1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * inode.c -- user mode filesystem api for usb gadget controllers 4 * 5 * Copyright (C) 2003-2004 David Brownell 6 * Copyright (C) 2003 Agilent Technologies 7 */ 8 9 10 /* #define VERBOSE_DEBUG */ 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/fs.h> 15 #include <linux/fs_context.h> 16 #include <linux/pagemap.h> 17 #include <linux/uts.h> 18 #include <linux/wait.h> 19 #include <linux/compiler.h> 20 #include <linux/uaccess.h> 21 #include <linux/sched.h> 22 #include <linux/slab.h> 23 #include <linux/poll.h> 24 #include <linux/kthread.h> 25 #include <linux/aio.h> 26 #include <linux/uio.h> 27 #include <linux/refcount.h> 28 #include <linux/delay.h> 29 #include <linux/device.h> 30 #include <linux/moduleparam.h> 31 32 #include <linux/usb/gadgetfs.h> 33 #include <linux/usb/gadget.h> 34 35 36 /* 37 * The gadgetfs API maps each endpoint to a file descriptor so that you 38 * can use standard synchronous read/write calls for I/O. There's some 39 * O_NONBLOCK and O_ASYNC/FASYNC style i/o support. Example usermode 40 * drivers show how this works in practice. You can also use AIO to 41 * eliminate I/O gaps between requests, to help when streaming data. 42 * 43 * Key parts that must be USB-specific are protocols defining how the 44 * read/write operations relate to the hardware state machines. There 45 * are two types of files. One type is for the device, implementing ep0. 46 * The other type is for each IN or OUT endpoint. In both cases, the 47 * user mode driver must configure the hardware before using it. 48 * 49 * - First, dev_config() is called when /dev/gadget/$CHIP is configured 50 * (by writing configuration and device descriptors). Afterwards it 51 * may serve as a source of device events, used to handle all control 52 * requests other than basic enumeration. 53 * 54 * - Then, after a SET_CONFIGURATION control request, ep_config() is 55 * called when each /dev/gadget/ep* file is configured (by writing 56 * endpoint descriptors). Afterwards these files are used to write() 57 * IN data or to read() OUT data. To halt the endpoint, a "wrong 58 * direction" request is issued (like reading an IN endpoint). 59 * 60 * Unlike "usbfs" the only ioctl()s are for things that are rare, and maybe 61 * not possible on all hardware. For example, precise fault handling with 62 * respect to data left in endpoint fifos after aborted operations; or 63 * selective clearing of endpoint halts, to implement SET_INTERFACE. 64 */ 65 66 #define DRIVER_DESC "USB Gadget filesystem" 67 #define DRIVER_VERSION "24 Aug 2004" 68 69 static const char driver_desc [] = DRIVER_DESC; 70 static const char shortname [] = "gadgetfs"; 71 72 MODULE_DESCRIPTION (DRIVER_DESC); 73 MODULE_AUTHOR ("David Brownell"); 74 MODULE_LICENSE ("GPL"); 75 76 static int ep_open(struct inode *, struct file *); 77 78 79 /*----------------------------------------------------------------------*/ 80 81 #define GADGETFS_MAGIC 0xaee71ee7 82 83 /* /dev/gadget/$CHIP represents ep0 and the whole device */ 84 enum ep0_state { 85 /* DISABLED is the initial state. */ 86 STATE_DEV_DISABLED = 0, 87 88 /* Only one open() of /dev/gadget/$CHIP; only one file tracks 89 * ep0/device i/o modes and binding to the controller. Driver 90 * must always write descriptors to initialize the device, then 91 * the device becomes UNCONNECTED until enumeration. 92 */ 93 STATE_DEV_OPENED, 94 95 /* From then on, ep0 fd is in either of two basic modes: 96 * - (UN)CONNECTED: read usb_gadgetfs_event(s) from it 97 * - SETUP: read/write will transfer control data and succeed; 98 * or if "wrong direction", performs protocol stall 99 */ 100 STATE_DEV_UNCONNECTED, 101 STATE_DEV_CONNECTED, 102 STATE_DEV_SETUP, 103 104 /* UNBOUND means the driver closed ep0, so the device won't be 105 * accessible again (DEV_DISABLED) until all fds are closed. 106 */ 107 STATE_DEV_UNBOUND, 108 }; 109 110 /* enough for the whole queue: most events invalidate others */ 111 #define N_EVENT 5 112 113 struct dev_data { 114 spinlock_t lock; 115 refcount_t count; 116 int udc_usage; 117 enum ep0_state state; /* P: lock */ 118 struct usb_gadgetfs_event event [N_EVENT]; 119 unsigned ev_next; 120 struct fasync_struct *fasync; 121 u8 current_config; 122 123 /* drivers reading ep0 MUST handle control requests (SETUP) 124 * reported that way; else the host will time out. 125 */ 126 unsigned usermode_setup : 1, 127 setup_in : 1, 128 setup_can_stall : 1, 129 setup_out_ready : 1, 130 setup_out_error : 1, 131 setup_abort : 1, 132 gadget_registered : 1; 133 unsigned setup_wLength; 134 135 /* the rest is basically write-once */ 136 struct usb_config_descriptor *config, *hs_config; 137 struct usb_device_descriptor *dev; 138 struct usb_request *req; 139 struct usb_gadget *gadget; 140 struct list_head epfiles; 141 void *buf; 142 wait_queue_head_t wait; 143 struct super_block *sb; 144 struct dentry *dentry; 145 146 /* except this scratch i/o buffer for ep0 */ 147 u8 rbuf [256]; 148 }; 149 150 static inline void get_dev (struct dev_data *data) 151 { 152 refcount_inc (&data->count); 153 } 154 155 static void put_dev (struct dev_data *data) 156 { 157 if (likely (!refcount_dec_and_test (&data->count))) 158 return; 159 /* needs no more cleanup */ 160 BUG_ON (waitqueue_active (&data->wait)); 161 kfree (data); 162 } 163 164 static struct dev_data *dev_new (void) 165 { 166 struct dev_data *dev; 167 168 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 169 if (!dev) 170 return NULL; 171 dev->state = STATE_DEV_DISABLED; 172 refcount_set (&dev->count, 1); 173 spin_lock_init (&dev->lock); 174 INIT_LIST_HEAD (&dev->epfiles); 175 init_waitqueue_head (&dev->wait); 176 return dev; 177 } 178 179 /*----------------------------------------------------------------------*/ 180 181 /* other /dev/gadget/$ENDPOINT files represent endpoints */ 182 enum ep_state { 183 STATE_EP_DISABLED = 0, 184 STATE_EP_READY, 185 STATE_EP_ENABLED, 186 STATE_EP_UNBOUND, 187 }; 188 189 struct ep_data { 190 struct mutex lock; 191 enum ep_state state; 192 refcount_t count; 193 struct dev_data *dev; 194 /* must hold dev->lock before accessing ep or req */ 195 struct usb_ep *ep; 196 struct usb_request *req; 197 ssize_t status; 198 char name [16]; 199 struct usb_endpoint_descriptor desc, hs_desc; 200 struct list_head epfiles; 201 wait_queue_head_t wait; 202 struct dentry *dentry; 203 }; 204 205 static inline void get_ep (struct ep_data *data) 206 { 207 refcount_inc (&data->count); 208 } 209 210 static void put_ep (struct ep_data *data) 211 { 212 if (likely (!refcount_dec_and_test (&data->count))) 213 return; 214 put_dev (data->dev); 215 /* needs no more cleanup */ 216 BUG_ON (!list_empty (&data->epfiles)); 217 BUG_ON (waitqueue_active (&data->wait)); 218 kfree (data); 219 } 220 221 /*----------------------------------------------------------------------*/ 222 223 /* most "how to use the hardware" policy choices are in userspace: 224 * mapping endpoint roles (which the driver needs) to the capabilities 225 * which the usb controller has. most of those capabilities are exposed 226 * implicitly, starting with the driver name and then endpoint names. 227 */ 228 229 static const char *CHIP; 230 231 /*----------------------------------------------------------------------*/ 232 233 /* NOTE: don't use dev_printk calls before binding to the gadget 234 * at the end of ep0 configuration, or after unbind. 