xref: /openbmc/linux/drivers/usb/gadget/udc/core.c (revision b4e18b29)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * udc.c - Core UDC Framework
4  *
5  * Copyright (C) 2010 Texas Instruments
6  * Author: Felipe Balbi <balbi@ti.com>
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/device.h>
12 #include <linux/list.h>
13 #include <linux/err.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/workqueue.h>
17 
18 #include <linux/usb/ch9.h>
19 #include <linux/usb/gadget.h>
20 #include <linux/usb.h>
21 
22 #include "trace.h"
23 
24 /**
25  * struct usb_udc - describes one usb device controller
26  * @driver: the gadget driver pointer. For use by the class code
27  * @dev: the child device to the actual controller
28  * @gadget: the gadget. For use by the class code
29  * @list: for use by the udc class driver
30  * @vbus: for udcs who care about vbus status, this value is real vbus status;
31  * for udcs who do not care about vbus status, this value is always true
32  *
33  * This represents the internal data structure which is used by the UDC-class
34  * to hold information about udc driver and gadget together.
35  */
36 struct usb_udc {
37 	struct usb_gadget_driver	*driver;
38 	struct usb_gadget		*gadget;
39 	struct device			dev;
40 	struct list_head		list;
41 	bool				vbus;
42 };
43 
44 static struct class *udc_class;
45 static LIST_HEAD(udc_list);
46 static LIST_HEAD(gadget_driver_pending_list);
47 static DEFINE_MUTEX(udc_lock);
48 
49 static int udc_bind_to_driver(struct usb_udc *udc,
50 		struct usb_gadget_driver *driver);
51 
52 /* ------------------------------------------------------------------------- */
53 
54 /**
55  * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
56  * @ep:the endpoint being configured
57  * @maxpacket_limit:value of maximum packet size limit
58  *
59  * This function should be used only in UDC drivers to initialize endpoint
60  * (usually in probe function).
61  */
62 void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
63 					      unsigned maxpacket_limit)
64 {
65 	ep->maxpacket_limit = maxpacket_limit;
66 	ep->maxpacket = maxpacket_limit;
67 
68 	trace_usb_ep_set_maxpacket_limit(ep, 0);
69 }
70 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit);
71 
72 /**
73  * usb_ep_enable - configure endpoint, making it usable
74  * @ep:the endpoint being configured.  may not be the endpoint named "ep0".
75  *	drivers discover endpoints through the ep_list of a usb_gadget.
76  *
77  * When configurations are set, or when interface settings change, the driver
78  * will enable or disable the relevant endpoints.  while it is enabled, an
79  * endpoint may be used for i/o until the driver receives a disconnect() from
80  * the host or until the endpoint is disabled.
81  *
82  * the ep0 implementation (which calls this routine) must ensure that the
83  * hardware capabilities of each endpoint match the descriptor provided
84  * for it.  for example, an endpoint named "ep2in-bulk" would be usable
85  * for interrupt transfers as well as bulk, but it likely couldn't be used
86  * for iso transfers or for endpoint 14.  some endpoints are fully
87  * configurable, with more generic names like "ep-a".  (remember that for
88  * USB, "in" means "towards the USB host".)
89  *
90  * This routine must be called in process context.
91  *
92  * returns zero, or a negative error code.
93  */
94 int usb_ep_enable(struct usb_ep *ep)
95 {
96 	int ret = 0;
97 
98 	if (ep->enabled)
99 		goto out;
100 
101 	/* UDC drivers can't handle endpoints with maxpacket size 0 */
102 	if (usb_endpoint_maxp(ep->desc) == 0) {
103 		/*
104 		 * We should log an error message here, but we can't call
105 		 * dev_err() because there's no way to find the gadget
106 		 * given only ep.
107 		 */
108 		ret = -EINVAL;
109 		goto out;
110 	}
111 
112 	ret = ep->ops->enable(ep, ep->desc);
113 	if (ret)
114 		goto out;
115 
116 	ep->enabled = true;
117 
118 out:
119 	trace_usb_ep_enable(ep, ret);
120 
121 	return ret;
122 }
123 EXPORT_SYMBOL_GPL(usb_ep_enable);
124 
125 /**
126  * usb_ep_disable - endpoint is no longer usable
127  * @ep:the endpoint being unconfigured.  may not be the endpoint named "ep0".
128  *
129  * no other task may be using this endpoint when this is called.
130  * any pending and uncompleted requests will complete with status
131  * indicating disconnect (-ESHUTDOWN) before this call returns.
132  * gadget drivers must call usb_ep_enable() again before queueing
133  * requests to the endpoint.
134  *
135  * This routine must be called in process context.
136  *
137  * returns zero, or a negative error code.
138  */
139 int usb_ep_disable(struct usb_ep *ep)
140 {
141 	int ret = 0;
142 
143 	if (!ep->enabled)
144 		goto out;
145 
146 	ret = ep->ops->disable(ep);
147 	if (ret)
148 		goto out;
149 
150 	ep->enabled = false;
151 
152 out:
153 	trace_usb_ep_disable(ep, ret);
154 
155 	return ret;
156 }
157 EXPORT_SYMBOL_GPL(usb_ep_disable);
158 
159 /**
160  * usb_ep_alloc_request - allocate a request object to use with this endpoint
161  * @ep:the endpoint to be used with with the request
162  * @gfp_flags:GFP_* flags to use
163  *
164  * Request objects must be allocated with this call, since they normally
165  * need controller-specific setup and may even need endpoint-specific
166  * resources such as allocation of DMA descriptors.
167  * Requests may be submitted with usb_ep_queue(), and receive a single
168  * completion callback.  Free requests with usb_ep_free_request(), when
169  * they are no longer needed.
170  *
171  * Returns the request, or null if one could not be allocated.
172  */
173 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
174 						       gfp_t gfp_flags)
175 {
176 	struct usb_request *req = NULL;
177 
178 	req = ep->ops->alloc_request(ep, gfp_flags);
179 
180 	trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM);
181 
182 	return req;
183 }
184 EXPORT_SYMBOL_GPL(usb_ep_alloc_request);
185 
186 /**
187  * usb_ep_free_request - frees a request object
188  * @ep:the endpoint associated with the request
189  * @req:the request being freed
190  *
191  * Reverses the effect of usb_ep_alloc_request().
192  * Caller guarantees the request is not queued, and that it will
193  * no longer be requeued (or otherwise used).
194  */
195 void usb_ep_free_request(struct usb_ep *ep,
196 				       struct usb_request *req)
197 {
198 	trace_usb_ep_free_request(ep, req, 0);
199 	ep->ops->free_request(ep, req);
200 }
201 EXPORT_SYMBOL_GPL(usb_ep_free_request);
202 
203 /**
204  * usb_ep_queue - queues (submits) an I/O request to an endpoint.
205  * @ep:the endpoint associated with the request
206  * @req:the request being submitted
207  * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
208  *	pre-allocate all necessary memory with the request.
209  *
210  * This tells the device controller to perform the specified request through
211  * that endpoint (reading or writing a buffer).  When the request completes,
212  * including being canceled by usb_ep_dequeue(), the request's completion
213  * routine is called to return the request to the driver.  Any endpoint
214  * (except control endpoints like ep0) may have more than one transfer
215  * request queued; they complete in FIFO order.  Once a gadget driver
216  * submits a request, that request may not be examined or modified until it
217  * is given back to that driver through the completion callback.
