064 				return 0;
1065 		}
1066 		break;
1067 	case USB_ENDPOINT_XFER_INT:
1068 		/* Bulk endpoints handle interrupt transfers,
1069 		 * except the toggle-quirky iso-synch kind
1070 		 */
1071 		if (!ep->caps.type_int && !ep->caps.type_bulk)
1072 			return 0;
1073 		/* INT:  limit 64 bytes full speed, 1024 high/super speed */
1074 		if (!gadget_is_dualspeed(gadget) && max > 64)
1075 			return 0;
1076 		break;
1077 	}
1078 
1079 	return 1;
1080 }
1081 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc);
1082 
1083 /**
1084  * usb_gadget_check_config - checks if the UDC can support the binded
1085  *	configuration
1086  * @gadget: controller to check the USB configuration
1087  *
1088  * Ensure that a UDC is able to support the requested resources by a
1089  * configuration, and that there are no resource limitations, such as
1090  * internal memory allocated to all requested endpoints.
1091  *
1092  * Returns zero on success, else a negative errno.
1093  */
1094 int usb_gadget_check_config(struct usb_gadget *gadget)
1095 {
1096 	if (gadget->ops->check_config)
1097 		return gadget->ops->check_config(gadget);
1098 	return 0;
1099 }
1100 EXPORT_SYMBOL_GPL(usb_gadget_check_config);
1101 
1102 /* ------------------------------------------------------------------------- */
1103 
1104 static void usb_gadget_state_work(struct work_struct *work)
1105 {
1106 	struct usb_gadget *gadget = work_to_gadget(work);
1107 	struct usb_udc *udc = gadget->udc;
1108 
1109 	if (udc)
1110 		sysfs_notify(&udc->dev.kobj, NULL, "state");
1111 }
1112 
1113 void usb_gadget_set_state(struct usb_gadget *gadget,
1114 		enum usb_device_state state)
1115 {
1116 	gadget->state = state;
1117 	schedule_work(&gadget->work);
1118 }
1119 EXPORT_SYMBOL_GPL(usb_gadget_set_state);
1120 
1121 /* ------------------------------------------------------------------------- */
1122 
1123 /* Acquire connect_lock before calling this function. */
1124 static void usb_udc_connect_control_locked(struct usb_udc *udc) __must_hold(&udc->connect_lock)
1125 {
1126 	if (udc->vbus)
1127 		usb_gadget_connect_locked(udc->gadget);
1128 	else
1129 		usb_gadget_disconnect_locked(udc->gadget);
1130 }
1131 
1132 static void vbus_event_work(struct work_struct *work)
1133 {
1134 	struct usb_udc *udc = container_of(work, struct usb_udc, vbus_work);
1135 
1136 	mutex_lock(&udc->connect_lock);
1137 	usb_udc_connect_control_locked(udc);
1138 	mutex_unlock(&udc->connect_lock);
1139 }
1140 
1141 /**
1142  * usb_udc_vbus_handler - updates the udc core vbus status, and try to
1143  * connect or disconnect gadget
1144  * @gadget: The gadget which vbus change occurs
1145  * @status: The vbus status
1146  *
1147  * The udc driver calls it when it wants to connect or disconnect gadget
1148  * according to vbus status.
1149  *
1150  * This function can be invoked from interrupt context by irq handlers of
1151  * the gadget drivers, however, usb_udc_connect_control() has to run in
1152  * non-atomic context due to the following:
1153  * a. Some of the gadget driver implementations expect the ->pullup
1154  * callback to be invoked in non-atomic context.
1155  * b. usb_gadget_disconnect() acquires udc_lock which is a mutex.
1156  * Hence offload invocation of usb_udc_connect_control() to workqueue.
