xref: /openbmc/linux/drivers/usb/gadget/legacy/inode.c (revision b802fb99ae964681d1754428f67970911e0476e9)
1 /*
2  * inode.c -- user mode filesystem api for usb gadget controllers
3  *
4  * Copyright (C) 2003-2004 David Brownell
5  * Copyright (C) 2003 Agilent Technologies
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  */
12 
13 
14 /* #define VERBOSE_DEBUG */
15 
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/fs.h>
19 #include <linux/pagemap.h>
20 #include <linux/uts.h>
21 #include <linux/wait.h>
22 #include <linux/compiler.h>
23 #include <asm/uaccess.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/poll.h>
27 #include <linux/mmu_context.h>
28 #include <linux/aio.h>
29 #include <linux/uio.h>
30 
31 #include <linux/device.h>
32 #include <linux/moduleparam.h>
33 
34 #include <linux/usb/gadgetfs.h>
35 #include <linux/usb/gadget.h>
36 
37 
38 /*
39  * The gadgetfs API maps each endpoint to a file descriptor so that you
40  * can use standard synchronous read/write calls for I/O.  There's some
41  * O_NONBLOCK and O_ASYNC/FASYNC style i/o support.  Example usermode
42  * drivers show how this works in practice.  You can also use AIO to
43  * eliminate I/O gaps between requests, to help when streaming data.
44  *
45  * Key parts that must be USB-specific are protocols defining how the
46  * read/write operations relate to the hardware state machines.  There
47  * are two types of files.  One type is for the device, implementing ep0.
48  * The other type is for each IN or OUT endpoint.  In both cases, the
49  * user mode driver must configure the hardware before using it.
50  *
51  * - First, dev_config() is called when /dev/gadget/$CHIP is configured
52  *   (by writing configuration and device descriptors).  Afterwards it
53  *   may serve as a source of device events, used to handle all control
54  *   requests other than basic enumeration.
55  *
56  * - Then, after a SET_CONFIGURATION control request, ep_config() is
57  *   called when each /dev/gadget/ep* file is configured (by writing
58  *   endpoint descriptors).  Afterwards these files are used to write()
59  *   IN data or to read() OUT data.  To halt the endpoint, a "wrong
60  *   direction" request is issued (like reading an IN endpoint).
61  *
62  * Unlike "usbfs" the only ioctl()s are for things that are rare, and maybe
63  * not possible on all hardware.  For example, precise fault handling with
64  * respect to data left in endpoint fifos after aborted operations; or
65  * selective clearing of endpoint halts, to implement SET_INTERFACE.
66  */
67 
68 #define	DRIVER_DESC	"USB Gadget filesystem"
69 #define	DRIVER_VERSION	"24 Aug 2004"
70 
71 static const char driver_desc [] = DRIVER_DESC;
72 static const char shortname [] = "gadgetfs";
73 
74 MODULE_DESCRIPTION (DRIVER_DESC);
75 MODULE_AUTHOR ("David Brownell");
76 MODULE_LICENSE ("GPL");
77 
78 static int ep_open(struct inode *, struct file *);
79 
80 
81 /*----------------------------------------------------------------------*/
82 
83 #define GADGETFS_MAGIC		0xaee71ee7
84 
85 /* /dev/gadget/$CHIP represents ep0 and the whole device */
86 enum ep0_state {
87 	/* DISBLED is the initial state.
88 	 */
89 	STATE_DEV_DISABLED = 0,
90 
91 	/* Only one open() of /dev/gadget/$CHIP; only one file tracks
92 	 * ep0/device i/o modes and binding to the controller.  Driver
93 	 * must always write descriptors to initialize the device, then
94 	 * the device becomes UNCONNECTED until enumeration.
95 	 */
96 	STATE_DEV_OPENED,
97 
98 	/* From then on, ep0 fd is in either of two basic modes:
99 	 * - (UN)CONNECTED: read usb_gadgetfs_event(s) from it
100 	 * - SETUP: read/write will transfer control data and succeed;
101 	 *   or if "wrong direction", performs protocol stall
102 	 */
103 	STATE_DEV_UNCONNECTED,
104 	STATE_DEV_CONNECTED,
105 	STATE_DEV_SETUP,
106 
107 	/* UNBOUND means the driver closed ep0, so the device won't be
108 	 * accessible again (DEV_DISABLED) until all fds are closed.
109 	 */
110 	STATE_DEV_UNBOUND,
111 };
112 
113 /* enough for the whole queue: most events invalidate others */
114 #define	N_EVENT			5
115 
116 struct dev_data {
117 	spinlock_t			lock;
118 	atomic_t			count;
119 	enum ep0_state			state;		/* P: lock */
120 	struct usb_gadgetfs_event	event [N_EVENT];
121 	unsigned			ev_next;
122 	struct fasync_struct		*fasync;
123 	u8				current_config;
124 
125 	/* drivers reading ep0 MUST handle control requests (SETUP)
126 	 * reported that way; else the host will time out.
127 	 */
128 	unsigned			usermode_setup : 1,
129 					setup_in : 1,
130 					setup_can_stall : 1,
131 					setup_out_ready : 1,
132 					setup_out_error : 1,
133 					setup_abort : 1;
134 	unsigned			setup_wLength;
135 
136 	/* the rest is basically write-once */
137 	struct usb_config_descriptor	*config, *hs_config;
138 	struct usb_device_descriptor	*dev;
139 	struct usb_request		*req;
140 	struct usb_gadget		*gadget;
141 	struct list_head		epfiles;
142 	void				*buf;
143 	wait_queue_head_t		wait;
144 	struct super_block		*sb;
145 	struct dentry			*dentry;
146 
147 	/* except this scratch i/o buffer for ep0 */
148 	u8				rbuf [256];
149 };
150 
151 static inline void get_dev (struct dev_data *data)
152 {
153 	atomic_inc (&data->count);
154 }
155 
156 static void put_dev (struct dev_data *data)
157 {
158 	if (likely (!atomic_dec_and_test (&data->count)))
159 		return;
160 	/* needs no more cleanup */
161 	BUG_ON (waitqueue_active (&data->wait));
162 	kfree (data);
163 }
164 
165 static struct dev_data *dev_new (void)
166 {
167 	struct dev_data		*dev;
168 
169 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
170 	if (!dev)
171 		return NULL;
172 	dev->state = STATE_DEV_DISABLED;
173 	atomic_set (&dev->count, 1);
174 	spin_lock_init (&dev->lock);
175 	INIT_LIST_HEAD (&dev->epfiles);
176 	init_waitqueue_head (&dev->wait);
177 	return dev;
178 }
179 
180 /*----------------------------------------------------------------------*/
181 
182 /* other /dev/gadget/$ENDPOINT files represent endpoints */
183 enum ep_state {
184 	STATE_EP_DISABLED = 0,
185 	STATE_EP_READY,
186 	STATE_EP_ENABLED,
187 	STATE_EP_UNBOUND,
188 };
189 
190 struct ep_data {
191 	struct mutex			lock;
192 	enum ep_state			state;
193 	atomic_t			count;
194 	struct dev_data			*dev;
195 	/* must hold dev->lock before accessing ep or req */
196 	struct usb_ep			*ep;
197 	struct usb_request		*req;
198 	ssize_t				status;
199 	char				name [16];
200 	struct usb_endpoint_descriptor	desc, hs_desc;
201 	struct list_head		epfiles;
202 	wait_queue_head_t		wait;
203 	struct dentry			*dentry;
204 };
205 
206 static inline void get_ep (struct ep_data *data)
207 {
208 	atomic_inc (&data->count);
209 }
210 
211 static void put_ep (struct ep_data *data)
212 {
213 	if (likely (!atomic_dec_and_test (&data->count)))
214 		return;
215 	put_dev (data->dev);
216 	/* needs no more cleanup */
217 	BUG_ON (!list_empty (&data->epfiles));
218 	BUG_ON (waitqueue_active (&data->wait));
219 	kfree (data);
220 }
221 
222 /*----------------------------------------------------------------------*/
223 
224 /* most "how to use the hardware" policy choices are in userspace:
225  * mapping endpoint roles (which the driver needs) to the capabilities
226  * which the usb controller has.  most of those capabilities are exposed
227  * implicitly, starting with the driver name and then endpoint names.
228  */
229 
230 static const char *CHIP;
231 
232 /*----------------------------------------------------------------------*/
233 
234 /* NOTE:  don't use dev_printk calls before binding to the gadget
235  * at the end of ep0 configuration, or after unbind.
236  */
237 
238 /* too wordy: dev_printk(level , &(d)->gadget->dev , fmt , ## args) */
239 #define xprintk(d,level,fmt,args...) \
240 	printk(level "%s: " fmt , shortname , ## args)
241 
242 #ifdef DEBUG
243 #define DBG(dev,fmt,args...) \
244 	xprintk(dev , KERN_DEBUG , fmt , ## args)
245 #else
246 #define DBG(dev,fmt,args...) \
247 	do { } while (0)
248 #endif /* DEBUG */
249 
250 #ifdef VERBOSE_DEBUG
251 #define VDEBUG	DBG
252 #else
253 #define VDEBUG(dev,fmt,args...) \
254 	do { } while (0)
255 #endif /* DEBUG */
256 
257 #define ERROR(dev,fmt,args...) \
258 	xprintk(dev , KERN_ERR , fmt , ## args)
259 #define INFO(dev,fmt,args...) \
260 	xprintk(dev , KERN_INFO , fmt , ## args)
261 
262 
263 /*----------------------------------------------------------------------*/
264 
265 /* SYNCHRONOUS ENDPOINT OPERATIONS (bulk/intr/iso)
266  *
267  * After opening, configure non-control endpoints.  Then use normal
268  * stream read() and write() requests; and maybe ioctl() to get more
269  * precise FIFO status when recovering from cancellation.
