1 /** 2 * udc.c - Core UDC Framework 3 * 4 * Copyright (C) 2010 Texas Instruments 5 * Author: Felipe Balbi <balbi@ti.com> 6 * 7 * This program is free software: you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 of 9 * the License as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/device.h> 23 #include <linux/list.h> 24 #include <linux/err.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/sched/task_stack.h> 27 #include <linux/workqueue.h> 28 29 #include <linux/usb/ch9.h> 30 #include <linux/usb/gadget.h> 31 #include <linux/usb.h> 32 33 #include "trace.h" 34 35 /** 36 * struct usb_udc - describes one usb device controller 37 * @driver - the gadget driver pointer. For use by the class code 38 * @dev - the child device to the actual controller 39 * @gadget - the gadget. For use by the class code 40 * @list - for use by the udc class driver 41 * @vbus - for udcs who care about vbus status, this value is real vbus status; 42 * for udcs who do not care about vbus status, this value is always true 43 * 44 * This represents the internal data structure which is used by the UDC-class 45 * to hold information about udc driver and gadget together. 46 */ 47 struct usb_udc { 48 struct usb_gadget_driver *driver; 49 struct usb_gadget *gadget; 50 struct device dev; 51 struct list_head list; 52 bool vbus; 53 }; 54 55 static struct class *udc_class; 56 static LIST_HEAD(udc_list); 57 static LIST_HEAD(gadget_driver_pending_list); 58 static DEFINE_MUTEX(udc_lock); 59 60 static int udc_bind_to_driver(struct usb_udc *udc, 61 struct usb_gadget_driver *driver); 62 63 /* ------------------------------------------------------------------------- */ 64 65 /** 66 * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint 67 * @ep:the endpoint being configured 68 * @maxpacket_limit:value of maximum packet size limit 69 * 70 * This function should be used only in UDC drivers to initialize endpoint 71 * (usually in probe function). 72 */ 73 void usb_ep_set_maxpacket_limit(struct usb_ep *ep, 74 unsigned maxpacket_limit) 75 { 76 ep->maxpacket_limit = maxpacket_limit; 77 ep->maxpacket = maxpacket_limit; 78 79 trace_usb_ep_set_maxpacket_limit(ep, 0); 80 } 81 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit); 82 83 /** 84 * usb_ep_enable - configure endpoint, making it usable 85 * @ep:the endpoint being configured. may not be the endpoint named "ep0". 86 * drivers discover endpoints through the ep_list of a usb_gadget. 87 * 88 * When configurations are set, or when interface settings change, the driver 89 * will enable or disable the relevant endpoints. while it is enabled, an 90 * endpoint may be used for i/o until the driver receives a disconnect() from 91 * the host or until the endpoint is disabled. 92 * 93 * the ep0 implementation (which calls this routine) must ensure that the 94 * hardware capabilities of each endpoint match the descriptor provided 95 * for it. for example, an endpoint named "ep2in-bulk" would be usable 96 * for interrupt transfers as well as bulk, but it likely couldn't be used 97 * for iso transfers or for endpoint 14. some endpoints are fully 98 * configurable, with more generic names like "ep-a". (remember that for 99 * USB, "in" means "towards the USB master".) 100 * 101 * returns zero, or a negative error code. 102 */ 103 int usb_ep_enable(struct usb_ep *ep) 104 { 105 int ret = 0; 106 107 if (ep->enabled) 108 goto out; 109 110 ret = ep->ops->enable(ep, ep->desc); 111 if (ret) 112 goto out; 113 114 ep->enabled = true; 115 116 out: 117 trace_usb_ep_enable(ep, ret); 118 119 return ret; 120 } 121 EXPORT_SYMBOL_GPL(usb_ep_enable); 122 123 /** 124 * usb_ep_disable - endpoint is no longer usable 125 * @ep:the endpoint being unconfigured. may not be the endpoint named "ep0". 126 * 127 * no other task may be using this endpoint when this is called. 128 * any pending and uncompleted requests will complete with status 129 * indicating disconnect (-ESHUTDOWN) before this call returns. 130 * gadget drivers must call usb_ep_enable() again before queueing 131 * requests to the endpoint. 132 * 133 * returns zero, or a negative error code. 134 */ 135 int usb_ep_disable(struct usb_ep *ep) 136 { 137 int ret = 0; 138 139 if (!ep->enabled) 140 goto out; 141 142 ret = ep->ops->disable(ep); 143 if (ret) 144 goto out; 145 146 ep->enabled = false; 147 148 out: 149 trace_usb_ep_disable(ep, ret); 150 151 return ret; 152 } 153 EXPORT_SYMBOL_GPL(usb_ep_disable); 154 155 /** 156 * usb_ep_alloc_request - allocate a request object to use with this endpoint 157 * @ep:the endpoint to be used with with the request 158 * @gfp_flags:GFP_* flags to use 159 * 160 * Request objects must be allocated with this call, since they normally 161 * need controller-specific setup and may even need endpoint-specific 162 * resources such as allocation of DMA descriptors. 163 * Requests may be submitted with usb_ep_queue(), and receive a single 164 * completion callback. Free requests with usb_ep_free_request(), when 165 * they are no longer needed. 166 * 167 * Returns the request, or null if one could not be allocated. 168 */ 169 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep, 170 gfp_t gfp_flags) 171 { 172 struct usb_request *req = NULL; 173 174 req = ep->ops->alloc_request(ep, gfp_flags); 175 176 trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM); 177 178 return req; 179 } 180 EXPORT_SYMBOL_GPL(usb_ep_alloc_request); 181 182 /** 183 * usb_ep_free_request - frees a request object 184 * @ep:the endpoint associated with the request 185 * @req:the request being freed 186 * 187 * Reverses the effect of usb_ep_alloc_request(). 188 * Caller guarantees the request is not queued, and that it will 189 * no longer be requeued (or otherwise used). 190 */ 191 void usb_ep_free_request(struct usb_ep *ep, 192 struct usb_request *req) 193 { 194 ep->ops->free_request(ep, req); 195 trace_usb_ep_free_request(ep, req, 0); 196 } 197 EXPORT_SYMBOL_GPL(usb_ep_free_request); 198 199 /** 200 * usb_ep_queue - queues (submits) an I/O request to an endpoint. 