1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * udc.c - Core UDC Framework 4 * 5 * Copyright (C) 2010 Texas Instruments 6 * Author: Felipe Balbi <balbi@ti.com> 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/device.h> 12 #include <linux/list.h> 13 #include <linux/err.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/sched/task_stack.h> 16 #include <linux/workqueue.h> 17 18 #include <linux/usb/ch9.h> 19 #include <linux/usb/gadget.h> 20 #include <linux/usb.h> 21 22 #include "trace.h" 23 24 /** 25 * struct usb_udc - describes one usb device controller 26 * @driver: the gadget driver pointer. For use by the class code 27 * @dev: the child device to the actual controller 28 * @gadget: the gadget. For use by the class code 29 * @list: for use by the udc class driver 30 * @vbus: for udcs who care about vbus status, this value is real vbus status; 31 * for udcs who do not care about vbus status, this value is always true 32 * 33 * This represents the internal data structure which is used by the UDC-class 34 * to hold information about udc driver and gadget together. 35 */ 36 struct usb_udc { 37 struct usb_gadget_driver *driver; 38 struct usb_gadget *gadget; 39 struct device dev; 40 struct list_head list; 41 bool vbus; 42 }; 43 44 static struct class *udc_class; 45 static LIST_HEAD(udc_list); 46 static LIST_HEAD(gadget_driver_pending_list); 47 static DEFINE_MUTEX(udc_lock); 48 49 static int udc_bind_to_driver(struct usb_udc *udc, 50 struct usb_gadget_driver *driver); 51 52 /* ------------------------------------------------------------------------- */ 53 54 /** 55 * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint 56 * @ep:the endpoint being configured 57 * @maxpacket_limit:value of maximum packet size limit 58 * 59 * This function should be used only in UDC drivers to initialize endpoint 60 * (usually in probe function). 61 */ 62 void usb_ep_set_maxpacket_limit(struct usb_ep *ep, 63 unsigned maxpacket_limit) 64 { 65 ep->maxpacket_limit = maxpacket_limit; 66 ep->maxpacket = maxpacket_limit; 67 68 trace_usb_ep_set_maxpacket_limit(ep, 0); 69 } 70 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit); 71 72 /** 73 * usb_ep_enable - configure endpoint, making it usable 74 * @ep:the endpoint being configured. may not be the endpoint named "ep0". 75 * drivers discover endpoints through the ep_list of a usb_gadget. 76 * 77 * When configurations are set, or when interface settings change, the driver 78 * will enable or disable the relevant endpoints. while it is enabled, an 79 * endpoint may be used for i/o until the driver receives a disconnect() from 80 * the host or until the endpoint is disabled. 81 * 82 * the ep0 implementation (which calls this routine) must ensure that the 83 * hardware capabilities of each endpoint match the descriptor provided 84 * for it. for example, an endpoint named "ep2in-bulk" would be usable 85 * for interrupt transfers as well as bulk, but it likely couldn't be used 86 * for iso transfers or for endpoint 14. some endpoints are fully 87 * configurable, with more generic names like "ep-a". (remember that for 88 * USB, "in" means "towards the USB host".) 89 * 90 * This routine must be called in process context. 91 * 92 * returns zero, or a negative error code. 93 */ 94 int usb_ep_enable(struct usb_ep *ep) 95 { 96 int ret = 0; 97 98 if (ep->enabled) 99 goto out; 100 101 /* UDC drivers can't handle endpoints with maxpacket size 0 */ 102 if (usb_endpoint_maxp(ep->desc) == 0) { 103 /* 104 * We should log an error message here, but we can't call 105 * dev_err() because there's no way to find the gadget 106 * given only ep. 107 */ 108 ret = -EINVAL; 109 goto out; 110 } 111 112 ret = ep->ops->enable(ep, ep->desc); 113 if (ret) 114 goto out; 115 116 ep->enabled = true; 117 118 out: 119 trace_usb_ep_enable(ep, ret); 120 121 return ret; 122 } 123 EXPORT_SYMBOL_GPL(usb_ep_enable); 124 125 /** 126 * usb_ep_disable - endpoint is no longer usable 127 * @ep:the endpoint being unconfigured. may not be the endpoint named "ep0". 128 * 129 * no other task may be using this endpoint when this is called. 130 * any pending and uncompleted requests will complete with status 131 * indicating disconnect (-ESHUTDOWN) before this call returns. 132 * gadget drivers must call usb_ep_enable() again before queueing 133 * requests to the endpoint. 134 * 135 * This routine must be called in process context. 136 * 137 * returns zero, or a negative error code. 138 */ 139 int usb_ep_disable(struct usb_ep *ep) 140 { 141 int ret = 0; 142 143 if (!ep->enabled) 144 goto out; 145 146 ret = ep->ops->disable(ep); 147 if (ret) 148 goto out; 149 150 ep->enabled = false; 151 152 out: 153 trace_usb_ep_disable(ep, ret); 154 155 return ret; 156 } 157 EXPORT_SYMBOL_GPL(usb_ep_disable); 158 159 /** 160 * usb_ep_alloc_request - allocate a request object to use with this endpoint 161 * @ep:the endpoint to be used with with the request 162 * @gfp_flags:GFP_* flags to use 163 * 164 * Request objects must be allocated with this call, since they normally 165 * need controller-specific setup and may even need endpoint-specific 166 * resources such as allocation of DMA descriptors. 167 * Requests may be submitted with usb_ep_queue(), and receive a single 168 * completion callback. Free requests with usb_ep_free_request(), when 169 * they are no longer needed. 170 * 171 * Returns the request, or null if one could not be allocated. 172 */ 173 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep, 174 gfp_t gfp_flags) 175 { 176 struct usb_request *req = NULL; 177 178 req = ep->ops->alloc_request(ep, gfp_flags); 179 180 trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM); 181 182 return req; 183 } 184 EXPORT_SYMBOL_GPL(usb_ep_alloc_request); 185 186 /** 187 * usb_ep_free_request - frees a request object 188 * @ep:the endpoint associated with the request 189 * @req:the request being freed 190 * 191 * Reverses the effect of usb_ep_alloc_request(). 192 * Caller guarantees the request is not queued, and that it will 193 * no longer be requeued (or otherwise used). 194 */ 195 void usb_ep_free_request(struct usb_ep *ep, 196 struct usb_request *req) 197 { 198 trace_usb_ep_free_request(ep, req, 0); 199 ep->ops->free_request(ep, req); 200 } 201 EXPORT_SYMBOL_GPL(usb_ep_free_request); 202 203 /** 204 * usb_ep_queue - queues (submits) an I/O request to an endpoint. 205 * @ep:the endpoint associated with the request 206 * @req:the request being submitted 207 * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't 208 * pre-allocate all necessary memory with the request. 