270  */
271 
272 static void epio_complete (struct usb_ep *ep, struct usb_request *req)
273 {
274 	struct ep_data	*epdata = ep->driver_data;
275 
276 	if (!req->context)
277 		return;
278 	if (req->status)
279 		epdata->status = req->status;
280 	else
281 		epdata->status = req->actual;
282 	complete ((struct completion *)req->context);
283 }
284 
285 /* tasklock endpoint, returning when it's connected.
286  * still need dev->lock to use epdata->ep.
287  */
288 static int
289 get_ready_ep (unsigned f_flags, struct ep_data *epdata, bool is_write)
290 {
291 	int	val;
292 
293 	if (f_flags & O_NONBLOCK) {
294 		if (!mutex_trylock(&epdata->lock))
295 			goto nonblock;
296 		if (epdata->state != STATE_EP_ENABLED &&
297 		    (!is_write || epdata->state != STATE_EP_READY)) {
298 			mutex_unlock(&epdata->lock);
299 nonblock:
300 			val = -EAGAIN;
301 		} else
302 			val = 0;
303 		return val;
304 	}
305 
306 	val = mutex_lock_interruptible(&epdata->lock);
307 	if (val < 0)
308 		return val;
309 
310 	switch (epdata->state) {
311 	case STATE_EP_ENABLED:
312 		return 0;
313 	case STATE_EP_READY:			/* not configured yet */
314 		if (is_write)
315 			return 0;
316 		// FALLTHRU
317 	case STATE_EP_UNBOUND:			/* clean disconnect */
318 		break;
319 	// case STATE_EP_DISABLED:		/* "can't happen" */
320 	default:				/* error! */
321 		pr_debug ("%s: ep %p not available, state %d\n",
322 				shortname, epdata, epdata->state);
323 	}
324 	mutex_unlock(&epdata->lock);
325 	return -ENODEV;
326 }
327 
328 static ssize_t
329 ep_io (struct ep_data *epdata, void *buf, unsigned len)
330 {
331 	DECLARE_COMPLETION_ONSTACK (done);
332 	int value;
333 
334 	spin_lock_irq (&epdata->dev->lock);
335 	if (likely (epdata->ep != NULL)) {
336 		struct usb_request	*req = epdata->req;
337 
338 		req->context = &done;
339 		req->complete = epio_complete;
340 		req->buf = buf;
341 		req->length = len;
342 		value = usb_ep_queue (epdata->ep, req, GFP_ATOMIC);
343 	} else
344 		value = -ENODEV;
345 	spin_unlock_irq (&epdata->dev->lock);
346 
347 	if (likely (value == 0)) {
348 		value = wait_event_interruptible (done.wait, done.done);
349 		if (value != 0) {
350 			spin_lock_irq (&epdata->dev->lock);
351 			if (likely (epdata->ep != NULL)) {
352 				DBG (epdata->dev, "%s i/o interrupted\n",
353 						epdata->name);
354 				usb_ep_dequeue (epdata->ep, epdata->req);
355 				spin_unlock_irq (&epdata->dev->lock);
356 
357 				wait_event (done.wait, done.done);
358 				if (epdata->status == -ECONNRESET)
359 					epdata->status = -EINTR;
360 			} else {
361 				spin_unlock_irq (&epdata->dev->lock);
362 
363 				DBG (epdata->dev, "endpoint gone\n");
364 				epdata->status = -ENODEV;
365 			}
366 		}
367 		return epdata->status;
368 	}
369 	return value;
370 }
371 
372 static int
373 ep_release (struct inode *inode, struct file *fd)
374 {
375 	struct ep_data		*data = fd->private_data;
376 	int value;
377 
378 	value = mutex_lock_interruptible(&data->lock);
379 	if (value < 0)
380 		return value;
381 
382 	/* clean up if this can be reopened */
383 	if (data->state != STATE_EP_UNBOUND) {
384 		data->state = STATE_EP_DISABLED;
385 		data->desc.bDescriptorType = 0;
386 		data->hs_desc.bDescriptorType = 0;
387 		usb_ep_disable(data->ep);
388 	}
389 	mutex_unlock(&data->lock);
390 	put_ep (data);
391 	return 0;
392 }
393 
394 static long ep_ioctl(struct file *fd, unsigned code, unsigned long value)
395 {
396 	struct ep_data		*data = fd->private_data;
397 	int			status;
398 
399 	if ((status = get_ready_ep (fd->f_flags, data, false)) < 0)
400 		return status;
401 
402 	spin_lock_irq (&data->dev->lock);
403 	if (likely (data->ep != NULL)) {
404 		switch (code) {
405 		case GADGETFS_FIFO_STATUS:
406 			status = usb_ep_fifo_status (data->ep);
407 			break;
408 		case GADGETFS_FIFO_FLUSH:
409 			usb_ep_fifo_flush (data->ep);
410 			break;
411 		case GADGETFS_CLEAR_HALT:
412 			status = usb_ep_clear_halt (data->ep);
413 			break;
414 		default:
415 			status = -ENOTTY;
416 		}
417 	} else
418 		status = -ENODEV;
419 	spin_unlock_irq (&data->dev->lock);
420 	mutex_unlock(&data->lock);
421 	return status;
422 }
423 
424 /*----------------------------------------------------------------------*/
425 
426 /* ASYNCHRONOUS ENDPOINT I/O OPERATIONS (bulk/intr/iso) */
427 
428 struct kiocb_priv {
429 	struct usb_request	*req;
430 	struct ep_data		*epdata;
431 	struct kiocb		*iocb;
432 	struct mm_struct	*mm;
433 	struct work_struct	work;
434 	void			*buf;
435 	struct iov_iter		to;
436 	const void		*to_free;
437 	unsigned		actual;
438 };
439 
440 static int ep_aio_cancel(struct kiocb *iocb)
441 {
442 	struct kiocb_priv	*priv = iocb->private;
443 	struct ep_data		*epdata;
444 	int			value;
445 
446 	local_irq_disable();
447 	epdata = priv->epdata;
448 	// spin_lock(&epdata->dev->lock);
449 	if (likely(epdata && epdata->ep && priv->req))
450 		value = usb_ep_dequeue (epdata->ep, priv->req);
451 	else
452 		value = -EINVAL;
453 	// spin_unlock(&epdata->dev->lock);
454 	local_irq_enable();
455 
456 	return value;
457 }
458 
459 static void ep_user_copy_worker(struct work_struct *work)
460 {
461 	struct kiocb_priv *priv = container_of(work, struct kiocb_priv, work);
462 	struct mm_struct *mm = priv->mm;
463 	struct kiocb *iocb = priv->iocb;
464 	size_t ret;
465 
466 	use_mm(mm);
467 	ret = copy_to_iter(priv->buf, priv->actual, &priv->to);
468 	unuse_mm(mm);
469 	if (!ret)
470 		ret = -EFAULT;
471 
472 	/* completing the iocb can drop the ctx and mm, don't touch mm after */
473 	iocb->ki_complete(iocb, ret, ret);
474 
475 	kfree(priv->buf);
476 	kfree(priv->to_free);
477 	kfree(priv);
478 }
479 
480 static void ep_aio_complete(struct usb_ep *ep, struct usb_request *req)
481 {
482 	struct kiocb		*iocb = req->context;
483 	struct kiocb_priv	*priv = iocb->private;
484 	struct ep_data		*epdata = priv->epdata;
485 
486 	/* lock against disconnect (and ideally, cancel) */
487 	spin_lock(&epdata->dev->lock);
488 	priv->req = NULL;
489 	priv->epdata = NULL;
490 
491 	/* if this was a write or a read returning no data then we
492 	 * don't need to copy anything to userspace, so we can
493 	 * complete the aio request immediately.
494 	 */
495 	if (priv->to_free == NULL || unlikely(req->actual == 0)) {
496 		kfree(req->buf);
497 		kfree(priv->to_free);
498 		kfree(priv);
499 		iocb->private = NULL;
500 		/* aio_complete() reports bytes-transferred _and_ faults */
501 
502 		iocb->ki_complete(iocb, req->actual ? req->actual : req->status,
503 				req->status);
504 	} else {
505 		/* ep_copy_to_user() won't report both; we hide some faults */
506 		if (unlikely(0 != req->status))
507 			DBG(epdata->dev, "%s fault %d len %d\n",
508 				ep->name, req->status, req->actual);
509 
510 		priv->buf = req->buf;
511 		priv->actual = req->actual;
512 		INIT_WORK(&priv->work, ep_user_copy_worker);
513 		schedule_work(&priv->work);
514 	}
515 	spin_unlock(&epdata->dev->lock);
516 
517 	usb_ep_free_request(ep, req);
518 	put_ep(epdata);
519 }
520 
521 static ssize_t ep_aio(struct kiocb *iocb,
522 		      struct kiocb_priv *priv,
523 		      struct ep_data *epdata,
524 		      char *buf,
525 		      size_t len)
526 {
527 	struct usb_request *req;
528 	ssize_t value;
529 
530 	iocb->private = priv;
531 	priv->iocb = iocb;
532 
533 	kiocb_set_cancel_fn(iocb, ep_aio_cancel);
534 	get_ep(epdata);
535 	priv->epdata = epdata;
536 	priv->actual = 0;
537 	priv->mm = current->mm; /* mm teardown waits for iocbs in exit_aio() */
538 
539 	/* each kiocb is coupled to one usb_request, but we can't
540 	 * allocate or submit those if the host disconnected.
