xref: /openbmc/linux/drivers/usb/gadget/legacy/inode.c (revision dff03381)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * inode.c -- user mode filesystem api for usb gadget controllers
4  *
5  * Copyright (C) 2003-2004 David Brownell
6  * Copyright (C) 2003 Agilent Technologies
7  */
8 
9 
10 /* #define VERBOSE_DEBUG */
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/fs.h>
15 #include <linux/fs_context.h>
16 #include <linux/pagemap.h>
17 #include <linux/uts.h>
18 #include <linux/wait.h>
19 #include <linux/compiler.h>
20 #include <linux/uaccess.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/kthread.h>
25 #include <linux/aio.h>
26 #include <linux/uio.h>
27 #include <linux/refcount.h>
28 #include <linux/delay.h>
29 #include <linux/device.h>
30 #include <linux/moduleparam.h>
31 
32 #include <linux/usb/gadgetfs.h>
33 #include <linux/usb/gadget.h>
34 
35 
36 /*
37  * The gadgetfs API maps each endpoint to a file descriptor so that you
38  * can use standard synchronous read/write calls for I/O.  There's some
39  * O_NONBLOCK and O_ASYNC/FASYNC style i/o support.  Example usermode
40  * drivers show how this works in practice.  You can also use AIO to
41  * eliminate I/O gaps between requests, to help when streaming data.
42  *
43  * Key parts that must be USB-specific are protocols defining how the
44  * read/write operations relate to the hardware state machines.  There
45  * are two types of files.  One type is for the device, implementing ep0.
46  * The other type is for each IN or OUT endpoint.  In both cases, the
47  * user mode driver must configure the hardware before using it.
48  *
49  * - First, dev_config() is called when /dev/gadget/$CHIP is configured
50  *   (by writing configuration and device descriptors).  Afterwards it
51  *   may serve as a source of device events, used to handle all control
52  *   requests other than basic enumeration.
53  *
54  * - Then, after a SET_CONFIGURATION control request, ep_config() is
55  *   called when each /dev/gadget/ep* file is configured (by writing
56  *   endpoint descriptors).  Afterwards these files are used to write()
57  *   IN data or to read() OUT data.  To halt the endpoint, a "wrong
58  *   direction" request is issued (like reading an IN endpoint).
59  *
60  * Unlike "usbfs" the only ioctl()s are for things that are rare, and maybe
61  * not possible on all hardware.  For example, precise fault handling with
62  * respect to data left in endpoint fifos after aborted operations; or
63  * selective clearing of endpoint halts, to implement SET_INTERFACE.
64  */
65 
66 #define	DRIVER_DESC	"USB Gadget filesystem"
67 #define	DRIVER_VERSION	"24 Aug 2004"
68 
69 static const char driver_desc [] = DRIVER_DESC;
70 static const char shortname [] = "gadgetfs";
71 
72 MODULE_DESCRIPTION (DRIVER_DESC);
73 MODULE_AUTHOR ("David Brownell");
74 MODULE_LICENSE ("GPL");
75 
76 static int ep_open(struct inode *, struct file *);
77 
78 
79 /*----------------------------------------------------------------------*/
80 
81 #define GADGETFS_MAGIC		0xaee71ee7
82 
83 /* /dev/gadget/$CHIP represents ep0 and the whole device */
84 enum ep0_state {
85 	/* DISABLED is the initial state. */
86 	STATE_DEV_DISABLED = 0,
87 
88 	/* Only one open() of /dev/gadget/$CHIP; only one file tracks
89 	 * ep0/device i/o modes and binding to the controller.  Driver
90 	 * must always write descriptors to initialize the device, then
91 	 * the device becomes UNCONNECTED until enumeration.
92 	 */
93 	STATE_DEV_OPENED,
94 
95 	/* From then on, ep0 fd is in either of two basic modes:
96 	 * - (UN)CONNECTED: read usb_gadgetfs_event(s) from it
97 	 * - SETUP: read/write will transfer control data and succeed;
98 	 *   or if "wrong direction", performs protocol stall
99 	 */
100 	STATE_DEV_UNCONNECTED,
101 	STATE_DEV_CONNECTED,
102 	STATE_DEV_SETUP,
103 
104 	/* UNBOUND means the driver closed ep0, so the device won't be
105 	 * accessible again (DEV_DISABLED) until all fds are closed.
106 	 */
107 	STATE_DEV_UNBOUND,
108 };
109 
110 /* enough for the whole queue: most events invalidate others */
111 #define	N_EVENT			5
112 
113 #define RBUF_SIZE		256
114 
115 struct dev_data {
116 	spinlock_t			lock;
117 	refcount_t			count;
118 	int				udc_usage;
119 	enum ep0_state			state;		/* P: lock */
120 	struct usb_gadgetfs_event	event [N_EVENT];
121 	unsigned			ev_next;
122 	struct fasync_struct		*fasync;
123 	u8				current_config;
124 
125 	/* drivers reading ep0 MUST handle control requests (SETUP)
126 	 * reported that way; else the host will time out.
127 	 */
128 	unsigned			usermode_setup : 1,
129 					setup_in : 1,
130 					setup_can_stall : 1,
131 					setup_out_ready : 1,
132 					setup_out_error : 1,
133 					setup_abort : 1,
134 					gadget_registered : 1;
135 	unsigned			setup_wLength;
136 
137 	/* the rest is basically write-once */
138 	struct usb_config_descriptor	*config, *hs_config;
139 	struct usb_device_descriptor	*dev;
140 	struct usb_request		*req;
141 	struct usb_gadget		*gadget;
142 	struct list_head		epfiles;
143 	void				*buf;
144 	wait_queue_head_t		wait;
145 	struct super_block		*sb;
146 	struct dentry			*dentry;
147 
148 	/* except this scratch i/o buffer for ep0 */
149 	u8				rbuf[RBUF_SIZE];
150 };
151 
152 static inline void get_dev (struct dev_data *data)
153 {
154 	refcount_inc (&data->count);
155 }
156 
157 static void put_dev (struct dev_data *data)
158 {
159 	if (likely (!refcount_dec_and_test (&data->count)))
160 		return;
161 	/* needs no more cleanup */
162 	BUG_ON (waitqueue_active (&data->wait));
163 	kfree (data);
164 }
165 
166 static struct dev_data *dev_new (void)
167 {
168 	struct dev_data		*dev;
169 
170 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
171 	if (!dev)
172 		return NULL;
173 	dev->state = STATE_DEV_DISABLED;
174 	refcount_set (&dev->count, 1);
175 	spin_lock_init (&dev->lock);
176 	INIT_LIST_HEAD (&dev->epfiles);
177 	init_waitqueue_head (&dev->wait);
178 	return dev;
179 }
180 
181 /*----------------------------------------------------------------------*/
182 
183 /* other /dev/gadget/$ENDPOINT files represent endpoints */
184 enum ep_state {
185 	STATE_EP_DISABLED = 0,
186 	STATE_EP_READY,
187 	STATE_EP_ENABLED,
188 	STATE_EP_UNBOUND,
189 };
190 
191 struct ep_data {
192 	struct mutex			lock;
193 	enum ep_state			state;
194 	refcount_t			count;
195 	struct dev_data			*dev;
196 	/* must hold dev->lock before accessing ep or req */
197 	struct usb_ep			*ep;
198 	struct usb_request		*req;
199 	ssize_t				status;
200 	char				name [16];
201 	struct usb_endpoint_descriptor	desc, hs_desc;
202 	struct list_head		epfiles;
203 	wait_queue_head_t		wait;
204 	struct dentry			*dentry;
205 };
206 
207 static inline void get_ep (struct ep_data *data)
208 {
209 	refcount_inc (&data->count);
210 }
211 
212 static void put_ep (struct ep_data *data)
213 {
214 	if (likely (!refcount_dec_and_test (&data->count)))
215 		return;
216 	put_dev (data->dev);
217 	/* needs no more cleanup */
218 	BUG_ON (!list_empty (&data->epfiles));
219 	BUG_ON (waitqueue_active (&data->wait));
220 	kfree (data);
221 }
222 
223 /*----------------------------------------------------------------------*/
224 
225 /* most "how to use the hardware" policy choices are in userspace:
226  * mapping endpoint roles (which the driver needs) to the capabilities
227  * which the usb controller has.  most of those capabilities are exposed
228  * implicitly, starting with the driver name and then endpoint names.
229  */
230 
231 static const char *CHIP;
232 
233 /*----------------------------------------------------------------------*/
234 
235 /* NOTE:  don't use dev_printk calls before binding to the gadget
236  * at the end of ep0 configuration, or after unbind.
237  */
238 
239 /* too wordy: dev_printk(level , &(d)->gadget->dev , fmt , ## args) */
240 #define xprintk(d,level,fmt,args...) \
241 	printk(level "%s: " fmt , shortname , ## args)
242 
243 #ifdef DEBUG
244 #define DBG(dev,fmt,args...) \
245 	xprintk(dev , KERN_DEBUG , fmt , ## args)
246 #else
247 #define DBG(dev,fmt,args...) \
248 	do { } while (0)
249 #endif /* DEBUG */
250 
251 #ifdef VERBOSE_DEBUG
252 #define VDEBUG	DBG
253 #else
254 #define VDEBUG(dev,fmt,args...) \
255 	do { } while (0)
256 #endif /* DEBUG */
257 
258 #define ERROR(dev,fmt,args...) \
259 	xprintk(dev , KERN_ERR , fmt , ## args)
260 #define INFO(dev,fmt,args...) \
261 	xprintk(dev , KERN_INFO , fmt , ## args)
262 
263 
264 /*----------------------------------------------------------------------*/
265 
266 /* SYNCHRONOUS ENDPOINT OPERATIONS (bulk/intr/iso)
267  *
268  * After opening, configure non-control endpoints.  Then use normal
269  * stream read() and write() requests; and maybe ioctl() to get more
270  * precise FIFO status when recovering from cancellation.