209 * 210 * This tells the device controller to perform the specified request through 211 * that endpoint (reading or writing a buffer). When the request completes, 212 * including being canceled by usb_ep_dequeue(), the request's completion 213 * routine is called to return the request to the driver. Any endpoint 214 * (except control endpoints like ep0) may have more than one transfer 215 * request queued; they complete in FIFO order. Once a gadget driver 216 * submits a request, that request may not be examined or modified until it 217 * is given back to that driver through the completion callback. 218 * 219 * Each request is turned into one or more packets. The controller driver 220 * never merges adjacent requests into the same packet. OUT transfers 221 * will sometimes use data that's already buffered in the hardware. 222 * Drivers can rely on the fact that the first byte of the request's buffer 223 * always corresponds to the first byte of some USB packet, for both 224 * IN and OUT transfers. 225 * 226 * Bulk endpoints can queue any amount of data; the transfer is packetized 227 * automatically. The last packet will be short if the request doesn't fill it 228 * out completely. Zero length packets (ZLPs) should be avoided in portable 229 * protocols since not all usb hardware can successfully handle zero length 230 * packets. (ZLPs may be explicitly written, and may be implicitly written if 231 * the request 'zero' flag is set.) Bulk endpoints may also be used 232 * for interrupt transfers; but the reverse is not true, and some endpoints 233 * won't support every interrupt transfer. (Such as 768 byte packets.) 234 * 235 * Interrupt-only endpoints are less functional than bulk endpoints, for 236 * example by not supporting queueing or not handling buffers that are 237 * larger than the endpoint's maxpacket size. They may also treat data 238 * toggle differently. 239 * 240 * Control endpoints ... after getting a setup() callback, the driver queues 241 * one response (even if it would be zero length). That enables the 242 * status ack, after transferring data as specified in the response. Setup 243 * functions may return negative error codes to generate protocol stalls. 244 * (Note that some USB device controllers disallow protocol stall responses 245 * in some cases.) When control responses are deferred (the response is 246 * written after the setup callback returns), then usb_ep_set_halt() may be 247 * used on ep0 to trigger protocol stalls. Depending on the controller, 248 * it may not be possible to trigger a status-stage protocol stall when the 249 * data stage is over, that is, from within the response's completion 250 * routine. 251 * 252 * For periodic endpoints, like interrupt or isochronous ones, the usb host 253 * arranges to poll once per interval, and the gadget driver usually will 254 * have queued some data to transfer at that time. 255 * 256 * Note that @req's ->complete() callback must never be called from 257 * within usb_ep_queue() as that can create deadlock situations. 258 * 259 * This routine may be called in interrupt context. 260 * 261 * Returns zero, or a negative error code. Endpoints that are not enabled 262 * report errors; errors will also be 263 * reported when the usb peripheral is disconnected. 264 * 265 * If and only if @req is successfully queued (the return value is zero), 266 * @req->complete() will be called exactly once, when the Gadget core and 267 * UDC are finished with the request. When the completion function is called, 268 * control of the request is returned to the device driver which submitted it. 269 * The completion handler may then immediately free or reuse @req. 270 */ 271 int usb_ep_queue(struct usb_ep *ep, 272 struct usb_request *req, gfp_t gfp_flags) 273 { 274 int ret = 0; 275 276 if (WARN_ON_ONCE(!ep->enabled && ep->address)) { 277 ret = -ESHUTDOWN; 278 goto out; 279 } 280 281 ret = ep->ops->queue(ep, req, gfp_flags); 282 283 out: 284 trace_usb_ep_queue(ep, req, ret); 285 286 return ret; 287 } 288 EXPORT_SYMBOL_GPL(usb_ep_queue); 289 290 /** 291 * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint 292 * @ep:the endpoint associated with the request 293 * @req:the request being canceled 294 * 295 * If the request is still active on the endpoint, it is dequeued and 296 * eventually its completion routine is called (with status -ECONNRESET); 297 * else a negative error code is returned. This routine is asynchronous, 298 * that is, it may return before the completion routine runs. 299 * 300 * Note that some hardware can't clear out write fifos (to unlink the request 301 * at the head of the queue) except as part of disconnecting from usb. Such 302 * restrictions prevent drivers from supporting configuration changes, 303 * even to configuration zero (a "chapter 9" requirement). 304 * 305 * This routine may be called in interrupt context. 306 */ 307 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 308 { 309 int ret; 310 311 ret = ep->ops->dequeue(ep, req); 312 trace_usb_ep_dequeue(ep, req, ret); 313 314 return ret; 315 } 316 EXPORT_SYMBOL_GPL(usb_ep_dequeue); 317 318 /** 319 * usb_ep_set_halt - sets the endpoint halt feature. 320 * @ep: the non-isochronous endpoint being stalled 321 * 322 * Use this to stall an endpoint, perhaps as an error report. 323 * Except for control endpoints, 324 * the endpoint stays halted (will not stream any data) until the host 325 * clears this feature; drivers may need to empty the endpoint's request 326 * queue first, to make sure no inappropriate transfers happen. 327 * 328 * Note that while an endpoint CLEAR_FEATURE will be invisible to the 329 * gadget driver, a SET_INTERFACE will not be. To reset endpoints for the 330 * current altsetting, see usb_ep_clear_halt(). When switching altsettings, 331 * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints. 332 * 333 * This routine may be called in interrupt context. 334 * 335 * Returns zero, or a negative error code. On success, this call sets 336 * underlying hardware state that blocks data transfers. 337 * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any 338 * transfer requests are still queued, or if the controller hardware 339 * (usually a FIFO) still holds bytes that the host hasn't collected. 