xref: /openbmc/linux/drivers/usb/gadget/legacy/inode.c (revision 465191d6)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * inode.c -- user mode filesystem api for usb gadget controllers
4  *
5  * Copyright (C) 2003-2004 David Brownell
6  * Copyright (C) 2003 Agilent Technologies
7  */
8 
9 
10 /* #define VERBOSE_DEBUG */
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/fs.h>
15 #include <linux/fs_context.h>
16 #include <linux/pagemap.h>
17 #include <linux/uts.h>
18 #include <linux/wait.h>
19 #include <linux/compiler.h>
20 #include <linux/uaccess.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/kthread.h>
25 #include <linux/aio.h>
26 #include <linux/uio.h>
27 #include <linux/refcount.h>
28 #include <linux/delay.h>
29 #include <linux/device.h>
30 #include <linux/moduleparam.h>
31 
32 #include <linux/usb/gadgetfs.h>
33 #include <linux/usb/gadget.h>
34 
35 
36 /*
37  * The gadgetfs API maps each endpoint to a file descriptor so that you
38  * can use standard synchronous read/write calls for I/O.  There's some
39  * O_NONBLOCK and O_ASYNC/FASYNC style i/o support.  Example usermode
40  * drivers show how this works in practice.  You can also use AIO to
41  * eliminate I/O gaps between requests, to help when streaming data.
42  *
43  * Key parts that must be USB-specific are protocols defining how the
44  * read/write operations relate to the hardware state machines.  There
45  * are two types of files.  One type is for the device, implementing ep0.
46  * The other type is for each IN or OUT endpoint.  In both cases, the
47  * user mode driver must configure the hardware before using it.
48  *
49  * - First, dev_config() is called when /dev/gadget/$CHIP is configured
50  *   (by writing configuration and device descriptors).  Afterwards it
51  *   may serve as a source of device events, used to handle all control
52  *   requests other than basic enumeration.
53  *
54  * - Then, after a SET_CONFIGURATION control request, ep_config() is
55  *   called when each /dev/gadget/ep* file is configured (by writing
56  *   endpoint descriptors).  Afterwards these files are used to write()
57  *   IN data or to read() OUT data.  To halt the endpoint, a "wrong
58  *   direction" request is issued (like reading an IN endpoint).
59  *
60  * Unlike "usbfs" the only ioctl()s are for things that are rare, and maybe
61  * not possible on all hardware.  For example, precise fault handling with
62  * respect to data left in endpoint fifos after aborted operations; or
63  * selective clearing of endpoint halts, to implement SET_INTERFACE.
64  */
65 
66 #define	DRIVER_DESC	"USB Gadget filesystem"
67 #define	DRIVER_VERSION	"24 Aug 2004"
68 
69 static const char driver_desc [] = DRIVER_DESC;
70 static const char shortname [] = "gadgetfs";
71 
72 MODULE_DESCRIPTION (DRIVER_DESC);
73 MODULE_AUTHOR ("David Brownell");
74 MODULE_LICENSE ("GPL");
75 
76 static int ep_open(struct inode *, struct file *);
77 
78 
79 /*----------------------------------------------------------------------*/
80 
81 #define GADGETFS_MAGIC		0xaee71ee7
82 
83 /* /dev/gadget/$CHIP represents ep0 and the whole device */
84 enum ep0_state {
85 	/* DISABLED is the initial state. */
86 	STATE_DEV_DISABLED = 0,
87 
88 	/* Only one open() of /dev/gadget/$CHIP; only one file tracks
89 	 * ep0/device i/o modes and binding to the controller.  Driver
90 	 * must always write descriptors to initialize the device, then
91 	 * the device becomes UNCONNECTED until enumeration.
92 	 */
93 	STATE_DEV_OPENED,
94 
95 	/* From then on, ep0 fd is in either of two basic modes:
96 	 * - (UN)CONNECTED: read usb_gadgetfs_event(s) from it
97 	 * - SETUP: read/write will transfer control data and succeed;
98 	 *   or if "wrong direction", performs protocol stall
99 	 */
100 	STATE_DEV_UNCONNECTED,
101 	STATE_DEV_CONNECTED,
102 	STATE_DEV_SETUP,
103 
104 	/* UNBOUND means the driver closed ep0, so the device won't be
105 	 * accessible again (DEV_DISABLED) until all fds are closed.
106 	 */
107 	STATE_DEV_UNBOUND,
108 };
109 
110 /* enough for the whole queue: most events invalidate others */
111 #define	N_EVENT			5
112 
113 #define RBUF_SIZE		256
114 
115 struct dev_data {
116 	spinlock_t			lock;
117 	refcount_t			count;
118 	int				udc_usage;
119 	enum ep0_state			state;		/* P: lock */
120 	struct usb_gadgetfs_event	event [N_EVENT];
121 	unsigned			ev_next;
122 	struct fasync_struct		*fasync;
123 	u8				current_config;
124 
125 	/* drivers reading ep0 MUST handle control requests (SETUP)
126 	 * reported that way; else the host will time out.
127 	 */
128 	unsigned			usermode_setup : 1,
129 					setup_in : 1,
130 					setup_can_stall : 1,
131 					setup_out_ready : 1,
132 					setup_out_error : 1,
133 					setup_abort : 1,
134 					gadget_registered : 1;
135 	unsigned			setup_wLength;
136 
137 	/* the rest is basically write-once */
138 	struct usb_config_descriptor	*config, *hs_config;
139 	struct usb_device_descriptor	*dev;
140 	struct usb_request		*req;
141 	struct usb_gadget		*gadget;
142 	struct list_head		epfiles;
143 	void				*buf;
144 	wait_queue_head_t		wait;
145 	struct super_block		*sb;
146 	struct dentry			*dentry;
147 
148 	/* except this scratch i/o buffer for ep0 */
149 	u8				rbuf[RBUF_SIZE];
150 };
151 
152 static inline void get_dev (struct dev_data *data)
153 {
154 	refcount_inc (&data->count);
155 }
156 
157 static void put_dev (struct dev_data *data)
158 {
159 	if (likely (!refcount_dec_and_test (&data->count)))
160 		return;
161 	/* needs no more cleanup */
162 	BUG_ON (waitqueue_active (&data->wait));
163 	kfree (data);
164 }
165 
166 static struct dev_data *dev_new (void)
167 {
168 	struct dev_data		*dev;
169 
170 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
171 	if (!dev)
172 		return NULL;
173 	dev->state = STATE_DEV_DISABLED;
174 	refcount_set (&dev->count, 1);
175 	spin_lock_init (&dev->lock);
176 	INIT_LIST_HEAD (&dev->epfiles);
177 	init_waitqueue_head (&dev->wait);
178 	return dev;
179 }
180 
181 /*----------------------------------------------------------------------*/
182 
183 /* other /dev/gadget/$ENDPOINT files represent endpoints */
184 enum ep_state {
185 	STATE_EP_DISABLED = 0,
186 	STATE_EP_READY,
187 	STATE_EP_ENABLED,
188 	STATE_EP_UNBOUND,
189 };
190 
191 struct ep_data {
192 	struct mutex			lock;
193 	enum ep_state			state;
194 	refcount_t			count;
195 	struct dev_data			*dev;
196 	/* must hold dev->lock before accessing ep or req */
197 	struct usb_ep			*ep;
198 	struct usb_request		*req;
199 	ssize_t				status;
200 	char				name [16];
201 	struct usb_endpoint_descriptor	desc, hs_desc;
202 	struct list_head		epfiles;
203 	wait_queue_head_t		wait;
204 	struct dentry			*dentry;
205 };
206 
207 static inline void get_ep (struct ep_data *data)
208 {
209 	refcount_inc (&data->count);
210 }
211 
212 static void put_ep (struct ep_data *data)
213 {
214 	if (likely (!refcount_dec_and_test (&data->count)))
215 		return;
216 	put_dev (data->dev);
217 	/* needs no more cleanup */
218 	BUG_ON (!list_empty (&data->epfiles));
219 	BUG_ON (waitqueue_active (&data->wait));
220 	kfree (data);
221 }
222 
223 /*----------------------------------------------------------------------*/
224 
225 /* most "how to use the hardware" policy choices are in userspace:
226  * mapping endpoint roles (which the driver needs) to the capabilities
227  * which the usb controller has.  most of those capabilities are exposed
228  * implicitly, starting with the driver name and then endpoint names.
229  */
230 
231 static const char *CHIP;
232 
233 /*----------------------------------------------------------------------*/
234 
235 /* NOTE:  don't use dev_printk calls before binding to the gadget
236  * at the end of ep0 configuration, or after unbind.
237  */
238 
239 /* too wordy: dev_printk(level , &(d)->gadget->dev , fmt , ## args) */
240 #define xprintk(d,level,fmt,args...) \
241 	printk(level "%s: " fmt , shortname , ## args)
242 
243 #ifdef DEBUG
244 #define DBG(dev,fmt,args...) \
245 	xprintk(dev , KERN_DEBUG , fmt , ## args)
246 #else
247 #define DBG(dev,fmt,args...) \
248 	do { } while (0)
249 #endif /* DEBUG */
250 
251 #ifdef VERBOSE_DEBUG
252 #define VDEBUG	DBG
253 #else
254 #define VDEBUG(dev,fmt,args...) \
255 	do { } while (0)
256 #endif /* DEBUG */
257 
258 #define ERROR(dev,fmt,args...) \
259 	xprintk(dev , KERN_ERR , fmt , ## args)
260 #define INFO(dev,fmt,args...) \
261 	xprintk(dev , KERN_INFO , fmt , ## args)
262 
263 
264 /*----------------------------------------------------------------------*/
265 
266 /* SYNCHRONOUS ENDPOINT OPERATIONS (bulk/intr/iso)
267  *
268  * After opening, configure non-control endpoints.  Then use normal
269  * stream read() and write() requests; and maybe ioctl() to get more
270  * precise FIFO status when recovering from cancellation.