235 */ 236 237 /* too wordy: dev_printk(level , &(d)->gadget->dev , fmt , ## args) */ 238 #define xprintk(d,level,fmt,args...) \ 239 printk(level "%s: " fmt , shortname , ## args) 240 241 #ifdef DEBUG 242 #define DBG(dev,fmt,args...) \ 243 xprintk(dev , KERN_DEBUG , fmt , ## args) 244 #else 245 #define DBG(dev,fmt,args...) \ 246 do { } while (0) 247 #endif /* DEBUG */ 248 249 #ifdef VERBOSE_DEBUG 250 #define VDEBUG DBG 251 #else 252 #define VDEBUG(dev,fmt,args...) \ 253 do { } while (0) 254 #endif /* DEBUG */ 255 256 #define ERROR(dev,fmt,args...) \ 257 xprintk(dev , KERN_ERR , fmt , ## args) 258 #define INFO(dev,fmt,args...) \ 259 xprintk(dev , KERN_INFO , fmt , ## args) 260 261 262 /*----------------------------------------------------------------------*/ 263 264 /* SYNCHRONOUS ENDPOINT OPERATIONS (bulk/intr/iso) 265 * 266 * After opening, configure non-control endpoints. Then use normal 267 * stream read() and write() requests; and maybe ioctl() to get more 268 * precise FIFO status when recovering from cancellation. 269 */ 270 271 static void epio_complete (struct usb_ep *ep, struct usb_request *req) 272 { 273 struct ep_data *epdata = ep->driver_data; 274 275 if (!req->context) 276 return; 277 if (req->status) 278 epdata->status = req->status; 279 else 280 epdata->status = req->actual; 281 complete ((struct completion *)req->context); 282 } 283 284 /* tasklock endpoint, returning when it's connected. 285 * still need dev->lock to use epdata->ep. 286 */ 287 static int 288 get_ready_ep (unsigned f_flags, struct ep_data *epdata, bool is_write) 289 { 290 int val; 291 292 if (f_flags & O_NONBLOCK) { 293 if (!mutex_trylock(&epdata->lock)) 294 goto nonblock; 295 if (epdata->state != STATE_EP_ENABLED && 296 (!is_write || epdata->state != STATE_EP_READY)) { 297 mutex_unlock(&epdata->lock); 298 nonblock: 299 val = -EAGAIN; 300 } else 301 val = 0; 302 return val; 303 } 304 305 val = mutex_lock_interruptible(&epdata->lock); 306 if (val < 0) 307 return val; 308 309 switch (epdata->state) { 310 case STATE_EP_ENABLED: 311 return 0; 312 case STATE_EP_READY: /* not configured yet */ 313 if (is_write) 314 return 0; 315 fallthrough; 316 case STATE_EP_UNBOUND: /* clean disconnect */ 317 break; 318 // case STATE_EP_DISABLED: /* "can't happen" */ 319 default: /* error! */ 320 pr_debug ("%s: ep %p not available, state %d\n", 321 shortname, epdata, epdata->state); 322 } 323 mutex_unlock(&epdata->lock); 324 return -ENODEV; 325 } 326 327 static ssize_t 328 ep_io (struct ep_data *epdata, void *buf, unsigned len) 329 { 330 DECLARE_COMPLETION_ONSTACK (done); 331 int value; 332 333 spin_lock_irq (&epdata->dev->lock); 334 if (likely (epdata->ep != NULL)) { 335 struct usb_request *req = epdata->req; 336 337 req->context = &done; 338 req->complete = epio_complete; 339 req->buf = buf; 340 req->length = len; 341 value = usb_ep_queue (epdata->ep, req, GFP_ATOMIC); 342 } else 343 value = -ENODEV; 344 spin_unlock_irq (&epdata->dev->lock); 345 346 if (likely (value == 0)) { 347 value = wait_for_completion_interruptible(&done); 348 if (value != 0) { 349 spin_lock_irq (&epdata->dev->lock); 350 if (likely (epdata->ep != NULL)) { 351 DBG (epdata->dev, "%s i/o interrupted\n", 352 epdata->name); 353 usb_ep_dequeue (epdata->ep, epdata->req); 354 spin_unlock_irq (&epdata->dev->lock); 355 356 wait_for_completion(&done); 357 if (epdata->status == -ECONNRESET) 358 epdata->status = -EINTR; 359 } else { 360 spin_unlock_irq (&epdata->dev->lock); 361 362 DBG (epdata->dev, "endpoint gone\n"); 363 epdata->status = -ENODEV; 364 } 365 } 366 return epdata->status; 367 } 368 return value; 369 } 370 371 static int 372 ep_release (struct inode *inode, struct file *fd) 373 { 374 struct ep_data *data = fd->private_data; 375 int value; 376 377 value = mutex_lock_interruptible(&data->lock); 378 if (value < 0) 379 return value; 380 381 /* clean up if this can be reopened */ 382 if (data->state != STATE_EP_UNBOUND) { 383 data->state = STATE_EP_DISABLED; 384 data->desc.bDescriptorType = 0; 385 data->hs_desc.bDescriptorType = 0; 386 usb_ep_disable(data->ep); 387 } 388 mutex_unlock(&data->lock); 389 put_ep (data); 390 return 0; 391 } 392 393 static long ep_ioctl(struct file *fd, unsigned code, unsigned long value) 394 { 395 struct ep_data *data = fd->private_data; 396 int status; 397 398 if ((status = get_ready_ep (fd->f_flags, data, false)) < 0) 399 return status; 400 401 spin_lock_irq (&data->dev->lock); 402 if (likely (data->ep != NULL)) { 403 switch (code) { 404 case GADGETFS_FIFO_STATUS: 405 status = usb_ep_fifo_status (data->ep); 406 break; 407 case GADGETFS_FIFO_FLUSH: 408 usb_ep_fifo_flush (data->ep); 409 break; 410 case GADGETFS_CLEAR_HALT: 411 status = usb_ep_clear_halt (data->ep); 412 break; 413 default: 414 status = -ENOTTY; 415 } 416 } else 417 status = -ENODEV; 418 spin_unlock_irq (&data->dev->lock); 419 mutex_unlock(&data->lock); 420 return status; 421 } 422 423 /*----------------------------------------------------------------------*/ 424 425 /* ASYNCHRONOUS ENDPOINT I/O OPERATIONS (bulk/intr/iso) */ 426 427 struct kiocb_priv { 428 struct usb_request *req; 429 struct ep_data *epdata; 430 struct kiocb *iocb; 431 struct mm_struct *mm; 432 struct work_struct work; 433 void *buf; 434 struct iov_iter to; 435 const void *to_free; 436 unsigned actual; 437 }; 438 439 static int ep_aio_cancel(struct kiocb *iocb) 440 { 441 struct kiocb_priv *priv = iocb->private; 442 struct ep_data *epdata; 443 int value; 444 445 local_irq_disable(); 446 epdata = priv->epdata; 447 // spin_lock(&epdata->dev->lock); 448 if (likely(epdata && epdata->ep && priv->req)) 449 value = usb_ep_dequeue (epdata->ep, priv->req); 450 else 451 value = -EINVAL; 452 // spin_unlock(&epdata->dev->lock); 453 local_irq_enable(); 454 455 return value; 456 } 457 458 static void ep_user_copy_worker(struct work_struct *work) 459 { 460 struct kiocb_priv *priv = container_of(work, struct kiocb_priv, work); 461 struct mm_struct *mm = priv->mm; 462 struct kiocb *iocb = priv->iocb; 463 size_t ret; 464 465 kthread_use_mm(mm); 466 ret = copy_to_iter(priv->buf, priv->actual, &priv->to); 467 kthread_unuse_mm(mm); 468 if (!ret) 469 ret = -EFAULT; 470 471 /* completing the iocb can drop the ctx and mm, don't touch mm after */ 472 iocb->ki_complete(iocb, ret); 473 474 kfree(priv->buf); 475 kfree(priv->to_free); 476 kfree(priv); 477 } 478 479 static void ep_aio_complete(struct usb_ep *ep, struct usb_request *req) 480 { 481 struct kiocb *iocb = req->context; 482 struct kiocb_priv *priv = iocb->private; 483 struct ep_data *epdata = priv->epdata; 484 485 /* lock against disconnect (and ideally, cancel) */ 486 spin_lock(&epdata->dev->lock); 487 priv->req = NULL; 488 priv->epdata = NULL; 489 490 /* if this was a write or a read returning no data then we 491 * don't need to copy anything to userspace, so we can 492 * complete the aio request immediately. 