340 */ 341 int usb_ep_set_halt(struct usb_ep *ep) 342 { 343 int ret; 344 345 ret = ep->ops->set_halt(ep, 1); 346 trace_usb_ep_set_halt(ep, ret); 347 348 return ret; 349 } 350 EXPORT_SYMBOL_GPL(usb_ep_set_halt); 351 352 /** 353 * usb_ep_clear_halt - clears endpoint halt, and resets toggle 354 * @ep:the bulk or interrupt endpoint being reset 355 * 356 * Use this when responding to the standard usb "set interface" request, 357 * for endpoints that aren't reconfigured, after clearing any other state 358 * in the endpoint's i/o queue. 359 * 360 * This routine may be called in interrupt context. 361 * 362 * Returns zero, or a negative error code. On success, this call clears 363 * the underlying hardware state reflecting endpoint halt and data toggle. 364 * Note that some hardware can't support this request (like pxa2xx_udc), 365 * and accordingly can't correctly implement interface altsettings. 366 */ 367 int usb_ep_clear_halt(struct usb_ep *ep) 368 { 369 int ret; 370 371 ret = ep->ops->set_halt(ep, 0); 372 trace_usb_ep_clear_halt(ep, ret); 373 374 return ret; 375 } 376 EXPORT_SYMBOL_GPL(usb_ep_clear_halt); 377 378 /** 379 * usb_ep_set_wedge - sets the halt feature and ignores clear requests 380 * @ep: the endpoint being wedged 381 * 382 * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT) 383 * requests. If the gadget driver clears the halt status, it will 384 * automatically unwedge the endpoint. 385 * 386 * This routine may be called in interrupt context. 387 * 388 * Returns zero on success, else negative errno. 389 */ 390 int usb_ep_set_wedge(struct usb_ep *ep) 391 { 392 int ret; 393 394 if (ep->ops->set_wedge) 395 ret = ep->ops->set_wedge(ep); 396 else 397 ret = ep->ops->set_halt(ep, 1); 398 399 trace_usb_ep_set_wedge(ep, ret); 400 401 return ret; 402 } 403 EXPORT_SYMBOL_GPL(usb_ep_set_wedge); 404 405 /** 406 * usb_ep_fifo_status - returns number of bytes in fifo, or error 407 * @ep: the endpoint whose fifo status is being checked. 408 * 409 * FIFO endpoints may have "unclaimed data" in them in certain cases, 410 * such as after aborted transfers. Hosts may not have collected all 411 * the IN data written by the gadget driver (and reported by a request 412 * completion). The gadget driver may not have collected all the data 413 * written OUT to it by the host. Drivers that need precise handling for 414 * fault reporting or recovery may need to use this call. 415 * 416 * This routine may be called in interrupt context. 417 * 418 * This returns the number of such bytes in the fifo, or a negative 419 * errno if the endpoint doesn't use a FIFO or doesn't support such 420 * precise handling. 421 */ 422 int usb_ep_fifo_status(struct usb_ep *ep) 423 { 424 int ret; 425 426 if (ep->ops->fifo_status) 427 ret = ep->ops->fifo_status(ep); 428 else 429 ret = -EOPNOTSUPP; 430 431 trace_usb_ep_fifo_status(ep, ret); 432 433 return ret; 434 } 435 EXPORT_SYMBOL_GPL(usb_ep_fifo_status); 436 437 /** 438 * usb_ep_fifo_flush - flushes contents of a fifo 439 * @ep: the endpoint whose fifo is being flushed. 440 * 441 * This call may be used to flush the "unclaimed data" that may exist in 442 * an endpoint fifo after abnormal transaction terminations. The call 443 * must never be used except when endpoint is not being used for any 444 * protocol translation. 445 * 446 * This routine may be called in interrupt context. 447 */ 448 void usb_ep_fifo_flush(struct usb_ep *ep) 449 { 450 if (ep->ops->fifo_flush) 451 ep->ops->fifo_flush(ep); 452 453 trace_usb_ep_fifo_flush(ep, 0); 454 } 455 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush); 456 457 /* ------------------------------------------------------------------------- */ 458 459 /** 460 * usb_gadget_frame_number - returns the current frame number 461 * @gadget: controller that reports the frame number 462 * 463 * Returns the usb frame number, normally eleven bits from a SOF packet, 464 * or negative errno if this device doesn't support this capability. 465 */ 466 int usb_gadget_frame_number(struct usb_gadget *gadget) 467 { 468 int ret; 469 470 ret = gadget->ops->get_frame(gadget); 471 472 trace_usb_gadget_frame_number(gadget, ret); 473 474 return ret; 475 } 476 EXPORT_SYMBOL_GPL(usb_gadget_frame_number); 477 478 /** 479 * usb_gadget_wakeup - tries to wake up the host connected to this gadget 480 * @gadget: controller used to wake up the host 481 * 482 * Returns zero on success, else negative error code if the hardware 483 * doesn't support such attempts, or its support has not been enabled 484 * by the usb host. Drivers must return device descriptors that report 485 * their ability to support this, or hosts won't enable it. 486 * 487 * This may also try to use SRP to wake the host and start enumeration, 488 * even if OTG isn't otherwise in use. OTG devices may also start 489 * remote wakeup even when hosts don't explicitly enable it. 490 */ 491 int usb_gadget_wakeup(struct usb_gadget *gadget) 492 { 493 int ret = 0; 494 495 if (!gadget->ops->wakeup) { 496 ret = -EOPNOTSUPP; 497 goto out; 498 } 499 500 ret = gadget->ops->wakeup(gadget); 501 502 out: 503 trace_usb_gadget_wakeup(gadget, ret); 504 505 return ret; 506 } 507 EXPORT_SYMBOL_GPL(usb_gadget_wakeup); 508 509 /** 510 * usb_gadget_set_selfpowered - sets the device selfpowered feature. 511 * @gadget:the device being declared as self-powered 512 * 513 * this affects the device status reported by the hardware driver 514 * to reflect that it now has a local power supply. 515 * 516 * returns zero on success, else negative errno. 517 */ 518 int usb_gadget_set_selfpowered(struct usb_gadget *gadget) 519 { 520 int ret = 0; 521 522 if (!gadget->ops->set_selfpowered) { 523 ret = -EOPNOTSUPP; 524 goto out; 525 } 526 527 ret = gadget->ops->set_selfpowered(gadget, 1); 528 529 out: 530 trace_usb_gadget_set_selfpowered(gadget, ret); 531 532 return ret; 533 } 534 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered); 535 536 /** 537 * usb_gadget_clear_selfpowered - clear the device selfpowered feature. 538 * @gadget:the device being declared as bus-powered 539 * 540 * this affects the device status reported by the hardware driver. 541 * some hardware may not support bus-powered operation, in which 542 * case this feature's value can never change. 543 * 544 * returns zero on success, else negative errno. 545 */ 546 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget) 547 { 548 int ret = 0; 549 550 if (!gadget->ops->set_selfpowered) { 551 ret = -EOPNOTSUPP; 552 goto out; 553 } 554 555 ret = gadget->ops->set_selfpowered(gadget, 0); 556 557 out: 558 trace_usb_gadget_clear_selfpowered(gadget, ret); 559 560 return ret; 561 } 562 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered); 563 564 /** 565 * usb_gadget_vbus_connect - Notify controller that VBUS is powered 566 * @gadget:The device which now has VBUS power. 