201 * @ep:the endpoint associated with the request 202 * @req:the request being submitted 203 * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't 204 * pre-allocate all necessary memory with the request. 205 * 206 * This tells the device controller to perform the specified request through 207 * that endpoint (reading or writing a buffer). When the request completes, 208 * including being canceled by usb_ep_dequeue(), the request's completion 209 * routine is called to return the request to the driver. Any endpoint 210 * (except control endpoints like ep0) may have more than one transfer 211 * request queued; they complete in FIFO order. Once a gadget driver 212 * submits a request, that request may not be examined or modified until it 213 * is given back to that driver through the completion callback. 214 * 215 * Each request is turned into one or more packets. The controller driver 216 * never merges adjacent requests into the same packet. OUT transfers 217 * will sometimes use data that's already buffered in the hardware. 218 * Drivers can rely on the fact that the first byte of the request's buffer 219 * always corresponds to the first byte of some USB packet, for both 220 * IN and OUT transfers. 221 * 222 * Bulk endpoints can queue any amount of data; the transfer is packetized 223 * automatically. The last packet will be short if the request doesn't fill it 224 * out completely. Zero length packets (ZLPs) should be avoided in portable 225 * protocols since not all usb hardware can successfully handle zero length 226 * packets. (ZLPs may be explicitly written, and may be implicitly written if 227 * the request 'zero' flag is set.) Bulk endpoints may also be used 228 * for interrupt transfers; but the reverse is not true, and some endpoints 229 * won't support every interrupt transfer. (Such as 768 byte packets.) 230 * 231 * Interrupt-only endpoints are less functional than bulk endpoints, for 232 * example by not supporting queueing or not handling buffers that are 233 * larger than the endpoint's maxpacket size. They may also treat data 234 * toggle differently. 235 * 236 * Control endpoints ... after getting a setup() callback, the driver queues 237 * one response (even if it would be zero length). That enables the 238 * status ack, after transferring data as specified in the response. Setup 239 * functions may return negative error codes to generate protocol stalls. 240 * (Note that some USB device controllers disallow protocol stall responses 241 * in some cases.) When control responses are deferred (the response is 242 * written after the setup callback returns), then usb_ep_set_halt() may be 243 * used on ep0 to trigger protocol stalls. Depending on the controller, 244 * it may not be possible to trigger a status-stage protocol stall when the 245 * data stage is over, that is, from within the response's completion 246 * routine. 247 * 248 * For periodic endpoints, like interrupt or isochronous ones, the usb host 249 * arranges to poll once per interval, and the gadget driver usually will 250 * have queued some data to transfer at that time. 251 * 252 * Returns zero, or a negative error code. Endpoints that are not enabled 253 * report errors; errors will also be 254 * reported when the usb peripheral is disconnected. 255 */ 256 int usb_ep_queue(struct usb_ep *ep, 257 struct usb_request *req, gfp_t gfp_flags) 258 { 259 int ret = 0; 260 261 if (WARN_ON_ONCE(!ep->enabled && ep->address)) { 262 ret = -ESHUTDOWN; 263 goto out; 264 } 265 266 ret = ep->ops->queue(ep, req, gfp_flags); 267 268 out: 269 trace_usb_ep_queue(ep, req, ret); 270 271 return ret; 272 } 273 EXPORT_SYMBOL_GPL(usb_ep_queue); 274 275 /** 276 * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint 277 * @ep:the endpoint associated with the request 278 * @req:the request being canceled 279 * 280 * If the request is still active on the endpoint, it is dequeued and its 281 * completion routine is called (with status -ECONNRESET); else a negative 282 * error code is returned. This is guaranteed to happen before the call to 283 * usb_ep_dequeue() returns. 284 * 285 * Note that some hardware can't clear out write fifos (to unlink the request 286 * at the head of the queue) except as part of disconnecting from usb. Such 287 * restrictions prevent drivers from supporting configuration changes, 288 * even to configuration zero (a "chapter 9" requirement). 289 */ 290 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 291 { 292 int ret; 293 294 ret = ep->ops->dequeue(ep, req); 295 trace_usb_ep_dequeue(ep, req, ret); 296 297 return ret; 298 } 299 EXPORT_SYMBOL_GPL(usb_ep_dequeue); 300 301 /** 302 * usb_ep_set_halt - sets the endpoint halt feature. 303 * @ep: the non-isochronous endpoint being stalled 304 * 305 * Use this to stall an endpoint, perhaps as an error report. 306 * Except for control endpoints, 307 * the endpoint stays halted (will not stream any data) until the host 308 * clears this feature; drivers may need to empty the endpoint's request 309 * queue first, to make sure no inappropriate transfers happen. 310 * 311 * Note that while an endpoint CLEAR_FEATURE will be invisible to the 312 * gadget driver, a SET_INTERFACE will not be. To reset endpoints for the 313 * current altsetting, see usb_ep_clear_halt(). When switching altsettings, 314 * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints. 315 * 316 * Returns zero, or a negative error code. On success, this call sets 317 * underlying hardware state that blocks data transfers. 318 * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any 319 * transfer requests are still queued, or if the controller hardware 320 * (usually a FIFO) still holds bytes that the host hasn't collected. 321 */ 322 int usb_ep_set_halt(struct usb_ep *ep) 323 { 324 int ret; 325 326 ret = ep->ops->set_halt(ep, 1); 327 trace_usb_ep_set_halt(ep, ret); 328 329 return ret; 330 } 331 EXPORT_SYMBOL_GPL(usb_ep_set_halt); 332 333 /** 334 * usb_ep_clear_halt - clears endpoint halt, and resets toggle 335 * @ep:the bulk or interrupt endpoint being reset 336 * 337 * Use this when responding to the standard usb "set interface" request, 338 * for endpoints that aren't reconfigured, after clearing any other state 339 * in the endpoint's i/o queue. 