1 /*
2  * u_serial.c - utilities for USB gadget "serial port"/TTY support
3  *
4  * Copyright (C) 2003 Al Borchers (alborchers@steinerpoint.com)
5  * Copyright (C) 2008 David Brownell
6  * Copyright (C) 2008 by Nokia Corporation
7  *
8  * This code also borrows from usbserial.c, which is
9  * Copyright (C) 1999 - 2002 Greg Kroah-Hartman (greg@kroah.com)
10  * Copyright (C) 2000 Peter Berger (pberger@brimson.com)
11  * Copyright (C) 2000 Al Borchers (alborchers@steinerpoint.com)
12  *
13  * This software is distributed under the terms of the GNU General
14  * Public License ("GPL") as published by the Free Software Foundation,
15  * either version 2 of that License or (at your option) any later version.
16  */
17 
18 /* #define VERBOSE_DEBUG */
19 
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/delay.h>
25 #include <linux/tty.h>
26 #include <linux/tty_flip.h>
27 #include <linux/slab.h>
28 #include <linux/export.h>
29 #include <linux/module.h>
30 
31 #include "u_serial.h"
32 
33 
34 /*
35  * This component encapsulates the TTY layer glue needed to provide basic
36  * "serial port" functionality through the USB gadget stack.  Each such
37  * port is exposed through a /dev/ttyGS* node.
38  *
39  * After this module has been loaded, the individual TTY port can be requested
40  * (gserial_alloc_line()) and it will stay available until they are removed
41  * (gserial_free_line()). Each one may be connected to a USB function
42  * (gserial_connect), or disconnected (with gserial_disconnect) when the USB
43  * host issues a config change event. Data can only flow when the port is
44  * connected to the host.
45  *
46  * A given TTY port can be made available in multiple configurations.
47  * For example, each one might expose a ttyGS0 node which provides a
48  * login application.  In one case that might use CDC ACM interface 0,
49  * while another configuration might use interface 3 for that.  The
50  * work to handle that (including descriptor management) is not part
51  * of this component.
52  *
53  * Configurations may expose more than one TTY port.  For example, if
54  * ttyGS0 provides login service, then ttyGS1 might provide dialer access
55  * for a telephone or fax link.  And ttyGS2 might be something that just
56  * needs a simple byte stream interface for some messaging protocol that
57  * is managed in userspace ... OBEX, PTP, and MTP have been mentioned.
58  *
59  *
60  * gserial is the lifecycle interface, used by USB functions
61  * gs_port is the I/O nexus, used by the tty driver
62  * tty_struct links to the tty/filesystem framework
63  *
64  * gserial <---> gs_port ... links will be null when the USB link is
65  * inactive; managed by gserial_{connect,disconnect}().  each gserial
66  * instance can wrap its own USB control protocol.
67  *	gserial->ioport == usb_ep->driver_data ... gs_port
68  *	gs_port->port_usb ... gserial
69  *
70  * gs_port <---> tty_struct ... links will be null when the TTY file
71  * isn't opened; managed by gs_open()/gs_close()
72  *	gserial->port_tty ... tty_struct
73  *	tty_struct->driver_data ... gserial
74  */
75 
76 /* RX and TX queues can buffer QUEUE_SIZE packets before they hit the
77  * next layer of buffering.  For TX that's a circular buffer; for RX
78  * consider it a NOP.  A third layer is provided by the TTY code.
79  */
80 #define QUEUE_SIZE		16
81 #define WRITE_BUF_SIZE		8192		/* TX only */
82 
83 /* circular buffer */
84 struct gs_buf {
85 	unsigned		buf_size;
86 	char			*buf_buf;
87 	char			*buf_get;
88 	char			*buf_put;
89 };
90 
91 /*
92  * The port structure holds info for each port, one for each minor number
93  * (and thus for each /dev/ node).
94  */
95 struct gs_port {
96 	struct tty_port		port;
97 	spinlock_t		port_lock;	/* guard port_* access */
98 
99 	struct gserial		*port_usb;
100 
101 	bool			openclose;	/* open/close in progress */
102 	u8			port_num;
103 
104 	struct list_head	read_pool;
105 	int read_started;
106 	int read_allocated;
107 	struct list_head	read_queue;
108 	unsigned		n_read;
109 	struct tasklet_struct	push;
110 
111 	struct list_head	write_pool;
112 	int write_started;
113 	int write_allocated;
114 	struct gs_buf		port_write_buf;
115 	wait_queue_head_t	drain_wait;	/* wait while writes drain */
116 	bool                    write_busy;
117 
118 	/* REVISIT this state ... */
119 	struct usb_cdc_line_coding port_line_coding;	/* 8-N-1 etc */
120 };
121 
122 static struct portmaster {
123 	struct mutex	lock;			/* protect open/close */
124 	struct gs_port	*port;
125 } ports[MAX_U_SERIAL_PORTS];
126 
127 #define GS_CLOSE_TIMEOUT		15		/* seconds */
128 
129 
130 
131 #ifdef VERBOSE_DEBUG
132 #ifndef pr_vdebug
133 #define pr_vdebug(fmt, arg...) \
134 	pr_debug(fmt, ##arg)
135 #endif /* pr_vdebug */
136 #else
137 #ifndef pr_vdebug
138 #define pr_vdebug(fmt, arg...) \
139 	({ if (0) pr_debug(fmt, ##arg); })
140 #endif /* pr_vdebug */
141 #endif
142 
143 /*-------------------------------------------------------------------------*/
144 
145 /* Circular Buffer */
146 
147 /*
148  * gs_buf_alloc
149  *
150  * Allocate a circular buffer and all associated memory.