567 * Context: can sleep 568 * 569 * This call is used by a driver for an external transceiver (or GPIO) 570 * that detects a VBUS power session starting. Common responses include 571 * resuming the controller, activating the D+ (or D-) pullup to let the 572 * host detect that a USB device is attached, and starting to draw power 573 * (8mA or possibly more, especially after SET_CONFIGURATION). 574 * 575 * Returns zero on success, else negative errno. 576 */ 577 int usb_gadget_vbus_connect(struct usb_gadget *gadget) 578 { 579 int ret = 0; 580 581 if (!gadget->ops->vbus_session) { 582 ret = -EOPNOTSUPP; 583 goto out; 584 } 585 586 ret = gadget->ops->vbus_session(gadget, 1); 587 588 out: 589 trace_usb_gadget_vbus_connect(gadget, ret); 590 591 return ret; 592 } 593 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect); 594 595 /** 596 * usb_gadget_vbus_draw - constrain controller's VBUS power usage 597 * @gadget:The device whose VBUS usage is being described 598 * @mA:How much current to draw, in milliAmperes. This should be twice 599 * the value listed in the configuration descriptor bMaxPower field. 600 * 601 * This call is used by gadget drivers during SET_CONFIGURATION calls, 602 * reporting how much power the device may consume. For example, this 603 * could affect how quickly batteries are recharged. 604 * 605 * Returns zero on success, else negative errno. 606 */ 607 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA) 608 { 609 int ret = 0; 610 611 if (!gadget->ops->vbus_draw) { 612 ret = -EOPNOTSUPP; 613 goto out; 614 } 615 616 ret = gadget->ops->vbus_draw(gadget, mA); 617 if (!ret) 618 gadget->mA = mA; 619 620 out: 621 trace_usb_gadget_vbus_draw(gadget, ret); 622 623 return ret; 624 } 625 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw); 626 627 /** 628 * usb_gadget_vbus_disconnect - notify controller about VBUS session end 629 * @gadget:the device whose VBUS supply is being described 630 * Context: can sleep 631 * 632 * This call is used by a driver for an external transceiver (or GPIO) 633 * that detects a VBUS power session ending. Common responses include 634 * reversing everything done in usb_gadget_vbus_connect(). 635 * 636 * Returns zero on success, else negative errno. 637 */ 638 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget) 639 { 640 int ret = 0; 641 642 if (!gadget->ops->vbus_session) { 643 ret = -EOPNOTSUPP; 644 goto out; 645 } 646 647 ret = gadget->ops->vbus_session(gadget, 0); 648 649 out: 650 trace_usb_gadget_vbus_disconnect(gadget, ret); 651 652 return ret; 653 } 654 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect); 655 656 /** 657 * usb_gadget_connect - software-controlled connect to USB host 658 * @gadget:the peripheral being connected 659 * 660 * Enables the D+ (or potentially D-) pullup. The host will start 661 * enumerating this gadget when the pullup is active and a VBUS session 662 * is active (the link is powered). This pullup is always enabled unless 663 * usb_gadget_disconnect() has been used to disable it. 664 * 665 * Returns zero on success, else negative errno. 666 */ 667 int usb_gadget_connect(struct usb_gadget *gadget) 668 { 669 int ret = 0; 670 671 if (!gadget->ops->pullup) { 672 ret = -EOPNOTSUPP; 673 goto out; 674 } 675 676 if (gadget->deactivated) { 677 /* 678 * If gadget is deactivated we only save new state. 679 * Gadget will be connected automatically after activation. 680 */ 681 gadget->connected = true; 682 goto out; 683 } 684 685 ret = gadget->ops->pullup(gadget, 1); 686 if (!ret) 687 gadget->connected = 1; 688 689 out: 690 trace_usb_gadget_connect(gadget, ret); 691 692 return ret; 693 } 694 EXPORT_SYMBOL_GPL(usb_gadget_connect); 695 696 /** 697 * usb_gadget_disconnect - software-controlled disconnect from USB host 698 * @gadget:the peripheral being disconnected 699 * 700 * Disables the D+ (or potentially D-) pullup, which the host may see 701 * as a disconnect (when a VBUS session is active). Not all systems 702 * support software pullup controls. 703 * 704 * Following a successful disconnect, invoke the ->disconnect() callback 705 * for the current gadget driver so that UDC drivers don't need to. 706 * 707 * Returns zero on success, else negative errno. 708 */ 709 int usb_gadget_disconnect(struct usb_gadget *gadget) 710 { 711 int ret = 0; 712 713 if (!gadget->ops->pullup) { 714 ret = -EOPNOTSUPP; 715 goto out; 716 } 717 718 if (!gadget->connected) 719 goto out; 720 721 if (gadget->deactivated) { 722 /* 723 * If gadget is deactivated we only save new state. 724 * Gadget will stay disconnected after activation. 725 */ 726 gadget->connected = false; 727 goto out; 728 } 729 730 ret = gadget->ops->pullup(gadget, 0); 731 if (!ret) { 732 gadget->connected = 0; 733 gadget->udc->driver->disconnect(gadget); 734 } 735 736 out: 737 trace_usb_gadget_disconnect(gadget, ret); 738 739 return ret; 740 } 741 EXPORT_SYMBOL_GPL(usb_gadget_disconnect); 742 743 /** 744 * usb_gadget_deactivate - deactivate function which is not ready to work 745 * @gadget: the peripheral being deactivated 746 * 747 * This routine may be used during the gadget driver bind() call to prevent 748 * the peripheral from ever being visible to the USB host, unless later 749 * usb_gadget_activate() is called. For example, user mode components may 750 * need to be activated before the system can talk to hosts. 751 * 752 * Returns zero on success, else negative errno. 753 */ 754 int usb_gadget_deactivate(struct usb_gadget *gadget) 755 { 756 int ret = 0; 757 758 if (gadget->deactivated) 759 goto out; 760 761 if (gadget->connected) { 762 ret = usb_gadget_disconnect(gadget); 763 if (ret) 764 goto out; 765 766 /* 767 * If gadget was being connected before deactivation, we want 768 * to reconnect it in usb_gadget_activate(). 769 */ 770 gadget->connected = true; 771 } 772 gadget->deactivated = true; 773 774 out: 775 trace_usb_gadget_deactivate(gadget, ret); 776 777 return ret; 778 } 779 EXPORT_SYMBOL_GPL(usb_gadget_deactivate); 780 781 /** 782 * usb_gadget_activate - activate function which is not ready to work 783 * @gadget: the peripheral being activated 784 * 785 * This routine activates gadget which was previously deactivated with 786 * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed. 787 * 788 * Returns zero on success, else negative errno. 