1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * udc.c - Core UDC Framework 4 * 5 * Copyright (C) 2010 Texas Instruments 6 * Author: Felipe Balbi <balbi@ti.com> 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/device.h> 12 #include <linux/list.h> 13 #include <linux/err.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/sched/task_stack.h> 16 #include <linux/workqueue.h> 17 18 #include <linux/usb/ch9.h> 19 #include <linux/usb/gadget.h> 20 #include <linux/usb.h> 21 22 #include "trace.h" 23 24 /** 25 * struct usb_udc - describes one usb device controller 26 * @driver: the gadget driver pointer. For use by the class code 27 * @dev: the child device to the actual controller 28 * @gadget: the gadget. For use by the class code 29 * @list: for use by the udc class driver 30 * @vbus: for udcs who care about vbus status, this value is real vbus status; 31 * for udcs who do not care about vbus status, this value is always true 32 * 33 * This represents the internal data structure which is used by the UDC-class 34 * to hold information about udc driver and gadget together. 35 */ 36 struct usb_udc { 37 struct usb_gadget_driver *driver; 38 struct usb_gadget *gadget; 39 struct device dev; 40 struct list_head list; 41 bool vbus; 42 }; 43 44 static struct class *udc_class; 45 static LIST_HEAD(udc_list); 46 static LIST_HEAD(gadget_driver_pending_list); 47 static DEFINE_MUTEX(udc_lock); 48 49 static int udc_bind_to_driver(struct usb_udc *udc, 50 struct usb_gadget_driver *driver); 51 52 /* ------------------------------------------------------------------------- */ 53 54 /** 55 * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint 56 * @ep:the endpoint being configured 57 * @maxpacket_limit:value of maximum packet size limit 58 * 59 * This function should be used only in UDC drivers to initialize endpoint 60 * (usually in probe function). 61 */ 62 void usb_ep_set_maxpacket_limit(struct usb_ep *ep, 63 unsigned maxpacket_limit) 64 { 65 ep->maxpacket_limit = maxpacket_limit; 66 ep->maxpacket = maxpacket_limit; 67 68 trace_usb_ep_set_maxpacket_limit(ep, 0); 69 } 70 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit); 71 72 /** 73 * usb_ep_enable - configure endpoint, making it usable 74 * @ep:the endpoint being configured. may not be the endpoint named "ep0". 75 * drivers discover endpoints through the ep_list of a usb_gadget. 76 * 77 * When configurations are set, or when interface settings change, the driver 78 * will enable or disable the relevant endpoints. while it is enabled, an 79 * endpoint may be used for i/o until the driver receives a disconnect() from 80 * the host or until the endpoint is disabled. 81 * 82 * the ep0 implementation (which calls this routine) must ensure that the 83 * hardware capabilities of each endpoint match the descriptor provided 84 * for it. for example, an endpoint named "ep2in-bulk" would be usable 85 * for interrupt transfers as well as bulk, but it likely couldn't be used 86 * for iso transfers or for endpoint 14. some endpoints are fully 87 * configurable, with more generic names like "ep-a". (remember that for 88 * USB, "in" means "towards the USB host".) 89 * 90 * This routine must be called in process context. 91 * 92 * returns zero, or a negative error code. 93 */ 94 int usb_ep_enable(struct usb_ep *ep) 95 { 96 int ret = 0; 97 98 if (ep->enabled) 99 goto out; 100 101 /* UDC drivers can't handle endpoints with maxpacket size 0 */ 102 if (usb_endpoint_maxp(ep->desc) == 0) { 103 /* 104 * We should log an error message here, but we can't call 105 * dev_err() because there's no way to find the gadget 106 * given only ep. 107 */ 108 ret = -EINVAL; 109 goto out; 110 } 111 112 ret = ep->ops->enable(ep, ep->desc); 113 if (ret) 114 goto out; 115 116 ep->enabled = true; 117 118 out: 119 trace_usb_ep_enable(ep, ret); 120 121 return ret; 122 } 123 EXPORT_SYMBOL_GPL(usb_ep_enable); 124 125 /** 126 * usb_ep_disable - endpoint is no longer usable 127 * @ep:the endpoint being unconfigured. may not be the endpoint named "ep0". 128 * 129 * no other task may be using this endpoint when this is called. 130 * any pending and uncompleted requests will complete with status 131 * indicating disconnect (-ESHUTDOWN) before this call returns. 132 * gadget drivers must call usb_ep_enable() again before queueing 133 * requests to the endpoint. 134 * 135 * This routine must be called in process context. 136 * 137 * returns zero, or a negative error code. 138 */ 139 int usb_ep_disable(struct usb_ep *ep) 140 { 141 int ret = 0; 142 143 if (!ep->enabled) 144 goto out; 145 146 ret = ep->ops->disable(ep); 147 if (ret) 148 goto out; 149 150 ep->enabled = false; 151 152 out: 153 trace_usb_ep_disable(ep, ret); 154 155 return ret; 156 } 157 EXPORT_SYMBOL_GPL(usb_ep_disable); 158 159 /** 160 * usb_ep_alloc_request - allocate a request object to use with this endpoint 161 * @ep:the endpoint to be used with with the request 162 * @gfp_flags:GFP_* flags to use 163 * 164 * Request objects must be allocated with this call, since they normally 165 * need controller-specific setup and may even need endpoint-specific 166 * resources such as allocation of DMA descriptors. 167 * Requests may be submitted with usb_ep_queue(), and receive a single 168 * completion callback. Free requests with usb_ep_free_request(), when 169 * they are no longer needed. 170 * 171 * Returns the request, or null if one could not be allocated. 172 */ 173 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep, 174 gfp_t gfp_flags) 175 { 176 struct usb_request *req = NULL; 177 178 req = ep->ops->alloc_request(ep, gfp_flags); 179 180 trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM); 181 182 return req; 183 } 184 EXPORT_SYMBOL_GPL(usb_ep_alloc_request); 185 186 /** 187 * usb_ep_free_request - frees a request object 188 * @ep:the endpoint associated with the request 189 * @req:the request being freed 190 * 191 * Reverses the effect of usb_ep_alloc_request(). 192 * Caller guarantees the request is not queued, and that it will 193 * no longer be requeued (or otherwise used). 194 */ 195 void usb_ep_free_request(struct usb_ep *ep, 196 struct usb_request *req) 197 { 198 trace_usb_ep_free_request(ep, req, 0); 199 ep->ops->free_request(ep, req); 200 } 201 EXPORT_SYMBOL_GPL(usb_ep_free_request); 202 203 /** 204 * usb_ep_queue - queues (submits) an I/O request to an endpoint. 