xref: /openbmc/linux/drivers/usb/gadget/legacy/inode.c (revision 8cb5d748)
1 /*
2  * inode.c -- user mode filesystem api for usb gadget controllers
3  *
4  * Copyright (C) 2003-2004 David Brownell
5  * Copyright (C) 2003 Agilent Technologies
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  */
12 
13 
14 /* #define VERBOSE_DEBUG */
15 
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/fs.h>
19 #include <linux/pagemap.h>
20 #include <linux/uts.h>
21 #include <linux/wait.h>
22 #include <linux/compiler.h>
23 #include <linux/uaccess.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/poll.h>
27 #include <linux/mmu_context.h>
28 #include <linux/aio.h>
29 #include <linux/uio.h>
30 #include <linux/refcount.h>
31 #include <linux/delay.h>
32 #include <linux/device.h>
33 #include <linux/moduleparam.h>
34 
35 #include <linux/usb/gadgetfs.h>
36 #include <linux/usb/gadget.h>
37 
38 
39 /*
40  * The gadgetfs API maps each endpoint to a file descriptor so that you
41  * can use standard synchronous read/write calls for I/O.  There's some
42  * O_NONBLOCK and O_ASYNC/FASYNC style i/o support.  Example usermode
43  * drivers show how this works in practice.  You can also use AIO to
44  * eliminate I/O gaps between requests, to help when streaming data.
45  *
46  * Key parts that must be USB-specific are protocols defining how the
47  * read/write operations relate to the hardware state machines.  There
48  * are two types of files.  One type is for the device, implementing ep0.
49  * The other type is for each IN or OUT endpoint.  In both cases, the
50  * user mode driver must configure the hardware before using it.
51  *
52  * - First, dev_config() is called when /dev/gadget/$CHIP is configured
53  *   (by writing configuration and device descriptors).  Afterwards it
54  *   may serve as a source of device events, used to handle all control
55  *   requests other than basic enumeration.
56  *
57  * - Then, after a SET_CONFIGURATION control request, ep_config() is
58  *   called when each /dev/gadget/ep* file is configured (by writing
59  *   endpoint descriptors).  Afterwards these files are used to write()
60  *   IN data or to read() OUT data.  To halt the endpoint, a "wrong
61  *   direction" request is issued (like reading an IN endpoint).
62  *
63  * Unlike "usbfs" the only ioctl()s are for things that are rare, and maybe
64  * not possible on all hardware.  For example, precise fault handling with
65  * respect to data left in endpoint fifos after aborted operations; or
66  * selective clearing of endpoint halts, to implement SET_INTERFACE.
67  */
68 
69 #define	DRIVER_DESC	"USB Gadget filesystem"
70 #define	DRIVER_VERSION	"24 Aug 2004"
71 
72 static const char driver_desc [] = DRIVER_DESC;
73 static const char shortname [] = "gadgetfs";
74 
75 MODULE_DESCRIPTION (DRIVER_DESC);
76 MODULE_AUTHOR ("David Brownell");
77 MODULE_LICENSE ("GPL");
78 
79 static int ep_open(struct inode *, struct file *);
80 
81 
82 /*----------------------------------------------------------------------*/
83 
84 #define GADGETFS_MAGIC		0xaee71ee7
85 
86 /* /dev/gadget/$CHIP represents ep0 and the whole device */
87 enum ep0_state {
88 	/* DISABLED is the initial state. */
89 	STATE_DEV_DISABLED = 0,
90 
91 	/* Only one open() of /dev/gadget/$CHIP; only one file tracks
92 	 * ep0/device i/o modes and binding to the controller.  Driver
93 	 * must always write descriptors to initialize the device, then
94 	 * the device becomes UNCONNECTED until enumeration.
95 	 */
96 	STATE_DEV_OPENED,
97 
98 	/* From then on, ep0 fd is in either of two basic modes:
99 	 * - (UN)CONNECTED: read usb_gadgetfs_event(s) from it
100 	 * - SETUP: read/write will transfer control data and succeed;
101 	 *   or if "wrong direction", performs protocol stall
102 	 */
103 	STATE_DEV_UNCONNECTED,
104 	STATE_DEV_CONNECTED,
105 	STATE_DEV_SETUP,
106 
107 	/* UNBOUND means the driver closed ep0, so the device won't be
108 	 * accessible again (DEV_DISABLED) until all fds are closed.
109 	 */
110 	STATE_DEV_UNBOUND,
111 };
112 
113 /* enough for the whole queue: most events invalidate others */
114 #define	N_EVENT			5
115 
116 struct dev_data {
117 	spinlock_t			lock;
118 	refcount_t			count;
119 	int				udc_usage;
120 	enum ep0_state			state;		/* P: lock */
121 	struct usb_gadgetfs_event	event [N_EVENT];
122 	unsigned			ev_next;
123 	struct fasync_struct		*fasync;
124 	u8				current_config;
125 
126 	/* drivers reading ep0 MUST handle control requests (SETUP)
127 	 * reported that way; else the host will time out.
128 	 */
129 	unsigned			usermode_setup : 1,
130 					setup_in : 1,
131 					setup_can_stall : 1,
132 					setup_out_ready : 1,
133 					setup_out_error : 1,
134 					setup_abort : 1,
135 					gadget_registered : 1;
136 	unsigned			setup_wLength;
137 
138 	/* the rest is basically write-once */
139 	struct usb_config_descriptor	*config, *hs_config;
140 	struct usb_device_descriptor	*dev;
141 	struct usb_request		*req;
142 	struct usb_gadget		*gadget;
143 	struct list_head		epfiles;
144 	void				*buf;
145 	wait_queue_head_t		wait;
146 	struct super_block		*sb;
147 	struct dentry			*dentry;
148 
149 	/* except this scratch i/o buffer for ep0 */
150 	u8				rbuf [256];
151 };
152 
153 static inline void get_dev (struct dev_data *data)
154 {
155 	refcount_inc (&data->count);
156 }
157 
158 static void put_dev (struct dev_data *data)
159 {
160 	if (likely (!refcount_dec_and_test (&data->count)))
161 		return;
162 	/* needs no more cleanup */
163 	BUG_ON (waitqueue_active (&data->wait));
164 	kfree (data);
165 }
166 
167 static struct dev_data *dev_new (void)
168 {
169 	struct dev_data		*dev;
170 
171 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
172 	if (!dev)
173 		return NULL;
174 	dev->state = STATE_DEV_DISABLED;
175 	refcount_set (&dev->count, 1);
176 	spin_lock_init (&dev->lock);
177 	INIT_LIST_HEAD (&dev->epfiles);
178 	init_waitqueue_head (&dev->wait);
179 	return dev;
180 }
181 
182 /*----------------------------------------------------------------------*/
183 
184 /* other /dev/gadget/$ENDPOINT files represent endpoints */
185 enum ep_state {
186 	STATE_EP_DISABLED = 0,
187 	STATE_EP_READY,
188 	STATE_EP_ENABLED,
189 	STATE_EP_UNBOUND,
190 };
191 
192 struct ep_data {
193 	struct mutex			lock;
194 	enum ep_state			state;
195 	refcount_t			count;
196 	struct dev_data			*dev;
197 	/* must hold dev->lock before accessing ep or req */
198 	struct usb_ep			*ep;
199 	struct usb_request		*req;
200 	ssize_t				status;
201 	char				name [16];
202 	struct usb_endpoint_descriptor	desc, hs_desc;
203 	struct list_head		epfiles;
204 	wait_queue_head_t		wait;
205 	struct dentry			*dentry;
206 };
207 
208 static inline void get_ep (struct ep_data *data)
209 {
210 	refcount_inc (&data->count);
211 }
212 
213 static void put_ep (struct ep_data *data)
214 {
215 	if (likely (!refcount_dec_and_test (&data->count)))
216 		return;
217 	put_dev (data->dev);
218 	/* needs no more cleanup */
219 	BUG_ON (!list_empty (&data->epfiles));
220 	BUG_ON (waitqueue_active (&data->wait));
221 	kfree (data);
222 }
223 
224 /*----------------------------------------------------------------------*/
225 
226 /* most "how to use the hardware" policy choices are in userspace:
227  * mapping endpoint roles (which the driver needs) to the capabilities
228  * which the usb controller has.  most of those capabilities are exposed
229  * implicitly, starting with the driver name and then endpoint names.
230  */
231 
232 static const char *CHIP;
233 
234 /*----------------------------------------------------------------------*/
235 
236 /* NOTE:  don't use dev_printk calls before binding to the gadget
237  * at the end of ep0 configuration, or after unbind.
238  */
239 
240 /* too wordy: dev_printk(level , &(d)->gadget->dev , fmt , ## args) */
241 #define xprintk(d,level,fmt,args...) \
242 	printk(level "%s: " fmt , shortname , ## args)
243 
244 #ifdef DEBUG
245 #define DBG(dev,fmt,args...) \
246 	xprintk(dev , KERN_DEBUG , fmt , ## args)
247 #else
248 #define DBG(dev,fmt,args...) \
249 	do { } while (0)
250 #endif /* DEBUG */
251 
252 #ifdef VERBOSE_DEBUG
253 #define VDEBUG	DBG
254 #else
255 #define VDEBUG(dev,fmt,args...) \
256 	do { } while (0)
257 #endif /* DEBUG */
258 
259 #define ERROR(dev,fmt,args...) \
260 	xprintk(dev , KERN_ERR , fmt , ## args)
261 #define INFO(dev,fmt,args...) \
262 	xprintk(dev , KERN_INFO , fmt , ## args)
263 
264 
265 /*----------------------------------------------------------------------*/
266 
267 /* SYNCHRONOUS ENDPOINT OPERATIONS (bulk/intr/iso)
268  *
269  * After opening, configure non-control endpoints.  Then use normal
270  * stream read() and write() requests; and maybe ioctl() to get more
271  * precise FIFO status when recovering from cancellation.