493 */ 494 if (priv->to_free == NULL || unlikely(req->actual == 0)) { 495 kfree(req->buf); 496 kfree(priv->to_free); 497 kfree(priv); 498 iocb->private = NULL; 499 iocb->ki_complete(iocb, 500 req->actual ? req->actual : (long)req->status); 501 } else { 502 /* ep_copy_to_user() won't report both; we hide some faults */ 503 if (unlikely(0 != req->status)) 504 DBG(epdata->dev, "%s fault %d len %d\n", 505 ep->name, req->status, req->actual); 506 507 priv->buf = req->buf; 508 priv->actual = req->actual; 509 INIT_WORK(&priv->work, ep_user_copy_worker); 510 schedule_work(&priv->work); 511 } 512 513 usb_ep_free_request(ep, req); 514 spin_unlock(&epdata->dev->lock); 515 put_ep(epdata); 516 } 517 518 static ssize_t ep_aio(struct kiocb *iocb, 519 struct kiocb_priv *priv, 520 struct ep_data *epdata, 521 char *buf, 522 size_t len) 523 { 524 struct usb_request *req; 525 ssize_t value; 526 527 iocb->private = priv; 528 priv->iocb = iocb; 529 530 kiocb_set_cancel_fn(iocb, ep_aio_cancel); 531 get_ep(epdata); 532 priv->epdata = epdata; 533 priv->actual = 0; 534 priv->mm = current->mm; /* mm teardown waits for iocbs in exit_aio() */ 535 536 /* each kiocb is coupled to one usb_request, but we can't 537 * allocate or submit those if the host disconnected. 538 */ 539 spin_lock_irq(&epdata->dev->lock); 540 value = -ENODEV; 541 if (unlikely(epdata->ep == NULL)) 542 goto fail; 543 544 req = usb_ep_alloc_request(epdata->ep, GFP_ATOMIC); 545 value = -ENOMEM; 546 if (unlikely(!req)) 547 goto fail; 548 549 priv->req = req; 550 req->buf = buf; 551 req->length = len; 552 req->complete = ep_aio_complete; 553 req->context = iocb; 554 value = usb_ep_queue(epdata->ep, req, GFP_ATOMIC); 555 if (unlikely(0 != value)) { 556 usb_ep_free_request(epdata->ep, req); 557 goto fail; 558 } 559 spin_unlock_irq(&epdata->dev->lock); 560 return -EIOCBQUEUED; 561 562 fail: 563 spin_unlock_irq(&epdata->dev->lock); 564 kfree(priv->to_free); 565 kfree(priv); 566 put_ep(epdata); 567 return value; 568 } 569 570 static ssize_t 571 ep_read_iter(struct kiocb *iocb, struct iov_iter *to) 572 { 573 struct file *file = iocb->ki_filp; 574 struct ep_data *epdata = file->private_data; 575 size_t len = iov_iter_count(to); 576 ssize_t value; 577 char *buf; 578 579 if ((value = get_ready_ep(file->f_flags, epdata, false)) < 0) 580 return value; 581 582 /* halt any endpoint by doing a "wrong direction" i/o call */ 583 if (usb_endpoint_dir_in(&epdata->desc)) { 584 if (usb_endpoint_xfer_isoc(&epdata->desc) || 585 !is_sync_kiocb(iocb)) { 586 mutex_unlock(&epdata->lock); 587 return -EINVAL; 588 } 589 DBG (epdata->dev, "%s halt\n", epdata->name); 590 spin_lock_irq(&epdata->dev->lock); 591 if (likely(epdata->ep != NULL)) 592 usb_ep_set_halt(epdata->ep); 593 spin_unlock_irq(&epdata->dev->lock); 594 mutex_unlock(&epdata->lock); 595 return -EBADMSG; 596 } 597 598 buf = kmalloc(len, GFP_KERNEL); 599 if (unlikely(!buf)) { 600 mutex_unlock(&epdata->lock); 601 return -ENOMEM; 602 } 603 if (is_sync_kiocb(iocb)) { 604 value = ep_io(epdata, buf, len); 605 if (value >= 0 && (copy_to_iter(buf, value, to) != value)) 606 value = -EFAULT; 607 } else { 608 struct kiocb_priv *priv = kzalloc(sizeof *priv, GFP_KERNEL); 609 value = -ENOMEM; 610 if (!priv) 611 goto fail; 612 priv->to_free = dup_iter(&priv->to, to, GFP_KERNEL); 613 if (!priv->to_free) { 614 kfree(priv); 615 goto fail; 616 } 617 value = ep_aio(iocb, priv, epdata, buf, len); 618 if (value == -EIOCBQUEUED) 619 buf = NULL; 620 } 621 fail: 622 kfree(buf); 623 mutex_unlock(&epdata->lock); 624 return value; 625 } 626 627 static ssize_t ep_config(struct ep_data *, const char *, size_t); 628 629 static ssize_t 630 ep_write_iter(struct kiocb *iocb, struct iov_iter *from) 631 { 632 struct file *file = iocb->ki_filp; 633 struct ep_data *epdata = file->private_data; 634 size_t len = iov_iter_count(from); 635 bool configured; 636 ssize_t value; 637 char *buf; 638 639 if ((value = get_ready_ep(file->f_flags, epdata, true)) < 0) 640 return value; 641 642 configured = epdata->state == STATE_EP_ENABLED; 643 644 /* halt any endpoint by doing a "wrong direction" i/o call */ 645 if (configured && !usb_endpoint_dir_in(&epdata->desc)) { 646 if (usb_endpoint_xfer_isoc(&epdata->desc) || 647 !is_sync_kiocb(iocb)) { 648 mutex_unlock(&epdata->lock); 649 return -EINVAL; 650 } 651 DBG (epdata->dev, "%s halt\n", epdata->name); 652 spin_lock_irq(&epdata->dev->lock); 653 if (likely(epdata->ep != NULL)) 654 usb_ep_set_halt(epdata->ep); 655 spin_unlock_irq(&epdata->dev->lock); 656 mutex_unlock(&epdata->lock); 657 return -EBADMSG; 658 } 659 660 buf = kmalloc(len, GFP_KERNEL); 661 if (unlikely(!buf)) { 662 mutex_unlock(&epdata->lock); 663 return -ENOMEM; 664 } 665 666 if (unlikely(!copy_from_iter_full(buf, len, from))) { 667 value = -EFAULT; 668 goto out; 669 } 670 671 if (unlikely(!configured)) { 672 value = ep_config(epdata, buf, len); 673 } else if (is_sync_kiocb(iocb)) { 674 value = ep_io(epdata, buf, len); 675 } else { 676 struct kiocb_priv *priv = kzalloc(sizeof *priv, GFP_KERNEL); 677 value = -ENOMEM; 678 if (priv) { 679 value = ep_aio(iocb, priv, epdata, buf, len); 680 if (value == -EIOCBQUEUED) 681 buf = NULL; 682 } 683 } 684 out: 685 kfree(buf); 686 mutex_unlock(&epdata->lock); 687 return value; 688 } 689 690 /*----------------------------------------------------------------------*/ 691 692 /* used after endpoint configuration */ 693 static const struct file_operations ep_io_operations = { 694 .owner = THIS_MODULE, 695 696 .open = ep_open, 697 .release = ep_release, 698 .llseek = no_llseek, 699 .unlocked_ioctl = ep_ioctl, 700 .read_iter = ep_read_iter, 701 .write_iter = ep_write_iter, 702 }; 703 704 /* ENDPOINT INITIALIZATION 705 * 706 * fd = open ("/dev/gadget/$ENDPOINT", O_RDWR) 707 * status = write (fd, descriptors, sizeof descriptors) 708 * 709 * That write establishes the endpoint configuration, configuring 710 * the controller to process bulk, interrupt, or isochronous transfers 711 * at the right maxpacket size, and so on. 712 * 713 * The descriptors are message type 1, identified by a host order u32 714 * at the beginning of what's written. Descriptor order is: full/low 715 * speed descriptor, then optional high speed descriptor. 716 */ 717 static ssize_t 718 ep_config (struct ep_data *data, const char *buf, size_t len) 719 { 720 struct usb_ep *ep; 721 u32 tag; 722 int value, length = len; 723 724 if (data->state != STATE_EP_READY) { 725 value = -EL2HLT; 726 goto fail; 727 } 728 729 value = len; 730 if (len < USB_DT_ENDPOINT_SIZE + 4) 731 goto fail0; 732 733 /* we might need to change message format someday */ 734 memcpy(&tag, buf, 4); 735 if (tag != 1) { 736 DBG(data->dev, "config %s, bad tag %d\n", data->name, tag); 737 goto fail0; 738 } 739 buf += 4; 740 len -= 4; 741 742 /* NOTE: audio endpoint extensions not accepted here; 743 * just don't include the extra bytes. 