205 * @ep:the endpoint associated with the request 206 * @req:the request being submitted 207 * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't 208 * pre-allocate all necessary memory with the request. 209 * 210 * This tells the device controller to perform the specified request through 211 * that endpoint (reading or writing a buffer). When the request completes, 212 * including being canceled by usb_ep_dequeue(), the request's completion 213 * routine is called to return the request to the driver. Any endpoint 214 * (except control endpoints like ep0) may have more than one transfer 215 * request queued; they complete in FIFO order. Once a gadget driver 216 * submits a request, that request may not be examined or modified until it 217 * is given back to that driver through the completion callback. 218 * 219 * Each request is turned into one or more packets. The controller driver 220 * never merges adjacent requests into the same packet. OUT transfers 221 * will sometimes use data that's already buffered in the hardware. 222 * Drivers can rely on the fact that the first byte of the request's buffer 223 * always corresponds to the first byte of some USB packet, for both 224 * IN and OUT transfers. 225 * 226 * Bulk endpoints can queue any amount of data; the transfer is packetized 227 * automatically. The last packet will be short if the request doesn't fill it 228 * out completely. Zero length packets (ZLPs) should be avoided in portable 229 * protocols since not all usb hardware can successfully handle zero length 230 * packets. (ZLPs may be explicitly written, and may be implicitly written if 231 * the request 'zero' flag is set.) Bulk endpoints may also be used 232 * for interrupt transfers; but the reverse is not true, and some endpoints 233 * won't support every interrupt transfer. (Such as 768 byte packets.) 234 * 235 * Interrupt-only endpoints are less functional than bulk endpoints, for 236 * example by not supporting queueing or not handling buffers that are 237 * larger than the endpoint's maxpacket size. They may also treat data 238 * toggle differently. 239 * 240 * Control endpoints ... after getting a setup() callback, the driver queues 241 * one response (even if it would be zero length). That enables the 242 * status ack, after transferring data as specified in the response. Setup 243 * functions may return negative error codes to generate protocol stalls. 244 * (Note that some USB device controllers disallow protocol stall responses 245 * in some cases.) When control responses are deferred (the response is 246 * written after the setup callback returns), then usb_ep_set_halt() may be 247 * used on ep0 to trigger protocol stalls. Depending on the controller, 248 * it may not be possible to trigger a status-stage protocol stall when the 249 * data stage is over, that is, from within the response's completion 250 * routine. 251 * 252 * For periodic endpoints, like interrupt or isochronous ones, the usb host 253 * arranges to poll once per interval, and the gadget driver usually will 254 * have queued some data to transfer at that time. 255 * 256 * Note that @req's ->complete() callback must never be called from 257 * within usb_ep_queue() as that can create deadlock situations. 258 * 259 * This routine may be called in interrupt context. 260 * 261 * Returns zero, or a negative error code. Endpoints that are not enabled 262 * report errors; errors will also be 263 * reported when the usb peripheral is disconnected. 264 * 265 * If and only if @req is successfully queued (the return value is zero), 266 * @req->complete() will be called exactly once, when the Gadget core and 267 * UDC are finished with the request. When the completion function is called, 268 * control of the request is returned to the device driver which submitted it. 269 * The completion handler may then immediately free or reuse @req. 270 */ 271 int usb_ep_queue(struct usb_ep *ep, 272 struct usb_request *req, gfp_t gfp_flags) 273 { 274 int ret = 0; 275 276 if (WARN_ON_ONCE(!ep->enabled && ep->address)) { 277 ret = -ESHUTDOWN; 278 goto out; 279 } 280 281 ret = ep->ops->queue(ep, req, gfp_flags); 282 283 out: 284 trace_usb_ep_queue(ep, req, ret); 285 286 return ret; 287 } 288 EXPORT_SYMBOL_GPL(usb_ep_queue); 289 290 /** 291 * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint 292 * @ep:the endpoint associated with the request 293 * @req:the request being canceled 294 * 295 * If the request is still active on the endpoint, it is dequeued and 296 * eventually its completion routine is called (with status -ECONNRESET); 297 * else a negative error code is returned. This routine is asynchronous, 298 * that is, it may return before the completion routine runs. 299 * 300 * Note that some hardware can't clear out write fifos (to unlink the request 301 * at the head of the queue) except as part of disconnecting from usb. Such 302 * restrictions prevent drivers from supporting configuration changes, 303 * even to configuration zero (a "chapter 9" requirement). 304 * 305 * This routine may be called in interrupt context. 306 */ 307 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 308 { 309 int ret; 310 311 ret = ep->ops->dequeue(ep, req); 312 trace_usb_ep_dequeue(ep, req, ret); 313 314 return ret; 315 } 316 EXPORT_SYMBOL_GPL(usb_ep_dequeue); 317 318 /** 319 * usb_ep_set_halt - sets the endpoint halt feature. 320 * @ep: the non-isochronous endpoint being stalled 321 * 322 * Use this to stall an endpoint, perhaps as an error report. 323 * Except for control endpoints, 324 * the endpoint stays halted (will not stream any data) until the host 325 * clears this feature; drivers may need to empty the endpoint's request 326 * queue first, to make sure no inappropriate transfers happen. 327 * 328 * Note that while an endpoint CLEAR_FEATURE will be invisible to the 329 * gadget driver, a SET_INTERFACE will not be. To reset endpoints for the 330 * current altsetting, see usb_ep_clear_halt(). When switching altsettings, 331 * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints. 332 * 333 * This routine may be called in interrupt context. 334 * 335 * Returns zero, or a negative error code. On success, this call sets 336 * underlying hardware state that blocks data transfers. 