272  */
273 
274 static void epio_complete (struct usb_ep *ep, struct usb_request *req)
275 {
276 	struct ep_data	*epdata = ep->driver_data;
277 
278 	if (!req->context)
279 		return;
280 	if (req->status)
281 		epdata->status = req->status;
282 	else
283 		epdata->status = req->actual;
284 	complete ((struct completion *)req->context);
285 }
286 
287 /* tasklock endpoint, returning when it's connected.
288  * still need dev->lock to use epdata->ep.
289  */
290 static int
291 get_ready_ep (unsigned f_flags, struct ep_data *epdata, bool is_write)
292 {
293 	int	val;
294 
295 	if (f_flags & O_NONBLOCK) {
296 		if (!mutex_trylock(&epdata->lock))
297 			goto nonblock;
298 		if (epdata->state != STATE_EP_ENABLED &&
299 		    (!is_write || epdata->state != STATE_EP_READY)) {
300 			mutex_unlock(&epdata->lock);
301 nonblock:
302 			val = -EAGAIN;
303 		} else
304 			val = 0;
305 		return val;
306 	}
307 
308 	val = mutex_lock_interruptible(&epdata->lock);
309 	if (val < 0)
310 		return val;
311 
312 	switch (epdata->state) {
313 	case STATE_EP_ENABLED:
314 		return 0;
315 	case STATE_EP_READY:			/* not configured yet */
316 		if (is_write)
317 			return 0;
318 		// FALLTHRU
319 	case STATE_EP_UNBOUND:			/* clean disconnect */
320 		break;
321 	// case STATE_EP_DISABLED:		/* "can't happen" */
322 	default:				/* error! */
323 		pr_debug ("%s: ep %p not available, state %d\n",
324 				shortname, epdata, epdata->state);
325 	}
326 	mutex_unlock(&epdata->lock);
327 	return -ENODEV;
328 }
329 
330 static ssize_t
331 ep_io (struct ep_data *epdata, void *buf, unsigned len)
332 {
333 	DECLARE_COMPLETION_ONSTACK (done);
334 	int value;
335 
336 	spin_lock_irq (&epdata->dev->lock);
337 	if (likely (epdata->ep != NULL)) {
338 		struct usb_request	*req = epdata->req;
339 
340 		req->context = &done;
341 		req->complete = epio_complete;
342 		req->buf = buf;
343 		req->length = len;
344 		value = usb_ep_queue (epdata->ep, req, GFP_ATOMIC);
345 	} else
346 		value = -ENODEV;
347 	spin_unlock_irq (&epdata->dev->lock);
348 
349 	if (likely (value == 0)) {
350 		value = wait_event_interruptible (done.wait, done.done);
351 		if (value != 0) {
352 			spin_lock_irq (&epdata->dev->lock);
353 			if (likely (epdata->ep != NULL)) {
354 				DBG (epdata->dev, "%s i/o interrupted\n",
355 						epdata->name);
356 				usb_ep_dequeue (epdata->ep, epdata->req);
357 				spin_unlock_irq (&epdata->dev->lock);
358 
359 				wait_event (done.wait, done.done);
360 				if (epdata->status == -ECONNRESET)
361 					epdata->status = -EINTR;
362 			} else {
363 				spin_unlock_irq (&epdata->dev->lock);
364 
365 				DBG (epdata->dev, "endpoint gone\n");
366 				epdata->status = -ENODEV;
367 			}
368 		}
369 		return epdata->status;
370 	}
371 	return value;
372 }
373 
374 static int
375 ep_release (struct inode *inode, struct file *fd)
376 {
377 	struct ep_data		*data = fd->private_data;
378 	int value;
379 
380 	value = mutex_lock_interruptible(&data->lock);
381 	if (value < 0)
382 		return value;
383 
384 	/* clean up if this can be reopened */
385 	if (data->state != STATE_EP_UNBOUND) {
386 		data->state = STATE_EP_DISABLED;
387 		data->desc.bDescriptorType = 0;
388 		data->hs_desc.bDescriptorType = 0;
389 		usb_ep_disable(data->ep);
390 	}
391 	mutex_unlock(&data->lock);
392 	put_ep (data);
393 	return 0;
394 }
395 
396 static long ep_ioctl(struct file *fd, unsigned code, unsigned long value)
397 {
398 	struct ep_data		*data = fd->private_data;
399 	int			status;
400 
401 	if ((status = get_ready_ep (fd->f_flags, data, false)) < 0)
402 		return status;
403 
404 	spin_lock_irq (&data->dev->lock);
405 	if (likely (data->ep != NULL)) {
406 		switch (code) {
407 		case GADGETFS_FIFO_STATUS:
408 			status = usb_ep_fifo_status (data->ep);
409 			break;
410 		case GADGETFS_FIFO_FLUSH:
411 			usb_ep_fifo_flush (data->ep);
412 			break;
413 		case GADGETFS_CLEAR_HALT:
414 			status = usb_ep_clear_halt (data->ep);
415 			break;
416 		default:
417 			status = -ENOTTY;
418 		}
419 	} else
420 		status = -ENODEV;
421 	spin_unlock_irq (&data->dev->lock);
422 	mutex_unlock(&data->lock);
423 	return status;
424 }
425 
426 /*----------------------------------------------------------------------*/
427 
428 /* ASYNCHRONOUS ENDPOINT I/O OPERATIONS (bulk/intr/iso) */
429 
430 struct kiocb_priv {
431 	struct usb_request	*req;
432 	struct ep_data		*epdata;
433 	struct kiocb		*iocb;
434 	struct mm_struct	*mm;
435 	struct work_struct	work;
436 	void			*buf;
437 	struct iov_iter		to;
438 	const void		*to_free;
439 	unsigned		actual;
440 };
441 
442 static int ep_aio_cancel(struct kiocb *iocb)
443 {
444 	struct kiocb_priv	*priv = iocb->private;
445 	struct ep_data		*epdata;
446 	int			value;
447 
448 	local_irq_disable();
449 	epdata = priv->epdata;
450 	// spin_lock(&epdata->dev->lock);
451 	if (likely(epdata && epdata->ep && priv->req))
452 		value = usb_ep_dequeue (epdata->ep, priv->req);
453 	else
454 		value = -EINVAL;
455 	// spin_unlock(&epdata->dev->lock);
456 	local_irq_enable();
457 
458 	return value;
459 }
460 
461 static void ep_user_copy_worker(struct work_struct *work)
462 {
463 	struct kiocb_priv *priv = container_of(work, struct kiocb_priv, work);
464 	struct mm_struct *mm = priv->mm;
465 	struct kiocb *iocb = priv->iocb;
466 	size_t ret;
467 
468 	use_mm(mm);
469 	ret = copy_to_iter(priv->buf, priv->actual, &priv->to);
470 	unuse_mm(mm);
471 	if (!ret)
472 		ret = -EFAULT;
473 
474 	/* completing the iocb can drop the ctx and mm, don't touch mm after */
475 	iocb->ki_complete(iocb, ret, ret);
476 
477 	kfree(priv->buf);
478 	kfree(priv->to_free);
479 	kfree(priv);
480 }
481 
482 static void ep_aio_complete(struct usb_ep *ep, struct usb_request *req)
483 {
484 	struct kiocb		*iocb = req->context;
485 	struct kiocb_priv	*priv = iocb->private;
486 	struct ep_data		*epdata = priv->epdata;
487 
488 	/* lock against disconnect (and ideally, cancel) */
489 	spin_lock(&epdata->dev->lock);
490 	priv->req = NULL;
491 	priv->epdata = NULL;
492 
493 	/* if this was a write or a read returning no data then we
494 	 * don't need to copy anything to userspace, so we can
495 	 * complete the aio request immediately.
496 	 */
497 	if (priv->to_free == NULL || unlikely(req->actual == 0)) {
498 		kfree(req->buf);
499 		kfree(priv->to_free);
500 		kfree(priv);
501 		iocb->private = NULL;
502 		/* aio_complete() reports bytes-transferred _and_ faults */
503 
504 		iocb->ki_complete(iocb, req->actual ? req->actual : req->status,
505 				req->status);
506 	} else {
507 		/* ep_copy_to_user() won't report both; we hide some faults */
508 		if (unlikely(0 != req->status))
509 			DBG(epdata->dev, "%s fault %d len %d\n",
510 				ep->name, req->status, req->actual);
511 
512 		priv->buf = req->buf;
513 		priv->actual = req->actual;
514 		INIT_WORK(&priv->work, ep_user_copy_worker);
515 		schedule_work(&priv->work);
516 	}
517 
518 	usb_ep_free_request(ep, req);
519 	spin_unlock(&epdata->dev->lock);
520 	put_ep(epdata);
521 }
522 
523 static ssize_t ep_aio(struct kiocb *iocb,
524 		      struct kiocb_priv *priv,
525 		      struct ep_data *epdata,
526 		      char *buf,
527 		      size_t len)
528 {
529 	struct usb_request *req;
530 	ssize_t value;
531 
532 	iocb->private = priv;
533 	priv->iocb = iocb;
534 
535 	kiocb_set_cancel_fn(iocb, ep_aio_cancel);
536 	get_ep(epdata);
537 	priv->epdata = epdata;
538 	priv->actual = 0;
539 	priv->mm = current->mm; /* mm teardown waits for iocbs in exit_aio() */
540 
541 	/* each kiocb is coupled to one usb_request, but we can't
542 	 * allocate or submit those if the host disconnected.
