1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * udc.c - Core UDC Framework 4 * 5 * Copyright (C) 2010 Texas Instruments 6 * Author: Felipe Balbi <balbi@ti.com> 7 */ 8 9 #define pr_fmt(fmt) "UDC core: " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/device.h> 14 #include <linux/list.h> 15 #include <linux/idr.h> 16 #include <linux/err.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/sched/task_stack.h> 19 #include <linux/workqueue.h> 20 21 #include <linux/usb/ch9.h> 22 #include <linux/usb/gadget.h> 23 #include <linux/usb.h> 24 25 #include "trace.h" 26 27 static DEFINE_IDA(gadget_id_numbers); 28 29 static const struct bus_type gadget_bus_type; 30 31 /** 32 * struct usb_udc - describes one usb device controller 33 * @driver: the gadget driver pointer. For use by the class code 34 * @dev: the child device to the actual controller 35 * @gadget: the gadget. For use by the class code 36 * @list: for use by the udc class driver 37 * @vbus: for udcs who care about vbus status, this value is real vbus status; 38 * for udcs who do not care about vbus status, this value is always true 39 * @started: the UDC's started state. True if the UDC had started. 40 * 41 * This represents the internal data structure which is used by the UDC-class 42 * to hold information about udc driver and gadget together. 43 */ 44 struct usb_udc { 45 struct usb_gadget_driver *driver; 46 struct usb_gadget *gadget; 47 struct device dev; 48 struct list_head list; 49 bool vbus; 50 bool started; 51 }; 52 53 static struct class *udc_class; 54 static LIST_HEAD(udc_list); 55 56 /* Protects udc_list, udc->driver, driver->is_bound, and related calls */ 57 static DEFINE_MUTEX(udc_lock); 58 59 /* ------------------------------------------------------------------------- */ 60 61 /** 62 * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint 63 * @ep:the endpoint being configured 64 * @maxpacket_limit:value of maximum packet size limit 65 * 66 * This function should be used only in UDC drivers to initialize endpoint 67 * (usually in probe function). 68 */ 69 void usb_ep_set_maxpacket_limit(struct usb_ep *ep, 70 unsigned maxpacket_limit) 71 { 72 ep->maxpacket_limit = maxpacket_limit; 73 ep->maxpacket = maxpacket_limit; 74 75 trace_usb_ep_set_maxpacket_limit(ep, 0); 76 } 77 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit); 78 79 /** 80 * usb_ep_enable - configure endpoint, making it usable 81 * @ep:the endpoint being configured. may not be the endpoint named "ep0". 82 * drivers discover endpoints through the ep_list of a usb_gadget. 83 * 84 * When configurations are set, or when interface settings change, the driver 85 * will enable or disable the relevant endpoints. while it is enabled, an 86 * endpoint may be used for i/o until the driver receives a disconnect() from 87 * the host or until the endpoint is disabled. 88 * 89 * the ep0 implementation (which calls this routine) must ensure that the 90 * hardware capabilities of each endpoint match the descriptor provided 91 * for it. for example, an endpoint named "ep2in-bulk" would be usable 92 * for interrupt transfers as well as bulk, but it likely couldn't be used 93 * for iso transfers or for endpoint 14. some endpoints are fully 94 * configurable, with more generic names like "ep-a". (remember that for 95 * USB, "in" means "towards the USB host".) 96 * 97 * This routine may be called in an atomic (interrupt) context. 98 * 99 * returns zero, or a negative error code. 100 */ 101 int usb_ep_enable(struct usb_ep *ep) 102 { 103 int ret = 0; 104 105 if (ep->enabled) 106 goto out; 107 108 /* UDC drivers can't handle endpoints with maxpacket size 0 */ 109 if (usb_endpoint_maxp(ep->desc) == 0) { 110 /* 111 * We should log an error message here, but we can't call 112 * dev_err() because there's no way to find the gadget 113 * given only ep. 114 */ 115 ret = -EINVAL; 116 goto out; 117 } 118 119 ret = ep->ops->enable(ep, ep->desc); 120 if (ret) 121 goto out; 122 123 ep->enabled = true; 124 125 out: 126 trace_usb_ep_enable(ep, ret); 127 128 return ret; 129 } 130 EXPORT_SYMBOL_GPL(usb_ep_enable); 131 132 /** 133 * usb_ep_disable - endpoint is no longer usable 134 * @ep:the endpoint being unconfigured. may not be the endpoint named "ep0". 135 * 136 * no other task may be using this endpoint when this is called. 137 * any pending and uncompleted requests will complete with status 138 * indicating disconnect (-ESHUTDOWN) before this call returns. 139 * gadget drivers must call usb_ep_enable() again before queueing 140 * requests to the endpoint. 141 * 142 * This routine may be called in an atomic (interrupt) context. 143 * 144 * returns zero, or a negative error code. 145 */ 146 int usb_ep_disable(struct usb_ep *ep) 147 { 148 int ret = 0; 149 150 if (!ep->enabled) 151 goto out; 152 153 ret = ep->ops->disable(ep); 154 if (ret) 155 goto out; 156 157 ep->enabled = false; 158 159 out: 160 trace_usb_ep_disable(ep, ret); 161 162 return ret; 163 } 164 EXPORT_SYMBOL_GPL(usb_ep_disable); 165 166 /** 167 * usb_ep_alloc_request - allocate a request object to use with this endpoint 168 * @ep:the endpoint to be used with with the request 169 * @gfp_flags:GFP_* flags to use 170 * 171 * Request objects must be allocated with this call, since they normally 172 * need controller-specific setup and may even need endpoint-specific 173 * resources such as allocation of DMA descriptors. 174 * Requests may be submitted with usb_ep_queue(), and receive a single 175 * completion callback. Free requests with usb_ep_free_request(), when 176 * they are no longer needed. 177 * 178 * Returns the request, or null if one could not be allocated. 179 */ 180 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep, 181 gfp_t gfp_flags) 182 { 183 struct usb_request *req = NULL; 184 185 req = ep->ops->alloc_request(ep, gfp_flags); 186 187 trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM); 188 189 return req; 190 } 191 EXPORT_SYMBOL_GPL(usb_ep_alloc_request); 192 193 /** 194 * usb_ep_free_request - frees a request object 195 * @ep:the endpoint associated with the request 196 * @req:the request being freed 197 * 198 * Reverses the effect of usb_ep_alloc_request(). 199 * Caller guarantees the request is not queued, and that it will 200 * no longer be requeued (or otherwise used). 201 */ 202 void usb_ep_free_request(struct usb_ep *ep, 203 struct usb_request *req) 204 { 205 trace_usb_ep_free_request(ep, req, 0); 206 ep->ops->free_request(ep, req); 207 } 208 EXPORT_SYMBOL_GPL(usb_ep_free_request); 209 210 /** 211 * usb_ep_queue - queues (submits) an I/O request to an endpoint. 212 * @ep:the endpoint associated with the request 213 * @req:the request being submitted 214 * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't 215 * pre-allocate all necessary memory with the request. 