337 * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any 338 * transfer requests are still queued, or if the controller hardware 339 * (usually a FIFO) still holds bytes that the host hasn't collected. 340 */ 341 int usb_ep_set_halt(struct usb_ep *ep) 342 { 343 int ret; 344 345 ret = ep->ops->set_halt(ep, 1); 346 trace_usb_ep_set_halt(ep, ret); 347 348 return ret; 349 } 350 EXPORT_SYMBOL_GPL(usb_ep_set_halt); 351 352 /** 353 * usb_ep_clear_halt - clears endpoint halt, and resets toggle 354 * @ep:the bulk or interrupt endpoint being reset 355 * 356 * Use this when responding to the standard usb "set interface" request, 357 * for endpoints that aren't reconfigured, after clearing any other state 358 * in the endpoint's i/o queue. 359 * 360 * This routine may be called in interrupt context. 361 * 362 * Returns zero, or a negative error code. On success, this call clears 363 * the underlying hardware state reflecting endpoint halt and data toggle. 364 * Note that some hardware can't support this request (like pxa2xx_udc), 365 * and accordingly can't correctly implement interface altsettings. 366 */ 367 int usb_ep_clear_halt(struct usb_ep *ep) 368 { 369 int ret; 370 371 ret = ep->ops->set_halt(ep, 0); 372 trace_usb_ep_clear_halt(ep, ret); 373 374 return ret; 375 } 376 EXPORT_SYMBOL_GPL(usb_ep_clear_halt); 377 378 /** 379 * usb_ep_set_wedge - sets the halt feature and ignores clear requests 380 * @ep: the endpoint being wedged 381 * 382 * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT) 383 * requests. If the gadget driver clears the halt status, it will 384 * automatically unwedge the endpoint. 385 * 386 * This routine may be called in interrupt context. 387 * 388 * Returns zero on success, else negative errno. 389 */ 390 int usb_ep_set_wedge(struct usb_ep *ep) 391 { 392 int ret; 393 394 if (ep->ops->set_wedge) 395 ret = ep->ops->set_wedge(ep); 396 else 397 ret = ep->ops->set_halt(ep, 1); 398 399 trace_usb_ep_set_wedge(ep, ret); 400 401 return ret; 402 } 403 EXPORT_SYMBOL_GPL(usb_ep_set_wedge); 404 405 /** 406 * usb_ep_fifo_status - returns number of bytes in fifo, or error 407 * @ep: the endpoint whose fifo status is being checked. 408 * 409 * FIFO endpoints may have "unclaimed data" in them in certain cases, 410 * such as after aborted transfers. Hosts may not have collected all 411 * the IN data written by the gadget driver (and reported by a request 412 * completion). The gadget driver may not have collected all the data 413 * written OUT to it by the host. Drivers that need precise handling for 414 * fault reporting or recovery may need to use this call. 415 * 416 * This routine may be called in interrupt context. 417 * 418 * This returns the number of such bytes in the fifo, or a negative 419 * errno if the endpoint doesn't use a FIFO or doesn't support such 420 * precise handling. 421 */ 422 int usb_ep_fifo_status(struct usb_ep *ep) 423 { 424 int ret; 425 426 if (ep->ops->fifo_status) 427 ret = ep->ops->fifo_status(ep); 428 else 429 ret = -EOPNOTSUPP; 430 431 trace_usb_ep_fifo_status(ep, ret); 432 433 return ret; 434 } 435 EXPORT_SYMBOL_GPL(usb_ep_fifo_status); 436 437 /** 438 * usb_ep_fifo_flush - flushes contents of a fifo 439 * @ep: the endpoint whose fifo is being flushed. 440 * 441 * This call may be used to flush the "unclaimed data" that may exist in 442 * an endpoint fifo after abnormal transaction terminations. The call 443 * must never be used except when endpoint is not being used for any 444 * protocol translation. 445 * 446 * This routine may be called in interrupt context. 447 */ 448 void usb_ep_fifo_flush(struct usb_ep *ep) 449 { 450 if (ep->ops->fifo_flush) 451 ep->ops->fifo_flush(ep); 452 453 trace_usb_ep_fifo_flush(ep, 0); 454 } 455 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush); 456 457 /* ------------------------------------------------------------------------- */ 458 459 /** 460 * usb_gadget_frame_number - returns the current frame number 461 * @gadget: controller that reports the frame number 462 * 463 * Returns the usb frame number, normally eleven bits from a SOF packet, 464 * or negative errno if this device doesn't support this capability. 465 */ 466 int usb_gadget_frame_number(struct usb_gadget *gadget) 467 { 468 int ret; 469 470 ret = gadget->ops->get_frame(gadget); 471 472 trace_usb_gadget_frame_number(gadget, ret); 473 474 return ret; 475 } 476 EXPORT_SYMBOL_GPL(usb_gadget_frame_number); 477 478 /** 479 * usb_gadget_wakeup - tries to wake up the host connected to this gadget 480 * @gadget: controller used to wake up the host 481 * 482 * Returns zero on success, else negative error code if the hardware 483 * doesn't support such attempts, or its support has not been enabled 484 * by the usb host. Drivers must return device descriptors that report 485 * their ability to support this, or hosts won't enable it. 486 * 487 * This may also try to use SRP to wake the host and start enumeration, 488 * even if OTG isn't otherwise in use. OTG devices may also start 489 * remote wakeup even when hosts don't explicitly enable it. 490 */ 491 int usb_gadget_wakeup(struct usb_gadget *gadget) 492 { 493 int ret = 0; 494 495 if (!gadget->ops->wakeup) { 496 ret = -EOPNOTSUPP; 497 goto out; 498 } 499 500 ret = gadget->ops->wakeup(gadget); 501 502 out: 503 trace_usb_gadget_wakeup(gadget, ret); 504 505 return ret; 506 } 507 EXPORT_SYMBOL_GPL(usb_gadget_wakeup); 508 509 /** 510 * usb_gadget_set_selfpowered - sets the device selfpowered feature. 511 * @gadget:the device being declared as self-powered 512 * 513 * this affects the device status reported by the hardware driver 514 * to reflect that it now has a local power supply. 515 * 516 * returns zero on success, else negative errno. 517 */ 518 int usb_gadget_set_selfpowered(struct usb_gadget *gadget) 519 { 520 int ret = 0; 521 522 if (!gadget->ops->set_selfpowered) { 523 ret = -EOPNOTSUPP; 524 goto out; 525 } 526 527 ret = gadget->ops->set_selfpowered(gadget, 1); 528 529 out: 530 trace_usb_gadget_set_selfpowered(gadget, ret); 531 532 return ret; 533 } 534 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered); 535 536 /** 537 * usb_gadget_clear_selfpowered - clear the device selfpowered feature. 538 * @gadget:the device being declared as bus-powered 539 * 540 * this affects the device status reported by the hardware driver. 