744 */ 745 746 /* full/low speed descriptor, then high speed */ 747 memcpy(&data->desc, buf, USB_DT_ENDPOINT_SIZE); 748 if (data->desc.bLength != USB_DT_ENDPOINT_SIZE 749 || data->desc.bDescriptorType != USB_DT_ENDPOINT) 750 goto fail0; 751 if (len != USB_DT_ENDPOINT_SIZE) { 752 if (len != 2 * USB_DT_ENDPOINT_SIZE) 753 goto fail0; 754 memcpy(&data->hs_desc, buf + USB_DT_ENDPOINT_SIZE, 755 USB_DT_ENDPOINT_SIZE); 756 if (data->hs_desc.bLength != USB_DT_ENDPOINT_SIZE 757 || data->hs_desc.bDescriptorType 758 != USB_DT_ENDPOINT) { 759 DBG(data->dev, "config %s, bad hs length or type\n", 760 data->name); 761 goto fail0; 762 } 763 } 764 765 spin_lock_irq (&data->dev->lock); 766 if (data->dev->state == STATE_DEV_UNBOUND) { 767 value = -ENOENT; 768 goto gone; 769 } else { 770 ep = data->ep; 771 if (ep == NULL) { 772 value = -ENODEV; 773 goto gone; 774 } 775 } 776 switch (data->dev->gadget->speed) { 777 case USB_SPEED_LOW: 778 case USB_SPEED_FULL: 779 ep->desc = &data->desc; 780 break; 781 case USB_SPEED_HIGH: 782 /* fails if caller didn't provide that descriptor... */ 783 ep->desc = &data->hs_desc; 784 break; 785 default: 786 DBG(data->dev, "unconnected, %s init abandoned\n", 787 data->name); 788 value = -EINVAL; 789 goto gone; 790 } 791 value = usb_ep_enable(ep); 792 if (value == 0) { 793 data->state = STATE_EP_ENABLED; 794 value = length; 795 } 796 gone: 797 spin_unlock_irq (&data->dev->lock); 798 if (value < 0) { 799 fail: 800 data->desc.bDescriptorType = 0; 801 data->hs_desc.bDescriptorType = 0; 802 } 803 return value; 804 fail0: 805 value = -EINVAL; 806 goto fail; 807 } 808 809 static int 810 ep_open (struct inode *inode, struct file *fd) 811 { 812 struct ep_data *data = inode->i_private; 813 int value = -EBUSY; 814 815 if (mutex_lock_interruptible(&data->lock) != 0) 816 return -EINTR; 817 spin_lock_irq (&data->dev->lock); 818 if (data->dev->state == STATE_DEV_UNBOUND) 819 value = -ENOENT; 820 else if (data->state == STATE_EP_DISABLED) { 821 value = 0; 822 data->state = STATE_EP_READY; 823 get_ep (data); 824 fd->private_data = data; 825 VDEBUG (data->dev, "%s ready\n", data->name); 826 } else 827 DBG (data->dev, "%s state %d\n", 828 data->name, data->state); 829 spin_unlock_irq (&data->dev->lock); 830 mutex_unlock(&data->lock); 831 return value; 832 } 833 834 /*----------------------------------------------------------------------*/ 835 836 /* EP0 IMPLEMENTATION can be partly in userspace. 837 * 838 * Drivers that use this facility receive various events, including 839 * control requests the kernel doesn't handle. Drivers that don't 840 * use this facility may be too simple-minded for real applications. 841 */ 842 843 static inline void ep0_readable (struct dev_data *dev) 844 { 845 wake_up (&dev->wait); 846 kill_fasync (&dev->fasync, SIGIO, POLL_IN); 847 } 848 849 static void clean_req (struct usb_ep *ep, struct usb_request *req) 850 { 851 struct dev_data *dev = ep->driver_data; 852 853 if (req->buf != dev->rbuf) { 854 kfree(req->buf); 855 req->buf = dev->rbuf; 856 } 857 req->complete = epio_complete; 858 dev->setup_out_ready = 0; 859 } 860 861 static void ep0_complete (struct usb_ep *ep, struct usb_request *req) 862 { 863 struct dev_data *dev = ep->driver_data; 864 unsigned long flags; 865 int free = 1; 866 867 /* for control OUT, data must still get to userspace */ 868 spin_lock_irqsave(&dev->lock, flags); 869 if (!dev->setup_in) { 870 dev->setup_out_error = (req->status != 0); 871 if (!dev->setup_out_error) 872 free = 0; 873 dev->setup_out_ready = 1; 874 ep0_readable (dev); 875 } 876 877 /* clean up as appropriate */ 878 if (free && req->buf != &dev->rbuf) 879 clean_req (ep, req); 880 req->complete = epio_complete; 881 spin_unlock_irqrestore(&dev->lock, flags); 882 } 883 884 static int setup_req (struct usb_ep *ep, struct usb_request *req, u16 len) 885 { 886 struct dev_data *dev = ep->driver_data; 887 888 if (dev->setup_out_ready) { 889 DBG (dev, "ep0 request busy!\n"); 890 return -EBUSY; 891 } 892 if (len > sizeof (dev->rbuf)) 893 req->buf = kmalloc(len, GFP_ATOMIC); 894 if (req->buf == NULL) { 895 req->buf = dev->rbuf; 896 return -ENOMEM; 897 } 898 req->complete = ep0_complete; 899 req->length = len; 900 req->zero = 0; 901 return 0; 902 } 903 904 static ssize_t 905 ep0_read (struct file *fd, char __user *buf, size_t len, loff_t *ptr) 906 { 907 struct dev_data *dev = fd->private_data; 908 ssize_t retval; 909 enum ep0_state state; 910 911 spin_lock_irq (&dev->lock); 912 if (dev->state <= STATE_DEV_OPENED) { 913 retval = -EINVAL; 914 goto done; 915 } 916 917 /* report fd mode change before acting on it */ 918 if (dev->setup_abort) { 919 dev->setup_abort = 0; 920 retval = -EIDRM; 921 goto done; 922 } 923 924 /* control DATA stage */ 925 if ((state = dev->state) == STATE_DEV_SETUP) { 926 927 if (dev->setup_in) { /* stall IN */ 928 VDEBUG(dev, "ep0in stall\n"); 929 (void) usb_ep_set_halt (dev->gadget->ep0); 930 retval = -EL2HLT; 931 dev->state = STATE_DEV_CONNECTED; 932 933 } else if (len == 0) { /* ack SET_CONFIGURATION etc */ 934 struct usb_ep *ep = dev->gadget->ep0; 935 struct usb_request *req = dev->req; 936 937 if ((retval = setup_req (ep, req, 0)) == 0) { 938 ++dev->udc_usage; 939 spin_unlock_irq (&dev->lock); 940 retval = usb_ep_queue (ep, req, GFP_KERNEL); 941 spin_lock_irq (&dev->lock); 942 --dev->udc_usage; 943 } 944 dev->state = STATE_DEV_CONNECTED; 945 946 /* assume that was SET_CONFIGURATION */ 947 if (dev->current_config) { 948 unsigned power; 949 950 if (gadget_is_dualspeed(dev->gadget) 951 && (dev->gadget->speed 952 == USB_SPEED_HIGH)) 953 power = dev->hs_config->bMaxPower; 954 else 955 power = dev->config->bMaxPower; 956 usb_gadget_vbus_draw(dev->gadget, 2 * power); 957 } 958 959 } else { /* collect OUT data */ 960 if ((fd->f_flags & O_NONBLOCK) != 0 961 && !dev->setup_out_ready) { 962 retval = -EAGAIN; 963 goto done; 964 } 965 spin_unlock_irq (&dev->lock); 966 retval = wait_event_interruptible (dev->wait, 967 dev->setup_out_ready != 0); 968 969 /* FIXME state could change from under us */ 970 spin_lock_irq (&dev->lock); 971 if (retval) 972 goto done; 973 974 if (dev->state != STATE_DEV_SETUP) { 975 retval = -ECANCELED; 976 goto done; 977 } 978 dev->state = STATE_DEV_CONNECTED; 979 980 if (dev->setup_out_error) 981 retval = -EIO; 982 else { 983 len = min (len, (size_t)dev->req->actual); 984 ++dev->udc_usage; 985 spin_unlock_irq(&dev->lock); 986 if (copy_to_user (buf, dev->req->buf, len)) 987 retval = -EFAULT; 988 else 989 retval = len; 990 spin_lock_irq(&dev->lock); 991 --dev->udc_usage; 992 clean_req (dev->gadget->ep0, dev->req); 993 /* NOTE userspace can't yet choose to stall */ 994 } 995 } 996 goto done; 997 } 998 999 /* else normal: return event data */ 1000 if (len < sizeof dev->event [0]) { 1001 retval = -EINVAL; 1002 goto done; 1003 } 1004 len -= len % sizeof (struct usb_gadgetfs_event); 1005 dev->usermode_setup = 1; 1006 1007 scan: 1008 /* return queued events right away */ 1009 if (dev->ev_next != 0) { 1010 unsigned i, n; 1011 1012 n = len / sizeof (struct usb_gadgetfs_event); 1013 if (dev->ev_next < n) 1014 n = dev->ev_next; 1015 1016 /* ep0 i/o has special semantics during STATE_DEV_SETUP */ 1017 for (i = 0; i < n; i++) { 1018 if (dev->event [i].type == GADGETFS_SETUP) { 1019 dev->state = STATE_DEV_SETUP; 1020 n = i + 1; 1021 break; 1022 } 1023 } 1024 spin_unlock_irq (&dev->lock); 1025 len = n * sizeof (struct usb_gadgetfs_event); 1026 if (copy_to_user (buf, &dev->event, len)) 1027 retval = -EFAULT; 1028 else 1029 retval = len; 1030 if (len > 0) { 1031 /* NOTE this doesn't guard against broken drivers; 1032 * concurrent ep0 readers may lose events. 