541 	 */
542 	spin_lock_irq(&epdata->dev->lock);
543 	value = -ENODEV;
544 	if (unlikely(epdata->ep))
545 		goto fail;
546 
547 	req = usb_ep_alloc_request(epdata->ep, GFP_ATOMIC);
548 	value = -ENOMEM;
549 	if (unlikely(!req))
550 		goto fail;
551 
552 	priv->req = req;
553 	req->buf = buf;
554 	req->length = len;
555 	req->complete = ep_aio_complete;
556 	req->context = iocb;
557 	value = usb_ep_queue(epdata->ep, req, GFP_ATOMIC);
558 	if (unlikely(0 != value)) {
559 		usb_ep_free_request(epdata->ep, req);
560 		goto fail;
561 	}
562 	spin_unlock_irq(&epdata->dev->lock);
563 	return -EIOCBQUEUED;
564 
565 fail:
566 	spin_unlock_irq(&epdata->dev->lock);
567 	kfree(priv->to_free);
568 	kfree(priv);
569 	put_ep(epdata);
570 	return value;
571 }
572 
573 static ssize_t
574 ep_read_iter(struct kiocb *iocb, struct iov_iter *to)
575 {
576 	struct file *file = iocb->ki_filp;
577 	struct ep_data *epdata = file->private_data;
578 	size_t len = iov_iter_count(to);
579 	ssize_t value;
580 	char *buf;
581 
582 	if ((value = get_ready_ep(file->f_flags, epdata, false)) < 0)
583 		return value;
584 
585 	/* halt any endpoint by doing a "wrong direction" i/o call */
586 	if (usb_endpoint_dir_in(&epdata->desc)) {
587 		if (usb_endpoint_xfer_isoc(&epdata->desc) ||
588 		    !is_sync_kiocb(iocb)) {
589 			mutex_unlock(&epdata->lock);
590 			return -EINVAL;
591 		}
592 		DBG (epdata->dev, "%s halt\n", epdata->name);
593 		spin_lock_irq(&epdata->dev->lock);
594 		if (likely(epdata->ep != NULL))
595 			usb_ep_set_halt(epdata->ep);
596 		spin_unlock_irq(&epdata->dev->lock);
597 		mutex_unlock(&epdata->lock);
598 		return -EBADMSG;
599 	}
600 
601 	buf = kmalloc(len, GFP_KERNEL);
602 	if (unlikely(!buf)) {
603 		mutex_unlock(&epdata->lock);
604 		return -ENOMEM;
605 	}
606 	if (is_sync_kiocb(iocb)) {
607 		value = ep_io(epdata, buf, len);
608 		if (value >= 0 && copy_to_iter(buf, value, to))
609 			value = -EFAULT;
610 	} else {
611 		struct kiocb_priv *priv = kzalloc(sizeof *priv, GFP_KERNEL);
612 		value = -ENOMEM;
613 		if (!priv)
614 			goto fail;
615 		priv->to_free = dup_iter(&priv->to, to, GFP_KERNEL);
616 		if (!priv->to_free) {
617 			kfree(priv);
618 			goto fail;
619 		}
620 		value = ep_aio(iocb, priv, epdata, buf, len);
621 		if (value == -EIOCBQUEUED)
622 			buf = NULL;
623 	}
624 fail:
625 	kfree(buf);
626 	mutex_unlock(&epdata->lock);
627 	return value;
628 }
629 
630 static ssize_t ep_config(struct ep_data *, const char *, size_t);
631 
632 static ssize_t
633 ep_write_iter(struct kiocb *iocb, struct iov_iter *from)
634 {
635 	struct file *file = iocb->ki_filp;
636 	struct ep_data *epdata = file->private_data;
637 	size_t len = iov_iter_count(from);
638 	bool configured;
639 	ssize_t value;
640 	char *buf;
641 
642 	if ((value = get_ready_ep(file->f_flags, epdata, true)) < 0)
643 		return value;
644 
645 	configured = epdata->state == STATE_EP_ENABLED;
646 
647 	/* halt any endpoint by doing a "wrong direction" i/o call */
648 	if (configured && !usb_endpoint_dir_in(&epdata->desc)) {
649 		if (usb_endpoint_xfer_isoc(&epdata->desc) ||
650 		    !is_sync_kiocb(iocb)) {
651 			mutex_unlock(&epdata->lock);
652 			return -EINVAL;
653 		}
654 		DBG (epdata->dev, "%s halt\n", epdata->name);
655 		spin_lock_irq(&epdata->dev->lock);
656 		if (likely(epdata->ep != NULL))
657 			usb_ep_set_halt(epdata->ep);
658 		spin_unlock_irq(&epdata->dev->lock);
659 		mutex_unlock(&epdata->lock);
660 		return -EBADMSG;
661 	}
662 
663 	buf = kmalloc(len, GFP_KERNEL);
664 	if (unlikely(!buf)) {
665 		mutex_unlock(&epdata->lock);
666 		return -ENOMEM;
667 	}
668 
669 	if (unlikely(copy_from_iter(buf, len, from) != len)) {
670 		value = -EFAULT;
671 		goto out;
672 	}
673 
674 	if (unlikely(!configured)) {
675 		value = ep_config(epdata, buf, len);
676 	} else if (is_sync_kiocb(iocb)) {
677 		value = ep_io(epdata, buf, len);
678 	} else {
679 		struct kiocb_priv *priv = kzalloc(sizeof *priv, GFP_KERNEL);
680 		value = -ENOMEM;
681 		if (priv) {
682 			value = ep_aio(iocb, priv, epdata, buf, len);
683 			if (value == -EIOCBQUEUED)
684 				buf = NULL;
685 		}
686 	}
687 out:
688 	kfree(buf);
689 	mutex_unlock(&epdata->lock);
690 	return value;
691 }
692 
693 /*----------------------------------------------------------------------*/
694 
695 /* used after endpoint configuration */
696 static const struct file_operations ep_io_operations = {
697 	.owner =	THIS_MODULE,
698 
699 	.open =		ep_open,
700 	.release =	ep_release,
701 	.llseek =	no_llseek,
702 	.unlocked_ioctl = ep_ioctl,
703 	.read_iter =	ep_read_iter,
704 	.write_iter =	ep_write_iter,
705 };
706 
707 /* ENDPOINT INITIALIZATION
708  *
709  *     fd = open ("/dev/gadget/$ENDPOINT", O_RDWR)
710  *     status = write (fd, descriptors, sizeof descriptors)
711  *
712  * That write establishes the endpoint configuration, configuring
713  * the controller to process bulk, interrupt, or isochronous transfers
714  * at the right maxpacket size, and so on.
715  *
716  * The descriptors are message type 1, identified by a host order u32
717  * at the beginning of what's written.  Descriptor order is: full/low
718  * speed descriptor, then optional high speed descriptor.
719  */
720 static ssize_t
721 ep_config (struct ep_data *data, const char *buf, size_t len)
722 {
723 	struct usb_ep		*ep;
724 	u32			tag;
725 	int			value, length = len;
726 
727 	if (data->state != STATE_EP_READY) {
728 		value = -EL2HLT;
729 		goto fail;
730 	}
731 
732 	value = len;
733 	if (len < USB_DT_ENDPOINT_SIZE + 4)
734 		goto fail0;
735 
736 	/* we might need to change message format someday */
737 	memcpy(&tag, buf, 4);
738 	if (tag != 1) {
739 		DBG(data->dev, "config %s, bad tag %d\n", data->name, tag);
740 		goto fail0;
741 	}
742 	buf += 4;
743 	len -= 4;
744 
745 	/* NOTE:  audio endpoint extensions not accepted here;
746 	 * just don't include the extra bytes.
747 	 */
748 
749 	/* full/low speed descriptor, then high speed */
750 	memcpy(&data->desc, buf, USB_DT_ENDPOINT_SIZE);
751 	if (data->desc.bLength != USB_DT_ENDPOINT_SIZE
752 			|| data->desc.bDescriptorType != USB_DT_ENDPOINT)
753 		goto fail0;
754 	if (len != USB_DT_ENDPOINT_SIZE) {
755 		if (len != 2 * USB_DT_ENDPOINT_SIZE)
756 			goto fail0;
757 		memcpy(&data->hs_desc, buf + USB_DT_ENDPOINT_SIZE,
758 			USB_DT_ENDPOINT_SIZE);
759 		if (data->hs_desc.bLength != USB_DT_ENDPOINT_SIZE
760 				|| data->hs_desc.bDescriptorType
761 					!= USB_DT_ENDPOINT) {
762 			DBG(data->dev, "config %s, bad hs length or type\n",
763 					data->name);
764 			goto fail0;
765 		}
766 	}
767 
768 	spin_lock_irq (&data->dev->lock);
769 	if (data->dev->state == STATE_DEV_UNBOUND) {
770 		value = -ENOENT;
771 		goto gone;
772 	} else {
773 		ep = data->ep;
774 		if (ep == NULL) {
775 			value = -ENODEV;
776 			goto gone;
777 		}
778 	}
779 	switch (data->dev->gadget->speed) {
780 	case USB_SPEED_LOW:
781 	case USB_SPEED_FULL:
782 		ep->desc = &data->desc;
783 		break;
784 	case USB_SPEED_HIGH:
785 		/* fails if caller didn't provide that descriptor... */
786 		ep->desc = &data->hs_desc;
787 		break;
788 	default:
789 		DBG(data->dev, "unconnected, %s init abandoned\n",
790 				data->name);
791 		value = -EINVAL;
792 		goto gone;
793 	}
794 	value = usb_ep_enable(ep);
795 	if (value == 0) {
796 		data->state = STATE_EP_ENABLED;
797 		value = length;
798 	}
799 gone:
800 	spin_unlock_irq (&data->dev->lock);
801 	if (value < 0) {
802 fail:
803 		data->desc.bDescriptorType = 0;
804 		data->hs_desc.bDescriptorType = 0;
805 	}
806 	return value;
807 fail0:
808 	value = -EINVAL;
809 	goto fail;
810 }
811 
812 static int
813 ep_open (struct inode *inode, struct file *fd)
814 {
815 	struct ep_data		*data = inode->i_private;
816 	int			value = -EBUSY;
817 
818 	if (mutex_lock_interruptible(&data->lock) != 0)
819 		return -EINTR;
820 	spin_lock_irq (&data->dev->lock);
821 	if (data->dev->state == STATE_DEV_UNBOUND)
822 		value = -ENOENT;
823 	else if (data->state == STATE_EP_DISABLED) {
824 		value = 0;
825 		data->state = STATE_EP_READY;
826 		get_ep (data);
827 		fd->private_data = data;
828 		VDEBUG (data->dev, "%s ready\n", data->name);
829 	} else
830 		DBG (data->dev, "%s state %d\n",
831 			data->name, data->state);
832 	spin_unlock_irq (&data->dev->lock);
833 	mutex_unlock(&data->lock);
834 	return value;
835 }
836 
837 /*----------------------------------------------------------------------*/
838 
839 /* EP0 IMPLEMENTATION can be partly in userspace.