151  */
152 static int gs_buf_alloc(struct gs_buf *gb, unsigned size)
153 {
154 	gb->buf_buf = kmalloc(size, GFP_KERNEL);
155 	if (gb->buf_buf == NULL)
156 		return -ENOMEM;
157 
158 	gb->buf_size = size;
159 	gb->buf_put = gb->buf_buf;
160 	gb->buf_get = gb->buf_buf;
161 
162 	return 0;
163 }
164 
165 /*
166  * gs_buf_free
167  *
168  * Free the buffer and all associated memory.
169  */
170 static void gs_buf_free(struct gs_buf *gb)
171 {
172 	kfree(gb->buf_buf);
173 	gb->buf_buf = NULL;
174 }
175 
176 /*
177  * gs_buf_clear
178  *
179  * Clear out all data in the circular buffer.
180  */
181 static void gs_buf_clear(struct gs_buf *gb)
182 {
183 	gb->buf_get = gb->buf_put;
184 	/* equivalent to a get of all data available */
185 }
186 
187 /*
188  * gs_buf_data_avail
189  *
190  * Return the number of bytes of data written into the circular
191  * buffer.
192  */
193 static unsigned gs_buf_data_avail(struct gs_buf *gb)
194 {
195 	return (gb->buf_size + gb->buf_put - gb->buf_get) % gb->buf_size;
196 }
197 
198 /*
199  * gs_buf_space_avail
200  *
201  * Return the number of bytes of space available in the circular
202  * buffer.
203  */
204 static unsigned gs_buf_space_avail(struct gs_buf *gb)
205 {
206 	return (gb->buf_size + gb->buf_get - gb->buf_put - 1) % gb->buf_size;
207 }
208 
209 /*
210  * gs_buf_put
211  *
212  * Copy data data from a user buffer and put it into the circular buffer.
213  * Restrict to the amount of space available.
214  *
215  * Return the number of bytes copied.
216  */
217 static unsigned
218 gs_buf_put(struct gs_buf *gb, const char *buf, unsigned count)
219 {
220 	unsigned len;
221 
222 	len  = gs_buf_space_avail(gb);
223 	if (count > len)
224 		count = len;
225 
226 	if (count == 0)
227 		return 0;
228 
229 	len = gb->buf_buf + gb->buf_size - gb->buf_put;
230 	if (count > len) {
231 		memcpy(gb->buf_put, buf, len);
232 		memcpy(gb->buf_buf, buf+len, count - len);
233 		gb->buf_put = gb->buf_buf + count - len;
234 	} else {
235 		memcpy(gb->buf_put, buf, count);
236 		if (count < len)
237 			gb->buf_put += count;
238 		else /* count == len */
239 			gb->buf_put = gb->buf_buf;
240 	}
241 
242 	return count;
243 }
244 
245 /*
246  * gs_buf_get
247  *
248  * Get data from the circular buffer and copy to the given buffer.
249  * Restrict to the amount of data available.
250  *
251  * Return the number of bytes copied.
252  */
253 static unsigned
254 gs_buf_get(struct gs_buf *gb, char *buf, unsigned count)
255 {
256 	unsigned len;
257 
258 	len = gs_buf_data_avail(gb);
259 	if (count > len)
260 		count = len;
261 
262 	if (count == 0)
263 		return 0;
264 
265 	len = gb->buf_buf + gb->buf_size - gb->buf_get;
266 	if (count > len) {
267 		memcpy(buf, gb->buf_get, len);
268 		memcpy(buf+len, gb->buf_buf, count - len);
269 		gb->buf_get = gb->buf_buf + count - len;
270 	} else {
271 		memcpy(buf, gb->buf_get, count);
272 		if (count < len)
273 			gb->buf_get += count;
274 		else /* count == len */
275 			gb->buf_get = gb->buf_buf;
276 	}
277 
278 	return count;
279 }
280 
281 /*-------------------------------------------------------------------------*/
282 
283 /* I/O glue between TTY (upper) and USB function (lower) driver layers */
284 
285 /*
286  * gs_alloc_req
287  *
288  * Allocate a usb_request and its buffer.  Returns a pointer to the
289  * usb_request or NULL if there is an error.
