1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * udc.c - Core UDC Framework 4 * 5 * Copyright (C) 2010 Texas Instruments 6 * Author: Felipe Balbi <balbi@ti.com> 7 */ 8 9 #define pr_fmt(fmt) "UDC core: " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/device.h> 14 #include <linux/list.h> 15 #include <linux/idr.h> 16 #include <linux/err.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/sched/task_stack.h> 19 #include <linux/workqueue.h> 20 21 #include <linux/usb/ch9.h> 22 #include <linux/usb/gadget.h> 23 #include <linux/usb.h> 24 25 #include "trace.h" 26 27 static DEFINE_IDA(gadget_id_numbers); 28 29 static const struct bus_type gadget_bus_type; 30 31 /** 32 * struct usb_udc - describes one usb device controller 33 * @driver: the gadget driver pointer. For use by the class code 34 * @dev: the child device to the actual controller 35 * @gadget: the gadget. For use by the class code 36 * @list: for use by the udc class driver 37 * @vbus: for udcs who care about vbus status, this value is real vbus status; 38 * for udcs who do not care about vbus status, this value is always true 39 * @started: the UDC's started state. True if the UDC had started. 40 * @connect_lock: protects udc->vbus, udc->started, gadget->connect, gadget->deactivate related 41 * functions. usb_gadget_connect_locked, usb_gadget_disconnect_locked, 42 * usb_udc_connect_control_locked, usb_gadget_udc_start_locked, usb_gadget_udc_stop_locked are 43 * called with this lock held. 44 * 45 * This represents the internal data structure which is used by the UDC-class 46 * to hold information about udc driver and gadget together. 47 */ 48 struct usb_udc { 49 struct usb_gadget_driver *driver; 50 struct usb_gadget *gadget; 51 struct device dev; 52 struct list_head list; 53 bool vbus; 54 bool started; 55 struct mutex connect_lock; 56 }; 57 58 static struct class *udc_class; 59 static LIST_HEAD(udc_list); 60 61 /* Protects udc_list, udc->driver, driver->is_bound, and related calls */ 62 static DEFINE_MUTEX(udc_lock); 63 64 /* ------------------------------------------------------------------------- */ 65 66 /** 67 * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint 68 * @ep:the endpoint being configured 69 * @maxpacket_limit:value of maximum packet size limit 70 * 71 * This function should be used only in UDC drivers to initialize endpoint 72 * (usually in probe function). 73 */ 74 void usb_ep_set_maxpacket_limit(struct usb_ep *ep, 75 unsigned maxpacket_limit) 76 { 77 ep->maxpacket_limit = maxpacket_limit; 78 ep->maxpacket = maxpacket_limit; 79 80 trace_usb_ep_set_maxpacket_limit(ep, 0); 81 } 82 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit); 83 84 /** 85 * usb_ep_enable - configure endpoint, making it usable 86 * @ep:the endpoint being configured. may not be the endpoint named "ep0". 87 * drivers discover endpoints through the ep_list of a usb_gadget. 88 * 89 * When configurations are set, or when interface settings change, the driver 90 * will enable or disable the relevant endpoints. while it is enabled, an 91 * endpoint may be used for i/o until the driver receives a disconnect() from 92 * the host or until the endpoint is disabled. 93 * 94 * the ep0 implementation (which calls this routine) must ensure that the 95 * hardware capabilities of each endpoint match the descriptor provided 96 * for it. for example, an endpoint named "ep2in-bulk" would be usable 97 * for interrupt transfers as well as bulk, but it likely couldn't be used 98 * for iso transfers or for endpoint 14. some endpoints are fully 99 * configurable, with more generic names like "ep-a". (remember that for 100 * USB, "in" means "towards the USB host".) 101 * 102 * This routine may be called in an atomic (interrupt) context. 103 * 104 * returns zero, or a negative error code. 105 */ 106 int usb_ep_enable(struct usb_ep *ep) 107 { 108 int ret = 0; 109 110 if (ep->enabled) 111 goto out; 112 113 /* UDC drivers can't handle endpoints with maxpacket size 0 */ 114 if (usb_endpoint_maxp(ep->desc) == 0) { 115 /* 116 * We should log an error message here, but we can't call 117 * dev_err() because there's no way to find the gadget 118 * given only ep. 119 */ 120 ret = -EINVAL; 121 goto out; 122 } 123 124 ret = ep->ops->enable(ep, ep->desc); 125 if (ret) 126 goto out; 127 128 ep->enabled = true; 129 130 out: 131 trace_usb_ep_enable(ep, ret); 132 133 return ret; 134 } 135 EXPORT_SYMBOL_GPL(usb_ep_enable); 136 137 /** 138 * usb_ep_disable - endpoint is no longer usable 139 * @ep:the endpoint being unconfigured. may not be the endpoint named "ep0". 140 * 141 * no other task may be using this endpoint when this is called. 142 * any pending and uncompleted requests will complete with status 143 * indicating disconnect (-ESHUTDOWN) before this call returns. 144 * gadget drivers must call usb_ep_enable() again before queueing 145 * requests to the endpoint. 146 * 147 * This routine may be called in an atomic (interrupt) context. 148 * 149 * returns zero, or a negative error code. 150 */ 151 int usb_ep_disable(struct usb_ep *ep) 152 { 153 int ret = 0; 154 155 if (!ep->enabled) 156 goto out; 157 158 ret = ep->ops->disable(ep); 159 if (ret) 160 goto out; 161 162 ep->enabled = false; 163 164 out: 165 trace_usb_ep_disable(ep, ret); 166 167 return ret; 168 } 169 EXPORT_SYMBOL_GPL(usb_ep_disable); 170 171 /** 172 * usb_ep_alloc_request - allocate a request object to use with this endpoint 173 * @ep:the endpoint to be used with with the request 174 * @gfp_flags:GFP_* flags to use 175 * 176 * Request objects must be allocated with this call, since they normally 177 * need controller-specific setup and may even need endpoint-specific 178 * resources such as allocation of DMA descriptors. 179 * Requests may be submitted with usb_ep_queue(), and receive a single 180 * completion callback. Free requests with usb_ep_free_request(), when 181 * they are no longer needed. 182 * 183 * Returns the request, or null if one could not be allocated. 184 */ 185 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep, 186 gfp_t gfp_flags) 187 { 188 struct usb_request *req = NULL; 189 190 req = ep->ops->alloc_request(ep, gfp_flags); 191 192 trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM); 193 194 return req; 195 } 196 EXPORT_SYMBOL_GPL(usb_ep_alloc_request); 197 198 /** 199 * usb_ep_free_request - frees a request object 200 * @ep:the endpoint associated with the request 201 * @req:the request being freed 202 * 203 * Reverses the effect of usb_ep_alloc_request(). 204 * Caller guarantees the request is not queued, and that it will 205 * no longer be requeued (or otherwise used). 206 */ 207 void usb_ep_free_request(struct usb_ep *ep, 208 struct usb_request *req) 209 { 210 trace_usb_ep_free_request(ep, req, 0); 211 ep->ops->free_request(ep, req); 212 } 213 EXPORT_SYMBOL_GPL(usb_ep_free_request); 214 215 /** 216 * usb_ep_queue - queues (submits) an I/O request to an endpoint. 217 * @ep:the endpoint associated with the request 218 * @req:the request being submitted 219 * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't 220 * pre-allocate all necessary memory with the request. 