541 * some hardware may not support bus-powered operation, in which 542 * case this feature's value can never change. 543 * 544 * returns zero on success, else negative errno. 545 */ 546 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget) 547 { 548 int ret = 0; 549 550 if (!gadget->ops->set_selfpowered) { 551 ret = -EOPNOTSUPP; 552 goto out; 553 } 554 555 ret = gadget->ops->set_selfpowered(gadget, 0); 556 557 out: 558 trace_usb_gadget_clear_selfpowered(gadget, ret); 559 560 return ret; 561 } 562 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered); 563 564 /** 565 * usb_gadget_vbus_connect - Notify controller that VBUS is powered 566 * @gadget:The device which now has VBUS power. 567 * Context: can sleep 568 * 569 * This call is used by a driver for an external transceiver (or GPIO) 570 * that detects a VBUS power session starting. Common responses include 571 * resuming the controller, activating the D+ (or D-) pullup to let the 572 * host detect that a USB device is attached, and starting to draw power 573 * (8mA or possibly more, especially after SET_CONFIGURATION). 574 * 575 * Returns zero on success, else negative errno. 576 */ 577 int usb_gadget_vbus_connect(struct usb_gadget *gadget) 578 { 579 int ret = 0; 580 581 if (!gadget->ops->vbus_session) { 582 ret = -EOPNOTSUPP; 583 goto out; 584 } 585 586 ret = gadget->ops->vbus_session(gadget, 1); 587 588 out: 589 trace_usb_gadget_vbus_connect(gadget, ret); 590 591 return ret; 592 } 593 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect); 594 595 /** 596 * usb_gadget_vbus_draw - constrain controller's VBUS power usage 597 * @gadget:The device whose VBUS usage is being described 598 * @mA:How much current to draw, in milliAmperes. This should be twice 599 * the value listed in the configuration descriptor bMaxPower field. 600 * 601 * This call is used by gadget drivers during SET_CONFIGURATION calls, 602 * reporting how much power the device may consume. For example, this 603 * could affect how quickly batteries are recharged. 604 * 605 * Returns zero on success, else negative errno. 606 */ 607 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA) 608 { 609 int ret = 0; 610 611 if (!gadget->ops->vbus_draw) { 612 ret = -EOPNOTSUPP; 613 goto out; 614 } 615 616 ret = gadget->ops->vbus_draw(gadget, mA); 617 if (!ret) 618 gadget->mA = mA; 619 620 out: 621 trace_usb_gadget_vbus_draw(gadget, ret); 622 623 return ret; 624 } 625 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw); 626 627 /** 628 * usb_gadget_vbus_disconnect - notify controller about VBUS session end 629 * @gadget:the device whose VBUS supply is being described 630 * Context: can sleep 631 * 632 * This call is used by a driver for an external transceiver (or GPIO) 633 * that detects a VBUS power session ending. Common responses include 634 * reversing everything done in usb_gadget_vbus_connect(). 635 * 636 * Returns zero on success, else negative errno. 637 */ 638 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget) 639 { 640 int ret = 0; 641 642 if (!gadget->ops->vbus_session) { 643 ret = -EOPNOTSUPP; 644 goto out; 645 } 646 647 ret = gadget->ops->vbus_session(gadget, 0); 648 649 out: 650 trace_usb_gadget_vbus_disconnect(gadget, ret); 651 652 return ret; 653 } 654 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect); 655 656 /** 657 * usb_gadget_connect - software-controlled connect to USB host 658 * @gadget:the peripheral being connected 659 * 660 * Enables the D+ (or potentially D-) pullup. The host will start 661 * enumerating this gadget when the pullup is active and a VBUS session 662 * is active (the link is powered). This pullup is always enabled unless 663 * usb_gadget_disconnect() has been used to disable it. 664 * 665 * Returns zero on success, else negative errno. 666 */ 667 int usb_gadget_connect(struct usb_gadget *gadget) 668 { 669 int ret = 0; 670 671 if (!gadget->ops->pullup) { 672 ret = -EOPNOTSUPP; 673 goto out; 674 } 675 676 if (gadget->deactivated) { 677 /* 678 * If gadget is deactivated we only save new state. 679 * Gadget will be connected automatically after activation. 680 */ 681 gadget->connected = true; 682 goto out; 683 } 684 685 ret = gadget->ops->pullup(gadget, 1); 686 if (!ret) 687 gadget->connected = 1; 688 689 out: 690 trace_usb_gadget_connect(gadget, ret); 691 692 return ret; 693 } 694 EXPORT_SYMBOL_GPL(usb_gadget_connect); 695 696 /** 697 * usb_gadget_disconnect - software-controlled disconnect from USB host 698 * @gadget:the peripheral being disconnected 699 * 700 * Disables the D+ (or potentially D-) pullup, which the host may see 701 * as a disconnect (when a VBUS session is active). Not all systems 702 * support software pullup controls. 703 * 704 * Following a successful disconnect, invoke the ->disconnect() callback 705 * for the current gadget driver so that UDC drivers don't need to. 706 * 707 * Returns zero on success, else negative errno. 708 */ 709 int usb_gadget_disconnect(struct usb_gadget *gadget) 710 { 711 int ret = 0; 712 713 if (!gadget->ops->pullup) { 714 ret = -EOPNOTSUPP; 715 goto out; 716 } 717 718 if (gadget->deactivated) { 719 /* 720 * If gadget is deactivated we only save new state. 721 * Gadget will stay disconnected after activation. 722 */ 723 gadget->connected = false; 724 goto out; 725 } 726 727 ret = gadget->ops->pullup(gadget, 0); 728 if (!ret) { 729 gadget->connected = 0; 730 gadget->udc->driver->disconnect(gadget); 731 } 732 733 out: 734 trace_usb_gadget_disconnect(gadget, ret); 735 736 return ret; 737 } 738 EXPORT_SYMBOL_GPL(usb_gadget_disconnect); 739 740 /** 741 * usb_gadget_deactivate - deactivate function which is not ready to work 742 * @gadget: the peripheral being deactivated 743 * 744 * This routine may be used during the gadget driver bind() call to prevent 745 * the peripheral from ever being visible to the USB host, unless later 746 * usb_gadget_activate() is called. For example, user mode components may 747 * need to be activated before the system can talk to hosts. 748 * 749 * Returns zero on success, else negative errno. 750 */ 751 int usb_gadget_deactivate(struct usb_gadget *gadget) 752 { 753 int ret = 0; 754 755 if (gadget->deactivated) 756 goto out; 757 758 if (gadget->connected) { 759 ret = usb_gadget_disconnect(gadget); 760 if (ret) 761 goto out; 762 763 /* 764 * If gadget was being connected before deactivation, we want 765 * to reconnect it in usb_gadget_activate(). 