xref: /openbmc/linux/drivers/usb/gadget/legacy/inode.c (revision 6d8e62c3)
1 /*
2  * inode.c -- user mode filesystem api for usb gadget controllers
3  *
4  * Copyright (C) 2003-2004 David Brownell
5  * Copyright (C) 2003 Agilent Technologies
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  */
12 
13 
14 /* #define VERBOSE_DEBUG */
15 
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/fs.h>
19 #include <linux/pagemap.h>
20 #include <linux/uts.h>
21 #include <linux/wait.h>
22 #include <linux/compiler.h>
23 #include <asm/uaccess.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/poll.h>
27 #include <linux/mmu_context.h>
28 #include <linux/aio.h>
29 
30 #include <linux/device.h>
31 #include <linux/moduleparam.h>
32 
33 #include <linux/usb/gadgetfs.h>
34 #include <linux/usb/gadget.h>
35 
36 
37 /*
38  * The gadgetfs API maps each endpoint to a file descriptor so that you
39  * can use standard synchronous read/write calls for I/O.  There's some
40  * O_NONBLOCK and O_ASYNC/FASYNC style i/o support.  Example usermode
41  * drivers show how this works in practice.  You can also use AIO to
42  * eliminate I/O gaps between requests, to help when streaming data.
43  *
44  * Key parts that must be USB-specific are protocols defining how the
45  * read/write operations relate to the hardware state machines.  There
46  * are two types of files.  One type is for the device, implementing ep0.
47  * The other type is for each IN or OUT endpoint.  In both cases, the
48  * user mode driver must configure the hardware before using it.
49  *
50  * - First, dev_config() is called when /dev/gadget/$CHIP is configured
51  *   (by writing configuration and device descriptors).  Afterwards it
52  *   may serve as a source of device events, used to handle all control
53  *   requests other than basic enumeration.
54  *
55  * - Then, after a SET_CONFIGURATION control request, ep_config() is
56  *   called when each /dev/gadget/ep* file is configured (by writing
57  *   endpoint descriptors).  Afterwards these files are used to write()
58  *   IN data or to read() OUT data.  To halt the endpoint, a "wrong
59  *   direction" request is issued (like reading an IN endpoint).
60  *
61  * Unlike "usbfs" the only ioctl()s are for things that are rare, and maybe
62  * not possible on all hardware.  For example, precise fault handling with
63  * respect to data left in endpoint fifos after aborted operations; or
64  * selective clearing of endpoint halts, to implement SET_INTERFACE.
65  */
66 
67 #define	DRIVER_DESC	"USB Gadget filesystem"
68 #define	DRIVER_VERSION	"24 Aug 2004"
69 
70 static const char driver_desc [] = DRIVER_DESC;
71 static const char shortname [] = "gadgetfs";
72 
73 MODULE_DESCRIPTION (DRIVER_DESC);
74 MODULE_AUTHOR ("David Brownell");
75 MODULE_LICENSE ("GPL");
76 
77 
78 /*----------------------------------------------------------------------*/
79 
80 #define GADGETFS_MAGIC		0xaee71ee7
81 
82 /* /dev/gadget/$CHIP represents ep0 and the whole device */
83 enum ep0_state {
84 	/* DISBLED is the initial state.
85 	 */
86 	STATE_DEV_DISABLED = 0,
87 
88 	/* Only one open() of /dev/gadget/$CHIP; only one file tracks
89 	 * ep0/device i/o modes and binding to the controller.  Driver
90 	 * must always write descriptors to initialize the device, then
91 	 * the device becomes UNCONNECTED until enumeration.
92 	 */
93 	STATE_DEV_OPENED,
94 
95 	/* From then on, ep0 fd is in either of two basic modes:
96 	 * - (UN)CONNECTED: read usb_gadgetfs_event(s) from it
97 	 * - SETUP: read/write will transfer control data and succeed;
98 	 *   or if "wrong direction", performs protocol stall
99 	 */
100 	STATE_DEV_UNCONNECTED,
101 	STATE_DEV_CONNECTED,
102 	STATE_DEV_SETUP,
103 
104 	/* UNBOUND means the driver closed ep0, so the device won't be
105 	 * accessible again (DEV_DISABLED) until all fds are closed.
106 	 */
107 	STATE_DEV_UNBOUND,
108 };
109 
110 /* enough for the whole queue: most events invalidate others */
111 #define	N_EVENT			5
112 
113 struct dev_data {
114 	spinlock_t			lock;
115 	atomic_t			count;
116 	enum ep0_state			state;		/* P: lock */
117 	struct usb_gadgetfs_event	event [N_EVENT];
118 	unsigned			ev_next;
119 	struct fasync_struct		*fasync;
120 	u8				current_config;
121 
122 	/* drivers reading ep0 MUST handle control requests (SETUP)
123 	 * reported that way; else the host will time out.
124 	 */
125 	unsigned			usermode_setup : 1,
126 					setup_in : 1,
127 					setup_can_stall : 1,
128 					setup_out_ready : 1,
129 					setup_out_error : 1,
130 					setup_abort : 1;
131 	unsigned			setup_wLength;
132 
133 	/* the rest is basically write-once */
134 	struct usb_config_descriptor	*config, *hs_config;
135 	struct usb_device_descriptor	*dev;
136 	struct usb_request		*req;
137 	struct usb_gadget		*gadget;
138 	struct list_head		epfiles;
139 	void				*buf;
140 	wait_queue_head_t		wait;
141 	struct super_block		*sb;
142 	struct dentry			*dentry;
143 
144 	/* except this scratch i/o buffer for ep0 */
145 	u8				rbuf [256];
146 };
147 
148 static inline void get_dev (struct dev_data *data)
149 {
150 	atomic_inc (&data->count);
151 }
152 
153 static void put_dev (struct dev_data *data)
154 {
155 	if (likely (!atomic_dec_and_test (&data->count)))
156 		return;
157 	/* needs no more cleanup */
158 	BUG_ON (waitqueue_active (&data->wait));
159 	kfree (data);
160 }
161 
162 static struct dev_data *dev_new (void)
163 {
164 	struct dev_data		*dev;
165 
166 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
167 	if (!dev)
168 		return NULL;
169 	dev->state = STATE_DEV_DISABLED;
170 	atomic_set (&dev->count, 1);
171 	spin_lock_init (&dev->lock);
172 	INIT_LIST_HEAD (&dev->epfiles);
173 	init_waitqueue_head (&dev->wait);
174 	return dev;
175 }
176 
177 /*----------------------------------------------------------------------*/
178 
179 /* other /dev/gadget/$ENDPOINT files represent endpoints */
180 enum ep_state {
181 	STATE_EP_DISABLED = 0,
182 	STATE_EP_READY,
183 	STATE_EP_ENABLED,
184 	STATE_EP_UNBOUND,
185 };
186 
187 struct ep_data {
188 	struct mutex			lock;
189 	enum ep_state			state;
190 	atomic_t			count;
191 	struct dev_data			*dev;
192 	/* must hold dev->lock before accessing ep or req */
193 	struct usb_ep			*ep;
194 	struct usb_request		*req;
195 	ssize_t				status;
196 	char				name [16];
197 	struct usb_endpoint_descriptor	desc, hs_desc;
198 	struct list_head		epfiles;
199 	wait_queue_head_t		wait;
200 	struct dentry			*dentry;
201 };
202 
203 static inline void get_ep (struct ep_data *data)
204 {
205 	atomic_inc (&data->count);
206 }
207 
208 static void put_ep (struct ep_data *data)
209 {
210 	if (likely (!atomic_dec_and_test (&data->count)))
211 		return;
212 	put_dev (data->dev);
213 	/* needs no more cleanup */
214 	BUG_ON (!list_empty (&data->epfiles));
215 	BUG_ON (waitqueue_active (&data->wait));
216 	kfree (data);
217 }
218 
219 /*----------------------------------------------------------------------*/
220 
221 /* most "how to use the hardware" policy choices are in userspace:
222  * mapping endpoint roles (which the driver needs) to the capabilities
223  * which the usb controller has.  most of those capabilities are exposed
224  * implicitly, starting with the driver name and then endpoint names.
225  */
226 
227 static const char *CHIP;
228 
229 /*----------------------------------------------------------------------*/
230 
231 /* NOTE:  don't use dev_printk calls before binding to the gadget
232  * at the end of ep0 configuration, or after unbind.
233  */
234 
235 /* too wordy: dev_printk(level , &(d)->gadget->dev , fmt , ## args) */
236 #define xprintk(d,level,fmt,args...) \
237 	printk(level "%s: " fmt , shortname , ## args)
238 
239 #ifdef DEBUG
240 #define DBG(dev,fmt,args...) \
241 	xprintk(dev , KERN_DEBUG , fmt , ## args)
242 #else
243 #define DBG(dev,fmt,args...) \
244 	do { } while (0)
245 #endif /* DEBUG */
246 
247 #ifdef VERBOSE_DEBUG
248 #define VDEBUG	DBG
249 #else
250 #define VDEBUG(dev,fmt,args...) \
251 	do { } while (0)
252 #endif /* DEBUG */
253 
254 #define ERROR(dev,fmt,args...) \
255 	xprintk(dev , KERN_ERR , fmt , ## args)
256 #define INFO(dev,fmt,args...) \
257 	xprintk(dev , KERN_INFO , fmt , ## args)
258 
259 
260 /*----------------------------------------------------------------------*/
261 
262 /* SYNCHRONOUS ENDPOINT OPERATIONS (bulk/intr/iso)
263  *
264  * After opening, configure non-control endpoints.  Then use normal
265  * stream read() and write() requests; and maybe ioctl() to get more
266  * precise FIFO status when recovering from cancellation.