340 * 341 * Returns zero, or a negative error code. On success, this call clears 342 * the underlying hardware state reflecting endpoint halt and data toggle. 343 * Note that some hardware can't support this request (like pxa2xx_udc), 344 * and accordingly can't correctly implement interface altsettings. 345 */ 346 int usb_ep_clear_halt(struct usb_ep *ep) 347 { 348 int ret; 349 350 ret = ep->ops->set_halt(ep, 0); 351 trace_usb_ep_clear_halt(ep, ret); 352 353 return ret; 354 } 355 EXPORT_SYMBOL_GPL(usb_ep_clear_halt); 356 357 /** 358 * usb_ep_set_wedge - sets the halt feature and ignores clear requests 359 * @ep: the endpoint being wedged 360 * 361 * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT) 362 * requests. If the gadget driver clears the halt status, it will 363 * automatically unwedge the endpoint. 364 * 365 * Returns zero on success, else negative errno. 366 */ 367 int usb_ep_set_wedge(struct usb_ep *ep) 368 { 369 int ret; 370 371 if (ep->ops->set_wedge) 372 ret = ep->ops->set_wedge(ep); 373 else 374 ret = ep->ops->set_halt(ep, 1); 375 376 trace_usb_ep_set_wedge(ep, ret); 377 378 return ret; 379 } 380 EXPORT_SYMBOL_GPL(usb_ep_set_wedge); 381 382 /** 383 * usb_ep_fifo_status - returns number of bytes in fifo, or error 384 * @ep: the endpoint whose fifo status is being checked. 385 * 386 * FIFO endpoints may have "unclaimed data" in them in certain cases, 387 * such as after aborted transfers. Hosts may not have collected all 388 * the IN data written by the gadget driver (and reported by a request 389 * completion). The gadget driver may not have collected all the data 390 * written OUT to it by the host. Drivers that need precise handling for 391 * fault reporting or recovery may need to use this call. 392 * 393 * This returns the number of such bytes in the fifo, or a negative 394 * errno if the endpoint doesn't use a FIFO or doesn't support such 395 * precise handling. 396 */ 397 int usb_ep_fifo_status(struct usb_ep *ep) 398 { 399 int ret; 400 401 if (ep->ops->fifo_status) 402 ret = ep->ops->fifo_status(ep); 403 else 404 ret = -EOPNOTSUPP; 405 406 trace_usb_ep_fifo_status(ep, ret); 407 408 return ret; 409 } 410 EXPORT_SYMBOL_GPL(usb_ep_fifo_status); 411 412 /** 413 * usb_ep_fifo_flush - flushes contents of a fifo 414 * @ep: the endpoint whose fifo is being flushed. 415 * 416 * This call may be used to flush the "unclaimed data" that may exist in 417 * an endpoint fifo after abnormal transaction terminations. The call 418 * must never be used except when endpoint is not being used for any 419 * protocol translation. 420 */ 421 void usb_ep_fifo_flush(struct usb_ep *ep) 422 { 423 if (ep->ops->fifo_flush) 424 ep->ops->fifo_flush(ep); 425 426 trace_usb_ep_fifo_flush(ep, 0); 427 } 428 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush); 429 430 /* ------------------------------------------------------------------------- */ 431 432 /** 433 * usb_gadget_frame_number - returns the current frame number 434 * @gadget: controller that reports the frame number 435 * 436 * Returns the usb frame number, normally eleven bits from a SOF packet, 437 * or negative errno if this device doesn't support this capability. 438 */ 439 int usb_gadget_frame_number(struct usb_gadget *gadget) 440 { 441 int ret; 442 443 ret = gadget->ops->get_frame(gadget); 444 445 trace_usb_gadget_frame_number(gadget, ret); 446 447 return ret; 448 } 449 EXPORT_SYMBOL_GPL(usb_gadget_frame_number); 450 451 /** 452 * usb_gadget_wakeup - tries to wake up the host connected to this gadget 453 * @gadget: controller used to wake up the host 454 * 455 * Returns zero on success, else negative error code if the hardware 456 * doesn't support such attempts, or its support has not been enabled 457 * by the usb host. Drivers must return device descriptors that report 458 * their ability to support this, or hosts won't enable it. 459 * 460 * This may also try to use SRP to wake the host and start enumeration, 461 * even if OTG isn't otherwise in use. OTG devices may also start 462 * remote wakeup even when hosts don't explicitly enable it. 463 */ 464 int usb_gadget_wakeup(struct usb_gadget *gadget) 465 { 466 int ret = 0; 467 468 if (!gadget->ops->wakeup) { 469 ret = -EOPNOTSUPP; 470 goto out; 471 } 472 473 ret = gadget->ops->wakeup(gadget); 474 475 out: 476 trace_usb_gadget_wakeup(gadget, ret); 477 478 return ret; 479 } 480 EXPORT_SYMBOL_GPL(usb_gadget_wakeup); 481 482 /** 483 * usb_gadget_set_selfpowered - sets the device selfpowered feature. 484 * @gadget:the device being declared as self-powered 485 * 486 * this affects the device status reported by the hardware driver 487 * to reflect that it now has a local power supply. 488 * 489 * returns zero on success, else negative errno. 490 */ 491 int usb_gadget_set_selfpowered(struct usb_gadget *gadget) 492 { 493 int ret = 0; 494 495 if (!gadget->ops->set_selfpowered) { 496 ret = -EOPNOTSUPP; 497 goto out; 498 } 499 500 ret = gadget->ops->set_selfpowered(gadget, 1); 501 502 out: 503 trace_usb_gadget_set_selfpowered(gadget, ret); 504 505 return ret; 506 } 507 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered); 508 509 /** 510 * usb_gadget_clear_selfpowered - clear the device selfpowered feature. 511 * @gadget:the device being declared as bus-powered 512 * 513 * this affects the device status reported by the hardware driver. 514 * some hardware may not support bus-powered operation, in which 515 * case this feature's value can never change. 516 * 517 * returns zero on success, else negative errno. 518 */ 519 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget) 520 { 521 int ret = 0; 522 523 if (!gadget->ops->set_selfpowered) { 524 ret = -EOPNOTSUPP; 525 goto out; 526 } 527 528 ret = gadget->ops->set_selfpowered(gadget, 0); 529 530 out: 531 trace_usb_gadget_clear_selfpowered(gadget, ret); 532 533 return ret; 534 } 535 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered); 536 537 /** 538 * usb_gadget_vbus_connect - Notify controller that VBUS is powered 539 * @gadget:The device which now has VBUS power. 