789 */ 790 int usb_gadget_activate(struct usb_gadget *gadget) 791 { 792 int ret = 0; 793 794 if (!gadget->deactivated) 795 goto out; 796 797 gadget->deactivated = false; 798 799 /* 800 * If gadget has been connected before deactivation, or became connected 801 * while it was being deactivated, we call usb_gadget_connect(). 802 */ 803 if (gadget->connected) 804 ret = usb_gadget_connect(gadget); 805 806 out: 807 trace_usb_gadget_activate(gadget, ret); 808 809 return ret; 810 } 811 EXPORT_SYMBOL_GPL(usb_gadget_activate); 812 813 /* ------------------------------------------------------------------------- */ 814 815 #ifdef CONFIG_HAS_DMA 816 817 int usb_gadget_map_request_by_dev(struct device *dev, 818 struct usb_request *req, int is_in) 819 { 820 if (req->length == 0) 821 return 0; 822 823 if (req->num_sgs) { 824 int mapped; 825 826 mapped = dma_map_sg(dev, req->sg, req->num_sgs, 827 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 828 if (mapped == 0) { 829 dev_err(dev, "failed to map SGs\n"); 830 return -EFAULT; 831 } 832 833 req->num_mapped_sgs = mapped; 834 } else { 835 if (is_vmalloc_addr(req->buf)) { 836 dev_err(dev, "buffer is not dma capable\n"); 837 return -EFAULT; 838 } else if (object_is_on_stack(req->buf)) { 839 dev_err(dev, "buffer is on stack\n"); 840 return -EFAULT; 841 } 842 843 req->dma = dma_map_single(dev, req->buf, req->length, 844 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 845 846 if (dma_mapping_error(dev, req->dma)) { 847 dev_err(dev, "failed to map buffer\n"); 848 return -EFAULT; 849 } 850 851 req->dma_mapped = 1; 852 } 853 854 return 0; 855 } 856 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev); 857 858 int usb_gadget_map_request(struct usb_gadget *gadget, 859 struct usb_request *req, int is_in) 860 { 861 return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in); 862 } 863 EXPORT_SYMBOL_GPL(usb_gadget_map_request); 864 865 void usb_gadget_unmap_request_by_dev(struct device *dev, 866 struct usb_request *req, int is_in) 867 { 868 if (req->length == 0) 869 return; 870 871 if (req->num_mapped_sgs) { 872 dma_unmap_sg(dev, req->sg, req->num_sgs, 873 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 874 875 req->num_mapped_sgs = 0; 876 } else if (req->dma_mapped) { 877 dma_unmap_single(dev, req->dma, req->length, 878 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 879 req->dma_mapped = 0; 880 } 881 } 882 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev); 883 884 void usb_gadget_unmap_request(struct usb_gadget *gadget, 885 struct usb_request *req, int is_in) 886 { 887 usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in); 888 } 889 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request); 890 891 #endif /* CONFIG_HAS_DMA */ 892 893 /* ------------------------------------------------------------------------- */ 894 895 /** 896 * usb_gadget_giveback_request - give the request back to the gadget layer 897 * @ep: the endpoint to be used with with the request 898 * @req: the request being given back 899 * 900 * Context: in_interrupt() 901 * 902 * This is called by device controller drivers in order to return the 903 * completed request back to the gadget layer. 904 */ 905 void usb_gadget_giveback_request(struct usb_ep *ep, 906 struct usb_request *req) 907 { 908 if (likely(req->status == 0)) 909 usb_led_activity(USB_LED_EVENT_GADGET); 910 911 trace_usb_gadget_giveback_request(ep, req, 0); 912 913 req->complete(ep, req); 914 } 915 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request); 916 917 /* ------------------------------------------------------------------------- */ 918 919 /** 920 * gadget_find_ep_by_name - returns ep whose name is the same as sting passed 921 * in second parameter or NULL if searched endpoint not found 922 * @g: controller to check for quirk 923 * @name: name of searched endpoint 924 */ 925 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name) 926 { 927 struct usb_ep *ep; 928 929 gadget_for_each_ep(ep, g) { 930 if (!strcmp(ep->name, name)) 931 return ep; 932 } 933 934 return NULL; 935 } 936 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name); 937 938 /* ------------------------------------------------------------------------- */ 939 940 int usb_gadget_ep_match_desc(struct usb_gadget *gadget, 941 struct usb_ep *ep, struct usb_endpoint_descriptor *desc, 942 struct usb_ss_ep_comp_descriptor *ep_comp) 943 { 944 u8 type; 945 u16 max; 946 int num_req_streams = 0; 947 948 /* endpoint already claimed? */ 949 if (ep->claimed) 950 return 0; 951 952 type = usb_endpoint_type(desc); 953 max = usb_endpoint_maxp(desc); 954 955 if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in) 956 return 0; 957 if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out) 958 return 0; 959 960 if (max > ep->maxpacket_limit) 961 return 0; 962 963 /* "high bandwidth" works only at high speed */ 964 if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1) 965 return 0; 966 967 switch (type) { 968 case USB_ENDPOINT_XFER_CONTROL: 969 /* only support ep0 for portable CONTROL traffic */ 970 return 0; 971 case USB_ENDPOINT_XFER_ISOC: 972 if (!ep->caps.type_iso) 973 return 0; 974 /* ISO: limit 1023 bytes full speed, 1024 high/super speed */ 975 if (!gadget_is_dualspeed(gadget) && max > 1023) 976 return 0; 977 break; 978 case USB_ENDPOINT_XFER_BULK: 979 if (!ep->caps.type_bulk) 980 return 0; 981 if (ep_comp && gadget_is_superspeed(gadget)) { 982 /* Get the number of required streams from the 983 * EP companion descriptor and see if the EP 984 * matches it 985 */ 986 num_req_streams = ep_comp->bmAttributes & 0x1f; 987 if (num_req_streams > ep->max_streams) 988 return 0; 989 } 990 break; 991 case USB_ENDPOINT_XFER_INT: 992 /* Bulk endpoints handle interrupt transfers, 993 * except the toggle-quirky iso-synch kind 994 */ 995 if (!ep->caps.type_int && !ep->caps.type_bulk) 996 return 0; 997 /* INT: limit 64 bytes full speed, 1024 high/super speed */ 998 if (!gadget_is_dualspeed(gadget) && max > 64) 999 return 0; 1000 break; 1001 } 1002 1003 return 1; 1004 } 1005 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc); 1006 1007 /* ------------------------------------------------------------------------- */ 1008 1009 static void usb_gadget_state_work(struct work_struct *work) 1010 { 1011 struct usb_gadget *gadget = work_to_gadget(work); 1012 struct usb_udc *udc = gadget->udc; 1013 1014 if (udc) 1015 sysfs_notify(&udc->dev.kobj, NULL, "state"); 1016 } 1017 1018 void usb_gadget_set_state(struct usb_gadget *gadget, 1019 enum usb_device_state state) 1020 { 1021 gadget->state = state; 1022 schedule_work(&gadget->work); 1023 } 1024 EXPORT_SYMBOL_GPL(usb_gadget_set_state); 1025 1026 /* ------------------------------------------------------------------------- */ 1027 1028 static void usb_udc_connect_control(struct usb_udc *udc) 1029 { 1030 if (udc->vbus) 1031 usb_gadget_connect(udc->gadget); 1032 else 1033 usb_gadget_disconnect(udc->gadget); 1034 } 1035 1036 /** 1037 * usb_udc_vbus_handler - updates the udc core vbus status, and try to 1038 * connect or disconnect gadget 1039 * @gadget: The gadget which vbus change occurs 1040 * @status: The vbus status 1041 * 1042 * The udc driver calls it when it wants to connect or disconnect gadget 1043 * according to vbus status. 