271  */
272 
273 static void epio_complete (struct usb_ep *ep, struct usb_request *req)
274 {
275 	struct ep_data	*epdata = ep->driver_data;
276 
277 	if (!req->context)
278 		return;
279 	if (req->status)
280 		epdata->status = req->status;
281 	else
282 		epdata->status = req->actual;
283 	complete ((struct completion *)req->context);
284 }
285 
286 /* tasklock endpoint, returning when it's connected.
287  * still need dev->lock to use epdata->ep.
288  */
289 static int
290 get_ready_ep (unsigned f_flags, struct ep_data *epdata, bool is_write)
291 {
292 	int	val;
293 
294 	if (f_flags & O_NONBLOCK) {
295 		if (!mutex_trylock(&epdata->lock))
296 			goto nonblock;
297 		if (epdata->state != STATE_EP_ENABLED &&
298 		    (!is_write || epdata->state != STATE_EP_READY)) {
299 			mutex_unlock(&epdata->lock);
300 nonblock:
301 			val = -EAGAIN;
302 		} else
303 			val = 0;
304 		return val;
305 	}
306 
307 	val = mutex_lock_interruptible(&epdata->lock);
308 	if (val < 0)
309 		return val;
310 
311 	switch (epdata->state) {
312 	case STATE_EP_ENABLED:
313 		return 0;
314 	case STATE_EP_READY:			/* not configured yet */
315 		if (is_write)
316 			return 0;
317 		fallthrough;
318 	case STATE_EP_UNBOUND:			/* clean disconnect */
319 		break;
320 	// case STATE_EP_DISABLED:		/* "can't happen" */
321 	default:				/* error! */
322 		pr_debug ("%s: ep %p not available, state %d\n",
323 				shortname, epdata, epdata->state);
324 	}
325 	mutex_unlock(&epdata->lock);
326 	return -ENODEV;
327 }
328 
329 static ssize_t
330 ep_io (struct ep_data *epdata, void *buf, unsigned len)
331 {
332 	DECLARE_COMPLETION_ONSTACK (done);
333 	int value;
334 
335 	spin_lock_irq (&epdata->dev->lock);
336 	if (likely (epdata->ep != NULL)) {
337 		struct usb_request	*req = epdata->req;
338 
339 		req->context = &done;
340 		req->complete = epio_complete;
341 		req->buf = buf;
342 		req->length = len;
343 		value = usb_ep_queue (epdata->ep, req, GFP_ATOMIC);
344 	} else
345 		value = -ENODEV;
346 	spin_unlock_irq (&epdata->dev->lock);
347 
348 	if (likely (value == 0)) {
349 		value = wait_for_completion_interruptible(&done);
350 		if (value != 0) {
351 			spin_lock_irq (&epdata->dev->lock);
352 			if (likely (epdata->ep != NULL)) {
353 				DBG (epdata->dev, "%s i/o interrupted\n",
354 						epdata->name);
355 				usb_ep_dequeue (epdata->ep, epdata->req);
356 				spin_unlock_irq (&epdata->dev->lock);
357 
358 				wait_for_completion(&done);
359 				if (epdata->status == -ECONNRESET)
360 					epdata->status = -EINTR;
361 			} else {
362 				spin_unlock_irq (&epdata->dev->lock);
363 
364 				DBG (epdata->dev, "endpoint gone\n");
365 				epdata->status = -ENODEV;
366 			}
367 		}
368 		return epdata->status;
369 	}
370 	return value;
371 }
372 
373 static int
374 ep_release (struct inode *inode, struct file *fd)
375 {
376 	struct ep_data		*data = fd->private_data;
377 	int value;
378 
379 	value = mutex_lock_interruptible(&data->lock);
380 	if (value < 0)
381 		return value;
382 
383 	/* clean up if this can be reopened */
384 	if (data->state != STATE_EP_UNBOUND) {
385 		data->state = STATE_EP_DISABLED;
386 		data->desc.bDescriptorType = 0;
387 		data->hs_desc.bDescriptorType = 0;
388 		usb_ep_disable(data->ep);
389 	}
390 	mutex_unlock(&data->lock);
391 	put_ep (data);
392 	return 0;
393 }
394 
395 static long ep_ioctl(struct file *fd, unsigned code, unsigned long value)
396 {
397 	struct ep_data		*data = fd->private_data;
398 	int			status;
399 
400 	if ((status = get_ready_ep (fd->f_flags, data, false)) < 0)
401 		return status;
402 
403 	spin_lock_irq (&data->dev->lock);
404 	if (likely (data->ep != NULL)) {
405 		switch (code) {
406 		case GADGETFS_FIFO_STATUS:
407 			status = usb_ep_fifo_status (data->ep);
408 			break;
409 		case GADGETFS_FIFO_FLUSH:
410 			usb_ep_fifo_flush (data->ep);
411 			break;
412 		case GADGETFS_CLEAR_HALT:
413 			status = usb_ep_clear_halt (data->ep);
414 			break;
415 		default:
416 			status = -ENOTTY;
417 		}
418 	} else
419 		status = -ENODEV;
420 	spin_unlock_irq (&data->dev->lock);
421 	mutex_unlock(&data->lock);
422 	return status;
423 }
424 
425 /*----------------------------------------------------------------------*/
426 
427 /* ASYNCHRONOUS ENDPOINT I/O OPERATIONS (bulk/intr/iso) */
428 
429 struct kiocb_priv {
430 	struct usb_request	*req;
431 	struct ep_data		*epdata;
432 	struct kiocb		*iocb;
433 	struct mm_struct	*mm;
434 	struct work_struct	work;
435 	void			*buf;
436 	struct iov_iter		to;
437 	const void		*to_free;
438 	unsigned		actual;
439 };
440 
441 static int ep_aio_cancel(struct kiocb *iocb)
442 {
443 	struct kiocb_priv	*priv = iocb->private;
444 	struct ep_data		*epdata;
445 	int			value;
446 
447 	local_irq_disable();
448 	epdata = priv->epdata;
449 	// spin_lock(&epdata->dev->lock);
450 	if (likely(epdata && epdata->ep && priv->req))
451 		value = usb_ep_dequeue (epdata->ep, priv->req);
452 	else
453 		value = -EINVAL;
454 	// spin_unlock(&epdata->dev->lock);
455 	local_irq_enable();
456 
457 	return value;
458 }
459 
460 static void ep_user_copy_worker(struct work_struct *work)
461 {
462 	struct kiocb_priv *priv = container_of(work, struct kiocb_priv, work);
463 	struct mm_struct *mm = priv->mm;
464 	struct kiocb *iocb = priv->iocb;
465 	size_t ret;
466 
467 	kthread_use_mm(mm);
468 	ret = copy_to_iter(priv->buf, priv->actual, &priv->to);
469 	kthread_unuse_mm(mm);
470 	if (!ret)
471 		ret = -EFAULT;
472 
473 	/* completing the iocb can drop the ctx and mm, don't touch mm after */
474 	iocb->ki_complete(iocb, ret);
475 
476 	kfree(priv->buf);
477 	kfree(priv->to_free);
478 	kfree(priv);
479 }
480 
481 static void ep_aio_complete(struct usb_ep *ep, struct usb_request *req)
482 {
483 	struct kiocb		*iocb = req->context;
484 	struct kiocb_priv	*priv = iocb->private;
485 	struct ep_data		*epdata = priv->epdata;
486 
487 	/* lock against disconnect (and ideally, cancel) */
488 	spin_lock(&epdata->dev->lock);
489 	priv->req = NULL;
490 	priv->epdata = NULL;
491 
492 	/* if this was a write or a read returning no data then we
493 	 * don't need to copy anything to userspace, so we can
494 	 * complete the aio request immediately.
495 	 */
496 	if (priv->to_free == NULL || unlikely(req->actual == 0)) {
497 		kfree(req->buf);
498 		kfree(priv->to_free);
499 		kfree(priv);
500 		iocb->private = NULL;
501 		iocb->ki_complete(iocb,
502 				req->actual ? req->actual : (long)req->status);
503 	} else {
504 		/* ep_copy_to_user() won't report both; we hide some faults */
505 		if (unlikely(0 != req->status))
506 			DBG(epdata->dev, "%s fault %d len %d\n",
507 				ep->name, req->status, req->actual);
508 
509 		priv->buf = req->buf;
510 		priv->actual = req->actual;
511 		INIT_WORK(&priv->work, ep_user_copy_worker);
512 		schedule_work(&priv->work);
513 	}
514 
515 	usb_ep_free_request(ep, req);
516 	spin_unlock(&epdata->dev->lock);
517 	put_ep(epdata);
518 }
519 
520 static ssize_t ep_aio(struct kiocb *iocb,
521 		      struct kiocb_priv *priv,
522 		      struct ep_data *epdata,
523 		      char *buf,
524 		      size_t len)
525 {
526 	struct usb_request *req;
527 	ssize_t value;
528 
529 	iocb->private = priv;
530 	priv->iocb = iocb;
531 
532 	kiocb_set_cancel_fn(iocb, ep_aio_cancel);
533 	get_ep(epdata);
534 	priv->epdata = epdata;
535 	priv->actual = 0;
536 	priv->mm = current->mm; /* mm teardown waits for iocbs in exit_aio() */
537 
538 	/* each kiocb is coupled to one usb_request, but we can't
539 	 * allocate or submit those if the host disconnected.