271  */
272 
273 static void epio_complete (struct usb_ep *ep, struct usb_request *req)
274 {
275 	struct ep_data	*epdata = ep->driver_data;
276 
277 	if (!req->context)
278 		return;
279 	if (req->status)
280 		epdata->status = req->status;
281 	else
282 		epdata->status = req->actual;
283 	complete ((struct completion *)req->context);
284 }
285 
286 /* tasklock endpoint, returning when it's connected.
287  * still need dev->lock to use epdata->ep.
288  */
289 static int
290 get_ready_ep (unsigned f_flags, struct ep_data *epdata, bool is_write)
291 {
292 	int	val;
293 
294 	if (f_flags & O_NONBLOCK) {
295 		if (!mutex_trylock(&epdata->lock))
296 			goto nonblock;
297 		if (epdata->state != STATE_EP_ENABLED &&
298 		    (!is_write || epdata->state != STATE_EP_READY)) {
299 			mutex_unlock(&epdata->lock);
300 nonblock:
301 			val = -EAGAIN;
302 		} else
303 			val = 0;
304 		return val;
305 	}
306 
307 	val = mutex_lock_interruptible(&epdata->lock);
308 	if (val < 0)
309 		return val;
310 
311 	switch (epdata->state) {
312 	case STATE_EP_ENABLED:
313 		return 0;
314 	case STATE_EP_READY:			/* not configured yet */
315 		if (is_write)
316 			return 0;
317 		fallthrough;
318 	case STATE_EP_UNBOUND:			/* clean disconnect */
319 		break;
320 	// case STATE_EP_DISABLED:		/* "can't happen" */
321 	default:				/* error! */
322 		pr_debug ("%s: ep %p not available, state %d\n",
323 				shortname, epdata, epdata->state);
324 	}
325 	mutex_unlock(&epdata->lock);
326 	return -ENODEV;
327 }
328 
329 static ssize_t
330 ep_io (struct ep_data *epdata, void *buf, unsigned len)
331 {
332 	DECLARE_COMPLETION_ONSTACK (done);
333 	int value;
334 
335 	spin_lock_irq (&epdata->dev->lock);
336 	if (likely (epdata->ep != NULL)) {
337 		struct usb_request	*req = epdata->req;
338 
339 		req->context = &done;
340 		req->complete = epio_complete;
341 		req->buf = buf;
342 		req->length = len;
343 		value = usb_ep_queue (epdata->ep, req, GFP_ATOMIC);
344 	} else
345 		value = -ENODEV;
346 	spin_unlock_irq (&epdata->dev->lock);
347 
348 	if (likely (value == 0)) {
349 		value = wait_for_completion_interruptible(&done);
350 		if (value != 0) {
351 			spin_lock_irq (&epdata->dev->lock);
352 			if (likely (epdata->ep != NULL)) {
353 				DBG (epdata->dev, "%s i/o interrupted\n",
354 						epdata->name);
355 				usb_ep_dequeue (epdata->ep, epdata->req);
356 				spin_unlock_irq (&epdata->dev->lock);
357 
358 				wait_for_completion(&done);
359 				if (epdata->status == -ECONNRESET)
360 					epdata->status = -EINTR;
361 			} else {
362 				spin_unlock_irq (&epdata->dev->lock);
363 
364 				DBG (epdata->dev, "endpoint gone\n");
365 				wait_for_completion(&done);
366 				epdata->status = -ENODEV;
367 			}
368 		}
369 		return epdata->status;
370 	}
371 	return value;
372 }
373 
374 static int
375 ep_release (struct inode *inode, struct file *fd)
376 {
377 	struct ep_data		*data = fd->private_data;
378 	int value;
379 
380 	value = mutex_lock_interruptible(&data->lock);
381 	if (value < 0)
382 		return value;
383 
384 	/* clean up if this can be reopened */
385 	if (data->state != STATE_EP_UNBOUND) {
386 		data->state = STATE_EP_DISABLED;
387 		data->desc.bDescriptorType = 0;
388 		data->hs_desc.bDescriptorType = 0;
389 		usb_ep_disable(data->ep);
390 	}
391 	mutex_unlock(&data->lock);
392 	put_ep (data);
393 	return 0;
394 }
395 
396 static long ep_ioctl(struct file *fd, unsigned code, unsigned long value)
397 {
398 	struct ep_data		*data = fd->private_data;
399 	int			status;
400 
401 	if ((status = get_ready_ep (fd->f_flags, data, false)) < 0)
402 		return status;
403 
404 	spin_lock_irq (&data->dev->lock);
405 	if (likely (data->ep != NULL)) {
406 		switch (code) {
407 		case GADGETFS_FIFO_STATUS:
408 			status = usb_ep_fifo_status (data->ep);
409 			break;
410 		case GADGETFS_FIFO_FLUSH:
411 			usb_ep_fifo_flush (data->ep);
412 			break;
413 		case GADGETFS_CLEAR_HALT:
414 			status = usb_ep_clear_halt (data->ep);
415 			break;
416 		default:
417 			status = -ENOTTY;
418 		}
419 	} else
420 		status = -ENODEV;
421 	spin_unlock_irq (&data->dev->lock);
422 	mutex_unlock(&data->lock);
423 	return status;
424 }
425 
426 /*----------------------------------------------------------------------*/
427 
428 /* ASYNCHRONOUS ENDPOINT I/O OPERATIONS (bulk/intr/iso) */
429 
430 struct kiocb_priv {
431 	struct usb_request	*req;
432 	struct ep_data		*epdata;
433 	struct kiocb		*iocb;
434 	struct mm_struct	*mm;
435 	struct work_struct	work;
436 	void			*buf;
437 	struct iov_iter		to;
438 	const void		*to_free;
439 	unsigned		actual;
440 };
441 
442 static int ep_aio_cancel(struct kiocb *iocb)
443 {
444 	struct kiocb_priv	*priv = iocb->private;
445 	struct ep_data		*epdata;
446 	int			value;
447 
448 	local_irq_disable();
449 	epdata = priv->epdata;
450 	// spin_lock(&epdata->dev->lock);
451 	if (likely(epdata && epdata->ep && priv->req))
452 		value = usb_ep_dequeue (epdata->ep, priv->req);
453 	else
454 		value = -EINVAL;
455 	// spin_unlock(&epdata->dev->lock);
456 	local_irq_enable();
457 
458 	return value;
459 }
460 
461 static void ep_user_copy_worker(struct work_struct *work)
462 {
463 	struct kiocb_priv *priv = container_of(work, struct kiocb_priv, work);
464 	struct mm_struct *mm = priv->mm;
465 	struct kiocb *iocb = priv->iocb;
466 	size_t ret;
467 
468 	kthread_use_mm(mm);
469 	ret = copy_to_iter(priv->buf, priv->actual, &priv->to);
470 	kthread_unuse_mm(mm);
471 	if (!ret)
472 		ret = -EFAULT;
473 
474 	/* completing the iocb can drop the ctx and mm, don't touch mm after */
475 	iocb->ki_complete(iocb, ret);
476 
477 	kfree(priv->buf);
478 	kfree(priv->to_free);
479 	kfree(priv);
480 }
481 
482 static void ep_aio_complete(struct usb_ep *ep, struct usb_request *req)
483 {
484 	struct kiocb		*iocb = req->context;
485 	struct kiocb_priv	*priv = iocb->private;
486 	struct ep_data		*epdata = priv->epdata;
487 
488 	/* lock against disconnect (and ideally, cancel) */
489 	spin_lock(&epdata->dev->lock);
490 	priv->req = NULL;
491 	priv->epdata = NULL;
492 
493 	/* if this was a write or a read returning no data then we
494 	 * don't need to copy anything to userspace, so we can
495 	 * complete the aio request immediately.
496 	 */
497 	if (priv->to_free == NULL || unlikely(req->actual == 0)) {
498 		kfree(req->buf);
499 		kfree(priv->to_free);
500 		kfree(priv);
501 		iocb->private = NULL;
502 		iocb->ki_complete(iocb,
503 				req->actual ? req->actual : (long)req->status);
504 	} else {
505 		/* ep_copy_to_user() won't report both; we hide some faults */
506 		if (unlikely(0 != req->status))
507 			DBG(epdata->dev, "%s fault %d len %d\n",
508 				ep->name, req->status, req->actual);
509 
510 		priv->buf = req->buf;
511 		priv->actual = req->actual;
512 		INIT_WORK(&priv->work, ep_user_copy_worker);
513 		schedule_work(&priv->work);
514 	}
515 
516 	usb_ep_free_request(ep, req);
517 	spin_unlock(&epdata->dev->lock);
518 	put_ep(epdata);
519 }
520 
521 static ssize_t ep_aio(struct kiocb *iocb,
522 		      struct kiocb_priv *priv,
523 		      struct ep_data *epdata,
524 		      char *buf,
525 		      size_t len)
526 {
527 	struct usb_request *req;
528 	ssize_t value;
529 
530 	iocb->private = priv;
531 	priv->iocb = iocb;
532 
533 	kiocb_set_cancel_fn(iocb, ep_aio_cancel);
534 	get_ep(epdata);
535 	priv->epdata = epdata;
536 	priv->actual = 0;
537 	priv->mm = current->mm; /* mm teardown waits for iocbs in exit_aio() */
538 
539 	/* each kiocb is coupled to one usb_request, but we can't
540 	 * allocate or submit those if the host disconnected.