840  *
841  * Drivers that use this facility receive various events, including
842  * control requests the kernel doesn't handle.  Drivers that don't
843  * use this facility may be too simple-minded for real applications.
844  */
845 
846 static inline void ep0_readable (struct dev_data *dev)
847 {
848 	wake_up (&dev->wait);
849 	kill_fasync (&dev->fasync, SIGIO, POLL_IN);
850 }
851 
852 static void clean_req (struct usb_ep *ep, struct usb_request *req)
853 {
854 	struct dev_data		*dev = ep->driver_data;
855 
856 	if (req->buf != dev->rbuf) {
857 		kfree(req->buf);
858 		req->buf = dev->rbuf;
859 	}
860 	req->complete = epio_complete;
861 	dev->setup_out_ready = 0;
862 }
863 
864 static void ep0_complete (struct usb_ep *ep, struct usb_request *req)
865 {
866 	struct dev_data		*dev = ep->driver_data;
867 	unsigned long		flags;
868 	int			free = 1;
869 
870 	/* for control OUT, data must still get to userspace */
871 	spin_lock_irqsave(&dev->lock, flags);
872 	if (!dev->setup_in) {
873 		dev->setup_out_error = (req->status != 0);
874 		if (!dev->setup_out_error)
875 			free = 0;
876 		dev->setup_out_ready = 1;
877 		ep0_readable (dev);
878 	}
879 
880 	/* clean up as appropriate */
881 	if (free && req->buf != &dev->rbuf)
882 		clean_req (ep, req);
883 	req->complete = epio_complete;
884 	spin_unlock_irqrestore(&dev->lock, flags);
885 }
886 
887 static int setup_req (struct usb_ep *ep, struct usb_request *req, u16 len)
888 {
889 	struct dev_data	*dev = ep->driver_data;
890 
891 	if (dev->setup_out_ready) {
892 		DBG (dev, "ep0 request busy!\n");
893 		return -EBUSY;
894 	}
895 	if (len > sizeof (dev->rbuf))
896 		req->buf = kmalloc(len, GFP_ATOMIC);
897 	if (req->buf == NULL) {
898 		req->buf = dev->rbuf;
899 		return -ENOMEM;
900 	}
901 	req->complete = ep0_complete;
902 	req->length = len;
903 	req->zero = 0;
904 	return 0;
905 }
906 
907 static ssize_t
908 ep0_read (struct file *fd, char __user *buf, size_t len, loff_t *ptr)
909 {
910 	struct dev_data			*dev = fd->private_data;
911 	ssize_t				retval;
912 	enum ep0_state			state;
913 
914 	spin_lock_irq (&dev->lock);
915 	if (dev->state <= STATE_DEV_OPENED) {
916 		retval = -EINVAL;
917 		goto done;
918 	}
919 
920 	/* report fd mode change before acting on it */
921 	if (dev->setup_abort) {
922 		dev->setup_abort = 0;
923 		retval = -EIDRM;
924 		goto done;
925 	}
926 
927 	/* control DATA stage */
928 	if ((state = dev->state) == STATE_DEV_SETUP) {
929 
930 		if (dev->setup_in) {		/* stall IN */
931 			VDEBUG(dev, "ep0in stall\n");
932 			(void) usb_ep_set_halt (dev->gadget->ep0);
933 			retval = -EL2HLT;
934 			dev->state = STATE_DEV_CONNECTED;
935 
936 		} else if (len == 0) {		/* ack SET_CONFIGURATION etc */
937 			struct usb_ep		*ep = dev->gadget->ep0;
938 			struct usb_request	*req = dev->req;
939 
940 			if ((retval = setup_req (ep, req, 0)) == 0)
941 				retval = usb_ep_queue (ep, req, GFP_ATOMIC);
942 			dev->state = STATE_DEV_CONNECTED;
943 
944 			/* assume that was SET_CONFIGURATION */
945 			if (dev->current_config) {
946 				unsigned power;
947 
948 				if (gadget_is_dualspeed(dev->gadget)
949 						&& (dev->gadget->speed
950 							== USB_SPEED_HIGH))
951 					power = dev->hs_config->bMaxPower;
952 				else
953 					power = dev->config->bMaxPower;
954 				usb_gadget_vbus_draw(dev->gadget, 2 * power);
955 			}
956 
957 		} else {			/* collect OUT data */
958 			if ((fd->f_flags & O_NONBLOCK) != 0
959 					&& !dev->setup_out_ready) {
960 				retval = -EAGAIN;
961 				goto done;
962 			}
963 			spin_unlock_irq (&dev->lock);
964 			retval = wait_event_interruptible (dev->wait,
965 					dev->setup_out_ready != 0);
966 
967 			/* FIXME state could change from under us */
968 			spin_lock_irq (&dev->lock);
969 			if (retval)
970 				goto done;
971 
972 			if (dev->state != STATE_DEV_SETUP) {
973 				retval = -ECANCELED;
974 				goto done;
975 			}
976 			dev->state = STATE_DEV_CONNECTED;
977 
978 			if (dev->setup_out_error)
979 				retval = -EIO;
980 			else {
981 				len = min (len, (size_t)dev->req->actual);
982 // FIXME don't call this with the spinlock held ...
983 				if (copy_to_user (buf, dev->req->buf, len))
984 					retval = -EFAULT;
985 				else
986 					retval = len;
987 				clean_req (dev->gadget->ep0, dev->req);
988 				/* NOTE userspace can't yet choose to stall */
989 			}
990 		}
991 		goto done;
992 	}
993 
994 	/* else normal: return event data */
995 	if (len < sizeof dev->event [0]) {
996 		retval = -EINVAL;
997 		goto done;
998 	}
999 	len -= len % sizeof (struct usb_gadgetfs_event);
1000 	dev->usermode_setup = 1;
1001 
1002 scan:
1003 	/* return queued events right away */
1004 	if (dev->ev_next != 0) {
1005 		unsigned		i, n;
1006 
1007 		n = len / sizeof (struct usb_gadgetfs_event);
1008 		if (dev->ev_next < n)
1009 			n = dev->ev_next;
1010 
1011 		/* ep0 i/o has special semantics during STATE_DEV_SETUP */
1012 		for (i = 0; i < n; i++) {
1013 			if (dev->event [i].type == GADGETFS_SETUP) {
1014 				dev->state = STATE_DEV_SETUP;
1015 				n = i + 1;
1016 				break;
1017 			}
1018 		}
1019 		spin_unlock_irq (&dev->lock);
1020 		len = n * sizeof (struct usb_gadgetfs_event);
1021 		if (copy_to_user (buf, &dev->event, len))
1022 			retval = -EFAULT;
1023 		else
1024 			retval = len;
1025 		if (len > 0) {
1026 			/* NOTE this doesn't guard against broken drivers;
1027 			 * concurrent ep0 readers may lose events.