221 * 222 * This tells the device controller to perform the specified request through 223 * that endpoint (reading or writing a buffer). When the request completes, 224 * including being canceled by usb_ep_dequeue(), the request's completion 225 * routine is called to return the request to the driver. Any endpoint 226 * (except control endpoints like ep0) may have more than one transfer 227 * request queued; they complete in FIFO order. Once a gadget driver 228 * submits a request, that request may not be examined or modified until it 229 * is given back to that driver through the completion callback. 230 * 231 * Each request is turned into one or more packets. The controller driver 232 * never merges adjacent requests into the same packet. OUT transfers 233 * will sometimes use data that's already buffered in the hardware. 234 * Drivers can rely on the fact that the first byte of the request's buffer 235 * always corresponds to the first byte of some USB packet, for both 236 * IN and OUT transfers. 237 * 238 * Bulk endpoints can queue any amount of data; the transfer is packetized 239 * automatically. The last packet will be short if the request doesn't fill it 240 * out completely. Zero length packets (ZLPs) should be avoided in portable 241 * protocols since not all usb hardware can successfully handle zero length 242 * packets. (ZLPs may be explicitly written, and may be implicitly written if 243 * the request 'zero' flag is set.) Bulk endpoints may also be used 244 * for interrupt transfers; but the reverse is not true, and some endpoints 245 * won't support every interrupt transfer. (Such as 768 byte packets.) 246 * 247 * Interrupt-only endpoints are less functional than bulk endpoints, for 248 * example by not supporting queueing or not handling buffers that are 249 * larger than the endpoint's maxpacket size. They may also treat data 250 * toggle differently. 251 * 252 * Control endpoints ... after getting a setup() callback, the driver queues 253 * one response (even if it would be zero length). That enables the 254 * status ack, after transferring data as specified in the response. Setup 255 * functions may return negative error codes to generate protocol stalls. 256 * (Note that some USB device controllers disallow protocol stall responses 257 * in some cases.) When control responses are deferred (the response is 258 * written after the setup callback returns), then usb_ep_set_halt() may be 259 * used on ep0 to trigger protocol stalls. Depending on the controller, 260 * it may not be possible to trigger a status-stage protocol stall when the 261 * data stage is over, that is, from within the response's completion 262 * routine. 263 * 264 * For periodic endpoints, like interrupt or isochronous ones, the usb host 265 * arranges to poll once per interval, and the gadget driver usually will 266 * have queued some data to transfer at that time. 267 * 268 * Note that @req's ->complete() callback must never be called from 269 * within usb_ep_queue() as that can create deadlock situations. 270 * 271 * This routine may be called in interrupt context. 272 * 273 * Returns zero, or a negative error code. Endpoints that are not enabled 274 * report errors; errors will also be 275 * reported when the usb peripheral is disconnected. 276 * 277 * If and only if @req is successfully queued (the return value is zero), 278 * @req->complete() will be called exactly once, when the Gadget core and 279 * UDC are finished with the request. When the completion function is called, 280 * control of the request is returned to the device driver which submitted it. 281 * The completion handler may then immediately free or reuse @req. 282 */ 283 int usb_ep_queue(struct usb_ep *ep, 284 struct usb_request *req, gfp_t gfp_flags) 285 { 286 int ret = 0; 287 288 if (WARN_ON_ONCE(!ep->enabled && ep->address)) { 289 ret = -ESHUTDOWN; 290 goto out; 291 } 292 293 ret = ep->ops->queue(ep, req, gfp_flags); 294 295 out: 296 trace_usb_ep_queue(ep, req, ret); 297 298 return ret; 299 } 300 EXPORT_SYMBOL_GPL(usb_ep_queue); 301 302 /** 303 * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint 304 * @ep:the endpoint associated with the request 305 * @req:the request being canceled 306 * 307 * If the request is still active on the endpoint, it is dequeued and 308 * eventually its completion routine is called (with status -ECONNRESET); 309 * else a negative error code is returned. This routine is asynchronous, 310 * that is, it may return before the completion routine runs. 311 * 312 * Note that some hardware can't clear out write fifos (to unlink the request 313 * at the head of the queue) except as part of disconnecting from usb. Such 314 * restrictions prevent drivers from supporting configuration changes, 315 * even to configuration zero (a "chapter 9" requirement). 316 * 317 * This routine may be called in interrupt context. 318 */ 319 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 320 { 321 int ret; 322 323 ret = ep->ops->dequeue(ep, req); 324 trace_usb_ep_dequeue(ep, req, ret); 325 326 return ret; 327 } 328 EXPORT_SYMBOL_GPL(usb_ep_dequeue); 329 330 /** 331 * usb_ep_set_halt - sets the endpoint halt feature. 332 * @ep: the non-isochronous endpoint being stalled 333 * 334 * Use this to stall an endpoint, perhaps as an error report. 335 * Except for control endpoints, 336 * the endpoint stays halted (will not stream any data) until the host 337 * clears this feature; drivers may need to empty the endpoint's request 338 * queue first, to make sure no inappropriate transfers happen. 339 * 340 * Note that while an endpoint CLEAR_FEATURE will be invisible to the 341 * gadget driver, a SET_INTERFACE will not be. To reset endpoints for the 342 * current altsetting, see usb_ep_clear_halt(). When switching altsettings, 343 * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints. 344 * 345 * This routine may be called in interrupt context. 346 * 347 * Returns zero, or a negative error code. On success, this call sets 348 * underlying hardware state that blocks data transfers. 349 * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any 350 * transfer requests are still queued, or if the controller hardware 351 * (usually a FIFO) still holds bytes that the host hasn't collected. 352 */ 353 int usb_ep_set_halt(struct usb_ep *ep) 354 { 355 int ret; 356 357 ret = ep->ops->set_halt(ep, 1); 358 trace_usb_ep_set_halt(ep, ret); 359 360 return ret; 361 } 362 EXPORT_SYMBOL_GPL(usb_ep_set_halt); 363 364 /** 365 * usb_ep_clear_halt - clears endpoint halt, and resets toggle 366 * @ep:the bulk or interrupt endpoint being reset 367 * 368 * Use this when responding to the standard usb "set interface" request, 369 * for endpoints that aren't reconfigured, after clearing any other state 370 * in the endpoint's i/o queue. 371 * 372 * This routine may be called in interrupt context. 373 * 374 * Returns zero, or a negative error code. On success, this call clears 375 * the underlying hardware state reflecting endpoint halt and data toggle. 376 * Note that some hardware can't support this request (like pxa2xx_udc), 377 * and accordingly can't correctly implement interface altsettings. 378 */ 379 int usb_ep_clear_halt(struct usb_ep *ep) 380 { 381 int ret; 382 383 ret = ep->ops->set_halt(ep, 0); 384 trace_usb_ep_clear_halt(ep, ret); 385 386 return ret; 387 } 388 EXPORT_SYMBOL_GPL(usb_ep_clear_halt); 389 390 /** 391 * usb_ep_set_wedge - sets the halt feature and ignores clear requests 392 * @ep: the endpoint being wedged 393 * 394 * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT) 395 * requests. If the gadget driver clears the halt status, it will 396 * automatically unwedge the endpoint. 