541 	 */
542 	spin_lock_irq(&epdata->dev->lock);
543 	value = -ENODEV;
544 	if (unlikely(epdata->ep == NULL))
545 		goto fail;
546 
547 	req = usb_ep_alloc_request(epdata->ep, GFP_ATOMIC);
548 	value = -ENOMEM;
549 	if (unlikely(!req))
550 		goto fail;
551 
552 	priv->req = req;
553 	req->buf = buf;
554 	req->length = len;
555 	req->complete = ep_aio_complete;
556 	req->context = iocb;
557 	value = usb_ep_queue(epdata->ep, req, GFP_ATOMIC);
558 	if (unlikely(0 != value)) {
559 		usb_ep_free_request(epdata->ep, req);
560 		goto fail;
561 	}
562 	spin_unlock_irq(&epdata->dev->lock);
563 	return -EIOCBQUEUED;
564 
565 fail:
566 	spin_unlock_irq(&epdata->dev->lock);
567 	kfree(priv->to_free);
568 	kfree(priv);
569 	put_ep(epdata);
570 	return value;
571 }
572 
573 static ssize_t
574 ep_read_iter(struct kiocb *iocb, struct iov_iter *to)
575 {
576 	struct file *file = iocb->ki_filp;
577 	struct ep_data *epdata = file->private_data;
578 	size_t len = iov_iter_count(to);
579 	ssize_t value;
580 	char *buf;
581 
582 	if ((value = get_ready_ep(file->f_flags, epdata, false)) < 0)
583 		return value;
584 
585 	/* halt any endpoint by doing a "wrong direction" i/o call */
586 	if (usb_endpoint_dir_in(&epdata->desc)) {
587 		if (usb_endpoint_xfer_isoc(&epdata->desc) ||
588 		    !is_sync_kiocb(iocb)) {
589 			mutex_unlock(&epdata->lock);
590 			return -EINVAL;
591 		}
592 		DBG (epdata->dev, "%s halt\n", epdata->name);
593 		spin_lock_irq(&epdata->dev->lock);
594 		if (likely(epdata->ep != NULL))
595 			usb_ep_set_halt(epdata->ep);
596 		spin_unlock_irq(&epdata->dev->lock);
597 		mutex_unlock(&epdata->lock);
598 		return -EBADMSG;
599 	}
600 
601 	buf = kmalloc(len, GFP_KERNEL);
602 	if (unlikely(!buf)) {
603 		mutex_unlock(&epdata->lock);
604 		return -ENOMEM;
605 	}
606 	if (is_sync_kiocb(iocb)) {
607 		value = ep_io(epdata, buf, len);
608 		if (value >= 0 && (copy_to_iter(buf, value, to) != value))
609 			value = -EFAULT;
610 	} else {
611 		struct kiocb_priv *priv = kzalloc(sizeof *priv, GFP_KERNEL);
612 		value = -ENOMEM;
613 		if (!priv)
614 			goto fail;
615 		priv->to_free = dup_iter(&priv->to, to, GFP_KERNEL);
616 		if (!priv->to_free) {
617 			kfree(priv);
618 			goto fail;
619 		}
620 		value = ep_aio(iocb, priv, epdata, buf, len);
621 		if (value == -EIOCBQUEUED)
622 			buf = NULL;
623 	}
624 fail:
625 	kfree(buf);
626 	mutex_unlock(&epdata->lock);
627 	return value;
628 }
629 
630 static ssize_t ep_config(struct ep_data *, const char *, size_t);
631 
632 static ssize_t
633 ep_write_iter(struct kiocb *iocb, struct iov_iter *from)
634 {
635 	struct file *file = iocb->ki_filp;
636 	struct ep_data *epdata = file->private_data;
637 	size_t len = iov_iter_count(from);
638 	bool configured;
639 	ssize_t value;
640 	char *buf;
641 
642 	if ((value = get_ready_ep(file->f_flags, epdata, true)) < 0)
643 		return value;
644 
645 	configured = epdata->state == STATE_EP_ENABLED;
646 
647 	/* halt any endpoint by doing a "wrong direction" i/o call */
648 	if (configured && !usb_endpoint_dir_in(&epdata->desc)) {
649 		if (usb_endpoint_xfer_isoc(&epdata->desc) ||
650 		    !is_sync_kiocb(iocb)) {
651 			mutex_unlock(&epdata->lock);
652 			return -EINVAL;
653 		}
654 		DBG (epdata->dev, "%s halt\n", epdata->name);
655 		spin_lock_irq(&epdata->dev->lock);
656 		if (likely(epdata->ep != NULL))
657 			usb_ep_set_halt(epdata->ep);
658 		spin_unlock_irq(&epdata->dev->lock);
659 		mutex_unlock(&epdata->lock);
660 		return -EBADMSG;
661 	}
662 
663 	buf = kmalloc(len, GFP_KERNEL);
664 	if (unlikely(!buf)) {
665 		mutex_unlock(&epdata->lock);
666 		return -ENOMEM;
667 	}
668 
669 	if (unlikely(!copy_from_iter_full(buf, len, from))) {
670 		value = -EFAULT;
671 		goto out;
672 	}
673 
674 	if (unlikely(!configured)) {
675 		value = ep_config(epdata, buf, len);
676 	} else if (is_sync_kiocb(iocb)) {
677 		value = ep_io(epdata, buf, len);
678 	} else {
679 		struct kiocb_priv *priv = kzalloc(sizeof *priv, GFP_KERNEL);
680 		value = -ENOMEM;
681 		if (priv) {
682 			value = ep_aio(iocb, priv, epdata, buf, len);
683 			if (value == -EIOCBQUEUED)
684 				buf = NULL;
685 		}
686 	}
687 out:
688 	kfree(buf);
689 	mutex_unlock(&epdata->lock);
690 	return value;
691 }
692 
693 /*----------------------------------------------------------------------*/
694 
695 /* used after endpoint configuration */
696 static const struct file_operations ep_io_operations = {
697 	.owner =	THIS_MODULE,
698 
699 	.open =		ep_open,
700 	.release =	ep_release,
701 	.llseek =	no_llseek,
702 	.unlocked_ioctl = ep_ioctl,
703 	.read_iter =	ep_read_iter,
704 	.write_iter =	ep_write_iter,
705 };
706 
707 /* ENDPOINT INITIALIZATION
708  *
709  *     fd = open ("/dev/gadget/$ENDPOINT", O_RDWR)
710  *     status = write (fd, descriptors, sizeof descriptors)
711  *
712  * That write establishes the endpoint configuration, configuring
713  * the controller to process bulk, interrupt, or isochronous transfers
714  * at the right maxpacket size, and so on.
715  *
716  * The descriptors are message type 1, identified by a host order u32
717  * at the beginning of what's written.  Descriptor order is: full/low
718  * speed descriptor, then optional high speed descriptor.
719  */
720 static ssize_t
721 ep_config (struct ep_data *data, const char *buf, size_t len)
722 {
723 	struct usb_ep		*ep;
724 	u32			tag;
725 	int			value, length = len;
726 
727 	if (data->state != STATE_EP_READY) {
728 		value = -EL2HLT;
729 		goto fail;
730 	}
731 
732 	value = len;
733 	if (len < USB_DT_ENDPOINT_SIZE + 4)
734 		goto fail0;
735 
736 	/* we might need to change message format someday */
737 	memcpy(&tag, buf, 4);
738 	if (tag != 1) {
739 		DBG(data->dev, "config %s, bad tag %d\n", data->name, tag);
740 		goto fail0;
741 	}
742 	buf += 4;
743 	len -= 4;
744 
745 	/* NOTE:  audio endpoint extensions not accepted here;
746 	 * just don't include the extra bytes.
747 	 */
748 
749 	/* full/low speed descriptor, then high speed */
750 	memcpy(&data->desc, buf, USB_DT_ENDPOINT_SIZE);
751 	if (data->desc.bLength != USB_DT_ENDPOINT_SIZE
752 			|| data->desc.bDescriptorType != USB_DT_ENDPOINT)
753 		goto fail0;
754 	if (len != USB_DT_ENDPOINT_SIZE) {
755 		if (len != 2 * USB_DT_ENDPOINT_SIZE)
756 			goto fail0;
757 		memcpy(&data->hs_desc, buf + USB_DT_ENDPOINT_SIZE,
758 			USB_DT_ENDPOINT_SIZE);
759 		if (data->hs_desc.bLength != USB_DT_ENDPOINT_SIZE
760 				|| data->hs_desc.bDescriptorType
761 					!= USB_DT_ENDPOINT) {
762 			DBG(data->dev, "config %s, bad hs length or type\n",
763 					data->name);
764 			goto fail0;
765 		}
766 	}
767 
768 	spin_lock_irq (&data->dev->lock);
769 	if (data->dev->state == STATE_DEV_UNBOUND) {
770 		value = -ENOENT;
771 		goto gone;
772 	} else {
773 		ep = data->ep;
774 		if (ep == NULL) {
775 			value = -ENODEV;
776 			goto gone;
777 		}
778 	}
779 	switch (data->dev->gadget->speed) {
780 	case USB_SPEED_LOW:
781 	case USB_SPEED_FULL:
782 		ep->desc = &data->desc;
783 		break;
784 	case USB_SPEED_HIGH:
785 		/* fails if caller didn't provide that descriptor... */
786 		ep->desc = &data->hs_desc;
787 		break;
788 	default:
789 		DBG(data->dev, "unconnected, %s init abandoned\n",
790 				data->name);
791 		value = -EINVAL;
792 		goto gone;
793 	}
794 	value = usb_ep_enable(ep);
795 	if (value == 0) {
796 		data->state = STATE_EP_ENABLED;
797 		value = length;
798 	}
799 gone:
800 	spin_unlock_irq (&data->dev->lock);
801 	if (value < 0) {
802 fail:
803 		data->desc.bDescriptorType = 0;
804 		data->hs_desc.bDescriptorType = 0;
805 	}
806 	return value;
807 fail0:
808 	value = -EINVAL;
809 	goto fail;
810 }
811 
812 static int
813 ep_open (struct inode *inode, struct file *fd)
814 {
815 	struct ep_data		*data = inode->i_private;
816 	int			value = -EBUSY;
817 
818 	if (mutex_lock_interruptible(&data->lock) != 0)
819 		return -EINTR;
820 	spin_lock_irq (&data->dev->lock);
821 	if (data->dev->state == STATE_DEV_UNBOUND)
822 		value = -ENOENT;
823 	else if (data->state == STATE_EP_DISABLED) {
824 		value = 0;
825 		data->state = STATE_EP_READY;
826 		get_ep (data);
827 		fd->private_data = data;
828 		VDEBUG (data->dev, "%s ready\n", data->name);
829 	} else
830 		DBG (data->dev, "%s state %d\n",
831 			data->name, data->state);
832 	spin_unlock_irq (&data->dev->lock);
833 	mutex_unlock(&data->lock);
834 	return value;
835 }
836 
837 /*----------------------------------------------------------------------*/
838 
839 /* EP0 IMPLEMENTATION can be partly in userspace.