1157  */
1158 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status)
1159 {
1160 	struct usb_udc *udc = gadget->udc;
1161 
1162 	if (udc) {
1163 		udc->vbus = status;
1164 		schedule_work(&udc->vbus_work);
1165 	}
1166 }
1167 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler);
1168 
1169 /**
1170  * usb_gadget_udc_reset - notifies the udc core that bus reset occurs
1171  * @gadget: The gadget which bus reset occurs
1172  * @driver: The gadget driver we want to notify
1173  *
1174  * If the udc driver has bus reset handler, it needs to call this when the bus
1175  * reset occurs, it notifies the gadget driver that the bus reset occurs as
1176  * well as updates gadget state.
1177  */
1178 void usb_gadget_udc_reset(struct usb_gadget *gadget,
1179 		struct usb_gadget_driver *driver)
1180 {
1181 	driver->reset(gadget);
1182 	usb_gadget_set_state(gadget, USB_STATE_DEFAULT);
1183 }
1184 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset);
1185 
1186 /**
1187  * usb_gadget_udc_start_locked - tells usb device controller to start up
1188  * @udc: The UDC to be started
1189  *
1190  * This call is issued by the UDC Class driver when it's about
1191  * to register a gadget driver to the device controller, before
1192  * calling gadget driver's bind() method.
1193  *
1194  * It allows the controller to be powered off until strictly
1195  * necessary to have it powered on.
1196  *
1197  * Returns zero on success, else negative errno.
1198  *
1199  * Caller should acquire connect_lock before invoking this function.
1200  */
1201 static inline int usb_gadget_udc_start_locked(struct usb_udc *udc)
1202 	__must_hold(&udc->connect_lock)
1203 {
1204 	int ret;
1205 
1206 	if (udc->started) {
1207 		dev_err(&udc->dev, "UDC had already started\n");
1208 		return -EBUSY;
1209 	}
1210 
1211 	ret = udc->gadget->ops->udc_start(udc->gadget, udc->driver);
1212 	if (!ret)
1213 		udc->started = true;
1214 
1215 	return ret;
1216 }
1217 
1218 /**
1219  * usb_gadget_udc_stop_locked - tells usb device controller we don't need it anymore
1220  * @udc: The UDC to be stopped
1221  *
1222  * This call is issued by the UDC Class driver after calling
1223  * gadget driver's unbind() method.
1224  *
1225  * The details are implementation specific, but it can go as
1226  * far as powering off UDC completely and disable its data
1227  * line pullups.
1228  *
1229  * Caller should acquire connect lock before invoking this function.
1230  */
1231 static inline void usb_gadget_udc_stop_locked(struct usb_udc *udc)
1232 	__must_hold(&udc->connect_lock)
1233 {
1234 	if (!udc->started) {
1235 		dev_err(&udc->dev, "UDC had already stopped\n");
1236 		return;
1237 	}
1238 
1239 	udc->gadget->ops->udc_stop(udc->gadget);
1240 	udc->started = false;
1241 }
1242 
1243 /**
1244  * usb_gadget_udc_set_speed - tells usb device controller speed supported by
1245  *    current driver
1246  * @udc: The device we want to set maximum speed
1247  * @speed: The maximum speed to allowed to run
1248  *
1249  * This call is issued by the UDC Class driver before calling
1250  * usb_gadget_udc_start() in order to make sure that we don't try to
1251  * connect on speeds the gadget driver doesn't support.
1252  */
1253 static inline void usb_gadget_udc_set_speed(struct usb_udc *udc,
1254 					    enum usb_device_speed speed)
1255 {
1256 	struct usb_gadget *gadget = udc->gadget;
1257 	enum usb_device_speed s;
1258 
1259 	if (speed == USB_SPEED_UNKNOWN)
1260 		s = gadget->max_speed;
1261 	else
1262 		s = min(speed, gadget->max_speed);
1263 
1264 	if (s == USB_SPEED_SUPER_PLUS && gadget->ops->udc_set_ssp_rate)
1265 		gadget->ops->udc_set_ssp_rate(gadget, gadget->max_ssp_rate);
1266 	else if (gadget->ops->udc_set_speed)
1267 		gadget->ops->udc_set_speed(gadget, s);
1268 }
1269 
1270 /**
1271  * usb_gadget_enable_async_callbacks - tell usb device controller to enable asynchronous callbacks
1272  * @udc: The UDC which should enable async callbacks
1273  *
1274  * This routine is used when binding gadget drivers.  It undoes the effect
1275  * of usb_gadget_disable_async_callbacks(); the UDC driver should enable IRQs
1276  * (if necessary) and resume issuing callbacks.