540 	 */
541 	spin_lock_irq(&epdata->dev->lock);
542 	value = -ENODEV;
543 	if (unlikely(epdata->ep == NULL))
544 		goto fail;
545 
546 	req = usb_ep_alloc_request(epdata->ep, GFP_ATOMIC);
547 	value = -ENOMEM;
548 	if (unlikely(!req))
549 		goto fail;
550 
551 	priv->req = req;
552 	req->buf = buf;
553 	req->length = len;
554 	req->complete = ep_aio_complete;
555 	req->context = iocb;
556 	value = usb_ep_queue(epdata->ep, req, GFP_ATOMIC);
557 	if (unlikely(0 != value)) {
558 		usb_ep_free_request(epdata->ep, req);
559 		goto fail;
560 	}
561 	spin_unlock_irq(&epdata->dev->lock);
562 	return -EIOCBQUEUED;
563 
564 fail:
565 	spin_unlock_irq(&epdata->dev->lock);
566 	kfree(priv->to_free);
567 	kfree(priv);
568 	put_ep(epdata);
569 	return value;
570 }
571 
572 static ssize_t
573 ep_read_iter(struct kiocb *iocb, struct iov_iter *to)
574 {
575 	struct file *file = iocb->ki_filp;
576 	struct ep_data *epdata = file->private_data;
577 	size_t len = iov_iter_count(to);
578 	ssize_t value;
579 	char *buf;
580 
581 	if ((value = get_ready_ep(file->f_flags, epdata, false)) < 0)
582 		return value;
583 
584 	/* halt any endpoint by doing a "wrong direction" i/o call */
585 	if (usb_endpoint_dir_in(&epdata->desc)) {
586 		if (usb_endpoint_xfer_isoc(&epdata->desc) ||
587 		    !is_sync_kiocb(iocb)) {
588 			mutex_unlock(&epdata->lock);
589 			return -EINVAL;
590 		}
591 		DBG (epdata->dev, "%s halt\n", epdata->name);
592 		spin_lock_irq(&epdata->dev->lock);
593 		if (likely(epdata->ep != NULL))
594 			usb_ep_set_halt(epdata->ep);
595 		spin_unlock_irq(&epdata->dev->lock);
596 		mutex_unlock(&epdata->lock);
597 		return -EBADMSG;
598 	}
599 
600 	buf = kmalloc(len, GFP_KERNEL);
601 	if (unlikely(!buf)) {
602 		mutex_unlock(&epdata->lock);
603 		return -ENOMEM;
604 	}
605 	if (is_sync_kiocb(iocb)) {
606 		value = ep_io(epdata, buf, len);
607 		if (value >= 0 && (copy_to_iter(buf, value, to) != value))
608 			value = -EFAULT;
609 	} else {
610 		struct kiocb_priv *priv = kzalloc(sizeof *priv, GFP_KERNEL);
611 		value = -ENOMEM;
612 		if (!priv)
613 			goto fail;
614 		priv->to_free = dup_iter(&priv->to, to, GFP_KERNEL);
615 		if (!priv->to_free) {
616 			kfree(priv);
617 			goto fail;
618 		}
619 		value = ep_aio(iocb, priv, epdata, buf, len);
620 		if (value == -EIOCBQUEUED)
621 			buf = NULL;
622 	}
623 fail:
624 	kfree(buf);
625 	mutex_unlock(&epdata->lock);
626 	return value;
627 }
628 
629 static ssize_t ep_config(struct ep_data *, const char *, size_t);
630 
631 static ssize_t
632 ep_write_iter(struct kiocb *iocb, struct iov_iter *from)
633 {
634 	struct file *file = iocb->ki_filp;
635 	struct ep_data *epdata = file->private_data;
636 	size_t len = iov_iter_count(from);
637 	bool configured;
638 	ssize_t value;
639 	char *buf;
640 
641 	if ((value = get_ready_ep(file->f_flags, epdata, true)) < 0)
642 		return value;
643 
644 	configured = epdata->state == STATE_EP_ENABLED;
645 
646 	/* halt any endpoint by doing a "wrong direction" i/o call */
647 	if (configured && !usb_endpoint_dir_in(&epdata->desc)) {
648 		if (usb_endpoint_xfer_isoc(&epdata->desc) ||
649 		    !is_sync_kiocb(iocb)) {
650 			mutex_unlock(&epdata->lock);
651 			return -EINVAL;
652 		}
653 		DBG (epdata->dev, "%s halt\n", epdata->name);
654 		spin_lock_irq(&epdata->dev->lock);
655 		if (likely(epdata->ep != NULL))
656 			usb_ep_set_halt(epdata->ep);
657 		spin_unlock_irq(&epdata->dev->lock);
658 		mutex_unlock(&epdata->lock);
659 		return -EBADMSG;
660 	}
661 
662 	buf = kmalloc(len, GFP_KERNEL);
663 	if (unlikely(!buf)) {
664 		mutex_unlock(&epdata->lock);
665 		return -ENOMEM;
666 	}
667 
668 	if (unlikely(!copy_from_iter_full(buf, len, from))) {
669 		value = -EFAULT;
670 		goto out;
671 	}
672 
673 	if (unlikely(!configured)) {
674 		value = ep_config(epdata, buf, len);
675 	} else if (is_sync_kiocb(iocb)) {
676 		value = ep_io(epdata, buf, len);
677 	} else {
678 		struct kiocb_priv *priv = kzalloc(sizeof *priv, GFP_KERNEL);
679 		value = -ENOMEM;
680 		if (priv) {
681 			value = ep_aio(iocb, priv, epdata, buf, len);
682 			if (value == -EIOCBQUEUED)
683 				buf = NULL;
684 		}
685 	}
686 out:
687 	kfree(buf);
688 	mutex_unlock(&epdata->lock);
689 	return value;
690 }
691 
692 /*----------------------------------------------------------------------*/
693 
694 /* used after endpoint configuration */
695 static const struct file_operations ep_io_operations = {
696 	.owner =	THIS_MODULE,
697 
698 	.open =		ep_open,
699 	.release =	ep_release,
700 	.llseek =	no_llseek,
701 	.unlocked_ioctl = ep_ioctl,
702 	.read_iter =	ep_read_iter,
703 	.write_iter =	ep_write_iter,
704 };
705 
706 /* ENDPOINT INITIALIZATION
707  *
708  *     fd = open ("/dev/gadget/$ENDPOINT", O_RDWR)
709  *     status = write (fd, descriptors, sizeof descriptors)
710  *
711  * That write establishes the endpoint configuration, configuring
712  * the controller to process bulk, interrupt, or isochronous transfers
713  * at the right maxpacket size, and so on.
714  *
715  * The descriptors are message type 1, identified by a host order u32
716  * at the beginning of what's written.  Descriptor order is: full/low
717  * speed descriptor, then optional high speed descriptor.
718  */
719 static ssize_t
720 ep_config (struct ep_data *data, const char *buf, size_t len)
721 {
722 	struct usb_ep		*ep;
723 	u32			tag;
724 	int			value, length = len;
725 
726 	if (data->state != STATE_EP_READY) {
727 		value = -EL2HLT;
728 		goto fail;
729 	}
730 
731 	value = len;
732 	if (len < USB_DT_ENDPOINT_SIZE + 4)
733 		goto fail0;
734 
735 	/* we might need to change message format someday */
736 	memcpy(&tag, buf, 4);
737 	if (tag != 1) {
738 		DBG(data->dev, "config %s, bad tag %d\n", data->name, tag);
739 		goto fail0;
740 	}
741 	buf += 4;
742 	len -= 4;
743 
744 	/* NOTE:  audio endpoint extensions not accepted here;
745 	 * just don't include the extra bytes.
746 	 */
747 
748 	/* full/low speed descriptor, then high speed */
749 	memcpy(&data->desc, buf, USB_DT_ENDPOINT_SIZE);
750 	if (data->desc.bLength != USB_DT_ENDPOINT_SIZE
751 			|| data->desc.bDescriptorType != USB_DT_ENDPOINT)
752 		goto fail0;
753 	if (len != USB_DT_ENDPOINT_SIZE) {
754 		if (len != 2 * USB_DT_ENDPOINT_SIZE)
755 			goto fail0;
756 		memcpy(&data->hs_desc, buf + USB_DT_ENDPOINT_SIZE,
757 			USB_DT_ENDPOINT_SIZE);
758 		if (data->hs_desc.bLength != USB_DT_ENDPOINT_SIZE
759 				|| data->hs_desc.bDescriptorType
760 					!= USB_DT_ENDPOINT) {
761 			DBG(data->dev, "config %s, bad hs length or type\n",
762 					data->name);
763 			goto fail0;
764 		}
765 	}
766 
767 	spin_lock_irq (&data->dev->lock);
768 	if (data->dev->state == STATE_DEV_UNBOUND) {
769 		value = -ENOENT;
770 		goto gone;
771 	} else {
772 		ep = data->ep;
773 		if (ep == NULL) {
774 			value = -ENODEV;
775 			goto gone;
776 		}
777 	}
778 	switch (data->dev->gadget->speed) {
779 	case USB_SPEED_LOW:
780 	case USB_SPEED_FULL:
781 		ep->desc = &data->desc;
782 		break;
783 	case USB_SPEED_HIGH:
784 		/* fails if caller didn't provide that descriptor... */
785 		ep->desc = &data->hs_desc;
786 		break;
787 	default:
788 		DBG(data->dev, "unconnected, %s init abandoned\n",
789 				data->name);
790 		value = -EINVAL;
791 		goto gone;
792 	}
793 	value = usb_ep_enable(ep);
794 	if (value == 0) {
795 		data->state = STATE_EP_ENABLED;
796 		value = length;
797 	}
798 gone:
799 	spin_unlock_irq (&data->dev->lock);
800 	if (value < 0) {
801 fail:
802 		data->desc.bDescriptorType = 0;
803 		data->hs_desc.bDescriptorType = 0;
804 	}
805 	return value;
806 fail0:
807 	value = -EINVAL;
808 	goto fail;
809 }
810 
811 static int
812 ep_open (struct inode *inode, struct file *fd)
813 {
814 	struct ep_data		*data = inode->i_private;
815 	int			value = -EBUSY;
816 
817 	if (mutex_lock_interruptible(&data->lock) != 0)
818 		return -EINTR;
819 	spin_lock_irq (&data->dev->lock);
820 	if (data->dev->state == STATE_DEV_UNBOUND)
821 		value = -ENOENT;
822 	else if (data->state == STATE_EP_DISABLED) {
823 		value = 0;
824 		data->state = STATE_EP_READY;
825 		get_ep (data);
826 		fd->private_data = data;
827 		VDEBUG (data->dev, "%s ready\n", data->name);
828 	} else
829 		DBG (data->dev, "%s state %d\n",
830 			data->name, data->state);
831 	spin_unlock_irq (&data->dev->lock);
832 	mutex_unlock(&data->lock);
833 	return value;
834 }
835 
836 /*----------------------------------------------------------------------*/
837 
838 /* EP0 IMPLEMENTATION can be partly in userspace.