216 * 217 * This tells the device controller to perform the specified request through 218 * that endpoint (reading or writing a buffer). When the request completes, 219 * including being canceled by usb_ep_dequeue(), the request's completion 220 * routine is called to return the request to the driver. Any endpoint 221 * (except control endpoints like ep0) may have more than one transfer 222 * request queued; they complete in FIFO order. Once a gadget driver 223 * submits a request, that request may not be examined or modified until it 224 * is given back to that driver through the completion callback. 225 * 226 * Each request is turned into one or more packets. The controller driver 227 * never merges adjacent requests into the same packet. OUT transfers 228 * will sometimes use data that's already buffered in the hardware. 229 * Drivers can rely on the fact that the first byte of the request's buffer 230 * always corresponds to the first byte of some USB packet, for both 231 * IN and OUT transfers. 232 * 233 * Bulk endpoints can queue any amount of data; the transfer is packetized 234 * automatically. The last packet will be short if the request doesn't fill it 235 * out completely. Zero length packets (ZLPs) should be avoided in portable 236 * protocols since not all usb hardware can successfully handle zero length 237 * packets. (ZLPs may be explicitly written, and may be implicitly written if 238 * the request 'zero' flag is set.) Bulk endpoints may also be used 239 * for interrupt transfers; but the reverse is not true, and some endpoints 240 * won't support every interrupt transfer. (Such as 768 byte packets.) 241 * 242 * Interrupt-only endpoints are less functional than bulk endpoints, for 243 * example by not supporting queueing or not handling buffers that are 244 * larger than the endpoint's maxpacket size. They may also treat data 245 * toggle differently. 246 * 247 * Control endpoints ... after getting a setup() callback, the driver queues 248 * one response (even if it would be zero length). That enables the 249 * status ack, after transferring data as specified in the response. Setup 250 * functions may return negative error codes to generate protocol stalls. 251 * (Note that some USB device controllers disallow protocol stall responses 252 * in some cases.) When control responses are deferred (the response is 253 * written after the setup callback returns), then usb_ep_set_halt() may be 254 * used on ep0 to trigger protocol stalls. Depending on the controller, 255 * it may not be possible to trigger a status-stage protocol stall when the 256 * data stage is over, that is, from within the response's completion 257 * routine. 258 * 259 * For periodic endpoints, like interrupt or isochronous ones, the usb host 260 * arranges to poll once per interval, and the gadget driver usually will 261 * have queued some data to transfer at that time. 262 * 263 * Note that @req's ->complete() callback must never be called from 264 * within usb_ep_queue() as that can create deadlock situations. 265 * 266 * This routine may be called in interrupt context. 267 * 268 * Returns zero, or a negative error code. Endpoints that are not enabled 269 * report errors; errors will also be 270 * reported when the usb peripheral is disconnected. 271 * 272 * If and only if @req is successfully queued (the return value is zero), 273 * @req->complete() will be called exactly once, when the Gadget core and 274 * UDC are finished with the request. When the completion function is called, 275 * control of the request is returned to the device driver which submitted it. 276 * The completion handler may then immediately free or reuse @req. 277 */ 278 int usb_ep_queue(struct usb_ep *ep, 279 struct usb_request *req, gfp_t gfp_flags) 280 { 281 int ret = 0; 282 283 if (WARN_ON_ONCE(!ep->enabled && ep->address)) { 284 ret = -ESHUTDOWN; 285 goto out; 286 } 287 288 ret = ep->ops->queue(ep, req, gfp_flags); 289 290 out: 291 trace_usb_ep_queue(ep, req, ret); 292 293 return ret; 294 } 295 EXPORT_SYMBOL_GPL(usb_ep_queue); 296 297 /** 298 * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint 299 * @ep:the endpoint associated with the request 300 * @req:the request being canceled 301 * 302 * If the request is still active on the endpoint, it is dequeued and 303 * eventually its completion routine is called (with status -ECONNRESET); 304 * else a negative error code is returned. This routine is asynchronous, 305 * that is, it may return before the completion routine runs. 306 * 307 * Note that some hardware can't clear out write fifos (to unlink the request 308 * at the head of the queue) except as part of disconnecting from usb. Such 309 * restrictions prevent drivers from supporting configuration changes, 310 * even to configuration zero (a "chapter 9" requirement). 311 * 312 * This routine may be called in interrupt context. 313 */ 314 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 315 { 316 int ret; 317 318 ret = ep->ops->dequeue(ep, req); 319 trace_usb_ep_dequeue(ep, req, ret); 320 321 return ret; 322 } 323 EXPORT_SYMBOL_GPL(usb_ep_dequeue); 324 325 /** 326 * usb_ep_set_halt - sets the endpoint halt feature. 327 * @ep: the non-isochronous endpoint being stalled 328 * 329 * Use this to stall an endpoint, perhaps as an error report. 330 * Except for control endpoints, 331 * the endpoint stays halted (will not stream any data) until the host 332 * clears this feature; drivers may need to empty the endpoint's request 333 * queue first, to make sure no inappropriate transfers happen. 334 * 335 * Note that while an endpoint CLEAR_FEATURE will be invisible to the 336 * gadget driver, a SET_INTERFACE will not be. To reset endpoints for the 337 * current altsetting, see usb_ep_clear_halt(). When switching altsettings, 338 * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints. 339 * 340 * This routine may be called in interrupt context. 341 * 342 * Returns zero, or a negative error code. On success, this call sets 343 * underlying hardware state that blocks data transfers. 344 * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any 345 * transfer requests are still queued, or if the controller hardware 346 * (usually a FIFO) still holds bytes that the host hasn't collected. 347 */ 348 int usb_ep_set_halt(struct usb_ep *ep) 349 { 350 int ret; 351 352 ret = ep->ops->set_halt(ep, 1); 353 trace_usb_ep_set_halt(ep, ret); 354 355 return ret; 356 } 357 EXPORT_SYMBOL_GPL(usb_ep_set_halt); 358 359 /** 360 * usb_ep_clear_halt - clears endpoint halt, and resets toggle 361 * @ep:the bulk or interrupt endpoint being reset 362 * 363 * Use this when responding to the standard usb "set interface" request, 364 * for endpoints that aren't reconfigured, after clearing any other state 365 * in the endpoint's i/o queue. 366 * 367 * This routine may be called in interrupt context. 368 * 369 * Returns zero, or a negative error code. On success, this call clears 370 * the underlying hardware state reflecting endpoint halt and data toggle. 371 * Note that some hardware can't support this request (like pxa2xx_udc), 372 * and accordingly can't correctly implement interface altsettings. 