267  */
268 
269 static void epio_complete (struct usb_ep *ep, struct usb_request *req)
270 {
271 	struct ep_data	*epdata = ep->driver_data;
272 
273 	if (!req->context)
274 		return;
275 	if (req->status)
276 		epdata->status = req->status;
277 	else
278 		epdata->status = req->actual;
279 	complete ((struct completion *)req->context);
280 }
281 
282 /* tasklock endpoint, returning when it's connected.
283  * still need dev->lock to use epdata->ep.
284  */
285 static int
286 get_ready_ep (unsigned f_flags, struct ep_data *epdata)
287 {
288 	int	val;
289 
290 	if (f_flags & O_NONBLOCK) {
291 		if (!mutex_trylock(&epdata->lock))
292 			goto nonblock;
293 		if (epdata->state != STATE_EP_ENABLED) {
294 			mutex_unlock(&epdata->lock);
295 nonblock:
296 			val = -EAGAIN;
297 		} else
298 			val = 0;
299 		return val;
300 	}
301 
302 	val = mutex_lock_interruptible(&epdata->lock);
303 	if (val < 0)
304 		return val;
305 
306 	switch (epdata->state) {
307 	case STATE_EP_ENABLED:
308 		break;
309 	// case STATE_EP_DISABLED:		/* "can't happen" */
310 	// case STATE_EP_READY:			/* "can't happen" */
311 	default:				/* error! */
312 		pr_debug ("%s: ep %p not available, state %d\n",
313 				shortname, epdata, epdata->state);
314 		// FALLTHROUGH
315 	case STATE_EP_UNBOUND:			/* clean disconnect */
316 		val = -ENODEV;
317 		mutex_unlock(&epdata->lock);
318 	}
319 	return val;
320 }
321 
322 static ssize_t
323 ep_io (struct ep_data *epdata, void *buf, unsigned len)
324 {
325 	DECLARE_COMPLETION_ONSTACK (done);
326 	int value;
327 
328 	spin_lock_irq (&epdata->dev->lock);
329 	if (likely (epdata->ep != NULL)) {
330 		struct usb_request	*req = epdata->req;
331 
332 		req->context = &done;
333 		req->complete = epio_complete;
334 		req->buf = buf;
335 		req->length = len;
336 		value = usb_ep_queue (epdata->ep, req, GFP_ATOMIC);
337 	} else
338 		value = -ENODEV;
339 	spin_unlock_irq (&epdata->dev->lock);
340 
341 	if (likely (value == 0)) {
342 		value = wait_event_interruptible (done.wait, done.done);
343 		if (value != 0) {
344 			spin_lock_irq (&epdata->dev->lock);
345 			if (likely (epdata->ep != NULL)) {
346 				DBG (epdata->dev, "%s i/o interrupted\n",
347 						epdata->name);
348 				usb_ep_dequeue (epdata->ep, epdata->req);
349 				spin_unlock_irq (&epdata->dev->lock);
350 
351 				wait_event (done.wait, done.done);
352 				if (epdata->status == -ECONNRESET)
353 					epdata->status = -EINTR;
354 			} else {
355 				spin_unlock_irq (&epdata->dev->lock);
356 
357 				DBG (epdata->dev, "endpoint gone\n");
358 				epdata->status = -ENODEV;
359 			}
360 		}
361 		return epdata->status;
362 	}
363 	return value;
364 }
365 
366 
367 /* handle a synchronous OUT bulk/intr/iso transfer */
368 static ssize_t
369 ep_read (struct file *fd, char __user *buf, size_t len, loff_t *ptr)
370 {
371 	struct ep_data		*data = fd->private_data;
372 	void			*kbuf;
373 	ssize_t			value;
374 
375 	if ((value = get_ready_ep (fd->f_flags, data)) < 0)
376 		return value;
377 
378 	/* halt any endpoint by doing a "wrong direction" i/o call */
379 	if (usb_endpoint_dir_in(&data->desc)) {
380 		if (usb_endpoint_xfer_isoc(&data->desc)) {
381 			mutex_unlock(&data->lock);
382 			return -EINVAL;
383 		}
384 		DBG (data->dev, "%s halt\n", data->name);
385 		spin_lock_irq (&data->dev->lock);
386 		if (likely (data->ep != NULL))
387 			usb_ep_set_halt (data->ep);
388 		spin_unlock_irq (&data->dev->lock);
389 		mutex_unlock(&data->lock);
390 		return -EBADMSG;
391 	}
392 
393 	/* FIXME readahead for O_NONBLOCK and poll(); careful with ZLPs */
394 
395 	value = -ENOMEM;
396 	kbuf = kmalloc (len, GFP_KERNEL);
397 	if (unlikely (!kbuf))
398 		goto free1;
399 
400 	value = ep_io (data, kbuf, len);
401 	VDEBUG (data->dev, "%s read %zu OUT, status %d\n",
402 		data->name, len, (int) value);
403 	if (value >= 0 && copy_to_user (buf, kbuf, value))
404 		value = -EFAULT;
405 
406 free1:
407 	mutex_unlock(&data->lock);
408 	kfree (kbuf);
409 	return value;
410 }
411 
412 /* handle a synchronous IN bulk/intr/iso transfer */
413 static ssize_t
414 ep_write (struct file *fd, const char __user *buf, size_t len, loff_t *ptr)
415 {
416 	struct ep_data		*data = fd->private_data;
417 	void			*kbuf;
418 	ssize_t			value;
419 
420 	if ((value = get_ready_ep (fd->f_flags, data)) < 0)
421 		return value;
422 
423 	/* halt any endpoint by doing a "wrong direction" i/o call */
424 	if (!usb_endpoint_dir_in(&data->desc)) {
425 		if (usb_endpoint_xfer_isoc(&data->desc)) {
426 			mutex_unlock(&data->lock);
427 			return -EINVAL;
428 		}
429 		DBG (data->dev, "%s halt\n", data->name);
430 		spin_lock_irq (&data->dev->lock);
431 		if (likely (data->ep != NULL))
432 			usb_ep_set_halt (data->ep);
433 		spin_unlock_irq (&data->dev->lock);
434 		mutex_unlock(&data->lock);
435 		return -EBADMSG;
436 	}
437 
438 	/* FIXME writebehind for O_NONBLOCK and poll(), qlen = 1 */
439 
440 	value = -ENOMEM;
441 	kbuf = memdup_user(buf, len);
442 	if (IS_ERR(kbuf)) {
443 		value = PTR_ERR(kbuf);
444 		kbuf = NULL;
445 		goto free1;
446 	}
447 
448 	value = ep_io (data, kbuf, len);
449 	VDEBUG (data->dev, "%s write %zu IN, status %d\n",
450 		data->name, len, (int) value);
451 free1:
452 	mutex_unlock(&data->lock);
453 	kfree (kbuf);
454 	return value;
455 }
456 
457 static int
458 ep_release (struct inode *inode, struct file *fd)
459 {
460 	struct ep_data		*data = fd->private_data;
461 	int value;
462 
463 	value = mutex_lock_interruptible(&data->lock);
464 	if (value < 0)
465 		return value;
466 
467 	/* clean up if this can be reopened */
468 	if (data->state != STATE_EP_UNBOUND) {
469 		data->state = STATE_EP_DISABLED;
470 		data->desc.bDescriptorType = 0;
471 		data->hs_desc.bDescriptorType = 0;
472 		usb_ep_disable(data->ep);
473 	}
474 	mutex_unlock(&data->lock);
475 	put_ep (data);
476 	return 0;
477 }
478 
479 static long ep_ioctl(struct file *fd, unsigned code, unsigned long value)
480 {
481 	struct ep_data		*data = fd->private_data;
482 	int			status;
483 
484 	if ((status = get_ready_ep (fd->f_flags, data)) < 0)
485 		return status;
486 
487 	spin_lock_irq (&data->dev->lock);
488 	if (likely (data->ep != NULL)) {
489 		switch (code) {
490 		case GADGETFS_FIFO_STATUS:
491 			status = usb_ep_fifo_status (data->ep);
492 			break;
493 		case GADGETFS_FIFO_FLUSH:
494 			usb_ep_fifo_flush (data->ep);
495 			break;
496 		case GADGETFS_CLEAR_HALT:
497 			status = usb_ep_clear_halt (data->ep);
498 			break;
499 		default:
500 			status = -ENOTTY;
501 		}
502 	} else
503 		status = -ENODEV;
504 	spin_unlock_irq (&data->dev->lock);
505 	mutex_unlock(&data->lock);
506 	return status;
507 }
508 
509 /*----------------------------------------------------------------------*/
510 
511 /* ASYNCHRONOUS ENDPOINT I/O OPERATIONS (bulk/intr/iso) */
512 
513 struct kiocb_priv {
514 	struct usb_request	*req;
515 	struct ep_data		*epdata;
516 	struct kiocb		*iocb;
517 	struct mm_struct	*mm;
518 	struct work_struct	work;
519 	void			*buf;
520 	const struct iovec	*iv;
521 	unsigned long		nr_segs;
522 	unsigned		actual;
523 };
524 
525 static int ep_aio_cancel(struct kiocb *iocb)
526 {
527 	struct kiocb_priv	*priv = iocb->private;
528 	struct ep_data		*epdata;
529 	int			value;
530 
531 	local_irq_disable();
532 	epdata = priv->epdata;
533 	// spin_lock(&epdata->dev->lock);
534 	if (likely(epdata && epdata->ep && priv->req))
535 		value = usb_ep_dequeue (epdata->ep, priv->req);
536 	else
537 		value = -EINVAL;
538 	// spin_unlock(&epdata->dev->lock);
539 	local_irq_enable();
540 
541 	return value;
542 }
543 
544 static ssize_t ep_copy_to_user(struct kiocb_priv *priv)
545 {
546 	ssize_t			len, total;
547 	void			*to_copy;
548 	int			i;
549 
550 	/* copy stuff into user buffers */
551 	total = priv->actual;
552 	len = 0;
553 	to_copy = priv->buf;
554 	for (i=0; i < priv->nr_segs; i++) {
555 		ssize_t this = min((ssize_t)(priv->iv[i].iov_len), total);
556 
557 		if (copy_to_user(priv->iv[i].iov_base, to_copy, this)) {
558 			if (len == 0)
559 				len = -EFAULT;
560 			break;
561 		}
562 
563 		total -= this;
564 		len += this;
565 		to_copy += this;
566 		if (total == 0)
567 			break;
568 	}
569 
570 	return len;
571 }
572 
573 static void ep_user_copy_worker(struct work_struct *work)
574 {
575 	struct kiocb_priv *priv = container_of(work, struct kiocb_priv, work);
576 	struct mm_struct *mm = priv->mm;
577 	struct kiocb *iocb = priv->iocb;
578 	size_t ret;
579 
580 	use_mm(mm);
581 	ret = ep_copy_to_user(priv);
582 	unuse_mm(mm);
583 
584 	/* completing the iocb can drop the ctx and mm, don't touch mm after */
585 	aio_complete(iocb, ret, ret);
586 
587 	kfree(priv->buf);
588 	kfree(priv);
589 }
590 
591 static void ep_aio_complete(struct usb_ep *ep, struct usb_request *req)
592 {
593 	struct kiocb		*iocb = req->context;
594 	struct kiocb_priv	*priv = iocb->private;
595 	struct ep_data		*epdata = priv->epdata;
596 
597 	/* lock against disconnect (and ideally, cancel) */
598 	spin_lock(&epdata->dev->lock);
599 	priv->req = NULL;
600 	priv->epdata = NULL;
601 
602 	/* if this was a write or a read returning no data then we
603 	 * don't need to copy anything to userspace, so we can
604 	 * complete the aio request immediately.