543 	 */
544 	spin_lock_irq(&epdata->dev->lock);
545 	value = -ENODEV;
546 	if (unlikely(epdata->ep == NULL))
547 		goto fail;
548 
549 	req = usb_ep_alloc_request(epdata->ep, GFP_ATOMIC);
550 	value = -ENOMEM;
551 	if (unlikely(!req))
552 		goto fail;
553 
554 	priv->req = req;
555 	req->buf = buf;
556 	req->length = len;
557 	req->complete = ep_aio_complete;
558 	req->context = iocb;
559 	value = usb_ep_queue(epdata->ep, req, GFP_ATOMIC);
560 	if (unlikely(0 != value)) {
561 		usb_ep_free_request(epdata->ep, req);
562 		goto fail;
563 	}
564 	spin_unlock_irq(&epdata->dev->lock);
565 	return -EIOCBQUEUED;
566 
567 fail:
568 	spin_unlock_irq(&epdata->dev->lock);
569 	kfree(priv->to_free);
570 	kfree(priv);
571 	put_ep(epdata);
572 	return value;
573 }
574 
575 static ssize_t
576 ep_read_iter(struct kiocb *iocb, struct iov_iter *to)
577 {
578 	struct file *file = iocb->ki_filp;
579 	struct ep_data *epdata = file->private_data;
580 	size_t len = iov_iter_count(to);
581 	ssize_t value;
582 	char *buf;
583 
584 	if ((value = get_ready_ep(file->f_flags, epdata, false)) < 0)
585 		return value;
586 
587 	/* halt any endpoint by doing a "wrong direction" i/o call */
588 	if (usb_endpoint_dir_in(&epdata->desc)) {
589 		if (usb_endpoint_xfer_isoc(&epdata->desc) ||
590 		    !is_sync_kiocb(iocb)) {
591 			mutex_unlock(&epdata->lock);
592 			return -EINVAL;
593 		}
594 		DBG (epdata->dev, "%s halt\n", epdata->name);
595 		spin_lock_irq(&epdata->dev->lock);
596 		if (likely(epdata->ep != NULL))
597 			usb_ep_set_halt(epdata->ep);
598 		spin_unlock_irq(&epdata->dev->lock);
599 		mutex_unlock(&epdata->lock);
600 		return -EBADMSG;
601 	}
602 
603 	buf = kmalloc(len, GFP_KERNEL);
604 	if (unlikely(!buf)) {
605 		mutex_unlock(&epdata->lock);
606 		return -ENOMEM;
607 	}
608 	if (is_sync_kiocb(iocb)) {
609 		value = ep_io(epdata, buf, len);
610 		if (value >= 0 && (copy_to_iter(buf, value, to) != value))
611 			value = -EFAULT;
612 	} else {
613 		struct kiocb_priv *priv = kzalloc(sizeof *priv, GFP_KERNEL);
614 		value = -ENOMEM;
615 		if (!priv)
616 			goto fail;
617 		priv->to_free = dup_iter(&priv->to, to, GFP_KERNEL);
618 		if (!priv->to_free) {
619 			kfree(priv);
620 			goto fail;
621 		}
622 		value = ep_aio(iocb, priv, epdata, buf, len);
623 		if (value == -EIOCBQUEUED)
624 			buf = NULL;
625 	}
626 fail:
627 	kfree(buf);
628 	mutex_unlock(&epdata->lock);
629 	return value;
630 }
631 
632 static ssize_t ep_config(struct ep_data *, const char *, size_t);
633 
634 static ssize_t
635 ep_write_iter(struct kiocb *iocb, struct iov_iter *from)
636 {
637 	struct file *file = iocb->ki_filp;
638 	struct ep_data *epdata = file->private_data;
639 	size_t len = iov_iter_count(from);
640 	bool configured;
641 	ssize_t value;
642 	char *buf;
643 
644 	if ((value = get_ready_ep(file->f_flags, epdata, true)) < 0)
645 		return value;
646 
647 	configured = epdata->state == STATE_EP_ENABLED;
648 
649 	/* halt any endpoint by doing a "wrong direction" i/o call */
650 	if (configured && !usb_endpoint_dir_in(&epdata->desc)) {
651 		if (usb_endpoint_xfer_isoc(&epdata->desc) ||
652 		    !is_sync_kiocb(iocb)) {
653 			mutex_unlock(&epdata->lock);
654 			return -EINVAL;
655 		}
656 		DBG (epdata->dev, "%s halt\n", epdata->name);
657 		spin_lock_irq(&epdata->dev->lock);
658 		if (likely(epdata->ep != NULL))
659 			usb_ep_set_halt(epdata->ep);
660 		spin_unlock_irq(&epdata->dev->lock);
661 		mutex_unlock(&epdata->lock);
662 		return -EBADMSG;
663 	}
664 
665 	buf = kmalloc(len, GFP_KERNEL);
666 	if (unlikely(!buf)) {
667 		mutex_unlock(&epdata->lock);
668 		return -ENOMEM;
669 	}
670 
671 	if (unlikely(!copy_from_iter_full(buf, len, from))) {
672 		value = -EFAULT;
673 		goto out;
674 	}
675 
676 	if (unlikely(!configured)) {
677 		value = ep_config(epdata, buf, len);
678 	} else if (is_sync_kiocb(iocb)) {
679 		value = ep_io(epdata, buf, len);
680 	} else {
681 		struct kiocb_priv *priv = kzalloc(sizeof *priv, GFP_KERNEL);
682 		value = -ENOMEM;
683 		if (priv) {
684 			value = ep_aio(iocb, priv, epdata, buf, len);
685 			if (value == -EIOCBQUEUED)
686 				buf = NULL;
687 		}
688 	}
689 out:
690 	kfree(buf);
691 	mutex_unlock(&epdata->lock);
692 	return value;
693 }
694 
695 /*----------------------------------------------------------------------*/
696 
697 /* used after endpoint configuration */
698 static const struct file_operations ep_io_operations = {
699 	.owner =	THIS_MODULE,
700 
701 	.open =		ep_open,
702 	.release =	ep_release,
703 	.llseek =	no_llseek,
704 	.unlocked_ioctl = ep_ioctl,
705 	.read_iter =	ep_read_iter,
706 	.write_iter =	ep_write_iter,
707 };
708 
709 /* ENDPOINT INITIALIZATION
710  *
711  *     fd = open ("/dev/gadget/$ENDPOINT", O_RDWR)
712  *     status = write (fd, descriptors, sizeof descriptors)
713  *
714  * That write establishes the endpoint configuration, configuring
715  * the controller to process bulk, interrupt, or isochronous transfers
716  * at the right maxpacket size, and so on.
717  *
718  * The descriptors are message type 1, identified by a host order u32
719  * at the beginning of what's written.  Descriptor order is: full/low
720  * speed descriptor, then optional high speed descriptor.
721  */
722 static ssize_t
723 ep_config (struct ep_data *data, const char *buf, size_t len)
724 {
725 	struct usb_ep		*ep;
726 	u32			tag;
727 	int			value, length = len;
728 
729 	if (data->state != STATE_EP_READY) {
730 		value = -EL2HLT;
731 		goto fail;
732 	}
733 
734 	value = len;
735 	if (len < USB_DT_ENDPOINT_SIZE + 4)
736 		goto fail0;
737 
738 	/* we might need to change message format someday */
739 	memcpy(&tag, buf, 4);
740 	if (tag != 1) {
741 		DBG(data->dev, "config %s, bad tag %d\n", data->name, tag);
742 		goto fail0;
743 	}
744 	buf += 4;
745 	len -= 4;
746 
747 	/* NOTE:  audio endpoint extensions not accepted here;
748 	 * just don't include the extra bytes.
749 	 */
750 
751 	/* full/low speed descriptor, then high speed */
752 	memcpy(&data->desc, buf, USB_DT_ENDPOINT_SIZE);
753 	if (data->desc.bLength != USB_DT_ENDPOINT_SIZE
754 			|| data->desc.bDescriptorType != USB_DT_ENDPOINT)
755 		goto fail0;
756 	if (len != USB_DT_ENDPOINT_SIZE) {
757 		if (len != 2 * USB_DT_ENDPOINT_SIZE)
758 			goto fail0;
759 		memcpy(&data->hs_desc, buf + USB_DT_ENDPOINT_SIZE,
760 			USB_DT_ENDPOINT_SIZE);
761 		if (data->hs_desc.bLength != USB_DT_ENDPOINT_SIZE
762 				|| data->hs_desc.bDescriptorType
763 					!= USB_DT_ENDPOINT) {
764 			DBG(data->dev, "config %s, bad hs length or type\n",
765 					data->name);
766 			goto fail0;
767 		}
768 	}
769 
770 	spin_lock_irq (&data->dev->lock);
771 	if (data->dev->state == STATE_DEV_UNBOUND) {
772 		value = -ENOENT;
773 		goto gone;
774 	} else {
775 		ep = data->ep;
776 		if (ep == NULL) {
777 			value = -ENODEV;
778 			goto gone;
779 		}
780 	}
781 	switch (data->dev->gadget->speed) {
782 	case USB_SPEED_LOW:
783 	case USB_SPEED_FULL:
784 		ep->desc = &data->desc;
785 		break;
786 	case USB_SPEED_HIGH:
787 		/* fails if caller didn't provide that descriptor... */
788 		ep->desc = &data->hs_desc;
789 		break;
790 	default:
791 		DBG(data->dev, "unconnected, %s init abandoned\n",
792 				data->name);
793 		value = -EINVAL;
794 		goto gone;
795 	}
796 	value = usb_ep_enable(ep);
797 	if (value == 0) {
798 		data->state = STATE_EP_ENABLED;
799 		value = length;
800 	}
801 gone:
802 	spin_unlock_irq (&data->dev->lock);
803 	if (value < 0) {
804 fail:
805 		data->desc.bDescriptorType = 0;
806 		data->hs_desc.bDescriptorType = 0;
807 	}
808 	return value;
809 fail0:
810 	value = -EINVAL;
811 	goto fail;
812 }
813 
814 static int
815 ep_open (struct inode *inode, struct file *fd)
816 {
817 	struct ep_data		*data = inode->i_private;
818 	int			value = -EBUSY;
819 
820 	if (mutex_lock_interruptible(&data->lock) != 0)
821 		return -EINTR;
822 	spin_lock_irq (&data->dev->lock);
823 	if (data->dev->state == STATE_DEV_UNBOUND)
824 		value = -ENOENT;
825 	else if (data->state == STATE_EP_DISABLED) {
826 		value = 0;
827 		data->state = STATE_EP_READY;
828 		get_ep (data);
829 		fd->private_data = data;
830 		VDEBUG (data->dev, "%s ready\n", data->name);
831 	} else
832 		DBG (data->dev, "%s state %d\n",
833 			data->name, data->state);
834 	spin_unlock_irq (&data->dev->lock);
835 	mutex_unlock(&data->lock);
836 	return value;
837 }
838 
839 /*----------------------------------------------------------------------*/
840 
841 /* EP0 IMPLEMENTATION can be partly in userspace.