540 * Context: can sleep 541 * 542 * This call is used by a driver for an external transceiver (or GPIO) 543 * that detects a VBUS power session starting. Common responses include 544 * resuming the controller, activating the D+ (or D-) pullup to let the 545 * host detect that a USB device is attached, and starting to draw power 546 * (8mA or possibly more, especially after SET_CONFIGURATION). 547 * 548 * Returns zero on success, else negative errno. 549 */ 550 int usb_gadget_vbus_connect(struct usb_gadget *gadget) 551 { 552 int ret = 0; 553 554 if (!gadget->ops->vbus_session) { 555 ret = -EOPNOTSUPP; 556 goto out; 557 } 558 559 ret = gadget->ops->vbus_session(gadget, 1); 560 561 out: 562 trace_usb_gadget_vbus_connect(gadget, ret); 563 564 return ret; 565 } 566 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect); 567 568 /** 569 * usb_gadget_vbus_draw - constrain controller's VBUS power usage 570 * @gadget:The device whose VBUS usage is being described 571 * @mA:How much current to draw, in milliAmperes. This should be twice 572 * the value listed in the configuration descriptor bMaxPower field. 573 * 574 * This call is used by gadget drivers during SET_CONFIGURATION calls, 575 * reporting how much power the device may consume. For example, this 576 * could affect how quickly batteries are recharged. 577 * 578 * Returns zero on success, else negative errno. 579 */ 580 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA) 581 { 582 int ret = 0; 583 584 if (!gadget->ops->vbus_draw) { 585 ret = -EOPNOTSUPP; 586 goto out; 587 } 588 589 ret = gadget->ops->vbus_draw(gadget, mA); 590 if (!ret) 591 gadget->mA = mA; 592 593 out: 594 trace_usb_gadget_vbus_draw(gadget, ret); 595 596 return ret; 597 } 598 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw); 599 600 /** 601 * usb_gadget_vbus_disconnect - notify controller about VBUS session end 602 * @gadget:the device whose VBUS supply is being described 603 * Context: can sleep 604 * 605 * This call is used by a driver for an external transceiver (or GPIO) 606 * that detects a VBUS power session ending. Common responses include 607 * reversing everything done in usb_gadget_vbus_connect(). 608 * 609 * Returns zero on success, else negative errno. 610 */ 611 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget) 612 { 613 int ret = 0; 614 615 if (!gadget->ops->vbus_session) { 616 ret = -EOPNOTSUPP; 617 goto out; 618 } 619 620 ret = gadget->ops->vbus_session(gadget, 0); 621 622 out: 623 trace_usb_gadget_vbus_disconnect(gadget, ret); 624 625 return ret; 626 } 627 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect); 628 629 /** 630 * usb_gadget_connect - software-controlled connect to USB host 631 * @gadget:the peripheral being connected 632 * 633 * Enables the D+ (or potentially D-) pullup. The host will start 634 * enumerating this gadget when the pullup is active and a VBUS session 635 * is active (the link is powered). This pullup is always enabled unless 636 * usb_gadget_disconnect() has been used to disable it. 637 * 638 * Returns zero on success, else negative errno. 639 */ 640 int usb_gadget_connect(struct usb_gadget *gadget) 641 { 642 int ret = 0; 643 644 if (!gadget->ops->pullup) { 645 ret = -EOPNOTSUPP; 646 goto out; 647 } 648 649 if (gadget->deactivated) { 650 /* 651 * If gadget is deactivated we only save new state. 652 * Gadget will be connected automatically after activation. 653 */ 654 gadget->connected = true; 655 goto out; 656 } 657 658 ret = gadget->ops->pullup(gadget, 1); 659 if (!ret) 660 gadget->connected = 1; 661 662 out: 663 trace_usb_gadget_connect(gadget, ret); 664 665 return ret; 666 } 667 EXPORT_SYMBOL_GPL(usb_gadget_connect); 668 669 /** 670 * usb_gadget_disconnect - software-controlled disconnect from USB host 671 * @gadget:the peripheral being disconnected 672 * 673 * Disables the D+ (or potentially D-) pullup, which the host may see 674 * as a disconnect (when a VBUS session is active). Not all systems 675 * support software pullup controls. 676 * 677 * Returns zero on success, else negative errno. 678 */ 679 int usb_gadget_disconnect(struct usb_gadget *gadget) 680 { 681 int ret = 0; 682 683 if (!gadget->ops->pullup) { 684 ret = -EOPNOTSUPP; 685 goto out; 686 } 687 688 if (gadget->deactivated) { 689 /* 690 * If gadget is deactivated we only save new state. 691 * Gadget will stay disconnected after activation. 692 */ 693 gadget->connected = false; 694 goto out; 695 } 696 697 ret = gadget->ops->pullup(gadget, 0); 698 if (!ret) 699 gadget->connected = 0; 700 701 out: 702 trace_usb_gadget_disconnect(gadget, ret); 703 704 return ret; 705 } 706 EXPORT_SYMBOL_GPL(usb_gadget_disconnect); 707 708 /** 709 * usb_gadget_deactivate - deactivate function which is not ready to work 710 * @gadget: the peripheral being deactivated 711 * 712 * This routine may be used during the gadget driver bind() call to prevent 713 * the peripheral from ever being visible to the USB host, unless later 714 * usb_gadget_activate() is called. For example, user mode components may 715 * need to be activated before the system can talk to hosts. 716 * 717 * Returns zero on success, else negative errno. 718 */ 719 int usb_gadget_deactivate(struct usb_gadget *gadget) 720 { 721 int ret = 0; 722 723 if (gadget->deactivated) 724 goto out; 725 726 if (gadget->connected) { 727 ret = usb_gadget_disconnect(gadget); 728 if (ret) 729 goto out; 730 731 /* 732 * If gadget was being connected before deactivation, we want 733 * to reconnect it in usb_gadget_activate(). 734 */ 735 gadget->connected = true; 736 } 737 gadget->deactivated = true; 738 739 out: 740 trace_usb_gadget_deactivate(gadget, ret); 741 742 return ret; 743 } 744 EXPORT_SYMBOL_GPL(usb_gadget_deactivate); 745 746 /** 747 * usb_gadget_activate - activate function which is not ready to work 748 * @gadget: the peripheral being activated 749 * 750 * This routine activates gadget which was previously deactivated with 751 * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed. 752 * 753 * Returns zero on success, else negative errno. 