840  *
841  * Drivers that use this facility receive various events, including
842  * control requests the kernel doesn't handle.  Drivers that don't
843  * use this facility may be too simple-minded for real applications.
844  */
845 
846 static inline void ep0_readable (struct dev_data *dev)
847 {
848 	wake_up (&dev->wait);
849 	kill_fasync (&dev->fasync, SIGIO, POLL_IN);
850 }
851 
852 static void clean_req (struct usb_ep *ep, struct usb_request *req)
853 {
854 	struct dev_data		*dev = ep->driver_data;
855 
856 	if (req->buf != dev->rbuf) {
857 		kfree(req->buf);
858 		req->buf = dev->rbuf;
859 	}
860 	req->complete = epio_complete;
861 	dev->setup_out_ready = 0;
862 }
863 
864 static void ep0_complete (struct usb_ep *ep, struct usb_request *req)
865 {
866 	struct dev_data		*dev = ep->driver_data;
867 	unsigned long		flags;
868 	int			free = 1;
869 
870 	/* for control OUT, data must still get to userspace */
871 	spin_lock_irqsave(&dev->lock, flags);
872 	if (!dev->setup_in) {
873 		dev->setup_out_error = (req->status != 0);
874 		if (!dev->setup_out_error)
875 			free = 0;
876 		dev->setup_out_ready = 1;
877 		ep0_readable (dev);
878 	}
879 
880 	/* clean up as appropriate */
881 	if (free && req->buf != &dev->rbuf)
882 		clean_req (ep, req);
883 	req->complete = epio_complete;
884 	spin_unlock_irqrestore(&dev->lock, flags);
885 }
886 
887 static int setup_req (struct usb_ep *ep, struct usb_request *req, u16 len)
888 {
889 	struct dev_data	*dev = ep->driver_data;
890 
891 	if (dev->setup_out_ready) {
892 		DBG (dev, "ep0 request busy!\n");
893 		return -EBUSY;
894 	}
895 	if (len > sizeof (dev->rbuf))
896 		req->buf = kmalloc(len, GFP_ATOMIC);
897 	if (req->buf == NULL) {
898 		req->buf = dev->rbuf;
899 		return -ENOMEM;
900 	}
901 	req->complete = ep0_complete;
902 	req->length = len;
903 	req->zero = 0;
904 	return 0;
905 }
906 
907 static ssize_t
908 ep0_read (struct file *fd, char __user *buf, size_t len, loff_t *ptr)
909 {
910 	struct dev_data			*dev = fd->private_data;
911 	ssize_t				retval;
912 	enum ep0_state			state;
913 
914 	spin_lock_irq (&dev->lock);
915 	if (dev->state <= STATE_DEV_OPENED) {
916 		retval = -EINVAL;
917 		goto done;
918 	}
919 
920 	/* report fd mode change before acting on it */
921 	if (dev->setup_abort) {
922 		dev->setup_abort = 0;
923 		retval = -EIDRM;
924 		goto done;
925 	}
926 
927 	/* control DATA stage */
928 	if ((state = dev->state) == STATE_DEV_SETUP) {
929 
930 		if (dev->setup_in) {		/* stall IN */
931 			VDEBUG(dev, "ep0in stall\n");
932 			(void) usb_ep_set_halt (dev->gadget->ep0);
933 			retval = -EL2HLT;
934 			dev->state = STATE_DEV_CONNECTED;
935 
936 		} else if (len == 0) {		/* ack SET_CONFIGURATION etc */
937 			struct usb_ep		*ep = dev->gadget->ep0;
938 			struct usb_request	*req = dev->req;
939 
940 			if ((retval = setup_req (ep, req, 0)) == 0) {
941 				++dev->udc_usage;
942 				spin_unlock_irq (&dev->lock);
943 				retval = usb_ep_queue (ep, req, GFP_KERNEL);
944 				spin_lock_irq (&dev->lock);
945 				--dev->udc_usage;
946 			}
947 			dev->state = STATE_DEV_CONNECTED;
948 
949 			/* assume that was SET_CONFIGURATION */
950 			if (dev->current_config) {
951 				unsigned power;
952 
953 				if (gadget_is_dualspeed(dev->gadget)
954 						&& (dev->gadget->speed
955 							== USB_SPEED_HIGH))
956 					power = dev->hs_config->bMaxPower;
957 				else
958 					power = dev->config->bMaxPower;
959 				usb_gadget_vbus_draw(dev->gadget, 2 * power);
960 			}
961 
962 		} else {			/* collect OUT data */
963 			if ((fd->f_flags & O_NONBLOCK) != 0
964 					&& !dev->setup_out_ready) {
965 				retval = -EAGAIN;
966 				goto done;
967 			}
968 			spin_unlock_irq (&dev->lock);
969 			retval = wait_event_interruptible (dev->wait,
970 					dev->setup_out_ready != 0);
971 
972 			/* FIXME state could change from under us */
973 			spin_lock_irq (&dev->lock);
974 			if (retval)
975 				goto done;
976 
977 			if (dev->state != STATE_DEV_SETUP) {
978 				retval = -ECANCELED;
979 				goto done;
980 			}
981 			dev->state = STATE_DEV_CONNECTED;
982 
983 			if (dev->setup_out_error)
984 				retval = -EIO;
985 			else {
986 				len = min (len, (size_t)dev->req->actual);
987 				++dev->udc_usage;
988 				spin_unlock_irq(&dev->lock);
989 				if (copy_to_user (buf, dev->req->buf, len))
990 					retval = -EFAULT;
991 				else
992 					retval = len;
993 				spin_lock_irq(&dev->lock);
994 				--dev->udc_usage;
995 				clean_req (dev->gadget->ep0, dev->req);
996 				/* NOTE userspace can't yet choose to stall */
997 			}
998 		}
999 		goto done;
1000 	}
1001 
1002 	/* else normal: return event data */
1003 	if (len < sizeof dev->event [0]) {
1004 		retval = -EINVAL;
1005 		goto done;
1006 	}
1007 	len -= len % sizeof (struct usb_gadgetfs_event);
1008 	dev->usermode_setup = 1;
1009 
1010 scan:
1011 	/* return queued events right away */
1012 	if (dev->ev_next != 0) {
1013 		unsigned		i, n;
1014 
1015 		n = len / sizeof (struct usb_gadgetfs_event);
1016 		if (dev->ev_next < n)
1017 			n = dev->ev_next;
1018 
1019 		/* ep0 i/o has special semantics during STATE_DEV_SETUP */
1020 		for (i = 0; i < n; i++) {
1021 			if (dev->event [i].type == GADGETFS_SETUP) {
1022 				dev->state = STATE_DEV_SETUP;
1023 				n = i + 1;
1024 				break;
1025 			}
1026 		}
1027 		spin_unlock_irq (&dev->lock);
1028 		len = n * sizeof (struct usb_gadgetfs_event);
1029 		if (copy_to_user (buf, &dev->event, len))
1030 			retval = -EFAULT;
1031 		else
1032 			retval = len;
1033 		if (len > 0) {
1034 			/* NOTE this doesn't guard against broken drivers;
1035 			 * concurrent ep0 readers may lose events.