397 * 398 * This routine may be called in interrupt context. 399 * 400 * Returns zero on success, else negative errno. 401 */ 402 int usb_ep_set_wedge(struct usb_ep *ep) 403 { 404 int ret; 405 406 if (ep->ops->set_wedge) 407 ret = ep->ops->set_wedge(ep); 408 else 409 ret = ep->ops->set_halt(ep, 1); 410 411 trace_usb_ep_set_wedge(ep, ret); 412 413 return ret; 414 } 415 EXPORT_SYMBOL_GPL(usb_ep_set_wedge); 416 417 /** 418 * usb_ep_fifo_status - returns number of bytes in fifo, or error 419 * @ep: the endpoint whose fifo status is being checked. 420 * 421 * FIFO endpoints may have "unclaimed data" in them in certain cases, 422 * such as after aborted transfers. Hosts may not have collected all 423 * the IN data written by the gadget driver (and reported by a request 424 * completion). The gadget driver may not have collected all the data 425 * written OUT to it by the host. Drivers that need precise handling for 426 * fault reporting or recovery may need to use this call. 427 * 428 * This routine may be called in interrupt context. 429 * 430 * This returns the number of such bytes in the fifo, or a negative 431 * errno if the endpoint doesn't use a FIFO or doesn't support such 432 * precise handling. 433 */ 434 int usb_ep_fifo_status(struct usb_ep *ep) 435 { 436 int ret; 437 438 if (ep->ops->fifo_status) 439 ret = ep->ops->fifo_status(ep); 440 else 441 ret = -EOPNOTSUPP; 442 443 trace_usb_ep_fifo_status(ep, ret); 444 445 return ret; 446 } 447 EXPORT_SYMBOL_GPL(usb_ep_fifo_status); 448 449 /** 450 * usb_ep_fifo_flush - flushes contents of a fifo 451 * @ep: the endpoint whose fifo is being flushed. 452 * 453 * This call may be used to flush the "unclaimed data" that may exist in 454 * an endpoint fifo after abnormal transaction terminations. The call 455 * must never be used except when endpoint is not being used for any 456 * protocol translation. 457 * 458 * This routine may be called in interrupt context. 459 */ 460 void usb_ep_fifo_flush(struct usb_ep *ep) 461 { 462 if (ep->ops->fifo_flush) 463 ep->ops->fifo_flush(ep); 464 465 trace_usb_ep_fifo_flush(ep, 0); 466 } 467 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush); 468 469 /* ------------------------------------------------------------------------- */ 470 471 /** 472 * usb_gadget_frame_number - returns the current frame number 473 * @gadget: controller that reports the frame number 474 * 475 * Returns the usb frame number, normally eleven bits from a SOF packet, 476 * or negative errno if this device doesn't support this capability. 477 */ 478 int usb_gadget_frame_number(struct usb_gadget *gadget) 479 { 480 int ret; 481 482 ret = gadget->ops->get_frame(gadget); 483 484 trace_usb_gadget_frame_number(gadget, ret); 485 486 return ret; 487 } 488 EXPORT_SYMBOL_GPL(usb_gadget_frame_number); 489 490 /** 491 * usb_gadget_wakeup - tries to wake up the host connected to this gadget 492 * @gadget: controller used to wake up the host 493 * 494 * Returns zero on success, else negative error code if the hardware 495 * doesn't support such attempts, or its support has not been enabled 496 * by the usb host. Drivers must return device descriptors that report 497 * their ability to support this, or hosts won't enable it. 498 * 499 * This may also try to use SRP to wake the host and start enumeration, 500 * even if OTG isn't otherwise in use. OTG devices may also start 501 * remote wakeup even when hosts don't explicitly enable it. 502 */ 503 int usb_gadget_wakeup(struct usb_gadget *gadget) 504 { 505 int ret = 0; 506 507 if (!gadget->ops->wakeup) { 508 ret = -EOPNOTSUPP; 509 goto out; 510 } 511 512 ret = gadget->ops->wakeup(gadget); 513 514 out: 515 trace_usb_gadget_wakeup(gadget, ret); 516 517 return ret; 518 } 519 EXPORT_SYMBOL_GPL(usb_gadget_wakeup); 520 521 /** 522 * usb_gadget_set_remote_wakeup - configures the device remote wakeup feature. 523 * @gadget:the device being configured for remote wakeup 524 * @set:value to be configured. 525 * 526 * set to one to enable remote wakeup feature and zero to disable it. 527 * 528 * returns zero on success, else negative errno. 529 */ 530 int usb_gadget_set_remote_wakeup(struct usb_gadget *gadget, int set) 531 { 532 int ret = 0; 533 534 if (!gadget->ops->set_remote_wakeup) { 535 ret = -EOPNOTSUPP; 536 goto out; 537 } 538 539 ret = gadget->ops->set_remote_wakeup(gadget, set); 540 541 out: 542 trace_usb_gadget_set_remote_wakeup(gadget, ret); 543 544 return ret; 545 } 546 EXPORT_SYMBOL_GPL(usb_gadget_set_remote_wakeup); 547 548 /** 549 * usb_gadget_set_selfpowered - sets the device selfpowered feature. 550 * @gadget:the device being declared as self-powered 551 * 552 * this affects the device status reported by the hardware driver 553 * to reflect that it now has a local power supply. 554 * 555 * returns zero on success, else negative errno. 556 */ 557 int usb_gadget_set_selfpowered(struct usb_gadget *gadget) 558 { 559 int ret = 0; 560 561 if (!gadget->ops->set_selfpowered) { 562 ret = -EOPNOTSUPP; 563 goto out; 564 } 565 566 ret = gadget->ops->set_selfpowered(gadget, 1); 567 568 out: 569 trace_usb_gadget_set_selfpowered(gadget, ret); 570 571 return ret; 572 } 573 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered); 574 575 /** 576 * usb_gadget_clear_selfpowered - clear the device selfpowered feature. 577 * @gadget:the device being declared as bus-powered 578 * 579 * this affects the device status reported by the hardware driver. 580 * some hardware may not support bus-powered operation, in which 581 * case this feature's value can never change. 582 * 583 * returns zero on success, else negative errno. 584 */ 585 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget) 586 { 587 int ret = 0; 588 589 if (!gadget->ops->set_selfpowered) { 590 ret = -EOPNOTSUPP; 591 goto out; 592 } 593 594 ret = gadget->ops->set_selfpowered(gadget, 0); 595 596 out: 597 trace_usb_gadget_clear_selfpowered(gadget, ret); 598 599 return ret; 600 } 601 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered); 602 603 /** 604 * usb_gadget_vbus_connect - Notify controller that VBUS is powered 605 * @gadget:The device which now has VBUS power. 606 * Context: can sleep 607 * 608 * This call is used by a driver for an external transceiver (or GPIO) 609 * that detects a VBUS power session starting. Common responses include 610 * resuming the controller, activating the D+ (or D-) pullup to let the 611 * host detect that a USB device is attached, and starting to draw power 612 * (8mA or possibly more, especially after SET_CONFIGURATION). 613 * 614 * Returns zero on success, else negative errno. 615 */ 616 int usb_gadget_vbus_connect(struct usb_gadget *gadget) 617 { 618 int ret = 0; 619 620 if (!gadget->ops->vbus_session) { 621 ret = -EOPNOTSUPP; 622 goto out; 623 } 624 625 ret = gadget->ops->vbus_session(gadget, 1); 626 627 out: 628 trace_usb_gadget_vbus_connect(gadget, ret); 629 630 return ret; 631 } 632 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect); 633 634 /** 635 * usb_gadget_vbus_draw - constrain controller's VBUS power usage 636 * @gadget:The device whose VBUS usage is being described 637 * @mA:How much current to draw, in milliAmperes. This should be twice 638 * the value listed in the configuration descriptor bMaxPower field. 639 * 640 * This call is used by gadget drivers during SET_CONFIGURATION calls, 641 * reporting how much power the device may consume. For example, this 642 * could affect how quickly batteries are recharged. 