605 	 */
606 	if (priv->iv == NULL || unlikely(req->actual == 0)) {
607 		kfree(req->buf);
608 		kfree(priv);
609 		iocb->private = NULL;
610 		/* aio_complete() reports bytes-transferred _and_ faults */
611 		aio_complete(iocb, req->actual ? req->actual : req->status,
612 				req->status);
613 	} else {
614 		/* ep_copy_to_user() won't report both; we hide some faults */
615 		if (unlikely(0 != req->status))
616 			DBG(epdata->dev, "%s fault %d len %d\n",
617 				ep->name, req->status, req->actual);
618 
619 		priv->buf = req->buf;
620 		priv->actual = req->actual;
621 		schedule_work(&priv->work);
622 	}
623 	spin_unlock(&epdata->dev->lock);
624 
625 	usb_ep_free_request(ep, req);
626 	put_ep(epdata);
627 }
628 
629 static ssize_t
630 ep_aio_rwtail(
631 	struct kiocb	*iocb,
632 	char		*buf,
633 	size_t		len,
634 	struct ep_data	*epdata,
635 	const struct iovec *iv,
636 	unsigned long	nr_segs
637 )
638 {
639 	struct kiocb_priv	*priv;
640 	struct usb_request	*req;
641 	ssize_t			value;
642 
643 	priv = kmalloc(sizeof *priv, GFP_KERNEL);
644 	if (!priv) {
645 		value = -ENOMEM;
646 fail:
647 		kfree(buf);
648 		return value;
649 	}
650 	iocb->private = priv;
651 	priv->iocb = iocb;
652 	priv->iv = iv;
653 	priv->nr_segs = nr_segs;
654 	INIT_WORK(&priv->work, ep_user_copy_worker);
655 
656 	value = get_ready_ep(iocb->ki_filp->f_flags, epdata);
657 	if (unlikely(value < 0)) {
658 		kfree(priv);
659 		goto fail;
660 	}
661 
662 	kiocb_set_cancel_fn(iocb, ep_aio_cancel);
663 	get_ep(epdata);
664 	priv->epdata = epdata;
665 	priv->actual = 0;
666 	priv->mm = current->mm; /* mm teardown waits for iocbs in exit_aio() */
667 
668 	/* each kiocb is coupled to one usb_request, but we can't
669 	 * allocate or submit those if the host disconnected.
670 	 */
671 	spin_lock_irq(&epdata->dev->lock);
672 	if (likely(epdata->ep)) {
673 		req = usb_ep_alloc_request(epdata->ep, GFP_ATOMIC);
674 		if (likely(req)) {
675 			priv->req = req;
676 			req->buf = buf;
677 			req->length = len;
678 			req->complete = ep_aio_complete;
679 			req->context = iocb;
680 			value = usb_ep_queue(epdata->ep, req, GFP_ATOMIC);
681 			if (unlikely(0 != value))
682 				usb_ep_free_request(epdata->ep, req);
683 		} else
684 			value = -EAGAIN;
685 	} else
686 		value = -ENODEV;
687 	spin_unlock_irq(&epdata->dev->lock);
688 
689 	mutex_unlock(&epdata->lock);
690 
691 	if (unlikely(value)) {
692 		kfree(priv);
693 		put_ep(epdata);
694 	} else
695 		value = -EIOCBQUEUED;
696 	return value;
697 }
698 
699 static ssize_t
700 ep_aio_read(struct kiocb *iocb, const struct iovec *iov,
701 		unsigned long nr_segs, loff_t o)
702 {
703 	struct ep_data		*epdata = iocb->ki_filp->private_data;
704 	char			*buf;
705 
706 	if (unlikely(usb_endpoint_dir_in(&epdata->desc)))
707 		return -EINVAL;
708 
709 	buf = kmalloc(iocb->ki_nbytes, GFP_KERNEL);
710 	if (unlikely(!buf))
711 		return -ENOMEM;
712 
713 	return ep_aio_rwtail(iocb, buf, iocb->ki_nbytes, epdata, iov, nr_segs);
714 }
715 
716 static ssize_t
717 ep_aio_write(struct kiocb *iocb, const struct iovec *iov,
718 		unsigned long nr_segs, loff_t o)
719 {
720 	struct ep_data		*epdata = iocb->ki_filp->private_data;
721 	char			*buf;
722 	size_t			len = 0;
723 	int			i = 0;
724 
725 	if (unlikely(!usb_endpoint_dir_in(&epdata->desc)))
726 		return -EINVAL;
727 
728 	buf = kmalloc(iocb->ki_nbytes, GFP_KERNEL);
729 	if (unlikely(!buf))
730 		return -ENOMEM;
731 
732 	for (i=0; i < nr_segs; i++) {
733 		if (unlikely(copy_from_user(&buf[len], iov[i].iov_base,
734 				iov[i].iov_len) != 0)) {
735 			kfree(buf);
736 			return -EFAULT;
737 		}
738 		len += iov[i].iov_len;
739 	}
740 	return ep_aio_rwtail(iocb, buf, len, epdata, NULL, 0);
741 }
742 
743 /*----------------------------------------------------------------------*/
744 
745 /* used after endpoint configuration */
746 static const struct file_operations ep_io_operations = {
747 	.owner =	THIS_MODULE,
748 	.llseek =	no_llseek,
749 
750 	.read =		ep_read,
751 	.write =	ep_write,
752 	.unlocked_ioctl = ep_ioctl,
753 	.release =	ep_release,
754 
755 	.aio_read =	ep_aio_read,
756 	.aio_write =	ep_aio_write,
757 };
758 
759 /* ENDPOINT INITIALIZATION
760  *
761  *     fd = open ("/dev/gadget/$ENDPOINT", O_RDWR)
762  *     status = write (fd, descriptors, sizeof descriptors)
763  *
764  * That write establishes the endpoint configuration, configuring
765  * the controller to process bulk, interrupt, or isochronous transfers
766  * at the right maxpacket size, and so on.
767  *
768  * The descriptors are message type 1, identified by a host order u32
769  * at the beginning of what's written.  Descriptor order is: full/low
770  * speed descriptor, then optional high speed descriptor.
771  */
772 static ssize_t
773 ep_config (struct file *fd, const char __user *buf, size_t len, loff_t *ptr)
774 {
775 	struct ep_data		*data = fd->private_data;
776 	struct usb_ep		*ep;
777 	u32			tag;
778 	int			value, length = len;
779 
780 	value = mutex_lock_interruptible(&data->lock);
781 	if (value < 0)
782 		return value;
783 
784 	if (data->state != STATE_EP_READY) {
785 		value = -EL2HLT;
786 		goto fail;
787 	}
788 
789 	value = len;
790 	if (len < USB_DT_ENDPOINT_SIZE + 4)
791 		goto fail0;
792 
793 	/* we might need to change message format someday */
794 	if (copy_from_user (&tag, buf, 4)) {
795 		goto fail1;
796 	}
797 	if (tag != 1) {
798 		DBG(data->dev, "config %s, bad tag %d\n", data->name, tag);
799 		goto fail0;
800 	}
801 	buf += 4;
802 	len -= 4;
803 
804 	/* NOTE:  audio endpoint extensions not accepted here;
805 	 * just don't include the extra bytes.