1033 */ 1034 spin_lock_irq (&dev->lock); 1035 if (dev->ev_next > n) { 1036 memmove(&dev->event[0], &dev->event[n], 1037 sizeof (struct usb_gadgetfs_event) 1038 * (dev->ev_next - n)); 1039 } 1040 dev->ev_next -= n; 1041 spin_unlock_irq (&dev->lock); 1042 } 1043 return retval; 1044 } 1045 if (fd->f_flags & O_NONBLOCK) { 1046 retval = -EAGAIN; 1047 goto done; 1048 } 1049 1050 switch (state) { 1051 default: 1052 DBG (dev, "fail %s, state %d\n", __func__, state); 1053 retval = -ESRCH; 1054 break; 1055 case STATE_DEV_UNCONNECTED: 1056 case STATE_DEV_CONNECTED: 1057 spin_unlock_irq (&dev->lock); 1058 DBG (dev, "%s wait\n", __func__); 1059 1060 /* wait for events */ 1061 retval = wait_event_interruptible (dev->wait, 1062 dev->ev_next != 0); 1063 if (retval < 0) 1064 return retval; 1065 spin_lock_irq (&dev->lock); 1066 goto scan; 1067 } 1068 1069 done: 1070 spin_unlock_irq (&dev->lock); 1071 return retval; 1072 } 1073 1074 static struct usb_gadgetfs_event * 1075 next_event (struct dev_data *dev, enum usb_gadgetfs_event_type type) 1076 { 1077 struct usb_gadgetfs_event *event; 1078 unsigned i; 1079 1080 switch (type) { 1081 /* these events purge the queue */ 1082 case GADGETFS_DISCONNECT: 1083 if (dev->state == STATE_DEV_SETUP) 1084 dev->setup_abort = 1; 1085 fallthrough; 1086 case GADGETFS_CONNECT: 1087 dev->ev_next = 0; 1088 break; 1089 case GADGETFS_SETUP: /* previous request timed out */ 1090 case GADGETFS_SUSPEND: /* same effect */ 1091 /* these events can't be repeated */ 1092 for (i = 0; i != dev->ev_next; i++) { 1093 if (dev->event [i].type != type) 1094 continue; 1095 DBG(dev, "discard old event[%d] %d\n", i, type); 1096 dev->ev_next--; 1097 if (i == dev->ev_next) 1098 break; 1099 /* indices start at zero, for simplicity */ 1100 memmove (&dev->event [i], &dev->event [i + 1], 1101 sizeof (struct usb_gadgetfs_event) 1102 * (dev->ev_next - i)); 1103 } 1104 break; 1105 default: 1106 BUG (); 1107 } 1108 VDEBUG(dev, "event[%d] = %d\n", dev->ev_next, type); 1109 event = &dev->event [dev->ev_next++]; 1110 BUG_ON (dev->ev_next > N_EVENT); 1111 memset (event, 0, sizeof *event); 1112 event->type = type; 1113 return event; 1114 } 1115 1116 static ssize_t 1117 ep0_write (struct file *fd, const char __user *buf, size_t len, loff_t *ptr) 1118 { 1119 struct dev_data *dev = fd->private_data; 1120 ssize_t retval = -ESRCH; 1121 1122 /* report fd mode change before acting on it */ 1123 if (dev->setup_abort) { 1124 dev->setup_abort = 0; 1125 retval = -EIDRM; 1126 1127 /* data and/or status stage for control request */ 1128 } else if (dev->state == STATE_DEV_SETUP) { 1129 1130 len = min_t(size_t, len, dev->setup_wLength); 1131 if (dev->setup_in) { 1132 retval = setup_req (dev->gadget->ep0, dev->req, len); 1133 if (retval == 0) { 1134 dev->state = STATE_DEV_CONNECTED; 1135 ++dev->udc_usage; 1136 spin_unlock_irq (&dev->lock); 1137 if (copy_from_user (dev->req->buf, buf, len)) 1138 retval = -EFAULT; 1139 else { 1140 if (len < dev->setup_wLength) 1141 dev->req->zero = 1; 1142 retval = usb_ep_queue ( 1143 dev->gadget->ep0, dev->req, 1144 GFP_KERNEL); 1145 } 1146 spin_lock_irq(&dev->lock); 1147 --dev->udc_usage; 1148 if (retval < 0) { 1149 clean_req (dev->gadget->ep0, dev->req); 1150 } else 1151 retval = len; 1152 1153 return retval; 1154 } 1155 1156 /* can stall some OUT transfers */ 1157 } else if (dev->setup_can_stall) { 1158 VDEBUG(dev, "ep0out stall\n"); 1159 (void) usb_ep_set_halt (dev->gadget->ep0); 1160 retval = -EL2HLT; 1161 dev->state = STATE_DEV_CONNECTED; 1162 } else { 1163 DBG(dev, "bogus ep0out stall!\n"); 1164 } 1165 } else 1166 DBG (dev, "fail %s, state %d\n", __func__, dev->state); 1167 1168 return retval; 1169 } 1170 1171 static int 1172 ep0_fasync (int f, struct file *fd, int on) 1173 { 1174 struct dev_data *dev = fd->private_data; 1175 // caller must F_SETOWN before signal delivery happens 1176 VDEBUG (dev, "%s %s\n", __func__, on ? "on" : "off"); 1177 return fasync_helper (f, fd, on, &dev->fasync); 1178 } 1179 1180 static struct usb_gadget_driver gadgetfs_driver; 1181 1182 static int 1183 dev_release (struct inode *inode, struct file *fd) 1184 { 1185 struct dev_data *dev = fd->private_data; 1186 1187 /* closing ep0 === shutdown all */ 1188 1189 if (dev->gadget_registered) { 1190 usb_gadget_unregister_driver (&gadgetfs_driver); 1191 dev->gadget_registered = false; 1192 } 1193 1194 /* at this point "good" hardware has disconnected the 1195 * device from USB; the host won't see it any more. 1196 * alternatively, all host requests will time out. 1197 */ 1198 1199 kfree (dev->buf); 1200 dev->buf = NULL; 1201 1202 /* other endpoints were all decoupled from this device */ 1203 spin_lock_irq(&dev->lock); 1204 dev->state = STATE_DEV_DISABLED; 1205 spin_unlock_irq(&dev->lock); 1206 1207 put_dev (dev); 1208 return 0; 1209 } 1210 1211 static __poll_t 1212 ep0_poll (struct file *fd, poll_table *wait) 1213 { 1214 struct dev_data *dev = fd->private_data; 1215 __poll_t mask = 0; 1216 1217 if (dev->state <= STATE_DEV_OPENED) 1218 return DEFAULT_POLLMASK; 1219 1220 poll_wait(fd, &dev->wait, wait); 1221 1222 spin_lock_irq(&dev->lock); 1223 1224 /* report fd mode change before acting on it */ 1225 if (dev->setup_abort) { 1226 dev->setup_abort = 0; 1227 mask = EPOLLHUP; 1228 goto out; 1229 } 1230 1231 if (dev->state == STATE_DEV_SETUP) { 1232 if (dev->setup_in || dev->setup_can_stall) 1233 mask = EPOLLOUT; 1234 } else { 1235 if (dev->ev_next != 0) 1236 mask = EPOLLIN; 1237 } 1238 out: 1239 spin_unlock_irq(&dev->lock); 1240 return mask; 1241 } 1242 1243 static long dev_ioctl (struct file *fd, unsigned code, unsigned long value) 1244 { 1245 struct dev_data *dev = fd->private_data; 1246 struct usb_gadget *gadget = dev->gadget; 1247 long ret = -ENOTTY; 1248 1249 spin_lock_irq(&dev->lock); 1250 if (dev->state == STATE_DEV_OPENED || 1251 dev->state == STATE_DEV_UNBOUND) { 1252 /* Not bound to a UDC */ 1253 } else if (gadget->ops->ioctl) { 1254 ++dev->udc_usage; 1255 spin_unlock_irq(&dev->lock); 1256 1257 ret = gadget->ops->ioctl (gadget, code, value); 1258 1259 spin_lock_irq(&dev->lock); 1260 --dev->udc_usage; 1261 } 1262 spin_unlock_irq(&dev->lock); 1263 1264 return ret; 1265 } 1266 1267 /*----------------------------------------------------------------------*/ 1268 1269 /* The in-kernel gadget driver handles most ep0 issues, in particular 1270 * enumerating the single configuration (as provided from user space). 1271 * 1272 * Unrecognized ep0 requests may be handled in user space. 1273 */ 1274 1275 static void make_qualifier (struct dev_data *dev) 1276 { 1277 struct usb_qualifier_descriptor qual; 1278 struct usb_device_descriptor *desc; 1279 1280 qual.bLength = sizeof qual; 1281 qual.bDescriptorType = USB_DT_DEVICE_QUALIFIER; 1282 qual.bcdUSB = cpu_to_le16 (0x0200); 1283 1284 desc = dev->dev; 1285 qual.bDeviceClass = desc->bDeviceClass; 1286 qual.bDeviceSubClass = desc->bDeviceSubClass; 1287 qual.bDeviceProtocol = desc->bDeviceProtocol; 1288 1289 /* assumes ep0 uses the same value for both speeds ... */ 1290 qual.bMaxPacketSize0 = dev->gadget->ep0->maxpacket; 1291 1292 qual.bNumConfigurations = 1; 1293 qual.bRESERVED = 0; 1294 1295 memcpy (dev->rbuf, &qual, sizeof qual); 1296 } 1297 1298 static int 1299 config_buf (struct dev_data *dev, u8 type, unsigned index) 1300 { 1301 int len; 1302 int hs = 0; 1303 1304 /* only one configuration */ 1305 if (index > 0) 1306 return -EINVAL; 1307 1308 if (gadget_is_dualspeed(dev->gadget)) { 1309 hs = (dev->gadget->speed == USB_SPEED_HIGH); 1310 if (type == USB_DT_OTHER_SPEED_CONFIG) 1311 hs = !hs; 1312 } 1313 if (hs) { 1314 dev->req->buf = dev->hs_config; 1315 len = le16_to_cpu(dev->hs_config->wTotalLength); 1316 } else { 1317 dev->req->buf = dev->config; 1318 len = le16_to_cpu(dev->config->wTotalLength); 1319 } 1320 ((u8 *)dev->req->buf) [1] = type; 1321 return len; 1322 } 1323 1324 static int 1325 gadgetfs_setup (struct usb_gadget *gadget, const struct usb_ctrlrequest *ctrl) 1326 { 1327 struct dev_data *dev = get_gadget_data (gadget); 1328 struct usb_request *req = dev->req; 1329 int value = -EOPNOTSUPP; 1330 struct usb_gadgetfs_event *event; 1331 u16 w_value = le16_to_cpu(ctrl->wValue); 1332 u16 w_length = le16_to_cpu(ctrl->wLength); 1333 1334 spin_lock (&dev->lock); 1335 dev->setup_abort = 0; 1336 if (dev->state == STATE_DEV_UNCONNECTED) { 1337 if (gadget_is_dualspeed(gadget) 1338 && gadget->speed == USB_SPEED_HIGH 1339 && dev->hs_config == NULL) { 1340 spin_unlock(&dev->lock); 1341 ERROR (dev, "no high speed config??