1028 			 */
1029 			spin_lock_irq (&dev->lock);
1030 			if (dev->ev_next > n) {
1031 				memmove(&dev->event[0], &dev->event[n],
1032 					sizeof (struct usb_gadgetfs_event)
1033 						* (dev->ev_next - n));
1034 			}
1035 			dev->ev_next -= n;
1036 			spin_unlock_irq (&dev->lock);
1037 		}
1038 		return retval;
1039 	}
1040 	if (fd->f_flags & O_NONBLOCK) {
1041 		retval = -EAGAIN;
1042 		goto done;
1043 	}
1044 
1045 	switch (state) {
1046 	default:
1047 		DBG (dev, "fail %s, state %d\n", __func__, state);
1048 		retval = -ESRCH;
1049 		break;
1050 	case STATE_DEV_UNCONNECTED:
1051 	case STATE_DEV_CONNECTED:
1052 		spin_unlock_irq (&dev->lock);
1053 		DBG (dev, "%s wait\n", __func__);
1054 
1055 		/* wait for events */
1056 		retval = wait_event_interruptible (dev->wait,
1057 				dev->ev_next != 0);
1058 		if (retval < 0)
1059 			return retval;
1060 		spin_lock_irq (&dev->lock);
1061 		goto scan;
1062 	}
1063 
1064 done:
1065 	spin_unlock_irq (&dev->lock);
1066 	return retval;
1067 }
1068 
1069 static struct usb_gadgetfs_event *
1070 next_event (struct dev_data *dev, enum usb_gadgetfs_event_type type)
1071 {
1072 	struct usb_gadgetfs_event	*event;
1073 	unsigned			i;
1074 
1075 	switch (type) {
1076 	/* these events purge the queue */
1077 	case GADGETFS_DISCONNECT:
1078 		if (dev->state == STATE_DEV_SETUP)
1079 			dev->setup_abort = 1;
1080 		// FALL THROUGH
1081 	case GADGETFS_CONNECT:
1082 		dev->ev_next = 0;
1083 		break;
1084 	case GADGETFS_SETUP:		/* previous request timed out */
1085 	case GADGETFS_SUSPEND:		/* same effect */
1086 		/* these events can't be repeated */
1087 		for (i = 0; i != dev->ev_next; i++) {
1088 			if (dev->event [i].type != type)
1089 				continue;
1090 			DBG(dev, "discard old event[%d] %d\n", i, type);
1091 			dev->ev_next--;
1092 			if (i == dev->ev_next)
1093 				break;
1094 			/* indices start at zero, for simplicity */
1095 			memmove (&dev->event [i], &dev->event [i + 1],
1096 				sizeof (struct usb_gadgetfs_event)
1097 					* (dev->ev_next - i));
1098 		}
1099 		break;
1100 	default:
1101 		BUG ();
1102 	}
1103 	VDEBUG(dev, "event[%d] = %d\n", dev->ev_next, type);
1104 	event = &dev->event [dev->ev_next++];
1105 	BUG_ON (dev->ev_next > N_EVENT);
1106 	memset (event, 0, sizeof *event);
1107 	event->type = type;
1108 	return event;
1109 }
1110 
1111 static ssize_t
1112 ep0_write (struct file *fd, const char __user *buf, size_t len, loff_t *ptr)
1113 {
1114 	struct dev_data		*dev = fd->private_data;
1115 	ssize_t			retval = -ESRCH;
1116 
1117 	/* report fd mode change before acting on it */
1118 	if (dev->setup_abort) {
1119 		dev->setup_abort = 0;
1120 		retval = -EIDRM;
1121 
1122 	/* data and/or status stage for control request */
1123 	} else if (dev->state == STATE_DEV_SETUP) {
1124 
1125 		/* IN DATA+STATUS caller makes len <= wLength */
1126 		if (dev->setup_in) {
1127 			retval = setup_req (dev->gadget->ep0, dev->req, len);
1128 			if (retval == 0) {
1129 				dev->state = STATE_DEV_CONNECTED;
1130 				spin_unlock_irq (&dev->lock);
1131 				if (copy_from_user (dev->req->buf, buf, len))
1132 					retval = -EFAULT;
1133 				else {
1134 					if (len < dev->setup_wLength)
1135 						dev->req->zero = 1;
1136 					retval = usb_ep_queue (
1137 						dev->gadget->ep0, dev->req,
1138 						GFP_KERNEL);
1139 				}
1140 				spin_lock_irq(&dev->lock);
1141 				if (retval < 0) {
1142 					clean_req (dev->gadget->ep0, dev->req);
1143 				} else
1144 					retval = len;
1145 
1146 				return retval;
1147 			}
1148 
1149 		/* can stall some OUT transfers */
1150 		} else if (dev->setup_can_stall) {
1151 			VDEBUG(dev, "ep0out stall\n");
1152 			(void) usb_ep_set_halt (dev->gadget->ep0);
1153 			retval = -EL2HLT;
1154 			dev->state = STATE_DEV_CONNECTED;
1155 		} else {
1156 			DBG(dev, "bogus ep0out stall!\n");
1157 		}
1158 	} else
1159 		DBG (dev, "fail %s, state %d\n", __func__, dev->state);
1160 
1161 	return retval;
1162 }
1163 
1164 static int
1165 ep0_fasync (int f, struct file *fd, int on)
1166 {
1167 	struct dev_data		*dev = fd->private_data;
1168 	// caller must F_SETOWN before signal delivery happens
1169 	VDEBUG (dev, "%s %s\n", __func__, on ? "on" : "off");
1170 	return fasync_helper (f, fd, on, &dev->fasync);
1171 }
1172 
1173 static struct usb_gadget_driver gadgetfs_driver;
1174 
1175 static int
1176 dev_release (struct inode *inode, struct file *fd)
1177 {
1178 	struct dev_data		*dev = fd->private_data;
1179 
1180 	/* closing ep0 === shutdown all */
1181 
1182 	usb_gadget_unregister_driver (&gadgetfs_driver);
1183 
1184 	/* at this point "good" hardware has disconnected the
1185 	 * device from USB; the host won't see it any more.
1186 	 * alternatively, all host requests will time out.
1187 	 */
1188 
1189 	kfree (dev->buf);
1190 	dev->buf = NULL;
1191 
1192 	/* other endpoints were all decoupled from this device */
1193 	spin_lock_irq(&dev->lock);
1194 	dev->state = STATE_DEV_DISABLED;
1195 	spin_unlock_irq(&dev->lock);
1196 
1197 	put_dev (dev);
1198 	return 0;
1199 }
1200 
1201 static unsigned int
1202 ep0_poll (struct file *fd, poll_table *wait)
1203 {
1204        struct dev_data         *dev = fd->private_data;
1205        int                     mask = 0;
1206 
1207 	if (dev->state <= STATE_DEV_OPENED)
1208 		return DEFAULT_POLLMASK;
1209 
1210        poll_wait(fd, &dev->wait, wait);
1211 
1212        spin_lock_irq (&dev->lock);
1213 
1214        /* report fd mode change before acting on it */
1215        if (dev->setup_abort) {
1216                dev->setup_abort = 0;
1217                mask = POLLHUP;
1218                goto out;
1219        }
1220 
1221        if (dev->state == STATE_DEV_SETUP) {
1222                if (dev->setup_in || dev->setup_can_stall)
1223                        mask = POLLOUT;
1224        } else {
1225                if (dev->ev_next != 0)
1226                        mask = POLLIN;
1227        }
1228 out:
1229        spin_unlock_irq(&dev->lock);
1230        return mask;
1231 }
1232 
1233 static long dev_ioctl (struct file *fd, unsigned code, unsigned long value)
1234 {
1235 	struct dev_data		*dev = fd->private_data;
1236 	struct usb_gadget	*gadget = dev->gadget;
1237 	long ret = -ENOTTY;
1238 
1239 	if (gadget->ops->ioctl)
1240 		ret = gadget->ops->ioctl (gadget, code, value);
1241 
1242 	return ret;
1243 }
1244 
1245 /*----------------------------------------------------------------------*/
1246 
1247 /* The in-kernel gadget driver handles most ep0 issues, in particular
1248  * enumerating the single configuration (as provided from user space).
1249  *
1250  * Unrecognized ep0 requests may be handled in user space.
1251  */
1252 
1253 static void make_qualifier (struct dev_data *dev)
1254 {
1255 	struct usb_qualifier_descriptor		qual;
1256 	struct usb_device_descriptor		*desc;
1257 
1258 	qual.bLength = sizeof qual;
1259 	qual.bDescriptorType = USB_DT_DEVICE_QUALIFIER;
1260 	qual.bcdUSB = cpu_to_le16 (0x0200);
1261 
1262 	desc = dev->dev;
1263 	qual.bDeviceClass = desc->bDeviceClass;
1264 	qual.bDeviceSubClass = desc->bDeviceSubClass;
1265 	qual.bDeviceProtocol = desc->bDeviceProtocol;
1266 
1267 	/* assumes ep0 uses the same value for both speeds ... */
1268 	qual.bMaxPacketSize0 = dev->gadget->ep0->maxpacket;
1269 
1270 	qual.bNumConfigurations = 1;
1271 	qual.bRESERVED = 0;
1272 
1273 	memcpy (dev->rbuf, &qual, sizeof qual);
1274 }
1275 
1276 static int
1277 config_buf (struct dev_data *dev, u8 type, unsigned index)
1278 {
1279 	int		len;
1280 	int		hs = 0;
1281 
1282 	/* only one configuration */
1283 	if (index > 0)
1284 		return -EINVAL;
1285 
1286 	if (gadget_is_dualspeed(dev->gadget)) {
1287 		hs = (dev->gadget->speed == USB_SPEED_HIGH);
1288 		if (type == USB_DT_OTHER_SPEED_CONFIG)
1289 			hs = !hs;
1290 	}
1291 	if (hs) {
1292 		dev->req->buf = dev->hs_config;
1293 		len = le16_to_cpu(dev->hs_config->wTotalLength);
1294 	} else {
1295 		dev->req->buf = dev->config;
1296 		len = le16_to_cpu(dev->config->wTotalLength);
1297 	}
1298 	((u8 *)dev->req->buf) [1] = type;
1299 	return len;
1300 }
1301 
1302 static int
1303 gadgetfs_setup (struct usb_gadget *gadget, const struct usb_ctrlrequest *ctrl)
1304 {
1305 	struct dev_data			*dev = get_gadget_data (gadget);
1306 	struct usb_request		*req = dev->req;
1307 	int				value = -EOPNOTSUPP;
1308 	struct usb_gadgetfs_event	*event;
1309 	u16				w_value = le16_to_cpu(ctrl->wValue);
1310 	u16				w_length = le16_to_cpu(ctrl->wLength);
1311 
1312 	spin_lock (&dev->lock);
1313 	dev->setup_abort = 0;
1314 	if (dev->state == STATE_DEV_UNCONNECTED) {
1315 		if (gadget_is_dualspeed(gadget)
1316 				&& gadget->speed == USB_SPEED_HIGH
1317 				&& dev->hs_config == NULL) {
1318 			spin_unlock(&dev->lock);
1319 			ERROR (dev, "no high speed config??\n");
1320 			return -EINVAL;
1321 		}
1322 
1323 		dev->state = STATE_DEV_CONNECTED;
1324 
1325 		INFO (dev, "connected\n");
1326 		event = next_event (dev, GADGETFS_CONNECT);
1327 		event->u.speed = gadget->speed;
1328 		ep0_readable (dev);
1329 
1330 	/* host may have given up waiting for response.  we can miss control
1331 	 * requests handled lower down (device/endpoint status and features);
1332 	 * then ep0_{read,write} will report the wrong status. controller
1333 	 * driver will have aborted pending i/o.