643 * 644 * Returns zero on success, else negative errno. 645 */ 646 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA) 647 { 648 int ret = 0; 649 650 if (!gadget->ops->vbus_draw) { 651 ret = -EOPNOTSUPP; 652 goto out; 653 } 654 655 ret = gadget->ops->vbus_draw(gadget, mA); 656 if (!ret) 657 gadget->mA = mA; 658 659 out: 660 trace_usb_gadget_vbus_draw(gadget, ret); 661 662 return ret; 663 } 664 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw); 665 666 /** 667 * usb_gadget_vbus_disconnect - notify controller about VBUS session end 668 * @gadget:the device whose VBUS supply is being described 669 * Context: can sleep 670 * 671 * This call is used by a driver for an external transceiver (or GPIO) 672 * that detects a VBUS power session ending. Common responses include 673 * reversing everything done in usb_gadget_vbus_connect(). 674 * 675 * Returns zero on success, else negative errno. 676 */ 677 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget) 678 { 679 int ret = 0; 680 681 if (!gadget->ops->vbus_session) { 682 ret = -EOPNOTSUPP; 683 goto out; 684 } 685 686 ret = gadget->ops->vbus_session(gadget, 0); 687 688 out: 689 trace_usb_gadget_vbus_disconnect(gadget, ret); 690 691 return ret; 692 } 693 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect); 694 695 /* Internal version of usb_gadget_connect needs to be called with connect_lock held. */ 696 static int usb_gadget_connect_locked(struct usb_gadget *gadget) 697 __must_hold(&gadget->udc->connect_lock) 698 { 699 int ret = 0; 700 701 if (!gadget->ops->pullup) { 702 ret = -EOPNOTSUPP; 703 goto out; 704 } 705 706 if (gadget->connected) 707 goto out; 708 709 if (gadget->deactivated || !gadget->udc->started) { 710 /* 711 * If gadget is deactivated we only save new state. 712 * Gadget will be connected automatically after activation. 713 * 714 * udc first needs to be started before gadget can be pulled up. 715 */ 716 gadget->connected = true; 717 goto out; 718 } 719 720 ret = gadget->ops->pullup(gadget, 1); 721 if (!ret) 722 gadget->connected = 1; 723 724 out: 725 trace_usb_gadget_connect(gadget, ret); 726 727 return ret; 728 } 729 730 /** 731 * usb_gadget_connect - software-controlled connect to USB host 732 * @gadget:the peripheral being connected 733 * 734 * Enables the D+ (or potentially D-) pullup. The host will start 735 * enumerating this gadget when the pullup is active and a VBUS session 736 * is active (the link is powered). 737 * 738 * Returns zero on success, else negative errno. 739 */ 740 int usb_gadget_connect(struct usb_gadget *gadget) 741 { 742 int ret; 743 744 mutex_lock(&gadget->udc->connect_lock); 745 ret = usb_gadget_connect_locked(gadget); 746 mutex_unlock(&gadget->udc->connect_lock); 747 748 return ret; 749 } 750 EXPORT_SYMBOL_GPL(usb_gadget_connect); 751 752 /* Internal version of usb_gadget_disconnect needs to be called with connect_lock held. */ 753 static int usb_gadget_disconnect_locked(struct usb_gadget *gadget) 754 __must_hold(&gadget->udc->connect_lock) 755 { 756 int ret = 0; 757 758 if (!gadget->ops->pullup) { 759 ret = -EOPNOTSUPP; 760 goto out; 761 } 762 763 if (!gadget->connected) 764 goto out; 765 766 if (gadget->deactivated || !gadget->udc->started) { 767 /* 768 * If gadget is deactivated we only save new state. 769 * Gadget will stay disconnected after activation. 770 * 771 * udc should have been started before gadget being pulled down. 772 */ 773 gadget->connected = false; 774 goto out; 775 } 776 777 ret = gadget->ops->pullup(gadget, 0); 778 if (!ret) 779 gadget->connected = 0; 780 781 mutex_lock(&udc_lock); 782 if (gadget->udc->driver) 783 gadget->udc->driver->disconnect(gadget); 784 mutex_unlock(&udc_lock); 785 786 out: 787 trace_usb_gadget_disconnect(gadget, ret); 788 789 return ret; 790 } 791 792 /** 793 * usb_gadget_disconnect - software-controlled disconnect from USB host 794 * @gadget:the peripheral being disconnected 795 * 796 * Disables the D+ (or potentially D-) pullup, which the host may see 797 * as a disconnect (when a VBUS session is active). Not all systems 798 * support software pullup controls. 799 * 800 * Following a successful disconnect, invoke the ->disconnect() callback 801 * for the current gadget driver so that UDC drivers don't need to. 802 * 803 * Returns zero on success, else negative errno. 804 */ 805 int usb_gadget_disconnect(struct usb_gadget *gadget) 806 { 807 int ret; 808 809 mutex_lock(&gadget->udc->connect_lock); 810 ret = usb_gadget_disconnect_locked(gadget); 811 mutex_unlock(&gadget->udc->connect_lock); 812 813 return ret; 814 } 815 EXPORT_SYMBOL_GPL(usb_gadget_disconnect); 816 817 /** 818 * usb_gadget_deactivate - deactivate function which is not ready to work 819 * @gadget: the peripheral being deactivated 820 * 821 * This routine may be used during the gadget driver bind() call to prevent 822 * the peripheral from ever being visible to the USB host, unless later 823 * usb_gadget_activate() is called. For example, user mode components may 824 * need to be activated before the system can talk to hosts. 825 * 826 * Returns zero on success, else negative errno. 827 */ 828 int usb_gadget_deactivate(struct usb_gadget *gadget) 829 { 830 int ret = 0; 831 832 if (gadget->deactivated) 833 goto out; 834 835 mutex_lock(&gadget->udc->connect_lock); 836 if (gadget->connected) { 837 ret = usb_gadget_disconnect_locked(gadget); 838 if (ret) 839 goto unlock; 840 841 /* 842 * If gadget was being connected before deactivation, we want 843 * to reconnect it in usb_gadget_activate(). 844 */ 845 gadget->connected = true; 846 } 847 gadget->deactivated = true; 848 849 unlock: 850 mutex_unlock(&gadget->udc->connect_lock); 851 out: 852 trace_usb_gadget_deactivate(gadget, ret); 853 854 return ret; 855 } 856 EXPORT_SYMBOL_GPL(usb_gadget_deactivate); 857 858 /** 859 * usb_gadget_activate - activate function which is not ready to work 860 * @gadget: the peripheral being activated 861 * 862 * This routine activates gadget which was previously deactivated with 863 * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed. 864 * 865 * Returns zero on success, else negative errno. 866 */ 867 int usb_gadget_activate(struct usb_gadget *gadget) 868 { 869 int ret = 0; 870 871 if (!gadget->deactivated) 872 goto out; 873 874 mutex_lock(&gadget->udc->connect_lock); 875 gadget->deactivated = false; 876 877 /* 878 * If gadget has been connected before deactivation, or became connected 879 * while it was being deactivated, we call usb_gadget_connect(). 