839  *
840  * Drivers that use this facility receive various events, including
841  * control requests the kernel doesn't handle.  Drivers that don't
842  * use this facility may be too simple-minded for real applications.
843  */
844 
845 static inline void ep0_readable (struct dev_data *dev)
846 {
847 	wake_up (&dev->wait);
848 	kill_fasync (&dev->fasync, SIGIO, POLL_IN);
849 }
850 
851 static void clean_req (struct usb_ep *ep, struct usb_request *req)
852 {
853 	struct dev_data		*dev = ep->driver_data;
854 
855 	if (req->buf != dev->rbuf) {
856 		kfree(req->buf);
857 		req->buf = dev->rbuf;
858 	}
859 	req->complete = epio_complete;
860 	dev->setup_out_ready = 0;
861 }
862 
863 static void ep0_complete (struct usb_ep *ep, struct usb_request *req)
864 {
865 	struct dev_data		*dev = ep->driver_data;
866 	unsigned long		flags;
867 	int			free = 1;
868 
869 	/* for control OUT, data must still get to userspace */
870 	spin_lock_irqsave(&dev->lock, flags);
871 	if (!dev->setup_in) {
872 		dev->setup_out_error = (req->status != 0);
873 		if (!dev->setup_out_error)
874 			free = 0;
875 		dev->setup_out_ready = 1;
876 		ep0_readable (dev);
877 	}
878 
879 	/* clean up as appropriate */
880 	if (free && req->buf != &dev->rbuf)
881 		clean_req (ep, req);
882 	req->complete = epio_complete;
883 	spin_unlock_irqrestore(&dev->lock, flags);
884 }
885 
886 static int setup_req (struct usb_ep *ep, struct usb_request *req, u16 len)
887 {
888 	struct dev_data	*dev = ep->driver_data;
889 
890 	if (dev->setup_out_ready) {
891 		DBG (dev, "ep0 request busy!\n");
892 		return -EBUSY;
893 	}
894 	if (len > sizeof (dev->rbuf))
895 		req->buf = kmalloc(len, GFP_ATOMIC);
896 	if (req->buf == NULL) {
897 		req->buf = dev->rbuf;
898 		return -ENOMEM;
899 	}
900 	req->complete = ep0_complete;
901 	req->length = len;
902 	req->zero = 0;
903 	return 0;
904 }
905 
906 static ssize_t
907 ep0_read (struct file *fd, char __user *buf, size_t len, loff_t *ptr)
908 {
909 	struct dev_data			*dev = fd->private_data;
910 	ssize_t				retval;
911 	enum ep0_state			state;
912 
913 	spin_lock_irq (&dev->lock);
914 	if (dev->state <= STATE_DEV_OPENED) {
915 		retval = -EINVAL;
916 		goto done;
917 	}
918 
919 	/* report fd mode change before acting on it */
920 	if (dev->setup_abort) {
921 		dev->setup_abort = 0;
922 		retval = -EIDRM;
923 		goto done;
924 	}
925 
926 	/* control DATA stage */
927 	if ((state = dev->state) == STATE_DEV_SETUP) {
928 
929 		if (dev->setup_in) {		/* stall IN */
930 			VDEBUG(dev, "ep0in stall\n");
931 			(void) usb_ep_set_halt (dev->gadget->ep0);
932 			retval = -EL2HLT;
933 			dev->state = STATE_DEV_CONNECTED;
934 
935 		} else if (len == 0) {		/* ack SET_CONFIGURATION etc */
936 			struct usb_ep		*ep = dev->gadget->ep0;
937 			struct usb_request	*req = dev->req;
938 
939 			if ((retval = setup_req (ep, req, 0)) == 0) {
940 				++dev->udc_usage;
941 				spin_unlock_irq (&dev->lock);
942 				retval = usb_ep_queue (ep, req, GFP_KERNEL);
943 				spin_lock_irq (&dev->lock);
944 				--dev->udc_usage;
945 			}
946 			dev->state = STATE_DEV_CONNECTED;
947 
948 			/* assume that was SET_CONFIGURATION */
949 			if (dev->current_config) {
950 				unsigned power;
951 
952 				if (gadget_is_dualspeed(dev->gadget)
953 						&& (dev->gadget->speed
954 							== USB_SPEED_HIGH))
955 					power = dev->hs_config->bMaxPower;
956 				else
957 					power = dev->config->bMaxPower;
958 				usb_gadget_vbus_draw(dev->gadget, 2 * power);
959 			}
960 
961 		} else {			/* collect OUT data */
962 			if ((fd->f_flags & O_NONBLOCK) != 0
963 					&& !dev->setup_out_ready) {
964 				retval = -EAGAIN;
965 				goto done;
966 			}
967 			spin_unlock_irq (&dev->lock);
968 			retval = wait_event_interruptible (dev->wait,
969 					dev->setup_out_ready != 0);
970 
971 			/* FIXME state could change from under us */
972 			spin_lock_irq (&dev->lock);
973 			if (retval)
974 				goto done;
975 
976 			if (dev->state != STATE_DEV_SETUP) {
977 				retval = -ECANCELED;
978 				goto done;
979 			}
980 			dev->state = STATE_DEV_CONNECTED;
981 
982 			if (dev->setup_out_error)
983 				retval = -EIO;
984 			else {
985 				len = min (len, (size_t)dev->req->actual);
986 				++dev->udc_usage;
987 				spin_unlock_irq(&dev->lock);
988 				if (copy_to_user (buf, dev->req->buf, len))
989 					retval = -EFAULT;
990 				else
991 					retval = len;
992 				spin_lock_irq(&dev->lock);
993 				--dev->udc_usage;
994 				clean_req (dev->gadget->ep0, dev->req);
995 				/* NOTE userspace can't yet choose to stall */
996 			}
997 		}
998 		goto done;
999 	}
1000 
1001 	/* else normal: return event data */
1002 	if (len < sizeof dev->event [0]) {
1003 		retval = -EINVAL;
1004 		goto done;
1005 	}
1006 	len -= len % sizeof (struct usb_gadgetfs_event);
1007 	dev->usermode_setup = 1;
1008 
1009 scan:
1010 	/* return queued events right away */
1011 	if (dev->ev_next != 0) {
1012 		unsigned		i, n;
1013 
1014 		n = len / sizeof (struct usb_gadgetfs_event);
1015 		if (dev->ev_next < n)
1016 			n = dev->ev_next;
1017 
1018 		/* ep0 i/o has special semantics during STATE_DEV_SETUP */
1019 		for (i = 0; i < n; i++) {
1020 			if (dev->event [i].type == GADGETFS_SETUP) {
1021 				dev->state = STATE_DEV_SETUP;
1022 				n = i + 1;
1023 				break;
1024 			}
1025 		}
1026 		spin_unlock_irq (&dev->lock);
1027 		len = n * sizeof (struct usb_gadgetfs_event);
1028 		if (copy_to_user (buf, &dev->event, len))
1029 			retval = -EFAULT;
1030 		else
1031 			retval = len;
1032 		if (len > 0) {
1033 			/* NOTE this doesn't guard against broken drivers;
1034 			 * concurrent ep0 readers may lose events.