1277  *
1278  * This routine will always be called in process context.
1279  */
1280 static inline void usb_gadget_enable_async_callbacks(struct usb_udc *udc)
1281 {
1282 	struct usb_gadget *gadget = udc->gadget;
1283 
1284 	if (gadget->ops->udc_async_callbacks)
1285 		gadget->ops->udc_async_callbacks(gadget, true);
1286 }
1287 
1288 /**
1289  * usb_gadget_disable_async_callbacks - tell usb device controller to disable asynchronous callbacks
1290  * @udc: The UDC which should disable async callbacks
1291  *
1292  * This routine is used when unbinding gadget drivers.  It prevents a race:
1293  * The UDC driver doesn't know when the gadget driver's ->unbind callback
1294  * runs, so unless it is told to disable asynchronous callbacks, it might
1295  * issue a callback (such as ->disconnect) after the unbind has completed.
1296  *
1297  * After this function runs, the UDC driver must suppress all ->suspend,
1298  * ->resume, ->disconnect, ->reset, and ->setup callbacks to the gadget driver
1299  * until async callbacks are again enabled.  A simple-minded but effective
1300  * way to accomplish this is to tell the UDC hardware not to generate any
1301  * more IRQs.
1302  *
1303  * Request completion callbacks must still be issued.  However, it's okay
1304  * to defer them until the request is cancelled, since the pull-up will be
1305  * turned off during the time period when async callbacks are disabled.
1306  *
1307  * This routine will always be called in process context.
1308  */
1309 static inline void usb_gadget_disable_async_callbacks(struct usb_udc *udc)
1310 {
1311 	struct usb_gadget *gadget = udc->gadget;
1312 
1313 	if (gadget->ops->udc_async_callbacks)
1314 		gadget->ops->udc_async_callbacks(gadget, false);
1315 }
1316 
1317 /**
1318  * usb_udc_release - release the usb_udc struct
1319  * @dev: the dev member within usb_udc
1320  *
1321  * This is called by driver's core in order to free memory once the last
1322  * reference is released.
1323  */
1324 static void usb_udc_release(struct device *dev)
1325 {
1326 	struct usb_udc *udc;
1327 
1328 	udc = container_of(dev, struct usb_udc, dev);
1329 	dev_dbg(dev, "releasing '%s'\n", dev_name(dev));
1330 	kfree(udc);
1331 }
1332 
1333 static const struct attribute_group *usb_udc_attr_groups[];
1334 
1335 static void usb_udc_nop_release(struct device *dev)
1336 {
1337 	dev_vdbg(dev, "%s\n", __func__);
1338 }
1339 
1340 /**
1341  * usb_initialize_gadget - initialize a gadget and its embedded struct device
1342  * @parent: the parent device to this udc. Usually the controller driver's
1343  * device.
1344  * @gadget: the gadget to be initialized.
1345  * @release: a gadget release function.
1346  */
1347 void usb_initialize_gadget(struct device *parent, struct usb_gadget *gadget,
1348 		void (*release)(struct device *dev))
1349 {
1350 	INIT_WORK(&gadget->work, usb_gadget_state_work);
1351 	gadget->dev.parent = parent;
1352 
1353 	if (release)
1354 		gadget->dev.release = release;
1355 	else
1356 		gadget->dev.release = usb_udc_nop_release;
1357 
1358 	device_initialize(&gadget->dev);
1359 	gadget->dev.bus = &gadget_bus_type;
1360 }
1361 EXPORT_SYMBOL_GPL(usb_initialize_gadget);
1362 
1363 /**
1364  * usb_add_gadget - adds a new gadget to the udc class driver list
1365  * @gadget: the gadget to be added to the list.