806 	 */
807 
808 	/* full/low speed descriptor, then high speed */
809 	if (copy_from_user (&data->desc, buf, USB_DT_ENDPOINT_SIZE)) {
810 		goto fail1;
811 	}
812 	if (data->desc.bLength != USB_DT_ENDPOINT_SIZE
813 			|| data->desc.bDescriptorType != USB_DT_ENDPOINT)
814 		goto fail0;
815 	if (len != USB_DT_ENDPOINT_SIZE) {
816 		if (len != 2 * USB_DT_ENDPOINT_SIZE)
817 			goto fail0;
818 		if (copy_from_user (&data->hs_desc, buf + USB_DT_ENDPOINT_SIZE,
819 					USB_DT_ENDPOINT_SIZE)) {
820 			goto fail1;
821 		}
822 		if (data->hs_desc.bLength != USB_DT_ENDPOINT_SIZE
823 				|| data->hs_desc.bDescriptorType
824 					!= USB_DT_ENDPOINT) {
825 			DBG(data->dev, "config %s, bad hs length or type\n",
826 					data->name);
827 			goto fail0;
828 		}
829 	}
830 
831 	spin_lock_irq (&data->dev->lock);
832 	if (data->dev->state == STATE_DEV_UNBOUND) {
833 		value = -ENOENT;
834 		goto gone;
835 	} else if ((ep = data->ep) == NULL) {
836 		value = -ENODEV;
837 		goto gone;
838 	}
839 	switch (data->dev->gadget->speed) {
840 	case USB_SPEED_LOW:
841 	case USB_SPEED_FULL:
842 		ep->desc = &data->desc;
843 		value = usb_ep_enable(ep);
844 		if (value == 0)
845 			data->state = STATE_EP_ENABLED;
846 		break;
847 	case USB_SPEED_HIGH:
848 		/* fails if caller didn't provide that descriptor... */
849 		ep->desc = &data->hs_desc;
850 		value = usb_ep_enable(ep);
851 		if (value == 0)
852 			data->state = STATE_EP_ENABLED;
853 		break;
854 	default:
855 		DBG(data->dev, "unconnected, %s init abandoned\n",
856 				data->name);
857 		value = -EINVAL;
858 	}
859 	if (value == 0) {
860 		fd->f_op = &ep_io_operations;
861 		value = length;
862 	}
863 gone:
864 	spin_unlock_irq (&data->dev->lock);
865 	if (value < 0) {
866 fail:
867 		data->desc.bDescriptorType = 0;
868 		data->hs_desc.bDescriptorType = 0;
869 	}
870 	mutex_unlock(&data->lock);
871 	return value;
872 fail0:
873 	value = -EINVAL;
874 	goto fail;
875 fail1:
876 	value = -EFAULT;
877 	goto fail;
878 }
879 
880 static int
881 ep_open (struct inode *inode, struct file *fd)
882 {
883 	struct ep_data		*data = inode->i_private;
884 	int			value = -EBUSY;
885 
886 	if (mutex_lock_interruptible(&data->lock) != 0)
887 		return -EINTR;
888 	spin_lock_irq (&data->dev->lock);
889 	if (data->dev->state == STATE_DEV_UNBOUND)
890 		value = -ENOENT;
891 	else if (data->state == STATE_EP_DISABLED) {
892 		value = 0;
893 		data->state = STATE_EP_READY;
894 		get_ep (data);
895 		fd->private_data = data;
896 		VDEBUG (data->dev, "%s ready\n", data->name);
897 	} else
898 		DBG (data->dev, "%s state %d\n",
899 			data->name, data->state);
900 	spin_unlock_irq (&data->dev->lock);
901 	mutex_unlock(&data->lock);
902 	return value;
903 }
904 
905 /* used before endpoint configuration */
906 static const struct file_operations ep_config_operations = {
907 	.llseek =	no_llseek,
908 
909 	.open =		ep_open,
910 	.write =	ep_config,
911 	.release =	ep_release,
912 };
913 
914 /*----------------------------------------------------------------------*/
915 
916 /* EP0 IMPLEMENTATION can be partly in userspace.
917  *
918  * Drivers that use this facility receive various events, including
919  * control requests the kernel doesn't handle.  Drivers that don't
920  * use this facility may be too simple-minded for real applications.
921  */
922 
923 static inline void ep0_readable (struct dev_data *dev)
924 {
925 	wake_up (&dev->wait);
926 	kill_fasync (&dev->fasync, SIGIO, POLL_IN);
927 }
928 
929 static void clean_req (struct usb_ep *ep, struct usb_request *req)
930 {
931 	struct dev_data		*dev = ep->driver_data;
932 
933 	if (req->buf != dev->rbuf) {
934 		kfree(req->buf);
935 		req->buf = dev->rbuf;
936 	}
937 	req->complete = epio_complete;
938 	dev->setup_out_ready = 0;
939 }
940 
941 static void ep0_complete (struct usb_ep *ep, struct usb_request *req)
942 {
943 	struct dev_data		*dev = ep->driver_data;
944 	unsigned long		flags;
945 	int			free = 1;
946 
947 	/* for control OUT, data must still get to userspace */
948 	spin_lock_irqsave(&dev->lock, flags);
949 	if (!dev->setup_in) {
950 		dev->setup_out_error = (req->status != 0);
951 		if (!dev->setup_out_error)
952 			free = 0;
953 		dev->setup_out_ready = 1;
954 		ep0_readable (dev);
955 	}
956 
957 	/* clean up as appropriate */
958 	if (free && req->buf != &dev->rbuf)
959 		clean_req (ep, req);
960 	req->complete = epio_complete;
961 	spin_unlock_irqrestore(&dev->lock, flags);
962 }
963 
964 static int setup_req (struct usb_ep *ep, struct usb_request *req, u16 len)
965 {
966 	struct dev_data	*dev = ep->driver_data;
967 
968 	if (dev->setup_out_ready) {
969 		DBG (dev, "ep0 request busy!\n");
970 		return -EBUSY;
971 	}
972 	if (len > sizeof (dev->rbuf))
973 		req->buf = kmalloc(len, GFP_ATOMIC);
974 	if (req->buf == NULL) {
975 		req->buf = dev->rbuf;
976 		return -ENOMEM;
977 	}
978 	req->complete = ep0_complete;
979 	req->length = len;
980 	req->zero = 0;
981 	return 0;
982 }
983 
984 static ssize_t
985 ep0_read (struct file *fd, char __user *buf, size_t len, loff_t *ptr)
986 {
987 	struct dev_data			*dev = fd->private_data;
988 	ssize_t				retval;
989 	enum ep0_state			state;
990 
991 	spin_lock_irq (&dev->lock);
992 
993 	/* report fd mode change before acting on it */
994 	if (dev->setup_abort) {
995 		dev->setup_abort = 0;
996 		retval = -EIDRM;
997 		goto done;
998 	}
999 
1000 	/* control DATA stage */
1001 	if ((state = dev->state) == STATE_DEV_SETUP) {
1002 
1003 		if (dev->setup_in) {		/* stall IN */
1004 			VDEBUG(dev, "ep0in stall\n");
1005 			(void) usb_ep_set_halt (dev->gadget->ep0);
1006 			retval = -EL2HLT;
1007 			dev->state = STATE_DEV_CONNECTED;
1008 
1009 		} else if (len == 0) {		/* ack SET_CONFIGURATION etc */
1010 			struct usb_ep		*ep = dev->gadget->ep0;
1011 			struct usb_request	*req = dev->req;
1012 
1013 			if ((retval = setup_req (ep, req, 0)) == 0)
1014 				retval = usb_ep_queue (ep, req, GFP_ATOMIC);
1015 			dev->state = STATE_DEV_CONNECTED;
1016 
1017 			/* assume that was SET_CONFIGURATION */
1018 			if (dev->current_config) {
1019 				unsigned power;
1020 
1021 				if (gadget_is_dualspeed(dev->gadget)
1022 						&& (dev->gadget->speed
1023 							== USB_SPEED_HIGH))
1024 					power = dev->hs_config->bMaxPower;
1025 				else
1026 					power = dev->config->bMaxPower;
1027 				usb_gadget_vbus_draw(dev->gadget, 2 * power);
1028 			}
1029 
1030 		} else {			/* collect OUT data */
1031 			if ((fd->f_flags & O_NONBLOCK) != 0
1032 					&& !dev->setup_out_ready) {
1033 				retval = -EAGAIN;
1034 				goto done;
1035 			}
1036 			spin_unlock_irq (&dev->lock);
1037 			retval = wait_event_interruptible (dev->wait,
1038 					dev->setup_out_ready != 0);
1039 
1040 			/* FIXME state could change from under us */
1041 			spin_lock_irq (&dev->lock);
1042 			if (retval)
1043 				goto done;
1044 
1045 			if (dev->state != STATE_DEV_SETUP) {
1046 				retval = -ECANCELED;
1047 				goto done;
1048 			}
1049 			dev->state = STATE_DEV_CONNECTED;
1050 
1051 			if (dev->setup_out_error)
1052 				retval = -EIO;
1053 			else {
1054 				len = min (len, (size_t)dev->req->actual);
1055 // FIXME don't call this with the spinlock held ...
1056 				if (copy_to_user (buf, dev->req->buf, len))
1057 					retval = -EFAULT;
1058 				else
1059 					retval = len;
1060 				clean_req (dev->gadget->ep0, dev->req);
1061 				/* NOTE userspace can't yet choose to stall */
1062 			}
1063 		}
1064 		goto done;
1065 	}
1066 
1067 	/* else normal: return event data */
1068 	if (len < sizeof dev->event [0]) {
1069 		retval = -EINVAL;
1070 		goto done;
1071 	}
1072 	len -= len % sizeof (struct usb_gadgetfs_event);
1073 	dev->usermode_setup = 1;
1074 
1075 scan:
1076 	/* return queued events right away */
1077 	if (dev->ev_next != 0) {
1078 		unsigned		i, n;
1079 
1080 		n = len / sizeof (struct usb_gadgetfs_event);
1081 		if (dev->ev_next < n)
1082 			n = dev->ev_next;
1083 
1084 		/* ep0 i/o has special semantics during STATE_DEV_SETUP */
1085 		for (i = 0; i < n; i++) {
1086 			if (dev->event [i].type == GADGETFS_SETUP) {
1087 				dev->state = STATE_DEV_SETUP;
1088 				n = i + 1;
1089 				break;
1090 			}
1091 		}
1092 		spin_unlock_irq (&dev->lock);
1093 		len = n * sizeof (struct usb_gadgetfs_event);
1094 		if (copy_to_user (buf, &dev->event, len))
1095 			retval = -EFAULT;
1096 		else
1097 			retval = len;
1098 		if (len > 0) {
1099 			/* NOTE this doesn't guard against broken drivers;
1100 			 * concurrent ep0 readers may lose events.