1035 			 */
1036 			spin_lock_irq (&dev->lock);
1037 			if (dev->ev_next > n) {
1038 				memmove(&dev->event[0], &dev->event[n],
1039 					sizeof (struct usb_gadgetfs_event)
1040 						* (dev->ev_next - n));
1041 			}
1042 			dev->ev_next -= n;
1043 			spin_unlock_irq (&dev->lock);
1044 		}
1045 		return retval;
1046 	}
1047 	if (fd->f_flags & O_NONBLOCK) {
1048 		retval = -EAGAIN;
1049 		goto done;
1050 	}
1051 
1052 	switch (state) {
1053 	default:
1054 		DBG (dev, "fail %s, state %d\n", __func__, state);
1055 		retval = -ESRCH;
1056 		break;
1057 	case STATE_DEV_UNCONNECTED:
1058 	case STATE_DEV_CONNECTED:
1059 		spin_unlock_irq (&dev->lock);
1060 		DBG (dev, "%s wait\n", __func__);
1061 
1062 		/* wait for events */
1063 		retval = wait_event_interruptible (dev->wait,
1064 				dev->ev_next != 0);
1065 		if (retval < 0)
1066 			return retval;
1067 		spin_lock_irq (&dev->lock);
1068 		goto scan;
1069 	}
1070 
1071 done:
1072 	spin_unlock_irq (&dev->lock);
1073 	return retval;
1074 }
1075 
1076 static struct usb_gadgetfs_event *
1077 next_event (struct dev_data *dev, enum usb_gadgetfs_event_type type)
1078 {
1079 	struct usb_gadgetfs_event	*event;
1080 	unsigned			i;
1081 
1082 	switch (type) {
1083 	/* these events purge the queue */
1084 	case GADGETFS_DISCONNECT:
1085 		if (dev->state == STATE_DEV_SETUP)
1086 			dev->setup_abort = 1;
1087 		fallthrough;
1088 	case GADGETFS_CONNECT:
1089 		dev->ev_next = 0;
1090 		break;
1091 	case GADGETFS_SETUP:		/* previous request timed out */
1092 	case GADGETFS_SUSPEND:		/* same effect */
1093 		/* these events can't be repeated */
1094 		for (i = 0; i != dev->ev_next; i++) {
1095 			if (dev->event [i].type != type)
1096 				continue;
1097 			DBG(dev, "discard old event[%d] %d\n", i, type);
1098 			dev->ev_next--;
1099 			if (i == dev->ev_next)
1100 				break;
1101 			/* indices start at zero, for simplicity */
1102 			memmove (&dev->event [i], &dev->event [i + 1],
1103 				sizeof (struct usb_gadgetfs_event)
1104 					* (dev->ev_next - i));
1105 		}
1106 		break;
1107 	default:
1108 		BUG ();
1109 	}
1110 	VDEBUG(dev, "event[%d] = %d\n", dev->ev_next, type);
1111 	event = &dev->event [dev->ev_next++];
1112 	BUG_ON (dev->ev_next > N_EVENT);
1113 	memset (event, 0, sizeof *event);
1114 	event->type = type;
1115 	return event;
1116 }
1117 
1118 static ssize_t
1119 ep0_write (struct file *fd, const char __user *buf, size_t len, loff_t *ptr)
1120 {
1121 	struct dev_data		*dev = fd->private_data;
1122 	ssize_t			retval = -ESRCH;
1123 
1124 	/* report fd mode change before acting on it */
1125 	if (dev->setup_abort) {
1126 		dev->setup_abort = 0;
1127 		retval = -EIDRM;
1128 
1129 	/* data and/or status stage for control request */
1130 	} else if (dev->state == STATE_DEV_SETUP) {
1131 
1132 		len = min_t(size_t, len, dev->setup_wLength);
1133 		if (dev->setup_in) {
1134 			retval = setup_req (dev->gadget->ep0, dev->req, len);
1135 			if (retval == 0) {
1136 				dev->state = STATE_DEV_CONNECTED;
1137 				++dev->udc_usage;
1138 				spin_unlock_irq (&dev->lock);
1139 				if (copy_from_user (dev->req->buf, buf, len))
1140 					retval = -EFAULT;
1141 				else {
1142 					if (len < dev->setup_wLength)
1143 						dev->req->zero = 1;
1144 					retval = usb_ep_queue (
1145 						dev->gadget->ep0, dev->req,
1146 						GFP_KERNEL);
1147 				}
1148 				spin_lock_irq(&dev->lock);
1149 				--dev->udc_usage;
1150 				if (retval < 0) {
1151 					clean_req (dev->gadget->ep0, dev->req);
1152 				} else
1153 					retval = len;
1154 
1155 				return retval;
1156 			}
1157 
1158 		/* can stall some OUT transfers */
1159 		} else if (dev->setup_can_stall) {
1160 			VDEBUG(dev, "ep0out stall\n");
1161 			(void) usb_ep_set_halt (dev->gadget->ep0);
1162 			retval = -EL2HLT;
1163 			dev->state = STATE_DEV_CONNECTED;
1164 		} else {
1165 			DBG(dev, "bogus ep0out stall!\n");
1166 		}
1167 	} else
1168 		DBG (dev, "fail %s, state %d\n", __func__, dev->state);
1169 
1170 	return retval;
1171 }
1172 
1173 static int
1174 ep0_fasync (int f, struct file *fd, int on)
1175 {
1176 	struct dev_data		*dev = fd->private_data;
1177 	// caller must F_SETOWN before signal delivery happens
1178 	VDEBUG (dev, "%s %s\n", __func__, on ? "on" : "off");
1179 	return fasync_helper (f, fd, on, &dev->fasync);
1180 }
1181 
1182 static struct usb_gadget_driver gadgetfs_driver;
1183 
1184 static int
1185 dev_release (struct inode *inode, struct file *fd)
1186 {
1187 	struct dev_data		*dev = fd->private_data;
1188 
1189 	/* closing ep0 === shutdown all */
1190 
1191 	if (dev->gadget_registered) {
1192 		usb_gadget_unregister_driver (&gadgetfs_driver);
1193 		dev->gadget_registered = false;
1194 	}
1195 
1196 	/* at this point "good" hardware has disconnected the
1197 	 * device from USB; the host won't see it any more.
1198 	 * alternatively, all host requests will time out.
1199 	 */
1200 
1201 	kfree (dev->buf);
1202 	dev->buf = NULL;
1203 
1204 	/* other endpoints were all decoupled from this device */
1205 	spin_lock_irq(&dev->lock);
1206 	dev->state = STATE_DEV_DISABLED;
1207 	spin_unlock_irq(&dev->lock);
1208 
1209 	put_dev (dev);
1210 	return 0;
1211 }
1212 
1213 static __poll_t
1214 ep0_poll (struct file *fd, poll_table *wait)
1215 {
1216 	struct dev_data         *dev = fd->private_data;
1217 	__poll_t                mask = 0;
1218 
1219 	if (dev->state <= STATE_DEV_OPENED)
1220 		return DEFAULT_POLLMASK;
1221 
1222 	poll_wait(fd, &dev->wait, wait);
1223 
1224 	spin_lock_irq(&dev->lock);
1225 
1226 	/* report fd mode change before acting on it */
1227 	if (dev->setup_abort) {
1228 		dev->setup_abort = 0;
1229 		mask = EPOLLHUP;
1230 		goto out;
1231 	}
1232 
1233 	if (dev->state == STATE_DEV_SETUP) {
1234 		if (dev->setup_in || dev->setup_can_stall)
1235 			mask = EPOLLOUT;
1236 	} else {
1237 		if (dev->ev_next != 0)
1238 			mask = EPOLLIN;
1239 	}
1240 out:
1241 	spin_unlock_irq(&dev->lock);
1242 	return mask;
1243 }
1244 
1245 static long gadget_dev_ioctl (struct file *fd, unsigned code, unsigned long value)
1246 {
1247 	struct dev_data		*dev = fd->private_data;
1248 	struct usb_gadget	*gadget = dev->gadget;
1249 	long ret = -ENOTTY;
1250 
1251 	spin_lock_irq(&dev->lock);
1252 	if (dev->state == STATE_DEV_OPENED ||
1253 			dev->state == STATE_DEV_UNBOUND) {
1254 		/* Not bound to a UDC */
1255 	} else if (gadget->ops->ioctl) {
1256 		++dev->udc_usage;
1257 		spin_unlock_irq(&dev->lock);
1258 
1259 		ret = gadget->ops->ioctl (gadget, code, value);
1260 
1261 		spin_lock_irq(&dev->lock);
1262 		--dev->udc_usage;
1263 	}
1264 	spin_unlock_irq(&dev->lock);
1265 
1266 	return ret;
1267 }
1268 
1269 /*----------------------------------------------------------------------*/
1270 
1271 /* The in-kernel gadget driver handles most ep0 issues, in particular
1272  * enumerating the single configuration (as provided from user space).
1273  *
1274  * Unrecognized ep0 requests may be handled in user space.
1275  */
1276 
1277 static void make_qualifier (struct dev_data *dev)
1278 {
1279 	struct usb_qualifier_descriptor		qual;
1280 	struct usb_device_descriptor		*desc;
1281 
1282 	qual.bLength = sizeof qual;
1283 	qual.bDescriptorType = USB_DT_DEVICE_QUALIFIER;
1284 	qual.bcdUSB = cpu_to_le16 (0x0200);
1285 
1286 	desc = dev->dev;
1287 	qual.bDeviceClass = desc->bDeviceClass;
1288 	qual.bDeviceSubClass = desc->bDeviceSubClass;
1289 	qual.bDeviceProtocol = desc->bDeviceProtocol;
1290 
1291 	/* assumes ep0 uses the same value for both speeds ... */
1292 	qual.bMaxPacketSize0 = dev->gadget->ep0->maxpacket;
1293 
1294 	qual.bNumConfigurations = 1;
1295 	qual.bRESERVED = 0;
1296 
1297 	memcpy (dev->rbuf, &qual, sizeof qual);
1298 }
1299 
1300 static int
1301 config_buf (struct dev_data *dev, u8 type, unsigned index)
1302 {
1303 	int		len;
1304 	int		hs = 0;
1305 
1306 	/* only one configuration */
1307 	if (index > 0)
1308 		return -EINVAL;
1309 
1310 	if (gadget_is_dualspeed(dev->gadget)) {
1311 		hs = (dev->gadget->speed == USB_SPEED_HIGH);
1312 		if (type == USB_DT_OTHER_SPEED_CONFIG)
1313 			hs = !hs;
1314 	}
1315 	if (hs) {
1316 		dev->req->buf = dev->hs_config;
1317 		len = le16_to_cpu(dev->hs_config->wTotalLength);
1318 	} else {
1319 		dev->req->buf = dev->config;
1320 		len = le16_to_cpu(dev->config->wTotalLength);
1321 	}
1322 	((u8 *)dev->req->buf) [1] = type;
1323 	return len;
1324 }
1325 
1326 static int
1327 gadgetfs_setup (struct usb_gadget *gadget, const struct usb_ctrlrequest *ctrl)
1328 {
1329 	struct dev_data			*dev = get_gadget_data (gadget);
1330 	struct usb_request		*req = dev->req;
1331 	int				value = -EOPNOTSUPP;
1332 	struct usb_gadgetfs_event	*event;
1333 	u16				w_value = le16_to_cpu(ctrl->wValue);
1334 	u16				w_length = le16_to_cpu(ctrl->wLength);
1335 
1336 	if (w_length > RBUF_SIZE) {
1337 		if (ctrl->bRequestType & USB_DIR_IN) {
1338 			/* Cast away the const, we are going to overwrite on purpose. */
1339 			__le16 *temp = (__le16 *)&ctrl->wLength;
1340 
1341 			*temp = cpu_to_le16(RBUF_SIZE);
1342 			w_length = RBUF_SIZE;
1343 		} else {
1344 			return value;
1345 		}
1346 	}
1347 
1348 	spin_lock (&dev->lock);
1349 	dev->setup_abort = 0;
1350 	if (dev->state == STATE_DEV_UNCONNECTED) {
1351 		if (gadget_is_dualspeed(gadget)
1352 				&& gadget->speed == USB_SPEED_HIGH
1353 				&& dev->hs_config == NULL) {
1354 			spin_unlock(&dev->lock);
1355 			ERROR (dev, "no high speed config??\n");
1356 			return -EINVAL;
1357 		}
1358 
1359 		dev->state = STATE_DEV_CONNECTED;
1360 
1361 		INFO (dev, "connected\n");
1362 		event = next_event (dev, GADGETFS_CONNECT);
1363 		event->u.speed = gadget->speed;
1364 		ep0_readable (dev);
1365 
1366 	/* host may have given up waiting for response.  we can miss control
1367 	 * requests handled lower down (device/endpoint status and features);
1368 	 * then ep0_{read,write} will report the wrong status. controller
1369 	 * driver will have aborted pending i/o.