1366  *
1367  * Returns zero on success, negative errno otherwise.
1368  * Does not do a final usb_put_gadget() if an error occurs.
1369  */
1370 int usb_add_gadget(struct usb_gadget *gadget)
1371 {
1372 	struct usb_udc		*udc;
1373 	int			ret = -ENOMEM;
1374 
1375 	udc = kzalloc(sizeof(*udc), GFP_KERNEL);
1376 	if (!udc)
1377 		goto error;
1378 
1379 	device_initialize(&udc->dev);
1380 	udc->dev.release = usb_udc_release;
1381 	udc->dev.class = udc_class;
1382 	udc->dev.groups = usb_udc_attr_groups;
1383 	udc->dev.parent = gadget->dev.parent;
1384 	ret = dev_set_name(&udc->dev, "%s",
1385 			kobject_name(&gadget->dev.parent->kobj));
1386 	if (ret)
1387 		goto err_put_udc;
1388 
1389 	udc->gadget = gadget;
1390 	gadget->udc = udc;
1391 	mutex_init(&udc->connect_lock);
1392 
1393 	udc->started = false;
1394 
1395 	mutex_lock(&udc_lock);
1396 	list_add_tail(&udc->list, &udc_list);
1397 	mutex_unlock(&udc_lock);
1398 	INIT_WORK(&udc->vbus_work, vbus_event_work);
1399 
1400 	ret = device_add(&udc->dev);
1401 	if (ret)
1402 		goto err_unlist_udc;
1403 
1404 	usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED);
1405 	udc->vbus = true;
1406 
1407 	ret = ida_alloc(&gadget_id_numbers, GFP_KERNEL);
1408 	if (ret < 0)
1409 		goto err_del_udc;
1410 	gadget->id_number = ret;
1411 	dev_set_name(&gadget->dev, "gadget.%d", ret);
1412 
1413 	ret = device_add(&gadget->dev);
1414 	if (ret)
1415 		goto err_free_id;
1416 
1417 	return 0;
1418 
1419  err_free_id:
1420 	ida_free(&gadget_id_numbers, gadget->id_number);
1421 
1422  err_del_udc:
1423 	flush_work(&gadget->work);
1424 	device_del(&udc->dev);
1425 
1426  err_unlist_udc:
1427 	mutex_lock(&udc_lock);
1428 	list_del(&udc->list);
1429 	mutex_unlock(&udc_lock);
1430 
1431  err_put_udc:
1432 	put_device(&udc->dev);
1433 
1434  error:
1435 	return ret;
1436 }
1437 EXPORT_SYMBOL_GPL(usb_add_gadget);
1438 
1439 /**
1440  * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list
1441  * @parent: the parent device to this udc. Usually the controller driver's
1442  * device.
1443  * @gadget: the gadget to be added to the list.
1444  * @release: a gadget release function.
1445  *
1446  * Returns zero on success, negative errno otherwise.
1447  * Calls the gadget release function in the latter case.
1448  */
1449 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget,
1450 		void (*release)(struct device *dev))
1451 {
1452 	int	ret;
1453 
1454 	usb_initialize_gadget(parent, gadget, release);
1455 	ret = usb_add_gadget(gadget);
1456 	if (ret)
1457 		usb_put_gadget(gadget);
1458 	return ret;
1459 }
1460 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release);
1461 
1462 /**
1463  * usb_get_gadget_udc_name - get the name of the first UDC controller
1464  * This functions returns the name of the first UDC controller in the system.
1465  * Please note that this interface is usefull only for legacy drivers which
1466  * assume that there is only one UDC controller in the system and they need to
1467  * get its name before initialization. There is no guarantee that the UDC
1468  * of the returned name will be still available, when gadget driver registers
1469  * itself.
1470  *
1471  * Returns pointer to string with UDC controller name on success, NULL
1472  * otherwise. Caller should kfree() returned string.