1101 			 */
1102 			spin_lock_irq (&dev->lock);
1103 			if (dev->ev_next > n) {
1104 				memmove(&dev->event[0], &dev->event[n],
1105 					sizeof (struct usb_gadgetfs_event)
1106 						* (dev->ev_next - n));
1107 			}
1108 			dev->ev_next -= n;
1109 			spin_unlock_irq (&dev->lock);
1110 		}
1111 		return retval;
1112 	}
1113 	if (fd->f_flags & O_NONBLOCK) {
1114 		retval = -EAGAIN;
1115 		goto done;
1116 	}
1117 
1118 	switch (state) {
1119 	default:
1120 		DBG (dev, "fail %s, state %d\n", __func__, state);
1121 		retval = -ESRCH;
1122 		break;
1123 	case STATE_DEV_UNCONNECTED:
1124 	case STATE_DEV_CONNECTED:
1125 		spin_unlock_irq (&dev->lock);
1126 		DBG (dev, "%s wait\n", __func__);
1127 
1128 		/* wait for events */
1129 		retval = wait_event_interruptible (dev->wait,
1130 				dev->ev_next != 0);
1131 		if (retval < 0)
1132 			return retval;
1133 		spin_lock_irq (&dev->lock);
1134 		goto scan;
1135 	}
1136 
1137 done:
1138 	spin_unlock_irq (&dev->lock);
1139 	return retval;
1140 }
1141 
1142 static struct usb_gadgetfs_event *
1143 next_event (struct dev_data *dev, enum usb_gadgetfs_event_type type)
1144 {
1145 	struct usb_gadgetfs_event	*event;
1146 	unsigned			i;
1147 
1148 	switch (type) {
1149 	/* these events purge the queue */
1150 	case GADGETFS_DISCONNECT:
1151 		if (dev->state == STATE_DEV_SETUP)
1152 			dev->setup_abort = 1;
1153 		// FALL THROUGH
1154 	case GADGETFS_CONNECT:
1155 		dev->ev_next = 0;
1156 		break;
1157 	case GADGETFS_SETUP:		/* previous request timed out */
1158 	case GADGETFS_SUSPEND:		/* same effect */
1159 		/* these events can't be repeated */
1160 		for (i = 0; i != dev->ev_next; i++) {
1161 			if (dev->event [i].type != type)
1162 				continue;
1163 			DBG(dev, "discard old event[%d] %d\n", i, type);
1164 			dev->ev_next--;
1165 			if (i == dev->ev_next)
1166 				break;
1167 			/* indices start at zero, for simplicity */
1168 			memmove (&dev->event [i], &dev->event [i + 1],
1169 				sizeof (struct usb_gadgetfs_event)
1170 					* (dev->ev_next - i));
1171 		}
1172 		break;
1173 	default:
1174 		BUG ();
1175 	}
1176 	VDEBUG(dev, "event[%d] = %d\n", dev->ev_next, type);
1177 	event = &dev->event [dev->ev_next++];
1178 	BUG_ON (dev->ev_next > N_EVENT);
1179 	memset (event, 0, sizeof *event);
1180 	event->type = type;
1181 	return event;
1182 }
1183 
1184 static ssize_t
1185 ep0_write (struct file *fd, const char __user *buf, size_t len, loff_t *ptr)
1186 {
1187 	struct dev_data		*dev = fd->private_data;
1188 	ssize_t			retval = -ESRCH;
1189 
1190 	spin_lock_irq (&dev->lock);
1191 
1192 	/* report fd mode change before acting on it */
1193 	if (dev->setup_abort) {
1194 		dev->setup_abort = 0;
1195 		retval = -EIDRM;
1196 
1197 	/* data and/or status stage for control request */
1198 	} else if (dev->state == STATE_DEV_SETUP) {
1199 
1200 		/* IN DATA+STATUS caller makes len <= wLength */
1201 		if (dev->setup_in) {
1202 			retval = setup_req (dev->gadget->ep0, dev->req, len);
1203 			if (retval == 0) {
1204 				dev->state = STATE_DEV_CONNECTED;
1205 				spin_unlock_irq (&dev->lock);
1206 				if (copy_from_user (dev->req->buf, buf, len))
1207 					retval = -EFAULT;
1208 				else {
1209 					if (len < dev->setup_wLength)
1210 						dev->req->zero = 1;
1211 					retval = usb_ep_queue (
1212 						dev->gadget->ep0, dev->req,
1213 						GFP_KERNEL);
1214 				}
1215 				if (retval < 0) {
1216 					spin_lock_irq (&dev->lock);
1217 					clean_req (dev->gadget->ep0, dev->req);
1218 					spin_unlock_irq (&dev->lock);
1219 				} else
1220 					retval = len;
1221 
1222 				return retval;
1223 			}
1224 
1225 		/* can stall some OUT transfers */
1226 		} else if (dev->setup_can_stall) {
1227 			VDEBUG(dev, "ep0out stall\n");
1228 			(void) usb_ep_set_halt (dev->gadget->ep0);
1229 			retval = -EL2HLT;
1230 			dev->state = STATE_DEV_CONNECTED;
1231 		} else {
1232 			DBG(dev, "bogus ep0out stall!\n");
1233 		}
1234 	} else
1235 		DBG (dev, "fail %s, state %d\n", __func__, dev->state);
1236 
1237 	spin_unlock_irq (&dev->lock);
1238 	return retval;
1239 }
1240 
1241 static int
1242 ep0_fasync (int f, struct file *fd, int on)
1243 {
1244 	struct dev_data		*dev = fd->private_data;
1245 	// caller must F_SETOWN before signal delivery happens
1246 	VDEBUG (dev, "%s %s\n", __func__, on ? "on" : "off");
1247 	return fasync_helper (f, fd, on, &dev->fasync);
1248 }
1249 
1250 static struct usb_gadget_driver gadgetfs_driver;
1251 
1252 static int
1253 dev_release (struct inode *inode, struct file *fd)
1254 {
1255 	struct dev_data		*dev = fd->private_data;
1256 
1257 	/* closing ep0 === shutdown all */
1258 
1259 	usb_gadget_unregister_driver (&gadgetfs_driver);
1260 
1261 	/* at this point "good" hardware has disconnected the
1262 	 * device from USB; the host won't see it any more.
1263 	 * alternatively, all host requests will time out.
1264 	 */
1265 
1266 	kfree (dev->buf);
1267 	dev->buf = NULL;
1268 
1269 	/* other endpoints were all decoupled from this device */
1270 	spin_lock_irq(&dev->lock);
1271 	dev->state = STATE_DEV_DISABLED;
1272 	spin_unlock_irq(&dev->lock);
1273 
1274 	put_dev (dev);
1275 	return 0;
1276 }
1277 
1278 static unsigned int
1279 ep0_poll (struct file *fd, poll_table *wait)
1280 {
1281        struct dev_data         *dev = fd->private_data;
1282        int                     mask = 0;
1283 
1284        poll_wait(fd, &dev->wait, wait);
1285 
1286        spin_lock_irq (&dev->lock);
1287 
1288        /* report fd mode change before acting on it */
1289        if (dev->setup_abort) {
1290                dev->setup_abort = 0;
1291                mask = POLLHUP;
1292                goto out;
1293        }
1294 
1295        if (dev->state == STATE_DEV_SETUP) {
1296                if (dev->setup_in || dev->setup_can_stall)
1297                        mask = POLLOUT;
1298        } else {
1299                if (dev->ev_next != 0)
1300                        mask = POLLIN;
1301        }
1302 out:
1303        spin_unlock_irq(&dev->lock);
1304        return mask;
1305 }
1306 
1307 static long dev_ioctl (struct file *fd, unsigned code, unsigned long value)
1308 {
1309 	struct dev_data		*dev = fd->private_data;
1310 	struct usb_gadget	*gadget = dev->gadget;
1311 	long ret = -ENOTTY;
1312 
1313 	if (gadget->ops->ioctl)
1314 		ret = gadget->ops->ioctl (gadget, code, value);
1315 
1316 	return ret;
1317 }
1318 
1319 /* used after device configuration */
1320 static const struct file_operations ep0_io_operations = {
1321 	.owner =	THIS_MODULE,
1322 	.llseek =	no_llseek,
1323 
1324 	.read =		ep0_read,
1325 	.write =	ep0_write,
1326 	.fasync =	ep0_fasync,
1327 	.poll =		ep0_poll,
1328 	.unlocked_ioctl =	dev_ioctl,
1329 	.release =	dev_release,
1330 };
1331 
1332 /*----------------------------------------------------------------------*/
1333 
1334 /* The in-kernel gadget driver handles most ep0 issues, in particular
1335  * enumerating the single configuration (as provided from user space).
1336  *
1337  * Unrecognized ep0 requests may be handled in user space.