1370 	 */
1371 	} else if (dev->state == STATE_DEV_SETUP)
1372 		dev->setup_abort = 1;
1373 
1374 	req->buf = dev->rbuf;
1375 	req->context = NULL;
1376 	switch (ctrl->bRequest) {
1377 
1378 	case USB_REQ_GET_DESCRIPTOR:
1379 		if (ctrl->bRequestType != USB_DIR_IN)
1380 			goto unrecognized;
1381 		switch (w_value >> 8) {
1382 
1383 		case USB_DT_DEVICE:
1384 			value = min (w_length, (u16) sizeof *dev->dev);
1385 			dev->dev->bMaxPacketSize0 = dev->gadget->ep0->maxpacket;
1386 			req->buf = dev->dev;
1387 			break;
1388 		case USB_DT_DEVICE_QUALIFIER:
1389 			if (!dev->hs_config)
1390 				break;
1391 			value = min (w_length, (u16)
1392 				sizeof (struct usb_qualifier_descriptor));
1393 			make_qualifier (dev);
1394 			break;
1395 		case USB_DT_OTHER_SPEED_CONFIG:
1396 		case USB_DT_CONFIG:
1397 			value = config_buf (dev,
1398 					w_value >> 8,
1399 					w_value & 0xff);
1400 			if (value >= 0)
1401 				value = min (w_length, (u16) value);
1402 			break;
1403 		case USB_DT_STRING:
1404 			goto unrecognized;
1405 
1406 		default:		// all others are errors
1407 			break;
1408 		}
1409 		break;
1410 
1411 	/* currently one config, two speeds */
1412 	case USB_REQ_SET_CONFIGURATION:
1413 		if (ctrl->bRequestType != 0)
1414 			goto unrecognized;
1415 		if (0 == (u8) w_value) {
1416 			value = 0;
1417 			dev->current_config = 0;
1418 			usb_gadget_vbus_draw(gadget, 8 /* mA */ );
1419 			// user mode expected to disable endpoints
1420 		} else {
1421 			u8	config, power;
1422 
1423 			if (gadget_is_dualspeed(gadget)
1424 					&& gadget->speed == USB_SPEED_HIGH) {
1425 				config = dev->hs_config->bConfigurationValue;
1426 				power = dev->hs_config->bMaxPower;
1427 			} else {
1428 				config = dev->config->bConfigurationValue;
1429 				power = dev->config->bMaxPower;
1430 			}
1431 
1432 			if (config == (u8) w_value) {
1433 				value = 0;
1434 				dev->current_config = config;
1435 				usb_gadget_vbus_draw(gadget, 2 * power);
1436 			}
1437 		}
1438 
1439 		/* report SET_CONFIGURATION like any other control request,
1440 		 * except that usermode may not stall this.  the next
1441 		 * request mustn't be allowed start until this finishes:
1442 		 * endpoints and threads set up, etc.
1443 		 *
1444 		 * NOTE:  older PXA hardware (before PXA 255: without UDCCFR)
1445 		 * has bad/racey automagic that prevents synchronizing here.
1446 		 * even kernel mode drivers often miss them.
1447 		 */
1448 		if (value == 0) {
1449 			INFO (dev, "configuration #%d\n", dev->current_config);
1450 			usb_gadget_set_state(gadget, USB_STATE_CONFIGURED);
1451 			if (dev->usermode_setup) {
1452 				dev->setup_can_stall = 0;
1453 				goto delegate;
1454 			}
1455 		}
1456 		break;
1457 
1458 #ifndef	CONFIG_USB_PXA25X
1459 	/* PXA automagically handles this request too */
1460 	case USB_REQ_GET_CONFIGURATION:
1461 		if (ctrl->bRequestType != 0x80)
1462 			goto unrecognized;
1463 		*(u8 *)req->buf = dev->current_config;
1464 		value = min (w_length, (u16) 1);
1465 		break;
1466 #endif
1467 
1468 	default:
1469 unrecognized:
1470 		VDEBUG (dev, "%s req%02x.%02x v%04x i%04x l%d\n",
1471 			dev->usermode_setup ? "delegate" : "fail",
1472 			ctrl->bRequestType, ctrl->bRequest,
1473 			w_value, le16_to_cpu(ctrl->wIndex), w_length);
1474 
1475 		/* if there's an ep0 reader, don't stall */
1476 		if (dev->usermode_setup) {
1477 			dev->setup_can_stall = 1;
1478 delegate:
1479 			dev->setup_in = (ctrl->bRequestType & USB_DIR_IN)
1480 						? 1 : 0;
1481 			dev->setup_wLength = w_length;
1482 			dev->setup_out_ready = 0;
1483 			dev->setup_out_error = 0;
1484 
1485 			/* read DATA stage for OUT right away */
1486 			if (unlikely (!dev->setup_in && w_length)) {
1487 				value = setup_req (gadget->ep0, dev->req,
1488 							w_length);
1489 				if (value < 0)
1490 					break;
1491 
1492 				++dev->udc_usage;
1493 				spin_unlock (&dev->lock);
1494 				value = usb_ep_queue (gadget->ep0, dev->req,
1495 							GFP_KERNEL);
1496 				spin_lock (&dev->lock);
1497 				--dev->udc_usage;
1498 				if (value < 0) {
1499 					clean_req (gadget->ep0, dev->req);
1500 					break;
1501 				}
1502 
1503 				/* we can't currently stall these */
1504 				dev->setup_can_stall = 0;
1505 			}
1506 
1507 			/* state changes when reader collects event */
1508 			event = next_event (dev, GADGETFS_SETUP);
1509 			event->u.setup = *ctrl;
1510 			ep0_readable (dev);
1511 			spin_unlock (&dev->lock);
1512 			return 0;
1513 		}
1514 	}
1515 
1516 	/* proceed with data transfer and status phases? */
1517 	if (value >= 0 && dev->state != STATE_DEV_SETUP) {
1518 		req->length = value;
1519 		req->zero = value < w_length;
1520 
1521 		++dev->udc_usage;
1522 		spin_unlock (&dev->lock);
1523 		value = usb_ep_queue (gadget->ep0, req, GFP_KERNEL);
1524 		spin_lock(&dev->lock);
1525 		--dev->udc_usage;
1526 		spin_unlock(&dev->lock);
1527 		if (value < 0) {
1528 			DBG (dev, "ep_queue --> %d\n", value);
1529 			req->status = 0;
1530 		}
1531 		return value;
1532 	}
1533 
1534 	/* device stalls when value < 0 */
1535 	spin_unlock (&dev->lock);
1536 	return value;
1537 }
1538 
1539 static void destroy_ep_files (struct dev_data *dev)
1540 {
1541 	DBG (dev, "%s %d\n", __func__, dev->state);
1542 
1543 	/* dev->state must prevent interference */
1544 	spin_lock_irq (&dev->lock);
1545 	while (!list_empty(&dev->epfiles)) {
1546 		struct ep_data	*ep;
1547 		struct inode	*parent;
1548 		struct dentry	*dentry;
1549 
1550 		/* break link to FS */
1551 		ep = list_first_entry (&dev->epfiles, struct ep_data, epfiles);
1552 		list_del_init (&ep->epfiles);
1553 		spin_unlock_irq (&dev->lock);
1554 
1555 		dentry = ep->dentry;
1556 		ep->dentry = NULL;
1557 		parent = d_inode(dentry->d_parent);
1558 
1559 		/* break link to controller */
1560 		mutex_lock(&ep->lock);
1561 		if (ep->state == STATE_EP_ENABLED)
1562 			(void) usb_ep_disable (ep->ep);
1563 		ep->state = STATE_EP_UNBOUND;
1564 		usb_ep_free_request (ep->ep, ep->req);
1565 		ep->ep = NULL;
1566 		mutex_unlock(&ep->lock);
1567 
1568 		wake_up (&ep->wait);
1569 		put_ep (ep);
1570 
1571 		/* break link to dcache */
1572 		inode_lock(parent);
1573 		d_delete (dentry);
1574 		dput (dentry);
1575 		inode_unlock(parent);
1576 
1577 		spin_lock_irq (&dev->lock);
1578 	}
1579 	spin_unlock_irq (&dev->lock);
1580 }
1581 
1582 
1583 static struct dentry *
1584 gadgetfs_create_file (struct super_block *sb, char const *name,
1585 		void *data, const struct file_operations *fops);
1586 
1587 static int activate_ep_files (struct dev_data *dev)
1588 {
1589 	struct usb_ep	*ep;
1590 	struct ep_data	*data;
1591 
1592 	gadget_for_each_ep (ep, dev->gadget) {
1593 
1594 		data = kzalloc(sizeof(*data), GFP_KERNEL);
1595 		if (!data)
1596 			goto enomem0;
1597 		data->state = STATE_EP_DISABLED;
1598 		mutex_init(&data->lock);
1599 		init_waitqueue_head (&data->wait);
1600 
1601 		strncpy (data->name, ep->name, sizeof (data->name) - 1);
1602 		refcount_set (&data->count, 1);
1603 		data->dev = dev;
1604 		get_dev (dev);
1605 
1606 		data->ep = ep;
1607 		ep->driver_data = data;
1608 
1609 		data->req = usb_ep_alloc_request (ep, GFP_KERNEL);
1610 		if (!data->req)
1611 			goto enomem1;
1612 
1613 		data->dentry = gadgetfs_create_file (dev->sb, data->name,
1614 				data, &ep_io_operations);
1615 		if (!data->dentry)
1616 			goto enomem2;
1617 		list_add_tail (&data->epfiles, &dev->epfiles);
1618 	}
1619 	return 0;
1620 
1621 enomem2:
1622 	usb_ep_free_request (ep, data->req);
1623 enomem1:
1624 	put_dev (dev);
1625 	kfree (data);
1626 enomem0:
1627 	DBG (dev, "%s enomem\n", __func__);
1628 	destroy_ep_files (dev);
1629 	return -ENOMEM;
1630 }
1631 
1632 static void
1633 gadgetfs_unbind (struct usb_gadget *gadget)
1634 {
1635 	struct dev_data		*dev = get_gadget_data (gadget);
1636 
1637 	DBG (dev, "%s\n", __func__);
1638 
1639 	spin_lock_irq (&dev->lock);