373 */ 374 int usb_ep_clear_halt(struct usb_ep *ep) 375 { 376 int ret; 377 378 ret = ep->ops->set_halt(ep, 0); 379 trace_usb_ep_clear_halt(ep, ret); 380 381 return ret; 382 } 383 EXPORT_SYMBOL_GPL(usb_ep_clear_halt); 384 385 /** 386 * usb_ep_set_wedge - sets the halt feature and ignores clear requests 387 * @ep: the endpoint being wedged 388 * 389 * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT) 390 * requests. If the gadget driver clears the halt status, it will 391 * automatically unwedge the endpoint. 392 * 393 * This routine may be called in interrupt context. 394 * 395 * Returns zero on success, else negative errno. 396 */ 397 int usb_ep_set_wedge(struct usb_ep *ep) 398 { 399 int ret; 400 401 if (ep->ops->set_wedge) 402 ret = ep->ops->set_wedge(ep); 403 else 404 ret = ep->ops->set_halt(ep, 1); 405 406 trace_usb_ep_set_wedge(ep, ret); 407 408 return ret; 409 } 410 EXPORT_SYMBOL_GPL(usb_ep_set_wedge); 411 412 /** 413 * usb_ep_fifo_status - returns number of bytes in fifo, or error 414 * @ep: the endpoint whose fifo status is being checked. 415 * 416 * FIFO endpoints may have "unclaimed data" in them in certain cases, 417 * such as after aborted transfers. Hosts may not have collected all 418 * the IN data written by the gadget driver (and reported by a request 419 * completion). The gadget driver may not have collected all the data 420 * written OUT to it by the host. Drivers that need precise handling for 421 * fault reporting or recovery may need to use this call. 422 * 423 * This routine may be called in interrupt context. 424 * 425 * This returns the number of such bytes in the fifo, or a negative 426 * errno if the endpoint doesn't use a FIFO or doesn't support such 427 * precise handling. 428 */ 429 int usb_ep_fifo_status(struct usb_ep *ep) 430 { 431 int ret; 432 433 if (ep->ops->fifo_status) 434 ret = ep->ops->fifo_status(ep); 435 else 436 ret = -EOPNOTSUPP; 437 438 trace_usb_ep_fifo_status(ep, ret); 439 440 return ret; 441 } 442 EXPORT_SYMBOL_GPL(usb_ep_fifo_status); 443 444 /** 445 * usb_ep_fifo_flush - flushes contents of a fifo 446 * @ep: the endpoint whose fifo is being flushed. 447 * 448 * This call may be used to flush the "unclaimed data" that may exist in 449 * an endpoint fifo after abnormal transaction terminations. The call 450 * must never be used except when endpoint is not being used for any 451 * protocol translation. 452 * 453 * This routine may be called in interrupt context. 454 */ 455 void usb_ep_fifo_flush(struct usb_ep *ep) 456 { 457 if (ep->ops->fifo_flush) 458 ep->ops->fifo_flush(ep); 459 460 trace_usb_ep_fifo_flush(ep, 0); 461 } 462 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush); 463 464 /* ------------------------------------------------------------------------- */ 465 466 /** 467 * usb_gadget_frame_number - returns the current frame number 468 * @gadget: controller that reports the frame number 469 * 470 * Returns the usb frame number, normally eleven bits from a SOF packet, 471 * or negative errno if this device doesn't support this capability. 472 */ 473 int usb_gadget_frame_number(struct usb_gadget *gadget) 474 { 475 int ret; 476 477 ret = gadget->ops->get_frame(gadget); 478 479 trace_usb_gadget_frame_number(gadget, ret); 480 481 return ret; 482 } 483 EXPORT_SYMBOL_GPL(usb_gadget_frame_number); 484 485 /** 486 * usb_gadget_wakeup - tries to wake up the host connected to this gadget 487 * @gadget: controller used to wake up the host 488 * 489 * Returns zero on success, else negative error code if the hardware 490 * doesn't support such attempts, or its support has not been enabled 491 * by the usb host. Drivers must return device descriptors that report 492 * their ability to support this, or hosts won't enable it. 493 * 494 * This may also try to use SRP to wake the host and start enumeration, 495 * even if OTG isn't otherwise in use. OTG devices may also start 496 * remote wakeup even when hosts don't explicitly enable it. 497 */ 498 int usb_gadget_wakeup(struct usb_gadget *gadget) 499 { 500 int ret = 0; 501 502 if (!gadget->ops->wakeup) { 503 ret = -EOPNOTSUPP; 504 goto out; 505 } 506 507 ret = gadget->ops->wakeup(gadget); 508 509 out: 510 trace_usb_gadget_wakeup(gadget, ret); 511 512 return ret; 513 } 514 EXPORT_SYMBOL_GPL(usb_gadget_wakeup); 515 516 /** 517 * usb_gadget_set_remote_wakeup - configures the device remote wakeup feature. 518 * @gadget:the device being configured for remote wakeup 519 * @set:value to be configured. 520 * 521 * set to one to enable remote wakeup feature and zero to disable it. 522 * 523 * returns zero on success, else negative errno. 524 */ 525 int usb_gadget_set_remote_wakeup(struct usb_gadget *gadget, int set) 526 { 527 int ret = 0; 528 529 if (!gadget->ops->set_remote_wakeup) { 530 ret = -EOPNOTSUPP; 531 goto out; 532 } 533 534 ret = gadget->ops->set_remote_wakeup(gadget, set); 535 536 out: 537 trace_usb_gadget_set_remote_wakeup(gadget, ret); 538 539 return ret; 540 } 541 EXPORT_SYMBOL_GPL(usb_gadget_set_remote_wakeup); 542 543 /** 544 * usb_gadget_set_selfpowered - sets the device selfpowered feature. 545 * @gadget:the device being declared as self-powered 546 * 547 * this affects the device status reported by the hardware driver 548 * to reflect that it now has a local power supply. 549 * 550 * returns zero on success, else negative errno. 551 */ 552 int usb_gadget_set_selfpowered(struct usb_gadget *gadget) 553 { 554 int ret = 0; 555 556 if (!gadget->ops->set_selfpowered) { 557 ret = -EOPNOTSUPP; 558 goto out; 559 } 560 561 ret = gadget->ops->set_selfpowered(gadget, 1); 562 563 out: 564 trace_usb_gadget_set_selfpowered(gadget, ret); 565 566 return ret; 567 } 568 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered); 569 570 /** 571 * usb_gadget_clear_selfpowered - clear the device selfpowered feature. 572 * @gadget:the device being declared as bus-powered 573 * 574 * this affects the device status reported by the hardware driver. 575 * some hardware may not support bus-powered operation, in which 576 * case this feature's value can never change. 577 * 578 * returns zero on success, else negative errno. 579 */ 580 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget) 581 { 582 int ret = 0; 583 584 if (!gadget->ops->set_selfpowered) { 585 ret = -EOPNOTSUPP; 586 goto out; 587 } 588 589 ret = gadget->ops->set_selfpowered(gadget, 0); 590 591 out: 592 trace_usb_gadget_clear_selfpowered(gadget, ret); 593 594 return ret; 595 } 596 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered); 597 598 /** 599 * usb_gadget_vbus_connect - Notify controller that VBUS is powered 600 * @gadget:The device which now has VBUS power. 601 * Context: can sleep 602 * 603 * This call is used by a driver for an external transceiver (or GPIO) 604 * that detects a VBUS power session starting. Common responses include 605 * resuming the controller, activating the D+ (or D-) pullup to let the 606 * host detect that a USB device is attached, and starting to draw power 607 * (8mA or possibly more, especially after SET_CONFIGURATION). 608 * 609 * Returns zero on success, else negative errno. 