754 */ 755 int usb_gadget_activate(struct usb_gadget *gadget) 756 { 757 int ret = 0; 758 759 if (!gadget->deactivated) 760 goto out; 761 762 gadget->deactivated = false; 763 764 /* 765 * If gadget has been connected before deactivation, or became connected 766 * while it was being deactivated, we call usb_gadget_connect(). 767 */ 768 if (gadget->connected) 769 ret = usb_gadget_connect(gadget); 770 771 out: 772 trace_usb_gadget_activate(gadget, ret); 773 774 return ret; 775 } 776 EXPORT_SYMBOL_GPL(usb_gadget_activate); 777 778 /* ------------------------------------------------------------------------- */ 779 780 #ifdef CONFIG_HAS_DMA 781 782 int usb_gadget_map_request_by_dev(struct device *dev, 783 struct usb_request *req, int is_in) 784 { 785 if (req->length == 0) 786 return 0; 787 788 if (req->num_sgs) { 789 int mapped; 790 791 mapped = dma_map_sg(dev, req->sg, req->num_sgs, 792 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 793 if (mapped == 0) { 794 dev_err(dev, "failed to map SGs\n"); 795 return -EFAULT; 796 } 797 798 req->num_mapped_sgs = mapped; 799 } else { 800 if (is_vmalloc_addr(req->buf)) { 801 dev_err(dev, "buffer is not dma capable\n"); 802 return -EFAULT; 803 } else if (object_is_on_stack(req->buf)) { 804 dev_err(dev, "buffer is on stack\n"); 805 return -EFAULT; 806 } 807 808 req->dma = dma_map_single(dev, req->buf, req->length, 809 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 810 811 if (dma_mapping_error(dev, req->dma)) { 812 dev_err(dev, "failed to map buffer\n"); 813 return -EFAULT; 814 } 815 } 816 817 return 0; 818 } 819 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev); 820 821 int usb_gadget_map_request(struct usb_gadget *gadget, 822 struct usb_request *req, int is_in) 823 { 824 return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in); 825 } 826 EXPORT_SYMBOL_GPL(usb_gadget_map_request); 827 828 void usb_gadget_unmap_request_by_dev(struct device *dev, 829 struct usb_request *req, int is_in) 830 { 831 if (req->length == 0) 832 return; 833 834 if (req->num_mapped_sgs) { 835 dma_unmap_sg(dev, req->sg, req->num_sgs, 836 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 837 838 req->num_mapped_sgs = 0; 839 } else { 840 dma_unmap_single(dev, req->dma, req->length, 841 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 842 } 843 } 844 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev); 845 846 void usb_gadget_unmap_request(struct usb_gadget *gadget, 847 struct usb_request *req, int is_in) 848 { 849 usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in); 850 } 851 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request); 852 853 #endif /* CONFIG_HAS_DMA */ 854 855 /* ------------------------------------------------------------------------- */ 856 857 /** 858 * usb_gadget_giveback_request - give the request back to the gadget layer 859 * Context: in_interrupt() 860 * 861 * This is called by device controller drivers in order to return the 862 * completed request back to the gadget layer. 863 */ 864 void usb_gadget_giveback_request(struct usb_ep *ep, 865 struct usb_request *req) 866 { 867 if (likely(req->status == 0)) 868 usb_led_activity(USB_LED_EVENT_GADGET); 869 870 trace_usb_gadget_giveback_request(ep, req, 0); 871 872 req->complete(ep, req); 873 } 874 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request); 875 876 /* ------------------------------------------------------------------------- */ 877 878 /** 879 * gadget_find_ep_by_name - returns ep whose name is the same as sting passed 880 * in second parameter or NULL if searched endpoint not found 881 * @g: controller to check for quirk 882 * @name: name of searched endpoint 883 */ 884 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name) 885 { 886 struct usb_ep *ep; 887 888 gadget_for_each_ep(ep, g) { 889 if (!strcmp(ep->name, name)) 890 return ep; 891 } 892 893 return NULL; 894 } 895 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name); 896 897 /* ------------------------------------------------------------------------- */ 898 899 int usb_gadget_ep_match_desc(struct usb_gadget *gadget, 900 struct usb_ep *ep, struct usb_endpoint_descriptor *desc, 901 struct usb_ss_ep_comp_descriptor *ep_comp) 902 { 903 u8 type; 904 u16 max; 905 int num_req_streams = 0; 906 907 /* endpoint already claimed? */ 908 if (ep->claimed) 909 return 0; 910 911 type = usb_endpoint_type(desc); 912 max = 0x7ff & usb_endpoint_maxp(desc); 913 914 if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in) 915 return 0; 916 if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out) 917 return 0; 918 919 if (max > ep->maxpacket_limit) 920 return 0; 921 922 /* "high bandwidth" works only at high speed */ 923 if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp(desc) & (3<<11)) 924 return 0; 925 926 switch (type) { 927 case USB_ENDPOINT_XFER_CONTROL: 928 /* only support ep0 for portable CONTROL traffic */ 929 return 0; 930 case USB_ENDPOINT_XFER_ISOC: 931 if (!ep->caps.type_iso) 932 return 0; 933 /* ISO: limit 1023 bytes full speed, 1024 high/super speed */ 934 if (!gadget_is_dualspeed(gadget) && max > 1023) 935 return 0; 936 break; 937 case USB_ENDPOINT_XFER_BULK: 938 if (!ep->caps.type_bulk) 939 return 0; 940 if (ep_comp && gadget_is_superspeed(gadget)) { 941 /* Get the number of required streams from the 942 * EP companion descriptor and see if the EP 943 * matches it 944 */ 945 num_req_streams = ep_comp->bmAttributes & 0x1f; 946 if (num_req_streams > ep->max_streams) 947 return 0; 948 } 949 break; 950 case USB_ENDPOINT_XFER_INT: 951 /* Bulk endpoints handle interrupt transfers, 952 * except the toggle-quirky iso-synch kind 953 */ 954 if (!ep->caps.type_int && !ep->caps.type_bulk) 955 return 0; 956 /* INT: limit 64 bytes full speed, 1024 high/super speed */ 957 if (!gadget_is_dualspeed(gadget) && max > 64) 958 return 0; 959 break; 960 } 961 962 return 1; 963 } 964 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc); 965 966 /* ------------------------------------------------------------------------- */ 967 968 static void usb_gadget_state_work(struct work_struct *work) 969 { 970 struct usb_gadget *gadget = work_to_gadget(work); 971 struct usb_udc *udc = gadget->udc; 972 973 if (udc) 974 sysfs_notify(&udc->dev.kobj, NULL, "state"); 975 } 976 977 void usb_gadget_set_state(struct usb_gadget *gadget, 978 enum usb_device_state state) 979 { 980 gadget->state = state; 981 schedule_work(&gadget->work); 982 } 983 EXPORT_SYMBOL_GPL(usb_gadget_set_state); 984 985 /* ------------------------------------------------------------------------- */ 986 987 static void usb_udc_connect_control(struct usb_udc *udc) 988 { 989 if (udc->vbus) 990 usb_gadget_connect(udc->gadget); 991 else 992 usb_gadget_disconnect(udc->gadget); 993 } 994 995 /** 996 * usb_udc_vbus_handler - updates the udc core vbus status, and try to 997 * connect or disconnect gadget 998 * @gadget: The gadget which vbus change occurs 999 * @status: The vbus status 1000 * 1001 * The udc driver calls it when it wants to connect or disconnect gadget 1002 * according to vbus status. 1003 */ 1004 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status) 1005 { 1006 struct usb_udc *udc = gadget->udc; 1007 1008 if (udc) { 1009 udc->vbus = status; 1010 usb_udc_connect_control(udc); 1011 } 1012 } 1013 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler); 1014 1015 /** 1016 * usb_gadget_udc_reset - notifies the udc core that bus reset occurs 1017 * @gadget: The gadget which bus reset occurs 1018 * @driver: The gadget driver we want to notify 1019 * 1020 * If the udc driver has bus reset handler, it needs to call this when the bus 1021 * reset occurs, it notifies the gadget driver that the bus reset occurs as 1022 * well as updates gadget state. 1023 */ 1024 void usb_gadget_udc_reset(struct usb_gadget *gadget, 1025 struct usb_gadget_driver *driver) 1026 { 1027 driver->reset(gadget); 1028 usb_gadget_set_state(gadget, USB_STATE_DEFAULT); 1029 } 1030 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset); 1031 1032 /** 1033 * usb_gadget_udc_start - tells usb device controller to start up 1034 * @udc: The UDC to be started 1035 * 1036 * This call is issued by the UDC Class driver when it's about 1037 * to register a gadget driver to the device controller, before 1038 * calling gadget driver's bind() method. 1039 * 1040 * It allows the controller to be powered off until strictly 1041 * necessary to have it powered on. 1042 * 1043 * Returns zero on success, else negative errno. 1044 */ 1045 static inline int usb_gadget_udc_start(struct usb_udc *udc) 1046 { 1047 return udc->gadget->ops->udc_start(udc->gadget, udc->driver); 1048 } 1049 1050 /** 1051 * usb_gadget_udc_stop - tells usb device controller we don't need it anymore 1052 * @gadget: The device we want to stop activity 1053 * @driver: The driver to unbind from @gadget 1054 * 1055 * This call is issued by the UDC Class driver after calling 1056 * gadget driver's unbind() method. 1057 * 1058 * The details are implementation specific, but it can go as 1059 * far as powering off UDC completely and disable its data 1060 * line pullups. 1061 */ 1062 static inline void usb_gadget_udc_stop(struct usb_udc *udc) 1063 { 1064 udc->gadget->ops->udc_stop(udc->gadget); 1065 } 1066 1067 /** 1068 * usb_gadget_udc_set_speed - tells usb device controller speed supported by 1069 * current driver 1070 * @udc: The device we want to set maximum speed 1071 * @speed: The maximum speed to allowed to run 1072 * 1073 * This call is issued by the UDC Class driver before calling 1074 * usb_gadget_udc_start() in order to make sure that we don't try to 1075 * connect on speeds the gadget driver doesn't support. 1076 */ 1077 static inline void usb_gadget_udc_set_speed(struct usb_udc *udc, 1078 enum usb_device_speed speed) 1079 { 1080 if (udc->gadget->ops->udc_set_speed) 1081 udc->gadget->ops->udc_set_speed(udc->gadget, speed); 1082 } 1083 1084 /** 1085 * usb_udc_release - release the usb_udc struct 1086 * @dev: the dev member within usb_udc 1087 * 1088 * This is called by driver's core in order to free memory once the last 1089 * reference is released. 1090 */ 1091 static void usb_udc_release(struct device *dev) 1092 { 1093 struct usb_udc *udc; 1094 1095 udc = container_of(dev, struct usb_udc, dev); 1096 dev_dbg(dev, "releasing '%s'\n", dev_name(dev)); 1097 kfree(udc); 1098 } 1099 1100 static const struct attribute_group *usb_udc_attr_groups[]; 1101 1102 static void usb_udc_nop_release(struct device *dev) 1103 { 1104 dev_vdbg(dev, "%s\n", __func__); 1105 } 1106 1107 /* should be called with udc_lock held */ 1108 static int check_pending_gadget_drivers(struct usb_udc *udc) 1109 { 1110 struct usb_gadget_driver *driver; 1111 int ret = 0; 1112 1113 list_for_each_entry(driver, &gadget_driver_pending_list, pending) 1114 if (!driver->udc_name || strcmp(driver->udc_name, 1115 dev_name(&udc->dev)) == 0) { 1116 ret = udc_bind_to_driver(udc, driver); 1117 if (ret != -EPROBE_DEFER) 1118 list_del(&driver->pending); 1119 break; 1120 } 1121 1122 return ret; 1123 } 1124 1125 /** 1126 * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list 1127 * @parent: the parent device to this udc. Usually the controller driver's 1128 * device. 1129 * @gadget: the gadget to be added to the list. 1130 * @release: a gadget release function. 1131 * 1132 * Returns zero on success, negative errno otherwise. 