1036 			 */
1037 			spin_lock_irq (&dev->lock);
1038 			if (dev->ev_next > n) {
1039 				memmove(&dev->event[0], &dev->event[n],
1040 					sizeof (struct usb_gadgetfs_event)
1041 						* (dev->ev_next - n));
1042 			}
1043 			dev->ev_next -= n;
1044 			spin_unlock_irq (&dev->lock);
1045 		}
1046 		return retval;
1047 	}
1048 	if (fd->f_flags & O_NONBLOCK) {
1049 		retval = -EAGAIN;
1050 		goto done;
1051 	}
1052 
1053 	switch (state) {
1054 	default:
1055 		DBG (dev, "fail %s, state %d\n", __func__, state);
1056 		retval = -ESRCH;
1057 		break;
1058 	case STATE_DEV_UNCONNECTED:
1059 	case STATE_DEV_CONNECTED:
1060 		spin_unlock_irq (&dev->lock);
1061 		DBG (dev, "%s wait\n", __func__);
1062 
1063 		/* wait for events */
1064 		retval = wait_event_interruptible (dev->wait,
1065 				dev->ev_next != 0);
1066 		if (retval < 0)
1067 			return retval;
1068 		spin_lock_irq (&dev->lock);
1069 		goto scan;
1070 	}
1071 
1072 done:
1073 	spin_unlock_irq (&dev->lock);
1074 	return retval;
1075 }
1076 
1077 static struct usb_gadgetfs_event *
1078 next_event (struct dev_data *dev, enum usb_gadgetfs_event_type type)
1079 {
1080 	struct usb_gadgetfs_event	*event;
1081 	unsigned			i;
1082 
1083 	switch (type) {
1084 	/* these events purge the queue */
1085 	case GADGETFS_DISCONNECT:
1086 		if (dev->state == STATE_DEV_SETUP)
1087 			dev->setup_abort = 1;
1088 		fallthrough;
1089 	case GADGETFS_CONNECT:
1090 		dev->ev_next = 0;
1091 		break;
1092 	case GADGETFS_SETUP:		/* previous request timed out */
1093 	case GADGETFS_SUSPEND:		/* same effect */
1094 		/* these events can't be repeated */
1095 		for (i = 0; i != dev->ev_next; i++) {
1096 			if (dev->event [i].type != type)
1097 				continue;
1098 			DBG(dev, "discard old event[%d] %d\n", i, type);
1099 			dev->ev_next--;
1100 			if (i == dev->ev_next)
1101 				break;
1102 			/* indices start at zero, for simplicity */
1103 			memmove (&dev->event [i], &dev->event [i + 1],
1104 				sizeof (struct usb_gadgetfs_event)
1105 					* (dev->ev_next - i));
1106 		}
1107 		break;
1108 	default:
1109 		BUG ();
1110 	}
1111 	VDEBUG(dev, "event[%d] = %d\n", dev->ev_next, type);
1112 	event = &dev->event [dev->ev_next++];
1113 	BUG_ON (dev->ev_next > N_EVENT);
1114 	memset (event, 0, sizeof *event);
1115 	event->type = type;
1116 	return event;
1117 }
1118 
1119 static ssize_t
1120 ep0_write (struct file *fd, const char __user *buf, size_t len, loff_t *ptr)
1121 {
1122 	struct dev_data		*dev = fd->private_data;
1123 	ssize_t			retval = -ESRCH;
1124 
1125 	/* report fd mode change before acting on it */
1126 	if (dev->setup_abort) {
1127 		dev->setup_abort = 0;
1128 		retval = -EIDRM;
1129 
1130 	/* data and/or status stage for control request */
1131 	} else if (dev->state == STATE_DEV_SETUP) {
1132 
1133 		len = min_t(size_t, len, dev->setup_wLength);
1134 		if (dev->setup_in) {
1135 			retval = setup_req (dev->gadget->ep0, dev->req, len);
1136 			if (retval == 0) {
1137 				dev->state = STATE_DEV_CONNECTED;
1138 				++dev->udc_usage;
1139 				spin_unlock_irq (&dev->lock);
1140 				if (copy_from_user (dev->req->buf, buf, len))
1141 					retval = -EFAULT;
1142 				else {
1143 					if (len < dev->setup_wLength)
1144 						dev->req->zero = 1;
1145 					retval = usb_ep_queue (
1146 						dev->gadget->ep0, dev->req,
1147 						GFP_KERNEL);
1148 				}
1149 				spin_lock_irq(&dev->lock);
1150 				--dev->udc_usage;
1151 				if (retval < 0) {
1152 					clean_req (dev->gadget->ep0, dev->req);
1153 				} else
1154 					retval = len;
1155 
1156 				return retval;
1157 			}
1158 
1159 		/* can stall some OUT transfers */
1160 		} else if (dev->setup_can_stall) {
1161 			VDEBUG(dev, "ep0out stall\n");
1162 			(void) usb_ep_set_halt (dev->gadget->ep0);
1163 			retval = -EL2HLT;
1164 			dev->state = STATE_DEV_CONNECTED;
1165 		} else {
1166 			DBG(dev, "bogus ep0out stall!\n");
1167 		}
1168 	} else
1169 		DBG (dev, "fail %s, state %d\n", __func__, dev->state);
1170 
1171 	return retval;
1172 }
1173 
1174 static int
1175 ep0_fasync (int f, struct file *fd, int on)
1176 {
1177 	struct dev_data		*dev = fd->private_data;
1178 	// caller must F_SETOWN before signal delivery happens
1179 	VDEBUG (dev, "%s %s\n", __func__, on ? "on" : "off");
1180 	return fasync_helper (f, fd, on, &dev->fasync);
1181 }
1182 
1183 static struct usb_gadget_driver gadgetfs_driver;
1184 
1185 static int
1186 dev_release (struct inode *inode, struct file *fd)
1187 {
1188 	struct dev_data		*dev = fd->private_data;
1189 
1190 	/* closing ep0 === shutdown all */
1191 
1192 	if (dev->gadget_registered) {
1193 		usb_gadget_unregister_driver (&gadgetfs_driver);
1194 		dev->gadget_registered = false;
1195 	}
1196 
1197 	/* at this point "good" hardware has disconnected the
1198 	 * device from USB; the host won't see it any more.
1199 	 * alternatively, all host requests will time out.
1200 	 */
1201 
1202 	kfree (dev->buf);
1203 	dev->buf = NULL;
1204 
1205 	/* other endpoints were all decoupled from this device */
1206 	spin_lock_irq(&dev->lock);
1207 	dev->state = STATE_DEV_DISABLED;
1208 	spin_unlock_irq(&dev->lock);
1209 
1210 	put_dev (dev);
1211 	return 0;
1212 }
1213 
1214 static __poll_t
1215 ep0_poll (struct file *fd, poll_table *wait)
1216 {
1217 	struct dev_data         *dev = fd->private_data;
1218 	__poll_t                mask = 0;
1219 
1220 	if (dev->state <= STATE_DEV_OPENED)
1221 		return DEFAULT_POLLMASK;
1222 
1223 	poll_wait(fd, &dev->wait, wait);
1224 
1225 	spin_lock_irq(&dev->lock);
1226 
1227 	/* report fd mode change before acting on it */
1228 	if (dev->setup_abort) {
1229 		dev->setup_abort = 0;
1230 		mask = EPOLLHUP;
1231 		goto out;
1232 	}
1233 
1234 	if (dev->state == STATE_DEV_SETUP) {
1235 		if (dev->setup_in || dev->setup_can_stall)
1236 			mask = EPOLLOUT;
1237 	} else {
1238 		if (dev->ev_next != 0)
1239 			mask = EPOLLIN;
1240 	}
1241 out:
1242 	spin_unlock_irq(&dev->lock);
1243 	return mask;
1244 }
1245 
1246 static long gadget_dev_ioctl (struct file *fd, unsigned code, unsigned long value)
1247 {
1248 	struct dev_data		*dev = fd->private_data;
1249 	struct usb_gadget	*gadget = dev->gadget;
1250 	long ret = -ENOTTY;
1251 
1252 	spin_lock_irq(&dev->lock);
1253 	if (dev->state == STATE_DEV_OPENED ||
1254 			dev->state == STATE_DEV_UNBOUND) {
1255 		/* Not bound to a UDC */
1256 	} else if (gadget->ops->ioctl) {
1257 		++dev->udc_usage;
1258 		spin_unlock_irq(&dev->lock);
1259 
1260 		ret = gadget->ops->ioctl (gadget, code, value);
1261 
1262 		spin_lock_irq(&dev->lock);
1263 		--dev->udc_usage;
1264 	}
1265 	spin_unlock_irq(&dev->lock);
1266 
1267 	return ret;
1268 }
1269 
1270 /*----------------------------------------------------------------------*/
1271 
1272 /* The in-kernel gadget driver handles most ep0 issues, in particular
1273  * enumerating the single configuration (as provided from user space).
1274  *
1275  * Unrecognized ep0 requests may be handled in user space.
1276  */
1277 
1278 static void make_qualifier (struct dev_data *dev)
1279 {
1280 	struct usb_qualifier_descriptor		qual;
1281 	struct usb_device_descriptor		*desc;
1282 
1283 	qual.bLength = sizeof qual;
1284 	qual.bDescriptorType = USB_DT_DEVICE_QUALIFIER;
1285 	qual.bcdUSB = cpu_to_le16 (0x0200);
1286 
1287 	desc = dev->dev;
1288 	qual.bDeviceClass = desc->bDeviceClass;
1289 	qual.bDeviceSubClass = desc->bDeviceSubClass;
1290 	qual.bDeviceProtocol = desc->bDeviceProtocol;
1291 
1292 	/* assumes ep0 uses the same value for both speeds ... */
1293 	qual.bMaxPacketSize0 = dev->gadget->ep0->maxpacket;
1294 
1295 	qual.bNumConfigurations = 1;
1296 	qual.bRESERVED = 0;
1297 
1298 	memcpy (dev->rbuf, &qual, sizeof qual);
1299 }
1300 
1301 static int
1302 config_buf (struct dev_data *dev, u8 type, unsigned index)
1303 {
1304 	int		len;
1305 	int		hs = 0;
1306 
1307 	/* only one configuration */
1308 	if (index > 0)
1309 		return -EINVAL;
1310 
1311 	if (gadget_is_dualspeed(dev->gadget)) {
1312 		hs = (dev->gadget->speed == USB_SPEED_HIGH);
1313 		if (type == USB_DT_OTHER_SPEED_CONFIG)
1314 			hs = !hs;
1315 	}
1316 	if (hs) {
1317 		dev->req->buf = dev->hs_config;
1318 		len = le16_to_cpu(dev->hs_config->wTotalLength);
1319 	} else {
1320 		dev->req->buf = dev->config;
1321 		len = le16_to_cpu(dev->config->wTotalLength);
1322 	}
1323 	((u8 *)dev->req->buf) [1] = type;
1324 	return len;
1325 }
1326 
1327 static int
1328 gadgetfs_setup (struct usb_gadget *gadget, const struct usb_ctrlrequest *ctrl)
1329 {
1330 	struct dev_data			*dev = get_gadget_data (gadget);
1331 	struct usb_request		*req = dev->req;
1332 	int				value = -EOPNOTSUPP;
1333 	struct usb_gadgetfs_event	*event;
1334 	u16				w_value = le16_to_cpu(ctrl->wValue);
1335 	u16				w_length = le16_to_cpu(ctrl->wLength);
1336 
1337 	if (w_length > RBUF_SIZE) {
1338 		if (ctrl->bRequestType & USB_DIR_IN) {
1339 			/* Cast away the const, we are going to overwrite on purpose. */
1340 			__le16 *temp = (__le16 *)&ctrl->wLength;
1341 
1342 			*temp = cpu_to_le16(RBUF_SIZE);
1343 			w_length = RBUF_SIZE;
1344 		} else {
1345 			return value;
1346 		}
1347 	}
1348 
1349 	spin_lock (&dev->lock);
1350 	dev->setup_abort = 0;
1351 	if (dev->state == STATE_DEV_UNCONNECTED) {
1352 		if (gadget_is_dualspeed(gadget)
1353 				&& gadget->speed == USB_SPEED_HIGH
1354 				&& dev->hs_config == NULL) {
1355 			spin_unlock(&dev->lock);
1356 			ERROR (dev, "no high speed config??\n");
1357 			return -EINVAL;
1358 		}
1359 
1360 		dev->state = STATE_DEV_CONNECTED;
1361 
1362 		INFO (dev, "connected\n");
1363 		event = next_event (dev, GADGETFS_CONNECT);
1364 		event->u.speed = gadget->speed;
1365 		ep0_readable (dev);
1366 
1367 	/* host may have given up waiting for response.  we can miss control
1368 	 * requests handled lower down (device/endpoint status and features);
1369 	 * then ep0_{read,write} will report the wrong status. controller
1370 	 * driver will have aborted pending i/o.