290  */
291 struct usb_request *
292 gs_alloc_req(struct usb_ep *ep, unsigned len, gfp_t kmalloc_flags)
293 {
294 	struct usb_request *req;
295 
296 	req = usb_ep_alloc_request(ep, kmalloc_flags);
297 
298 	if (req != NULL) {
299 		req->length = len;
300 		req->buf = kmalloc(len, kmalloc_flags);
301 		if (req->buf == NULL) {
302 			usb_ep_free_request(ep, req);
303 			return NULL;
304 		}
305 	}
306 
307 	return req;
308 }
309 EXPORT_SYMBOL_GPL(gs_alloc_req);
310 
311 /*
312  * gs_free_req
313  *
314  * Free a usb_request and its buffer.
315  */
316 void gs_free_req(struct usb_ep *ep, struct usb_request *req)
317 {
318 	kfree(req->buf);
319 	usb_ep_free_request(ep, req);
320 }
321 EXPORT_SYMBOL_GPL(gs_free_req);
322 
323 /*
324  * gs_send_packet
325  *
326  * If there is data to send, a packet is built in the given
327  * buffer and the size is returned.  If there is no data to
328  * send, 0 is returned.
329  *
330  * Called with port_lock held.
331  */
332 static unsigned
333 gs_send_packet(struct gs_port *port, char *packet, unsigned size)
334 {
335 	unsigned len;
336 
337 	len = gs_buf_data_avail(&port->port_write_buf);
338 	if (len < size)
339 		size = len;
340 	if (size != 0)
341 		size = gs_buf_get(&port->port_write_buf, packet, size);
342 	return size;
343 }
344 
345 /*
346  * gs_start_tx
347  *
348  * This function finds available write requests, calls
349  * gs_send_packet to fill these packets with data, and
350  * continues until either there are no more write requests
351  * available or no more data to send.  This function is
352  * run whenever data arrives or write requests are available.
353  *
354  * Context: caller owns port_lock; port_usb is non-null.
355  */
356 static int gs_start_tx(struct gs_port *port)
357 /*
358 __releases(&port->port_lock)
359 __acquires(&port->port_lock)
360 */
361 {
362 	struct list_head	*pool = &port->write_pool;
363 	struct usb_ep		*in = port->port_usb->in;
364 	int			status = 0;
365 	bool			do_tty_wake = false;
366 
367 	while (!port->write_busy && !list_empty(pool)) {
368 		struct usb_request	*req;
369 		int			len;
370 
371 		if (port->write_started >= QUEUE_SIZE)
372 			break;
373 
374 		req = list_entry(pool->next, struct usb_request, list);
375 		len = gs_send_packet(port, req->buf, in->maxpacket);
376 		if (len == 0) {
377 			wake_up_interruptible(&port->drain_wait);
378 			break;
379 		}
380 		do_tty_wake = true;
381 
382 		req->length = len;
383 		list_del(&req->list);
384 		req->zero = (gs_buf_data_avail(&port->port_write_buf) == 0);
385 
386 		pr_vdebug("ttyGS%d: tx len=%d, 0x%02x 0x%02x 0x%02x ...\n",
387 			  port->port_num, len, *((u8 *)req->buf),
388 			  *((u8 *)req->buf+1), *((u8 *)req->buf+2));
389 
390 		/* Drop lock while we call out of driver; completions
391 		 * could be issued while we do so.  Disconnection may
392 		 * happen too; maybe immediately before we queue this!
393 		 *
394 		 * NOTE that we may keep sending data for a while after
395 		 * the TTY closed (dev->ioport->port_tty is NULL).