610 */ 611 int usb_gadget_vbus_connect(struct usb_gadget *gadget) 612 { 613 int ret = 0; 614 615 if (!gadget->ops->vbus_session) { 616 ret = -EOPNOTSUPP; 617 goto out; 618 } 619 620 ret = gadget->ops->vbus_session(gadget, 1); 621 622 out: 623 trace_usb_gadget_vbus_connect(gadget, ret); 624 625 return ret; 626 } 627 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect); 628 629 /** 630 * usb_gadget_vbus_draw - constrain controller's VBUS power usage 631 * @gadget:The device whose VBUS usage is being described 632 * @mA:How much current to draw, in milliAmperes. This should be twice 633 * the value listed in the configuration descriptor bMaxPower field. 634 * 635 * This call is used by gadget drivers during SET_CONFIGURATION calls, 636 * reporting how much power the device may consume. For example, this 637 * could affect how quickly batteries are recharged. 638 * 639 * Returns zero on success, else negative errno. 640 */ 641 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA) 642 { 643 int ret = 0; 644 645 if (!gadget->ops->vbus_draw) { 646 ret = -EOPNOTSUPP; 647 goto out; 648 } 649 650 ret = gadget->ops->vbus_draw(gadget, mA); 651 if (!ret) 652 gadget->mA = mA; 653 654 out: 655 trace_usb_gadget_vbus_draw(gadget, ret); 656 657 return ret; 658 } 659 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw); 660 661 /** 662 * usb_gadget_vbus_disconnect - notify controller about VBUS session end 663 * @gadget:the device whose VBUS supply is being described 664 * Context: can sleep 665 * 666 * This call is used by a driver for an external transceiver (or GPIO) 667 * that detects a VBUS power session ending. Common responses include 668 * reversing everything done in usb_gadget_vbus_connect(). 669 * 670 * Returns zero on success, else negative errno. 671 */ 672 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget) 673 { 674 int ret = 0; 675 676 if (!gadget->ops->vbus_session) { 677 ret = -EOPNOTSUPP; 678 goto out; 679 } 680 681 ret = gadget->ops->vbus_session(gadget, 0); 682 683 out: 684 trace_usb_gadget_vbus_disconnect(gadget, ret); 685 686 return ret; 687 } 688 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect); 689 690 /** 691 * usb_gadget_connect - software-controlled connect to USB host 692 * @gadget:the peripheral being connected 693 * 694 * Enables the D+ (or potentially D-) pullup. The host will start 695 * enumerating this gadget when the pullup is active and a VBUS session 696 * is active (the link is powered). 697 * 698 * Returns zero on success, else negative errno. 699 */ 700 int usb_gadget_connect(struct usb_gadget *gadget) 701 { 702 int ret = 0; 703 704 if (!gadget->ops->pullup) { 705 ret = -EOPNOTSUPP; 706 goto out; 707 } 708 709 if (gadget->deactivated) { 710 /* 711 * If gadget is deactivated we only save new state. 712 * Gadget will be connected automatically after activation. 713 */ 714 gadget->connected = true; 715 goto out; 716 } 717 718 ret = gadget->ops->pullup(gadget, 1); 719 if (!ret) 720 gadget->connected = 1; 721 722 out: 723 trace_usb_gadget_connect(gadget, ret); 724 725 return ret; 726 } 727 EXPORT_SYMBOL_GPL(usb_gadget_connect); 728 729 /** 730 * usb_gadget_disconnect - software-controlled disconnect from USB host 731 * @gadget:the peripheral being disconnected 732 * 733 * Disables the D+ (or potentially D-) pullup, which the host may see 734 * as a disconnect (when a VBUS session is active). Not all systems 735 * support software pullup controls. 736 * 737 * Following a successful disconnect, invoke the ->disconnect() callback 738 * for the current gadget driver so that UDC drivers don't need to. 739 * 740 * Returns zero on success, else negative errno. 741 */ 742 int usb_gadget_disconnect(struct usb_gadget *gadget) 743 { 744 int ret = 0; 745 746 if (!gadget->ops->pullup) { 747 ret = -EOPNOTSUPP; 748 goto out; 749 } 750 751 if (!gadget->connected) 752 goto out; 753 754 if (gadget->deactivated) { 755 /* 756 * If gadget is deactivated we only save new state. 757 * Gadget will stay disconnected after activation. 758 */ 759 gadget->connected = false; 760 goto out; 761 } 762 763 ret = gadget->ops->pullup(gadget, 0); 764 if (!ret) 765 gadget->connected = 0; 766 767 mutex_lock(&udc_lock); 768 if (gadget->udc->driver) 769 gadget->udc->driver->disconnect(gadget); 770 mutex_unlock(&udc_lock); 771 772 out: 773 trace_usb_gadget_disconnect(gadget, ret); 774 775 return ret; 776 } 777 EXPORT_SYMBOL_GPL(usb_gadget_disconnect); 778 779 /** 780 * usb_gadget_deactivate - deactivate function which is not ready to work 781 * @gadget: the peripheral being deactivated 782 * 783 * This routine may be used during the gadget driver bind() call to prevent 784 * the peripheral from ever being visible to the USB host, unless later 785 * usb_gadget_activate() is called. For example, user mode components may 786 * need to be activated before the system can talk to hosts. 787 * 788 * Returns zero on success, else negative errno. 789 */ 790 int usb_gadget_deactivate(struct usb_gadget *gadget) 791 { 792 int ret = 0; 793 794 if (gadget->deactivated) 795 goto out; 796 797 if (gadget->connected) { 798 ret = usb_gadget_disconnect(gadget); 799 if (ret) 800 goto out; 801 802 /* 803 * If gadget was being connected before deactivation, we want 804 * to reconnect it in usb_gadget_activate(). 805 */ 806 gadget->connected = true; 807 } 808 gadget->deactivated = true; 809 810 out: 811 trace_usb_gadget_deactivate(gadget, ret); 812 813 return ret; 814 } 815 EXPORT_SYMBOL_GPL(usb_gadget_deactivate); 816 817 /** 818 * usb_gadget_activate - activate function which is not ready to work 819 * @gadget: the peripheral being activated 820 * 821 * This routine activates gadget which was previously deactivated with 822 * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed. 823 * 824 * Returns zero on success, else negative errno. 825 */ 826 int usb_gadget_activate(struct usb_gadget *gadget) 827 { 828 int ret = 0; 829 830 if (!gadget->deactivated) 831 goto out; 832 833 gadget->deactivated = false; 834 835 /* 836 * If gadget has been connected before deactivation, or became connected 837 * while it was being deactivated, we call usb_gadget_connect(). 838 */ 839 if (gadget->connected) 840 ret = usb_gadget_connect(gadget); 841 842 out: 843 trace_usb_gadget_activate(gadget, ret); 844 845 return ret; 846 } 847 EXPORT_SYMBOL_GPL(usb_gadget_activate); 848 849 /* ------------------------------------------------------------------------- */ 850 851 #ifdef CONFIG_HAS_DMA 852 853 int usb_gadget_map_request_by_dev(struct device *dev, 854 struct usb_request *req, int is_in) 855 { 856 if (req->length == 0) 857 return 0; 858 859 if (req->num_sgs) { 860 int mapped; 861 862 mapped = dma_map_sg(dev, req->sg, req->num_sgs, 863 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 864 if (mapped == 0) { 865 dev_err(dev, "failed to map SGs\n"); 866 return -EFAULT; 867 } 868 869 req->num_mapped_sgs = mapped; 870 } else { 871 if (is_vmalloc_addr(req->buf)) { 872 dev_err(dev, "buffer is not dma capable\n"); 873 return -EFAULT; 874 } else if (object_is_on_stack(req->buf)) { 875 dev_err(dev, "buffer is on stack\n"); 876 return -EFAULT; 877 } 878 879 req->dma = dma_map_single(dev, req->buf, req->length, 880 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 881 882 if (dma_mapping_error(dev, req->dma)) { 