\n"); 1342 return -EINVAL; 1343 } 1344 1345 dev->state = STATE_DEV_CONNECTED; 1346 1347 INFO (dev, "connected\n"); 1348 event = next_event (dev, GADGETFS_CONNECT); 1349 event->u.speed = gadget->speed; 1350 ep0_readable (dev); 1351 1352 /* host may have given up waiting for response. we can miss control 1353 * requests handled lower down (device/endpoint status and features); 1354 * then ep0_{read,write} will report the wrong status. controller 1355 * driver will have aborted pending i/o. 1356 */ 1357 } else if (dev->state == STATE_DEV_SETUP) 1358 dev->setup_abort = 1; 1359 1360 req->buf = dev->rbuf; 1361 req->context = NULL; 1362 switch (ctrl->bRequest) { 1363 1364 case USB_REQ_GET_DESCRIPTOR: 1365 if (ctrl->bRequestType != USB_DIR_IN) 1366 goto unrecognized; 1367 switch (w_value >> 8) { 1368 1369 case USB_DT_DEVICE: 1370 value = min (w_length, (u16) sizeof *dev->dev); 1371 dev->dev->bMaxPacketSize0 = dev->gadget->ep0->maxpacket; 1372 req->buf = dev->dev; 1373 break; 1374 case USB_DT_DEVICE_QUALIFIER: 1375 if (!dev->hs_config) 1376 break; 1377 value = min (w_length, (u16) 1378 sizeof (struct usb_qualifier_descriptor)); 1379 make_qualifier (dev); 1380 break; 1381 case USB_DT_OTHER_SPEED_CONFIG: 1382 case USB_DT_CONFIG: 1383 value = config_buf (dev, 1384 w_value >> 8, 1385 w_value & 0xff); 1386 if (value >= 0) 1387 value = min (w_length, (u16) value); 1388 break; 1389 case USB_DT_STRING: 1390 goto unrecognized; 1391 1392 default: // all others are errors 1393 break; 1394 } 1395 break; 1396 1397 /* currently one config, two speeds */ 1398 case USB_REQ_SET_CONFIGURATION: 1399 if (ctrl->bRequestType != 0) 1400 goto unrecognized; 1401 if (0 == (u8) w_value) { 1402 value = 0; 1403 dev->current_config = 0; 1404 usb_gadget_vbus_draw(gadget, 8 /* mA */ ); 1405 // user mode expected to disable endpoints 1406 } else { 1407 u8 config, power; 1408 1409 if (gadget_is_dualspeed(gadget) 1410 && gadget->speed == USB_SPEED_HIGH) { 1411 config = dev->hs_config->bConfigurationValue; 1412 power = dev->hs_config->bMaxPower; 1413 } else { 1414 config = dev->config->bConfigurationValue; 1415 power = dev->config->bMaxPower; 1416 } 1417 1418 if (config == (u8) w_value) { 1419 value = 0; 1420 dev->current_config = config; 1421 usb_gadget_vbus_draw(gadget, 2 * power); 1422 } 1423 } 1424 1425 /* report SET_CONFIGURATION like any other control request, 1426 * except that usermode may not stall this. the next 1427 * request mustn't be allowed start until this finishes: 1428 * endpoints and threads set up, etc. 1429 * 1430 * NOTE: older PXA hardware (before PXA 255: without UDCCFR) 1431 * has bad/racey automagic that prevents synchronizing here. 1432 * even kernel mode drivers often miss them. 1433 */ 1434 if (value == 0) { 1435 INFO (dev, "configuration #%d\n", dev->current_config); 1436 usb_gadget_set_state(gadget, USB_STATE_CONFIGURED); 1437 if (dev->usermode_setup) { 1438 dev->setup_can_stall = 0; 1439 goto delegate; 1440 } 1441 } 1442 break; 1443 1444 #ifndef CONFIG_USB_PXA25X 1445 /* PXA automagically handles this request too */ 1446 case USB_REQ_GET_CONFIGURATION: 1447 if (ctrl->bRequestType != 0x80) 1448 goto unrecognized; 1449 *(u8 *)req->buf = dev->current_config; 1450 value = min (w_length, (u16) 1); 1451 break; 1452 #endif 1453 1454 default: 1455 unrecognized: 1456 VDEBUG (dev, "%s req%02x.%02x v%04x i%04x l%d\n", 1457 dev->usermode_setup ? "delegate" : "fail", 1458 ctrl->bRequestType, ctrl->bRequest, 1459 w_value, le16_to_cpu(ctrl->wIndex), w_length); 1460 1461 /* if there's an ep0 reader, don't stall */ 1462 if (dev->usermode_setup) { 1463 dev->setup_can_stall = 1; 1464 delegate: 1465 dev->setup_in = (ctrl->bRequestType & USB_DIR_IN) 1466 ? 1 : 0; 1467 dev->setup_wLength = w_length; 1468 dev->setup_out_ready = 0; 1469 dev->setup_out_error = 0; 1470 1471 /* read DATA stage for OUT right away */ 1472 if (unlikely (!dev->setup_in && w_length)) { 1473 value = setup_req (gadget->ep0, dev->req, 1474 w_length); 1475 if (value < 0) 1476 break; 1477 1478 ++dev->udc_usage; 1479 spin_unlock (&dev->lock); 1480 value = usb_ep_queue (gadget->ep0, dev->req, 1481 GFP_KERNEL); 1482 spin_lock (&dev->lock); 1483 --dev->udc_usage; 1484 if (value < 0) { 1485 clean_req (gadget->ep0, dev->req); 1486 break; 1487 } 1488 1489 /* we can't currently stall these */ 1490 dev->setup_can_stall = 0; 1491 } 1492 1493 /* state changes when reader collects event */ 1494 event = next_event (dev, GADGETFS_SETUP); 1495 event->u.setup = *ctrl; 1496 ep0_readable (dev); 1497 spin_unlock (&dev->lock); 1498 return 0; 1499 } 1500 } 1501 1502 /* proceed with data transfer and status phases? */ 1503 if (value >= 0 && dev->state != STATE_DEV_SETUP) { 1504 req->length = value; 1505 req->zero = value < w_length; 1506 1507 ++dev->udc_usage; 1508 spin_unlock (&dev->lock); 1509 value = usb_ep_queue (gadget->ep0, req, GFP_KERNEL); 1510 spin_lock(&dev->lock); 1511 --dev->udc_usage; 1512 spin_unlock(&dev->lock); 1513 if (value < 0) { 1514 DBG (dev, "ep_queue --> %d\n", value); 1515 req->status = 0; 1516 } 1517 return value; 1518 } 1519 1520 /* device stalls when value < 0 */ 1521 spin_unlock (&dev->lock); 1522 return value; 1523 } 1524 1525 static void destroy_ep_files (struct dev_data *dev) 1526 { 1527 DBG (dev, "%s %d\n", __func__, dev->state); 1528 1529 /* dev->state must prevent interference */ 1530 spin_lock_irq (&dev->lock); 1531 while (!list_empty(&dev->epfiles)) { 1532 struct ep_data *ep; 1533 struct inode *parent; 1534 struct dentry *dentry; 1535 1536 /* break link to FS */ 1537 ep = list_first_entry (&dev->epfiles, struct ep_data, epfiles); 1538 list_del_init (&ep->epfiles); 1539 spin_unlock_irq (&dev->lock); 1540 1541 dentry = ep->dentry; 1542 ep->dentry = NULL; 1543 parent = d_inode(dentry->d_parent); 1544 1545 /* break link to controller */ 1546 mutex_lock(&ep->lock); 1547 if (ep->state == STATE_EP_ENABLED) 1548 (void) usb_ep_disable (ep->ep); 1549 ep->state = STATE_EP_UNBOUND; 1550 usb_ep_free_request (ep->ep, ep->req); 1551 ep->ep = NULL; 1552 mutex_unlock(&ep->lock); 1553 1554 wake_up (&ep->wait); 1555 put_ep (ep); 1556 1557 /* break link to dcache */ 1558 inode_lock(parent); 1559 d_delete (dentry); 1560 dput (dentry); 1561 inode_unlock(parent); 1562 1563 spin_lock_irq (&dev->lock); 1564 } 1565 spin_unlock_irq (&dev->lock); 1566 } 1567 1568 1569 static struct dentry * 1570 gadgetfs_create_file (struct super_block *sb, char const *name, 1571 void *data, const struct file_operations *fops); 1572 1573 static int activate_ep_files (struct dev_data *dev) 1574 { 1575 struct usb_ep *ep; 1576 struct ep_data *data; 1577 1578 gadget_for_each_ep (ep, dev->gadget) { 1579 1580 data = kzalloc(sizeof(*data), GFP_KERNEL); 1581 if (!data) 1582 goto enomem0; 1583 data->state = STATE_EP_DISABLED; 1584 mutex_init(&data->lock); 1585 init_waitqueue_head (&data->wait); 1586 1587 strncpy (data->name, ep->name, sizeof (data->name) - 1); 1588 refcount_set (&data->count, 1); 1589 data->dev = dev; 1590 get_dev (dev); 1591 1592 data->ep = ep; 1593 ep->driver_data = data; 1594 1595 data->req = usb_ep_alloc_request (ep, GFP_KERNEL); 1596 if (!data->req) 1597 goto enomem1; 1598 1599 data->dentry = gadgetfs_create_file (dev->sb, data->name, 1600 data, &ep_io_operations); 1601 if (!data->dentry) 1602 goto enomem2; 1603 list_add_tail (&data->epfiles, &dev->epfiles); 1604 } 1605 return 0; 1606 1607 enomem2: 1608 usb_ep_free_request (ep, data->req); 1609 enomem1: 1610 put_dev (dev); 1611 kfree (data); 1612 enomem0: 1613 DBG (dev, "%s enomem\n", __func__); 1614 destroy_ep_files (dev); 1615 return -ENOMEM; 1616 } 1617 1618 static void 1619 gadgetfs_unbind (struct usb_gadget *gadget) 1620 { 1621 struct dev_data *dev = get_gadget_data (gadget); 1622 1623 DBG (dev, "%s\n", __func__); 1624 1625 spin_lock_irq (&dev->lock); 1626 dev->state = STATE_DEV_UNBOUND; 1627 while (dev->udc_usage > 0) { 1628 spin_unlock_irq(&dev->lock); 1629 usleep_range(1000, 2000); 1630 spin_lock_irq(&dev->lock); 1631 } 1632 spin_unlock_irq (&dev->lock); 1633 1634 destroy_ep_files (dev); 1635 gadget->ep0->driver_data = NULL; 1636 set_gadget_data (gadget, NULL); 1637 1638 /* we've already been disconnected ... no i/o is active */ 1639 if (dev->req) 1640 usb_ep_free_request (gadget->ep0, dev->req); 1641 DBG (dev, "%s done\n", __func__); 1642 put_dev (dev); 1643 } 1644 1645 static struct dev_data *the_device; 1646 1647 static int gadgetfs_bind(struct usb_gadget *gadget, 1648 struct usb_gadget_driver *driver) 1649 { 1650 struct dev_data *dev = the_device; 1651 1652 if (!dev) 1653 return -ESRCH; 1654 if (0 != strcmp (CHIP, gadget->name)) { 1655 pr_err("%s expected %s controller not %s\n", 1656 shortname, CHIP, gadget->name); 1657 return -ENODEV; 1658 } 1659 1660 set_gadget_data (gadget, dev); 1661 dev->gadget = gadget; 1662 gadget->ep0->driver_data = dev; 1663 1664 /* preallocate control response and buffer */ 1665 dev->req = usb_ep_alloc_request (gadget->ep0, GFP_KERNEL); 1666 if (!dev->req) 1667 goto enomem; 1668 dev->req->context = NULL; 1669 dev->req->complete = epio_complete; 1670 1671 if (activate_ep_files (dev) < 0) 1672 goto enomem; 1673 1674 INFO (dev, "bound to %s driver\n", gadget->name); 1675 spin_lock_irq(&dev->lock); 1676 dev->state = STATE_DEV_UNCONNECTED; 1677 spin_unlock_irq(&dev->lock); 1678 get_dev (dev); 1679 return 0; 1680 1681 enomem: 1682 gadgetfs_unbind (gadget); 1683 return -ENOMEM; 1684 } 1685 1686 static void 1687 gadgetfs_disconnect (struct usb_gadget *gadget) 1688 { 1689 struct dev_data *dev = get_gadget_data (gadget); 1690 unsigned long flags; 1691 1692 spin_lock_irqsave (&dev->lock, flags); 1693 if (dev->state == STATE_DEV_UNCONNECTED) 1694 goto exit; 1695 dev->state = STATE_DEV_UNCONNECTED; 1696 1697 INFO (dev, "disconnected\n"); 1698 next_event (dev, GADGETFS_DISCONNECT); 1699 ep0_readable (dev); 1700 exit: 1701 spin_unlock_irqrestore (&dev->lock, flags); 1702 } 1703 1704 static void 1705 gadgetfs_suspend (struct usb_gadget *gadget) 1706 { 1707 struct dev_data *dev = get_gadget_data (gadget); 1708 unsigned long flags; 1709 1710 INFO (dev, "suspended from state %d\n", dev->state); 1711 spin_lock_irqsave(&dev->lock, flags); 1712 switch (dev->state) { 1713 case STATE_DEV_SETUP: // VERY odd... host died?? 1714 case STATE_DEV_CONNECTED: 1715 case STATE_DEV_UNCONNECTED: 1716 next_event (dev, GADGETFS_SUSPEND); 1717 ep0_readable (dev); 1718 fallthrough; 1719 default: 1720 break; 1721 } 1722 spin_unlock_irqrestore(&dev->lock, flags); 1723 } 1724 1725 static struct usb_gadget_driver gadgetfs_driver = { 1726 .function = (char *) driver_desc, 1727 .bind = gadgetfs_bind, 1728 .unbind = gadgetfs_unbind, 1729 .setup = gadgetfs_setup, 1730 .reset = gadgetfs_disconnect, 1731 .disconnect = gadgetfs_disconnect, 1732 .suspend = gadgetfs_suspend, 1733 1734 .driver = { 1735 .name = shortname, 1736 }, 1737 }; 1738 1739 /*----------------------------------------------------------------------*/ 1740 /* DEVICE INITIALIZATION 1741 * 1742 * fd = open ("/dev/gadget/$CHIP", O_RDWR) 1743 * status = write (fd, descriptors, sizeof descriptors) 1744 * 1745 * That write establishes the device configuration, so the kernel can 1746 * bind to the controller ... guaranteeing it can handle enumeration 1747 * at all necessary speeds. Descriptor order is: 1748 * 1749 * . message tag (u32, host order) ... for now, must be zero; it 1750 * would change to support features like multi-config devices 1751 * . full/low speed config ... all wTotalLength bytes (with interface, 1752 * class, altsetting, endpoint, and other descriptors) 1753 * . high speed config ... all descriptors, for high speed operation; 1754 * this one's optional except for high-speed hardware 1755 * . device descriptor 1756 * 1757 * Endpoints are not yet enabled. Drivers must wait until device 1758 * configuration and interface altsetting changes create 1759 * the need to configure (or unconfigure) them. 1760 * 1761 * After initialization, the device stays active for as long as that 1762 * $CHIP file is open. Events must then be read from that descriptor, 1763 * such as configuration notifications. 1764 */ 1765 1766 static int is_valid_config(struct usb_config_descriptor *config, 1767 unsigned int total) 1768 { 1769 return config->bDescriptorType == USB_DT_CONFIG 1770 && config->bLength == USB_DT_CONFIG_SIZE 1771 && total >= USB_DT_CONFIG_SIZE 1772 && config->bConfigurationValue != 0 1773 && (config->bmAttributes & USB_CONFIG_ATT_ONE) != 0 1774 && (config->bmAttributes & USB_CONFIG_ATT_WAKEUP) == 0; 1775 /* FIXME if gadget->is_otg, _must_ include an otg descriptor */ 1776 /* FIXME check lengths: walk to end */ 1777 } 1778 1779 static ssize_t 1780 dev_config (struct file *fd, const char __user *buf, size_t len, loff_t *ptr) 1781 { 1782 struct dev_data *dev = fd->private_data; 1783 ssize_t value, length = len; 1784 unsigned total; 1785 u32 tag; 1786 char *kbuf; 1787 1788 spin_lock_irq(&dev->lock); 1789 if (dev->state > STATE_DEV_OPENED) { 1790 value = ep0_write(fd, buf, len, ptr); 1791 spin_unlock_irq(&dev->lock); 1792 return value; 1793 } 1794 spin_unlock_irq(&dev->lock); 1795 1796 if ((len < (USB_DT_CONFIG_SIZE + USB_DT_DEVICE_SIZE + 4)) || 1797 (len > PAGE_SIZE * 4)) 1798 return -EINVAL; 1799 1800 /* we might need to change message format someday */ 1801 if (copy_from_user (&tag, buf, 4)) 1802 return -EFAULT; 1803 if (tag != 0) 1804 return -EINVAL; 1805 buf += 4; 1806 length -= 4; 1807 1808 kbuf = memdup_user(buf, length); 1809 if (IS_ERR(kbuf)) 1810 return PTR_ERR(kbuf); 1811 1812 spin_lock_irq (&dev->lock); 1813 value = -EINVAL; 1814 if (dev->buf) { 1815 kfree(kbuf); 1816 goto fail; 1817 } 1818 dev->buf = kbuf; 1819 1820 /* full or low speed config */ 1821 dev->config = (void *) kbuf; 1822 total = le16_to_cpu(dev->config->wTotalLength); 1823 if (!is_valid_config(dev->config, total) || 1824 total > length - USB_DT_DEVICE_SIZE) 1825 goto fail; 1826 kbuf += total; 1827 length -= total; 1828 1829 /* optional high speed config */ 1830 if (kbuf [1] == USB_DT_CONFIG) { 1831 dev->hs_config = (void *) kbuf; 1832 total = le16_to_cpu(dev->hs_config->wTotalLength); 1833 if (!is_valid_config(dev->hs_config, total) || 1834 total > length - USB_DT_DEVICE_SIZE) 1835 goto fail; 1836 kbuf += total; 1837 length -= total; 1838 } else { 1839 dev->hs_config = NULL; 1840 } 1841 1842 /* could support multiple configs, using another encoding! */ 1843 1844 /* device descriptor (tweaked for paranoia) */ 1845 if (length != USB_DT_DEVICE_SIZE) 1846 goto fail; 1847 dev->dev = (void *)kbuf; 1848 if (dev->dev->bLength != USB_DT_DEVICE_SIZE 1849 || dev->dev->bDescriptorType != USB_DT_DEVICE 1850 || dev->dev->bNumConfigurations != 1) 1851 goto fail; 1852 dev->dev->bcdUSB = cpu_to_le16 (0x0200); 1853 1854 /* triggers gadgetfs_bind(); then we can enumerate. */ 1855 spin_unlock_irq (&dev->lock); 1856 if (dev->hs_config) 1857 gadgetfs_driver.max_speed = USB_SPEED_HIGH; 1858 else 1859 gadgetfs_driver.max_speed = USB_SPEED_FULL; 1860 1861 value = usb_gadget_probe_driver(&gadgetfs_driver); 1862 if (value != 0) { 1863 kfree (dev->buf); 1864 dev->buf = NULL; 1865 } else { 1866 /* at this point "good" hardware has for the first time 1867 * let the USB the host see us. alternatively, if users 1868 * unplug/replug that will clear all the error state. 