396 		 */
397 		port->write_busy = true;
398 		spin_unlock(&port->port_lock);
399 		status = usb_ep_queue(in, req, GFP_ATOMIC);
400 		spin_lock(&port->port_lock);
401 		port->write_busy = false;
402 
403 		if (status) {
404 			pr_debug("%s: %s %s err %d\n",
405 					__func__, "queue", in->name, status);
406 			list_add(&req->list, pool);
407 			break;
408 		}
409 
410 		port->write_started++;
411 
412 		/* abort immediately after disconnect */
413 		if (!port->port_usb)
414 			break;
415 	}
416 
417 	if (do_tty_wake && port->port.tty)
418 		tty_wakeup(port->port.tty);
419 	return status;
420 }
421 
422 /*
423  * Context: caller owns port_lock, and port_usb is set
424  */
425 static unsigned gs_start_rx(struct gs_port *port)
426 /*
427 __releases(&port->port_lock)
428 __acquires(&port->port_lock)
429 */
430 {
431 	struct list_head	*pool = &port->read_pool;
432 	struct usb_ep		*out = port->port_usb->out;
433 
434 	while (!list_empty(pool)) {
435 		struct usb_request	*req;
436 		int			status;
437 		struct tty_struct	*tty;
438 
439 		/* no more rx if closed */
440 		tty = port->port.tty;
441 		if (!tty)
442 			break;
443 
444 		if (port->read_started >= QUEUE_SIZE)
445 			break;
446 
447 		req = list_entry(pool->next, struct usb_request, list);
448 		list_del(&req->list);
449 		req->length = out->maxpacket;
450 
451 		/* drop lock while we call out; the controller driver
452 		 * may need to call us back (e.g. for disconnect)
453 		 */
454 		spin_unlock(&port->port_lock);
455 		status = usb_ep_queue(out, req, GFP_ATOMIC);
456 		spin_lock(&port->port_lock);
457 
458 		if (status) {
459 			pr_debug("%s: %s %s err %d\n",
460 					__func__, "queue", out->name, status);
461 			list_add(&req->list, pool);
462 			break;
463 		}
464 		port->read_started++;
465 
466 		/* abort immediately after disconnect */
467 		if (!port->port_usb)
468 			break;
469 	}
470 	return port->read_started;
471 }
472 
473 /*
474  * RX tasklet takes data out of the RX queue and hands it up to the TTY
475  * layer until it refuses to take any more data (or is throttled back).
476  * Then it issues reads for any further data.
477  *
478  * If the RX queue becomes full enough that no usb_request is queued,
479  * the OUT endpoint may begin NAKing as soon as its FIFO fills up.
480  * So QUEUE_SIZE packets plus however many the FIFO holds (usually two)
481  * can be buffered before the TTY layer's buffers (currently 64 KB).
482  */
483 static void gs_rx_push(unsigned long _port)
484 {
485 	struct gs_port		*port = (void *)_port;
486 	struct tty_struct	*tty;
487 	struct list_head	*queue = &port->read_queue;
488 	bool			disconnect = false;
489 	bool			do_push = false;
490 
491 	/* hand any queued data to the tty */
492 	spin_lock_irq(&port->port_lock);
493 	tty = port->port.tty;
494 	while (!list_empty(queue)) {
495 		struct usb_request	*req;
496 
497 		req = list_first_entry(queue, struct usb_request, list);
498 
499 		/* leave data queued if tty was rx throttled */
500 		if (tty && test_bit(TTY_THROTTLED, &tty->flags))
501 			break;
502 
503 		switch (req->status) {
504 		case -ESHUTDOWN:
505 			disconnect = true;
506 			pr_vdebug("ttyGS%d: shutdown\n", port->port_num);
507 			break;
508 
509 		default:
510 			/* presumably a transient fault */
511 			pr_warn("ttyGS%d: unexpected RX status %d\n",
512 				port->port_num, req->status);
513 			/* FALLTHROUGH */
514 		case 0:
515 			/* normal completion */
516 			break;
517 		}
518 
519 		/* push data to (open) tty */
520 		if (req->actual) {
521 			char		*packet = req->buf;
522 			unsigned	size = req->actual;
523 			unsigned	n;
524 			int		count;
525 
526 			/* we may have pushed part of this packet already... */
527 			n = port->n_read;
528 			if (n) {
529 				packet += n;
530 				size -= n;
531 			}
532 
533 			count = tty_insert_flip_string(&port->port, packet,
534 					size);
535 			if (count)
536 				do_push = true;
537 			if (count != size) {
538 				/* stop pushing; TTY layer can't handle more */
539 				port->n_read += count;
540 				pr_vdebug("ttyGS%d: rx block %d/%d\n",
541 					  port->port_num, count, req->actual);
542 				break;
543 			}
544 			port->n_read = 0;
545 		}
546 
547 		list_move(&req->list, &port->read_pool);
548 		port->read_started--;
549 	}
550 
551 	/* Push from tty to ldisc; this is handled by a workqueue,
552 	 * so we won't get callbacks and can hold port_lock
553 	 */
554 	if (do_push)
555 		tty_flip_buffer_push(&port->port);
556 
557 
558 	/* We want our data queue to become empty ASAP, keeping data
559 	 * in the tty and ldisc (not here).  If we couldn't push any
560 	 * this time around, there may be trouble unless there's an
561 	 * implicit tty_unthrottle() call on its way...
562 	 *
563 	 * REVISIT we should probably add a timer to keep the tasklet
564 	 * from starving ... but it's not clear that case ever happens.