842  *
843  * Drivers that use this facility receive various events, including
844  * control requests the kernel doesn't handle.  Drivers that don't
845  * use this facility may be too simple-minded for real applications.
846  */
847 
848 static inline void ep0_readable (struct dev_data *dev)
849 {
850 	wake_up (&dev->wait);
851 	kill_fasync (&dev->fasync, SIGIO, POLL_IN);
852 }
853 
854 static void clean_req (struct usb_ep *ep, struct usb_request *req)
855 {
856 	struct dev_data		*dev = ep->driver_data;
857 
858 	if (req->buf != dev->rbuf) {
859 		kfree(req->buf);
860 		req->buf = dev->rbuf;
861 	}
862 	req->complete = epio_complete;
863 	dev->setup_out_ready = 0;
864 }
865 
866 static void ep0_complete (struct usb_ep *ep, struct usb_request *req)
867 {
868 	struct dev_data		*dev = ep->driver_data;
869 	unsigned long		flags;
870 	int			free = 1;
871 
872 	/* for control OUT, data must still get to userspace */
873 	spin_lock_irqsave(&dev->lock, flags);
874 	if (!dev->setup_in) {
875 		dev->setup_out_error = (req->status != 0);
876 		if (!dev->setup_out_error)
877 			free = 0;
878 		dev->setup_out_ready = 1;
879 		ep0_readable (dev);
880 	}
881 
882 	/* clean up as appropriate */
883 	if (free && req->buf != &dev->rbuf)
884 		clean_req (ep, req);
885 	req->complete = epio_complete;
886 	spin_unlock_irqrestore(&dev->lock, flags);
887 }
888 
889 static int setup_req (struct usb_ep *ep, struct usb_request *req, u16 len)
890 {
891 	struct dev_data	*dev = ep->driver_data;
892 
893 	if (dev->setup_out_ready) {
894 		DBG (dev, "ep0 request busy!\n");
895 		return -EBUSY;
896 	}
897 	if (len > sizeof (dev->rbuf))
898 		req->buf = kmalloc(len, GFP_ATOMIC);
899 	if (req->buf == NULL) {
900 		req->buf = dev->rbuf;
901 		return -ENOMEM;
902 	}
903 	req->complete = ep0_complete;
904 	req->length = len;
905 	req->zero = 0;
906 	return 0;
907 }
908 
909 static ssize_t
910 ep0_read (struct file *fd, char __user *buf, size_t len, loff_t *ptr)
911 {
912 	struct dev_data			*dev = fd->private_data;
913 	ssize_t				retval;
914 	enum ep0_state			state;
915 
916 	spin_lock_irq (&dev->lock);
917 	if (dev->state <= STATE_DEV_OPENED) {
918 		retval = -EINVAL;
919 		goto done;
920 	}
921 
922 	/* report fd mode change before acting on it */
923 	if (dev->setup_abort) {
924 		dev->setup_abort = 0;
925 		retval = -EIDRM;
926 		goto done;
927 	}
928 
929 	/* control DATA stage */
930 	if ((state = dev->state) == STATE_DEV_SETUP) {
931 
932 		if (dev->setup_in) {		/* stall IN */
933 			VDEBUG(dev, "ep0in stall\n");
934 			(void) usb_ep_set_halt (dev->gadget->ep0);
935 			retval = -EL2HLT;
936 			dev->state = STATE_DEV_CONNECTED;
937 
938 		} else if (len == 0) {		/* ack SET_CONFIGURATION etc */
939 			struct usb_ep		*ep = dev->gadget->ep0;
940 			struct usb_request	*req = dev->req;
941 
942 			if ((retval = setup_req (ep, req, 0)) == 0) {
943 				++dev->udc_usage;
944 				spin_unlock_irq (&dev->lock);
945 				retval = usb_ep_queue (ep, req, GFP_KERNEL);
946 				spin_lock_irq (&dev->lock);
947 				--dev->udc_usage;
948 			}
949 			dev->state = STATE_DEV_CONNECTED;
950 
951 			/* assume that was SET_CONFIGURATION */
952 			if (dev->current_config) {
953 				unsigned power;
954 
955 				if (gadget_is_dualspeed(dev->gadget)
956 						&& (dev->gadget->speed
957 							== USB_SPEED_HIGH))
958 					power = dev->hs_config->bMaxPower;
959 				else
960 					power = dev->config->bMaxPower;
961 				usb_gadget_vbus_draw(dev->gadget, 2 * power);
962 			}
963 
964 		} else {			/* collect OUT data */
965 			if ((fd->f_flags & O_NONBLOCK) != 0
966 					&& !dev->setup_out_ready) {
967 				retval = -EAGAIN;
968 				goto done;
969 			}
970 			spin_unlock_irq (&dev->lock);
971 			retval = wait_event_interruptible (dev->wait,
972 					dev->setup_out_ready != 0);
973 
974 			/* FIXME state could change from under us */
975 			spin_lock_irq (&dev->lock);
976 			if (retval)
977 				goto done;
978 
979 			if (dev->state != STATE_DEV_SETUP) {
980 				retval = -ECANCELED;
981 				goto done;
982 			}
983 			dev->state = STATE_DEV_CONNECTED;
984 
985 			if (dev->setup_out_error)
986 				retval = -EIO;
987 			else {
988 				len = min (len, (size_t)dev->req->actual);
989 				++dev->udc_usage;
990 				spin_unlock_irq(&dev->lock);
991 				if (copy_to_user (buf, dev->req->buf, len))
992 					retval = -EFAULT;
993 				else
994 					retval = len;
995 				spin_lock_irq(&dev->lock);
996 				--dev->udc_usage;
997 				clean_req (dev->gadget->ep0, dev->req);
998 				/* NOTE userspace can't yet choose to stall */
999 			}
1000 		}
1001 		goto done;
1002 	}
1003 
1004 	/* else normal: return event data */
1005 	if (len < sizeof dev->event [0]) {
1006 		retval = -EINVAL;
1007 		goto done;
1008 	}
1009 	len -= len % sizeof (struct usb_gadgetfs_event);
1010 	dev->usermode_setup = 1;
1011 
1012 scan:
1013 	/* return queued events right away */
1014 	if (dev->ev_next != 0) {
1015 		unsigned		i, n;
1016 
1017 		n = len / sizeof (struct usb_gadgetfs_event);
1018 		if (dev->ev_next < n)
1019 			n = dev->ev_next;
1020 
1021 		/* ep0 i/o has special semantics during STATE_DEV_SETUP */
1022 		for (i = 0; i < n; i++) {
1023 			if (dev->event [i].type == GADGETFS_SETUP) {
1024 				dev->state = STATE_DEV_SETUP;
1025 				n = i + 1;
1026 				break;
1027 			}
1028 		}
1029 		spin_unlock_irq (&dev->lock);
1030 		len = n * sizeof (struct usb_gadgetfs_event);
1031 		if (copy_to_user (buf, &dev->event, len))
1032 			retval = -EFAULT;
1033 		else
1034 			retval = len;
1035 		if (len > 0) {
1036 			/* NOTE this doesn't guard against broken drivers;
1037 			 * concurrent ep0 readers may lose events.