218  *
219  * Each request is turned into one or more packets.  The controller driver
220  * never merges adjacent requests into the same packet.  OUT transfers
221  * will sometimes use data that's already buffered in the hardware.
222  * Drivers can rely on the fact that the first byte of the request's buffer
223  * always corresponds to the first byte of some USB packet, for both
224  * IN and OUT transfers.
225  *
226  * Bulk endpoints can queue any amount of data; the transfer is packetized
227  * automatically.  The last packet will be short if the request doesn't fill it
228  * out completely.  Zero length packets (ZLPs) should be avoided in portable
229  * protocols since not all usb hardware can successfully handle zero length
230  * packets.  (ZLPs may be explicitly written, and may be implicitly written if
231  * the request 'zero' flag is set.)  Bulk endpoints may also be used
232  * for interrupt transfers; but the reverse is not true, and some endpoints
233  * won't support every interrupt transfer.  (Such as 768 byte packets.)
234  *
235  * Interrupt-only endpoints are less functional than bulk endpoints, for
236  * example by not supporting queueing or not handling buffers that are
237  * larger than the endpoint's maxpacket size.  They may also treat data
238  * toggle differently.
239  *
240  * Control endpoints ... after getting a setup() callback, the driver queues
241  * one response (even if it would be zero length).  That enables the
242  * status ack, after transferring data as specified in the response.  Setup
243  * functions may return negative error codes to generate protocol stalls.
244  * (Note that some USB device controllers disallow protocol stall responses
245  * in some cases.)  When control responses are deferred (the response is
246  * written after the setup callback returns), then usb_ep_set_halt() may be
247  * used on ep0 to trigger protocol stalls.  Depending on the controller,
248  * it may not be possible to trigger a status-stage protocol stall when the
249  * data stage is over, that is, from within the response's completion
250  * routine.
251  *
252  * For periodic endpoints, like interrupt or isochronous ones, the usb host
253  * arranges to poll once per interval, and the gadget driver usually will
254  * have queued some data to transfer at that time.
255  *
256  * Note that @req's ->complete() callback must never be called from
257  * within usb_ep_queue() as that can create deadlock situations.
258  *
259  * This routine may be called in interrupt context.
260  *
261  * Returns zero, or a negative error code.  Endpoints that are not enabled
262  * report errors; errors will also be
263  * reported when the usb peripheral is disconnected.
264  *
265  * If and only if @req is successfully queued (the return value is zero),
266  * @req->complete() will be called exactly once, when the Gadget core and
267  * UDC are finished with the request.  When the completion function is called,
268  * control of the request is returned to the device driver which submitted it.
269  * The completion handler may then immediately free or reuse @req.
270  */
271 int usb_ep_queue(struct usb_ep *ep,
272 			       struct usb_request *req, gfp_t gfp_flags)
273 {
274 	int ret = 0;
275 
276 	if (WARN_ON_ONCE(!ep->enabled && ep->address)) {
277 		ret = -ESHUTDOWN;
278 		goto out;
279 	}
280 
281 	ret = ep->ops->queue(ep, req, gfp_flags);
282 
283 out:
284 	trace_usb_ep_queue(ep, req, ret);
285 
286 	return ret;
287 }
288 EXPORT_SYMBOL_GPL(usb_ep_queue);
289 
290 /**
291  * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
292  * @ep:the endpoint associated with the request
293  * @req:the request being canceled
294  *
295  * If the request is still active on the endpoint, it is dequeued and
296  * eventually its completion routine is called (with status -ECONNRESET);
297  * else a negative error code is returned.  This routine is asynchronous,
298  * that is, it may return before the completion routine runs.
299  *
300  * Note that some hardware can't clear out write fifos (to unlink the request
301  * at the head of the queue) except as part of disconnecting from usb. Such
302  * restrictions prevent drivers from supporting configuration changes,
303  * even to configuration zero (a "chapter 9" requirement).
304  *
305  * This routine may be called in interrupt context.
306  */
307 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
308 {
309 	int ret;
310 
311 	ret = ep->ops->dequeue(ep, req);
312 	trace_usb_ep_dequeue(ep, req, ret);
313 
314 	return ret;
315 }
316 EXPORT_SYMBOL_GPL(usb_ep_dequeue);
317 
318 /**
319  * usb_ep_set_halt - sets the endpoint halt feature.
320  * @ep: the non-isochronous endpoint being stalled
321  *
322  * Use this to stall an endpoint, perhaps as an error report.
323  * Except for control endpoints,
324  * the endpoint stays halted (will not stream any data) until the host
325  * clears this feature; drivers may need to empty the endpoint's request
326  * queue first, to make sure no inappropriate transfers happen.
327  *
328  * Note that while an endpoint CLEAR_FEATURE will be invisible to the
329  * gadget driver, a SET_INTERFACE will not be.  To reset endpoints for the
330  * current altsetting, see usb_ep_clear_halt().  When switching altsettings,
331  * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
332  *
333  * This routine may be called in interrupt context.
334  *
335  * Returns zero, or a negative error code.  On success, this call sets
336  * underlying hardware state that blocks data transfers.
337  * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
338  * transfer requests are still queued, or if the controller hardware
339  * (usually a FIFO) still holds bytes that the host hasn't collected.
340  */
341 int usb_ep_set_halt(struct usb_ep *ep)
342 {
343 	int ret;
344 
345 	ret = ep->ops->set_halt(ep, 1);
346 	trace_usb_ep_set_halt(ep, ret);
347 
348 	return ret;
349 }
350 EXPORT_SYMBOL_GPL(usb_ep_set_halt);
351 
352 /**
353  * usb_ep_clear_halt - clears endpoint halt, and resets toggle
354  * @ep:the bulk or interrupt endpoint being reset
355  *
356  * Use this when responding to the standard usb "set interface" request,
357  * for endpoints that aren't reconfigured, after clearing any other state
358  * in the endpoint's i/o queue.
359  *
360  * This routine may be called in interrupt context.
361  *
362  * Returns zero, or a negative error code.  On success, this call clears
363  * the underlying hardware state reflecting endpoint halt and data toggle.
364  * Note that some hardware can't support this request (like pxa2xx_udc),
365  * and accordingly can't correctly implement interface altsettings.
366  */
367 int usb_ep_clear_halt(struct usb_ep *ep)
368 {
369 	int ret;
370 
371 	ret = ep->ops->set_halt(ep, 0);
372 	trace_usb_ep_clear_halt(ep, ret);
373 
374 	return ret;
375 }
376 EXPORT_SYMBOL_GPL(usb_ep_clear_halt);
377 
378 /**
379  * usb_ep_set_wedge - sets the halt feature and ignores clear requests
380  * @ep: the endpoint being wedged
381  *
382  * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
383  * requests. If the gadget driver clears the halt status, it will
384  * automatically unwedge the endpoint.
385  *
386  * This routine may be called in interrupt context.
387  *
388  * Returns zero on success, else negative errno.