1640 	dev->state = STATE_DEV_UNBOUND;
1641 	while (dev->udc_usage > 0) {
1642 		spin_unlock_irq(&dev->lock);
1643 		usleep_range(1000, 2000);
1644 		spin_lock_irq(&dev->lock);
1645 	}
1646 	spin_unlock_irq (&dev->lock);
1647 
1648 	destroy_ep_files (dev);
1649 	gadget->ep0->driver_data = NULL;
1650 	set_gadget_data (gadget, NULL);
1651 
1652 	/* we've already been disconnected ... no i/o is active */
1653 	if (dev->req)
1654 		usb_ep_free_request (gadget->ep0, dev->req);
1655 	DBG (dev, "%s done\n", __func__);
1656 	put_dev (dev);
1657 }
1658 
1659 static struct dev_data		*the_device;
1660 
1661 static int gadgetfs_bind(struct usb_gadget *gadget,
1662 		struct usb_gadget_driver *driver)
1663 {
1664 	struct dev_data		*dev = the_device;
1665 
1666 	if (!dev)
1667 		return -ESRCH;
1668 	if (0 != strcmp (CHIP, gadget->name)) {
1669 		pr_err("%s expected %s controller not %s\n",
1670 			shortname, CHIP, gadget->name);
1671 		return -ENODEV;
1672 	}
1673 
1674 	set_gadget_data (gadget, dev);
1675 	dev->gadget = gadget;
1676 	gadget->ep0->driver_data = dev;
1677 
1678 	/* preallocate control response and buffer */
1679 	dev->req = usb_ep_alloc_request (gadget->ep0, GFP_KERNEL);
1680 	if (!dev->req)
1681 		goto enomem;
1682 	dev->req->context = NULL;
1683 	dev->req->complete = epio_complete;
1684 
1685 	if (activate_ep_files (dev) < 0)
1686 		goto enomem;
1687 
1688 	INFO (dev, "bound to %s driver\n", gadget->name);
1689 	spin_lock_irq(&dev->lock);
1690 	dev->state = STATE_DEV_UNCONNECTED;
1691 	spin_unlock_irq(&dev->lock);
1692 	get_dev (dev);
1693 	return 0;
1694 
1695 enomem:
1696 	gadgetfs_unbind (gadget);
1697 	return -ENOMEM;
1698 }
1699 
1700 static void
1701 gadgetfs_disconnect (struct usb_gadget *gadget)
1702 {
1703 	struct dev_data		*dev = get_gadget_data (gadget);
1704 	unsigned long		flags;
1705 
1706 	spin_lock_irqsave (&dev->lock, flags);
1707 	if (dev->state == STATE_DEV_UNCONNECTED)
1708 		goto exit;
1709 	dev->state = STATE_DEV_UNCONNECTED;
1710 
1711 	INFO (dev, "disconnected\n");
1712 	next_event (dev, GADGETFS_DISCONNECT);
1713 	ep0_readable (dev);
1714 exit:
1715 	spin_unlock_irqrestore (&dev->lock, flags);
1716 }
1717 
1718 static void
1719 gadgetfs_suspend (struct usb_gadget *gadget)
1720 {
1721 	struct dev_data		*dev = get_gadget_data (gadget);
1722 	unsigned long		flags;
1723 
1724 	INFO (dev, "suspended from state %d\n", dev->state);
1725 	spin_lock_irqsave(&dev->lock, flags);
1726 	switch (dev->state) {
1727 	case STATE_DEV_SETUP:		// VERY odd... host died??
1728 	case STATE_DEV_CONNECTED:
1729 	case STATE_DEV_UNCONNECTED:
1730 		next_event (dev, GADGETFS_SUSPEND);
1731 		ep0_readable (dev);
1732 		fallthrough;
1733 	default:
1734 		break;
1735 	}
1736 	spin_unlock_irqrestore(&dev->lock, flags);
1737 }
1738 
1739 static struct usb_gadget_driver gadgetfs_driver = {
1740 	.function	= (char *) driver_desc,
1741 	.bind		= gadgetfs_bind,
1742 	.unbind		= gadgetfs_unbind,
1743 	.setup		= gadgetfs_setup,
1744 	.reset		= gadgetfs_disconnect,
1745 	.disconnect	= gadgetfs_disconnect,
1746 	.suspend	= gadgetfs_suspend,
1747 
1748 	.driver	= {
1749 		.name		= shortname,
1750 	},
1751 };
1752 
1753 /*----------------------------------------------------------------------*/
1754 /* DEVICE INITIALIZATION
1755  *
1756  *     fd = open ("/dev/gadget/$CHIP", O_RDWR)
1757  *     status = write (fd, descriptors, sizeof descriptors)
1758  *
1759  * That write establishes the device configuration, so the kernel can
1760  * bind to the controller ... guaranteeing it can handle enumeration
1761  * at all necessary speeds.  Descriptor order is:
1762  *
1763  * . message tag (u32, host order) ... for now, must be zero; it
1764  *	would change to support features like multi-config devices
1765  * . full/low speed config ... all wTotalLength bytes (with interface,
1766  *	class, altsetting, endpoint, and other descriptors)
1767  * . high speed config ... all descriptors, for high speed operation;
1768  *	this one's optional except for high-speed hardware
1769  * . device descriptor
1770  *
1771  * Endpoints are not yet enabled. Drivers must wait until device
1772  * configuration and interface altsetting changes create
1773  * the need to configure (or unconfigure) them.
1774  *
1775  * After initialization, the device stays active for as long as that
1776  * $CHIP file is open.  Events must then be read from that descriptor,
1777  * such as configuration notifications.
1778  */
1779 
1780 static int is_valid_config(struct usb_config_descriptor *config,
1781 		unsigned int total)
1782 {
1783 	return config->bDescriptorType == USB_DT_CONFIG
1784 		&& config->bLength == USB_DT_CONFIG_SIZE
1785 		&& total >= USB_DT_CONFIG_SIZE
1786 		&& config->bConfigurationValue != 0
1787 		&& (config->bmAttributes & USB_CONFIG_ATT_ONE) != 0
1788 		&& (config->bmAttributes & USB_CONFIG_ATT_WAKEUP) == 0;
1789 	/* FIXME if gadget->is_otg, _must_ include an otg descriptor */
1790 	/* FIXME check lengths: walk to end */
1791 }
1792 
1793 static ssize_t
1794 dev_config (struct file *fd, const char __user *buf, size_t len, loff_t *ptr)
1795 {
1796 	struct dev_data		*dev = fd->private_data;
1797 	ssize_t			value, length = len;
1798 	unsigned		total;
1799 	u32			tag;
1800 	char			*kbuf;
1801 
1802 	spin_lock_irq(&dev->lock);
1803 	if (dev->state > STATE_DEV_OPENED) {
1804 		value = ep0_write(fd, buf, len, ptr);
1805 		spin_unlock_irq(&dev->lock);
1806 		return value;
1807 	}
1808 	spin_unlock_irq(&dev->lock);
1809 
1810 	if ((len < (USB_DT_CONFIG_SIZE + USB_DT_DEVICE_SIZE + 4)) ||
1811 	    (len > PAGE_SIZE * 4))
1812 		return -EINVAL;
1813 
1814 	/* we might need to change message format someday */
1815 	if (copy_from_user (&tag, buf, 4))
1816 		return -EFAULT;
1817 	if (tag != 0)
1818 		return -EINVAL;
1819 	buf += 4;
1820 	length -= 4;
1821 
1822 	kbuf = memdup_user(buf, length);
1823 	if (IS_ERR(kbuf))
1824 		return PTR_ERR(kbuf);
1825 
1826 	spin_lock_irq (&dev->lock);
1827 	value = -EINVAL;
1828 	if (dev->buf) {
1829 		spin_unlock_irq(&dev->lock);
1830 		kfree(kbuf);
1831 		return value;
1832 	}
1833 	dev->buf = kbuf;
1834 
1835 	/* full or low speed config */
1836 	dev->config = (void *) kbuf;
1837 	total = le16_to_cpu(dev->config->wTotalLength);
1838 	if (!is_valid_config(dev->config, total) ||
1839 			total > length - USB_DT_DEVICE_SIZE)
1840 		goto fail;
1841 	kbuf += total;
1842 	length -= total;
1843 
1844 	/* optional high speed config */
1845 	if (kbuf [1] == USB_DT_CONFIG) {
1846 		dev->hs_config = (void *) kbuf;
1847 		total = le16_to_cpu(dev->hs_config->wTotalLength);
1848 		if (!is_valid_config(dev->hs_config, total) ||
1849 				total > length - USB_DT_DEVICE_SIZE)
1850 			goto fail;
1851 		kbuf += total;
1852 		length -= total;
1853 	} else {
1854 		dev->hs_config = NULL;
1855 	}
1856 
1857 	/* could support multiple configs, using another encoding! */
1858 
1859 	/* device descriptor (tweaked for paranoia) */
1860 	if (length != USB_DT_DEVICE_SIZE)
1861 		goto fail;
1862 	dev->dev = (void *)kbuf;
1863 	if (dev->dev->bLength != USB_DT_DEVICE_SIZE
1864 			|| dev->dev->bDescriptorType != USB_DT_DEVICE
1865 			|| dev->dev->bNumConfigurations != 1)
1866 		goto fail;
1867 	dev->dev->bcdUSB = cpu_to_le16 (0x0200);
1868 
1869 	/* triggers gadgetfs_bind(); then we can enumerate. */
1870 	spin_unlock_irq (&dev->lock);
1871 	if (dev->hs_config)
1872 		gadgetfs_driver.max_speed = USB_SPEED_HIGH;
1873 	else
1874 		gadgetfs_driver.max_speed = USB_SPEED_FULL;
1875 
1876 	value = usb_gadget_register_driver(&gadgetfs_driver);
1877 	if (value != 0) {
1878 		spin_lock_irq(&dev->lock);
1879 		goto fail;
1880 	} else {
1881 		/* at this point "good" hardware has for the first time
1882 		 * let the USB the host see us.  alternatively, if users
1883 		 * unplug/replug that will clear all the error state.