880 */ 881 if (gadget->connected) 882 ret = usb_gadget_connect_locked(gadget); 883 mutex_unlock(&gadget->udc->connect_lock); 884 885 out: 886 trace_usb_gadget_activate(gadget, ret); 887 888 return ret; 889 } 890 EXPORT_SYMBOL_GPL(usb_gadget_activate); 891 892 /* ------------------------------------------------------------------------- */ 893 894 #ifdef CONFIG_HAS_DMA 895 896 int usb_gadget_map_request_by_dev(struct device *dev, 897 struct usb_request *req, int is_in) 898 { 899 if (req->length == 0) 900 return 0; 901 902 if (req->num_sgs) { 903 int mapped; 904 905 mapped = dma_map_sg(dev, req->sg, req->num_sgs, 906 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 907 if (mapped == 0) { 908 dev_err(dev, "failed to map SGs\n"); 909 return -EFAULT; 910 } 911 912 req->num_mapped_sgs = mapped; 913 } else { 914 if (is_vmalloc_addr(req->buf)) { 915 dev_err(dev, "buffer is not dma capable\n"); 916 return -EFAULT; 917 } else if (object_is_on_stack(req->buf)) { 918 dev_err(dev, "buffer is on stack\n"); 919 return -EFAULT; 920 } 921 922 req->dma = dma_map_single(dev, req->buf, req->length, 923 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 924 925 if (dma_mapping_error(dev, req->dma)) { 926 dev_err(dev, "failed to map buffer\n"); 927 return -EFAULT; 928 } 929 930 req->dma_mapped = 1; 931 } 932 933 return 0; 934 } 935 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev); 936 937 int usb_gadget_map_request(struct usb_gadget *gadget, 938 struct usb_request *req, int is_in) 939 { 940 return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in); 941 } 942 EXPORT_SYMBOL_GPL(usb_gadget_map_request); 943 944 void usb_gadget_unmap_request_by_dev(struct device *dev, 945 struct usb_request *req, int is_in) 946 { 947 if (req->length == 0) 948 return; 949 950 if (req->num_mapped_sgs) { 951 dma_unmap_sg(dev, req->sg, req->num_sgs, 952 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 953 954 req->num_mapped_sgs = 0; 955 } else if (req->dma_mapped) { 956 dma_unmap_single(dev, req->dma, req->length, 957 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 958 req->dma_mapped = 0; 959 } 960 } 961 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev); 962 963 void usb_gadget_unmap_request(struct usb_gadget *gadget, 964 struct usb_request *req, int is_in) 965 { 966 usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in); 967 } 968 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request); 969 970 #endif /* CONFIG_HAS_DMA */ 971 972 /* ------------------------------------------------------------------------- */ 973 974 /** 975 * usb_gadget_giveback_request - give the request back to the gadget layer 976 * @ep: the endpoint to be used with with the request 977 * @req: the request being given back 978 * 979 * This is called by device controller drivers in order to return the 980 * completed request back to the gadget layer. 981 */ 982 void usb_gadget_giveback_request(struct usb_ep *ep, 983 struct usb_request *req) 984 { 985 if (likely(req->status == 0)) 986 usb_led_activity(USB_LED_EVENT_GADGET); 987 988 trace_usb_gadget_giveback_request(ep, req, 0); 989 990 req->complete(ep, req); 991 } 992 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request); 993 994 /* ------------------------------------------------------------------------- */ 995 996 /** 997 * gadget_find_ep_by_name - returns ep whose name is the same as sting passed 998 * in second parameter or NULL if searched endpoint not found 999 * @g: controller to check for quirk 1000 * @name: name of searched endpoint 1001 */ 1002 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name) 1003 { 1004 struct usb_ep *ep; 1005 1006 gadget_for_each_ep(ep, g) { 1007 if (!strcmp(ep->name, name)) 1008 return ep; 1009 } 1010 1011 return NULL; 1012 } 1013 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name); 1014 1015 /* ------------------------------------------------------------------------- */ 1016 1017 int usb_gadget_ep_match_desc(struct usb_gadget *gadget, 1018 struct usb_ep *ep, struct usb_endpoint_descriptor *desc, 1019 struct usb_ss_ep_comp_descriptor *ep_comp) 1020 { 1021 u8 type; 1022 u16 max; 1023 int num_req_streams = 0; 1024 1025 /* endpoint already claimed? */ 1026 if (ep->claimed) 1027 return 0; 1028 1029 type = usb_endpoint_type(desc); 1030 max = usb_endpoint_maxp(desc); 1031 1032 if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in) 1033 return 0; 1034 if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out) 1035 return 0; 1036 1037 if (max > ep->maxpacket_limit) 1038 return 0; 1039 1040 /* "high bandwidth" works only at high speed */ 1041 if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1) 1042 return 0; 1043 1044 switch (type) { 1045 case USB_ENDPOINT_XFER_CONTROL: 1046 /* only support ep0 for portable CONTROL traffic */ 1047 return 0; 1048 case USB_ENDPOINT_XFER_ISOC: 1049 if (!ep->caps.type_iso) 1050 return 0; 1051 /* ISO: limit 1023 bytes full speed, 1024 high/super speed */ 1052 if (!gadget_is_dualspeed(gadget) && max > 1023) 1053 return 0; 1054 break; 1055 case USB_ENDPOINT_XFER_BULK: 1056 if (!ep->caps.type_bulk) 1057 return 0; 1058 if (ep_comp && gadget_is_superspeed(gadget)) { 1059 /* Get the number of required streams from the 1060 * EP companion descriptor and see if the EP 1061 * matches it 1062 */ 1063 num_req_streams = ep_comp->bmAttributes & 0x1f; 1064 if (num_req_streams > ep->max_streams) 1065 return 0; 1066 } 1067 break; 1068 case USB_ENDPOINT_XFER_INT: 1069 /* Bulk endpoints handle interrupt transfers, 1070 * except the toggle-quirky iso-synch kind 1071 */ 1072 if (!ep->caps.type_int && !ep->caps.type_bulk) 1073 return 0; 1074 /* INT: limit 64 bytes full speed, 1024 high/super speed */ 1075 if (!gadget_is_dualspeed(gadget) && max > 64) 1076 return 0; 1077 break; 1078 } 1079 1080 return 1; 1081 } 1082 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc); 1083 1084 /** 1085 * usb_gadget_check_config - checks if the UDC can support the binded 1086 * configuration 1087 * @gadget: controller to check the USB configuration 1088 * 1089 * Ensure that a UDC is able to support the requested resources by a 1090 * configuration, and that there are no resource limitations, such as 1091 * internal memory allocated to all requested endpoints. 1092 * 1093 * Returns zero on success, else a negative errno. 1094 */ 1095 int usb_gadget_check_config(struct usb_gadget *gadget) 1096 { 1097 if (gadget->ops->check_config) 1098 return gadget->ops->check_config(gadget); 1099 return 0; 1100 } 1101 EXPORT_SYMBOL_GPL(usb_gadget_check_config); 1102 1103 /* ------------------------------------------------------------------------- */ 1104 1105 static void usb_gadget_state_work(struct work_struct *work) 1106 { 1107 struct usb_gadget *gadget = work_to_gadget(work); 1108 struct usb_udc *udc = gadget->udc; 1109 1110 if (udc) 1111 sysfs_notify(&udc->dev.kobj, NULL, "state"); 1112 } 1113 1114 void usb_gadget_set_state(struct usb_gadget *gadget, 1115 enum usb_device_state state) 1116 { 1117 gadget->state = state; 1118 schedule_work(&gadget->work); 1119 } 1120 EXPORT_SYMBOL_GPL(usb_gadget_set_state); 1121 1122 /* ------------------------------------------------------------------------- */ 1123 1124 /* Acquire connect_lock before calling this function. */ 1125 static void usb_udc_connect_control_locked(struct usb_udc *udc) __must_hold(&udc->connect_lock) 1126 { 1127 if (udc->vbus && udc->started) 1128 usb_gadget_connect_locked(udc->gadget); 1129 else 1130 usb_gadget_disconnect_locked(udc->gadget); 1131 } 1132 1133 /** 1134 * usb_udc_vbus_handler - updates the udc core vbus status, and try to 1135 * connect or disconnect gadget 1136 * @gadget: The gadget which vbus change occurs 1137 * @status: The vbus status 1138 * 1139 * The udc driver calls it when it wants to connect or disconnect gadget 1140 * according to vbus status. 1141 */ 1142 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status) 1143 { 1144 struct usb_udc *udc = gadget->udc; 1145 1146 mutex_lock(&udc->connect_lock); 1147 if (udc) { 1148 udc->vbus = status; 1149 usb_udc_connect_control_locked(udc); 1150 } 1151 mutex_unlock(&udc->connect_lock); 1152 } 1153 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler); 1154 1155 /** 1156 * usb_gadget_udc_reset - notifies the udc core that bus reset occurs 1157 * @gadget: The gadget which bus reset occurs 1158 * @driver: The gadget driver we want to notify 1159 * 1160 * If the udc driver has bus reset handler, it needs to call this when the bus 1161 * reset occurs, it notifies the gadget driver that the bus reset occurs as 1162 * well as updates gadget state. 