1334 	 */
1335 	} else if (dev->state == STATE_DEV_SETUP)
1336 		dev->setup_abort = 1;
1337 
1338 	req->buf = dev->rbuf;
1339 	req->context = NULL;
1340 	value = -EOPNOTSUPP;
1341 	switch (ctrl->bRequest) {
1342 
1343 	case USB_REQ_GET_DESCRIPTOR:
1344 		if (ctrl->bRequestType != USB_DIR_IN)
1345 			goto unrecognized;
1346 		switch (w_value >> 8) {
1347 
1348 		case USB_DT_DEVICE:
1349 			value = min (w_length, (u16) sizeof *dev->dev);
1350 			dev->dev->bMaxPacketSize0 = dev->gadget->ep0->maxpacket;
1351 			req->buf = dev->dev;
1352 			break;
1353 		case USB_DT_DEVICE_QUALIFIER:
1354 			if (!dev->hs_config)
1355 				break;
1356 			value = min (w_length, (u16)
1357 				sizeof (struct usb_qualifier_descriptor));
1358 			make_qualifier (dev);
1359 			break;
1360 		case USB_DT_OTHER_SPEED_CONFIG:
1361 			// FALLTHROUGH
1362 		case USB_DT_CONFIG:
1363 			value = config_buf (dev,
1364 					w_value >> 8,
1365 					w_value & 0xff);
1366 			if (value >= 0)
1367 				value = min (w_length, (u16) value);
1368 			break;
1369 		case USB_DT_STRING:
1370 			goto unrecognized;
1371 
1372 		default:		// all others are errors
1373 			break;
1374 		}
1375 		break;
1376 
1377 	/* currently one config, two speeds */
1378 	case USB_REQ_SET_CONFIGURATION:
1379 		if (ctrl->bRequestType != 0)
1380 			goto unrecognized;
1381 		if (0 == (u8) w_value) {
1382 			value = 0;
1383 			dev->current_config = 0;
1384 			usb_gadget_vbus_draw(gadget, 8 /* mA */ );
1385 			// user mode expected to disable endpoints
1386 		} else {
1387 			u8	config, power;
1388 
1389 			if (gadget_is_dualspeed(gadget)
1390 					&& gadget->speed == USB_SPEED_HIGH) {
1391 				config = dev->hs_config->bConfigurationValue;
1392 				power = dev->hs_config->bMaxPower;
1393 			} else {
1394 				config = dev->config->bConfigurationValue;
1395 				power = dev->config->bMaxPower;
1396 			}
1397 
1398 			if (config == (u8) w_value) {
1399 				value = 0;
1400 				dev->current_config = config;
1401 				usb_gadget_vbus_draw(gadget, 2 * power);
1402 			}
1403 		}
1404 
1405 		/* report SET_CONFIGURATION like any other control request,
1406 		 * except that usermode may not stall this.  the next
1407 		 * request mustn't be allowed start until this finishes:
1408 		 * endpoints and threads set up, etc.
1409 		 *
1410 		 * NOTE:  older PXA hardware (before PXA 255: without UDCCFR)
1411 		 * has bad/racey automagic that prevents synchronizing here.
1412 		 * even kernel mode drivers often miss them.
1413 		 */
1414 		if (value == 0) {
1415 			INFO (dev, "configuration #%d\n", dev->current_config);
1416 			usb_gadget_set_state(gadget, USB_STATE_CONFIGURED);
1417 			if (dev->usermode_setup) {
1418 				dev->setup_can_stall = 0;
1419 				goto delegate;
1420 			}
1421 		}
1422 		break;
1423 
1424 #ifndef	CONFIG_USB_PXA25X
1425 	/* PXA automagically handles this request too */
1426 	case USB_REQ_GET_CONFIGURATION:
1427 		if (ctrl->bRequestType != 0x80)
1428 			goto unrecognized;
1429 		*(u8 *)req->buf = dev->current_config;
1430 		value = min (w_length, (u16) 1);
1431 		break;
1432 #endif
1433 
1434 	default:
1435 unrecognized:
1436 		VDEBUG (dev, "%s req%02x.%02x v%04x i%04x l%d\n",
1437 			dev->usermode_setup ? "delegate" : "fail",
1438 			ctrl->bRequestType, ctrl->bRequest,
1439 			w_value, le16_to_cpu(ctrl->wIndex), w_length);
1440 
1441 		/* if there's an ep0 reader, don't stall */
1442 		if (dev->usermode_setup) {
1443 			dev->setup_can_stall = 1;
1444 delegate:
1445 			dev->setup_in = (ctrl->bRequestType & USB_DIR_IN)
1446 						? 1 : 0;
1447 			dev->setup_wLength = w_length;
1448 			dev->setup_out_ready = 0;
1449 			dev->setup_out_error = 0;
1450 			value = 0;
1451 
1452 			/* read DATA stage for OUT right away */
1453 			if (unlikely (!dev->setup_in && w_length)) {
1454 				value = setup_req (gadget->ep0, dev->req,
1455 							w_length);
1456 				if (value < 0)
1457 					break;
1458 				value = usb_ep_queue (gadget->ep0, dev->req,
1459 							GFP_ATOMIC);
1460 				if (value < 0) {
1461 					clean_req (gadget->ep0, dev->req);
1462 					break;
1463 				}
1464 
1465 				/* we can't currently stall these */
1466 				dev->setup_can_stall = 0;
1467 			}
1468 
1469 			/* state changes when reader collects event */
1470 			event = next_event (dev, GADGETFS_SETUP);
1471 			event->u.setup = *ctrl;
1472 			ep0_readable (dev);
1473 			spin_unlock (&dev->lock);
1474 			return 0;
1475 		}
1476 	}
1477 
1478 	/* proceed with data transfer and status phases? */
1479 	if (value >= 0 && dev->state != STATE_DEV_SETUP) {
1480 		req->length = value;
1481 		req->zero = value < w_length;
1482 		value = usb_ep_queue (gadget->ep0, req, GFP_ATOMIC);
1483 		if (value < 0) {
1484 			DBG (dev, "ep_queue --> %d\n", value);
1485 			req->status = 0;
1486 		}
1487 	}
1488 
1489 	/* device stalls when value < 0 */
1490 	spin_unlock (&dev->lock);
1491 	return value;
1492 }
1493 
1494 static void destroy_ep_files (struct dev_data *dev)
1495 {
1496 	DBG (dev, "%s %d\n", __func__, dev->state);
1497 
1498 	/* dev->state must prevent interference */
1499 	spin_lock_irq (&dev->lock);
1500 	while (!list_empty(&dev->epfiles)) {
1501 		struct ep_data	*ep;
1502 		struct inode	*parent;
1503 		struct dentry	*dentry;
1504 
1505 		/* break link to FS */
1506 		ep = list_first_entry (&dev->epfiles, struct ep_data, epfiles);
1507 		list_del_init (&ep->epfiles);
1508 		dentry = ep->dentry;
1509 		ep->dentry = NULL;
1510 		parent = d_inode(dentry->d_parent);
1511 
1512 		/* break link to controller */
1513 		if (ep->state == STATE_EP_ENABLED)
1514 			(void) usb_ep_disable (ep->ep);
1515 		ep->state = STATE_EP_UNBOUND;
1516 		usb_ep_free_request (ep->ep, ep->req);
1517 		ep->ep = NULL;
1518 		wake_up (&ep->wait);
1519 		put_ep (ep);
1520 
1521 		spin_unlock_irq (&dev->lock);
1522 
1523 		/* break link to dcache */
1524 		inode_lock(parent);
1525 		d_delete (dentry);
1526 		dput (dentry);
1527 		inode_unlock(parent);
1528 
1529 		spin_lock_irq (&dev->lock);
1530 	}
1531 	spin_unlock_irq (&dev->lock);
1532 }
1533 
1534 
1535 static struct dentry *
1536 gadgetfs_create_file (struct super_block *sb, char const *name,
1537 		void *data, const struct file_operations *fops);
1538 
1539 static int activate_ep_files (struct dev_data *dev)
1540 {
1541 	struct usb_ep	*ep;
1542 	struct ep_data	*data;
1543 
1544 	gadget_for_each_ep (ep, dev->gadget) {
1545 
1546 		data = kzalloc(sizeof(*data), GFP_KERNEL);
1547 		if (!data)
1548 			goto enomem0;
1549 		data->state = STATE_EP_DISABLED;
1550 		mutex_init(&data->lock);
1551 		init_waitqueue_head (&data->wait);
1552 
1553 		strncpy (data->name, ep->name, sizeof (data->name) - 1);
1554 		atomic_set (&data->count, 1);
1555 		data->dev = dev;
1556 		get_dev (dev);
1557 
1558 		data->ep = ep;
1559 		ep->driver_data = data;
1560 
1561 		data->req = usb_ep_alloc_request (ep, GFP_KERNEL);
1562 		if (!data->req)
1563 			goto enomem1;
1564 
1565 		data->dentry = gadgetfs_create_file (dev->sb, data->name,
1566 				data, &ep_io_operations);
1567 		if (!data->dentry)
1568 			goto enomem2;
1569 		list_add_tail (&data->epfiles, &dev->epfiles);
1570 	}
1571 	return 0;
1572 
1573 enomem2:
1574 	usb_ep_free_request (ep, data->req);
1575 enomem1:
1576 	put_dev (dev);
1577 	kfree (data);
1578 enomem0:
1579 	DBG (dev, "%s enomem\n", __func__);
1580 	destroy_ep_files (dev);
1581 	return -ENOMEM;
1582 }
1583 
1584 static void
1585 gadgetfs_unbind (struct usb_gadget *gadget)
1586 {
1587 	struct dev_data		*dev = get_gadget_data (gadget);
1588 
1589 	DBG (dev, "%s\n", __func__);
1590 
1591 	spin_lock_irq (&dev->lock);
1592 	dev->state = STATE_DEV_UNBOUND;
1593 	spin_unlock_irq (&dev->lock);
1594 
1595 	destroy_ep_files (dev);
1596 	gadget->ep0->driver_data = NULL;
1597 	set_gadget_data (gadget, NULL);