883 dev_err(dev, "failed to map buffer\n"); 884 return -EFAULT; 885 } 886 887 req->dma_mapped = 1; 888 } 889 890 return 0; 891 } 892 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev); 893 894 int usb_gadget_map_request(struct usb_gadget *gadget, 895 struct usb_request *req, int is_in) 896 { 897 return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in); 898 } 899 EXPORT_SYMBOL_GPL(usb_gadget_map_request); 900 901 void usb_gadget_unmap_request_by_dev(struct device *dev, 902 struct usb_request *req, int is_in) 903 { 904 if (req->length == 0) 905 return; 906 907 if (req->num_mapped_sgs) { 908 dma_unmap_sg(dev, req->sg, req->num_sgs, 909 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 910 911 req->num_mapped_sgs = 0; 912 } else if (req->dma_mapped) { 913 dma_unmap_single(dev, req->dma, req->length, 914 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 915 req->dma_mapped = 0; 916 } 917 } 918 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev); 919 920 void usb_gadget_unmap_request(struct usb_gadget *gadget, 921 struct usb_request *req, int is_in) 922 { 923 usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in); 924 } 925 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request); 926 927 #endif /* CONFIG_HAS_DMA */ 928 929 /* ------------------------------------------------------------------------- */ 930 931 /** 932 * usb_gadget_giveback_request - give the request back to the gadget layer 933 * @ep: the endpoint to be used with with the request 934 * @req: the request being given back 935 * 936 * This is called by device controller drivers in order to return the 937 * completed request back to the gadget layer. 938 */ 939 void usb_gadget_giveback_request(struct usb_ep *ep, 940 struct usb_request *req) 941 { 942 if (likely(req->status == 0)) 943 usb_led_activity(USB_LED_EVENT_GADGET); 944 945 trace_usb_gadget_giveback_request(ep, req, 0); 946 947 req->complete(ep, req); 948 } 949 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request); 950 951 /* ------------------------------------------------------------------------- */ 952 953 /** 954 * gadget_find_ep_by_name - returns ep whose name is the same as sting passed 955 * in second parameter or NULL if searched endpoint not found 956 * @g: controller to check for quirk 957 * @name: name of searched endpoint 958 */ 959 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name) 960 { 961 struct usb_ep *ep; 962 963 gadget_for_each_ep(ep, g) { 964 if (!strcmp(ep->name, name)) 965 return ep; 966 } 967 968 return NULL; 969 } 970 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name); 971 972 /* ------------------------------------------------------------------------- */ 973 974 int usb_gadget_ep_match_desc(struct usb_gadget *gadget, 975 struct usb_ep *ep, struct usb_endpoint_descriptor *desc, 976 struct usb_ss_ep_comp_descriptor *ep_comp) 977 { 978 u8 type; 979 u16 max; 980 int num_req_streams = 0; 981 982 /* endpoint already claimed? */ 983 if (ep->claimed) 984 return 0; 985 986 type = usb_endpoint_type(desc); 987 max = usb_endpoint_maxp(desc); 988 989 if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in) 990 return 0; 991 if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out) 992 return 0; 993 994 if (max > ep->maxpacket_limit) 995 return 0; 996 997 /* "high bandwidth" works only at high speed */ 998 if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1) 999 return 0; 1000 1001 switch (type) { 1002 case USB_ENDPOINT_XFER_CONTROL: 1003 /* only support ep0 for portable CONTROL traffic */ 1004 return 0; 1005 case USB_ENDPOINT_XFER_ISOC: 1006 if (!ep->caps.type_iso) 1007 return 0; 1008 /* ISO: limit 1023 bytes full speed, 1024 high/super speed */ 1009 if (!gadget_is_dualspeed(gadget) && max > 1023) 1010 return 0; 1011 break; 1012 case USB_ENDPOINT_XFER_BULK: 1013 if (!ep->caps.type_bulk) 1014 return 0; 1015 if (ep_comp && gadget_is_superspeed(gadget)) { 1016 /* Get the number of required streams from the 1017 * EP companion descriptor and see if the EP 1018 * matches it 1019 */ 1020 num_req_streams = ep_comp->bmAttributes & 0x1f; 1021 if (num_req_streams > ep->max_streams) 1022 return 0; 1023 } 1024 break; 1025 case USB_ENDPOINT_XFER_INT: 1026 /* Bulk endpoints handle interrupt transfers, 1027 * except the toggle-quirky iso-synch kind 1028 */ 1029 if (!ep->caps.type_int && !ep->caps.type_bulk) 1030 return 0; 1031 /* INT: limit 64 bytes full speed, 1024 high/super speed */ 1032 if (!gadget_is_dualspeed(gadget) && max > 64) 1033 return 0; 1034 break; 1035 } 1036 1037 return 1; 1038 } 1039 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc); 1040 1041 /** 1042 * usb_gadget_check_config - checks if the UDC can support the binded 1043 * configuration 1044 * @gadget: controller to check the USB configuration 1045 * 1046 * Ensure that a UDC is able to support the requested resources by a 1047 * configuration, and that there are no resource limitations, such as 1048 * internal memory allocated to all requested endpoints. 1049 * 1050 * Returns zero on success, else a negative errno. 1051 */ 1052 int usb_gadget_check_config(struct usb_gadget *gadget) 1053 { 1054 if (gadget->ops->check_config) 1055 return gadget->ops->check_config(gadget); 1056 return 0; 1057 } 1058 EXPORT_SYMBOL_GPL(usb_gadget_check_config); 1059 1060 /* ------------------------------------------------------------------------- */ 1061 1062 static void usb_gadget_state_work(struct work_struct *work) 1063 { 1064 struct usb_gadget *gadget = work_to_gadget(work); 1065 struct usb_udc *udc = gadget->udc; 1066 1067 if (udc) 1068 sysfs_notify(&udc->dev.kobj, NULL, "state"); 1069 } 1070 1071 void usb_gadget_set_state(struct usb_gadget *gadget, 1072 enum usb_device_state state) 1073 { 1074 gadget->state = state; 1075 schedule_work(&gadget->work); 1076 } 1077 EXPORT_SYMBOL_GPL(usb_gadget_set_state); 1078 1079 /* ------------------------------------------------------------------------- */ 1080 1081 static void usb_udc_connect_control(struct usb_udc *udc) 1082 { 1083 if (udc->vbus) 1084 usb_gadget_connect(udc->gadget); 1085 else 1086 usb_gadget_disconnect(udc->gadget); 1087 } 1088 1089 /** 1090 * usb_udc_vbus_handler - updates the udc core vbus status, and try to 1091 * connect or disconnect gadget 1092 * @gadget: The gadget which vbus change occurs 1093 * @status: The vbus status 1094 * 1095 * The udc driver calls it when it wants to connect or disconnect gadget 1096 * according to vbus status. 1097 */ 1098 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status) 1099 { 1100 struct usb_udc *udc = gadget->udc; 1101 1102 if (udc) { 1103 udc->vbus = status; 1104 usb_udc_connect_control(udc); 1105 } 1106 } 1107 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler); 1108 1109 /** 1110 * usb_gadget_udc_reset - notifies the udc core that bus reset occurs 1111 * @gadget: The gadget which bus reset occurs 1112 * @driver: The gadget driver we want to notify 1113 * 1114 * If the udc driver has bus reset handler, it needs to call this when the bus 1115 * reset occurs, it notifies the gadget driver that the bus reset occurs as 1116 * well as updates gadget state. 