389  */
390 int usb_ep_set_wedge(struct usb_ep *ep)
391 {
392 	int ret;
393 
394 	if (ep->ops->set_wedge)
395 		ret = ep->ops->set_wedge(ep);
396 	else
397 		ret = ep->ops->set_halt(ep, 1);
398 
399 	trace_usb_ep_set_wedge(ep, ret);
400 
401 	return ret;
402 }
403 EXPORT_SYMBOL_GPL(usb_ep_set_wedge);
404 
405 /**
406  * usb_ep_fifo_status - returns number of bytes in fifo, or error
407  * @ep: the endpoint whose fifo status is being checked.
408  *
409  * FIFO endpoints may have "unclaimed data" in them in certain cases,
410  * such as after aborted transfers.  Hosts may not have collected all
411  * the IN data written by the gadget driver (and reported by a request
412  * completion).  The gadget driver may not have collected all the data
413  * written OUT to it by the host.  Drivers that need precise handling for
414  * fault reporting or recovery may need to use this call.
415  *
416  * This routine may be called in interrupt context.
417  *
418  * This returns the number of such bytes in the fifo, or a negative
419  * errno if the endpoint doesn't use a FIFO or doesn't support such
420  * precise handling.
421  */
422 int usb_ep_fifo_status(struct usb_ep *ep)
423 {
424 	int ret;
425 
426 	if (ep->ops->fifo_status)
427 		ret = ep->ops->fifo_status(ep);
428 	else
429 		ret = -EOPNOTSUPP;
430 
431 	trace_usb_ep_fifo_status(ep, ret);
432 
433 	return ret;
434 }
435 EXPORT_SYMBOL_GPL(usb_ep_fifo_status);
436 
437 /**
438  * usb_ep_fifo_flush - flushes contents of a fifo
439  * @ep: the endpoint whose fifo is being flushed.
440  *
441  * This call may be used to flush the "unclaimed data" that may exist in
442  * an endpoint fifo after abnormal transaction terminations.  The call
443  * must never be used except when endpoint is not being used for any
444  * protocol translation.
445  *
446  * This routine may be called in interrupt context.
447  */
448 void usb_ep_fifo_flush(struct usb_ep *ep)
449 {
450 	if (ep->ops->fifo_flush)
451 		ep->ops->fifo_flush(ep);
452 
453 	trace_usb_ep_fifo_flush(ep, 0);
454 }
455 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush);
456 
457 /* ------------------------------------------------------------------------- */
458 
459 /**
460  * usb_gadget_frame_number - returns the current frame number
461  * @gadget: controller that reports the frame number
462  *
463  * Returns the usb frame number, normally eleven bits from a SOF packet,
464  * or negative errno if this device doesn't support this capability.
465  */
466 int usb_gadget_frame_number(struct usb_gadget *gadget)
467 {
468 	int ret;
469 
470 	ret = gadget->ops->get_frame(gadget);
471 
472 	trace_usb_gadget_frame_number(gadget, ret);
473 
474 	return ret;
475 }
476 EXPORT_SYMBOL_GPL(usb_gadget_frame_number);
477 
478 /**
479  * usb_gadget_wakeup - tries to wake up the host connected to this gadget
480  * @gadget: controller used to wake up the host
481  *
482  * Returns zero on success, else negative error code if the hardware
483  * doesn't support such attempts, or its support has not been enabled
484  * by the usb host.  Drivers must return device descriptors that report
485  * their ability to support this, or hosts won't enable it.
486  *
487  * This may also try to use SRP to wake the host and start enumeration,
488  * even if OTG isn't otherwise in use.  OTG devices may also start
489  * remote wakeup even when hosts don't explicitly enable it.
490  */
491 int usb_gadget_wakeup(struct usb_gadget *gadget)
492 {
493 	int ret = 0;
494 
495 	if (!gadget->ops->wakeup) {
496 		ret = -EOPNOTSUPP;
497 		goto out;
498 	}
499 
500 	ret = gadget->ops->wakeup(gadget);
501 
502 out:
503 	trace_usb_gadget_wakeup(gadget, ret);
504 
505 	return ret;
506 }
507 EXPORT_SYMBOL_GPL(usb_gadget_wakeup);
508 
509 /**
510  * usb_gadget_set_selfpowered - sets the device selfpowered feature.
511  * @gadget:the device being declared as self-powered
512  *
513  * this affects the device status reported by the hardware driver
514  * to reflect that it now has a local power supply.
515  *
516  * returns zero on success, else negative errno.
517  */
518 int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
519 {
520 	int ret = 0;
521 
522 	if (!gadget->ops->set_selfpowered) {
523 		ret = -EOPNOTSUPP;
524 		goto out;
525 	}
526 
527 	ret = gadget->ops->set_selfpowered(gadget, 1);
528 
529 out:
530 	trace_usb_gadget_set_selfpowered(gadget, ret);
531 
532 	return ret;
533 }
534 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered);
535 
536 /**
537  * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
538  * @gadget:the device being declared as bus-powered
539  *
540  * this affects the device status reported by the hardware driver.
541  * some hardware may not support bus-powered operation, in which
542  * case this feature's value can never change.
543  *
544  * returns zero on success, else negative errno.
545  */
546 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
547 {
548 	int ret = 0;
549 
550 	if (!gadget->ops->set_selfpowered) {
551 		ret = -EOPNOTSUPP;
552 		goto out;
553 	}
554 
555 	ret = gadget->ops->set_selfpowered(gadget, 0);
556 
557 out:
558 	trace_usb_gadget_clear_selfpowered(gadget, ret);
559 
560 	return ret;
561 }
562 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered);
563 
564 /**
565  * usb_gadget_vbus_connect - Notify controller that VBUS is powered
566  * @gadget:The device which now has VBUS power.
567  * Context: can sleep
568  *
569  * This call is used by a driver for an external transceiver (or GPIO)
570  * that detects a VBUS power session starting.  Common responses include
571  * resuming the controller, activating the D+ (or D-) pullup to let the
572  * host detect that a USB device is attached, and starting to draw power
573  * (8mA or possibly more, especially after SET_CONFIGURATION).
574  *
575  * Returns zero on success, else negative errno.
576  */
577 int usb_gadget_vbus_connect(struct usb_gadget *gadget)
578 {
579 	int ret = 0;
580 
581 	if (!gadget->ops->vbus_session) {
582 		ret = -EOPNOTSUPP;
583 		goto out;
584 	}
585 
586 	ret = gadget->ops->vbus_session(gadget, 1);
587 
588 out:
589 	trace_usb_gadget_vbus_connect(gadget, ret);
590 
591 	return ret;
592 }
593 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect);
594 
595 /**
596  * usb_gadget_vbus_draw - constrain controller's VBUS power usage
597  * @gadget:The device whose VBUS usage is being described
598  * @mA:How much current to draw, in milliAmperes.  This should be twice
599  *	the value listed in the configuration descriptor bMaxPower field.
600  *
601  * This call is used by gadget drivers during SET_CONFIGURATION calls,
602  * reporting how much power the device may consume.  For example, this
603  * could affect how quickly batteries are recharged.
604  *
605  * Returns zero on success, else negative errno.