1473  */
1474 char *usb_get_gadget_udc_name(void)
1475 {
1476 	struct usb_udc *udc;
1477 	char *name = NULL;
1478 
1479 	/* For now we take the first available UDC */
1480 	mutex_lock(&udc_lock);
1481 	list_for_each_entry(udc, &udc_list, list) {
1482 		if (!udc->driver) {
1483 			name = kstrdup(udc->gadget->name, GFP_KERNEL);
1484 			break;
1485 		}
1486 	}
1487 	mutex_unlock(&udc_lock);
1488 	return name;
1489 }
1490 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name);
1491 
1492 /**
1493  * usb_add_gadget_udc - adds a new gadget to the udc class driver list
1494  * @parent: the parent device to this udc. Usually the controller
1495  * driver's device.
1496  * @gadget: the gadget to be added to the list
1497  *
1498  * Returns zero on success, negative errno otherwise.
1499  */
1500 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget)
1501 {
1502 	return usb_add_gadget_udc_release(parent, gadget, NULL);
1503 }
1504 EXPORT_SYMBOL_GPL(usb_add_gadget_udc);
1505 
1506 /**
1507  * usb_del_gadget - deletes a gadget and unregisters its udc
1508  * @gadget: the gadget to be deleted.
1509  *
1510  * This will unbind @gadget, if it is bound.
1511  * It will not do a final usb_put_gadget().
1512  */
1513 void usb_del_gadget(struct usb_gadget *gadget)
1514 {
1515 	struct usb_udc *udc = gadget->udc;
1516 
1517 	if (!udc)
1518 		return;
1519 
1520 	dev_vdbg(gadget->dev.parent, "unregistering gadget\n");
1521 
1522 	mutex_lock(&udc_lock);
1523 	list_del(&udc->list);
1524 	mutex_unlock(&udc_lock);
1525 
1526 	kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE);
1527 	flush_work(&gadget->work);
1528 	device_del(&gadget->dev);
1529 	ida_free(&gadget_id_numbers, gadget->id_number);
1530 	cancel_work_sync(&udc->vbus_work);
1531 	device_unregister(&udc->dev);
1532 }
1533 EXPORT_SYMBOL_GPL(usb_del_gadget);
1534 
1535 /**
1536  * usb_del_gadget_udc - unregisters a gadget
1537  * @gadget: the gadget to be unregistered.
1538  *
1539  * Calls usb_del_gadget() and does a final usb_put_gadget().
1540  */
1541 void usb_del_gadget_udc(struct usb_gadget *gadget)
1542 {
1543 	usb_del_gadget(gadget);
1544 	usb_put_gadget(gadget);
1545 }
1546 EXPORT_SYMBOL_GPL(usb_del_gadget_udc);
1547 
1548 /* ------------------------------------------------------------------------- */
1549 
1550 static int gadget_match_driver(struct device *dev, struct device_driver *drv)
1551 {
1552 	struct usb_gadget *gadget = dev_to_usb_gadget(dev);
1553 	struct usb_udc *udc = gadget->udc;
1554 	struct usb_gadget_driver *driver = container_of(drv,
1555 			struct usb_gadget_driver, driver);
1556 
1557 	/* If the driver specifies a udc_name, it must match the UDC's name */
1558 	if (driver->udc_name &&
1559 			strcmp(driver->udc_name, dev_name(&udc->dev)) != 0)
1560 		return 0;
1561 
1562 	/* If the driver is already bound to a gadget, it doesn't match */
1563 	if (driver->is_bound)
1564 		return 0;
1565 
1566 	/* Otherwise any gadget driver matches any UDC */
1567 	return 1;
1568 }
1569 
1570 static int gadget_bind_driver(struct device *dev)
1571 {
1572 	struct usb_gadget *gadget = dev_to_usb_gadget(dev);
1573 	struct usb_udc *udc = gadget->udc;