1884 		 *
1885 		 * note:  everything running before here was guaranteed
1886 		 * to choke driver model style diagnostics.  from here
1887 		 * on, they can work ... except in cleanup paths that
1888 		 * kick in after the ep0 descriptor is closed.
1889 		 */
1890 		value = len;
1891 		dev->gadget_registered = true;
1892 	}
1893 	return value;
1894 
1895 fail:
1896 	dev->config = NULL;
1897 	dev->hs_config = NULL;
1898 	dev->dev = NULL;
1899 	spin_unlock_irq (&dev->lock);
1900 	pr_debug ("%s: %s fail %zd, %p\n", shortname, __func__, value, dev);
1901 	kfree (dev->buf);
1902 	dev->buf = NULL;
1903 	return value;
1904 }
1905 
1906 static int
1907 gadget_dev_open (struct inode *inode, struct file *fd)
1908 {
1909 	struct dev_data		*dev = inode->i_private;
1910 	int			value = -EBUSY;
1911 
1912 	spin_lock_irq(&dev->lock);
1913 	if (dev->state == STATE_DEV_DISABLED) {
1914 		dev->ev_next = 0;
1915 		dev->state = STATE_DEV_OPENED;
1916 		fd->private_data = dev;
1917 		get_dev (dev);
1918 		value = 0;
1919 	}
1920 	spin_unlock_irq(&dev->lock);
1921 	return value;
1922 }
1923 
1924 static const struct file_operations ep0_operations = {
1925 	.llseek =	no_llseek,
1926 
1927 	.open =		gadget_dev_open,
1928 	.read =		ep0_read,
1929 	.write =	dev_config,
1930 	.fasync =	ep0_fasync,
1931 	.poll =		ep0_poll,
1932 	.unlocked_ioctl = gadget_dev_ioctl,
1933 	.release =	dev_release,
1934 };
1935 
1936 /*----------------------------------------------------------------------*/
1937 
1938 /* FILESYSTEM AND SUPERBLOCK OPERATIONS
1939  *
1940  * Mounting the filesystem creates a controller file, used first for
1941  * device configuration then later for event monitoring.
1942  */
1943 
1944 
1945 /* FIXME PAM etc could set this security policy without mount options
1946  * if epfiles inherited ownership and permissons from ep0 ...
1947  */
1948 
1949 static unsigned default_uid;
1950 static unsigned default_gid;
1951 static unsigned default_perm = S_IRUSR | S_IWUSR;
1952 
1953 module_param (default_uid, uint, 0644);
1954 module_param (default_gid, uint, 0644);
1955 module_param (default_perm, uint, 0644);
1956 
1957 
1958 static struct inode *
1959 gadgetfs_make_inode (struct super_block *sb,
1960 		void *data, const struct file_operations *fops,
1961 		int mode)
1962 {
1963 	struct inode *inode = new_inode (sb);
1964 
1965 	if (inode) {
1966 		inode->i_ino = get_next_ino();
1967 		inode->i_mode = mode;
1968 		inode->i_uid = make_kuid(&init_user_ns, default_uid);
1969 		inode->i_gid = make_kgid(&init_user_ns, default_gid);
1970 		inode->i_atime = inode->i_mtime = inode->i_ctime
1971 				= current_time(inode);
1972 		inode->i_private = data;
1973 		inode->i_fop = fops;
1974 	}
1975 	return inode;
1976 }
1977 
1978 /* creates in fs root directory, so non-renamable and non-linkable.
1979  * so inode and dentry are paired, until device reconfig.
1980  */
1981 static struct dentry *
1982 gadgetfs_create_file (struct super_block *sb, char const *name,
1983 		void *data, const struct file_operations *fops)
1984 {
1985 	struct dentry	*dentry;
1986 	struct inode	*inode;
1987 
1988 	dentry = d_alloc_name(sb->s_root, name);
1989 	if (!dentry)
1990 		return NULL;
1991 
1992 	inode = gadgetfs_make_inode (sb, data, fops,
1993 			S_IFREG | (default_perm & S_IRWXUGO));
1994 	if (!inode) {
1995 		dput(dentry);
1996 		return NULL;
1997 	}
1998 	d_add (dentry, inode);
1999 	return dentry;
2000 }
2001 
2002 static const struct super_operations gadget_fs_operations = {
2003 	.statfs =	simple_statfs,
2004 	.drop_inode =	generic_delete_inode,
2005 };
2006 
2007 static int
2008 gadgetfs_fill_super (struct super_block *sb, struct fs_context *fc)
2009 {
2010 	struct inode	*inode;
2011 	struct dev_data	*dev;
2012 
2013 	if (the_device)
2014 		return -ESRCH;
2015 
2016 	CHIP = usb_get_gadget_udc_name();
2017 	if (!CHIP)
2018 		return -ENODEV;
2019 
2020 	/* superblock */
2021 	sb->s_blocksize = PAGE_SIZE;
2022 	sb->s_blocksize_bits = PAGE_SHIFT;
2023 	sb->s_magic = GADGETFS_MAGIC;
2024 	sb->s_op = &gadget_fs_operations;
2025 	sb->s_time_gran = 1;
2026 
2027 	/* root inode */
2028 	inode = gadgetfs_make_inode (sb,
2029 			NULL, &simple_dir_operations,
2030 			S_IFDIR | S_IRUGO | S_IXUGO);
2031 	if (!inode)
2032 		goto Enomem;
2033 	inode->i_op = &simple_dir_inode_operations;
2034 	if (!(sb->s_root = d_make_root (inode)))
2035 		goto Enomem;
2036 
2037 	/* the ep0 file is named after the controller we expect;
2038 	 * user mode code can use it for sanity checks, like we do.
2039 	 */
2040 	dev = dev_new ();
2041 	if (!dev)
2042 		goto Enomem;
2043 
2044 	dev->sb = sb;
2045 	dev->dentry = gadgetfs_create_file(sb, CHIP, dev, &ep0_operations);
2046 	if (!dev->dentry) {
2047 		put_dev(dev);
2048 		goto Enomem;
2049 	}
2050 
2051 	/* other endpoint files are available after hardware setup,
2052 	 * from binding to a controller.
2053 	 */
2054 	the_device = dev;
2055 	return 0;
2056 
2057 Enomem:
2058 	kfree(CHIP);
2059 	CHIP = NULL;
2060 
2061 	return -ENOMEM;
2062 }
2063 
2064 /* "mount -t gadgetfs path /dev/gadget" ends up here */
2065 static int gadgetfs_get_tree(struct fs_context *fc)
2066 {
2067 	return get_tree_single(fc, gadgetfs_fill_super);
2068 }
2069 
2070 static const struct fs_context_operations gadgetfs_context_ops = {
2071 	.get_tree	= gadgetfs_get_tree,
2072 };
2073 
2074 static int gadgetfs_init_fs_context(struct fs_context *fc)
2075 {
2076 	fc->ops = &gadgetfs_context_ops;
2077 	return 0;
2078 }
2079 
2080 static void
2081 gadgetfs_kill_sb (struct super_block *sb)
2082 {
2083 	kill_litter_super (sb);
2084 	if (the_device) {
2085 		put_dev (the_device);
2086 		the_device = NULL;
2087 	}
2088 	kfree(CHIP);
2089 	CHIP = NULL;
2090 }
2091 
2092 /*----------------------------------------------------------------------*/
2093 
2094 static struct file_system_type gadgetfs_type = {
2095 	.owner		= THIS_MODULE,
2096 	.name		= shortname,
2097 	.init_fs_context = gadgetfs_init_fs_context,
2098 	.kill_sb	= gadgetfs_kill_sb,
2099 };
2100 MODULE_ALIAS_FS("gadgetfs");
2101 
2102 /*----------------------------------------------------------------------*/
2103 
2104 static int __init gadgetfs_init (void)
2105 {
2106 	int status;
2107 
2108 	status = register_filesystem (&gadgetfs_type);
2109 	if (status == 0)
2110 		pr_info ("%s: %s, version " DRIVER_VERSION "\n",
2111 			shortname, driver_desc);
2112 	return status;
2113 }
2114 module_init (gadgetfs_init);
2115 
2116 static void __exit gadgetfs_cleanup (void)
2117 {
2118 	pr_debug ("unregister %s\n", shortname);
2119 	unregister_filesystem (&gadgetfs_type);
2120 }
2121 module_exit (gadgetfs_cleanup);
2122 
2123