1044 */ 1045 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status) 1046 { 1047 struct usb_udc *udc = gadget->udc; 1048 1049 if (udc) { 1050 udc->vbus = status; 1051 usb_udc_connect_control(udc); 1052 } 1053 } 1054 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler); 1055 1056 /** 1057 * usb_gadget_udc_reset - notifies the udc core that bus reset occurs 1058 * @gadget: The gadget which bus reset occurs 1059 * @driver: The gadget driver we want to notify 1060 * 1061 * If the udc driver has bus reset handler, it needs to call this when the bus 1062 * reset occurs, it notifies the gadget driver that the bus reset occurs as 1063 * well as updates gadget state. 1064 */ 1065 void usb_gadget_udc_reset(struct usb_gadget *gadget, 1066 struct usb_gadget_driver *driver) 1067 { 1068 driver->reset(gadget); 1069 usb_gadget_set_state(gadget, USB_STATE_DEFAULT); 1070 } 1071 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset); 1072 1073 /** 1074 * usb_gadget_udc_start - tells usb device controller to start up 1075 * @udc: The UDC to be started 1076 * 1077 * This call is issued by the UDC Class driver when it's about 1078 * to register a gadget driver to the device controller, before 1079 * calling gadget driver's bind() method. 1080 * 1081 * It allows the controller to be powered off until strictly 1082 * necessary to have it powered on. 1083 * 1084 * Returns zero on success, else negative errno. 1085 */ 1086 static inline int usb_gadget_udc_start(struct usb_udc *udc) 1087 { 1088 return udc->gadget->ops->udc_start(udc->gadget, udc->driver); 1089 } 1090 1091 /** 1092 * usb_gadget_udc_stop - tells usb device controller we don't need it anymore 1093 * @udc: The UDC to be stopped 1094 * 1095 * This call is issued by the UDC Class driver after calling 1096 * gadget driver's unbind() method. 1097 * 1098 * The details are implementation specific, but it can go as 1099 * far as powering off UDC completely and disable its data 1100 * line pullups. 1101 */ 1102 static inline void usb_gadget_udc_stop(struct usb_udc *udc) 1103 { 1104 udc->gadget->ops->udc_stop(udc->gadget); 1105 } 1106 1107 /** 1108 * usb_gadget_udc_set_speed - tells usb device controller speed supported by 1109 * current driver 1110 * @udc: The device we want to set maximum speed 1111 * @speed: The maximum speed to allowed to run 1112 * 1113 * This call is issued by the UDC Class driver before calling 1114 * usb_gadget_udc_start() in order to make sure that we don't try to 1115 * connect on speeds the gadget driver doesn't support. 1116 */ 1117 static inline void usb_gadget_udc_set_speed(struct usb_udc *udc, 1118 enum usb_device_speed speed) 1119 { 1120 if (udc->gadget->ops->udc_set_speed) { 1121 enum usb_device_speed s; 1122 1123 s = min(speed, udc->gadget->max_speed); 1124 udc->gadget->ops->udc_set_speed(udc->gadget, s); 1125 } 1126 } 1127 1128 /** 1129 * usb_udc_release - release the usb_udc struct 1130 * @dev: the dev member within usb_udc 1131 * 1132 * This is called by driver's core in order to free memory once the last 1133 * reference is released. 1134 */ 1135 static void usb_udc_release(struct device *dev) 1136 { 1137 struct usb_udc *udc; 1138 1139 udc = container_of(dev, struct usb_udc, dev); 1140 dev_dbg(dev, "releasing '%s'\n", dev_name(dev)); 1141 kfree(udc); 1142 } 1143 1144 static const struct attribute_group *usb_udc_attr_groups[]; 1145 1146 static void usb_udc_nop_release(struct device *dev) 1147 { 1148 dev_vdbg(dev, "%s\n", __func__); 1149 } 1150 1151 /* should be called with udc_lock held */ 1152 static int check_pending_gadget_drivers(struct usb_udc *udc) 1153 { 1154 struct usb_gadget_driver *driver; 1155 int ret = 0; 1156 1157 list_for_each_entry(driver, &gadget_driver_pending_list, pending) 1158 if (!driver->udc_name || strcmp(driver->udc_name, 1159 dev_name(&udc->dev)) == 0) { 1160 ret = udc_bind_to_driver(udc, driver); 1161 if (ret != -EPROBE_DEFER) 1162 list_del_init(&driver->pending); 1163 break; 1164 } 1165 1166 return ret; 1167 } 1168 1169 /** 1170 * usb_initialize_gadget - initialize a gadget and its embedded struct device 1171 * @parent: the parent device to this udc. Usually the controller driver's 1172 * device. 1173 * @gadget: the gadget to be initialized. 1174 * @release: a gadget release function. 1175 * 1176 * Returns zero on success, negative errno otherwise. 1177 * Calls the gadget release function in the latter case. 1178 */ 1179 void usb_initialize_gadget(struct device *parent, struct usb_gadget *gadget, 1180 void (*release)(struct device *dev)) 1181 { 1182 dev_set_name(&gadget->dev, "gadget"); 1183 INIT_WORK(&gadget->work, usb_gadget_state_work); 1184 gadget->dev.parent = parent; 1185 1186 if (release) 1187 gadget->dev.release = release; 1188 else 1189 gadget->dev.release = usb_udc_nop_release; 1190 1191 device_initialize(&gadget->dev); 1192 } 1193 EXPORT_SYMBOL_GPL(usb_initialize_gadget); 1194 1195 /** 1196 * usb_add_gadget - adds a new gadget to the udc class driver list 1197 * @gadget: the gadget to be added to the list. 1198 * 1199 * Returns zero on success, negative errno otherwise. 1200 * Does not do a final usb_put_gadget() if an error occurs. 