1338  */
1339 
1340 static void make_qualifier (struct dev_data *dev)
1341 {
1342 	struct usb_qualifier_descriptor		qual;
1343 	struct usb_device_descriptor		*desc;
1344 
1345 	qual.bLength = sizeof qual;
1346 	qual.bDescriptorType = USB_DT_DEVICE_QUALIFIER;
1347 	qual.bcdUSB = cpu_to_le16 (0x0200);
1348 
1349 	desc = dev->dev;
1350 	qual.bDeviceClass = desc->bDeviceClass;
1351 	qual.bDeviceSubClass = desc->bDeviceSubClass;
1352 	qual.bDeviceProtocol = desc->bDeviceProtocol;
1353 
1354 	/* assumes ep0 uses the same value for both speeds ... */
1355 	qual.bMaxPacketSize0 = dev->gadget->ep0->maxpacket;
1356 
1357 	qual.bNumConfigurations = 1;
1358 	qual.bRESERVED = 0;
1359 
1360 	memcpy (dev->rbuf, &qual, sizeof qual);
1361 }
1362 
1363 static int
1364 config_buf (struct dev_data *dev, u8 type, unsigned index)
1365 {
1366 	int		len;
1367 	int		hs = 0;
1368 
1369 	/* only one configuration */
1370 	if (index > 0)
1371 		return -EINVAL;
1372 
1373 	if (gadget_is_dualspeed(dev->gadget)) {
1374 		hs = (dev->gadget->speed == USB_SPEED_HIGH);
1375 		if (type == USB_DT_OTHER_SPEED_CONFIG)
1376 			hs = !hs;
1377 	}
1378 	if (hs) {
1379 		dev->req->buf = dev->hs_config;
1380 		len = le16_to_cpu(dev->hs_config->wTotalLength);
1381 	} else {
1382 		dev->req->buf = dev->config;
1383 		len = le16_to_cpu(dev->config->wTotalLength);
1384 	}
1385 	((u8 *)dev->req->buf) [1] = type;
1386 	return len;
1387 }
1388 
1389 static int
1390 gadgetfs_setup (struct usb_gadget *gadget, const struct usb_ctrlrequest *ctrl)
1391 {
1392 	struct dev_data			*dev = get_gadget_data (gadget);
1393 	struct usb_request		*req = dev->req;
1394 	int				value = -EOPNOTSUPP;
1395 	struct usb_gadgetfs_event	*event;
1396 	u16				w_value = le16_to_cpu(ctrl->wValue);
1397 	u16				w_length = le16_to_cpu(ctrl->wLength);
1398 
1399 	spin_lock (&dev->lock);
1400 	dev->setup_abort = 0;
1401 	if (dev->state == STATE_DEV_UNCONNECTED) {
1402 		if (gadget_is_dualspeed(gadget)
1403 				&& gadget->speed == USB_SPEED_HIGH
1404 				&& dev->hs_config == NULL) {
1405 			spin_unlock(&dev->lock);
1406 			ERROR (dev, "no high speed config??\n");
1407 			return -EINVAL;
1408 		}
1409 
1410 		dev->state = STATE_DEV_CONNECTED;
1411 
1412 		INFO (dev, "connected\n");
1413 		event = next_event (dev, GADGETFS_CONNECT);
1414 		event->u.speed = gadget->speed;
1415 		ep0_readable (dev);
1416 
1417 	/* host may have given up waiting for response.  we can miss control
1418 	 * requests handled lower down (device/endpoint status and features);
1419 	 * then ep0_{read,write} will report the wrong status. controller
1420 	 * driver will have aborted pending i/o.
1421 	 */
1422 	} else if (dev->state == STATE_DEV_SETUP)
1423 		dev->setup_abort = 1;
1424 
1425 	req->buf = dev->rbuf;
1426 	req->context = NULL;
1427 	value = -EOPNOTSUPP;
1428 	switch (ctrl->bRequest) {
1429 
1430 	case USB_REQ_GET_DESCRIPTOR:
1431 		if (ctrl->bRequestType != USB_DIR_IN)
1432 			goto unrecognized;
1433 		switch (w_value >> 8) {
1434 
1435 		case USB_DT_DEVICE:
1436 			value = min (w_length, (u16) sizeof *dev->dev);
1437 			dev->dev->bMaxPacketSize0 = dev->gadget->ep0->maxpacket;
1438 			req->buf = dev->dev;
1439 			break;
1440 		case USB_DT_DEVICE_QUALIFIER:
1441 			if (!dev->hs_config)
1442 				break;
1443 			value = min (w_length, (u16)
1444 				sizeof (struct usb_qualifier_descriptor));
1445 			make_qualifier (dev);
1446 			break;
1447 		case USB_DT_OTHER_SPEED_CONFIG:
1448 			// FALLTHROUGH
1449 		case USB_DT_CONFIG:
1450 			value = config_buf (dev,
1451 					w_value >> 8,
1452 					w_value & 0xff);
1453 			if (value >= 0)
1454 				value = min (w_length, (u16) value);
1455 			break;
1456 		case USB_DT_STRING:
1457 			goto unrecognized;
1458 
1459 		default:		// all others are errors
1460 			break;
1461 		}
1462 		break;
1463 
1464 	/* currently one config, two speeds */
1465 	case USB_REQ_SET_CONFIGURATION:
1466 		if (ctrl->bRequestType != 0)
1467 			goto unrecognized;
1468 		if (0 == (u8) w_value) {
1469 			value = 0;
1470 			dev->current_config = 0;
1471 			usb_gadget_vbus_draw(gadget, 8 /* mA */ );
1472 			// user mode expected to disable endpoints
1473 		} else {
1474 			u8	config, power;
1475 
1476 			if (gadget_is_dualspeed(gadget)
1477 					&& gadget->speed == USB_SPEED_HIGH) {
1478 				config = dev->hs_config->bConfigurationValue;
1479 				power = dev->hs_config->bMaxPower;
1480 			} else {
1481 				config = dev->config->bConfigurationValue;
1482 				power = dev->config->bMaxPower;
1483 			}
1484 
1485 			if (config == (u8) w_value) {
1486 				value = 0;
1487 				dev->current_config = config;
1488 				usb_gadget_vbus_draw(gadget, 2 * power);
1489 			}
1490 		}
1491 
1492 		/* report SET_CONFIGURATION like any other control request,
1493 		 * except that usermode may not stall this.  the next
1494 		 * request mustn't be allowed start until this finishes:
1495 		 * endpoints and threads set up, etc.
1496 		 *
1497 		 * NOTE:  older PXA hardware (before PXA 255: without UDCCFR)
1498 		 * has bad/racey automagic that prevents synchronizing here.
1499 		 * even kernel mode drivers often miss them.
1500 		 */
1501 		if (value == 0) {
1502 			INFO (dev, "configuration #%d\n", dev->current_config);
1503 			usb_gadget_set_state(gadget, USB_STATE_CONFIGURED);
1504 			if (dev->usermode_setup) {
1505 				dev->setup_can_stall = 0;
1506 				goto delegate;
1507 			}
1508 		}
1509 		break;
1510 
1511 #ifndef	CONFIG_USB_PXA25X
1512 	/* PXA automagically handles this request too */
1513 	case USB_REQ_GET_CONFIGURATION:
1514 		if (ctrl->bRequestType != 0x80)
1515 			goto unrecognized;
1516 		*(u8 *)req->buf = dev->current_config;
1517 		value = min (w_length, (u16) 1);
1518 		break;
1519 #endif
1520 
1521 	default:
1522 unrecognized:
1523 		VDEBUG (dev, "%s req%02x.%02x v%04x i%04x l%d\n",
1524 			dev->usermode_setup ? "delegate" : "fail",
1525 			ctrl->bRequestType, ctrl->bRequest,
1526 			w_value, le16_to_cpu(ctrl->wIndex), w_length);
1527 
1528 		/* if there's an ep0 reader, don't stall */
1529 		if (dev->usermode_setup) {
1530 			dev->setup_can_stall = 1;
1531 delegate:
1532 			dev->setup_in = (ctrl->bRequestType & USB_DIR_IN)
1533 						? 1 : 0;
1534 			dev->setup_wLength = w_length;
1535 			dev->setup_out_ready = 0;
1536 			dev->setup_out_error = 0;
1537 			value = 0;
1538 
1539 			/* read DATA stage for OUT right away */
1540 			if (unlikely (!dev->setup_in && w_length)) {
1541 				value = setup_req (gadget->ep0, dev->req,
1542 							w_length);
1543 				if (value < 0)
1544 					break;
1545 				value = usb_ep_queue (gadget->ep0, dev->req,
1546 							GFP_ATOMIC);
1547 				if (value < 0) {
1548 					clean_req (gadget->ep0, dev->req);
1549 					break;
1550 				}
1551 
1552 				/* we can't currently stall these */
1553 				dev->setup_can_stall = 0;
1554 			}
1555 
1556 			/* state changes when reader collects event */
1557 			event = next_event (dev, GADGETFS_SETUP);
1558 			event->u.setup = *ctrl;
1559 			ep0_readable (dev);
1560 			spin_unlock (&dev->lock);
1561 			return 0;
1562 		}
1563 	}
1564 
1565 	/* proceed with data transfer and status phases? */
1566 	if (value >= 0 && dev->state != STATE_DEV_SETUP) {
1567 		req->length = value;
1568 		req->zero = value < w_length;
1569 		value = usb_ep_queue (gadget->ep0, req, GFP_ATOMIC);
1570 		if (value < 0) {
1571 			DBG (dev, "ep_queue --> %d\n", value);
1572 			req->status = 0;
1573 		}
1574 	}
1575 
1576 	/* device stalls when value < 0 */
1577 	spin_unlock (&dev->lock);
1578 	return value;
1579 }
1580 