1163 */ 1164 void usb_gadget_udc_reset(struct usb_gadget *gadget, 1165 struct usb_gadget_driver *driver) 1166 { 1167 driver->reset(gadget); 1168 usb_gadget_set_state(gadget, USB_STATE_DEFAULT); 1169 } 1170 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset); 1171 1172 /** 1173 * usb_gadget_udc_start_locked - tells usb device controller to start up 1174 * @udc: The UDC to be started 1175 * 1176 * This call is issued by the UDC Class driver when it's about 1177 * to register a gadget driver to the device controller, before 1178 * calling gadget driver's bind() method. 1179 * 1180 * It allows the controller to be powered off until strictly 1181 * necessary to have it powered on. 1182 * 1183 * Returns zero on success, else negative errno. 1184 * 1185 * Caller should acquire connect_lock before invoking this function. 1186 */ 1187 static inline int usb_gadget_udc_start_locked(struct usb_udc *udc) 1188 __must_hold(&udc->connect_lock) 1189 { 1190 int ret; 1191 1192 if (udc->started) { 1193 dev_err(&udc->dev, "UDC had already started\n"); 1194 return -EBUSY; 1195 } 1196 1197 ret = udc->gadget->ops->udc_start(udc->gadget, udc->driver); 1198 if (!ret) 1199 udc->started = true; 1200 1201 return ret; 1202 } 1203 1204 /** 1205 * usb_gadget_udc_stop_locked - tells usb device controller we don't need it anymore 1206 * @udc: The UDC to be stopped 1207 * 1208 * This call is issued by the UDC Class driver after calling 1209 * gadget driver's unbind() method. 1210 * 1211 * The details are implementation specific, but it can go as 1212 * far as powering off UDC completely and disable its data 1213 * line pullups. 1214 * 1215 * Caller should acquire connect lock before invoking this function. 1216 */ 1217 static inline void usb_gadget_udc_stop_locked(struct usb_udc *udc) 1218 __must_hold(&udc->connect_lock) 1219 { 1220 if (!udc->started) { 1221 dev_err(&udc->dev, "UDC had already stopped\n"); 1222 return; 1223 } 1224 1225 udc->gadget->ops->udc_stop(udc->gadget); 1226 udc->started = false; 1227 } 1228 1229 /** 1230 * usb_gadget_udc_set_speed - tells usb device controller speed supported by 1231 * current driver 1232 * @udc: The device we want to set maximum speed 1233 * @speed: The maximum speed to allowed to run 1234 * 1235 * This call is issued by the UDC Class driver before calling 1236 * usb_gadget_udc_start() in order to make sure that we don't try to 1237 * connect on speeds the gadget driver doesn't support. 1238 */ 1239 static inline void usb_gadget_udc_set_speed(struct usb_udc *udc, 1240 enum usb_device_speed speed) 1241 { 1242 struct usb_gadget *gadget = udc->gadget; 1243 enum usb_device_speed s; 1244 1245 if (speed == USB_SPEED_UNKNOWN) 1246 s = gadget->max_speed; 1247 else 1248 s = min(speed, gadget->max_speed); 1249 1250 if (s == USB_SPEED_SUPER_PLUS && gadget->ops->udc_set_ssp_rate) 1251 gadget->ops->udc_set_ssp_rate(gadget, gadget->max_ssp_rate); 1252 else if (gadget->ops->udc_set_speed) 1253 gadget->ops->udc_set_speed(gadget, s); 1254 } 1255 1256 /** 1257 * usb_gadget_enable_async_callbacks - tell usb device controller to enable asynchronous callbacks 1258 * @udc: The UDC which should enable async callbacks 1259 * 1260 * This routine is used when binding gadget drivers. It undoes the effect 1261 * of usb_gadget_disable_async_callbacks(); the UDC driver should enable IRQs 1262 * (if necessary) and resume issuing callbacks. 1263 * 1264 * This routine will always be called in process context. 1265 */ 1266 static inline void usb_gadget_enable_async_callbacks(struct usb_udc *udc) 1267 { 1268 struct usb_gadget *gadget = udc->gadget; 1269 1270 if (gadget->ops->udc_async_callbacks) 1271 gadget->ops->udc_async_callbacks(gadget, true); 1272 } 1273 1274 /** 1275 * usb_gadget_disable_async_callbacks - tell usb device controller to disable asynchronous callbacks 1276 * @udc: The UDC which should disable async callbacks 1277 * 1278 * This routine is used when unbinding gadget drivers. It prevents a race: 1279 * The UDC driver doesn't know when the gadget driver's ->unbind callback 1280 * runs, so unless it is told to disable asynchronous callbacks, it might 1281 * issue a callback (such as ->disconnect) after the unbind has completed. 1282 * 1283 * After this function runs, the UDC driver must suppress all ->suspend, 1284 * ->resume, ->disconnect, ->reset, and ->setup callbacks to the gadget driver 1285 * until async callbacks are again enabled. A simple-minded but effective 1286 * way to accomplish this is to tell the UDC hardware not to generate any 1287 * more IRQs. 1288 * 1289 * Request completion callbacks must still be issued. However, it's okay 1290 * to defer them until the request is cancelled, since the pull-up will be 1291 * turned off during the time period when async callbacks are disabled. 1292 * 1293 * This routine will always be called in process context. 1294 */ 1295 static inline void usb_gadget_disable_async_callbacks(struct usb_udc *udc) 1296 { 1297 struct usb_gadget *gadget = udc->gadget; 1298 1299 if (gadget->ops->udc_async_callbacks) 1300 gadget->ops->udc_async_callbacks(gadget, false); 1301 } 1302 1303 /** 1304 * usb_udc_release - release the usb_udc struct 1305 * @dev: the dev member within usb_udc 1306 * 1307 * This is called by driver's core in order to free memory once the last 1308 * reference is released. 1309 */ 1310 static void usb_udc_release(struct device *dev) 1311 { 1312 struct usb_udc *udc; 1313 1314 udc = container_of(dev, struct usb_udc, dev); 1315 dev_dbg(dev, "releasing '%s'\n", dev_name(dev)); 1316 kfree(udc); 1317 } 1318 1319 static const struct attribute_group *usb_udc_attr_groups[]; 1320 1321 static void usb_udc_nop_release(struct device *dev) 1322 { 1323 dev_vdbg(dev, "%s\n", __func__); 1324 } 1325 1326 /** 1327 * usb_initialize_gadget - initialize a gadget and its embedded struct device 1328 * @parent: the parent device to this udc. Usually the controller driver's 1329 * device. 1330 * @gadget: the gadget to be initialized. 1331 * @release: a gadget release function. 1332 */ 1333 void usb_initialize_gadget(struct device *parent, struct usb_gadget *gadget, 1334 void (*release)(struct device *dev)) 1335 { 1336 INIT_WORK(&gadget->work, usb_gadget_state_work); 1337 gadget->dev.parent = parent; 1338 1339 if (release) 1340 gadget->dev.release = release; 1341 else 1342 gadget->dev.release = usb_udc_nop_release; 1343 1344 device_initialize(&gadget->dev); 1345 gadget->dev.bus = &gadget_bus_type; 1346 } 1347 EXPORT_SYMBOL_GPL(usb_initialize_gadget); 1348 1349 /** 1350 * usb_add_gadget - adds a new gadget to the udc class driver list 1351 * @gadget: the gadget to be added to the list. 1352 * 1353 * Returns zero on success, negative errno otherwise. 1354 * Does not do a final usb_put_gadget() if an error occurs. 