1574 	struct usb_gadget_driver *driver = container_of(dev->driver,
1575 			struct usb_gadget_driver, driver);
1576 	int ret = 0;
1577 
1578 	mutex_lock(&udc_lock);
1579 	if (driver->is_bound) {
1580 		mutex_unlock(&udc_lock);
1581 		return -ENXIO;		/* Driver binds to only one gadget */
1582 	}
1583 	driver->is_bound = true;
1584 	udc->driver = driver;
1585 	mutex_unlock(&udc_lock);
1586 
1587 	dev_dbg(&udc->dev, "binding gadget driver [%s]\n", driver->function);
1588 
1589 	usb_gadget_udc_set_speed(udc, driver->max_speed);
1590 
1591 	ret = driver->bind(udc->gadget, driver);
1592 	if (ret)
1593 		goto err_bind;
1594 
1595 	mutex_lock(&udc->connect_lock);
1596 	ret = usb_gadget_udc_start_locked(udc);
1597 	if (ret) {
1598 		mutex_unlock(&udc->connect_lock);
1599 		goto err_start;
1600 	}
1601 	usb_gadget_enable_async_callbacks(udc);
1602 	udc->allow_connect = true;
1603 	usb_udc_connect_control_locked(udc);
1604 	mutex_unlock(&udc->connect_lock);
1605 
1606 	kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1607 	return 0;
1608 
1609  err_start:
1610 	driver->unbind(udc->gadget);
1611 
1612  err_bind:
1613 	if (ret != -EISNAM)
1614 		dev_err(&udc->dev, "failed to start %s: %d\n",
1615 			driver->function, ret);
1616 
1617 	mutex_lock(&udc_lock);
1618 	udc->driver = NULL;
1619 	driver->is_bound = false;
1620 	mutex_unlock(&udc_lock);
1621 
1622 	return ret;
1623 }
1624 
1625 static void gadget_unbind_driver(struct device *dev)
1626 {
1627 	struct usb_gadget *gadget = dev_to_usb_gadget(dev);
1628 	struct usb_udc *udc = gadget->udc;
1629 	struct usb_gadget_driver *driver = udc->driver;
1630 
1631 	dev_dbg(&udc->dev, "unbinding gadget driver [%s]\n", driver->function);
1632 
1633 	kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1634 
1635 	udc->allow_connect = false;
1636 	cancel_work_sync(&udc->vbus_work);
1637 	mutex_lock(&udc->connect_lock);
1638 	usb_gadget_disconnect_locked(gadget);
1639 	usb_gadget_disable_async_callbacks(udc);
1640 	if (gadget->irq)
1641 		synchronize_irq(gadget->irq);
1642 	udc->driver->unbind(gadget);
1643 	usb_gadget_udc_stop_locked(udc);
1644 	mutex_unlock(&udc->connect_lock);
1645 
1646 	mutex_lock(&udc_lock);
1647 	driver->is_bound = false;
1648 	udc->driver = NULL;
1649 	mutex_unlock(&udc_lock);
1650 }
1651 
1652 /* ------------------------------------------------------------------------- */
1653 
1654 int usb_gadget_register_driver_owner(struct usb_gadget_driver *driver,
1655 		struct module *owner, const char *mod_name)
1656 {
1657 	int ret;
1658 
1659 	if (!driver || !driver->bind || !driver->setup)
1660 		return -EINVAL;
1661 
1662 	driver->driver.bus = &gadget_bus_type;
1663 	driver->driver.owner = owner;
1664 	driver->driver.mod_name = mod_name;
1665 	ret = driver_register(&driver->driver);
1666 	if (ret) {
1667 		pr_warn("%s: driver registration failed: %d\n",
1668 				driver->function, ret);
1669 		return ret;
1670 	}
1671 
1672 	mutex_lock(&udc_lock);
1673 	if (!driver->is_bound) {
1674 		if (driver->match_existing_only) {
1675 			pr_warn("%s: couldn't find an available UDC or it's busy\n",
1676 					driver->function);
1677 			ret = -EBUSY;
1678 		} else {
1679 			pr_info("%s: couldn't find an available UDC\n",