1201 */ 1202 int usb_add_gadget(struct usb_gadget *gadget) 1203 { 1204 struct usb_udc *udc; 1205 int ret = -ENOMEM; 1206 1207 udc = kzalloc(sizeof(*udc), GFP_KERNEL); 1208 if (!udc) 1209 goto error; 1210 1211 device_initialize(&udc->dev); 1212 udc->dev.release = usb_udc_release; 1213 udc->dev.class = udc_class; 1214 udc->dev.groups = usb_udc_attr_groups; 1215 udc->dev.parent = gadget->dev.parent; 1216 ret = dev_set_name(&udc->dev, "%s", 1217 kobject_name(&gadget->dev.parent->kobj)); 1218 if (ret) 1219 goto err_put_udc; 1220 1221 ret = device_add(&gadget->dev); 1222 if (ret) 1223 goto err_put_udc; 1224 1225 udc->gadget = gadget; 1226 gadget->udc = udc; 1227 1228 mutex_lock(&udc_lock); 1229 list_add_tail(&udc->list, &udc_list); 1230 1231 ret = device_add(&udc->dev); 1232 if (ret) 1233 goto err_unlist_udc; 1234 1235 usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED); 1236 udc->vbus = true; 1237 1238 /* pick up one of pending gadget drivers */ 1239 ret = check_pending_gadget_drivers(udc); 1240 if (ret) 1241 goto err_del_udc; 1242 1243 mutex_unlock(&udc_lock); 1244 1245 return 0; 1246 1247 err_del_udc: 1248 flush_work(&gadget->work); 1249 device_del(&udc->dev); 1250 1251 err_unlist_udc: 1252 list_del(&udc->list); 1253 mutex_unlock(&udc_lock); 1254 1255 device_del(&gadget->dev); 1256 1257 err_put_udc: 1258 put_device(&udc->dev); 1259 1260 error: 1261 return ret; 1262 } 1263 EXPORT_SYMBOL_GPL(usb_add_gadget); 1264 1265 /** 1266 * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list 1267 * @parent: the parent device to this udc. Usually the controller driver's 1268 * device. 1269 * @gadget: the gadget to be added to the list. 1270 * @release: a gadget release function. 1271 * 1272 * Returns zero on success, negative errno otherwise. 1273 * Calls the gadget release function in the latter case. 1274 */ 1275 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget, 1276 void (*release)(struct device *dev)) 1277 { 1278 int ret; 1279 1280 usb_initialize_gadget(parent, gadget, release); 1281 ret = usb_add_gadget(gadget); 1282 if (ret) 1283 usb_put_gadget(gadget); 1284 return ret; 1285 } 1286 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release); 1287 1288 /** 1289 * usb_get_gadget_udc_name - get the name of the first UDC controller 1290 * This functions returns the name of the first UDC controller in the system. 1291 * Please note that this interface is usefull only for legacy drivers which 1292 * assume that there is only one UDC controller in the system and they need to 1293 * get its name before initialization. There is no guarantee that the UDC 1294 * of the returned name will be still available, when gadget driver registers 1295 * itself. 1296 * 1297 * Returns pointer to string with UDC controller name on success, NULL 1298 * otherwise. Caller should kfree() returned string. 1299 */ 1300 char *usb_get_gadget_udc_name(void) 1301 { 1302 struct usb_udc *udc; 1303 char *name = NULL; 1304 1305 /* For now we take the first available UDC */ 1306 mutex_lock(&udc_lock); 1307 list_for_each_entry(udc, &udc_list, list) { 1308 if (!udc->driver) { 1309 name = kstrdup(udc->gadget->name, GFP_KERNEL); 1310 break; 1311 } 1312 } 1313 mutex_unlock(&udc_lock); 1314 return name; 1315 } 1316 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name); 1317 1318 /** 1319 * usb_add_gadget_udc - adds a new gadget to the udc class driver list 1320 * @parent: the parent device to this udc. Usually the controller 1321 * driver's device. 1322 * @gadget: the gadget to be added to the list 1323 * 1324 * Returns zero on success, negative errno otherwise. 1325 */ 1326 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget) 1327 { 1328 return usb_add_gadget_udc_release(parent, gadget, NULL); 1329 } 1330 EXPORT_SYMBOL_GPL(usb_add_gadget_udc); 1331 1332 static void usb_gadget_remove_driver(struct usb_udc *udc) 1333 { 1334 dev_dbg(&udc->dev, "unregistering UDC driver [%s]\n", 1335 udc->driver->function); 1336 1337 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE); 1338 1339 usb_gadget_disconnect(udc->gadget); 1340 if (udc->gadget->irq) 1341 synchronize_irq(udc->gadget->irq); 1342 udc->driver->unbind(udc->gadget); 1343 usb_gadget_udc_stop(udc); 1344 1345 udc->driver = NULL; 1346 udc->dev.driver = NULL; 1347 udc->gadget->dev.driver = NULL; 1348 } 1349 1350 /** 1351 * usb_del_gadget - deletes @udc from udc_list 1352 * @gadget: the gadget to be removed. 1353 * 1354 * This will call usb_gadget_unregister_driver() if 1355 * the @udc is still busy. 1356 * It will not do a final usb_put_gadget(). 1357 */ 1358 void usb_del_gadget(struct usb_gadget *gadget) 1359 { 1360 struct usb_udc *udc = gadget->udc; 1361 1362 if (!udc) 1363 return; 1364 1365 dev_vdbg(gadget->dev.parent, "unregistering gadget\n"); 1366 1367 mutex_lock(&udc_lock); 1368 list_del(&udc->list); 1369 1370 if (udc->driver) { 1371 struct usb_gadget_driver *driver = udc->driver; 1372 1373 usb_gadget_remove_driver(udc); 1374 list_add(&driver->pending, &gadget_driver_pending_list); 1375 } 1376 mutex_unlock(&udc_lock); 1377 1378 kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE); 1379 flush_work(&gadget->work); 1380 device_unregister(&udc->dev); 1381 device_del(&gadget->dev); 1382 } 1383 EXPORT_SYMBOL_GPL(usb_del_gadget); 1384 1385 /** 1386 * usb_del_gadget_udc - deletes @udc from udc_list 1387 * @gadget: the gadget to be removed. 1388 * 1389 * Calls usb_del_gadget() and does a final usb_put_gadget(). 1390 */ 1391 void usb_del_gadget_udc(struct usb_gadget *gadget) 1392 { 1393 usb_del_gadget(gadget); 1394 usb_put_gadget(gadget); 1395 } 1396 EXPORT_SYMBOL_GPL(usb_del_gadget_udc); 1397 1398 /* ------------------------------------------------------------------------- */ 1399 1400 static int udc_bind_to_driver(struct usb_udc *udc, struct usb_gadget_driver *driver) 1401 { 1402 int ret; 1403 1404 dev_dbg(&udc->dev, "registering UDC driver [%s]\n", 1405 driver->function); 1406 1407 udc->driver = driver; 1408 udc->dev.driver = &driver->driver; 1409 udc->gadget->dev.driver = &driver->driver; 1410 1411 usb_gadget_udc_set_speed(udc, driver->max_speed); 1412 1413 ret = driver->bind(udc->gadget, driver); 1414 if (ret) 1415 goto err1; 1416 ret = usb_gadget_udc_start(udc); 1417 if (ret) { 1418 driver->unbind(udc->gadget); 1419 goto err1; 1420 } 1421 usb_udc_connect_control(udc); 1422 1423 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE); 1424 return 0; 1425 err1: 1426 if (ret != -EISNAM) 1427 dev_err(&udc->dev, "failed to start %s: %d\n", 1428 udc->driver->function, ret); 1429 udc->driver = NULL; 1430 udc->dev.driver = NULL; 1431 udc->gadget->dev.driver = NULL; 1432 return ret; 1433 } 1434 1435 int usb_gadget_probe_driver(struct usb_gadget_driver *driver) 1436 { 1437 struct usb_udc *udc = NULL; 1438 int ret = -ENODEV; 1439 1440 if (!driver || !driver->bind || !driver->setup) 1441 return -EINVAL; 1442 1443 mutex_lock(&udc_lock); 1444 if (driver->udc_name) { 1445 list_for_each_entry(udc, &udc_list, list) { 1446 ret = strcmp(driver->udc_name, dev_name(&udc->dev)); 1447 if (!ret) 1448 break; 1449 } 1450 if (ret) 1451 ret = -ENODEV; 1452 else