1371 	 */
1372 	} else if (dev->state == STATE_DEV_SETUP)
1373 		dev->setup_abort = 1;
1374 
1375 	req->buf = dev->rbuf;
1376 	req->context = NULL;
1377 	switch (ctrl->bRequest) {
1378 
1379 	case USB_REQ_GET_DESCRIPTOR:
1380 		if (ctrl->bRequestType != USB_DIR_IN)
1381 			goto unrecognized;
1382 		switch (w_value >> 8) {
1383 
1384 		case USB_DT_DEVICE:
1385 			value = min (w_length, (u16) sizeof *dev->dev);
1386 			dev->dev->bMaxPacketSize0 = dev->gadget->ep0->maxpacket;
1387 			req->buf = dev->dev;
1388 			break;
1389 		case USB_DT_DEVICE_QUALIFIER:
1390 			if (!dev->hs_config)
1391 				break;
1392 			value = min (w_length, (u16)
1393 				sizeof (struct usb_qualifier_descriptor));
1394 			make_qualifier (dev);
1395 			break;
1396 		case USB_DT_OTHER_SPEED_CONFIG:
1397 		case USB_DT_CONFIG:
1398 			value = config_buf (dev,
1399 					w_value >> 8,
1400 					w_value & 0xff);
1401 			if (value >= 0)
1402 				value = min (w_length, (u16) value);
1403 			break;
1404 		case USB_DT_STRING:
1405 			goto unrecognized;
1406 
1407 		default:		// all others are errors
1408 			break;
1409 		}
1410 		break;
1411 
1412 	/* currently one config, two speeds */
1413 	case USB_REQ_SET_CONFIGURATION:
1414 		if (ctrl->bRequestType != 0)
1415 			goto unrecognized;
1416 		if (0 == (u8) w_value) {
1417 			value = 0;
1418 			dev->current_config = 0;
1419 			usb_gadget_vbus_draw(gadget, 8 /* mA */ );
1420 			// user mode expected to disable endpoints
1421 		} else {
1422 			u8	config, power;
1423 
1424 			if (gadget_is_dualspeed(gadget)
1425 					&& gadget->speed == USB_SPEED_HIGH) {
1426 				config = dev->hs_config->bConfigurationValue;
1427 				power = dev->hs_config->bMaxPower;
1428 			} else {
1429 				config = dev->config->bConfigurationValue;
1430 				power = dev->config->bMaxPower;
1431 			}
1432 
1433 			if (config == (u8) w_value) {
1434 				value = 0;
1435 				dev->current_config = config;
1436 				usb_gadget_vbus_draw(gadget, 2 * power);
1437 			}
1438 		}
1439 
1440 		/* report SET_CONFIGURATION like any other control request,
1441 		 * except that usermode may not stall this.  the next
1442 		 * request mustn't be allowed start until this finishes:
1443 		 * endpoints and threads set up, etc.
1444 		 *
1445 		 * NOTE:  older PXA hardware (before PXA 255: without UDCCFR)
1446 		 * has bad/racey automagic that prevents synchronizing here.
1447 		 * even kernel mode drivers often miss them.
1448 		 */
1449 		if (value == 0) {
1450 			INFO (dev, "configuration #%d\n", dev->current_config);
1451 			usb_gadget_set_state(gadget, USB_STATE_CONFIGURED);
1452 			if (dev->usermode_setup) {
1453 				dev->setup_can_stall = 0;
1454 				goto delegate;
1455 			}
1456 		}
1457 		break;
1458 
1459 #ifndef	CONFIG_USB_PXA25X
1460 	/* PXA automagically handles this request too */
1461 	case USB_REQ_GET_CONFIGURATION:
1462 		if (ctrl->bRequestType != 0x80)
1463 			goto unrecognized;
1464 		*(u8 *)req->buf = dev->current_config;
1465 		value = min (w_length, (u16) 1);
1466 		break;
1467 #endif
1468 
1469 	default:
1470 unrecognized:
1471 		VDEBUG (dev, "%s req%02x.%02x v%04x i%04x l%d\n",
1472 			dev->usermode_setup ? "delegate" : "fail",
1473 			ctrl->bRequestType, ctrl->bRequest,
1474 			w_value, le16_to_cpu(ctrl->wIndex), w_length);
1475 
1476 		/* if there's an ep0 reader, don't stall */
1477 		if (dev->usermode_setup) {
1478 			dev->setup_can_stall = 1;
1479 delegate:
1480 			dev->setup_in = (ctrl->bRequestType & USB_DIR_IN)
1481 						? 1 : 0;
1482 			dev->setup_wLength = w_length;
1483 			dev->setup_out_ready = 0;
1484 			dev->setup_out_error = 0;
1485 
1486 			/* read DATA stage for OUT right away */
1487 			if (unlikely (!dev->setup_in && w_length)) {
1488 				value = setup_req (gadget->ep0, dev->req,
1489 							w_length);
1490 				if (value < 0)
1491 					break;
1492 
1493 				++dev->udc_usage;
1494 				spin_unlock (&dev->lock);
1495 				value = usb_ep_queue (gadget->ep0, dev->req,
1496 							GFP_KERNEL);
1497 				spin_lock (&dev->lock);
1498 				--dev->udc_usage;
1499 				if (value < 0) {
1500 					clean_req (gadget->ep0, dev->req);
1501 					break;
1502 				}
1503 
1504 				/* we can't currently stall these */
1505 				dev->setup_can_stall = 0;
1506 			}
1507 
1508 			/* state changes when reader collects event */
1509 			event = next_event (dev, GADGETFS_SETUP);
1510 			event->u.setup = *ctrl;
1511 			ep0_readable (dev);
1512 			spin_unlock (&dev->lock);
1513 			return 0;
1514 		}
1515 	}
1516 
1517 	/* proceed with data transfer and status phases? */
1518 	if (value >= 0 && dev->state != STATE_DEV_SETUP) {
1519 		req->length = value;
1520 		req->zero = value < w_length;
1521 
1522 		++dev->udc_usage;
1523 		spin_unlock (&dev->lock);
1524 		value = usb_ep_queue (gadget->ep0, req, GFP_KERNEL);
1525 		spin_lock(&dev->lock);
1526 		--dev->udc_usage;
1527 		spin_unlock(&dev->lock);
1528 		if (value < 0) {
1529 			DBG (dev, "ep_queue --> %d\n", value);
1530 			req->status = 0;
1531 		}
1532 		return value;
1533 	}
1534 
1535 	/* device stalls when value < 0 */
1536 	spin_unlock (&dev->lock);
1537 	return value;
1538 }
1539 
1540 static void destroy_ep_files (struct dev_data *dev)
1541 {
1542 	DBG (dev, "%s %d\n", __func__, dev->state);
1543 
1544 	/* dev->state must prevent interference */
1545 	spin_lock_irq (&dev->lock);
1546 	while (!list_empty(&dev->epfiles)) {
1547 		struct ep_data	*ep;
1548 		struct inode	*parent;
1549 		struct dentry	*dentry;
1550 
1551 		/* break link to FS */
1552 		ep = list_first_entry (&dev->epfiles, struct ep_data, epfiles);
1553 		list_del_init (&ep->epfiles);
1554 		spin_unlock_irq (&dev->lock);
1555 
1556 		dentry = ep->dentry;
1557 		ep->dentry = NULL;
1558 		parent = d_inode(dentry->d_parent);
1559 
1560 		/* break link to controller */
1561 		mutex_lock(&ep->lock);
1562 		if (ep->state == STATE_EP_ENABLED)
1563 			(void) usb_ep_disable (ep->ep);
1564 		ep->state = STATE_EP_UNBOUND;
1565 		usb_ep_free_request (ep->ep, ep->req);
1566 		ep->ep = NULL;
1567 		mutex_unlock(&ep->lock);
1568 
1569 		wake_up (&ep->wait);
1570 		put_ep (ep);
1571 
1572 		/* break link to dcache */
1573 		inode_lock(parent);
1574 		d_delete (dentry);
1575 		dput (dentry);
1576 		inode_unlock(parent);
1577 
1578 		spin_lock_irq (&dev->lock);
1579 	}
1580 	spin_unlock_irq (&dev->lock);
1581 }
1582 
1583 
1584 static struct dentry *
1585 gadgetfs_create_file (struct super_block *sb, char const *name,
1586 		void *data, const struct file_operations *fops);
1587 
1588 static int activate_ep_files (struct dev_data *dev)
1589 {
1590 	struct usb_ep	*ep;
1591 	struct ep_data	*data;
1592 
1593 	gadget_for_each_ep (ep, dev->gadget) {
1594 
1595 		data = kzalloc(sizeof(*data), GFP_KERNEL);
1596 		if (!data)
1597 			goto enomem0;
1598 		data->state = STATE_EP_DISABLED;
1599 		mutex_init(&data->lock);
1600 		init_waitqueue_head (&data->wait);
1601 
1602 		strncpy (data->name, ep->name, sizeof (data->name) - 1);
1603 		refcount_set (&data->count, 1);
1604 		data->dev = dev;
1605 		get_dev (dev);
1606 
1607 		data->ep = ep;
1608 		ep->driver_data = data;
1609 
1610 		data->req = usb_ep_alloc_request (ep, GFP_KERNEL);
1611 		if (!data->req)
1612 			goto enomem1;
1613 
1614 		data->dentry = gadgetfs_create_file (dev->sb, data->name,
1615 				data, &ep_io_operations);
1616 		if (!data->dentry)
1617 			goto enomem2;
1618 		list_add_tail (&data->epfiles, &dev->epfiles);
1619 	}
1620 	return 0;
1621 
1622 enomem2:
1623 	usb_ep_free_request (ep, data->req);
1624 enomem1:
1625 	put_dev (dev);
1626 	kfree (data);
1627 enomem0:
1628 	DBG (dev, "%s enomem\n", __func__);
1629 	destroy_ep_files (dev);
1630 	return -ENOMEM;
1631 }
1632 
1633 static void
1634 gadgetfs_unbind (struct usb_gadget *gadget)
1635 {
1636 	struct dev_data		*dev = get_gadget_data (gadget);
1637 
1638 	DBG (dev, "%s\n", __func__);
1639 
1640 	spin_lock_irq (&dev->lock);