1598 
1599 	/* we've already been disconnected ... no i/o is active */
1600 	if (dev->req)
1601 		usb_ep_free_request (gadget->ep0, dev->req);
1602 	DBG (dev, "%s done\n", __func__);
1603 	put_dev (dev);
1604 }
1605 
1606 static struct dev_data		*the_device;
1607 
1608 static int gadgetfs_bind(struct usb_gadget *gadget,
1609 		struct usb_gadget_driver *driver)
1610 {
1611 	struct dev_data		*dev = the_device;
1612 
1613 	if (!dev)
1614 		return -ESRCH;
1615 	if (0 != strcmp (CHIP, gadget->name)) {
1616 		pr_err("%s expected %s controller not %s\n",
1617 			shortname, CHIP, gadget->name);
1618 		return -ENODEV;
1619 	}
1620 
1621 	set_gadget_data (gadget, dev);
1622 	dev->gadget = gadget;
1623 	gadget->ep0->driver_data = dev;
1624 
1625 	/* preallocate control response and buffer */
1626 	dev->req = usb_ep_alloc_request (gadget->ep0, GFP_KERNEL);
1627 	if (!dev->req)
1628 		goto enomem;
1629 	dev->req->context = NULL;
1630 	dev->req->complete = epio_complete;
1631 
1632 	if (activate_ep_files (dev) < 0)
1633 		goto enomem;
1634 
1635 	INFO (dev, "bound to %s driver\n", gadget->name);
1636 	spin_lock_irq(&dev->lock);
1637 	dev->state = STATE_DEV_UNCONNECTED;
1638 	spin_unlock_irq(&dev->lock);
1639 	get_dev (dev);
1640 	return 0;
1641 
1642 enomem:
1643 	gadgetfs_unbind (gadget);
1644 	return -ENOMEM;
1645 }
1646 
1647 static void
1648 gadgetfs_disconnect (struct usb_gadget *gadget)
1649 {
1650 	struct dev_data		*dev = get_gadget_data (gadget);
1651 	unsigned long		flags;
1652 
1653 	spin_lock_irqsave (&dev->lock, flags);
1654 	if (dev->state == STATE_DEV_UNCONNECTED)
1655 		goto exit;
1656 	dev->state = STATE_DEV_UNCONNECTED;
1657 
1658 	INFO (dev, "disconnected\n");
1659 	next_event (dev, GADGETFS_DISCONNECT);
1660 	ep0_readable (dev);
1661 exit:
1662 	spin_unlock_irqrestore (&dev->lock, flags);
1663 }
1664 
1665 static void
1666 gadgetfs_suspend (struct usb_gadget *gadget)
1667 {
1668 	struct dev_data		*dev = get_gadget_data (gadget);
1669 
1670 	INFO (dev, "suspended from state %d\n", dev->state);
1671 	spin_lock (&dev->lock);
1672 	switch (dev->state) {
1673 	case STATE_DEV_SETUP:		// VERY odd... host died??
1674 	case STATE_DEV_CONNECTED:
1675 	case STATE_DEV_UNCONNECTED:
1676 		next_event (dev, GADGETFS_SUSPEND);
1677 		ep0_readable (dev);
1678 		/* FALLTHROUGH */
1679 	default:
1680 		break;
1681 	}
1682 	spin_unlock (&dev->lock);
1683 }
1684 
1685 static struct usb_gadget_driver gadgetfs_driver = {
1686 	.function	= (char *) driver_desc,
1687 	.bind		= gadgetfs_bind,
1688 	.unbind		= gadgetfs_unbind,
1689 	.setup		= gadgetfs_setup,
1690 	.reset		= gadgetfs_disconnect,
1691 	.disconnect	= gadgetfs_disconnect,
1692 	.suspend	= gadgetfs_suspend,
1693 
1694 	.driver	= {
1695 		.name		= (char *) shortname,
1696 	},
1697 };
1698 
1699 /*----------------------------------------------------------------------*/
1700 
1701 static void gadgetfs_nop(struct usb_gadget *arg) { }
1702 
1703 static int gadgetfs_probe(struct usb_gadget *gadget,
1704 		struct usb_gadget_driver *driver)
1705 {
1706 	CHIP = gadget->name;
1707 	return -EISNAM;
1708 }
1709 
1710 static struct usb_gadget_driver probe_driver = {
1711 	.max_speed	= USB_SPEED_HIGH,
1712 	.bind		= gadgetfs_probe,
1713 	.unbind		= gadgetfs_nop,
1714 	.setup		= (void *)gadgetfs_nop,
1715 	.disconnect	= gadgetfs_nop,
1716 	.driver	= {
1717 		.name		= "nop",
1718 	},
1719 };
1720 
1721 
1722 /* DEVICE INITIALIZATION
1723  *
1724  *     fd = open ("/dev/gadget/$CHIP", O_RDWR)
1725  *     status = write (fd, descriptors, sizeof descriptors)
1726  *
1727  * That write establishes the device configuration, so the kernel can
1728  * bind to the controller ... guaranteeing it can handle enumeration
1729  * at all necessary speeds.  Descriptor order is:
1730  *
1731  * . message tag (u32, host order) ... for now, must be zero; it
1732  *	would change to support features like multi-config devices
1733  * . full/low speed config ... all wTotalLength bytes (with interface,
1734  *	class, altsetting, endpoint, and other descriptors)
1735  * . high speed config ... all descriptors, for high speed operation;
1736  *	this one's optional except for high-speed hardware
1737  * . device descriptor
1738  *
1739  * Endpoints are not yet enabled. Drivers must wait until device
1740  * configuration and interface altsetting changes create
1741  * the need to configure (or unconfigure) them.
1742  *
1743  * After initialization, the device stays active for as long as that
1744  * $CHIP file is open.  Events must then be read from that descriptor,
1745  * such as configuration notifications.
1746  */
1747 
1748 static int is_valid_config (struct usb_config_descriptor *config)
1749 {
1750 	return config->bDescriptorType == USB_DT_CONFIG
1751 		&& config->bLength == USB_DT_CONFIG_SIZE
1752 		&& config->bConfigurationValue != 0
1753 		&& (config->bmAttributes & USB_CONFIG_ATT_ONE) != 0
1754 		&& (config->bmAttributes & USB_CONFIG_ATT_WAKEUP) == 0;
1755 	/* FIXME if gadget->is_otg, _must_ include an otg descriptor */
1756 	/* FIXME check lengths: walk to end */
1757 }
1758 
1759 static ssize_t
1760 dev_config (struct file *fd, const char __user *buf, size_t len, loff_t *ptr)
1761 {
1762 	struct dev_data		*dev = fd->private_data;
1763 	ssize_t			value = len, length = len;
1764 	unsigned		total;
1765 	u32			tag;
1766 	char			*kbuf;
1767 
1768 	spin_lock_irq(&dev->lock);
1769 	if (dev->state > STATE_DEV_OPENED) {
1770 		value = ep0_write(fd, buf, len, ptr);
1771 		spin_unlock_irq(&dev->lock);
1772 		return value;
1773 	}
1774 	spin_unlock_irq(&dev->lock);
1775 
1776 	if (len < (USB_DT_CONFIG_SIZE + USB_DT_DEVICE_SIZE + 4))
1777 		return -EINVAL;
1778 
1779 	/* we might need to change message format someday */
1780 	if (copy_from_user (&tag, buf, 4))
1781 		return -EFAULT;
1782 	if (tag != 0)
1783 		return -EINVAL;
1784 	buf += 4;
1785 	length -= 4;
1786 
1787 	kbuf = memdup_user(buf, length);
1788 	if (IS_ERR(kbuf))
1789 		return PTR_ERR(kbuf);
1790 
1791 	spin_lock_irq (&dev->lock);
1792 	value = -EINVAL;
1793 	if (dev->buf)
1794 		goto fail;
1795 	dev->buf = kbuf;
1796 
1797 	/* full or low speed config */
1798 	dev->config = (void *) kbuf;
1799 	total = le16_to_cpu(dev->config->wTotalLength);
1800 	if (!is_valid_config (dev->config) || total >= length)
1801 		goto fail;
1802 	kbuf += total;
1803 	length -= total;
1804 
1805 	/* optional high speed config */
1806 	if (kbuf [1] == USB_DT_CONFIG) {
1807 		dev->hs_config = (void *) kbuf;
1808 		total = le16_to_cpu(dev->hs_config->wTotalLength);
1809 		if (!is_valid_config (dev->hs_config) || total >= length)
1810 			goto fail;
1811 		kbuf += total;
1812 		length -= total;
1813 	}
1814 
1815 	/* could support multiple configs, using another encoding! */
1816 
1817 	/* device descriptor (tweaked for paranoia) */
1818 	if (length != USB_DT_DEVICE_SIZE)
1819 		goto fail;
1820 	dev->dev = (void *)kbuf;
1821 	if (dev->dev->bLength != USB_DT_DEVICE_SIZE
1822 			|| dev->dev->bDescriptorType != USB_DT_DEVICE
1823 			|| dev->dev->bNumConfigurations != 1)
1824 		goto fail;
1825 	dev->dev->bNumConfigurations = 1;
1826 	dev->dev->bcdUSB = cpu_to_le16 (0x0200);
1827 
1828 	/* triggers gadgetfs_bind(); then we can enumerate. */
1829 	spin_unlock_irq (&dev->lock);
1830 	if (dev->hs_config)
1831 		gadgetfs_driver.max_speed = USB_SPEED_HIGH;
1832 	else
1833 		gadgetfs_driver.max_speed = USB_SPEED_FULL;
1834 
1835 	value = usb_gadget_probe_driver(&gadgetfs_driver);
1836 	if (value != 0) {
1837 		kfree (dev->buf);
1838 		dev->buf = NULL;
1839 	} else {
1840 		/* at this point "good" hardware has for the first time
1841 		 * let the USB the host see us.  alternatively, if users
1842 		 * unplug/replug that will clear all the error state.