if (udc->driver) 1453 ret = -EBUSY; 1454 else 1455 goto found; 1456 } else { 1457 list_for_each_entry(udc, &udc_list, list) { 1458 /* For now we take the first one */ 1459 if (!udc->driver) 1460 goto found; 1461 } 1462 } 1463 1464 if (!driver->match_existing_only) { 1465 list_add_tail(&driver->pending, &gadget_driver_pending_list); 1466 pr_info("udc-core: couldn't find an available UDC - added [%s] to list of pending drivers\n", 1467 driver->function); 1468 ret = 0; 1469 } 1470 1471 mutex_unlock(&udc_lock); 1472 if (ret) 1473 pr_warn("udc-core: couldn't find an available UDC or it's busy\n"); 1474 return ret; 1475 found: 1476 ret = udc_bind_to_driver(udc, driver); 1477 mutex_unlock(&udc_lock); 1478 return ret; 1479 } 1480 EXPORT_SYMBOL_GPL(usb_gadget_probe_driver); 1481 1482 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver) 1483 { 1484 struct usb_udc *udc = NULL; 1485 int ret = -ENODEV; 1486 1487 if (!driver || !driver->unbind) 1488 return -EINVAL; 1489 1490 mutex_lock(&udc_lock); 1491 list_for_each_entry(udc, &udc_list, list) { 1492 if (udc->driver == driver) { 1493 usb_gadget_remove_driver(udc); 1494 usb_gadget_set_state(udc->gadget, 1495 USB_STATE_NOTATTACHED); 1496 1497 /* Maybe there is someone waiting for this UDC? */ 1498 check_pending_gadget_drivers(udc); 1499 /* 1500 * For now we ignore bind errors as probably it's 1501 * not a valid reason to fail other's gadget unbind 1502 */ 1503 ret = 0; 1504 break; 1505 } 1506 } 1507 1508 if (ret) { 1509 list_del(&driver->pending); 1510 ret = 0; 1511 } 1512 mutex_unlock(&udc_lock); 1513 return ret; 1514 } 1515 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver); 1516 1517 /* ------------------------------------------------------------------------- */ 1518 1519 static ssize_t srp_store(struct device *dev, 1520 struct device_attribute *attr, const char *buf, size_t n) 1521 { 1522 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1523 1524 if (sysfs_streq(buf, "1")) 1525 usb_gadget_wakeup(udc->gadget); 1526 1527 return n; 1528 } 1529 static DEVICE_ATTR_WO(srp); 1530 1531 static ssize_t soft_connect_store(struct device *dev, 1532 struct device_attribute *attr, const char *buf, size_t n) 1533 { 1534 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1535 1536 if (!udc->driver) { 1537 dev_err(dev, "soft-connect without a gadget driver\n"); 1538 return -EOPNOTSUPP; 1539 } 1540 1541 if (sysfs_streq(buf, "connect")) { 1542 usb_gadget_udc_start(udc); 1543 usb_gadget_connect(udc->gadget); 1544 } else if (sysfs_streq(buf, "disconnect")) { 1545 usb_gadget_disconnect(udc->gadget); 1546 usb_gadget_udc_stop(udc); 1547 } else { 1548 dev_err(dev, "unsupported command '%s'\n", buf); 1549 return -EINVAL; 1550 } 1551 1552 return n; 1553 } 1554 static DEVICE_ATTR_WO(soft_connect); 1555 1556 static ssize_t state_show(struct device *dev, struct device_attribute *attr, 1557 char *buf) 1558 { 1559 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1560 struct usb_gadget *gadget = udc->gadget; 1561 1562 return sprintf(buf, "%s\n", usb_state_string(gadget->state)); 1563 } 1564 static DEVICE_ATTR_RO(state); 1565 1566 static ssize_t function_show(struct device *dev, struct device_attribute *attr, 1567 char *buf) 1568 { 1569 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1570 struct usb_gadget_driver *drv = udc->driver; 1571 1572 if (!drv || !drv->function) 1573 return 0; 1574 return scnprintf(buf, PAGE_SIZE, "%s\n", drv->function); 1575 } 1576 static DEVICE_ATTR_RO(function); 1577 1578 #define USB_UDC_SPEED_ATTR(name, param) \ 1579 ssize_t name##_show(struct device *dev, \ 1580 struct device_attribute *attr, char *buf) \ 1581 { \ 1582 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \ 1583 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 1584 usb_speed_string(udc->gadget->param)); \ 1585 } \ 1586 static DEVICE_ATTR_RO(name) 1587 1588 static USB_UDC_SPEED_ATTR(current_speed, speed); 1589 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed); 1590 1591 #define USB_UDC_ATTR(name) \ 1592 ssize_t name##_show(struct device *dev, \ 1593 struct device_attribute *attr, char *buf) \ 1594 { \ 1595 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \ 1596 struct usb_gadget *gadget = udc->gadget; \ 1597 \ 1598 return scnprintf(buf, PAGE_SIZE, "%d\n", gadget->name); \ 1599 } \ 1600 static DEVICE_ATTR_RO(name) 1601 1602 static USB_UDC_ATTR(is_otg); 1603 static USB_UDC_ATTR(is_a_peripheral); 1604 static USB_UDC_ATTR(b_hnp_enable); 1605 static USB_UDC_ATTR(a_hnp_support); 1606 static USB_UDC_ATTR(a_alt_hnp_support); 1607 static USB_UDC_ATTR(is_selfpowered); 1608 1609 static struct attribute *usb_udc_attrs[] = { 1610 &dev_attr_srp.attr, 1611 &dev_attr_soft_connect.attr, 1612 &dev_attr_state.attr, 1613 &dev_attr_function.attr, 1614 &dev_attr_current_speed.attr, 1615 &dev_attr_maximum_speed.attr, 1616 1617 &dev_attr_is_otg.attr, 1618 &dev_attr_is_a_peripheral.attr, 1619 &dev_attr_b_hnp_enable.attr, 1620 &dev_attr_a_hnp_support.attr, 1621 &dev_attr_a_alt_hnp_support.attr, 1622 &dev_attr_is_selfpowered.attr, 1623 NULL, 1624 }; 1625 1626 static const struct attribute_group usb_udc_attr_group = { 1627 .attrs = usb_udc_attrs, 1628 }; 1629 1630 static const struct attribute_group *usb_udc_attr_groups[] = { 1631 &usb_udc_attr_group, 1632 NULL, 1633 }; 1634 1635 static int usb_udc_uevent(struct device *dev, struct kobj_uevent_env *env) 1636 { 1637 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1638 int ret; 1639 1640 ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name); 1641 if (ret) { 1642 dev_err(dev, "failed to add uevent USB_UDC_NAME\n"); 1643 return ret; 1644 } 1645 1646 if (udc->driver) { 1647 ret = add_uevent_var(env, "USB_UDC_DRIVER=%s", 1648 udc->driver->function); 1649 if (ret) { 1650 dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n"); 1651 return ret; 1652 } 1653 } 1654 1655 return 0; 1656 } 1657 1658 static int __init usb_udc_init(void) 1659 { 1660 udc_class = class_create(THIS_MODULE, "udc"); 1661 if (IS_ERR(udc_class)) { 1662 pr_err("failed to create udc class --> %ld\n", 1663 PTR_ERR(udc_class)); 1664 return PTR_ERR(udc_class); 1665 } 1666 1667 udc_class->dev_uevent = usb_udc_uevent; 1668 return 0; 1669 } 1670 subsys_initcall(usb_udc_init); 1671 1672 static void __exit usb_udc_exit(void) 1673 { 1674 class_destroy(udc_class); 1675 } 1676 module_exit(usb_udc_exit); 1677 1678 MODULE_DESCRIPTION("UDC Framework"); 1679 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>"); 1680 MODULE_LICENSE("GPL v2"); 1681