565 	 */
566 	if (!list_empty(queue) && tty) {
567 		if (!test_bit(TTY_THROTTLED, &tty->flags)) {
568 			if (do_push)
569 				tasklet_schedule(&port->push);
570 			else
571 				pr_warn("ttyGS%d: RX not scheduled?\n",
572 					port->port_num);
573 		}
574 	}
575 
576 	/* If we're still connected, refill the USB RX queue. */
577 	if (!disconnect && port->port_usb)
578 		gs_start_rx(port);
579 
580 	spin_unlock_irq(&port->port_lock);
581 }
582 
583 static void gs_read_complete(struct usb_ep *ep, struct usb_request *req)
584 {
585 	struct gs_port	*port = ep->driver_data;
586 
587 	/* Queue all received data until the tty layer is ready for it. */
588 	spin_lock(&port->port_lock);
589 	list_add_tail(&req->list, &port->read_queue);
590 	tasklet_schedule(&port->push);
591 	spin_unlock(&port->port_lock);
592 }
593 
594 static void gs_write_complete(struct usb_ep *ep, struct usb_request *req)
595 {
596 	struct gs_port	*port = ep->driver_data;
597 
598 	spin_lock(&port->port_lock);
599 	list_add(&req->list, &port->write_pool);
600 	port->write_started--;
601 
602 	switch (req->status) {
603 	default:
604 		/* presumably a transient fault */
605 		pr_warning("%s: unexpected %s status %d\n",
606 				__func__, ep->name, req->status);
607 		/* FALL THROUGH */
608 	case 0:
609 		/* normal completion */
610 		gs_start_tx(port);
611 		break;
612 
613 	case -ESHUTDOWN:
614 		/* disconnect */
615 		pr_vdebug("%s: %s shutdown\n", __func__, ep->name);
616 		break;
617 	}
618 
619 	spin_unlock(&port->port_lock);
620 }
621 
622 static void gs_free_requests(struct usb_ep *ep, struct list_head *head,
623 							 int *allocated)
624 {
625 	struct usb_request	*req;
626 
627 	while (!list_empty(head)) {
628 		req = list_entry(head->next, struct usb_request, list);
629 		list_del(&req->list);
630 		gs_free_req(ep, req);
631 		if (allocated)
632 			(*allocated)--;
633 	}
634 }
635 
636 static int gs_alloc_requests(struct usb_ep *ep, struct list_head *head,
637 		void (*fn)(struct usb_ep *, struct usb_request *),
638 		int *allocated)
639 {
640 	int			i;
641 	struct usb_request	*req;
642 	int n = allocated ? QUEUE_SIZE - *allocated : QUEUE_SIZE;
643 
644 	/* Pre-allocate up to QUEUE_SIZE transfers, but if we can't
645 	 * do quite that many this time, don't fail ... we just won't
646 	 * be as speedy as we might otherwise be.
647 	 */
648 	for (i = 0; i < n; i++) {
649 		req = gs_alloc_req(ep, ep->maxpacket, GFP_ATOMIC);
650 		if (!req)
651 			return list_empty(head) ? -ENOMEM : 0;
652 		req->complete = fn;
653 		list_add_tail(&req->list, head);
654 		if (allocated)
655 			(*allocated)++;
656 	}
657 	return 0;
658 }
659 
660 /**
661  * gs_start_io - start USB I/O streams
662  * @dev: encapsulates endpoints to use
663  * Context: holding port_lock; port_tty and port_usb are non-null
664  *
665  * We only start I/O when something is connected to both sides of
666  * this port.  If nothing is listening on the host side, we may
667  * be pointlessly filling up our TX buffers and FIFO.
668  */
669 static int gs_start_io(struct gs_port *port)
670 {
671 	struct list_head	*head = &port->read_pool;
672 	struct usb_ep		*ep = port->port_usb->out;
673 	int			status;
674 	unsigned		started;
675 
676 	/* Allocate RX and TX I/O buffers.  We can't easily do this much
677 	 * earlier (with GFP_KERNEL) because the requests are coupled to
678 	 * endpoints, as are the packet sizes we'll be using.  Different
679 	 * configurations may use different endpoints with a given port;
680 	 * and high speed vs full speed changes packet sizes too.
681 	 */
682 	status = gs_alloc_requests(ep, head, gs_read_complete,
683 		&port->read_allocated);
684 	if (status)
685 		return status;
686 
687 	status = gs_alloc_requests(port->port_usb->in, &port->write_pool,
688 			gs_write_complete, &port->write_allocated);
689 	if (status) {
690 		gs_free_requests(ep, head, &port->read_allocated);
691 		return status;
692 	}
693 
694 	/* queue read requests */
695 	port->n_read = 0;
696 	started = gs_start_rx(port);
697 
698 	/* unblock any pending writes into our circular buffer */
699 	if (started) {
700 		tty_wakeup(port->port.tty);
701 	} else {
702 		gs_free_requests(ep, head, &port->read_allocated);
703 		gs_free_requests(port->port_usb->in, &port->write_pool,
704 			&port->write_allocated);
705 		status = -EIO;
706 	}
707 
708 	return status;
709 }
710 
711 /*-------------------------------------------------------------------------*/
712 
713 /* TTY Driver */
714 
715 /*
716  * gs_open sets up the link between a gs_port and its associated TTY.