606  */
607 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
608 {
609 	int ret = 0;
610 
611 	if (!gadget->ops->vbus_draw) {
612 		ret = -EOPNOTSUPP;
613 		goto out;
614 	}
615 
616 	ret = gadget->ops->vbus_draw(gadget, mA);
617 	if (!ret)
618 		gadget->mA = mA;
619 
620 out:
621 	trace_usb_gadget_vbus_draw(gadget, ret);
622 
623 	return ret;
624 }
625 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw);
626 
627 /**
628  * usb_gadget_vbus_disconnect - notify controller about VBUS session end
629  * @gadget:the device whose VBUS supply is being described
630  * Context: can sleep
631  *
632  * This call is used by a driver for an external transceiver (or GPIO)
633  * that detects a VBUS power session ending.  Common responses include
634  * reversing everything done in usb_gadget_vbus_connect().
635  *
636  * Returns zero on success, else negative errno.
637  */
638 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
639 {
640 	int ret = 0;
641 
642 	if (!gadget->ops->vbus_session) {
643 		ret = -EOPNOTSUPP;
644 		goto out;
645 	}
646 
647 	ret = gadget->ops->vbus_session(gadget, 0);
648 
649 out:
650 	trace_usb_gadget_vbus_disconnect(gadget, ret);
651 
652 	return ret;
653 }
654 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect);
655 
656 /**
657  * usb_gadget_connect - software-controlled connect to USB host
658  * @gadget:the peripheral being connected
659  *
660  * Enables the D+ (or potentially D-) pullup.  The host will start
661  * enumerating this gadget when the pullup is active and a VBUS session
662  * is active (the link is powered).
663  *
664  * Returns zero on success, else negative errno.
665  */
666 int usb_gadget_connect(struct usb_gadget *gadget)
667 {
668 	int ret = 0;
669 
670 	if (!gadget->ops->pullup) {
671 		ret = -EOPNOTSUPP;
672 		goto out;
673 	}
674 
675 	if (gadget->deactivated) {
676 		/*
677 		 * If gadget is deactivated we only save new state.
678 		 * Gadget will be connected automatically after activation.
679 		 */
680 		gadget->connected = true;
681 		goto out;
682 	}
683 
684 	ret = gadget->ops->pullup(gadget, 1);
685 	if (!ret)
686 		gadget->connected = 1;
687 
688 out:
689 	trace_usb_gadget_connect(gadget, ret);
690 
691 	return ret;
692 }
693 EXPORT_SYMBOL_GPL(usb_gadget_connect);
694 
695 /**
696  * usb_gadget_disconnect - software-controlled disconnect from USB host
697  * @gadget:the peripheral being disconnected
698  *
699  * Disables the D+ (or potentially D-) pullup, which the host may see
700  * as a disconnect (when a VBUS session is active).  Not all systems
701  * support software pullup controls.
702  *
703  * Following a successful disconnect, invoke the ->disconnect() callback
704  * for the current gadget driver so that UDC drivers don't need to.
705  *
706  * Returns zero on success, else negative errno.
707  */
708 int usb_gadget_disconnect(struct usb_gadget *gadget)
709 {
710 	int ret = 0;
711 
712 	if (!gadget->ops->pullup) {
713 		ret = -EOPNOTSUPP;
714 		goto out;
715 	}
716 
717 	if (!gadget->connected)
718 		goto out;
719 
720 	if (gadget->deactivated) {
721 		/*
722 		 * If gadget is deactivated we only save new state.
723 		 * Gadget will stay disconnected after activation.
724 		 */
725 		gadget->connected = false;
726 		goto out;
727 	}
728 
729 	ret = gadget->ops->pullup(gadget, 0);
730 	if (!ret) {
731 		gadget->connected = 0;
732 		gadget->udc->driver->disconnect(gadget);
733 	}
734 
735 out:
736 	trace_usb_gadget_disconnect(gadget, ret);
737 
738 	return ret;
739 }
740 EXPORT_SYMBOL_GPL(usb_gadget_disconnect);
741 
742 /**
743  * usb_gadget_deactivate - deactivate function which is not ready to work
744  * @gadget: the peripheral being deactivated
745  *
746  * This routine may be used during the gadget driver bind() call to prevent
747  * the peripheral from ever being visible to the USB host, unless later
748  * usb_gadget_activate() is called.  For example, user mode components may
749  * need to be activated before the system can talk to hosts.
750  *
751  * Returns zero on success, else negative errno.
752  */
753 int usb_gadget_deactivate(struct usb_gadget *gadget)
754 {
755 	int ret = 0;
756 
757 	if (gadget->deactivated)
758 		goto out;
759 
760 	if (gadget->connected) {
761 		ret = usb_gadget_disconnect(gadget);
762 		if (ret)
763 			goto out;
764 
765 		/*
766 		 * If gadget was being connected before deactivation, we want
767 		 * to reconnect it in usb_gadget_activate().
768 		 */
769 		gadget->connected = true;
770 	}
771 	gadget->deactivated = true;
772 
773 out:
774 	trace_usb_gadget_deactivate(gadget, ret);
775 
776 	return ret;
777 }
778 EXPORT_SYMBOL_GPL(usb_gadget_deactivate);
779 
780 /**
781  * usb_gadget_activate - activate function which is not ready to work
782  * @gadget: the peripheral being activated
783  *
784  * This routine activates gadget which was previously deactivated with
785  * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
786  *
787  * Returns zero on success, else negative errno.
788  */
789 int usb_gadget_activate(struct usb_gadget *gadget)
790 {
791 	int ret = 0;
792 
793 	if (!gadget->deactivated)
794 		goto out;
795 
796 	gadget->deactivated = false;
797 
798 	/*
799 	 * If gadget has been connected before deactivation, or became connected
800 	 * while it was being deactivated, we call usb_gadget_connect().
801 	 */
802 	if (gadget->connected)
803 		ret = usb_gadget_connect(gadget);
804 
805 out:
806 	trace_usb_gadget_activate(gadget, ret);
807 
808 	return ret;
809 }
810 EXPORT_SYMBOL_GPL(usb_gadget_activate);
811 
812 /* ------------------------------------------------------------------------- */
813 
814 #ifdef	CONFIG_HAS_DMA
815 
816 int usb_gadget_map_request_by_dev(struct device *dev,
817 		struct usb_request *req, int is_in)
818 {
819 	if (req->length == 0)
820 		return 0;
821 
822 	if (req->num_sgs) {
823 		int     mapped;
824 
825 		mapped = dma_map_sg(dev, req->sg, req->num_sgs,
826 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
827 		if (mapped == 0) {
828 			dev_err(dev, "failed to map SGs\n");
829 			return -EFAULT;
830 		}
831 
832 		req->num_mapped_sgs = mapped;
833 	} else {
834 		if (is_vmalloc_addr(req->buf)) {
835 			dev_err(dev, "buffer is not dma capable\n");
836 			return -EFAULT;
837 		} else if (object_is_on_stack(req->buf)) {
838 			dev_err(dev, "buffer is on stack\n");
839 			return -EFAULT;
840 		}
841 
842 		req->dma = dma_map_single(dev, req->buf, req->length,
843 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
844 
845 		if (dma_mapping_error(dev, req->dma)) {
846 			dev_err(dev, "failed to map buffer\n");
847 			return -EFAULT;
848 		}
849 
850 		req->dma_mapped = 1;
851 	}
852 
853 	return 0;
854 }
855 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev);
856 
857 int usb_gadget_map_request(struct usb_gadget *gadget,
858 		struct usb_request *req, int is_in)
859 {
860 	return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in);
861 }
862 EXPORT_SYMBOL_GPL(usb_gadget_map_request);
863 
864 void usb_gadget_unmap_request_by_dev(struct device *dev,
865 		struct usb_request *req, int is_in)
866 {
867 	if (req->length == 0)
868 		return;
869 
870 	if (req->num_mapped_sgs) {
871 		dma_unmap_sg(dev, req->sg, req->num_sgs,
872 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
873 
874 		req->num_mapped_sgs = 0;
875 	} else if (req->dma_mapped) {
876 		dma_unmap_single(dev, req->dma, req->length,
877 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
878 		req->dma_mapped = 0;
879 	}
880 }
881 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev);
882 
883 void usb_gadget_unmap_request(struct usb_gadget *gadget,
884 		struct usb_request *req, int is_in)
885 {
886 	usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in);
887 }
888 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request);
889 
890 #endif	/* CONFIG_HAS_DMA */
891 
892 /* ------------------------------------------------------------------------- */
893 
894 /**
895  * usb_gadget_giveback_request - give the request back to the gadget layer
896  * @ep: the endpoint to be used with with the request
897  * @req: the request being given back
898  *
899  * This is called by device controller drivers in order to return the
900  * completed request back to the gadget layer.