766 */ 767 gadget->connected = true; 768 } 769 gadget->deactivated = true; 770 771 out: 772 trace_usb_gadget_deactivate(gadget, ret); 773 774 return ret; 775 } 776 EXPORT_SYMBOL_GPL(usb_gadget_deactivate); 777 778 /** 779 * usb_gadget_activate - activate function which is not ready to work 780 * @gadget: the peripheral being activated 781 * 782 * This routine activates gadget which was previously deactivated with 783 * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed. 784 * 785 * Returns zero on success, else negative errno. 786 */ 787 int usb_gadget_activate(struct usb_gadget *gadget) 788 { 789 int ret = 0; 790 791 if (!gadget->deactivated) 792 goto out; 793 794 gadget->deactivated = false; 795 796 /* 797 * If gadget has been connected before deactivation, or became connected 798 * while it was being deactivated, we call usb_gadget_connect(). 799 */ 800 if (gadget->connected) 801 ret = usb_gadget_connect(gadget); 802 803 out: 804 trace_usb_gadget_activate(gadget, ret); 805 806 return ret; 807 } 808 EXPORT_SYMBOL_GPL(usb_gadget_activate); 809 810 /* ------------------------------------------------------------------------- */ 811 812 #ifdef CONFIG_HAS_DMA 813 814 int usb_gadget_map_request_by_dev(struct device *dev, 815 struct usb_request *req, int is_in) 816 { 817 if (req->length == 0) 818 return 0; 819 820 if (req->num_sgs) { 821 int mapped; 822 823 mapped = dma_map_sg(dev, req->sg, req->num_sgs, 824 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 825 if (mapped == 0) { 826 dev_err(dev, "failed to map SGs\n"); 827 return -EFAULT; 828 } 829 830 req->num_mapped_sgs = mapped; 831 } else { 832 if (is_vmalloc_addr(req->buf)) { 833 dev_err(dev, "buffer is not dma capable\n"); 834 return -EFAULT; 835 } else if (object_is_on_stack(req->buf)) { 836 dev_err(dev, "buffer is on stack\n"); 837 return -EFAULT; 838 } 839 840 req->dma = dma_map_single(dev, req->buf, req->length, 841 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 842 843 if (dma_mapping_error(dev, req->dma)) { 844 dev_err(dev, "failed to map buffer\n"); 845 return -EFAULT; 846 } 847 848 req->dma_mapped = 1; 849 } 850 851 return 0; 852 } 853 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev); 854 855 int usb_gadget_map_request(struct usb_gadget *gadget, 856 struct usb_request *req, int is_in) 857 { 858 return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in); 859 } 860 EXPORT_SYMBOL_GPL(usb_gadget_map_request); 861 862 void usb_gadget_unmap_request_by_dev(struct device *dev, 863 struct usb_request *req, int is_in) 864 { 865 if (req->length == 0) 866 return; 867 868 if (req->num_mapped_sgs) { 869 dma_unmap_sg(dev, req->sg, req->num_sgs, 870 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 871 872 req->num_mapped_sgs = 0; 873 } else if (req->dma_mapped) { 874 dma_unmap_single(dev, req->dma, req->length, 875 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 876 req->dma_mapped = 0; 877 } 878 } 879 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev); 880 881 void usb_gadget_unmap_request(struct usb_gadget *gadget, 882 struct usb_request *req, int is_in) 883 { 884 usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in); 885 } 886 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request); 887 888 #endif /* CONFIG_HAS_DMA */ 889 890 /* ------------------------------------------------------------------------- */ 891 892 /** 893 * usb_gadget_giveback_request - give the request back to the gadget layer 894 * @ep: the endpoint to be used with with the request 895 * @req: the request being given back 896 * 897 * Context: in_interrupt() 898 * 899 * This is called by device controller drivers in order to return the 900 * completed request back to the gadget layer. 901 */ 902 void usb_gadget_giveback_request(struct usb_ep *ep, 903 struct usb_request *req) 904 { 905 if (likely(req->status == 0)) 906 usb_led_activity(USB_LED_EVENT_GADGET); 907 908 trace_usb_gadget_giveback_request(ep, req, 0); 909 910 req->complete(ep, req); 911 } 912 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request); 913 914 /* ------------------------------------------------------------------------- */ 915 916 /** 917 * gadget_find_ep_by_name - returns ep whose name is the same as sting passed 918 * in second parameter or NULL if searched endpoint not found 919 * @g: controller to check for quirk 920 * @name: name of searched endpoint 921 */ 922 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name) 923 { 924 struct usb_ep *ep; 925 926 gadget_for_each_ep(ep, g) { 927 if (!strcmp(ep->name, name)) 928 return ep; 929 } 930 931 return NULL; 932 } 933 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name); 934 935 /* ------------------------------------------------------------------------- */ 936 937 int usb_gadget_ep_match_desc(struct usb_gadget *gadget, 938 struct usb_ep *ep, struct usb_endpoint_descriptor *desc, 939 struct usb_ss_ep_comp_descriptor *ep_comp) 940 { 941 u8 type; 942 u16 max; 943 int num_req_streams = 0; 944 945 /* endpoint already claimed? */ 946 if (ep->claimed) 947 return 0; 948 949 type = usb_endpoint_type(desc); 950 max = usb_endpoint_maxp(desc); 951 952 if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in) 953 return 0; 954 if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out) 955 return 0; 956 957 if (max > ep->maxpacket_limit) 958 return 0; 959 960 /* "high bandwidth" works only at high speed */ 961 if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1) 962 return 0; 963 964 switch (type) { 965 case USB_ENDPOINT_XFER_CONTROL: 966 /* only support ep0 for portable CONTROL traffic */ 967 return 0; 968 case USB_ENDPOINT_XFER_ISOC: 969 if (!ep->caps.type_iso) 970 return 0; 971 /* ISO: limit 1023 bytes full speed, 1024 high/super speed */ 972 if (!gadget_is_dualspeed(gadget) && max > 1023) 973 return 0; 974 break; 975 case USB_ENDPOINT_XFER_BULK: 976 if (!ep->caps.type_bulk) 977 return 0; 978 if (ep_comp && gadget_is_superspeed(gadget)) { 979 /* Get the number of required streams from the 980 * EP companion descriptor and see if the EP 981 * matches it 982 */ 983 num_req_streams = ep_comp->bmAttributes & 0x1f; 984 if (num_req_streams > ep->max_streams) 985 return 0; 986 } 987 break; 988 case USB_ENDPOINT_XFER_INT: 989 /* Bulk endpoints handle interrupt transfers, 990 * except the toggle-quirky iso-synch kind 991 */ 992 if (!ep->caps.type_int && !ep->caps.type_bulk) 993 return 0; 994 /* INT: limit 64 bytes full speed, 1024 high/super speed */ 995 if (!gadget_is_dualspeed(gadget) && max > 64) 996 return 0; 997 break; 998 } 999 1000 return 1; 1001 } 1002 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc); 1003 1004 /* ------------------------------------------------------------------------- */ 1005 1006 static void usb_gadget_state_work(struct work_struct *work) 1007 { 1008 struct usb_gadget *gadget = work_to_gadget(work); 1009 struct usb_udc *udc = gadget->udc; 1010 1011 if (udc) 1012 sysfs_notify(&udc->dev.kobj, NULL, "state"); 1013 } 1014 1015 void usb_gadget_set_state(struct usb_gadget *gadget, 1016 enum usb_device_state state) 1017 { 1018 gadget->state = state; 1019 schedule_work(&gadget->work); 1020 } 1021 EXPORT_SYMBOL_GPL(usb_gadget_set_state); 1022 1023 /* ------------------------------------------------------------------------- */ 1024 1025 static void usb_udc_connect_control(struct usb_udc *udc) 1026 { 1027 if (udc->vbus) 1028 usb_gadget_connect(udc->gadget); 1029 else 1030 usb_gadget_disconnect(udc->gadget); 1031 } 1032 1033 /** 1034 * usb_udc_vbus_handler - updates the udc core vbus status, and try to 1035 * connect or disconnect gadget 1036 * @gadget: The gadget which vbus change occurs 1037 * @status: The vbus status 1038 * 1039 * The udc driver calls it when it wants to connect or disconnect gadget 1040 * according to vbus status. 1041 */ 1042 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status) 1043 { 1044 struct usb_udc *udc = gadget->udc; 1045 1046 if (udc) { 1047 udc->vbus = status; 1048 usb_udc_connect_control(udc); 1049 } 1050 } 1051 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler); 1052 1053 /** 1054 * usb_gadget_udc_reset - notifies the udc core that bus reset occurs 1055 * @gadget: The gadget which bus reset occurs 1056 * @driver: The gadget driver we want to notify 1057 * 1058 * If the udc driver has bus reset handler, it needs to call this when the bus 1059 * reset occurs, it notifies the gadget driver that the bus reset occurs as 1060 * well as updates gadget state. 1061 */ 1062 void usb_gadget_udc_reset(struct usb_gadget *gadget, 1063 struct usb_gadget_driver *driver) 1064 { 1065 driver->reset(gadget); 1066 usb_gadget_set_state(gadget, USB_STATE_DEFAULT); 1067 } 1068 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset); 1069 1070 /** 1071 * usb_gadget_udc_start - tells usb device controller to start up 1072 * @udc: The UDC to be started 1073 * 1074 * This call is issued by the UDC Class driver when it's about 1075 * to register a gadget driver to the device controller, before 1076 * calling gadget driver's bind() method. 1077 * 1078 * It allows the controller to be powered off until strictly 1079 * necessary to have it powered on. 1080 * 1081 * Returns zero on success, else negative errno. 1082 */ 1083 static inline int usb_gadget_udc_start(struct usb_udc *udc) 1084 { 1085 return udc->gadget->ops->udc_start(udc->gadget, udc->driver); 1086 } 1087 1088 /** 1089 * usb_gadget_udc_stop - tells usb device controller we don't need it anymore 1090 * @udc: The UDC to be stopped 1091 * 1092 * This call is issued by the UDC Class driver after calling 1093 * gadget driver's unbind() method. 1094 * 1095 * The details are implementation specific, but it can go as 1096 * far as powering off UDC completely and disable its data 1097 * line pullups. 1098 */ 1099 static inline void usb_gadget_udc_stop(struct usb_udc *udc) 1100 { 1101 udc->gadget->ops->udc_stop(udc->gadget); 1102 } 1103 1104 /** 1105 * usb_gadget_udc_set_speed - tells usb device controller speed supported by 1106 * current driver 1107 * @udc: The device we want to set maximum speed 1108 * @speed: The maximum speed to allowed to run 1109 * 1110 * This call is issued by the UDC Class driver before calling 1111 * usb_gadget_udc_start() in order to make sure that we don't try to 1112 * connect on speeds the gadget driver doesn't support. 1113 */ 1114 static inline void usb_gadget_udc_set_speed(struct usb_udc *udc, 1115 enum usb_device_speed speed) 1116 { 1117 if (udc->gadget->ops->udc_set_speed) { 1118 enum usb_device_speed s; 1119 1120 s = min(speed, udc->gadget->max_speed); 1121 udc->gadget->ops->udc_set_speed(udc->gadget, s); 1122 } 1123 } 1124 1125 /** 1126 * usb_udc_release - release the usb_udc struct 1127 * @dev: the dev member within usb_udc 1128 * 1129 * This is called by driver's core in order to free memory once the last 1130 * reference is released. 1131 */ 1132 static void usb_udc_release(struct device *dev) 1133 { 1134 struct usb_udc *udc; 1135 1136 udc = container_of(dev, struct usb_udc, dev); 1137 dev_dbg(dev, "releasing '%s'\n", dev_name(dev)); 1138 kfree(udc); 1139 } 1140 1141 static const struct attribute_group *usb_udc_attr_groups[]; 1142 1143 static void usb_udc_nop_release(struct device *dev) 1144 { 1145 dev_vdbg(dev, "%s\n", __func__); 1146 } 1147 1148 /* should be called with udc_lock held */ 1149 static int check_pending_gadget_drivers(struct usb_udc *udc) 1150 { 1151 struct usb_gadget_driver *driver; 1152 int ret = 0; 1153 1154 list_for_each_entry(driver, &gadget_driver_pending_list, pending) 1155 if (!driver->udc_name || strcmp(driver->udc_name, 1156 dev_name(&udc->dev)) == 0) { 1157 ret = udc_bind_to_driver(udc, driver); 1158 if (ret != -EPROBE_DEFER) 1159 list_del_init(&driver->pending); 1160 break; 1161 } 1162 1163 return ret; 1164 } 1165 1166 /** 1167 * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list 1168 * @parent: the parent device to this udc. Usually the controller driver's 1169 * device. 1170 * @gadget: the gadget to be added to the list. 1171 * @release: a gadget release function. 1172 * 1173 * Returns zero on success, negative errno otherwise. 