1641 	dev->state = STATE_DEV_UNBOUND;
1642 	while (dev->udc_usage > 0) {
1643 		spin_unlock_irq(&dev->lock);
1644 		usleep_range(1000, 2000);
1645 		spin_lock_irq(&dev->lock);
1646 	}
1647 	spin_unlock_irq (&dev->lock);
1648 
1649 	destroy_ep_files (dev);
1650 	gadget->ep0->driver_data = NULL;
1651 	set_gadget_data (gadget, NULL);
1652 
1653 	/* we've already been disconnected ... no i/o is active */
1654 	if (dev->req)
1655 		usb_ep_free_request (gadget->ep0, dev->req);
1656 	DBG (dev, "%s done\n", __func__);
1657 	put_dev (dev);
1658 }
1659 
1660 static struct dev_data		*the_device;
1661 
1662 static int gadgetfs_bind(struct usb_gadget *gadget,
1663 		struct usb_gadget_driver *driver)
1664 {
1665 	struct dev_data		*dev = the_device;
1666 
1667 	if (!dev)
1668 		return -ESRCH;
1669 	if (0 != strcmp (CHIP, gadget->name)) {
1670 		pr_err("%s expected %s controller not %s\n",
1671 			shortname, CHIP, gadget->name);
1672 		return -ENODEV;
1673 	}
1674 
1675 	set_gadget_data (gadget, dev);
1676 	dev->gadget = gadget;
1677 	gadget->ep0->driver_data = dev;
1678 
1679 	/* preallocate control response and buffer */
1680 	dev->req = usb_ep_alloc_request (gadget->ep0, GFP_KERNEL);
1681 	if (!dev->req)
1682 		goto enomem;
1683 	dev->req->context = NULL;
1684 	dev->req->complete = epio_complete;
1685 
1686 	if (activate_ep_files (dev) < 0)
1687 		goto enomem;
1688 
1689 	INFO (dev, "bound to %s driver\n", gadget->name);
1690 	spin_lock_irq(&dev->lock);
1691 	dev->state = STATE_DEV_UNCONNECTED;
1692 	spin_unlock_irq(&dev->lock);
1693 	get_dev (dev);
1694 	return 0;
1695 
1696 enomem:
1697 	gadgetfs_unbind (gadget);
1698 	return -ENOMEM;
1699 }
1700 
1701 static void
1702 gadgetfs_disconnect (struct usb_gadget *gadget)
1703 {
1704 	struct dev_data		*dev = get_gadget_data (gadget);
1705 	unsigned long		flags;
1706 
1707 	spin_lock_irqsave (&dev->lock, flags);
1708 	if (dev->state == STATE_DEV_UNCONNECTED)
1709 		goto exit;
1710 	dev->state = STATE_DEV_UNCONNECTED;
1711 
1712 	INFO (dev, "disconnected\n");
1713 	next_event (dev, GADGETFS_DISCONNECT);
1714 	ep0_readable (dev);
1715 exit:
1716 	spin_unlock_irqrestore (&dev->lock, flags);
1717 }
1718 
1719 static void
1720 gadgetfs_suspend (struct usb_gadget *gadget)
1721 {
1722 	struct dev_data		*dev = get_gadget_data (gadget);
1723 	unsigned long		flags;
1724 
1725 	INFO (dev, "suspended from state %d\n", dev->state);
1726 	spin_lock_irqsave(&dev->lock, flags);
1727 	switch (dev->state) {
1728 	case STATE_DEV_SETUP:		// VERY odd... host died??
1729 	case STATE_DEV_CONNECTED:
1730 	case STATE_DEV_UNCONNECTED:
1731 		next_event (dev, GADGETFS_SUSPEND);
1732 		ep0_readable (dev);
1733 		fallthrough;
1734 	default:
1735 		break;
1736 	}
1737 	spin_unlock_irqrestore(&dev->lock, flags);
1738 }
1739 
1740 static struct usb_gadget_driver gadgetfs_driver = {
1741 	.function	= (char *) driver_desc,
1742 	.bind		= gadgetfs_bind,
1743 	.unbind		= gadgetfs_unbind,
1744 	.setup		= gadgetfs_setup,
1745 	.reset		= gadgetfs_disconnect,
1746 	.disconnect	= gadgetfs_disconnect,
1747 	.suspend	= gadgetfs_suspend,
1748 
1749 	.driver	= {
1750 		.name		= shortname,
1751 	},
1752 };
1753 
1754 /*----------------------------------------------------------------------*/
1755 /* DEVICE INITIALIZATION
1756  *
1757  *     fd = open ("/dev/gadget/$CHIP", O_RDWR)
1758  *     status = write (fd, descriptors, sizeof descriptors)
1759  *
1760  * That write establishes the device configuration, so the kernel can
1761  * bind to the controller ... guaranteeing it can handle enumeration
1762  * at all necessary speeds.  Descriptor order is:
1763  *
1764  * . message tag (u32, host order) ... for now, must be zero; it
1765  *	would change to support features like multi-config devices
1766  * . full/low speed config ... all wTotalLength bytes (with interface,
1767  *	class, altsetting, endpoint, and other descriptors)
1768  * . high speed config ... all descriptors, for high speed operation;
1769  *	this one's optional except for high-speed hardware
1770  * . device descriptor
1771  *
1772  * Endpoints are not yet enabled. Drivers must wait until device
1773  * configuration and interface altsetting changes create
1774  * the need to configure (or unconfigure) them.
1775  *
1776  * After initialization, the device stays active for as long as that
1777  * $CHIP file is open.  Events must then be read from that descriptor,
1778  * such as configuration notifications.
1779  */
1780 
1781 static int is_valid_config(struct usb_config_descriptor *config,
1782 		unsigned int total)
1783 {
1784 	return config->bDescriptorType == USB_DT_CONFIG
1785 		&& config->bLength == USB_DT_CONFIG_SIZE
1786 		&& total >= USB_DT_CONFIG_SIZE
1787 		&& config->bConfigurationValue != 0
1788 		&& (config->bmAttributes & USB_CONFIG_ATT_ONE) != 0
1789 		&& (config->bmAttributes & USB_CONFIG_ATT_WAKEUP) == 0;
1790 	/* FIXME if gadget->is_otg, _must_ include an otg descriptor */
1791 	/* FIXME check lengths: walk to end */
1792 }
1793 
1794 static ssize_t
1795 dev_config (struct file *fd, const char __user *buf, size_t len, loff_t *ptr)
1796 {
1797 	struct dev_data		*dev = fd->private_data;
1798 	ssize_t			value, length = len;
1799 	unsigned		total;
1800 	u32			tag;
1801 	char			*kbuf;
1802 
1803 	spin_lock_irq(&dev->lock);
1804 	if (dev->state > STATE_DEV_OPENED) {
1805 		value = ep0_write(fd, buf, len, ptr);
1806 		spin_unlock_irq(&dev->lock);
1807 		return value;
1808 	}
1809 	spin_unlock_irq(&dev->lock);
1810 
1811 	if ((len < (USB_DT_CONFIG_SIZE + USB_DT_DEVICE_SIZE + 4)) ||
1812 	    (len > PAGE_SIZE * 4))
1813 		return -EINVAL;
1814 
1815 	/* we might need to change message format someday */
1816 	if (copy_from_user (&tag, buf, 4))
1817 		return -EFAULT;
1818 	if (tag != 0)
1819 		return -EINVAL;
1820 	buf += 4;
1821 	length -= 4;
1822 
1823 	kbuf = memdup_user(buf, length);
1824 	if (IS_ERR(kbuf))
1825 		return PTR_ERR(kbuf);
1826 
1827 	spin_lock_irq (&dev->lock);
1828 	value = -EINVAL;
1829 	if (dev->buf) {
1830 		spin_unlock_irq(&dev->lock);
1831 		kfree(kbuf);
1832 		return value;
1833 	}
1834 	dev->buf = kbuf;
1835 
1836 	/* full or low speed config */
1837 	dev->config = (void *) kbuf;
1838 	total = le16_to_cpu(dev->config->wTotalLength);
1839 	if (!is_valid_config(dev->config, total) ||
1840 			total > length - USB_DT_DEVICE_SIZE)
1841 		goto fail;
1842 	kbuf += total;
1843 	length -= total;
1844 
1845 	/* optional high speed config */
1846 	if (kbuf [1] == USB_DT_CONFIG) {
1847 		dev->hs_config = (void *) kbuf;
1848 		total = le16_to_cpu(dev->hs_config->wTotalLength);
1849 		if (!is_valid_config(dev->hs_config, total) ||
1850 				total > length - USB_DT_DEVICE_SIZE)
1851 			goto fail;
1852 		kbuf += total;
1853 		length -= total;
1854 	} else {
1855 		dev->hs_config = NULL;
1856 	}
1857 
1858 	/* could support multiple configs, using another encoding! */
1859 
1860 	/* device descriptor (tweaked for paranoia) */
1861 	if (length != USB_DT_DEVICE_SIZE)
1862 		goto fail;
1863 	dev->dev = (void *)kbuf;
1864 	if (dev->dev->bLength != USB_DT_DEVICE_SIZE
1865 			|| dev->dev->bDescriptorType != USB_DT_DEVICE
1866 			|| dev->dev->bNumConfigurations != 1)
1867 		goto fail;
1868 	dev->dev->bcdUSB = cpu_to_le16 (0x0200);
1869 
1870 	/* triggers gadgetfs_bind(); then we can enumerate. */
1871 	spin_unlock_irq (&dev->lock);
1872 	if (dev->hs_config)
1873 		gadgetfs_driver.max_speed = USB_SPEED_HIGH;
1874 	else
1875 		gadgetfs_driver.max_speed = USB_SPEED_FULL;
1876 
1877 	value = usb_gadget_register_driver(&gadgetfs_driver);
1878 	if (value != 0) {
1879 		spin_lock_irq(&dev->lock);
1880 		goto fail;
1881 	} else {
1882 		/* at this point "good" hardware has for the first time
1883 		 * let the USB the host see us.  alternatively, if users
1884 		 * unplug/replug that will clear all the error state.