901  */
902 void usb_gadget_giveback_request(struct usb_ep *ep,
903 		struct usb_request *req)
904 {
905 	if (likely(req->status == 0))
906 		usb_led_activity(USB_LED_EVENT_GADGET);
907 
908 	trace_usb_gadget_giveback_request(ep, req, 0);
909 
910 	req->complete(ep, req);
911 }
912 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request);
913 
914 /* ------------------------------------------------------------------------- */
915 
916 /**
917  * gadget_find_ep_by_name - returns ep whose name is the same as sting passed
918  *	in second parameter or NULL if searched endpoint not found
919  * @g: controller to check for quirk
920  * @name: name of searched endpoint
921  */
922 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name)
923 {
924 	struct usb_ep *ep;
925 
926 	gadget_for_each_ep(ep, g) {
927 		if (!strcmp(ep->name, name))
928 			return ep;
929 	}
930 
931 	return NULL;
932 }
933 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name);
934 
935 /* ------------------------------------------------------------------------- */
936 
937 int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
938 		struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
939 		struct usb_ss_ep_comp_descriptor *ep_comp)
940 {
941 	u8		type;
942 	u16		max;
943 	int		num_req_streams = 0;
944 
945 	/* endpoint already claimed? */
946 	if (ep->claimed)
947 		return 0;
948 
949 	type = usb_endpoint_type(desc);
950 	max = usb_endpoint_maxp(desc);
951 
952 	if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in)
953 		return 0;
954 	if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out)
955 		return 0;
956 
957 	if (max > ep->maxpacket_limit)
958 		return 0;
959 
960 	/* "high bandwidth" works only at high speed */
961 	if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1)
962 		return 0;
963 
964 	switch (type) {
965 	case USB_ENDPOINT_XFER_CONTROL:
966 		/* only support ep0 for portable CONTROL traffic */
967 		return 0;
968 	case USB_ENDPOINT_XFER_ISOC:
969 		if (!ep->caps.type_iso)
970 			return 0;
971 		/* ISO:  limit 1023 bytes full speed, 1024 high/super speed */
972 		if (!gadget_is_dualspeed(gadget) && max > 1023)
973 			return 0;
974 		break;
975 	case USB_ENDPOINT_XFER_BULK:
976 		if (!ep->caps.type_bulk)
977 			return 0;
978 		if (ep_comp && gadget_is_superspeed(gadget)) {
979 			/* Get the number of required streams from the
980 			 * EP companion descriptor and see if the EP
981 			 * matches it
982 			 */
983 			num_req_streams = ep_comp->bmAttributes & 0x1f;
984 			if (num_req_streams > ep->max_streams)
985 				return 0;
986 		}
987 		break;
988 	case USB_ENDPOINT_XFER_INT:
989 		/* Bulk endpoints handle interrupt transfers,
990 		 * except the toggle-quirky iso-synch kind
991 		 */
992 		if (!ep->caps.type_int && !ep->caps.type_bulk)
993 			return 0;
994 		/* INT:  limit 64 bytes full speed, 1024 high/super speed */
995 		if (!gadget_is_dualspeed(gadget) && max > 64)
996 			return 0;
997 		break;
998 	}
999 
1000 	return 1;
1001 }
1002 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc);
1003 
1004 /* ------------------------------------------------------------------------- */
1005 
1006 static void usb_gadget_state_work(struct work_struct *work)
1007 {
1008 	struct usb_gadget *gadget = work_to_gadget(work);
1009 	struct usb_udc *udc = gadget->udc;
1010 
1011 	if (udc)
1012 		sysfs_notify(&udc->dev.kobj, NULL, "state");
1013 }
1014 
1015 void usb_gadget_set_state(struct usb_gadget *gadget,
1016 		enum usb_device_state state)
1017 {
1018 	gadget->state = state;
1019 	schedule_work(&gadget->work);
1020 }
1021 EXPORT_SYMBOL_GPL(usb_gadget_set_state);
1022 
1023 /* ------------------------------------------------------------------------- */
1024 
1025 static void usb_udc_connect_control(struct usb_udc *udc)
1026 {
1027 	if (udc->vbus)
1028 		usb_gadget_connect(udc->gadget);
1029 	else
1030 		usb_gadget_disconnect(udc->gadget);
1031 }
1032 
1033 /**
1034  * usb_udc_vbus_handler - updates the udc core vbus status, and try to
1035  * connect or disconnect gadget
1036  * @gadget: The gadget which vbus change occurs
1037  * @status: The vbus status
1038  *
1039  * The udc driver calls it when it wants to connect or disconnect gadget
1040  * according to vbus status.
1041  */
1042 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status)
1043 {
1044 	struct usb_udc *udc = gadget->udc;
1045 
1046 	if (udc) {
1047 		udc->vbus = status;
1048 		usb_udc_connect_control(udc);
1049 	}
1050 }
1051 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler);
1052 
1053 /**
1054  * usb_gadget_udc_reset - notifies the udc core that bus reset occurs
1055  * @gadget: The gadget which bus reset occurs
1056  * @driver: The gadget driver we want to notify
1057  *
1058  * If the udc driver has bus reset handler, it needs to call this when the bus
1059  * reset occurs, it notifies the gadget driver that the bus reset occurs as
1060  * well as updates gadget state.
1061  */
1062 void usb_gadget_udc_reset(struct usb_gadget *gadget,
1063 		struct usb_gadget_driver *driver)
1064 {
1065 	driver->reset(gadget);
1066 	usb_gadget_set_state(gadget, USB_STATE_DEFAULT);
1067 }
1068 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset);
1069 
1070 /**
1071  * usb_gadget_udc_start - tells usb device controller to start up
1072  * @udc: The UDC to be started
1073  *
1074  * This call is issued by the UDC Class driver when it's about
1075  * to register a gadget driver to the device controller, before
1076  * calling gadget driver's bind() method.
1077  *
1078  * It allows the controller to be powered off until strictly
1079  * necessary to have it powered on.