1174 * Calls the gadget release function in the latter case. 1175 */ 1176 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget, 1177 void (*release)(struct device *dev)) 1178 { 1179 struct usb_udc *udc; 1180 int ret = -ENOMEM; 1181 1182 dev_set_name(&gadget->dev, "gadget"); 1183 INIT_WORK(&gadget->work, usb_gadget_state_work); 1184 gadget->dev.parent = parent; 1185 1186 if (release) 1187 gadget->dev.release = release; 1188 else 1189 gadget->dev.release = usb_udc_nop_release; 1190 1191 device_initialize(&gadget->dev); 1192 1193 udc = kzalloc(sizeof(*udc), GFP_KERNEL); 1194 if (!udc) 1195 goto err_put_gadget; 1196 1197 device_initialize(&udc->dev); 1198 udc->dev.release = usb_udc_release; 1199 udc->dev.class = udc_class; 1200 udc->dev.groups = usb_udc_attr_groups; 1201 udc->dev.parent = parent; 1202 ret = dev_set_name(&udc->dev, "%s", kobject_name(&parent->kobj)); 1203 if (ret) 1204 goto err_put_udc; 1205 1206 ret = device_add(&gadget->dev); 1207 if (ret) 1208 goto err_put_udc; 1209 1210 udc->gadget = gadget; 1211 gadget->udc = udc; 1212 1213 mutex_lock(&udc_lock); 1214 list_add_tail(&udc->list, &udc_list); 1215 1216 ret = device_add(&udc->dev); 1217 if (ret) 1218 goto err_unlist_udc; 1219 1220 usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED); 1221 udc->vbus = true; 1222 1223 /* pick up one of pending gadget drivers */ 1224 ret = check_pending_gadget_drivers(udc); 1225 if (ret) 1226 goto err_del_udc; 1227 1228 mutex_unlock(&udc_lock); 1229 1230 return 0; 1231 1232 err_del_udc: 1233 flush_work(&gadget->work); 1234 device_del(&udc->dev); 1235 1236 err_unlist_udc: 1237 list_del(&udc->list); 1238 mutex_unlock(&udc_lock); 1239 1240 device_del(&gadget->dev); 1241 1242 err_put_udc: 1243 put_device(&udc->dev); 1244 1245 err_put_gadget: 1246 put_device(&gadget->dev); 1247 return ret; 1248 } 1249 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release); 1250 1251 /** 1252 * usb_get_gadget_udc_name - get the name of the first UDC controller 1253 * This functions returns the name of the first UDC controller in the system. 1254 * Please note that this interface is usefull only for legacy drivers which 1255 * assume that there is only one UDC controller in the system and they need to 1256 * get its name before initialization. There is no guarantee that the UDC 1257 * of the returned name will be still available, when gadget driver registers 1258 * itself. 1259 * 1260 * Returns pointer to string with UDC controller name on success, NULL 1261 * otherwise. Caller should kfree() returned string. 1262 */ 1263 char *usb_get_gadget_udc_name(void) 1264 { 1265 struct usb_udc *udc; 1266 char *name = NULL; 1267 1268 /* For now we take the first available UDC */ 1269 mutex_lock(&udc_lock); 1270 list_for_each_entry(udc, &udc_list, list) { 1271 if (!udc->driver) { 1272 name = kstrdup(udc->gadget->name, GFP_KERNEL); 1273 break; 1274 } 1275 } 1276 mutex_unlock(&udc_lock); 1277 return name; 1278 } 1279 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name); 1280 1281 /** 1282 * usb_add_gadget_udc - adds a new gadget to the udc class driver list 1283 * @parent: the parent device to this udc. Usually the controller 1284 * driver's device. 1285 * @gadget: the gadget to be added to the list 1286 * 1287 * Returns zero on success, negative errno otherwise. 1288 */ 1289 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget) 1290 { 1291 return usb_add_gadget_udc_release(parent, gadget, NULL); 1292 } 1293 EXPORT_SYMBOL_GPL(usb_add_gadget_udc); 1294 1295 static void usb_gadget_remove_driver(struct usb_udc *udc) 1296 { 1297 dev_dbg(&udc->dev, "unregistering UDC driver [%s]\n", 1298 udc->driver->function); 1299 1300 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE); 1301 1302 usb_gadget_disconnect(udc->gadget); 1303 if (udc->gadget->irq) 1304 synchronize_irq(udc->gadget->irq); 1305 udc->driver->unbind(udc->gadget); 1306 usb_gadget_udc_stop(udc); 1307 1308 udc->driver = NULL; 1309 udc->dev.driver = NULL; 1310 udc->gadget->dev.driver = NULL; 1311 } 1312 1313 /** 1314 * usb_del_gadget_udc - deletes @udc from udc_list 1315 * @gadget: the gadget to be removed. 1316 * 1317 * This, will call usb_gadget_unregister_driver() if 1318 * the @udc is still busy. 1319 */ 1320 void usb_del_gadget_udc(struct usb_gadget *gadget) 1321 { 1322 struct usb_udc *udc = gadget->udc; 1323 1324 if (!udc) 1325 return; 1326 1327 dev_vdbg(gadget->dev.parent, "unregistering gadget\n"); 1328 1329 mutex_lock(&udc_lock); 1330 list_del(&udc->list); 1331 1332 if (udc->driver) { 1333 struct usb_gadget_driver *driver = udc->driver; 1334 1335 usb_gadget_remove_driver(udc); 1336 list_add(&driver->pending, &gadget_driver_pending_list); 1337 } 1338 mutex_unlock(&udc_lock); 1339 1340 kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE); 1341 flush_work(&gadget->work); 1342 device_unregister(&udc->dev); 1343 device_unregister(&gadget->dev); 1344 memset(&gadget->dev, 0x00, sizeof(gadget->dev)); 1345 } 1346 EXPORT_SYMBOL_GPL(usb_del_gadget_udc); 1347 1348 /* ------------------------------------------------------------------------- */ 1349 1350 static int udc_bind_to_driver(struct usb_udc *udc, struct usb_gadget_driver *driver) 1351 { 1352 int ret; 1353 1354 dev_dbg(&udc->dev, "registering UDC driver [%s]\n", 1355 driver->function); 1356 1357 udc->driver = driver; 1358 udc->dev.driver = &driver->driver; 1359 udc->gadget->dev.driver = &driver->driver; 1360 1361 usb_gadget_udc_set_speed(udc, driver->max_speed); 1362 1363 ret = driver->bind(udc->gadget, driver); 1364 if (ret) 1365 goto err1; 1366 ret = usb_gadget_udc_start(udc); 1367 if (ret) { 1368 driver->unbind(udc->gadget); 1369 goto err1; 1370 } 1371 usb_udc_connect_control(udc); 1372 1373 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE); 1374 return 0; 1375 err1: 1376 if (ret != -EISNAM) 1377 dev_err(&udc->dev, "failed to start %s: %d\n", 1378 udc->driver->function, ret); 1379 udc->driver = NULL; 1380 udc->dev.driver = NULL; 1381 udc->gadget->dev.driver = NULL; 1382 return ret; 1383 } 1384 1385 int usb_gadget_probe_driver(struct usb_gadget_driver *driver) 1386 { 1387 struct usb_udc *udc = NULL; 1388 int ret = -ENODEV; 1389 1390 if (!driver || !driver->bind || !driver->setup) 1391 return -EINVAL; 1392 1393 mutex_lock(&udc_lock); 1394 if (driver->udc_name) { 1395 list_for_each_entry(udc, &udc_list, list) { 1396 ret = strcmp(driver->udc_name, dev_name(&udc->dev)); 1397 if (!ret) 1398 break; 1399 } 1400 if (ret) 1401 ret = -ENODEV; 1402 else if (udc->driver) 1403 ret = -EBUSY; 1404 else 1405 goto found; 1406 } else { 1407 list_for_each_entry(udc, &udc_list, list) { 1408 /* For now we take the first one */ 1409 if (!udc->driver) 