1680 					driver->function);
1681 			ret = 0;
1682 		}
1683 	}
1684 	mutex_unlock(&udc_lock);
1685 
1686 	if (ret)
1687 		driver_unregister(&driver->driver);
1688 	return ret;
1689 }
1690 EXPORT_SYMBOL_GPL(usb_gadget_register_driver_owner);
1691 
1692 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
1693 {
1694 	if (!driver || !driver->unbind)
1695 		return -EINVAL;
1696 
1697 	driver_unregister(&driver->driver);
1698 	return 0;
1699 }
1700 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver);
1701 
1702 /* ------------------------------------------------------------------------- */
1703 
1704 static ssize_t srp_store(struct device *dev,
1705 		struct device_attribute *attr, const char *buf, size_t n)
1706 {
1707 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1708 
1709 	if (sysfs_streq(buf, "1"))
1710 		usb_gadget_wakeup(udc->gadget);
1711 
1712 	return n;
1713 }
1714 static DEVICE_ATTR_WO(srp);
1715 
1716 static ssize_t soft_connect_store(struct device *dev,
1717 		struct device_attribute *attr, const char *buf, size_t n)
1718 {
1719 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1720 	ssize_t			ret;
1721 
1722 	device_lock(&udc->gadget->dev);
1723 	if (!udc->driver) {
1724 		dev_err(dev, "soft-connect without a gadget driver\n");
1725 		ret = -EOPNOTSUPP;
1726 		goto out;
1727 	}
1728 
1729 	if (sysfs_streq(buf, "connect")) {
1730 		mutex_lock(&udc->connect_lock);
1731 		usb_gadget_udc_start_locked(udc);
1732 		usb_gadget_connect_locked(udc->gadget);
1733 		mutex_unlock(&udc->connect_lock);
1734 	} else if (sysfs_streq(buf, "disconnect")) {
1735 		mutex_lock(&udc->connect_lock);
1736 		usb_gadget_disconnect_locked(udc->gadget);
1737 		usb_gadget_udc_stop_locked(udc);
1738 		mutex_unlock(&udc->connect_lock);
1739 	} else {
1740 		dev_err(dev, "unsupported command '%s'\n", buf);
1741 		ret = -EINVAL;
1742 		goto out;
1743 	}
1744 
1745 	ret = n;
1746 out:
1747 	device_unlock(&udc->gadget->dev);
1748 	return ret;
1749 }
1750 static DEVICE_ATTR_WO(soft_connect);
1751 
1752 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
1753 			  char *buf)
1754 {
1755 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1756 	struct usb_gadget	*gadget = udc->gadget;
1757 
1758 	return sprintf(buf, "%s\n", usb_state_string(gadget->state));
1759 }
1760 static DEVICE_ATTR_RO(state);
1761 
1762 static ssize_t function_show(struct device *dev, struct device_attribute *attr,
1763 			     char *buf)
1764 {
1765 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1766 	struct usb_gadget_driver *drv;
1767 	int			rc = 0;
1768 
1769 	mutex_lock(&udc_lock);
1770 	drv = udc->driver;
1771 	if (drv && drv->function)
1772 		rc = scnprintf(buf, PAGE_SIZE, "%s\n", drv->function);
1773 	mutex_unlock(&udc_lock);
1774 	return rc;
1775 }
1776 static DEVICE_ATTR_RO(function);
1777 
1778 #define USB_UDC_SPEED_ATTR(name, param)					\
1779 ssize_t name##_show(struct device *dev,					\
1780 		struct device_attribute *attr, char *buf)		\
1781 {									\
1782 	struct usb_udc *udc = container_of(dev, struct usb_udc, dev);	\
1783 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1784 			usb_speed_string(udc->gadget->param));		\
1785 }									\