1133 */ 1134 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget, 1135 void (*release)(struct device *dev)) 1136 { 1137 struct usb_udc *udc; 1138 int ret = -ENOMEM; 1139 1140 udc = kzalloc(sizeof(*udc), GFP_KERNEL); 1141 if (!udc) 1142 goto err1; 1143 1144 dev_set_name(&gadget->dev, "gadget"); 1145 INIT_WORK(&gadget->work, usb_gadget_state_work); 1146 gadget->dev.parent = parent; 1147 1148 if (release) 1149 gadget->dev.release = release; 1150 else 1151 gadget->dev.release = usb_udc_nop_release; 1152 1153 ret = device_register(&gadget->dev); 1154 if (ret) 1155 goto err2; 1156 1157 device_initialize(&udc->dev); 1158 udc->dev.release = usb_udc_release; 1159 udc->dev.class = udc_class; 1160 udc->dev.groups = usb_udc_attr_groups; 1161 udc->dev.parent = parent; 1162 ret = dev_set_name(&udc->dev, "%s", kobject_name(&parent->kobj)); 1163 if (ret) 1164 goto err3; 1165 1166 udc->gadget = gadget; 1167 gadget->udc = udc; 1168 1169 mutex_lock(&udc_lock); 1170 list_add_tail(&udc->list, &udc_list); 1171 1172 ret = device_add(&udc->dev); 1173 if (ret) 1174 goto err4; 1175 1176 usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED); 1177 udc->vbus = true; 1178 1179 /* pick up one of pending gadget drivers */ 1180 ret = check_pending_gadget_drivers(udc); 1181 if (ret) 1182 goto err5; 1183 1184 mutex_unlock(&udc_lock); 1185 1186 return 0; 1187 1188 err5: 1189 device_del(&udc->dev); 1190 1191 err4: 1192 list_del(&udc->list); 1193 mutex_unlock(&udc_lock); 1194 1195 err3: 1196 put_device(&udc->dev); 1197 device_del(&gadget->dev); 1198 1199 err2: 1200 put_device(&gadget->dev); 1201 kfree(udc); 1202 1203 err1: 1204 return ret; 1205 } 1206 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release); 1207 1208 /** 1209 * usb_get_gadget_udc_name - get the name of the first UDC controller 1210 * This functions returns the name of the first UDC controller in the system. 1211 * Please note that this interface is usefull only for legacy drivers which 1212 * assume that there is only one UDC controller in the system and they need to 1213 * get its name before initialization. There is no guarantee that the UDC 1214 * of the returned name will be still available, when gadget driver registers 1215 * itself. 1216 * 1217 * Returns pointer to string with UDC controller name on success, NULL 1218 * otherwise. Caller should kfree() returned string. 1219 */ 1220 char *usb_get_gadget_udc_name(void) 1221 { 1222 struct usb_udc *udc; 1223 char *name = NULL; 1224 1225 /* For now we take the first available UDC */ 1226 mutex_lock(&udc_lock); 1227 list_for_each_entry(udc, &udc_list, list) { 1228 if (!udc->driver) { 1229 name = kstrdup(udc->gadget->name, GFP_KERNEL); 1230 break; 1231 } 1232 } 1233 mutex_unlock(&udc_lock); 1234 return name; 1235 } 1236 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name); 1237 1238 /** 1239 * usb_add_gadget_udc - adds a new gadget to the udc class driver list 1240 * @parent: the parent device to this udc. Usually the controller 1241 * driver's device. 1242 * @gadget: the gadget to be added to the list 1243 * 1244 * Returns zero on success, negative errno otherwise. 1245 */ 1246 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget) 1247 { 1248 return usb_add_gadget_udc_release(parent, gadget, NULL); 1249 } 1250 EXPORT_SYMBOL_GPL(usb_add_gadget_udc); 1251 1252 static void usb_gadget_remove_driver(struct usb_udc *udc) 1253 { 1254 dev_dbg(&udc->dev, "unregistering UDC driver [%s]\n", 1255 udc->driver->function); 1256 1257 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE); 1258 1259 usb_gadget_disconnect(udc->gadget); 1260 udc->driver->disconnect(udc->gadget); 1261 udc->driver->unbind(udc->gadget); 1262 usb_gadget_udc_stop(udc); 1263 1264 udc->driver = NULL; 1265 udc->dev.driver = NULL; 1266 udc->gadget->dev.driver = NULL; 1267 } 1268 1269 /** 1270 * usb_del_gadget_udc - deletes @udc from udc_list 1271 * @gadget: the gadget to be removed. 1272 * 1273 * This, will call usb_gadget_unregister_driver() if 1274 * the @udc is still busy. 1275 */ 1276 void usb_del_gadget_udc(struct usb_gadget *gadget) 1277 { 1278 struct usb_udc *udc = gadget->udc; 1279 1280 if (!udc) 1281 return; 1282 1283 dev_vdbg(gadget->dev.parent, "unregistering gadget\n"); 1284 1285 mutex_lock(&udc_lock); 1286 list_del(&udc->list); 1287 1288 if (udc->driver) { 1289 struct usb_gadget_driver *driver = udc->driver; 1290 1291 usb_gadget_remove_driver(udc); 1292 list_add(&driver->pending, &gadget_driver_pending_list); 1293 } 1294 mutex_unlock(&udc_lock); 1295 1296 kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE); 1297 flush_work(&gadget->work); 1298 device_unregister(&udc->dev); 1299 device_unregister(&gadget->dev); 1300 memset(&gadget->dev, 0x00, sizeof(gadget->dev)); 1301 } 1302 EXPORT_SYMBOL_GPL(usb_del_gadget_udc); 1303 1304 /* ------------------------------------------------------------------------- */ 1305 1306 static int udc_bind_to_driver(struct usb_udc *udc, struct usb_gadget_driver *driver) 1307 { 1308 int ret; 1309 1310 dev_dbg(&udc->dev, "registering UDC driver [%s]\n", 1311 driver->function); 1312 1313 udc->driver = driver; 1314 udc->dev.driver = &driver->driver; 1315 udc->gadget->dev.driver = &driver->driver; 1316 1317 if (driver->max_speed < udc->gadget->max_speed) 1318 usb_gadget_udc_set_speed(udc, driver->max_speed); 1319 1320 ret = driver->bind(udc->gadget, driver); 1321 if (ret) 1322 goto err1; 1323 ret = usb_gadget_udc_start(udc); 1324 if (ret) { 1325 driver->unbind(udc->gadget); 1326 goto err1; 1327 } 1328 usb_udc_connect_control(udc); 1329 1330 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE); 1331 return 0; 1332 err1: 1333 if (ret != -EISNAM) 1334 dev_err(&udc->dev, "failed to start %s: %d\n", 1335 udc->driver->function, ret); 1336 udc->driver = NULL; 1337 udc->dev.driver = NULL; 1338 udc->gadget->dev.driver = NULL; 1339 return ret; 1340 } 1341 1342 int usb_gadget_probe_driver(struct usb_gadget_driver *driver) 1343 { 1344 struct usb_udc *udc = NULL; 1345 int ret = -ENODEV; 1346 1347 if (!driver || !driver->bind || !driver->setup) 1348 return -EINVAL; 1349 1350 mutex_lock(&udc_lock); 1351 if (driver->udc_name) { 1352 list_for_each_entry(udc, &udc_list, list) { 1353 ret = strcmp(driver->udc_name, dev_name(&udc->dev)); 1354 if (!ret) 1355 break; 1356 } 1357 if (ret) 1358 ret = -ENODEV; 1359 else if (udc->driver) 1360 ret = -EBUSY; 1361 else 1362 goto found; 1363 } else { 1364 list_for_each_entry(udc, &udc_list, list) { 1365 /* For now we take the first one */ 1366 if (!udc->driver) 1367 goto found; 1368 } 1369 } 1370 1371 if (!driver->match_existing_only) { 1372 list_add_tail(&driver->pending, &gadget_driver_pending_list); 1373 pr_info("udc-core: couldn't find an available UDC - added [%s] to list of pending drivers\n", 1374 