1038 			 */
1039 			spin_lock_irq (&dev->lock);
1040 			if (dev->ev_next > n) {
1041 				memmove(&dev->event[0], &dev->event[n],
1042 					sizeof (struct usb_gadgetfs_event)
1043 						* (dev->ev_next - n));
1044 			}
1045 			dev->ev_next -= n;
1046 			spin_unlock_irq (&dev->lock);
1047 		}
1048 		return retval;
1049 	}
1050 	if (fd->f_flags & O_NONBLOCK) {
1051 		retval = -EAGAIN;
1052 		goto done;
1053 	}
1054 
1055 	switch (state) {
1056 	default:
1057 		DBG (dev, "fail %s, state %d\n", __func__, state);
1058 		retval = -ESRCH;
1059 		break;
1060 	case STATE_DEV_UNCONNECTED:
1061 	case STATE_DEV_CONNECTED:
1062 		spin_unlock_irq (&dev->lock);
1063 		DBG (dev, "%s wait\n", __func__);
1064 
1065 		/* wait for events */
1066 		retval = wait_event_interruptible (dev->wait,
1067 				dev->ev_next != 0);
1068 		if (retval < 0)
1069 			return retval;
1070 		spin_lock_irq (&dev->lock);
1071 		goto scan;
1072 	}
1073 
1074 done:
1075 	spin_unlock_irq (&dev->lock);
1076 	return retval;
1077 }
1078 
1079 static struct usb_gadgetfs_event *
1080 next_event (struct dev_data *dev, enum usb_gadgetfs_event_type type)
1081 {
1082 	struct usb_gadgetfs_event	*event;
1083 	unsigned			i;
1084 
1085 	switch (type) {
1086 	/* these events purge the queue */
1087 	case GADGETFS_DISCONNECT:
1088 		if (dev->state == STATE_DEV_SETUP)
1089 			dev->setup_abort = 1;
1090 		// FALL THROUGH
1091 	case GADGETFS_CONNECT:
1092 		dev->ev_next = 0;
1093 		break;
1094 	case GADGETFS_SETUP:		/* previous request timed out */
1095 	case GADGETFS_SUSPEND:		/* same effect */
1096 		/* these events can't be repeated */
1097 		for (i = 0; i != dev->ev_next; i++) {
1098 			if (dev->event [i].type != type)
1099 				continue;
1100 			DBG(dev, "discard old event[%d] %d\n", i, type);
1101 			dev->ev_next--;
1102 			if (i == dev->ev_next)
1103 				break;
1104 			/* indices start at zero, for simplicity */
1105 			memmove (&dev->event [i], &dev->event [i + 1],
1106 				sizeof (struct usb_gadgetfs_event)
1107 					* (dev->ev_next - i));
1108 		}
1109 		break;
1110 	default:
1111 		BUG ();
1112 	}
1113 	VDEBUG(dev, "event[%d] = %d\n", dev->ev_next, type);
1114 	event = &dev->event [dev->ev_next++];
1115 	BUG_ON (dev->ev_next > N_EVENT);
1116 	memset (event, 0, sizeof *event);
1117 	event->type = type;
1118 	return event;
1119 }
1120 
1121 static ssize_t
1122 ep0_write (struct file *fd, const char __user *buf, size_t len, loff_t *ptr)
1123 {
1124 	struct dev_data		*dev = fd->private_data;
1125 	ssize_t			retval = -ESRCH;
1126 
1127 	/* report fd mode change before acting on it */
1128 	if (dev->setup_abort) {
1129 		dev->setup_abort = 0;
1130 		retval = -EIDRM;
1131 
1132 	/* data and/or status stage for control request */
1133 	} else if (dev->state == STATE_DEV_SETUP) {
1134 
1135 		len = min_t(size_t, len, dev->setup_wLength);
1136 		if (dev->setup_in) {
1137 			retval = setup_req (dev->gadget->ep0, dev->req, len);
1138 			if (retval == 0) {
1139 				dev->state = STATE_DEV_CONNECTED;
1140 				++dev->udc_usage;
1141 				spin_unlock_irq (&dev->lock);
1142 				if (copy_from_user (dev->req->buf, buf, len))
1143 					retval = -EFAULT;
1144 				else {
1145 					if (len < dev->setup_wLength)
1146 						dev->req->zero = 1;
1147 					retval = usb_ep_queue (
1148 						dev->gadget->ep0, dev->req,
1149 						GFP_KERNEL);
1150 				}
1151 				spin_lock_irq(&dev->lock);
1152 				--dev->udc_usage;
1153 				if (retval < 0) {
1154 					clean_req (dev->gadget->ep0, dev->req);
1155 				} else
1156 					retval = len;
1157 
1158 				return retval;
1159 			}
1160 
1161 		/* can stall some OUT transfers */
1162 		} else if (dev->setup_can_stall) {
1163 			VDEBUG(dev, "ep0out stall\n");
1164 			(void) usb_ep_set_halt (dev->gadget->ep0);
1165 			retval = -EL2HLT;
1166 			dev->state = STATE_DEV_CONNECTED;
1167 		} else {
1168 			DBG(dev, "bogus ep0out stall!\n");
1169 		}
1170 	} else
1171 		DBG (dev, "fail %s, state %d\n", __func__, dev->state);
1172 
1173 	return retval;
1174 }
1175 
1176 static int
1177 ep0_fasync (int f, struct file *fd, int on)
1178 {
1179 	struct dev_data		*dev = fd->private_data;
1180 	// caller must F_SETOWN before signal delivery happens
1181 	VDEBUG (dev, "%s %s\n", __func__, on ? "on" : "off");
1182 	return fasync_helper (f, fd, on, &dev->fasync);
1183 }
1184 
1185 static struct usb_gadget_driver gadgetfs_driver;
1186 
1187 static int
1188 dev_release (struct inode *inode, struct file *fd)
1189 {
1190 	struct dev_data		*dev = fd->private_data;
1191 
1192 	/* closing ep0 === shutdown all */
1193 
1194 	if (dev->gadget_registered) {
1195 		usb_gadget_unregister_driver (&gadgetfs_driver);
1196 		dev->gadget_registered = false;
1197 	}
1198 
1199 	/* at this point "good" hardware has disconnected the
1200 	 * device from USB; the host won't see it any more.
1201 	 * alternatively, all host requests will time out.
1202 	 */
1203 
1204 	kfree (dev->buf);
1205 	dev->buf = NULL;
1206 
1207 	/* other endpoints were all decoupled from this device */
1208 	spin_lock_irq(&dev->lock);
1209 	dev->state = STATE_DEV_DISABLED;
1210 	spin_unlock_irq(&dev->lock);
1211 
1212 	put_dev (dev);
1213 	return 0;
1214 }
1215 
1216 static unsigned int
1217 ep0_poll (struct file *fd, poll_table *wait)
1218 {
1219        struct dev_data         *dev = fd->private_data;
1220        int                     mask = 0;
1221 
1222 	if (dev->state <= STATE_DEV_OPENED)
1223 		return DEFAULT_POLLMASK;
1224 
1225        poll_wait(fd, &dev->wait, wait);
1226 
1227        spin_lock_irq (&dev->lock);
1228 
1229        /* report fd mode change before acting on it */
1230        if (dev->setup_abort) {
1231                dev->setup_abort = 0;
1232                mask = POLLHUP;
1233                goto out;
1234        }
1235 
1236        if (dev->state == STATE_DEV_SETUP) {
1237                if (dev->setup_in || dev->setup_can_stall)
1238                        mask = POLLOUT;
1239        } else {
1240                if (dev->ev_next != 0)
1241                        mask = POLLIN;
1242        }
1243 out:
1244        spin_unlock_irq(&dev->lock);
1245        return mask;
1246 }
1247 
1248 static long dev_ioctl (struct file *fd, unsigned code, unsigned long value)
1249 {
1250 	struct dev_data		*dev = fd->private_data;
1251 	struct usb_gadget	*gadget = dev->gadget;
1252 	long ret = -ENOTTY;
1253 
1254 	spin_lock_irq(&dev->lock);
1255 	if (dev->state == STATE_DEV_OPENED ||
1256 			dev->state == STATE_DEV_UNBOUND) {
1257 		/* Not bound to a UDC */
1258 	} else if (gadget->ops->ioctl) {
1259 		++dev->udc_usage;
1260 		spin_unlock_irq(&dev->lock);
1261 
1262 		ret = gadget->ops->ioctl (gadget, code, value);
1263 
1264 		spin_lock_irq(&dev->lock);
1265 		--dev->udc_usage;
1266 	}
1267 	spin_unlock_irq(&dev->lock);
1268 
1269 	return ret;
1270 }
1271 
1272 /*----------------------------------------------------------------------*/
1273 
1274 /* The in-kernel gadget driver handles most ep0 issues, in particular
1275  * enumerating the single configuration (as provided from user space).
1276  *
1277  * Unrecognized ep0 requests may be handled in user space.
1278  */
1279 
1280 static void make_qualifier (struct dev_data *dev)
1281 {
1282 	struct usb_qualifier_descriptor		qual;
1283 	struct usb_device_descriptor		*desc;
1284 
1285 	qual.bLength = sizeof qual;
1286 	qual.bDescriptorType = USB_DT_DEVICE_QUALIFIER;
1287 	qual.bcdUSB = cpu_to_le16 (0x0200);
1288 
1289 	desc = dev->dev;
1290 	qual.bDeviceClass = desc->bDeviceClass;
1291 	qual.bDeviceSubClass = desc->bDeviceSubClass;
1292 	qual.bDeviceProtocol = desc->bDeviceProtocol;
1293 
1294 	/* assumes ep0 uses the same value for both speeds ... */
1295 	qual.bMaxPacketSize0 = dev->gadget->ep0->maxpacket;
1296 
1297 	qual.bNumConfigurations = 1;
1298 	qual.bRESERVED = 0;
1299 
1300 	memcpy (dev->rbuf, &qual, sizeof qual);
1301 }
1302 
1303 static int
1304 config_buf (struct dev_data *dev, u8 type, unsigned index)
1305 {
1306 	int		len;
1307 	int		hs = 0;
1308 
1309 	/* only one configuration */
1310 	if (index > 0)
1311 		return -EINVAL;
1312 
1313 	if (gadget_is_dualspeed(dev->gadget)) {
1314 		hs = (dev->gadget->speed == USB_SPEED_HIGH);
1315 		if (type == USB_DT_OTHER_SPEED_CONFIG)
1316 			hs = !hs;
1317 	}
1318 	if (hs) {
1319 		dev->req->buf = dev->hs_config;
1320 		len = le16_to_cpu(dev->hs_config->wTotalLength);
1321 	} else {
1322 		dev->req->buf = dev->config;
1323 		len = le16_to_cpu(dev->config->wTotalLength);
1324 	}
1325 	((u8 *)dev->req->buf) [1] = type;
1326 	return len;
1327 }
1328 
1329 static int
1330 gadgetfs_setup (struct usb_gadget *gadget, const struct usb_ctrlrequest *ctrl)
1331 {
1332 	struct dev_data			*dev = get_gadget_data (gadget);
1333 	struct usb_request		*req = dev->req;
1334 	int				value = -EOPNOTSUPP;
1335 	struct usb_gadgetfs_event	*event;
1336 	u16				w_value = le16_to_cpu(ctrl->wValue);
1337 	u16				w_length = le16_to_cpu(ctrl->wLength);
1338 
1339 	spin_lock (&dev->lock);
1340 	dev->setup_abort = 0;
1341 	if (dev->state == STATE_DEV_UNCONNECTED) {
1342 		if (gadget_is_dualspeed(gadget)
1343 				&& gadget->speed == USB_SPEED_HIGH
1344 				&& dev->hs_config == NULL) {
1345 			spin_unlock(&dev->lock);
1346 			ERROR (dev, "no high speed config??\n");
1347 			return -EINVAL;
1348 		}
1349 
1350 		dev->state = STATE_DEV_CONNECTED;
1351 
1352 		INFO (dev, "connected\n");
1353 		event = next_event (dev, GADGETFS_CONNECT);
1354 		event->u.speed = gadget->speed;
1355 		ep0_readable (dev);
1356 
1357 	/* host may have given up waiting for response.  we can miss control
1358 	 * requests handled lower down (device/endpoint status and features);
1359 	 * then ep0_{read,write} will report the wrong status. controller
1360 	 * driver will have aborted pending i/o.