1786 static DEVICE_ATTR_RO(name)
1787 
1788 static USB_UDC_SPEED_ATTR(current_speed, speed);
1789 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed);
1790 
1791 #define USB_UDC_ATTR(name)					\
1792 ssize_t name##_show(struct device *dev,				\
1793 		struct device_attribute *attr, char *buf)	\
1794 {								\
1795 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev); \
1796 	struct usb_gadget	*gadget = udc->gadget;		\
1797 								\
1798 	return scnprintf(buf, PAGE_SIZE, "%d\n", gadget->name);	\
1799 }								\
1800 static DEVICE_ATTR_RO(name)
1801 
1802 static USB_UDC_ATTR(is_otg);
1803 static USB_UDC_ATTR(is_a_peripheral);
1804 static USB_UDC_ATTR(b_hnp_enable);
1805 static USB_UDC_ATTR(a_hnp_support);
1806 static USB_UDC_ATTR(a_alt_hnp_support);
1807 static USB_UDC_ATTR(is_selfpowered);
1808 
1809 static struct attribute *usb_udc_attrs[] = {
1810 	&dev_attr_srp.attr,
1811 	&dev_attr_soft_connect.attr,
1812 	&dev_attr_state.attr,
1813 	&dev_attr_function.attr,
1814 	&dev_attr_current_speed.attr,
1815 	&dev_attr_maximum_speed.attr,
1816 
1817 	&dev_attr_is_otg.attr,
1818 	&dev_attr_is_a_peripheral.attr,
1819 	&dev_attr_b_hnp_enable.attr,
1820 	&dev_attr_a_hnp_support.attr,
1821 	&dev_attr_a_alt_hnp_support.attr,
1822 	&dev_attr_is_selfpowered.attr,
1823 	NULL,
1824 };
1825 
1826 static const struct attribute_group usb_udc_attr_group = {
1827 	.attrs = usb_udc_attrs,
1828 };
1829 
1830 static const struct attribute_group *usb_udc_attr_groups[] = {
1831 	&usb_udc_attr_group,
1832 	NULL,
1833 };
1834 
1835 static int usb_udc_uevent(const struct device *dev, struct kobj_uevent_env *env)
1836 {
1837 	const struct usb_udc	*udc = container_of(dev, struct usb_udc, dev);
1838 	int			ret;
1839 
1840 	ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name);
1841 	if (ret) {
1842 		dev_err(dev, "failed to add uevent USB_UDC_NAME\n");
1843 		return ret;
1844 	}
1845 
1846 	mutex_lock(&udc_lock);
1847 	if (udc->driver)
1848 		ret = add_uevent_var(env, "USB_UDC_DRIVER=%s",
1849 				udc->driver->function);
1850 	mutex_unlock(&udc_lock);
1851 	if (ret) {
1852 		dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n");
1853 		return ret;
1854 	}
1855 
1856 	return 0;
1857 }
1858 
1859 static const struct bus_type gadget_bus_type = {
1860 	.name = "gadget",
1861 	.probe = gadget_bind_driver,
1862 	.remove = gadget_unbind_driver,
1863 	.match = gadget_match_driver,
1864 };
1865 
1866 static int __init usb_udc_init(void)
1867 {
1868 	int rc;
1869 
1870 	udc_class = class_create("udc");
1871 	if (IS_ERR(udc_class)) {
1872 		pr_err("failed to create udc class --> %ld\n",
1873 				PTR_ERR(udc_class));
1874 		return PTR_ERR(udc_class);
1875 	}
1876 
1877 	udc_class->dev_uevent = usb_udc_uevent;
1878 
1879 	rc = bus_register(&gadget_bus_type);
1880 	if (rc)
1881 		class_destroy(udc_class);
1882 	return rc;
1883 }
1884 subsys_initcall(usb_udc_init);
1885 
1886 static void __exit usb_udc_exit(void)
1887 {
1888 	bus_unregister(&gadget_bus_type);
1889 	class_destroy(udc_class);
1890 }
1891 module_exit(usb_udc_exit);
1892 
1893 MODULE_DESCRIPTION("UDC Framework");
1894 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>");
1895 MODULE_LICENSE("GPL v2");
1896