1581 static void destroy_ep_files (struct dev_data *dev)
1582 {
1583 	DBG (dev, "%s %d\n", __func__, dev->state);
1584 
1585 	/* dev->state must prevent interference */
1586 	spin_lock_irq (&dev->lock);
1587 	while (!list_empty(&dev->epfiles)) {
1588 		struct ep_data	*ep;
1589 		struct inode	*parent;
1590 		struct dentry	*dentry;
1591 
1592 		/* break link to FS */
1593 		ep = list_first_entry (&dev->epfiles, struct ep_data, epfiles);
1594 		list_del_init (&ep->epfiles);
1595 		dentry = ep->dentry;
1596 		ep->dentry = NULL;
1597 		parent = dentry->d_parent->d_inode;
1598 
1599 		/* break link to controller */
1600 		if (ep->state == STATE_EP_ENABLED)
1601 			(void) usb_ep_disable (ep->ep);
1602 		ep->state = STATE_EP_UNBOUND;
1603 		usb_ep_free_request (ep->ep, ep->req);
1604 		ep->ep = NULL;
1605 		wake_up (&ep->wait);
1606 		put_ep (ep);
1607 
1608 		spin_unlock_irq (&dev->lock);
1609 
1610 		/* break link to dcache */
1611 		mutex_lock (&parent->i_mutex);
1612 		d_delete (dentry);
1613 		dput (dentry);
1614 		mutex_unlock (&parent->i_mutex);
1615 
1616 		spin_lock_irq (&dev->lock);
1617 	}
1618 	spin_unlock_irq (&dev->lock);
1619 }
1620 
1621 
1622 static struct dentry *
1623 gadgetfs_create_file (struct super_block *sb, char const *name,
1624 		void *data, const struct file_operations *fops);
1625 
1626 static int activate_ep_files (struct dev_data *dev)
1627 {
1628 	struct usb_ep	*ep;
1629 	struct ep_data	*data;
1630 
1631 	gadget_for_each_ep (ep, dev->gadget) {
1632 
1633 		data = kzalloc(sizeof(*data), GFP_KERNEL);
1634 		if (!data)
1635 			goto enomem0;
1636 		data->state = STATE_EP_DISABLED;
1637 		mutex_init(&data->lock);
1638 		init_waitqueue_head (&data->wait);
1639 
1640 		strncpy (data->name, ep->name, sizeof (data->name) - 1);
1641 		atomic_set (&data->count, 1);
1642 		data->dev = dev;
1643 		get_dev (dev);
1644 
1645 		data->ep = ep;
1646 		ep->driver_data = data;
1647 
1648 		data->req = usb_ep_alloc_request (ep, GFP_KERNEL);
1649 		if (!data->req)
1650 			goto enomem1;
1651 
1652 		data->dentry = gadgetfs_create_file (dev->sb, data->name,
1653 				data, &ep_config_operations);
1654 		if (!data->dentry)
1655 			goto enomem2;
1656 		list_add_tail (&data->epfiles, &dev->epfiles);
1657 	}
1658 	return 0;
1659 
1660 enomem2:
1661 	usb_ep_free_request (ep, data->req);
1662 enomem1:
1663 	put_dev (dev);
1664 	kfree (data);
1665 enomem0:
1666 	DBG (dev, "%s enomem\n", __func__);
1667 	destroy_ep_files (dev);
1668 	return -ENOMEM;
1669 }
1670 
1671 static void
1672 gadgetfs_unbind (struct usb_gadget *gadget)
1673 {
1674 	struct dev_data		*dev = get_gadget_data (gadget);
1675 
1676 	DBG (dev, "%s\n", __func__);
1677 
1678 	spin_lock_irq (&dev->lock);
1679 	dev->state = STATE_DEV_UNBOUND;
1680 	spin_unlock_irq (&dev->lock);
1681 
1682 	destroy_ep_files (dev);
1683 	gadget->ep0->driver_data = NULL;
1684 	set_gadget_data (gadget, NULL);
1685 
1686 	/* we've already been disconnected ... no i/o is active */
1687 	if (dev->req)
1688 		usb_ep_free_request (gadget->ep0, dev->req);
1689 	DBG (dev, "%s done\n", __func__);
1690 	put_dev (dev);
1691 }
1692 
1693 static struct dev_data		*the_device;
1694 
1695 static int gadgetfs_bind(struct usb_gadget *gadget,
1696 		struct usb_gadget_driver *driver)
1697 {
1698 	struct dev_data		*dev = the_device;
1699 
1700 	if (!dev)
1701 		return -ESRCH;
1702 	if (0 != strcmp (CHIP, gadget->name)) {
1703 		pr_err("%s expected %s controller not %s\n",
1704 			shortname, CHIP, gadget->name);
1705 		return -ENODEV;
1706 	}
1707 
1708 	set_gadget_data (gadget, dev);
1709 	dev->gadget = gadget;
1710 	gadget->ep0->driver_data = dev;
1711 
1712 	/* preallocate control response and buffer */
1713 	dev->req = usb_ep_alloc_request (gadget->ep0, GFP_KERNEL);
1714 	if (!dev->req)
1715 		goto enomem;
1716 	dev->req->context = NULL;
1717 	dev->req->complete = epio_complete;
1718 
1719 	if (activate_ep_files (dev) < 0)
1720 		goto enomem;
1721 
1722 	INFO (dev, "bound to %s driver\n", gadget->name);
1723 	spin_lock_irq(&dev->lock);
1724 	dev->state = STATE_DEV_UNCONNECTED;
1725 	spin_unlock_irq(&dev->lock);
1726 	get_dev (dev);
1727 	return 0;
1728 
1729 enomem:
1730 	gadgetfs_unbind (gadget);
1731 	return -ENOMEM;
1732 }
1733 
1734 static void
1735 gadgetfs_disconnect (struct usb_gadget *gadget)
1736 {
1737 	struct dev_data		*dev = get_gadget_data (gadget);
1738 	unsigned long		flags;
1739 
1740 	spin_lock_irqsave (&dev->lock, flags);
1741 	if (dev->state == STATE_DEV_UNCONNECTED)
1742 		goto exit;
1743 	dev->state = STATE_DEV_UNCONNECTED;
1744 
1745 	INFO (dev, "disconnected\n");
1746 	next_event (dev, GADGETFS_DISCONNECT);
1747 	ep0_readable (dev);
1748 exit:
1749 	spin_unlock_irqrestore (&dev->lock, flags);
1750 }
1751 
1752 static void
1753 gadgetfs_suspend (struct usb_gadget *gadget)
1754 {
1755 	struct dev_data		*dev = get_gadget_data (gadget);
1756 
1757 	INFO (dev, "suspended from state %d\n", dev->state);
1758 	spin_lock (&dev->lock);
1759 	switch (dev->state) {
1760 	case STATE_DEV_SETUP:		// VERY odd... host died??
1761 	case STATE_DEV_CONNECTED:
1762 	case STATE_DEV_UNCONNECTED:
1763 		next_event (dev, GADGETFS_SUSPEND);
1764 		ep0_readable (dev);
1765 		/* FALLTHROUGH */
1766 	default:
1767 		break;
1768 	}
1769 	spin_unlock (&dev->lock);
1770 }
1771 
1772 static struct usb_gadget_driver gadgetfs_driver = {
1773 	.function	= (char *) driver_desc,
1774 	.bind		= gadgetfs_bind,
1775 	.unbind		= gadgetfs_unbind,
1776 	.setup		= gadgetfs_setup,
1777 	.reset		= gadgetfs_disconnect,
1778 	.disconnect	= gadgetfs_disconnect,
1779 	.suspend	= gadgetfs_suspend,
1780 
1781 	.driver	= {
1782 		.name		= (char *) shortname,
1783 	},
1784 };
1785 
1786 /*----------------------------------------------------------------------*/
1787 
1788 static void gadgetfs_nop(struct usb_gadget *arg) { }
1789 
1790 static int gadgetfs_probe(struct usb_gadget *gadget,
1791 		struct usb_gadget_driver *driver)
1792 {
1793 	CHIP = gadget->name;
1794 	return -EISNAM;
1795 }
1796 
1797 static struct usb_gadget_driver probe_driver = {
1798 	.max_speed	= USB_SPEED_HIGH,
1799 	.bind		= gadgetfs_probe,
1800 	.unbind		= gadgetfs_nop,
1801 	.setup		= (void *)gadgetfs_nop,
1802 	.disconnect	= gadgetfs_nop,
1803 	.driver	= {
1804 		.name		= "nop",
1805 	},
1806 };
1807 
1808 
1809 /* DEVICE INITIALIZATION
1810  *
1811  *     fd = open ("/dev/gadget/$CHIP", O_RDWR)
1812  *     status = write (fd, descriptors, sizeof descriptors)
1813  *
1814  * That write establishes the device configuration, so the kernel can
1815  * bind to the controller ... guaranteeing it can handle enumeration
1816  * at all necessary speeds.  Descriptor order is:
1817  *
1818  * . message tag (u32, host order) ... for now, must be zero; it
1819  *	would change to support features like multi-config devices
1820  * . full/low speed config ... all wTotalLength bytes (with interface,
1821  *	class, altsetting, endpoint, and other descriptors)
1822  * . high speed config ... all descriptors, for high speed operation;
1823  *	this one's optional except for high-speed hardware
1824  * . device descriptor
1825  *
1826  * Endpoints are not yet enabled. Drivers must wait until device
1827  * configuration and interface altsetting changes create
1828  * the need to configure (or unconfigure) them.
1829  *
1830  * After initialization, the device stays active for as long as that
1831  * $CHIP file is open.  Events must then be read from that descriptor,
1832  * such as configuration notifications.