1361 	 */
1362 	} else if (dev->state == STATE_DEV_SETUP)
1363 		dev->setup_abort = 1;
1364 
1365 	req->buf = dev->rbuf;
1366 	req->context = NULL;
1367 	value = -EOPNOTSUPP;
1368 	switch (ctrl->bRequest) {
1369 
1370 	case USB_REQ_GET_DESCRIPTOR:
1371 		if (ctrl->bRequestType != USB_DIR_IN)
1372 			goto unrecognized;
1373 		switch (w_value >> 8) {
1374 
1375 		case USB_DT_DEVICE:
1376 			value = min (w_length, (u16) sizeof *dev->dev);
1377 			dev->dev->bMaxPacketSize0 = dev->gadget->ep0->maxpacket;
1378 			req->buf = dev->dev;
1379 			break;
1380 		case USB_DT_DEVICE_QUALIFIER:
1381 			if (!dev->hs_config)
1382 				break;
1383 			value = min (w_length, (u16)
1384 				sizeof (struct usb_qualifier_descriptor));
1385 			make_qualifier (dev);
1386 			break;
1387 		case USB_DT_OTHER_SPEED_CONFIG:
1388 			// FALLTHROUGH
1389 		case USB_DT_CONFIG:
1390 			value = config_buf (dev,
1391 					w_value >> 8,
1392 					w_value & 0xff);
1393 			if (value >= 0)
1394 				value = min (w_length, (u16) value);
1395 			break;
1396 		case USB_DT_STRING:
1397 			goto unrecognized;
1398 
1399 		default:		// all others are errors
1400 			break;
1401 		}
1402 		break;
1403 
1404 	/* currently one config, two speeds */
1405 	case USB_REQ_SET_CONFIGURATION:
1406 		if (ctrl->bRequestType != 0)
1407 			goto unrecognized;
1408 		if (0 == (u8) w_value) {
1409 			value = 0;
1410 			dev->current_config = 0;
1411 			usb_gadget_vbus_draw(gadget, 8 /* mA */ );
1412 			// user mode expected to disable endpoints
1413 		} else {
1414 			u8	config, power;
1415 
1416 			if (gadget_is_dualspeed(gadget)
1417 					&& gadget->speed == USB_SPEED_HIGH) {
1418 				config = dev->hs_config->bConfigurationValue;
1419 				power = dev->hs_config->bMaxPower;
1420 			} else {
1421 				config = dev->config->bConfigurationValue;
1422 				power = dev->config->bMaxPower;
1423 			}
1424 
1425 			if (config == (u8) w_value) {
1426 				value = 0;
1427 				dev->current_config = config;
1428 				usb_gadget_vbus_draw(gadget, 2 * power);
1429 			}
1430 		}
1431 
1432 		/* report SET_CONFIGURATION like any other control request,
1433 		 * except that usermode may not stall this.  the next
1434 		 * request mustn't be allowed start until this finishes:
1435 		 * endpoints and threads set up, etc.
1436 		 *
1437 		 * NOTE:  older PXA hardware (before PXA 255: without UDCCFR)
1438 		 * has bad/racey automagic that prevents synchronizing here.
1439 		 * even kernel mode drivers often miss them.
1440 		 */
1441 		if (value == 0) {
1442 			INFO (dev, "configuration #%d\n", dev->current_config);
1443 			usb_gadget_set_state(gadget, USB_STATE_CONFIGURED);
1444 			if (dev->usermode_setup) {
1445 				dev->setup_can_stall = 0;
1446 				goto delegate;
1447 			}
1448 		}
1449 		break;
1450 
1451 #ifndef	CONFIG_USB_PXA25X
1452 	/* PXA automagically handles this request too */
1453 	case USB_REQ_GET_CONFIGURATION:
1454 		if (ctrl->bRequestType != 0x80)
1455 			goto unrecognized;
1456 		*(u8 *)req->buf = dev->current_config;
1457 		value = min (w_length, (u16) 1);
1458 		break;
1459 #endif
1460 
1461 	default:
1462 unrecognized:
1463 		VDEBUG (dev, "%s req%02x.%02x v%04x i%04x l%d\n",
1464 			dev->usermode_setup ? "delegate" : "fail",
1465 			ctrl->bRequestType, ctrl->bRequest,
1466 			w_value, le16_to_cpu(ctrl->wIndex), w_length);
1467 
1468 		/* if there's an ep0 reader, don't stall */
1469 		if (dev->usermode_setup) {
1470 			dev->setup_can_stall = 1;
1471 delegate:
1472 			dev->setup_in = (ctrl->bRequestType & USB_DIR_IN)
1473 						? 1 : 0;
1474 			dev->setup_wLength = w_length;
1475 			dev->setup_out_ready = 0;
1476 			dev->setup_out_error = 0;
1477 			value = 0;
1478 
1479 			/* read DATA stage for OUT right away */
1480 			if (unlikely (!dev->setup_in && w_length)) {
1481 				value = setup_req (gadget->ep0, dev->req,
1482 							w_length);
1483 				if (value < 0)
1484 					break;
1485 
1486 				++dev->udc_usage;
1487 				spin_unlock (&dev->lock);
1488 				value = usb_ep_queue (gadget->ep0, dev->req,
1489 							GFP_KERNEL);
1490 				spin_lock (&dev->lock);
1491 				--dev->udc_usage;
1492 				if (value < 0) {
1493 					clean_req (gadget->ep0, dev->req);
1494 					break;
1495 				}
1496 
1497 				/* we can't currently stall these */
1498 				dev->setup_can_stall = 0;
1499 			}
1500 
1501 			/* state changes when reader collects event */
1502 			event = next_event (dev, GADGETFS_SETUP);
1503 			event->u.setup = *ctrl;
1504 			ep0_readable (dev);
1505 			spin_unlock (&dev->lock);
1506 			return 0;
1507 		}
1508 	}
1509 
1510 	/* proceed with data transfer and status phases? */
1511 	if (value >= 0 && dev->state != STATE_DEV_SETUP) {
1512 		req->length = value;
1513 		req->zero = value < w_length;
1514 
1515 		++dev->udc_usage;
1516 		spin_unlock (&dev->lock);
1517 		value = usb_ep_queue (gadget->ep0, req, GFP_KERNEL);
1518 		spin_lock(&dev->lock);
1519 		--dev->udc_usage;
1520 		spin_unlock(&dev->lock);
1521 		if (value < 0) {
1522 			DBG (dev, "ep_queue --> %d\n", value);
1523 			req->status = 0;
1524 		}
1525 		return value;
1526 	}
1527 
1528 	/* device stalls when value < 0 */
1529 	spin_unlock (&dev->lock);
1530 	return value;
1531 }
1532 
1533 static void destroy_ep_files (struct dev_data *dev)
1534 {
1535 	DBG (dev, "%s %d\n", __func__, dev->state);
1536 
1537 	/* dev->state must prevent interference */
1538 	spin_lock_irq (&dev->lock);
1539 	while (!list_empty(&dev->epfiles)) {
1540 		struct ep_data	*ep;
1541 		struct inode	*parent;
1542 		struct dentry	*dentry;
1543 
1544 		/* break link to FS */
1545 		ep = list_first_entry (&dev->epfiles, struct ep_data, epfiles);
1546 		list_del_init (&ep->epfiles);
1547 		spin_unlock_irq (&dev->lock);
1548 
1549 		dentry = ep->dentry;
1550 		ep->dentry = NULL;
1551 		parent = d_inode(dentry->d_parent);
1552 
1553 		/* break link to controller */
1554 		mutex_lock(&ep->lock);
1555 		if (ep->state == STATE_EP_ENABLED)
1556 			(void) usb_ep_disable (ep->ep);
1557 		ep->state = STATE_EP_UNBOUND;
1558 		usb_ep_free_request (ep->ep, ep->req);
1559 		ep->ep = NULL;
1560 		mutex_unlock(&ep->lock);
1561 
1562 		wake_up (&ep->wait);
1563 		put_ep (ep);
1564 
1565 		/* break link to dcache */
1566 		inode_lock(parent);
1567 		d_delete (dentry);
1568 		dput (dentry);
1569 		inode_unlock(parent);
1570 
1571 		spin_lock_irq (&dev->lock);
1572 	}
1573 	spin_unlock_irq (&dev->lock);
1574 }
1575 
1576 
1577 static struct dentry *
1578 gadgetfs_create_file (struct super_block *sb, char const *name,
1579 		void *data, const struct file_operations *fops);
1580 
1581 static int activate_ep_files (struct dev_data *dev)
1582 {
1583 	struct usb_ep	*ep;
1584 	struct ep_data	*data;
1585 
1586 	gadget_for_each_ep (ep, dev->gadget) {
1587 
1588 		data = kzalloc(sizeof(*data), GFP_KERNEL);
1589 		if (!data)
1590 			goto enomem0;
1591 		data->state = STATE_EP_DISABLED;
1592 		mutex_init(&data->lock);
1593 		init_waitqueue_head (&data->wait);
1594 
1595 		strncpy (data->name, ep->name, sizeof (data->name) - 1);
1596 		refcount_set (&data->count, 1);
1597 		data->dev = dev;
1598 		get_dev (dev);
1599 
1600 		data->ep = ep;
1601 		ep->driver_data = data;
1602 
1603 		data->req = usb_ep_alloc_request (ep, GFP_KERNEL);
1604 		if (!data->req)
1605 			goto enomem1;
1606 
1607 		data->dentry = gadgetfs_create_file (dev->sb, data->name,
1608 				data, &ep_io_operations);
1609 		if (!data->dentry)
1610 			goto enomem2;
1611 		list_add_tail (&data->epfiles, &dev->epfiles);
1612 	}
1613 	return 0;
1614 
1615 enomem2:
1616 	usb_ep_free_request (ep, data->req);
1617 enomem1:
1618 	put_dev (dev);
1619 	kfree (data);
1620 enomem0:
1621 	DBG (dev, "%s enomem\n", __func__);
1622 	destroy_ep_files (dev);
1623 	return -ENOMEM;
1624 }
1625 
1626 static void
1627 gadgetfs_unbind (struct usb_gadget *gadget)
1628 {
1629 	struct dev_data		*dev = get_gadget_data (gadget);
1630 