1410 goto found; 1411 } 1412 } 1413 1414 if (!driver->match_existing_only) { 1415 list_add_tail(&driver->pending, &gadget_driver_pending_list); 1416 pr_info("udc-core: couldn't find an available UDC - added [%s] to list of pending drivers\n", 1417 driver->function); 1418 ret = 0; 1419 } 1420 1421 mutex_unlock(&udc_lock); 1422 if (ret) 1423 pr_warn("udc-core: couldn't find an available UDC or it's busy\n"); 1424 return ret; 1425 found: 1426 ret = udc_bind_to_driver(udc, driver); 1427 mutex_unlock(&udc_lock); 1428 return ret; 1429 } 1430 EXPORT_SYMBOL_GPL(usb_gadget_probe_driver); 1431 1432 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver) 1433 { 1434 struct usb_udc *udc = NULL; 1435 int ret = -ENODEV; 1436 1437 if (!driver || !driver->unbind) 1438 return -EINVAL; 1439 1440 mutex_lock(&udc_lock); 1441 list_for_each_entry(udc, &udc_list, list) { 1442 if (udc->driver == driver) { 1443 usb_gadget_remove_driver(udc); 1444 usb_gadget_set_state(udc->gadget, 1445 USB_STATE_NOTATTACHED); 1446 1447 /* Maybe there is someone waiting for this UDC? */ 1448 check_pending_gadget_drivers(udc); 1449 /* 1450 * For now we ignore bind errors as probably it's 1451 * not a valid reason to fail other's gadget unbind 1452 */ 1453 ret = 0; 1454 break; 1455 } 1456 } 1457 1458 if (ret) { 1459 list_del(&driver->pending); 1460 ret = 0; 1461 } 1462 mutex_unlock(&udc_lock); 1463 return ret; 1464 } 1465 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver); 1466 1467 /* ------------------------------------------------------------------------- */ 1468 1469 static ssize_t srp_store(struct device *dev, 1470 struct device_attribute *attr, const char *buf, size_t n) 1471 { 1472 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1473 1474 if (sysfs_streq(buf, "1")) 1475 usb_gadget_wakeup(udc->gadget); 1476 1477 return n; 1478 } 1479 static DEVICE_ATTR_WO(srp); 1480 1481 static ssize_t soft_connect_store(struct device *dev, 1482 struct device_attribute *attr, const char *buf, size_t n) 1483 { 1484 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1485 1486 if (!udc->driver) { 1487 dev_err(dev, "soft-connect without a gadget driver\n"); 1488 return -EOPNOTSUPP; 1489 } 1490 1491 if (sysfs_streq(buf, "connect")) { 1492 usb_gadget_udc_start(udc); 1493 usb_gadget_connect(udc->gadget); 1494 } else if (sysfs_streq(buf, "disconnect")) { 1495 usb_gadget_disconnect(udc->gadget); 1496 usb_gadget_udc_stop(udc); 1497 } else { 1498 dev_err(dev, "unsupported command '%s'\n", buf); 1499 return -EINVAL; 1500 } 1501 1502 return n; 1503 } 1504 static DEVICE_ATTR_WO(soft_connect); 1505 1506 static ssize_t state_show(struct device *dev, struct device_attribute *attr, 1507 char *buf) 1508 { 1509 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1510 struct usb_gadget *gadget = udc->gadget; 1511 1512 return sprintf(buf, "%s\n", usb_state_string(gadget->state)); 1513 } 1514 static DEVICE_ATTR_RO(state); 1515 1516 static ssize_t function_show(struct device *dev, struct device_attribute *attr, 1517 char *buf) 1518 { 1519 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1520 struct usb_gadget_driver *drv = udc->driver; 1521 1522 if (!drv || !drv->function) 1523 return 0; 1524 return scnprintf(buf, PAGE_SIZE, "%s\n", drv->function); 1525 } 1526 static DEVICE_ATTR_RO(function); 1527 1528 #define USB_UDC_SPEED_ATTR(name, param) \ 1529 ssize_t name##_show(struct device *dev, \ 1530 struct device_attribute *attr, char *buf) \ 1531 { \ 1532 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \ 1533 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 1534 usb_speed_string(udc->gadget->param)); \ 1535 } \ 1536 static DEVICE_ATTR_RO(name) 1537 1538 static USB_UDC_SPEED_ATTR(current_speed, speed); 1539 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed); 1540 1541 #define USB_UDC_ATTR(name) \ 1542 ssize_t name##_show(struct device *dev, \ 1543 struct device_attribute *attr, char *buf) \ 1544 { \ 1545 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \ 1546 struct usb_gadget *gadget = udc->gadget; \ 1547 \ 1548 return scnprintf(buf, PAGE_SIZE, "%d\n", gadget->name); \ 1549 } \ 1550 static DEVICE_ATTR_RO(name) 1551 1552 static USB_UDC_ATTR(is_otg); 1553 static USB_UDC_ATTR(is_a_peripheral); 1554 static USB_UDC_ATTR(b_hnp_enable); 1555 static USB_UDC_ATTR(a_hnp_support); 1556 static USB_UDC_ATTR(a_alt_hnp_support); 1557 static USB_UDC_ATTR(is_selfpowered); 1558 1559 static struct attribute *usb_udc_attrs[] = { 1560 &dev_attr_srp.attr, 1561 &dev_attr_soft_connect.attr, 1562 &dev_attr_state.attr, 1563 &dev_attr_function.attr, 1564 &dev_attr_current_speed.attr, 1565 &dev_attr_maximum_speed.attr, 1566 1567 &dev_attr_is_otg.attr, 1568 &dev_attr_is_a_peripheral.attr, 1569 &dev_attr_b_hnp_enable.attr, 1570 &dev_attr_a_hnp_support.attr, 1571 &dev_attr_a_alt_hnp_support.attr, 1572 &dev_attr_is_selfpowered.attr, 1573 NULL, 1574 }; 1575 1576 static const struct attribute_group usb_udc_attr_group = { 1577 .attrs = usb_udc_attrs, 1578 }; 1579 1580 static const struct attribute_group *usb_udc_attr_groups[] = { 1581 &usb_udc_attr_group, 1582 NULL, 1583 }; 1584 1585 static int usb_udc_uevent(struct device *dev, struct kobj_uevent_env *env) 1586 { 1587 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1588 int ret; 1589 1590 ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name); 1591 if (ret) { 1592 dev_err(dev, "failed to add uevent USB_UDC_NAME\n"); 1593 return ret; 1594 } 1595 1596 if (udc->driver) { 1597 ret = add_uevent_var(env, "USB_UDC_DRIVER=%s", 1598 udc->driver->function); 1599 if (ret) { 1600 dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n"); 1601 return ret; 1602 } 1603 } 1604 1605 return 0; 1606 } 1607 1608 static int __init usb_udc_init(void) 1609 { 1610 udc_class = class_create(THIS_MODULE, "udc"); 1611 if (IS_ERR(udc_class)) { 1612 pr_err("failed to create udc class --> %ld\n", 1613 PTR_ERR(udc_class)); 1614 return PTR_ERR(udc_class); 1615 } 1616 1617 udc_class->dev_uevent = usb_udc_uevent; 1618 return 0; 1619 } 1620 subsys_initcall(usb_udc_init); 1621 1622 static void __exit usb_udc_exit(void) 1623 { 1624 class_destroy(udc_class); 1625 } 1626 module_exit(usb_udc_exit); 1627 1628 MODULE_DESCRIPTION("UDC Framework"); 1629 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>"); 1630 MODULE_LICENSE("GPL v2"); 1631