717  * That link is broken *only* by TTY close(), and all driver methods
718  * know that.
719  */
720 static int gs_open(struct tty_struct *tty, struct file *file)
721 {
722 	int		port_num = tty->index;
723 	struct gs_port	*port;
724 	int		status;
725 
726 	do {
727 		mutex_lock(&ports[port_num].lock);
728 		port = ports[port_num].port;
729 		if (!port)
730 			status = -ENODEV;
731 		else {
732 			spin_lock_irq(&port->port_lock);
733 
734 			/* already open?  Great. */
735 			if (port->port.count) {
736 				status = 0;
737 				port->port.count++;
738 
739 			/* currently opening/closing? wait ... */
740 			} else if (port->openclose) {
741 				status = -EBUSY;
742 
743 			/* ... else we do the work */
744 			} else {
745 				status = -EAGAIN;
746 				port->openclose = true;
747 			}
748 			spin_unlock_irq(&port->port_lock);
749 		}
750 		mutex_unlock(&ports[port_num].lock);
751 
752 		switch (status) {
753 		default:
754 			/* fully handled */
755 			return status;
756 		case -EAGAIN:
757 			/* must do the work */
758 			break;
759 		case -EBUSY:
760 			/* wait for EAGAIN task to finish */
761 			msleep(1);
762 			/* REVISIT could have a waitchannel here, if
763 			 * concurrent open performance is important
764 			 */
765 			break;
766 		}
767 	} while (status != -EAGAIN);
768 
769 	/* Do the "real open" */
770 	spin_lock_irq(&port->port_lock);
771 
772 	/* allocate circular buffer on first open */
773 	if (port->port_write_buf.buf_buf == NULL) {
774 
775 		spin_unlock_irq(&port->port_lock);
776 		status = gs_buf_alloc(&port->port_write_buf, WRITE_BUF_SIZE);
777 		spin_lock_irq(&port->port_lock);
778 
779 		if (status) {
780 			pr_debug("gs_open: ttyGS%d (%p,%p) no buffer\n",
781 				port->port_num, tty, file);
782 			port->openclose = false;
783 			goto exit_unlock_port;
784 		}
785 	}
786 
787 	/* REVISIT if REMOVED (ports[].port NULL), abort the open
788 	 * to let rmmod work faster (but this way isn't wrong).
789 	 */
790 
791 	/* REVISIT maybe wait for "carrier detect" */
792 
793 	tty->driver_data = port;
794 	port->port.tty = tty;
795 
796 	port->port.count = 1;
797 	port->openclose = false;
798 
799 	/* if connected, start the I/O stream */
800 	if (port->port_usb) {
801 		struct gserial	*gser = port->port_usb;
802 
803 		pr_debug("gs_open: start ttyGS%d\n", port->port_num);
804 		gs_start_io(port);
805 
806 		if (gser->connect)
807 			gser->connect(gser);
808 	}
809 
810 	pr_debug("gs_open: ttyGS%d (%p,%p)\n", port->port_num, tty, file);
811 
812 	status = 0;
813 
814 exit_unlock_port:
815 	spin_unlock_irq(&port->port_lock);
816 	return status;
817 }
818 
819 static int gs_writes_finished(struct gs_port *p)
820 {
821 	int cond;
822 
823 	/* return true on disconnect or empty buffer */
824 	spin_lock_irq(&p->port_lock);
825 	cond = (p->port_usb == NULL) || !gs_buf_data_avail(&p->port_write_buf);
826 	spin_unlock_irq(&p->port_lock);
827 
828 	return cond;
829 }
830 
831 static void gs_close(struct tty_struct *tty, struct file *file)
832 {
833 	struct gs_port *port = tty->driver_data;
834 	struct gserial	*gser;
835 
836 	spin_lock_irq(&port->port_lock);
837 
838 	if (port->port.count != 1) {
839 		if (port->port.count == 0)
840 			WARN_ON(1);
841 		else
842 			--port->port.count;
843 		goto exit;
844 	}
845 
846 	pr_debug("gs_close: ttyGS%d (%p,%p) ...\n", port->port_num, tty, file);
847 
848 	/* mark port as closing but in use; we can drop port lock
849 	 * and sleep if necessary
850 	 */
851 	port->openclose = true;
852 	port->port.count = 0;
853 
854 	gser = port->port_usb;
855 	if (gser && gser->disconnect)
856 		gser->disconnect(gser);
857 
858 	/* wait for circular write buffer to drain, disconnect, or at
859 	 * most GS_CLOSE_TIMEOUT seconds; then discard the rest
860 	 */
861 	if (gs_buf_data_avail(&port->port_write_buf) > 0 && gser) {
862 		spin_unlock_irq(&port->port_lock);
863 		wait_event_interruptible_timeout(port->drain_wait,
864 					gs_writes_finished(port),
865 					GS_CLOSE_TIMEOUT * HZ);
866 		spin_lock_irq(&port->port_lock);
867 		gser = port->port_usb;
868 	}
869 
870 	/* Iff we're disconnected, there can be no I/O in flight so it's
871 	 * ok to free the circular buffer; else just scrub it.  And don't
872 	 * let the push tasklet fire again until we're re-opened.