1869 * 1870 * note: everything running before here was guaranteed 1871 * to choke driver model style diagnostics. from here 1872 * on, they can work ... except in cleanup paths that 1873 * kick in after the ep0 descriptor is closed. 1874 */ 1875 value = len; 1876 dev->gadget_registered = true; 1877 } 1878 return value; 1879 1880 fail: 1881 spin_unlock_irq (&dev->lock); 1882 pr_debug ("%s: %s fail %zd, %p\n", shortname, __func__, value, dev); 1883 kfree (dev->buf); 1884 dev->buf = NULL; 1885 return value; 1886 } 1887 1888 static int 1889 dev_open (struct inode *inode, struct file *fd) 1890 { 1891 struct dev_data *dev = inode->i_private; 1892 int value = -EBUSY; 1893 1894 spin_lock_irq(&dev->lock); 1895 if (dev->state == STATE_DEV_DISABLED) { 1896 dev->ev_next = 0; 1897 dev->state = STATE_DEV_OPENED; 1898 fd->private_data = dev; 1899 get_dev (dev); 1900 value = 0; 1901 } 1902 spin_unlock_irq(&dev->lock); 1903 return value; 1904 } 1905 1906 static const struct file_operations ep0_operations = { 1907 .llseek = no_llseek, 1908 1909 .open = dev_open, 1910 .read = ep0_read, 1911 .write = dev_config, 1912 .fasync = ep0_fasync, 1913 .poll = ep0_poll, 1914 .unlocked_ioctl = dev_ioctl, 1915 .release = dev_release, 1916 }; 1917 1918 /*----------------------------------------------------------------------*/ 1919 1920 /* FILESYSTEM AND SUPERBLOCK OPERATIONS 1921 * 1922 * Mounting the filesystem creates a controller file, used first for 1923 * device configuration then later for event monitoring. 1924 */ 1925 1926 1927 /* FIXME PAM etc could set this security policy without mount options 1928 * if epfiles inherited ownership and permissons from ep0 ... 1929 */ 1930 1931 static unsigned default_uid; 1932 static unsigned default_gid; 1933 static unsigned default_perm = S_IRUSR | S_IWUSR; 1934 1935 module_param (default_uid, uint, 0644); 1936 module_param (default_gid, uint, 0644); 1937 module_param (default_perm, uint, 0644); 1938 1939 1940 static struct inode * 1941 gadgetfs_make_inode (struct super_block *sb, 1942 void *data, const struct file_operations *fops, 1943 int mode) 1944 { 1945 struct inode *inode = new_inode (sb); 1946 1947 if (inode) { 1948 inode->i_ino = get_next_ino(); 1949 inode->i_mode = mode; 1950 inode->i_uid = make_kuid(&init_user_ns, default_uid); 1951 inode->i_gid = make_kgid(&init_user_ns, default_gid); 1952 inode->i_atime = inode->i_mtime = inode->i_ctime 1953 = current_time(inode); 1954 inode->i_private = data; 1955 inode->i_fop = fops; 1956 } 1957 return inode; 1958 } 1959 1960 /* creates in fs root directory, so non-renamable and non-linkable. 1961 * so inode and dentry are paired, until device reconfig. 1962 */ 1963 static struct dentry * 1964 gadgetfs_create_file (struct super_block *sb, char const *name, 1965 void *data, const struct file_operations *fops) 1966 { 1967 struct dentry *dentry; 1968 struct inode *inode; 1969 1970 dentry = d_alloc_name(sb->s_root, name); 1971 if (!dentry) 1972 return NULL; 1973 1974 inode = gadgetfs_make_inode (sb, data, fops, 1975 S_IFREG | (default_perm & S_IRWXUGO)); 1976 if (!inode) { 1977 dput(dentry); 1978 return NULL; 1979 } 1980 d_add (dentry, inode); 1981 return dentry; 1982 } 1983 1984 static const struct super_operations gadget_fs_operations = { 1985 .statfs = simple_statfs, 1986 .drop_inode = generic_delete_inode, 1987 }; 1988 1989 static int 1990 gadgetfs_fill_super (struct super_block *sb, struct fs_context *fc) 1991 { 1992 struct inode *inode; 1993 struct dev_data *dev; 1994 1995 if (the_device) 1996 return -ESRCH; 1997 1998 CHIP = usb_get_gadget_udc_name(); 1999 if (!CHIP) 2000 return -ENODEV; 2001 2002 /* superblock */ 2003 sb->s_blocksize = PAGE_SIZE; 2004 sb->s_blocksize_bits = PAGE_SHIFT; 2005 sb->s_magic = GADGETFS_MAGIC; 2006 sb->s_op = &gadget_fs_operations; 2007 sb->s_time_gran = 1; 2008 2009 /* root inode */ 2010 inode = gadgetfs_make_inode (sb, 2011 NULL, &simple_dir_operations, 2012 S_IFDIR | S_IRUGO | S_IXUGO); 2013 if (!inode) 2014 goto Enomem; 2015 inode->i_op = &simple_dir_inode_operations; 2016 if (!(sb->s_root = d_make_root (inode))) 2017 goto Enomem; 2018 2019 /* the ep0 file is named after the controller we expect; 2020 * user mode code can use it for sanity checks, like we do. 2021 */ 2022 dev = dev_new (); 2023 if (!dev) 2024 goto Enomem; 2025 2026 dev->sb = sb; 2027 dev->dentry = gadgetfs_create_file(sb, CHIP, dev, &ep0_operations); 2028 if (!dev->dentry) { 2029 put_dev(dev); 2030 goto Enomem; 2031 } 2032 2033 /* other endpoint files are available after hardware setup, 2034 * from binding to a controller. 2035 */ 2036 the_device = dev; 2037 return 0; 2038 2039 Enomem: 2040 kfree(CHIP); 2041 CHIP = NULL; 2042 2043 return -ENOMEM; 2044 } 2045 2046 /* "mount -t gadgetfs path /dev/gadget" ends up here */ 2047 static int gadgetfs_get_tree(struct fs_context *fc) 2048 { 2049 return get_tree_single(fc, gadgetfs_fill_super); 2050 } 2051 2052 static const struct fs_context_operations gadgetfs_context_ops = { 2053 .get_tree = gadgetfs_get_tree, 2054 }; 2055 2056 static int gadgetfs_init_fs_context(struct fs_context *fc) 2057 { 2058 fc->ops = &gadgetfs_context_ops; 2059 return 0; 2060 } 2061 2062 static void 2063 gadgetfs_kill_sb (struct super_block *sb) 2064 { 2065 kill_litter_super (sb); 2066 if (the_device) { 2067 put_dev (the_device); 2068 the_device = NULL; 2069 } 2070 kfree(CHIP); 2071 CHIP = NULL; 2072 } 2073 2074 /*----------------------------------------------------------------------*/ 2075 2076 static struct file_system_type gadgetfs_type = { 2077 .owner = THIS_MODULE, 2078 .name = shortname, 2079 .init_fs_context = gadgetfs_init_fs_context, 2080 .kill_sb = gadgetfs_kill_sb, 2081 }; 2082 MODULE_ALIAS_FS("gadgetfs"); 2083 2084 /*----------------------------------------------------------------------*/ 2085 2086 static int __init init (void) 2087 { 2088 int status; 2089 2090 status = register_filesystem (&gadgetfs_type); 2091 if (status == 0) 2092 pr_info ("%s: %s, version " DRIVER_VERSION "\n", 2093 shortname, driver_desc); 2094 return status; 2095 } 2096 module_init (init); 2097 2098 static void __exit cleanup (void) 2099 { 2100 pr_debug ("unregister %s\n", shortname); 2101 unregister_filesystem (&gadgetfs_type); 2102 } 2103 module_exit (cleanup); 2104 2105