1117 */ 1118 void usb_gadget_udc_reset(struct usb_gadget *gadget, 1119 struct usb_gadget_driver *driver) 1120 { 1121 driver->reset(gadget); 1122 usb_gadget_set_state(gadget, USB_STATE_DEFAULT); 1123 } 1124 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset); 1125 1126 /** 1127 * usb_gadget_udc_start - tells usb device controller to start up 1128 * @udc: The UDC to be started 1129 * 1130 * This call is issued by the UDC Class driver when it's about 1131 * to register a gadget driver to the device controller, before 1132 * calling gadget driver's bind() method. 1133 * 1134 * It allows the controller to be powered off until strictly 1135 * necessary to have it powered on. 1136 * 1137 * Returns zero on success, else negative errno. 1138 */ 1139 static inline int usb_gadget_udc_start(struct usb_udc *udc) 1140 { 1141 int ret; 1142 1143 if (udc->started) { 1144 dev_err(&udc->dev, "UDC had already started\n"); 1145 return -EBUSY; 1146 } 1147 1148 ret = udc->gadget->ops->udc_start(udc->gadget, udc->driver); 1149 if (!ret) 1150 udc->started = true; 1151 1152 return ret; 1153 } 1154 1155 /** 1156 * usb_gadget_udc_stop - tells usb device controller we don't need it anymore 1157 * @udc: The UDC to be stopped 1158 * 1159 * This call is issued by the UDC Class driver after calling 1160 * gadget driver's unbind() method. 1161 * 1162 * The details are implementation specific, but it can go as 1163 * far as powering off UDC completely and disable its data 1164 * line pullups. 1165 */ 1166 static inline void usb_gadget_udc_stop(struct usb_udc *udc) 1167 { 1168 if (!udc->started) { 1169 dev_err(&udc->dev, "UDC had already stopped\n"); 1170 return; 1171 } 1172 1173 udc->gadget->ops->udc_stop(udc->gadget); 1174 udc->started = false; 1175 } 1176 1177 /** 1178 * usb_gadget_udc_set_speed - tells usb device controller speed supported by 1179 * current driver 1180 * @udc: The device we want to set maximum speed 1181 * @speed: The maximum speed to allowed to run 1182 * 1183 * This call is issued by the UDC Class driver before calling 1184 * usb_gadget_udc_start() in order to make sure that we don't try to 1185 * connect on speeds the gadget driver doesn't support. 1186 */ 1187 static inline void usb_gadget_udc_set_speed(struct usb_udc *udc, 1188 enum usb_device_speed speed) 1189 { 1190 struct usb_gadget *gadget = udc->gadget; 1191 enum usb_device_speed s; 1192 1193 if (speed == USB_SPEED_UNKNOWN) 1194 s = gadget->max_speed; 1195 else 1196 s = min(speed, gadget->max_speed); 1197 1198 if (s == USB_SPEED_SUPER_PLUS && gadget->ops->udc_set_ssp_rate) 1199 gadget->ops->udc_set_ssp_rate(gadget, gadget->max_ssp_rate); 1200 else if (gadget->ops->udc_set_speed) 1201 gadget->ops->udc_set_speed(gadget, s); 1202 } 1203 1204 /** 1205 * usb_gadget_enable_async_callbacks - tell usb device controller to enable asynchronous callbacks 1206 * @udc: The UDC which should enable async callbacks 1207 * 1208 * This routine is used when binding gadget drivers. It undoes the effect 1209 * of usb_gadget_disable_async_callbacks(); the UDC driver should enable IRQs 1210 * (if necessary) and resume issuing callbacks. 1211 * 1212 * This routine will always be called in process context. 1213 */ 1214 static inline void usb_gadget_enable_async_callbacks(struct usb_udc *udc) 1215 { 1216 struct usb_gadget *gadget = udc->gadget; 1217 1218 if (gadget->ops->udc_async_callbacks) 1219 gadget->ops->udc_async_callbacks(gadget, true); 1220 } 1221 1222 /** 1223 * usb_gadget_disable_async_callbacks - tell usb device controller to disable asynchronous callbacks 1224 * @udc: The UDC which should disable async callbacks 1225 * 1226 * This routine is used when unbinding gadget drivers. It prevents a race: 1227 * The UDC driver doesn't know when the gadget driver's ->unbind callback 1228 * runs, so unless it is told to disable asynchronous callbacks, it might 1229 * issue a callback (such as ->disconnect) after the unbind has completed. 1230 * 1231 * After this function runs, the UDC driver must suppress all ->suspend, 1232 * ->resume, ->disconnect, ->reset, and ->setup callbacks to the gadget driver 1233 * until async callbacks are again enabled. A simple-minded but effective 1234 * way to accomplish this is to tell the UDC hardware not to generate any 1235 * more IRQs. 1236 * 1237 * Request completion callbacks must still be issued. However, it's okay 1238 * to defer them until the request is cancelled, since the pull-up will be 1239 * turned off during the time period when async callbacks are disabled. 1240 * 1241 * This routine will always be called in process context. 1242 */ 1243 static inline void usb_gadget_disable_async_callbacks(struct usb_udc *udc) 1244 { 1245 struct usb_gadget *gadget = udc->gadget; 1246 1247 if (gadget->ops->udc_async_callbacks) 1248 gadget->ops->udc_async_callbacks(gadget, false); 1249 } 1250 1251 /** 1252 * usb_udc_release - release the usb_udc struct 1253 * @dev: the dev member within usb_udc 1254 * 1255 * This is called by driver's core in order to free memory once the last 1256 * reference is released. 1257 */ 1258 static void usb_udc_release(struct device *dev) 1259 { 1260 struct usb_udc *udc; 1261 1262 udc = container_of(dev, struct usb_udc, dev); 1263 dev_dbg(dev, "releasing '%s'\n", dev_name(dev)); 1264 kfree(udc); 1265 } 1266 1267 static const struct attribute_group *usb_udc_attr_groups[]; 1268 1269 static void usb_udc_nop_release(struct device *dev) 1270 { 1271 dev_vdbg(dev, "%s\n", __func__); 1272 } 1273 1274 /** 1275 * usb_initialize_gadget - initialize a gadget and its embedded struct device 1276 * @parent: the parent device to this udc. Usually the controller driver's 1277 * device. 1278 * @gadget: the gadget to be initialized. 1279 * @release: a gadget release function. 1280 */ 1281 void usb_initialize_gadget(struct device *parent, struct usb_gadget *gadget, 1282 void (*release)(struct device *dev)) 1283 { 1284 INIT_WORK(&gadget->work, usb_gadget_state_work); 1285 gadget->dev.parent = parent; 1286 1287 if (release) 1288 gadget->dev.release = release; 1289 else 1290 gadget->dev.release = usb_udc_nop_release; 1291 1292 device_initialize(&gadget->dev); 1293 gadget->dev.bus = &gadget_bus_type; 1294 } 1295 EXPORT_SYMBOL_GPL(usb_initialize_gadget); 1296 1297 /** 1298 * usb_add_gadget - adds a new gadget to the udc class driver list 1299 * @gadget: the gadget to be added to the list. 1300 * 1301 * Returns zero on success, negative errno otherwise. 1302 * Does not do a final usb_put_gadget() if an error occurs. 1303 */ 1304 int usb_add_gadget(struct usb_gadget *gadget) 1305 { 1306 struct usb_udc *udc; 1307 int ret = -ENOMEM; 1308 1309 udc = kzalloc(sizeof(*udc), GFP_KERNEL); 1310 if (!udc) 1311 goto error; 1312 1313 device_initialize(&udc->dev); 1314 udc->dev.release = usb_udc_release; 1315 udc->dev.class = udc_class; 1316 udc->dev.groups = usb_udc_attr_groups; 1317 udc->dev.parent = gadget->dev.parent; 1318 ret = dev_set_name(&udc->dev, "%s", 1319 kobject_name(&gadget->dev.parent->kobj)); 1320 if (ret) 1321 goto err_put_udc; 1322 1323 udc->gadget = gadget; 1324 gadget->udc = udc; 1325 1326 udc->started = false; 1327 1328 mutex_lock(&udc_lock); 1329 list_add_tail(&udc->list, &udc_list); 1330 mutex_unlock(&udc_lock); 1331 1332 ret = device_add(&udc->dev); 1333 if (ret) 1334 goto err_unlist_udc; 1335 1336 usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED); 1337 udc->vbus = true; 1338 1339 ret = ida_alloc(&gadget_id_numbers, GFP_KERNEL); 1340 if (ret < 0) 1341 goto err_del_udc; 1342 gadget->id_number = ret; 1343 dev_set_name(&gadget->dev, "gadget.