1843 		 *
1844 		 * note:  everything running before here was guaranteed
1845 		 * to choke driver model style diagnostics.  from here
1846 		 * on, they can work ... except in cleanup paths that
1847 		 * kick in after the ep0 descriptor is closed.
1848 		 */
1849 		value = len;
1850 	}
1851 	return value;
1852 
1853 fail:
1854 	spin_unlock_irq (&dev->lock);
1855 	pr_debug ("%s: %s fail %Zd, %p\n", shortname, __func__, value, dev);
1856 	kfree (dev->buf);
1857 	dev->buf = NULL;
1858 	return value;
1859 }
1860 
1861 static int
1862 dev_open (struct inode *inode, struct file *fd)
1863 {
1864 	struct dev_data		*dev = inode->i_private;
1865 	int			value = -EBUSY;
1866 
1867 	spin_lock_irq(&dev->lock);
1868 	if (dev->state == STATE_DEV_DISABLED) {
1869 		dev->ev_next = 0;
1870 		dev->state = STATE_DEV_OPENED;
1871 		fd->private_data = dev;
1872 		get_dev (dev);
1873 		value = 0;
1874 	}
1875 	spin_unlock_irq(&dev->lock);
1876 	return value;
1877 }
1878 
1879 static const struct file_operations ep0_operations = {
1880 	.llseek =	no_llseek,
1881 
1882 	.open =		dev_open,
1883 	.read =		ep0_read,
1884 	.write =	dev_config,
1885 	.fasync =	ep0_fasync,
1886 	.poll =		ep0_poll,
1887 	.unlocked_ioctl = dev_ioctl,
1888 	.release =	dev_release,
1889 };
1890 
1891 /*----------------------------------------------------------------------*/
1892 
1893 /* FILESYSTEM AND SUPERBLOCK OPERATIONS
1894  *
1895  * Mounting the filesystem creates a controller file, used first for
1896  * device configuration then later for event monitoring.
1897  */
1898 
1899 
1900 /* FIXME PAM etc could set this security policy without mount options
1901  * if epfiles inherited ownership and permissons from ep0 ...
1902  */
1903 
1904 static unsigned default_uid;
1905 static unsigned default_gid;
1906 static unsigned default_perm = S_IRUSR | S_IWUSR;
1907 
1908 module_param (default_uid, uint, 0644);
1909 module_param (default_gid, uint, 0644);
1910 module_param (default_perm, uint, 0644);
1911 
1912 
1913 static struct inode *
1914 gadgetfs_make_inode (struct super_block *sb,
1915 		void *data, const struct file_operations *fops,
1916 		int mode)
1917 {
1918 	struct inode *inode = new_inode (sb);
1919 
1920 	if (inode) {
1921 		inode->i_ino = get_next_ino();
1922 		inode->i_mode = mode;
1923 		inode->i_uid = make_kuid(&init_user_ns, default_uid);
1924 		inode->i_gid = make_kgid(&init_user_ns, default_gid);
1925 		inode->i_atime = inode->i_mtime = inode->i_ctime
1926 				= CURRENT_TIME;
1927 		inode->i_private = data;
1928 		inode->i_fop = fops;
1929 	}
1930 	return inode;
1931 }
1932 
1933 /* creates in fs root directory, so non-renamable and non-linkable.
1934  * so inode and dentry are paired, until device reconfig.
1935  */
1936 static struct dentry *
1937 gadgetfs_create_file (struct super_block *sb, char const *name,
1938 		void *data, const struct file_operations *fops)
1939 {
1940 	struct dentry	*dentry;
1941 	struct inode	*inode;
1942 
1943 	dentry = d_alloc_name(sb->s_root, name);
1944 	if (!dentry)
1945 		return NULL;
1946 
1947 	inode = gadgetfs_make_inode (sb, data, fops,
1948 			S_IFREG | (default_perm & S_IRWXUGO));
1949 	if (!inode) {
1950 		dput(dentry);
1951 		return NULL;
1952 	}
1953 	d_add (dentry, inode);
1954 	return dentry;
1955 }
1956 
1957 static const struct super_operations gadget_fs_operations = {
1958 	.statfs =	simple_statfs,
1959 	.drop_inode =	generic_delete_inode,
1960 };
1961 
1962 static int
1963 gadgetfs_fill_super (struct super_block *sb, void *opts, int silent)
1964 {
1965 	struct inode	*inode;
1966 	struct dev_data	*dev;
1967 
1968 	if (the_device)
1969 		return -ESRCH;
1970 
1971 	/* fake probe to determine $CHIP */
1972 	CHIP = NULL;
1973 	usb_gadget_probe_driver(&probe_driver);
1974 	if (!CHIP)
1975 		return -ENODEV;
1976 
1977 	/* superblock */
1978 	sb->s_blocksize = PAGE_CACHE_SIZE;
1979 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1980 	sb->s_magic = GADGETFS_MAGIC;
1981 	sb->s_op = &gadget_fs_operations;
1982 	sb->s_time_gran = 1;
1983 
1984 	/* root inode */
1985 	inode = gadgetfs_make_inode (sb,
1986 			NULL, &simple_dir_operations,
1987 			S_IFDIR | S_IRUGO | S_IXUGO);
1988 	if (!inode)
1989 		goto Enomem;
1990 	inode->i_op = &simple_dir_inode_operations;
1991 	if (!(sb->s_root = d_make_root (inode)))
1992 		goto Enomem;
1993 
1994 	/* the ep0 file is named after the controller we expect;
1995 	 * user mode code can use it for sanity checks, like we do.
1996 	 */
1997 	dev = dev_new ();
1998 	if (!dev)
1999 		goto Enomem;
2000 
2001 	dev->sb = sb;
2002 	dev->dentry = gadgetfs_create_file(sb, CHIP, dev, &ep0_operations);
2003 	if (!dev->dentry) {
2004 		put_dev(dev);
2005 		goto Enomem;
2006 	}
2007 
2008 	/* other endpoint files are available after hardware setup,
2009 	 * from binding to a controller.
2010 	 */
2011 	the_device = dev;
2012 	return 0;
2013 
2014 Enomem:
2015 	return -ENOMEM;
2016 }
2017 
2018 /* "mount -t gadgetfs path /dev/gadget" ends up here */
2019 static struct dentry *
2020 gadgetfs_mount (struct file_system_type *t, int flags,
2021 		const char *path, void *opts)
2022 {
2023 	return mount_single (t, flags, opts, gadgetfs_fill_super);
2024 }
2025 
2026 static void
2027 gadgetfs_kill_sb (struct super_block *sb)
2028 {
2029 	kill_litter_super (sb);
2030 	if (the_device) {
2031 		put_dev (the_device);
2032 		the_device = NULL;
2033 	}
2034 }
2035 
2036 /*----------------------------------------------------------------------*/
2037 
2038 static struct file_system_type gadgetfs_type = {
2039 	.owner		= THIS_MODULE,
2040 	.name		= shortname,
2041 	.mount		= gadgetfs_mount,
2042 	.kill_sb	= gadgetfs_kill_sb,
2043 };
2044 MODULE_ALIAS_FS("gadgetfs");
2045 
2046 /*----------------------------------------------------------------------*/
2047 
2048 static int __init init (void)
2049 {
2050 	int status;
2051 
2052 	status = register_filesystem (&gadgetfs_type);
2053 	if (status == 0)
2054 		pr_info ("%s: %s, version " DRIVER_VERSION "\n",
2055 			shortname, driver_desc);
2056 	return status;
2057 }
2058 module_init (init);
2059 
2060 static void __exit cleanup (void)
2061 {
2062 	pr_debug ("unregister %s\n", shortname);
2063 	unregister_filesystem (&gadgetfs_type);
2064 }
2065 module_exit (cleanup);
2066 
2067