1355 */ 1356 int usb_add_gadget(struct usb_gadget *gadget) 1357 { 1358 struct usb_udc *udc; 1359 int ret = -ENOMEM; 1360 1361 udc = kzalloc(sizeof(*udc), GFP_KERNEL); 1362 if (!udc) 1363 goto error; 1364 1365 device_initialize(&udc->dev); 1366 udc->dev.release = usb_udc_release; 1367 udc->dev.class = udc_class; 1368 udc->dev.groups = usb_udc_attr_groups; 1369 udc->dev.parent = gadget->dev.parent; 1370 ret = dev_set_name(&udc->dev, "%s", 1371 kobject_name(&gadget->dev.parent->kobj)); 1372 if (ret) 1373 goto err_put_udc; 1374 1375 udc->gadget = gadget; 1376 gadget->udc = udc; 1377 mutex_init(&udc->connect_lock); 1378 1379 udc->started = false; 1380 1381 mutex_lock(&udc_lock); 1382 list_add_tail(&udc->list, &udc_list); 1383 mutex_unlock(&udc_lock); 1384 1385 ret = device_add(&udc->dev); 1386 if (ret) 1387 goto err_unlist_udc; 1388 1389 usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED); 1390 udc->vbus = true; 1391 1392 ret = ida_alloc(&gadget_id_numbers, GFP_KERNEL); 1393 if (ret < 0) 1394 goto err_del_udc; 1395 gadget->id_number = ret; 1396 dev_set_name(&gadget->dev, "gadget.%d", ret); 1397 1398 ret = device_add(&gadget->dev); 1399 if (ret) 1400 goto err_free_id; 1401 1402 return 0; 1403 1404 err_free_id: 1405 ida_free(&gadget_id_numbers, gadget->id_number); 1406 1407 err_del_udc: 1408 flush_work(&gadget->work); 1409 device_del(&udc->dev); 1410 1411 err_unlist_udc: 1412 mutex_lock(&udc_lock); 1413 list_del(&udc->list); 1414 mutex_unlock(&udc_lock); 1415 1416 err_put_udc: 1417 put_device(&udc->dev); 1418 1419 error: 1420 return ret; 1421 } 1422 EXPORT_SYMBOL_GPL(usb_add_gadget); 1423 1424 /** 1425 * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list 1426 * @parent: the parent device to this udc. Usually the controller driver's 1427 * device. 1428 * @gadget: the gadget to be added to the list. 1429 * @release: a gadget release function. 1430 * 1431 * Returns zero on success, negative errno otherwise. 1432 * Calls the gadget release function in the latter case. 1433 */ 1434 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget, 1435 void (*release)(struct device *dev)) 1436 { 1437 int ret; 1438 1439 usb_initialize_gadget(parent, gadget, release); 1440 ret = usb_add_gadget(gadget); 1441 if (ret) 1442 usb_put_gadget(gadget); 1443 return ret; 1444 } 1445 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release); 1446 1447 /** 1448 * usb_get_gadget_udc_name - get the name of the first UDC controller 1449 * This functions returns the name of the first UDC controller in the system. 1450 * Please note that this interface is usefull only for legacy drivers which 1451 * assume that there is only one UDC controller in the system and they need to 1452 * get its name before initialization. There is no guarantee that the UDC 1453 * of the returned name will be still available, when gadget driver registers 1454 * itself. 1455 * 1456 * Returns pointer to string with UDC controller name on success, NULL 1457 * otherwise. Caller should kfree() returned string. 1458 */ 1459 char *usb_get_gadget_udc_name(void) 1460 { 1461 struct usb_udc *udc; 1462 char *name = NULL; 1463 1464 /* For now we take the first available UDC */ 1465 mutex_lock(&udc_lock); 1466 list_for_each_entry(udc, &udc_list, list) { 1467 if (!udc->driver) { 1468 name = kstrdup(udc->gadget->name, GFP_KERNEL); 1469 break; 1470 } 1471 } 1472 mutex_unlock(&udc_lock); 1473 return name; 1474 } 1475 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name); 1476 1477 /** 1478 * usb_add_gadget_udc - adds a new gadget to the udc class driver list 1479 * @parent: the parent device to this udc. Usually the controller 1480 * driver's device. 1481 * @gadget: the gadget to be added to the list 1482 * 1483 * Returns zero on success, negative errno otherwise. 1484 */ 1485 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget) 1486 { 1487 return usb_add_gadget_udc_release(parent, gadget, NULL); 1488 } 1489 EXPORT_SYMBOL_GPL(usb_add_gadget_udc); 1490 1491 /** 1492 * usb_del_gadget - deletes a gadget and unregisters its udc 1493 * @gadget: the gadget to be deleted. 1494 * 1495 * This will unbind @gadget, if it is bound. 1496 * It will not do a final usb_put_gadget(). 1497 */ 1498 void usb_del_gadget(struct usb_gadget *gadget) 1499 { 1500 struct usb_udc *udc = gadget->udc; 1501 1502 if (!udc) 1503 return; 1504 1505 dev_vdbg(gadget->dev.parent, "unregistering gadget\n"); 1506 1507 mutex_lock(&udc_lock); 1508 list_del(&udc->list); 1509 mutex_unlock(&udc_lock); 1510 1511 kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE); 1512 flush_work(&gadget->work); 1513 device_del(&gadget->dev); 1514 ida_free(&gadget_id_numbers, gadget->id_number); 1515 device_unregister(&udc->dev); 1516 } 1517 EXPORT_SYMBOL_GPL(usb_del_gadget); 1518 1519 /** 1520 * usb_del_gadget_udc - unregisters a gadget 1521 * @gadget: the gadget to be unregistered. 1522 * 1523 * Calls usb_del_gadget() and does a final usb_put_gadget(). 1524 */ 1525 void usb_del_gadget_udc(struct usb_gadget *gadget) 1526 { 1527 usb_del_gadget(gadget); 1528 usb_put_gadget(gadget); 1529 } 1530 EXPORT_SYMBOL_GPL(usb_del_gadget_udc); 1531 1532 /* ------------------------------------------------------------------------- */ 1533 1534 static int gadget_match_driver(struct device *dev, struct device_driver *drv) 1535 { 1536 struct usb_gadget *gadget = dev_to_usb_gadget(dev); 1537 struct usb_udc *udc = gadget->udc; 1538 struct usb_gadget_driver *driver = container_of(drv, 1539 struct usb_gadget_driver, driver); 1540 1541 /* If the driver specifies a udc_name, it must match the UDC's name */ 1542 if (driver->udc_name && 1543 strcmp(driver->udc_name, dev_name(&udc->dev)) != 0) 1544 return 0; 1545 1546 /* If the driver is already bound to a gadget, it doesn't match */ 1547 if (driver->is_bound) 1548 return 0; 1549 1550 /* Otherwise any gadget driver matches any UDC */ 1551 return 1; 1552 } 1553 1554 static int gadget_bind_driver(struct device *dev) 1555 { 1556 struct usb_gadget *gadget = dev_to_usb_gadget(dev); 1557 struct usb_udc *udc = gadget->udc; 1558 struct usb_gadget_driver *driver = container_of(dev->driver, 1559 struct usb_gadget_driver, driver); 1560 int ret = 0; 1561 1562 mutex_lock(&udc_lock); 1563 if (driver->is_bound) { 1564 mutex_unlock(&udc_lock); 1565 return -ENXIO; /* Driver binds to only one gadget */ 1566 } 1567 driver->is_bound = true; 1568 udc->driver = driver; 1569 mutex_unlock(&udc_lock); 1570 1571 dev_dbg(&udc->dev, "binding gadget driver [%s]\n", driver->function); 1572 1573 usb_gadget_udc_set_speed(udc, driver->max_speed); 1574 1575 ret = driver->bind(udc->gadget, driver); 1576 if (ret) 1577 goto err_bind; 1578 1579 mutex_lock(&udc->connect_lock); 1580 ret = usb_gadget_udc_start_locked(udc); 1581 if (ret) { 1582 mutex_unlock(&udc->connect_lock); 1583 goto err_start; 1584 } 1585 usb_gadget_enable_async_callbacks(udc); 1586 usb_udc_connect_control_locked(udc); 1587 mutex_unlock(&udc->connect_lock); 1588 1589 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE); 1590 return 0; 1591 1592 err_start: 1593 driver->unbind(udc->gadget); 1594 1595 err_bind: 1596 if (ret != -EISNAM) 1597 dev_err(&udc->dev, "failed to start %s: %d\n", 1598 driver->function, ret); 1599 1600 mutex_lock(&udc_lock); 1601 udc->driver = NULL; 1602 driver->is_bound = false; 1603 mutex_unlock(&udc_lock); 1604 1605 return ret; 1606 } 1607 1608 static void gadget_unbind_driver(struct device *dev) 1609 { 1610 struct usb_gadget *gadget = dev_to_usb_gadget(dev); 1611 struct usb_udc *udc = gadget->udc; 1612 struct usb_gadget_driver *driver = udc->driver; 1613 1614 dev_dbg(&udc->dev, "unbinding gadget driver [%s]\n", driver->function); 1615 1616 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE); 1617 1618 mutex_lock(&udc->connect_lock); 1619 