1885 		 *
1886 		 * note:  everything running before here was guaranteed
1887 		 * to choke driver model style diagnostics.  from here
1888 		 * on, they can work ... except in cleanup paths that
1889 		 * kick in after the ep0 descriptor is closed.
1890 		 */
1891 		value = len;
1892 		dev->gadget_registered = true;
1893 	}
1894 	return value;
1895 
1896 fail:
1897 	dev->config = NULL;
1898 	dev->hs_config = NULL;
1899 	dev->dev = NULL;
1900 	spin_unlock_irq (&dev->lock);
1901 	pr_debug ("%s: %s fail %zd, %p\n", shortname, __func__, value, dev);
1902 	kfree (dev->buf);
1903 	dev->buf = NULL;
1904 	return value;
1905 }
1906 
1907 static int
1908 gadget_dev_open (struct inode *inode, struct file *fd)
1909 {
1910 	struct dev_data		*dev = inode->i_private;
1911 	int			value = -EBUSY;
1912 
1913 	spin_lock_irq(&dev->lock);
1914 	if (dev->state == STATE_DEV_DISABLED) {
1915 		dev->ev_next = 0;
1916 		dev->state = STATE_DEV_OPENED;
1917 		fd->private_data = dev;
1918 		get_dev (dev);
1919 		value = 0;
1920 	}
1921 	spin_unlock_irq(&dev->lock);
1922 	return value;
1923 }
1924 
1925 static const struct file_operations ep0_operations = {
1926 	.llseek =	no_llseek,
1927 
1928 	.open =		gadget_dev_open,
1929 	.read =		ep0_read,
1930 	.write =	dev_config,
1931 	.fasync =	ep0_fasync,
1932 	.poll =		ep0_poll,
1933 	.unlocked_ioctl = gadget_dev_ioctl,
1934 	.release =	dev_release,
1935 };
1936 
1937 /*----------------------------------------------------------------------*/
1938 
1939 /* FILESYSTEM AND SUPERBLOCK OPERATIONS
1940  *
1941  * Mounting the filesystem creates a controller file, used first for
1942  * device configuration then later for event monitoring.
1943  */
1944 
1945 
1946 /* FIXME PAM etc could set this security policy without mount options
1947  * if epfiles inherited ownership and permissons from ep0 ...
1948  */
1949 
1950 static unsigned default_uid;
1951 static unsigned default_gid;
1952 static unsigned default_perm = S_IRUSR | S_IWUSR;
1953 
1954 module_param (default_uid, uint, 0644);
1955 module_param (default_gid, uint, 0644);
1956 module_param (default_perm, uint, 0644);
1957 
1958 
1959 static struct inode *
1960 gadgetfs_make_inode (struct super_block *sb,
1961 		void *data, const struct file_operations *fops,
1962 		int mode)
1963 {
1964 	struct inode *inode = new_inode (sb);
1965 
1966 	if (inode) {
1967 		inode->i_ino = get_next_ino();
1968 		inode->i_mode = mode;
1969 		inode->i_uid = make_kuid(&init_user_ns, default_uid);
1970 		inode->i_gid = make_kgid(&init_user_ns, default_gid);
1971 		inode->i_atime = inode->i_mtime = inode->i_ctime
1972 				= current_time(inode);
1973 		inode->i_private = data;
1974 		inode->i_fop = fops;
1975 	}
1976 	return inode;
1977 }
1978 
1979 /* creates in fs root directory, so non-renamable and non-linkable.
1980  * so inode and dentry are paired, until device reconfig.
1981  */
1982 static struct dentry *
1983 gadgetfs_create_file (struct super_block *sb, char const *name,
1984 		void *data, const struct file_operations *fops)
1985 {
1986 	struct dentry	*dentry;
1987 	struct inode	*inode;
1988 
1989 	dentry = d_alloc_name(sb->s_root, name);
1990 	if (!dentry)
1991 		return NULL;
1992 
1993 	inode = gadgetfs_make_inode (sb, data, fops,
1994 			S_IFREG | (default_perm & S_IRWXUGO));
1995 	if (!inode) {
1996 		dput(dentry);
1997 		return NULL;
1998 	}
1999 	d_add (dentry, inode);
2000 	return dentry;
2001 }
2002 
2003 static const struct super_operations gadget_fs_operations = {
2004 	.statfs =	simple_statfs,
2005 	.drop_inode =	generic_delete_inode,
2006 };
2007 
2008 static int
2009 gadgetfs_fill_super (struct super_block *sb, struct fs_context *fc)
2010 {
2011 	struct inode	*inode;
2012 	struct dev_data	*dev;
2013 
2014 	if (the_device)
2015 		return -ESRCH;
2016 
2017 	CHIP = usb_get_gadget_udc_name();
2018 	if (!CHIP)
2019 		return -ENODEV;
2020 
2021 	/* superblock */
2022 	sb->s_blocksize = PAGE_SIZE;
2023 	sb->s_blocksize_bits = PAGE_SHIFT;
2024 	sb->s_magic = GADGETFS_MAGIC;
2025 	sb->s_op = &gadget_fs_operations;
2026 	sb->s_time_gran = 1;
2027 
2028 	/* root inode */
2029 	inode = gadgetfs_make_inode (sb,
2030 			NULL, &simple_dir_operations,
2031 			S_IFDIR | S_IRUGO | S_IXUGO);
2032 	if (!inode)
2033 		goto Enomem;
2034 	inode->i_op = &simple_dir_inode_operations;
2035 	if (!(sb->s_root = d_make_root (inode)))
2036 		goto Enomem;
2037 
2038 	/* the ep0 file is named after the controller we expect;
2039 	 * user mode code can use it for sanity checks, like we do.
2040 	 */
2041 	dev = dev_new ();
2042 	if (!dev)
2043 		goto Enomem;
2044 
2045 	dev->sb = sb;
2046 	dev->dentry = gadgetfs_create_file(sb, CHIP, dev, &ep0_operations);
2047 	if (!dev->dentry) {
2048 		put_dev(dev);
2049 		goto Enomem;
2050 	}
2051 
2052 	/* other endpoint files are available after hardware setup,
2053 	 * from binding to a controller.
2054 	 */
2055 	the_device = dev;
2056 	return 0;
2057 
2058 Enomem:
2059 	kfree(CHIP);
2060 	CHIP = NULL;
2061 
2062 	return -ENOMEM;
2063 }
2064 
2065 /* "mount -t gadgetfs path /dev/gadget" ends up here */
2066 static int gadgetfs_get_tree(struct fs_context *fc)
2067 {
2068 	return get_tree_single(fc, gadgetfs_fill_super);
2069 }
2070 
2071 static const struct fs_context_operations gadgetfs_context_ops = {
2072 	.get_tree	= gadgetfs_get_tree,
2073 };
2074 
2075 static int gadgetfs_init_fs_context(struct fs_context *fc)
2076 {
2077 	fc->ops = &gadgetfs_context_ops;
2078 	return 0;
2079 }
2080 
2081 static void
2082 gadgetfs_kill_sb (struct super_block *sb)
2083 {
2084 	kill_litter_super (sb);
2085 	if (the_device) {
2086 		put_dev (the_device);
2087 		the_device = NULL;
2088 	}
2089 	kfree(CHIP);
2090 	CHIP = NULL;
2091 }
2092 
2093 /*----------------------------------------------------------------------*/
2094 
2095 static struct file_system_type gadgetfs_type = {
2096 	.owner		= THIS_MODULE,
2097 	.name		= shortname,
2098 	.init_fs_context = gadgetfs_init_fs_context,
2099 	.kill_sb	= gadgetfs_kill_sb,
2100 };
2101 MODULE_ALIAS_FS("gadgetfs");
2102 
2103 /*----------------------------------------------------------------------*/
2104 
2105 static int __init gadgetfs_init (void)
2106 {
2107 	int status;
2108 
2109 	status = register_filesystem (&gadgetfs_type);
2110 	if (status == 0)
2111 		pr_info ("%s: %s, version " DRIVER_VERSION "\n",
2112 			shortname, driver_desc);
2113 	return status;
2114 }
2115 module_init (gadgetfs_init);
2116 
2117 static void __exit gadgetfs_cleanup (void)
2118 {
2119 	pr_debug ("unregister %s\n", shortname);
2120 	unregister_filesystem (&gadgetfs_type);
2121 }
2122 module_exit (gadgetfs_cleanup);
2123 
2124