1631 	DBG (dev, "%s\n", __func__);
1632 
1633 	spin_lock_irq (&dev->lock);
1634 	dev->state = STATE_DEV_UNBOUND;
1635 	while (dev->udc_usage > 0) {
1636 		spin_unlock_irq(&dev->lock);
1637 		usleep_range(1000, 2000);
1638 		spin_lock_irq(&dev->lock);
1639 	}
1640 	spin_unlock_irq (&dev->lock);
1641 
1642 	destroy_ep_files (dev);
1643 	gadget->ep0->driver_data = NULL;
1644 	set_gadget_data (gadget, NULL);
1645 
1646 	/* we've already been disconnected ... no i/o is active */
1647 	if (dev->req)
1648 		usb_ep_free_request (gadget->ep0, dev->req);
1649 	DBG (dev, "%s done\n", __func__);
1650 	put_dev (dev);
1651 }
1652 
1653 static struct dev_data		*the_device;
1654 
1655 static int gadgetfs_bind(struct usb_gadget *gadget,
1656 		struct usb_gadget_driver *driver)
1657 {
1658 	struct dev_data		*dev = the_device;
1659 
1660 	if (!dev)
1661 		return -ESRCH;
1662 	if (0 != strcmp (CHIP, gadget->name)) {
1663 		pr_err("%s expected %s controller not %s\n",
1664 			shortname, CHIP, gadget->name);
1665 		return -ENODEV;
1666 	}
1667 
1668 	set_gadget_data (gadget, dev);
1669 	dev->gadget = gadget;
1670 	gadget->ep0->driver_data = dev;
1671 
1672 	/* preallocate control response and buffer */
1673 	dev->req = usb_ep_alloc_request (gadget->ep0, GFP_KERNEL);
1674 	if (!dev->req)
1675 		goto enomem;
1676 	dev->req->context = NULL;
1677 	dev->req->complete = epio_complete;
1678 
1679 	if (activate_ep_files (dev) < 0)
1680 		goto enomem;
1681 
1682 	INFO (dev, "bound to %s driver\n", gadget->name);
1683 	spin_lock_irq(&dev->lock);
1684 	dev->state = STATE_DEV_UNCONNECTED;
1685 	spin_unlock_irq(&dev->lock);
1686 	get_dev (dev);
1687 	return 0;
1688 
1689 enomem:
1690 	gadgetfs_unbind (gadget);
1691 	return -ENOMEM;
1692 }
1693 
1694 static void
1695 gadgetfs_disconnect (struct usb_gadget *gadget)
1696 {
1697 	struct dev_data		*dev = get_gadget_data (gadget);
1698 	unsigned long		flags;
1699 
1700 	spin_lock_irqsave (&dev->lock, flags);
1701 	if (dev->state == STATE_DEV_UNCONNECTED)
1702 		goto exit;
1703 	dev->state = STATE_DEV_UNCONNECTED;
1704 
1705 	INFO (dev, "disconnected\n");
1706 	next_event (dev, GADGETFS_DISCONNECT);
1707 	ep0_readable (dev);
1708 exit:
1709 	spin_unlock_irqrestore (&dev->lock, flags);
1710 }
1711 
1712 static void
1713 gadgetfs_suspend (struct usb_gadget *gadget)
1714 {
1715 	struct dev_data		*dev = get_gadget_data (gadget);
1716 	unsigned long		flags;
1717 
1718 	INFO (dev, "suspended from state %d\n", dev->state);
1719 	spin_lock_irqsave(&dev->lock, flags);
1720 	switch (dev->state) {
1721 	case STATE_DEV_SETUP:		// VERY odd... host died??
1722 	case STATE_DEV_CONNECTED:
1723 	case STATE_DEV_UNCONNECTED:
1724 		next_event (dev, GADGETFS_SUSPEND);
1725 		ep0_readable (dev);
1726 		/* FALLTHROUGH */
1727 	default:
1728 		break;
1729 	}
1730 	spin_unlock_irqrestore(&dev->lock, flags);
1731 }
1732 
1733 static struct usb_gadget_driver gadgetfs_driver = {
1734 	.function	= (char *) driver_desc,
1735 	.bind		= gadgetfs_bind,
1736 	.unbind		= gadgetfs_unbind,
1737 	.setup		= gadgetfs_setup,
1738 	.reset		= gadgetfs_disconnect,
1739 	.disconnect	= gadgetfs_disconnect,
1740 	.suspend	= gadgetfs_suspend,
1741 
1742 	.driver	= {
1743 		.name		= (char *) shortname,
1744 	},
1745 };
1746 
1747 /*----------------------------------------------------------------------*/
1748 /* DEVICE INITIALIZATION
1749  *
1750  *     fd = open ("/dev/gadget/$CHIP", O_RDWR)
1751  *     status = write (fd, descriptors, sizeof descriptors)
1752  *
1753  * That write establishes the device configuration, so the kernel can
1754  * bind to the controller ... guaranteeing it can handle enumeration
1755  * at all necessary speeds.  Descriptor order is:
1756  *
1757  * . message tag (u32, host order) ... for now, must be zero; it
1758  *	would change to support features like multi-config devices
1759  * . full/low speed config ... all wTotalLength bytes (with interface,
1760  *	class, altsetting, endpoint, and other descriptors)
1761  * . high speed config ... all descriptors, for high speed operation;
1762  *	this one's optional except for high-speed hardware
1763  * . device descriptor
1764  *
1765  * Endpoints are not yet enabled. Drivers must wait until device
1766  * configuration and interface altsetting changes create
1767  * the need to configure (or unconfigure) them.
1768  *
1769  * After initialization, the device stays active for as long as that
1770  * $CHIP file is open.  Events must then be read from that descriptor,
1771  * such as configuration notifications.
1772  */
1773 
1774 static int is_valid_config(struct usb_config_descriptor *config,
1775 		unsigned int total)
1776 {
1777 	return config->bDescriptorType == USB_DT_CONFIG
1778 		&& config->bLength == USB_DT_CONFIG_SIZE
1779 		&& total >= USB_DT_CONFIG_SIZE
1780 		&& config->bConfigurationValue != 0
1781 		&& (config->bmAttributes & USB_CONFIG_ATT_ONE) != 0
1782 		&& (config->bmAttributes & USB_CONFIG_ATT_WAKEUP) == 0;
1783 	/* FIXME if gadget->is_otg, _must_ include an otg descriptor */
1784 	/* FIXME check lengths: walk to end */
1785 }
1786 
1787 static ssize_t
1788 dev_config (struct file *fd, const char __user *buf, size_t len, loff_t *ptr)
1789 {
1790 	struct dev_data		*dev = fd->private_data;
1791 	ssize_t			value = len, length = len;
1792 	unsigned		total;
1793 	u32			tag;
1794 	char			*kbuf;
1795 
1796 	spin_lock_irq(&dev->lock);
1797 	if (dev->state > STATE_DEV_OPENED) {
1798 		value = ep0_write(fd, buf, len, ptr);
1799 		spin_unlock_irq(&dev->lock);
1800 		return value;
1801 	}
1802 	spin_unlock_irq(&dev->lock);
1803 
1804 	if ((len < (USB_DT_CONFIG_SIZE + USB_DT_DEVICE_SIZE + 4)) ||
1805 	    (len > PAGE_SIZE * 4))
1806 		return -EINVAL;
1807 
1808 	/* we might need to change message format someday */
1809 	if (copy_from_user (&tag, buf, 4))
1810 		return -EFAULT;
1811 	if (tag != 0)
1812 		return -EINVAL;
1813 	buf += 4;
1814 	length -= 4;
1815 
1816 	kbuf = memdup_user(buf, length);
1817 	if (IS_ERR(kbuf))
1818 		return PTR_ERR(kbuf);
1819 
1820 	spin_lock_irq (&dev->lock);
1821 	value = -EINVAL;
1822 	if (dev->buf) {
1823 		kfree(kbuf);
1824 		goto fail;
1825 	}
1826 	dev->buf = kbuf;
1827 
1828 	/* full or low speed config */
1829 	dev->config = (void *) kbuf;
1830 	total = le16_to_cpu(dev->config->wTotalLength);
1831 	if (!is_valid_config(dev->config, total) ||
1832 			total > length - USB_DT_DEVICE_SIZE)
1833 		goto fail;
1834 	kbuf += total;
1835 	length -= total;
1836 
1837 	/* optional high speed config */
1838 	if (kbuf [1] == USB_DT_CONFIG) {
1839 		dev->hs_config = (void *) kbuf;
1840 		total = le16_to_cpu(dev->hs_config->wTotalLength);
1841 		if (!is_valid_config(dev->hs_config, total) ||
1842 				total > length - USB_DT_DEVICE_SIZE)
1843 			goto fail;
1844 		kbuf += total;
1845 		length -= total;
1846 	} else {
1847 		dev->hs_config = NULL;
1848 	}
1849 
1850 	/* could support multiple configs, using another encoding! */
1851 
1852 	/* device descriptor (tweaked for paranoia) */
1853 	if (length != USB_DT_DEVICE_SIZE)
1854 		goto fail;
1855 	dev->dev = (void *)kbuf;
1856 	if (dev->dev->bLength != USB_DT_DEVICE_SIZE
1857 			|| dev->dev->bDescriptorType != USB_DT_DEVICE
1858 			|| dev->dev->bNumConfigurations != 1)
1859 		goto fail;
1860 	dev->dev->bcdUSB = cpu_to_le16 (0x0200);
1861 
1862 	/* triggers gadgetfs_bind(); then we can enumerate. */
1863 	spin_unlock_irq (&dev->lock);
1864 	if (dev->hs_config)
1865 		gadgetfs_driver.max_speed = USB_SPEED_HIGH;
1866 	else
1867 		gadgetfs_driver.max_speed = USB_SPEED_FULL;
1868 
1869 	value = usb_gadget_probe_driver(&gadgetfs_driver);
1870 	if (value != 0) {
1871 		kfree (dev->buf);
1872 		dev->buf = NULL;
1873 	} else {
1874 		/* at this point "good" hardware has for the first time
1875 		 * let the USB the host see us.  alternatively, if users
1876 		 * unplug/replug that will clear all the error state.