873 	 */
874 	if (gser == NULL)
875 		gs_buf_free(&port->port_write_buf);
876 	else
877 		gs_buf_clear(&port->port_write_buf);
878 
879 	tty->driver_data = NULL;
880 	port->port.tty = NULL;
881 
882 	port->openclose = false;
883 
884 	pr_debug("gs_close: ttyGS%d (%p,%p) done!\n",
885 			port->port_num, tty, file);
886 
887 	wake_up(&port->port.close_wait);
888 exit:
889 	spin_unlock_irq(&port->port_lock);
890 }
891 
892 static int gs_write(struct tty_struct *tty, const unsigned char *buf, int count)
893 {
894 	struct gs_port	*port = tty->driver_data;
895 	unsigned long	flags;
896 	int		status;
897 
898 	pr_vdebug("gs_write: ttyGS%d (%p) writing %d bytes\n",
899 			port->port_num, tty, count);
900 
901 	spin_lock_irqsave(&port->port_lock, flags);
902 	if (count)
903 		count = gs_buf_put(&port->port_write_buf, buf, count);
904 	/* treat count == 0 as flush_chars() */
905 	if (port->port_usb)
906 		status = gs_start_tx(port);
907 	spin_unlock_irqrestore(&port->port_lock, flags);
908 
909 	return count;
910 }
911 
912 static int gs_put_char(struct tty_struct *tty, unsigned char ch)
913 {
914 	struct gs_port	*port = tty->driver_data;
915 	unsigned long	flags;
916 	int		status;
917 
918 	pr_vdebug("gs_put_char: (%d,%p) char=0x%x, called from %ps\n",
919 		port->port_num, tty, ch, __builtin_return_address(0));
920 
921 	spin_lock_irqsave(&port->port_lock, flags);
922 	status = gs_buf_put(&port->port_write_buf, &ch, 1);
923 	spin_unlock_irqrestore(&port->port_lock, flags);
924 
925 	return status;
926 }
927 
928 static void gs_flush_chars(struct tty_struct *tty)
929 {
930 	struct gs_port	*port = tty->driver_data;
931 	unsigned long	flags;
932 
933 	pr_vdebug("gs_flush_chars: (%d,%p)\n", port->port_num, tty);
934 
935 	spin_lock_irqsave(&port->port_lock, flags);
936 	if (port->port_usb)
937 		gs_start_tx(port);
938 	spin_unlock_irqrestore(&port->port_lock, flags);
939 }
940 
941 static int gs_write_room(struct tty_struct *tty)
942 {
943 	struct gs_port	*port = tty->driver_data;
944 	unsigned long	flags;
945 	int		room = 0;
946 
947 	spin_lock_irqsave(&port->port_lock, flags);
948 	if (port->port_usb)
949 		room = gs_buf_space_avail(&port->port_write_buf);
950 	spin_unlock_irqrestore(&port->port_lock, flags);
951 
952 	pr_vdebug("gs_write_room: (%d,%p) room=%d\n",
953 		port->port_num, tty, room);
954 
955 	return room;
956 }
957 
958 static int gs_chars_in_buffer(struct tty_struct *tty)
959 {
960 	struct gs_port	*port = tty->driver_data;
961 	unsigned long	flags;
962 	int		chars = 0;
963 
964 	spin_lock_irqsave(&port->port_lock, flags);
965 	chars = gs_buf_data_avail(&port->port_write_buf);
966 	spin_unlock_irqrestore(&port->port_lock, flags);
967 
968 	pr_vdebug("gs_chars_in_buffer: (%d,%p) chars=%d\n",
969 		port->port_num, tty, chars);
970 
971 	return chars;
972 }
973 
974 /* undo side effects of setting TTY_THROTTLED */
975 static void gs_unthrottle(struct tty_struct *tty)
976 {
977 	struct gs_port		*port = tty->driver_data;
978 	unsigned long		flags;
979 
980 	spin_lock_irqsave(&port->port_lock, flags);
981 	if (port->port_usb) {
982 		/* Kickstart read queue processing.  We don't do xon/xoff,
983 		 * rts/cts, or other handshaking with the host, but if the
984 		 * read queue backs up enough we'll be NAKing OUT packets.