1833  */
1834 
1835 static int is_valid_config (struct usb_config_descriptor *config)
1836 {
1837 	return config->bDescriptorType == USB_DT_CONFIG
1838 		&& config->bLength == USB_DT_CONFIG_SIZE
1839 		&& config->bConfigurationValue != 0
1840 		&& (config->bmAttributes & USB_CONFIG_ATT_ONE) != 0
1841 		&& (config->bmAttributes & USB_CONFIG_ATT_WAKEUP) == 0;
1842 	/* FIXME if gadget->is_otg, _must_ include an otg descriptor */
1843 	/* FIXME check lengths: walk to end */
1844 }
1845 
1846 static ssize_t
1847 dev_config (struct file *fd, const char __user *buf, size_t len, loff_t *ptr)
1848 {
1849 	struct dev_data		*dev = fd->private_data;
1850 	ssize_t			value = len, length = len;
1851 	unsigned		total;
1852 	u32			tag;
1853 	char			*kbuf;
1854 
1855 	if (len < (USB_DT_CONFIG_SIZE + USB_DT_DEVICE_SIZE + 4))
1856 		return -EINVAL;
1857 
1858 	/* we might need to change message format someday */
1859 	if (copy_from_user (&tag, buf, 4))
1860 		return -EFAULT;
1861 	if (tag != 0)
1862 		return -EINVAL;
1863 	buf += 4;
1864 	length -= 4;
1865 
1866 	kbuf = memdup_user(buf, length);
1867 	if (IS_ERR(kbuf))
1868 		return PTR_ERR(kbuf);
1869 
1870 	spin_lock_irq (&dev->lock);
1871 	value = -EINVAL;
1872 	if (dev->buf)
1873 		goto fail;
1874 	dev->buf = kbuf;
1875 
1876 	/* full or low speed config */
1877 	dev->config = (void *) kbuf;
1878 	total = le16_to_cpu(dev->config->wTotalLength);
1879 	if (!is_valid_config (dev->config) || total >= length)
1880 		goto fail;
1881 	kbuf += total;
1882 	length -= total;
1883 
1884 	/* optional high speed config */
1885 	if (kbuf [1] == USB_DT_CONFIG) {
1886 		dev->hs_config = (void *) kbuf;
1887 		total = le16_to_cpu(dev->hs_config->wTotalLength);
1888 		if (!is_valid_config (dev->hs_config) || total >= length)
1889 			goto fail;
1890 		kbuf += total;
1891 		length -= total;
1892 	}
1893 
1894 	/* could support multiple configs, using another encoding! */
1895 
1896 	/* device descriptor (tweaked for paranoia) */
1897 	if (length != USB_DT_DEVICE_SIZE)
1898 		goto fail;
1899 	dev->dev = (void *)kbuf;
1900 	if (dev->dev->bLength != USB_DT_DEVICE_SIZE
1901 			|| dev->dev->bDescriptorType != USB_DT_DEVICE
1902 			|| dev->dev->bNumConfigurations != 1)
1903 		goto fail;
1904 	dev->dev->bNumConfigurations = 1;
1905 	dev->dev->bcdUSB = cpu_to_le16 (0x0200);
1906 
1907 	/* triggers gadgetfs_bind(); then we can enumerate. */
1908 	spin_unlock_irq (&dev->lock);
1909 	if (dev->hs_config)
1910 		gadgetfs_driver.max_speed = USB_SPEED_HIGH;
1911 	else
1912 		gadgetfs_driver.max_speed = USB_SPEED_FULL;
1913 
1914 	value = usb_gadget_probe_driver(&gadgetfs_driver);
1915 	if (value != 0) {
1916 		kfree (dev->buf);
1917 		dev->buf = NULL;
1918 	} else {
1919 		/* at this point "good" hardware has for the first time
1920 		 * let the USB the host see us.  alternatively, if users
1921 		 * unplug/replug that will clear all the error state.
1922 		 *
1923 		 * note:  everything running before here was guaranteed
1924 		 * to choke driver model style diagnostics.  from here
1925 		 * on, they can work ... except in cleanup paths that
1926 		 * kick in after the ep0 descriptor is closed.
1927 		 */
1928 		fd->f_op = &ep0_io_operations;
1929 		value = len;
1930 	}
1931 	return value;
1932 
1933 fail:
1934 	spin_unlock_irq (&dev->lock);
1935 	pr_debug ("%s: %s fail %Zd, %p\n", shortname, __func__, value, dev);
1936 	kfree (dev->buf);
1937 	dev->buf = NULL;
1938 	return value;
1939 }
1940 
1941 static int
1942 dev_open (struct inode *inode, struct file *fd)
1943 {
1944 	struct dev_data		*dev = inode->i_private;
1945 	int			value = -EBUSY;
1946 
1947 	spin_lock_irq(&dev->lock);
1948 	if (dev->state == STATE_DEV_DISABLED) {
1949 		dev->ev_next = 0;
1950 		dev->state = STATE_DEV_OPENED;
1951 		fd->private_data = dev;
1952 		get_dev (dev);
1953 		value = 0;
1954 	}
1955 	spin_unlock_irq(&dev->lock);
1956 	return value;
1957 }
1958 
1959 static const struct file_operations dev_init_operations = {
1960 	.llseek =	no_llseek,
1961 
1962 	.open =		dev_open,
1963 	.write =	dev_config,
1964 	.fasync =	ep0_fasync,
1965 	.unlocked_ioctl = dev_ioctl,
1966 	.release =	dev_release,
1967 };
1968 
1969 /*----------------------------------------------------------------------*/
1970 
1971 /* FILESYSTEM AND SUPERBLOCK OPERATIONS
1972  *
1973  * Mounting the filesystem creates a controller file, used first for
1974  * device configuration then later for event monitoring.
1975  */
1976 
1977 
1978 /* FIXME PAM etc could set this security policy without mount options
1979  * if epfiles inherited ownership and permissons from ep0 ...
1980  */
1981 
1982 static unsigned default_uid;
1983 static unsigned default_gid;
1984 static unsigned default_perm = S_IRUSR | S_IWUSR;
1985 
1986 module_param (default_uid, uint, 0644);
1987 module_param (default_gid, uint, 0644);
1988 module_param (default_perm, uint, 0644);
1989 
1990 
1991 static struct inode *
1992 gadgetfs_make_inode (struct super_block *sb,
1993 		void *data, const struct file_operations *fops,
1994 		int mode)
1995 {
1996 	struct inode *inode = new_inode (sb);
1997 
1998 	if (inode) {
1999 		inode->i_ino = get_next_ino();
2000 		inode->i_mode = mode;
2001 		inode->i_uid = make_kuid(&init_user_ns, default_uid);
2002 		inode->i_gid = make_kgid(&init_user_ns, default_gid);
2003 		inode->i_atime = inode->i_mtime = inode->i_ctime
2004 				= CURRENT_TIME;
2005 		inode->i_private = data;
2006 		inode->i_fop = fops;
2007 	}
2008 	return inode;
2009 }
2010 
2011 /* creates in fs root directory, so non-renamable and non-linkable.
2012  * so inode and dentry are paired, until device reconfig.
2013  */
2014 static struct dentry *
2015 gadgetfs_create_file (struct super_block *sb, char const *name,
2016 		void *data, const struct file_operations *fops)
2017 {
2018 	struct dentry	*dentry;
2019 	struct inode	*inode;
2020 
2021 	dentry = d_alloc_name(sb->s_root, name);
2022 	if (!dentry)
2023 		return NULL;
2024 
2025 	inode = gadgetfs_make_inode (sb, data, fops,
2026 			S_IFREG | (default_perm & S_IRWXUGO));
2027 	if (!inode) {
2028 		dput(dentry);
2029 		return NULL;
2030 	}
2031 	d_add (dentry, inode);
2032 	return dentry;
2033 }
2034 
2035 static const struct super_operations gadget_fs_operations = {
2036 	.statfs =	simple_statfs,
2037 	.drop_inode =	generic_delete_inode,
2038 };
2039 
2040 static int
2041 gadgetfs_fill_super (struct super_block *sb, void *opts, int silent)
2042 {
2043 	struct inode	*inode;
2044 	struct dev_data	*dev;
2045 
2046 	if (the_device)
2047 		return -ESRCH;
2048 
2049 	/* fake probe to determine $CHIP */
2050 	CHIP = NULL;
2051 	usb_gadget_probe_driver(&probe_driver);
2052 	if (!CHIP)
2053 		return -ENODEV;
2054 
2055 	/* superblock */
2056 	sb->s_blocksize = PAGE_CACHE_SIZE;
2057 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2058 	sb->s_magic = GADGETFS_MAGIC;
2059 	sb->s_op = &gadget_fs_operations;
2060 	sb->s_time_gran = 1;
2061 
2062 	/* root inode */
2063 	inode = gadgetfs_make_inode (sb,
2064 			NULL, &simple_dir_operations,
2065 			S_IFDIR | S_IRUGO | S_IXUGO);
2066 	if (!inode)
2067 		goto Enomem;
2068 	inode->i_op = &simple_dir_inode_operations;
2069 	if (!(sb->s_root = d_make_root (inode)))
2070 		goto Enomem;
2071 
2072 	/* the ep0 file is named after the controller we expect;
2073 	 * user mode code can use it for sanity checks, like we do.
2074 	 */
2075 	dev = dev_new ();
2076 	if (!dev)
2077 		goto Enomem;
2078 
2079 	dev->sb = sb;
2080 	dev->dentry = gadgetfs_create_file(sb, CHIP, dev, &dev_init_operations);
2081 	if (!dev->dentry) {
2082 		put_dev(dev);
2083 		goto Enomem;
2084 	}
2085 
2086 	/* other endpoint files are available after hardware setup,
2087 	 * from binding to a controller.
2088 	 */
2089 	the_device = dev;
2090 	return 0;
2091 
2092 Enomem:
2093 	return -ENOMEM;
2094 }
2095 
2096 /* "mount -t gadgetfs path /dev/gadget" ends up here */
2097 static struct dentry *
2098 gadgetfs_mount (struct file_system_type *t, int flags,
2099 		const char *path, void *opts)
2100 {
2101 	return mount_single (t, flags, opts, gadgetfs_fill_super);
2102 }
2103 
2104 static void
2105 gadgetfs_kill_sb (struct super_block *sb)
2106 {
2107 	kill_litter_super (sb);
2108 	if (the_device) {
2109 		put_dev (the_device);
2110 		the_device = NULL;
2111 	}
2112 }
2113 
2114 /*----------------------------------------------------------------------*/
2115 
2116 static struct file_system_type gadgetfs_type = {
2117 	.owner		= THIS_MODULE,
2118 	.name		= shortname,
2119 	.mount		= gadgetfs_mount,
2120 	.kill_sb	= gadgetfs_kill_sb,
2121 };
2122 MODULE_ALIAS_FS("gadgetfs");
2123 
2124 /*----------------------------------------------------------------------*/
2125 
2126 static int __init init (void)
2127 {
2128 	int status;
2129 
2130 	status = register_filesystem (&gadgetfs_type);
2131 	if (status == 0)
2132 		pr_info ("%s: %s, version " DRIVER_VERSION "\n",
2133 			shortname, driver_desc);
2134 	return status;
2135 }
2136 module_init (init);
2137 
2138 static void __exit cleanup (void)
2139 {
2140 	pr_debug ("unregister %s\n", shortname);
2141 	unregister_filesystem (&gadgetfs_type);
2142 }
2143 module_exit (cleanup);
2144 
2145