driver->function); 1375 ret = 0; 1376 } 1377 1378 mutex_unlock(&udc_lock); 1379 return ret; 1380 found: 1381 ret = udc_bind_to_driver(udc, driver); 1382 mutex_unlock(&udc_lock); 1383 return ret; 1384 } 1385 EXPORT_SYMBOL_GPL(usb_gadget_probe_driver); 1386 1387 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver) 1388 { 1389 struct usb_udc *udc = NULL; 1390 int ret = -ENODEV; 1391 1392 if (!driver || !driver->unbind) 1393 return -EINVAL; 1394 1395 mutex_lock(&udc_lock); 1396 list_for_each_entry(udc, &udc_list, list) { 1397 if (udc->driver == driver) { 1398 usb_gadget_remove_driver(udc); 1399 usb_gadget_set_state(udc->gadget, 1400 USB_STATE_NOTATTACHED); 1401 1402 /* Maybe there is someone waiting for this UDC? */ 1403 check_pending_gadget_drivers(udc); 1404 /* 1405 * For now we ignore bind errors as probably it's 1406 * not a valid reason to fail other's gadget unbind 1407 */ 1408 ret = 0; 1409 break; 1410 } 1411 } 1412 1413 if (ret) { 1414 list_del(&driver->pending); 1415 ret = 0; 1416 } 1417 mutex_unlock(&udc_lock); 1418 return ret; 1419 } 1420 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver); 1421 1422 /* ------------------------------------------------------------------------- */ 1423 1424 static ssize_t usb_udc_srp_store(struct device *dev, 1425 struct device_attribute *attr, const char *buf, size_t n) 1426 { 1427 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1428 1429 if (sysfs_streq(buf, "1")) 1430 usb_gadget_wakeup(udc->gadget); 1431 1432 return n; 1433 } 1434 static DEVICE_ATTR(srp, S_IWUSR, NULL, usb_udc_srp_store); 1435 1436 static ssize_t usb_udc_softconn_store(struct device *dev, 1437 struct device_attribute *attr, const char *buf, size_t n) 1438 { 1439 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1440 1441 if (!udc->driver) { 1442 dev_err(dev, "soft-connect without a gadget driver\n"); 1443 return -EOPNOTSUPP; 1444 } 1445 1446 if (sysfs_streq(buf, "connect")) { 1447 usb_gadget_udc_start(udc); 1448 usb_gadget_connect(udc->gadget); 1449 } else if (sysfs_streq(buf, "disconnect")) { 1450 usb_gadget_disconnect(udc->gadget); 1451 udc->driver->disconnect(udc->gadget); 1452 usb_gadget_udc_stop(udc); 1453 } else { 1454 dev_err(dev, "unsupported command '%s'\n", buf); 1455 return -EINVAL; 1456 } 1457 1458 return n; 1459 } 1460 static DEVICE_ATTR(soft_connect, S_IWUSR, NULL, usb_udc_softconn_store); 1461 1462 static ssize_t state_show(struct device *dev, struct device_attribute *attr, 1463 char *buf) 1464 { 1465 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1466 struct usb_gadget *gadget = udc->gadget; 1467 1468 return sprintf(buf, "%s\n", usb_state_string(gadget->state)); 1469 } 1470 static DEVICE_ATTR_RO(state); 1471 1472 static ssize_t function_show(struct device *dev, struct device_attribute *attr, 1473 char *buf) 1474 { 1475 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1476 struct usb_gadget_driver *drv = udc->driver; 1477 1478 if (!drv || !drv->function) 1479 return 0; 1480 return scnprintf(buf, PAGE_SIZE, "%s\n", drv->function); 1481 } 1482 static DEVICE_ATTR_RO(function); 1483 1484 #define USB_UDC_SPEED_ATTR(name, param) \ 1485 ssize_t name##_show(struct device *dev, \ 1486 struct device_attribute *attr, char *buf) \ 1487 { \ 1488 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \ 1489 return snprintf(buf, PAGE_SIZE, "%s\n", \ 1490 usb_speed_string(udc->gadget->param)); \ 1491 } \ 1492 static DEVICE_ATTR_RO(name) 1493 1494 static USB_UDC_SPEED_ATTR(current_speed, speed); 1495 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed); 1496 1497 #define USB_UDC_ATTR(name) \ 1498 ssize_t name##_show(struct device *dev, \ 1499 struct device_attribute *attr, char *buf) \ 1500 { \ 1501 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \ 1502 struct usb_gadget *gadget = udc->gadget; \ 1503 \ 1504 return snprintf(buf, PAGE_SIZE, "%d\n", gadget->name); \ 1505 } \ 1506 static DEVICE_ATTR_RO(name) 1507 1508 static USB_UDC_ATTR(is_otg); 1509 static USB_UDC_ATTR(is_a_peripheral); 1510 static USB_UDC_ATTR(b_hnp_enable); 1511 static USB_UDC_ATTR(a_hnp_support); 1512 static USB_UDC_ATTR(a_alt_hnp_support); 1513 static USB_UDC_ATTR(is_selfpowered); 1514 1515 static struct attribute *usb_udc_attrs[] = { 1516 &dev_attr_srp.attr, 1517 &dev_attr_soft_connect.attr, 1518 &dev_attr_state.attr, 1519 &dev_attr_function.attr, 1520 &dev_attr_current_speed.attr, 1521 &dev_attr_maximum_speed.attr, 1522 1523 &dev_attr_is_otg.attr, 1524 &dev_attr_is_a_peripheral.attr, 1525 &dev_attr_b_hnp_enable.attr, 1526 &dev_attr_a_hnp_support.attr, 1527 &dev_attr_a_alt_hnp_support.attr, 1528 &dev_attr_is_selfpowered.attr, 1529 NULL, 1530 }; 1531 1532 static const struct attribute_group usb_udc_attr_group = { 1533 .attrs = usb_udc_attrs, 1534 }; 1535 1536 static const struct attribute_group *usb_udc_attr_groups[] = { 1537 &usb_udc_attr_group, 1538 NULL, 1539 }; 1540 1541 static int usb_udc_uevent(struct device *dev, struct kobj_uevent_env *env) 1542 { 1543 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1544 int ret; 1545 1546 ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name); 1547 if (ret) { 1548 dev_err(dev, "failed to add uevent USB_UDC_NAME\n"); 1549 return ret; 1550 } 1551 1552 if (udc->driver) { 1553 ret = add_uevent_var(env, "USB_UDC_DRIVER=%s", 1554 udc->driver->function); 1555 if (ret) { 1556 dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n"); 1557 return ret; 1558 } 1559 } 1560 1561 return 0; 1562 } 1563 1564 static int __init usb_udc_init(void) 1565 { 1566 udc_class = class_create(THIS_MODULE, "udc"); 1567 if (IS_ERR(udc_class)) { 1568 pr_err("failed to create udc class --> %ld\n", 1569 PTR_ERR(udc_class)); 1570 return PTR_ERR(udc_class); 1571 } 1572 1573 udc_class->dev_uevent = usb_udc_uevent; 1574 return 0; 1575 } 1576 subsys_initcall(usb_udc_init); 1577 1578 static void __exit usb_udc_exit(void) 1579 { 1580 class_destroy(udc_class); 1581 } 1582 module_exit(usb_udc_exit); 1583 1584 MODULE_DESCRIPTION("UDC Framework"); 1585 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>"); 1586 MODULE_LICENSE("GPL v2"); 1587