%d", ret); 1344 1345 ret = device_add(&gadget->dev); 1346 if (ret) 1347 goto err_free_id; 1348 1349 return 0; 1350 1351 err_free_id: 1352 ida_free(&gadget_id_numbers, gadget->id_number); 1353 1354 err_del_udc: 1355 flush_work(&gadget->work); 1356 device_del(&udc->dev); 1357 1358 err_unlist_udc: 1359 mutex_lock(&udc_lock); 1360 list_del(&udc->list); 1361 mutex_unlock(&udc_lock); 1362 1363 err_put_udc: 1364 put_device(&udc->dev); 1365 1366 error: 1367 return ret; 1368 } 1369 EXPORT_SYMBOL_GPL(usb_add_gadget); 1370 1371 /** 1372 * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list 1373 * @parent: the parent device to this udc. Usually the controller driver's 1374 * device. 1375 * @gadget: the gadget to be added to the list. 1376 * @release: a gadget release function. 1377 * 1378 * Returns zero on success, negative errno otherwise. 1379 * Calls the gadget release function in the latter case. 1380 */ 1381 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget, 1382 void (*release)(struct device *dev)) 1383 { 1384 int ret; 1385 1386 usb_initialize_gadget(parent, gadget, release); 1387 ret = usb_add_gadget(gadget); 1388 if (ret) 1389 usb_put_gadget(gadget); 1390 return ret; 1391 } 1392 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release); 1393 1394 /** 1395 * usb_get_gadget_udc_name - get the name of the first UDC controller 1396 * This functions returns the name of the first UDC controller in the system. 1397 * Please note that this interface is usefull only for legacy drivers which 1398 * assume that there is only one UDC controller in the system and they need to 1399 * get its name before initialization. There is no guarantee that the UDC 1400 * of the returned name will be still available, when gadget driver registers 1401 * itself. 1402 * 1403 * Returns pointer to string with UDC controller name on success, NULL 1404 * otherwise. Caller should kfree() returned string. 1405 */ 1406 char *usb_get_gadget_udc_name(void) 1407 { 1408 struct usb_udc *udc; 1409 char *name = NULL; 1410 1411 /* For now we take the first available UDC */ 1412 mutex_lock(&udc_lock); 1413 list_for_each_entry(udc, &udc_list, list) { 1414 if (!udc->driver) { 1415 name = kstrdup(udc->gadget->name, GFP_KERNEL); 1416 break; 1417 } 1418 } 1419 mutex_unlock(&udc_lock); 1420 return name; 1421 } 1422 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name); 1423 1424 /** 1425 * usb_add_gadget_udc - adds a new gadget to the udc class driver list 1426 * @parent: the parent device to this udc. Usually the controller 1427 * driver's device. 1428 * @gadget: the gadget to be added to the list 1429 * 1430 * Returns zero on success, negative errno otherwise. 1431 */ 1432 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget) 1433 { 1434 return usb_add_gadget_udc_release(parent, gadget, NULL); 1435 } 1436 EXPORT_SYMBOL_GPL(usb_add_gadget_udc); 1437 1438 /** 1439 * usb_del_gadget - deletes a gadget and unregisters its udc 1440 * @gadget: the gadget to be deleted. 1441 * 1442 * This will unbind @gadget, if it is bound. 1443 * It will not do a final usb_put_gadget(). 1444 */ 1445 void usb_del_gadget(struct usb_gadget *gadget) 1446 { 1447 struct usb_udc *udc = gadget->udc; 1448 1449 if (!udc) 1450 return; 1451 1452 dev_vdbg(gadget->dev.parent, "unregistering gadget\n"); 1453 1454 mutex_lock(&udc_lock); 1455 list_del(&udc->list); 1456 mutex_unlock(&udc_lock); 1457 1458 kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE); 1459 flush_work(&gadget->work); 1460 device_del(&gadget->dev); 1461 ida_free(&gadget_id_numbers, gadget->id_number); 1462 device_unregister(&udc->dev); 1463 } 1464 EXPORT_SYMBOL_GPL(usb_del_gadget); 1465 1466 /** 1467 * usb_del_gadget_udc - unregisters a gadget 1468 * @gadget: the gadget to be unregistered. 1469 * 1470 * Calls usb_del_gadget() and does a final usb_put_gadget(). 1471 */ 1472 void usb_del_gadget_udc(struct usb_gadget *gadget) 1473 { 1474 usb_del_gadget(gadget); 1475 usb_put_gadget(gadget); 1476 } 1477 EXPORT_SYMBOL_GPL(usb_del_gadget_udc); 1478 1479 /* ------------------------------------------------------------------------- */ 1480 1481 static int gadget_match_driver(struct device *dev, struct device_driver *drv) 1482 { 1483 struct usb_gadget *gadget = dev_to_usb_gadget(dev); 1484 struct usb_udc *udc = gadget->udc; 1485 struct usb_gadget_driver *driver = container_of(drv, 1486 struct usb_gadget_driver, driver); 1487 1488 /* If the driver specifies a udc_name, it must match the UDC's name */ 1489 if (driver->udc_name && 1490 strcmp(driver->udc_name, dev_name(&udc->dev)) != 0) 1491 return 0; 1492 1493 /* If the driver is already bound to a gadget, it doesn't match */ 1494 if (driver->is_bound) 1495 return 0; 1496 1497 /* Otherwise any gadget driver matches any UDC */ 1498 return 1; 1499 } 1500 1501 static int gadget_bind_driver(struct device *dev) 1502 { 1503 struct usb_gadget *gadget = dev_to_usb_gadget(dev); 1504 struct usb_udc *udc = gadget->udc; 1505 struct usb_gadget_driver *driver = container_of(dev->driver, 1506 struct usb_gadget_driver, driver); 1507 int ret = 0; 1508 1509 mutex_lock(&udc_lock); 1510 if (driver->is_bound) { 1511 mutex_unlock(&udc_lock); 1512 return -ENXIO; /* Driver binds to only one gadget */ 1513 } 1514 driver->is_bound = true; 1515 udc->driver = driver; 1516 mutex_unlock(&udc_lock); 1517 1518 dev_dbg(&udc->dev, "binding gadget driver [%s]\n", driver->function); 1519 1520 usb_gadget_udc_set_speed(udc, driver->max_speed); 1521 1522 ret = driver->bind(udc->gadget, driver); 1523 if (ret) 1524 goto err_bind; 1525 1526 ret = usb_gadget_udc_start(udc); 1527 if (ret) 1528 goto err_start; 1529 usb_gadget_enable_async_callbacks(udc); 1530 usb_udc_connect_control(udc); 1531 1532 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE); 1533 return 0; 1534 1535 err_start: 1536 driver->unbind(udc->gadget); 1537 1538 err_bind: 1539 if (ret != -EISNAM) 1540 dev_err(&udc->dev, "failed to start %s: %d\n", 1541 driver->function, ret); 1542 1543 mutex_lock(&udc_lock); 1544 udc->driver = NULL; 1545 driver->is_bound = false; 1546 mutex_unlock(&udc_lock); 1547 1548 return ret; 1549 } 1550 1551 static void gadget_unbind_driver(struct device *dev) 1552 { 1553 struct usb_gadget *gadget = dev_to_usb_gadget(dev); 1554 struct usb_udc *udc = gadget->udc; 1555 struct usb_gadget_driver *driver = udc->driver; 1556 1557 dev_dbg(&udc->dev, "unbinding gadget driver [%s]\n", driver->function); 1558 1559 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE); 1560 1561 usb_gadget_disconnect(gadget); 1562 usb_gadget_disable_async_callbacks(udc); 1563 if (gadget->irq) 1564 synchronize_irq(gadget->irq); 1565 udc->driver->unbind(gadget); 1566 usb_gadget_udc_stop(udc); 1567 1568 mutex_lock(&udc_lock); 1569 driver->is_bound = false; 1570 udc->driver = NULL; 1571 mutex_unlock(&udc_lock); 1572 } 1573 1574 /* ------------------------------------------------------------------------- */ 1575 1576 int usb_gadget_register_driver_owner(struct usb_gadget_driver *driver, 1577 struct module *owner, const char *mod_name) 1578 { 1579 int ret; 1580 1581 if (!driver || !driver->bind || !driver->setup) 1582 return -EINVAL; 1583 1584 driver->driver.bus = &gadget_bus_type; 1585 driver->driver.owner = owner; 1586 driver->driver.mod_name = mod_name; 1587 ret = driver_register(&driver->driver); 1588 if (ret) { 1589 pr_warn("%s: driver registration failed: %d\n", 1590 driver->function, ret); 1591 return ret; 1592 } 1593 1594 mutex_lock(&udc_lock); 1595 if (!driver->is_bound) { 1596 if (driver->match_existing_only) { 1597 pr_warn("%s: couldn't find an available UDC or it's busy\n", 1598 driver->function); 1599 ret = -EBUSY; 1600 } else { 1601 pr_info("%s: couldn't find an available UDC\n", 1602 driver->function); 1603 ret = 0; 1604 } 1605 } 1606 mutex_unlock(&udc_lock); 1607 1608 if (ret) 1609 driver_unregister(&driver->driver); 1610 return ret; 1611 } 1612 EXPORT_SYMBOL_GPL(usb_gadget_register_driver_owner); 1613 1614 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver) 1615 { 1616 if (!driver || !driver->unbind) 1617 return -EINVAL; 1618 1619 driver_unregister(&driver->driver); 1620 return 0; 1621 } 1622 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver); 1623 1624 /* ------------------------------------------------------------------------- */ 1625 1626 static ssize_t srp_store(struct device *dev, 1627 struct device_attribute *attr, const char *buf, size_t n) 1628 { 1629 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1630 1631 if (sysfs_streq(buf, "1")) 1632 usb_gadget_wakeup(udc->gadget); 1633 1634 return n; 1635 } 1636 static DEVICE_ATTR_WO(srp); 1637 1638 static ssize_t soft_connect_store(struct device *dev, 1639 struct device_attribute *attr, const char *buf, size_t n) 1640 { 1641 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1642 ssize_t ret; 1643 1644 device_lock(&udc->gadget->dev); 1645 if (!udc->driver) { 1646 dev_err(dev, "soft-connect without a gadget driver\n"); 1647 ret = -EOPNOTSUPP; 1648 goto out; 1649 } 1650 1651 if (sysfs_streq(buf, "connect")) { 1652 usb_gadget_udc_start(udc); 1653 usb_gadget_connect(udc->gadget); 1654 } else if (sysfs_streq(buf, "disconnect")) { 1655 usb_gadget_disconnect(udc->gadget); 1656 usb_gadget_udc_stop(udc); 1657 } else { 1658 dev_err(dev, "unsupported command '%s'\n", buf); 1659 ret = -EINVAL; 1660 goto out; 1661 } 1662 1663 ret = n; 1664 out: 1665 device_unlock(&udc->gadget->dev); 1666 return ret; 1667 } 1668 static DEVICE_ATTR_WO(soft_connect); 1669 1670 static ssize_t state_show(struct device *dev, struct device_attribute *attr, 1671 char *buf) 1672 { 1673 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1674 struct usb_gadget *gadget = udc->gadget; 1675 1676 return sprintf(buf, "%s\n", usb_state_string(gadget->state)); 1677 } 1678 static DEVICE_ATTR_RO(state); 1679 1680 static ssize_t function_show(struct device *dev, struct device_attribute *attr, 1681 char *buf) 1682 { 1683 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1684 struct usb_gadget_driver *drv; 1685 int rc = 0; 1686 1687 mutex_lock(&udc_lock); 1688 drv = udc->driver; 1689 if (drv && drv->function) 1690 rc = scnprintf(buf, PAGE_SIZE, "%s\n", drv->function); 1691 mutex_unlock(&udc_lock); 1692 return rc; 1693 } 1694 static DEVICE_ATTR_RO(function); 1695 1696 #define USB_UDC_SPEED_ATTR(name, param) \ 1697 ssize_t name##_show(struct device *dev, \ 1698 struct device_attribute *attr, char *buf) \ 1699 { \ 1700 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \ 1701 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 1702 usb_speed_string(udc->gadget->param)); \ 1703 } \ 1704 static DEVICE_ATTR_RO(name) 1705 1706 static USB_UDC_SPEED_ATTR(current_speed, speed); 1707 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed); 1708 1709 #define USB_UDC_ATTR(name) \ 1710 ssize_t name##_show(struct device *dev, \ 1711 struct device_attribute *attr, char *buf) \ 1712 { \ 1713 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \ 1714 struct usb_gadget *gadget = udc->gadget; \ 1715 \ 1716 return scnprintf(buf, PAGE_SIZE, "%d\n", gadget->name); \ 1717 } \ 1718 static DEVICE_ATTR_RO(name) 1719 1720 static USB_UDC_ATTR(is_otg); 1721 static USB_UDC_ATTR(is_a_peripheral); 1722 static USB_UDC_ATTR(b_hnp_enable); 1723 static USB_UDC_ATTR(a_hnp_support); 1724 static USB_UDC_ATTR(a_alt_hnp_support); 1725 static USB_UDC_ATTR(is_selfpowered); 1726 1727 static struct attribute *usb_udc_attrs[] = { 1728 &dev_attr_srp.attr, 1729 &dev_attr_soft_connect.attr, 1730 &dev_attr_state.attr, 1731 &dev_attr_function.attr, 1732 &dev_attr_current_speed.attr, 1733 &dev_attr_maximum_speed.attr, 1734 1735 &dev_attr_is_otg.attr, 1736 &dev_attr_is_a_peripheral.attr, 1737 &dev_attr_b_hnp_enable.attr, 1738 &dev_attr_a_hnp_support.attr, 1739 &dev_attr_a_alt_hnp_support.attr, 1740 &dev_attr_is_selfpowered.attr, 1741 NULL, 1742 }; 1743 1744 static const struct attribute_group usb_udc_attr_group = { 1745 .attrs = usb_udc_attrs, 1746 }; 1747 1748 static const struct attribute_group *usb_udc_attr_groups[] = { 1749 &usb_udc_attr_group, 1750 NULL, 1751 }; 1752 1753 static int usb_udc_uevent(const struct device *dev, struct kobj_uevent_env *env) 1754 { 1755 const struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1756 int ret; 1757 1758 ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name); 1759 if (ret) { 1760 dev_err(dev, "failed to add uevent USB_UDC_NAME\n"); 1761 return ret; 1762 } 1763 1764 mutex_lock(&udc_lock); 1765 if (udc->driver) 1766 ret = add_uevent_var(env, "USB_UDC_DRIVER=%s", 1767 udc->driver->function); 1768 mutex_unlock(&udc_lock); 1769 if (ret) { 1770 dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n"); 1771 return ret; 1772 } 1773 1774 return 0; 1775 } 1776 1777 static const struct bus_type gadget_bus_type = { 1778 .name = "gadget", 1779 .probe = gadget_bind_driver, 1780 .remove = gadget_unbind_driver, 1781 .match = gadget_match_driver, 1782 }; 1783 1784 static int __init usb_udc_init(void) 1785 { 1786 int rc; 1787 1788 udc_class = class_create("udc"); 1789 if (IS_ERR(udc_class)) { 1790 pr_err("failed to create udc class --> %ld\n", 1791 PTR_ERR(udc_class)); 1792 return PTR_ERR(udc_class); 1793 } 1794 1795 udc_class->dev_uevent = usb_udc_uevent; 1796 1797 rc = bus_register(&gadget_bus_type); 1798 if (rc) 1799 class_destroy(udc_class); 1800 return rc; 1801 } 1802 subsys_initcall(usb_udc_init); 1803 1804 static void __exit usb_udc_exit(void) 1805 { 1806 bus_unregister(&gadget_bus_type); 1807 class_destroy(udc_class); 1808 } 1809 module_exit(usb_udc_exit); 1810 1811 MODULE_DESCRIPTION("UDC Framework"); 1812 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>"); 1813 MODULE_LICENSE("GPL v2"); 1814