usb_gadget_disconnect_locked(gadget); 1620 usb_gadget_disable_async_callbacks(udc); 1621 if (gadget->irq) 1622 synchronize_irq(gadget->irq); 1623 udc->driver->unbind(gadget); 1624 usb_gadget_udc_stop_locked(udc); 1625 mutex_unlock(&udc->connect_lock); 1626 1627 mutex_lock(&udc_lock); 1628 driver->is_bound = false; 1629 udc->driver = NULL; 1630 mutex_unlock(&udc_lock); 1631 } 1632 1633 /* ------------------------------------------------------------------------- */ 1634 1635 int usb_gadget_register_driver_owner(struct usb_gadget_driver *driver, 1636 struct module *owner, const char *mod_name) 1637 { 1638 int ret; 1639 1640 if (!driver || !driver->bind || !driver->setup) 1641 return -EINVAL; 1642 1643 driver->driver.bus = &gadget_bus_type; 1644 driver->driver.owner = owner; 1645 driver->driver.mod_name = mod_name; 1646 ret = driver_register(&driver->driver); 1647 if (ret) { 1648 pr_warn("%s: driver registration failed: %d\n", 1649 driver->function, ret); 1650 return ret; 1651 } 1652 1653 mutex_lock(&udc_lock); 1654 if (!driver->is_bound) { 1655 if (driver->match_existing_only) { 1656 pr_warn("%s: couldn't find an available UDC or it's busy\n", 1657 driver->function); 1658 ret = -EBUSY; 1659 } else { 1660 pr_info("%s: couldn't find an available UDC\n", 1661 driver->function); 1662 ret = 0; 1663 } 1664 } 1665 mutex_unlock(&udc_lock); 1666 1667 if (ret) 1668 driver_unregister(&driver->driver); 1669 return ret; 1670 } 1671 EXPORT_SYMBOL_GPL(usb_gadget_register_driver_owner); 1672 1673 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver) 1674 { 1675 if (!driver || !driver->unbind) 1676 return -EINVAL; 1677 1678 driver_unregister(&driver->driver); 1679 return 0; 1680 } 1681 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver); 1682 1683 /* ------------------------------------------------------------------------- */ 1684 1685 static ssize_t srp_store(struct device *dev, 1686 struct device_attribute *attr, const char *buf, size_t n) 1687 { 1688 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1689 1690 if (sysfs_streq(buf, "1")) 1691 usb_gadget_wakeup(udc->gadget); 1692 1693 return n; 1694 } 1695 static DEVICE_ATTR_WO(srp); 1696 1697 static ssize_t soft_connect_store(struct device *dev, 1698 struct device_attribute *attr, const char *buf, size_t n) 1699 { 1700 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1701 ssize_t ret; 1702 1703 device_lock(&udc->gadget->dev); 1704 if (!udc->driver) { 1705 dev_err(dev, "soft-connect without a gadget driver\n"); 1706 ret = -EOPNOTSUPP; 1707 goto out; 1708 } 1709 1710 if (sysfs_streq(buf, "connect")) { 1711 mutex_lock(&udc->connect_lock); 1712 usb_gadget_udc_start_locked(udc); 1713 usb_gadget_connect_locked(udc->gadget); 1714 mutex_unlock(&udc->connect_lock); 1715 } else if (sysfs_streq(buf, "disconnect")) { 1716 mutex_lock(&udc->connect_lock); 1717 usb_gadget_disconnect_locked(udc->gadget); 1718 usb_gadget_udc_stop_locked(udc); 1719 mutex_unlock(&udc->connect_lock); 1720 } else { 1721 dev_err(dev, "unsupported command '%s'\n", buf); 1722 ret = -EINVAL; 1723 goto out; 1724 } 1725 1726 ret = n; 1727 out: 1728 device_unlock(&udc->gadget->dev); 1729 return ret; 1730 } 1731 static DEVICE_ATTR_WO(soft_connect); 1732 1733 static ssize_t state_show(struct device *dev, struct device_attribute *attr, 1734 char *buf) 1735 { 1736 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1737 struct usb_gadget *gadget = udc->gadget; 1738 1739 return sprintf(buf, "%s\n", usb_state_string(gadget->state)); 1740 } 1741 static DEVICE_ATTR_RO(state); 1742 1743 static ssize_t function_show(struct device *dev, struct device_attribute *attr, 1744 char *buf) 1745 { 1746 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1747 struct usb_gadget_driver *drv; 1748 int rc = 0; 1749 1750 mutex_lock(&udc_lock); 1751 drv = udc->driver; 1752 if (drv && drv->function) 1753 rc = scnprintf(buf, PAGE_SIZE, "%s\n", drv->function); 1754 mutex_unlock(&udc_lock); 1755 return rc; 1756 } 1757 static DEVICE_ATTR_RO(function); 1758 1759 #define USB_UDC_SPEED_ATTR(name, param) \ 1760 ssize_t name##_show(struct device *dev, \ 1761 struct device_attribute *attr, char *buf) \ 1762 { \ 1763 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \ 1764 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 1765 usb_speed_string(udc->gadget->param)); \ 1766 } \ 1767 static DEVICE_ATTR_RO(name) 1768 1769 static USB_UDC_SPEED_ATTR(current_speed, speed); 1770 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed); 1771 1772 #define USB_UDC_ATTR(name) \ 1773 ssize_t name##_show(struct device *dev, \ 1774 struct device_attribute *attr, char *buf) \ 1775 { \ 1776 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \ 1777 struct usb_gadget *gadget = udc->gadget; \ 1778 \ 1779 return scnprintf(buf, PAGE_SIZE, "%d\n", gadget->name); \ 1780 } \ 1781 static DEVICE_ATTR_RO(name) 1782 1783 static USB_UDC_ATTR(is_otg); 1784 static USB_UDC_ATTR(is_a_peripheral); 1785 static USB_UDC_ATTR(b_hnp_enable); 1786 static USB_UDC_ATTR(a_hnp_support); 1787 static USB_UDC_ATTR(a_alt_hnp_support); 1788 static USB_UDC_ATTR(is_selfpowered); 1789 1790 static struct attribute *usb_udc_attrs[] = { 1791 &dev_attr_srp.attr, 1792 &dev_attr_soft_connect.attr, 1793 &dev_attr_state.attr, 1794 &dev_attr_function.attr, 1795 &dev_attr_current_speed.attr, 1796 &dev_attr_maximum_speed.attr, 1797 1798 &dev_attr_is_otg.attr, 1799 &dev_attr_is_a_peripheral.attr, 1800 &dev_attr_b_hnp_enable.attr, 1801 &dev_attr_a_hnp_support.attr, 1802 &dev_attr_a_alt_hnp_support.attr, 1803 &dev_attr_is_selfpowered.attr, 1804 NULL, 1805 }; 1806 1807 static const struct attribute_group usb_udc_attr_group = { 1808 .attrs = usb_udc_attrs, 1809 }; 1810 1811 static const struct attribute_group *usb_udc_attr_groups[] = { 1812 &usb_udc_attr_group, 1813 NULL, 1814 }; 1815 1816 static int usb_udc_uevent(const struct device *dev, struct kobj_uevent_env *env) 1817 { 1818 const struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1819 int ret; 1820 1821 ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name); 1822 if (ret) { 1823 dev_err(dev, "failed to add uevent USB_UDC_NAME\n"); 1824 return ret; 1825 } 1826 1827 mutex_lock(&udc_lock); 1828 if (udc->driver) 1829 ret = add_uevent_var(env, "USB_UDC_DRIVER=%s", 1830 udc->driver->function); 1831 mutex_unlock(&udc_lock); 1832 if (ret) { 1833 dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n"); 1834 return ret; 1835 } 1836 1837 return 0; 1838 } 1839 1840 static const struct bus_type gadget_bus_type = { 1841 .name = "gadget", 1842 .probe = gadget_bind_driver, 1843 .remove = gadget_unbind_driver, 1844 .match = gadget_match_driver, 1845 }; 1846 1847 static int __init usb_udc_init(void) 1848 { 1849 int rc; 1850 1851 udc_class = class_create("udc"); 1852 if (IS_ERR(udc_class)) { 1853 pr_err("failed to create udc class --> %ld\n", 1854 PTR_ERR(udc_class)); 1855 return PTR_ERR(udc_class); 1856 } 1857 1858 udc_class->dev_uevent = usb_udc_uevent; 1859 1860 rc = bus_register(&gadget_bus_type); 1861 if (rc) 1862 class_destroy(udc_class); 1863 return rc; 1864 } 1865 subsys_initcall(usb_udc_init); 1866 1867 static void __exit usb_udc_exit(void) 1868 { 1869 bus_unregister(&gadget_bus_type); 1870 class_destroy(udc_class); 1871 } 1872 module_exit(usb_udc_exit); 1873 1874 MODULE_DESCRIPTION("UDC Framework"); 1875 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>"); 1876 MODULE_LICENSE("GPL v2"); 1877