1080  *
1081  * Returns zero on success, else negative errno.
1082  */
1083 static inline int usb_gadget_udc_start(struct usb_udc *udc)
1084 {
1085 	return udc->gadget->ops->udc_start(udc->gadget, udc->driver);
1086 }
1087 
1088 /**
1089  * usb_gadget_udc_stop - tells usb device controller we don't need it anymore
1090  * @udc: The UDC to be stopped
1091  *
1092  * This call is issued by the UDC Class driver after calling
1093  * gadget driver's unbind() method.
1094  *
1095  * The details are implementation specific, but it can go as
1096  * far as powering off UDC completely and disable its data
1097  * line pullups.
1098  */
1099 static inline void usb_gadget_udc_stop(struct usb_udc *udc)
1100 {
1101 	udc->gadget->ops->udc_stop(udc->gadget);
1102 }
1103 
1104 /**
1105  * usb_gadget_udc_set_speed - tells usb device controller speed supported by
1106  *    current driver
1107  * @udc: The device we want to set maximum speed
1108  * @speed: The maximum speed to allowed to run
1109  *
1110  * This call is issued by the UDC Class driver before calling
1111  * usb_gadget_udc_start() in order to make sure that we don't try to
1112  * connect on speeds the gadget driver doesn't support.
1113  */
1114 static inline void usb_gadget_udc_set_speed(struct usb_udc *udc,
1115 					    enum usb_device_speed speed)
1116 {
1117 	if (udc->gadget->ops->udc_set_speed) {
1118 		enum usb_device_speed s;
1119 
1120 		s = min(speed, udc->gadget->max_speed);
1121 		udc->gadget->ops->udc_set_speed(udc->gadget, s);
1122 	}
1123 }
1124 
1125 /**
1126  * usb_udc_release - release the usb_udc struct
1127  * @dev: the dev member within usb_udc
1128  *
1129  * This is called by driver's core in order to free memory once the last
1130  * reference is released.
1131  */
1132 static void usb_udc_release(struct device *dev)
1133 {
1134 	struct usb_udc *udc;
1135 
1136 	udc = container_of(dev, struct usb_udc, dev);
1137 	dev_dbg(dev, "releasing '%s'\n", dev_name(dev));
1138 	kfree(udc);
1139 }
1140 
1141 static const struct attribute_group *usb_udc_attr_groups[];
1142 
1143 static void usb_udc_nop_release(struct device *dev)
1144 {
1145 	dev_vdbg(dev, "%s\n", __func__);
1146 }
1147 
1148 /* should be called with udc_lock held */
1149 static int check_pending_gadget_drivers(struct usb_udc *udc)
1150 {
1151 	struct usb_gadget_driver *driver;
1152 	int ret = 0;
1153 
1154 	list_for_each_entry(driver, &gadget_driver_pending_list, pending)
1155 		if (!driver->udc_name || strcmp(driver->udc_name,
1156 						dev_name(&udc->dev)) == 0) {
1157 			ret = udc_bind_to_driver(udc, driver);
1158 			if (ret != -EPROBE_DEFER)
1159 				list_del_init(&driver->pending);
1160 			break;
1161 		}
1162 
1163 	return ret;
1164 }
1165 
1166 /**
1167  * usb_initialize_gadget - initialize a gadget and its embedded struct device
1168  * @parent: the parent device to this udc. Usually the controller driver's
1169  * device.
1170  * @gadget: the gadget to be initialized.
1171  * @release: a gadget release function.
1172  *
1173  * Returns zero on success, negative errno otherwise.
1174  * Calls the gadget release function in the latter case.
1175  */
1176 void usb_initialize_gadget(struct device *parent, struct usb_gadget *gadget,
1177 		void (*release)(struct device *dev))
1178 {
1179 	dev_set_name(&gadget->dev, "gadget");
1180 	INIT_WORK(&gadget->work, usb_gadget_state_work);
1181 	gadget->dev.parent = parent;
1182 
1183 	if (release)
1184 		gadget->dev.release = release;
1185 	else
1186 		gadget->dev.release = usb_udc_nop_release;
1187 
1188 	device_initialize(&gadget->dev);
1189 }
1190 EXPORT_SYMBOL_GPL(usb_initialize_gadget);
1191 
1192 /**
1193  * usb_add_gadget - adds a new gadget to the udc class driver list
1194  * @gadget: the gadget to be added to the list.
1195  *
1196  * Returns zero on success, negative errno otherwise.
1197  * Does not do a final usb_put_gadget() if an error occurs.
1198  */
1199 int usb_add_gadget(struct usb_gadget *gadget)
1200 {
1201 	struct usb_udc		*udc;
1202 	int			ret = -ENOMEM;
1203 
1204 	udc = kzalloc(sizeof(*udc), GFP_KERNEL);
1205 	if (!udc)
1206 		goto error;
1207 
1208 	device_initialize(&udc->dev);
1209 	udc->dev.release = usb_udc_release;
1210 	udc->dev.class = udc_class;
1211 	udc->dev.groups = usb_udc_attr_groups;
1212 	udc->dev.parent = gadget->dev.parent;
1213 	ret = dev_set_name(&udc->dev, "%s",
1214 			kobject_name(&gadget->dev.parent->kobj));
1215 	if (ret)
1216 		goto err_put_udc;
1217 
1218 	ret = device_add(&gadget->dev);
1219 	if (ret)
1220 		goto err_put_udc;
1221 
1222 	udc->gadget = gadget;
1223 	gadget->udc = udc;
1224 
1225 	mutex_lock(&udc_lock);
1226 	list_add_tail(&udc->list, &udc_list);
1227 
1228 	ret = device_add(&udc->dev);
1229 	if (ret)
1230 		goto err_unlist_udc;
1231 
1232 	usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED);
1233 	udc->vbus = true;
1234 
1235 	/* pick up one of pending gadget drivers */
1236 	ret = check_pending_gadget_drivers(udc);
1237 	if (ret)
1238 		goto err_del_udc;
1239 
1240 	mutex_unlock(&udc_lock);
1241 
1242 	return 0;
1243 
1244  err_del_udc:
1245 	flush_work(&gadget->work);
1246 	device_del(&udc->dev);
1247 
1248  err_unlist_udc:
1249 	list_del(&udc->list);
1250 	mutex_unlock(&udc_lock);
1251 
1252 	device_del(&gadget->dev);
1253 
1254  err_put_udc:
1255 	put_device(&udc->dev);
1256 
1257  error:
1258 	return ret;
1259 }
1260 EXPORT_SYMBOL_GPL(usb_add_gadget);
1261 
1262 /**
1263  * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list
1264  * @parent: the parent device to this udc. Usually the controller driver's
1265  * device.
1266  * @gadget: the gadget to be added to the list.
1267  * @release: a gadget release function.
1268  *
1269  * Returns zero on success, negative errno otherwise.
1270  * Calls the gadget release function in the latter case.
1271  */
1272 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget,
1273 		void (*release)(struct device *dev))
1274 {
1275 	int	ret;
1276 
1277 	usb_initialize_gadget(parent, gadget, release);
1278 	ret = usb_add_gadget(gadget);
1279 	if (ret)
1280 		usb_put_gadget(gadget);
1281 	return ret;
1282 }
1283 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release);
1284 
1285 /**
1286  * usb_get_gadget_udc_name - get the name of the first UDC controller
1287  * This functions returns the name of the first UDC controller in the system.