1877 		 *
1878 		 * note:  everything running before here was guaranteed
1879 		 * to choke driver model style diagnostics.  from here
1880 		 * on, they can work ... except in cleanup paths that
1881 		 * kick in after the ep0 descriptor is closed.
1882 		 */
1883 		value = len;
1884 		dev->gadget_registered = true;
1885 	}
1886 	return value;
1887 
1888 fail:
1889 	spin_unlock_irq (&dev->lock);
1890 	pr_debug ("%s: %s fail %zd, %p\n", shortname, __func__, value, dev);
1891 	kfree (dev->buf);
1892 	dev->buf = NULL;
1893 	return value;
1894 }
1895 
1896 static int
1897 dev_open (struct inode *inode, struct file *fd)
1898 {
1899 	struct dev_data		*dev = inode->i_private;
1900 	int			value = -EBUSY;
1901 
1902 	spin_lock_irq(&dev->lock);
1903 	if (dev->state == STATE_DEV_DISABLED) {
1904 		dev->ev_next = 0;
1905 		dev->state = STATE_DEV_OPENED;
1906 		fd->private_data = dev;
1907 		get_dev (dev);
1908 		value = 0;
1909 	}
1910 	spin_unlock_irq(&dev->lock);
1911 	return value;
1912 }
1913 
1914 static const struct file_operations ep0_operations = {
1915 	.llseek =	no_llseek,
1916 
1917 	.open =		dev_open,
1918 	.read =		ep0_read,
1919 	.write =	dev_config,
1920 	.fasync =	ep0_fasync,
1921 	.poll =		ep0_poll,
1922 	.unlocked_ioctl = dev_ioctl,
1923 	.release =	dev_release,
1924 };
1925 
1926 /*----------------------------------------------------------------------*/
1927 
1928 /* FILESYSTEM AND SUPERBLOCK OPERATIONS
1929  *
1930  * Mounting the filesystem creates a controller file, used first for
1931  * device configuration then later for event monitoring.
1932  */
1933 
1934 
1935 /* FIXME PAM etc could set this security policy without mount options
1936  * if epfiles inherited ownership and permissons from ep0 ...
1937  */
1938 
1939 static unsigned default_uid;
1940 static unsigned default_gid;
1941 static unsigned default_perm = S_IRUSR | S_IWUSR;
1942 
1943 module_param (default_uid, uint, 0644);
1944 module_param (default_gid, uint, 0644);
1945 module_param (default_perm, uint, 0644);
1946 
1947 
1948 static struct inode *
1949 gadgetfs_make_inode (struct super_block *sb,
1950 		void *data, const struct file_operations *fops,
1951 		int mode)
1952 {
1953 	struct inode *inode = new_inode (sb);
1954 
1955 	if (inode) {
1956 		inode->i_ino = get_next_ino();
1957 		inode->i_mode = mode;
1958 		inode->i_uid = make_kuid(&init_user_ns, default_uid);
1959 		inode->i_gid = make_kgid(&init_user_ns, default_gid);
1960 		inode->i_atime = inode->i_mtime = inode->i_ctime
1961 				= current_time(inode);
1962 		inode->i_private = data;
1963 		inode->i_fop = fops;
1964 	}
1965 	return inode;
1966 }
1967 
1968 /* creates in fs root directory, so non-renamable and non-linkable.
1969  * so inode and dentry are paired, until device reconfig.
1970  */
1971 static struct dentry *
1972 gadgetfs_create_file (struct super_block *sb, char const *name,
1973 		void *data, const struct file_operations *fops)
1974 {
1975 	struct dentry	*dentry;
1976 	struct inode	*inode;
1977 
1978 	dentry = d_alloc_name(sb->s_root, name);
1979 	if (!dentry)
1980 		return NULL;
1981 
1982 	inode = gadgetfs_make_inode (sb, data, fops,
1983 			S_IFREG | (default_perm & S_IRWXUGO));
1984 	if (!inode) {
1985 		dput(dentry);
1986 		return NULL;
1987 	}
1988 	d_add (dentry, inode);
1989 	return dentry;
1990 }
1991 
1992 static const struct super_operations gadget_fs_operations = {
1993 	.statfs =	simple_statfs,
1994 	.drop_inode =	generic_delete_inode,
1995 };
1996 
1997 static int
1998 gadgetfs_fill_super (struct super_block *sb, void *opts, int silent)
1999 {
2000 	struct inode	*inode;
2001 	struct dev_data	*dev;
2002 
2003 	if (the_device)
2004 		return -ESRCH;
2005 
2006 	CHIP = usb_get_gadget_udc_name();
2007 	if (!CHIP)
2008 		return -ENODEV;
2009 
2010 	/* superblock */
2011 	sb->s_blocksize = PAGE_SIZE;
2012 	sb->s_blocksize_bits = PAGE_SHIFT;
2013 	sb->s_magic = GADGETFS_MAGIC;
2014 	sb->s_op = &gadget_fs_operations;
2015 	sb->s_time_gran = 1;
2016 
2017 	/* root inode */
2018 	inode = gadgetfs_make_inode (sb,
2019 			NULL, &simple_dir_operations,
2020 			S_IFDIR | S_IRUGO | S_IXUGO);
2021 	if (!inode)
2022 		goto Enomem;
2023 	inode->i_op = &simple_dir_inode_operations;
2024 	if (!(sb->s_root = d_make_root (inode)))
2025 		goto Enomem;
2026 
2027 	/* the ep0 file is named after the controller we expect;
2028 	 * user mode code can use it for sanity checks, like we do.
2029 	 */
2030 	dev = dev_new ();
2031 	if (!dev)
2032 		goto Enomem;
2033 
2034 	dev->sb = sb;
2035 	dev->dentry = gadgetfs_create_file(sb, CHIP, dev, &ep0_operations);
2036 	if (!dev->dentry) {
2037 		put_dev(dev);
2038 		goto Enomem;
2039 	}
2040 
2041 	/* other endpoint files are available after hardware setup,
2042 	 * from binding to a controller.
2043 	 */
2044 	the_device = dev;
2045 	return 0;
2046 
2047 Enomem:
2048 	return -ENOMEM;
2049 }
2050 
2051 /* "mount -t gadgetfs path /dev/gadget" ends up here */
2052 static struct dentry *
2053 gadgetfs_mount (struct file_system_type *t, int flags,
2054 		const char *path, void *opts)
2055 {
2056 	return mount_single (t, flags, opts, gadgetfs_fill_super);
2057 }
2058 
2059 static void
2060 gadgetfs_kill_sb (struct super_block *sb)
2061 {
2062 	kill_litter_super (sb);
2063 	if (the_device) {
2064 		put_dev (the_device);
2065 		the_device = NULL;
2066 	}
2067 	kfree(CHIP);
2068 	CHIP = NULL;
2069 }
2070 
2071 /*----------------------------------------------------------------------*/
2072 
2073 static struct file_system_type gadgetfs_type = {
2074 	.owner		= THIS_MODULE,
2075 	.name		= shortname,
2076 	.mount		= gadgetfs_mount,
2077 	.kill_sb	= gadgetfs_kill_sb,
2078 };
2079 MODULE_ALIAS_FS("gadgetfs");
2080 
2081 /*----------------------------------------------------------------------*/
2082 
2083 static int __init init (void)
2084 {
2085 	int status;
2086 
2087 	status = register_filesystem (&gadgetfs_type);
2088 	if (status == 0)
2089 		pr_info ("%s: %s, version " DRIVER_VERSION "\n",
2090 			shortname, driver_desc);
2091 	return status;
2092 }
2093 module_init (init);
2094 
2095 static void __exit cleanup (void)
2096 {
2097 	pr_debug ("unregister %s\n", shortname);
2098 	unregister_filesystem (&gadgetfs_type);
2099 }
2100 module_exit (cleanup);
2101 
2102