1288  * Please note that this interface is usefull only for legacy drivers which
1289  * assume that there is only one UDC controller in the system and they need to
1290  * get its name before initialization. There is no guarantee that the UDC
1291  * of the returned name will be still available, when gadget driver registers
1292  * itself.
1293  *
1294  * Returns pointer to string with UDC controller name on success, NULL
1295  * otherwise. Caller should kfree() returned string.
1296  */
1297 char *usb_get_gadget_udc_name(void)
1298 {
1299 	struct usb_udc *udc;
1300 	char *name = NULL;
1301 
1302 	/* For now we take the first available UDC */
1303 	mutex_lock(&udc_lock);
1304 	list_for_each_entry(udc, &udc_list, list) {
1305 		if (!udc->driver) {
1306 			name = kstrdup(udc->gadget->name, GFP_KERNEL);
1307 			break;
1308 		}
1309 	}
1310 	mutex_unlock(&udc_lock);
1311 	return name;
1312 }
1313 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name);
1314 
1315 /**
1316  * usb_add_gadget_udc - adds a new gadget to the udc class driver list
1317  * @parent: the parent device to this udc. Usually the controller
1318  * driver's device.
1319  * @gadget: the gadget to be added to the list
1320  *
1321  * Returns zero on success, negative errno otherwise.
1322  */
1323 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget)
1324 {
1325 	return usb_add_gadget_udc_release(parent, gadget, NULL);
1326 }
1327 EXPORT_SYMBOL_GPL(usb_add_gadget_udc);
1328 
1329 static void usb_gadget_remove_driver(struct usb_udc *udc)
1330 {
1331 	dev_dbg(&udc->dev, "unregistering UDC driver [%s]\n",
1332 			udc->driver->function);
1333 
1334 	kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1335 
1336 	usb_gadget_disconnect(udc->gadget);
1337 	if (udc->gadget->irq)
1338 		synchronize_irq(udc->gadget->irq);
1339 	udc->driver->unbind(udc->gadget);
1340 	usb_gadget_udc_stop(udc);
1341 
1342 	udc->driver = NULL;
1343 	udc->dev.driver = NULL;
1344 	udc->gadget->dev.driver = NULL;
1345 }
1346 
1347 /**
1348  * usb_del_gadget - deletes @udc from udc_list
1349  * @gadget: the gadget to be removed.
1350  *
1351  * This will call usb_gadget_unregister_driver() if
1352  * the @udc is still busy.
1353  * It will not do a final usb_put_gadget().
1354  */
1355 void usb_del_gadget(struct usb_gadget *gadget)
1356 {
1357 	struct usb_udc *udc = gadget->udc;
1358 
1359 	if (!udc)
1360 		return;
1361 
1362 	dev_vdbg(gadget->dev.parent, "unregistering gadget\n");
1363 
1364 	mutex_lock(&udc_lock);
1365 	list_del(&udc->list);
1366 
1367 	if (udc->driver) {
1368 		struct usb_gadget_driver *driver = udc->driver;
1369 
1370 		usb_gadget_remove_driver(udc);
1371 		list_add(&driver->pending, &gadget_driver_pending_list);
1372 	}
1373 	mutex_unlock(&udc_lock);
1374 
1375 	kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE);
1376 	flush_work(&gadget->work);
1377 	device_unregister(&udc->dev);
1378 	device_del(&gadget->dev);
1379 }
1380 EXPORT_SYMBOL_GPL(usb_del_gadget);
1381 
1382 /**
1383  * usb_del_gadget_udc - deletes @udc from udc_list
1384  * @gadget: the gadget to be removed.
1385  *
1386  * Calls usb_del_gadget() and does a final usb_put_gadget().
1387  */
1388 void usb_del_gadget_udc(struct usb_gadget *gadget)
1389 {
1390 	usb_del_gadget(gadget);
1391 	usb_put_gadget(gadget);
1392 }
1393 EXPORT_SYMBOL_GPL(usb_del_gadget_udc);
1394 
1395 /* ------------------------------------------------------------------------- */
1396 
1397 static int udc_bind_to_driver(struct usb_udc *udc, struct usb_gadget_driver *driver)
1398 {
1399 	int ret;
1400 
1401 	dev_dbg(&udc->dev, "registering UDC driver [%s]\n",
1402 			driver->function);
1403 
1404 	udc->driver = driver;
1405 	udc->dev.driver = &driver->driver;
1406 	udc->gadget->dev.driver = &driver->driver;
1407 
1408 	usb_gadget_udc_set_speed(udc, driver->max_speed);
1409 
1410 	ret = driver->bind(udc->gadget, driver);
1411 	if (ret)
1412 		goto err1;
1413 	ret = usb_gadget_udc_start(udc);
1414 	if (ret) {
1415 		driver->unbind(udc->gadget);
1416 		goto err1;
1417 	}
1418 	usb_udc_connect_control(udc);
1419 
1420 	kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1421 	return 0;
1422 err1:
1423 	if (ret != -EISNAM)
1424 		dev_err(&udc->dev, "failed to start %s: %d\n",
1425 			udc->driver->function, ret);
1426 	udc->driver = NULL;
1427 	udc->dev.driver = NULL;
1428 	udc->gadget->dev.driver = NULL;
1429 	return ret;
1430 }
1431 
1432 int usb_gadget_probe_driver(struct usb_gadget_driver *driver)
1433 {
1434 	struct usb_udc		*udc = NULL;
1435 	int			ret = -ENODEV;
1436 
1437 	if (!driver || !driver->bind || !driver->setup)
1438 		return -EINVAL;
1439 
1440 	mutex_lock(&udc_lock);
1441 	if (driver->udc_name) {
1442 		list_for_each_entry(udc, &udc_list, list) {
1443 			ret = strcmp(driver->udc_name, dev_name(&udc->dev));
1444 			if (!ret)
1445 				break;
1446 		}
1447 		if (ret)
1448 			ret = -ENODEV;
1449 		else if (udc->driver)
1450 			ret = -EBUSY;
1451 		else
1452 			goto found;
1453 	} else {
1454 		list_for_each_entry(udc, &udc_list, list) {
1455 			/* For now we take the first one */
1456 			if (!udc->driver)
1457 				goto found;
1458 		}
1459 	}
1460 
1461 	if (!driver->match_existing_only) {
1462 		list_add_tail(&driver->pending, &gadget_driver_pending_list);
1463 		pr_info("udc-core: couldn't find an available UDC - added [%s] to list of pending drivers\n",
1464 			driver->function);
1465 		ret = 0;
1466 	}
1467 
1468 	mutex_unlock(&udc_lock);
1469 	if (ret)
1470 		pr_warn("udc-core: couldn't find an available UDC or it's busy\n");
1471 	return ret;
1472 found:
1473 	ret = udc_bind_to_driver(udc, driver);
1474 	mutex_unlock(&udc_lock);
1475 	return ret;
1476 }
1477 EXPORT_SYMBOL_GPL(usb_gadget_probe_driver);
1478 
1479 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
1480 {
1481 	struct usb_udc		*udc = NULL;
1482 	int			ret = -ENODEV;
1483 
1484 	if (!driver || !driver->unbind)
1485 		return -EINVAL;
1486 
1487 	mutex_lock(&udc_lock);
1488 	list_for_each_entry(udc, &udc_list, list) {
1489 		if (udc->driver == driver) {
1490 			usb_gadget_remove_driver(udc);
1491 			usb_gadget_set_state(udc->gadget,
1492 					     USB_STATE_NOTATTACHED);
1493 
1494 			/* Maybe there is someone waiting for this UDC? */
1495 			check_pending_gadget_drivers(udc);
1496 			/*
1497 			 * For now we ignore bind errors as probably it's
1498 			 * not a valid reason to fail other's gadget unbind
1499 			 */
1500 			ret = 0;
1501 			break;
1502 		}
1503 	}
1504 
1505 	if (ret) {
1506 		list_del(&driver->pending);
1507 		ret = 0;
1508 	}
1509 	mutex_unlock(&udc_lock);
1510 	return ret;
1511 }
1512 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver);
1513 
1514 /* ------------------------------------------------------------------------- */
1515 
1516 static ssize_t srp_store(struct device *dev,
1517 		struct device_attribute *attr, const char *buf, size_t n)
1518 {
1519 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1520 
1521 	if (sysfs_streq(buf, "1"))
1522 		usb_gadget_wakeup(udc->gadget);
1523 
1524 	return n;
1525 }
1526 static DEVICE_ATTR_WO(srp);
1527 
1528 static ssize_t soft_connect_store(struct device *dev,
1529 		struct device_attribute *attr, const char *buf, size_t n)
1530 {
1531 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1532 	ssize_t			ret;
1533 
1534 	mutex_lock(&udc_lock);
1535 	if (!udc->driver) {
1536 		dev_err(dev, "soft-connect without a gadget driver\n");
1537 		ret = -EOPNOTSUPP;
1538 		goto out;
1539 	}
1540 
1541 	if (sysfs_streq(buf, "connect")) {
1542 		usb_gadget_udc_start(udc);
1543 		usb_gadget_connect(udc->gadget);
1544 	} else if (sysfs_streq(buf, "disconnect")) {
1545 		usb_gadget_disconnect(udc->gadget);
1546 		usb_gadget_udc_stop(udc);
1547 	} else {
1548 		dev_err(dev, "unsupported command '%s'\n", buf);
1549 		ret = -EINVAL;
1550 		goto out;
1551 	}
1552 
1553 	ret = n;
1554 out:
1555 	mutex_unlock(&udc_lock);
1556 	return ret;
1557 }
1558 static DEVICE_ATTR_WO(soft_connect);
1559 
1560 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
1561 			  char *buf)
1562 {
1563 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1564 	struct usb_gadget	*gadget = udc->gadget;
1565 
1566 	return sprintf(buf, "%s\n", usb_state_string(gadget->state));
1567 }
1568 static DEVICE_ATTR_RO(state);
1569 
1570 static ssize_t function_show(struct device *dev, struct device_attribute *attr,
1571 			     char *buf)
1572 {
1573 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1574 	struct usb_gadget_driver *drv = udc->driver;
1575 
1576 	if (!drv || !drv->function)
1577 		return 0;
1578 	return scnprintf(buf, PAGE_SIZE, "%s\n", drv->function);
1579 }
1580 static DEVICE_ATTR_RO(function);
1581 
1582 #define USB_UDC_SPEED_ATTR(name, param)					\
1583 ssize_t name##_show(struct device *dev,					\
1584 		struct device_attribute *attr, char *buf)		\
1585 {									\
1586 	struct usb_udc *udc = container_of(dev, struct usb_udc, dev);	\
1587 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1588 			usb_speed_string(udc->gadget->param));		\
1589 }									\
1590 static DEVICE_ATTR_RO(name)
1591 
1592 static USB_UDC_SPEED_ATTR(current_speed, speed);
1593 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed);
1594 
1595 #define USB_UDC_ATTR(name)					\
1596 ssize_t name##_show(struct device *dev,				\
1597 		struct device_attribute *attr, char *buf)	\
1598 {								\
1599 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev); \
1600 	struct usb_gadget	*gadget = udc->gadget;		\
1601 								\
1602 	return scnprintf(buf, PAGE_SIZE, "%d\n", gadget->name);	\
1603 }								\
1604 static DEVICE_ATTR_RO(name)
1605 
1606 static USB_UDC_ATTR(is_otg);
1607 static USB_UDC_ATTR(is_a_peripheral);
1608 static USB_UDC_ATTR(b_hnp_enable);
1609 static USB_UDC_ATTR(a_hnp_support);
1610 static USB_UDC_ATTR(a_alt_hnp_support);
1611 static USB_UDC_ATTR(is_selfpowered);
1612 
1613 static struct attribute *usb_udc_attrs[] = {
1614 	&dev_attr_srp.attr,
1615 	&dev_attr_soft_connect.attr,
1616 	&dev_attr_state.attr,
1617 	&dev_attr_function.attr,
1618 	&dev_attr_current_speed.attr,
1619 	&dev_attr_maximum_speed.attr,
1620 
1621 	&dev_attr_is_otg.attr,
1622 	&dev_attr_is_a_peripheral.attr,
1623 	&dev_attr_b_hnp_enable.attr,
1624 	&dev_attr_a_hnp_support.attr,
1625 	&dev_attr_a_alt_hnp_support.attr,
1626 	&dev_attr_is_selfpowered.attr,
1627 	NULL,
1628 };
1629 
1630 static const struct attribute_group usb_udc_attr_group = {
1631 	.attrs = usb_udc_attrs,
1632 };
1633 
1634 static const struct attribute_group *usb_udc_attr_groups[] = {
1635 	&usb_udc_attr_group,
1636 	NULL,
1637 };
1638 
1639 static int usb_udc_uevent(struct device *dev, struct kobj_uevent_env *env)
1640 {
1641 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1642 	int			ret;
1643 
1644 	ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name);
1645 	if (ret) {
1646 		dev_err(dev, "failed to add uevent USB_UDC_NAME\n");
1647 		return ret;
1648 	}
1649 
1650 	if (udc->driver) {
1651 		ret = add_uevent_var(env, "USB_UDC_DRIVER=%s",
1652 				udc->driver->function);
1653 		if (ret) {
1654 			dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n");
1655 			return ret;
1656 		}
1657 	}
1658 
1659 	return 0;
1660 }
1661 
1662 static int __init usb_udc_init(void)
1663 {
1664 	udc_class = class_create(THIS_MODULE, "udc");
1665 	if (IS_ERR(udc_class)) {
1666 		pr_err("failed to create udc class --> %ld\n",
1667 				PTR_ERR(udc_class));
1668 		return PTR_ERR(udc_class);
1669 	}
1670 
1671 	udc_class->dev_uevent = usb_udc_uevent;
1672 	return 0;
1673 }
1674 subsys_initcall(usb_udc_init);
1675 
1676 static void __exit usb_udc_exit(void)
1677 {
1678 	class_destroy(udc_class);
1679 }
1680 module_exit(usb_udc_exit);
1681 
1682 MODULE_DESCRIPTION("UDC Framework");
1683 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>");
1684 MODULE_LICENSE("GPL v2");
1685