985 		 */
986 		tasklet_schedule(&port->push);
987 		pr_vdebug("ttyGS%d: unthrottle\n", port->port_num);
988 	}
989 	spin_unlock_irqrestore(&port->port_lock, flags);
990 }
991 
992 static int gs_break_ctl(struct tty_struct *tty, int duration)
993 {
994 	struct gs_port	*port = tty->driver_data;
995 	int		status = 0;
996 	struct gserial	*gser;
997 
998 	pr_vdebug("gs_break_ctl: ttyGS%d, send break (%d) \n",
999 			port->port_num, duration);
1000 
1001 	spin_lock_irq(&port->port_lock);
1002 	gser = port->port_usb;
1003 	if (gser && gser->send_break)
1004 		status = gser->send_break(gser, duration);
1005 	spin_unlock_irq(&port->port_lock);
1006 
1007 	return status;
1008 }
1009 
1010 static const struct tty_operations gs_tty_ops = {
1011 	.open =			gs_open,
1012 	.close =		gs_close,
1013 	.write =		gs_write,
1014 	.put_char =		gs_put_char,
1015 	.flush_chars =		gs_flush_chars,
1016 	.write_room =		gs_write_room,
1017 	.chars_in_buffer =	gs_chars_in_buffer,
1018 	.unthrottle =		gs_unthrottle,
1019 	.break_ctl =		gs_break_ctl,
1020 };
1021 
1022 /*-------------------------------------------------------------------------*/
1023 
1024 static struct tty_driver *gs_tty_driver;
1025 
1026 static int
1027 gs_port_alloc(unsigned port_num, struct usb_cdc_line_coding *coding)
1028 {
1029 	struct gs_port	*port;
1030 	int		ret = 0;
1031 
1032 	mutex_lock(&ports[port_num].lock);
1033 	if (ports[port_num].port) {
1034 		ret = -EBUSY;
1035 		goto out;
1036 	}
1037 
1038 	port = kzalloc(sizeof(struct gs_port), GFP_KERNEL);
1039 	if (port == NULL) {
1040 		ret = -ENOMEM;
1041 		goto out;
1042 	}
1043 
1044 	tty_port_init(&port->port);
1045 	spin_lock_init(&port->port_lock);
1046 	init_waitqueue_head(&port->drain_wait);
1047 
1048 	tasklet_init(&port->push, gs_rx_push, (unsigned long) port);
1049 
1050 	INIT_LIST_HEAD(&port->read_pool);
1051 	INIT_LIST_HEAD(&port->read_queue);
1052 	INIT_LIST_HEAD(&port->write_pool);
1053 
1054 	port->port_num = port_num;
1055 	port->port_line_coding = *coding;
1056 
1057 	ports[port_num].port = port;
1058 out:
1059 	mutex_unlock(&ports[port_num].lock);
1060 	return ret;
1061 }
1062 
1063 static int gs_closed(struct gs_port *port)
1064 {
1065 	int cond;
1066 
1067 	spin_lock_irq(&port->port_lock);
1068 	cond = (port->port.count == 0) && !port->openclose;
1069 	spin_unlock_irq(&port->port_lock);
1070 	return cond;
1071 }
1072 
1073 static void gserial_free_port(struct gs_port *port)
1074 {
1075 	tasklet_kill(&port->push);
1076 	/* wait for old opens to finish */
1077 	wait_event(port->port.close_wait, gs_closed(port));
1078 	WARN_ON(port->port_usb != NULL);
1079 	tty_port_destroy(&port->port);
1080 	kfree(port);
1081 }
1082 
1083 void gserial_free_line(unsigned char port_num)
1084 {
1085 	struct gs_port	*port;
1086 
1087 	mutex_lock(&ports[port_num].lock);
1088 	if (WARN_ON(!ports[port_num].port)) {
1089 		mutex_unlock(&ports[port_num].lock);
1090 		return;
1091 	}
1092 	port = ports[port_num].port;
1093 	ports[port_num].port = NULL;
1094 	mutex_unlock(&ports[port_num].lock);
1095 
1096 	gserial_free_port(port);
1097 	tty_unregister_device(gs_tty_driver, port_num);
1098 }
1099 EXPORT_SYMBOL_GPL(gserial_free_line);
1100 
1101 int gserial_alloc_line(unsigned char *line_num)
1102 {
1103 	struct usb_cdc_line_coding	coding;
1104 	struct device			*tty_dev;
1105 	int				ret;
1106 	int				port_num;
1107 
1108 	coding.dwDTERate = cpu_to_le32(9600);
1109 	coding.bCharFormat = 8;
1110 	coding.bParityType = USB_CDC_NO_PARITY;
1111 	coding.bDataBits = USB_CDC_1_STOP_BITS;
1112 
1113 	for (port_num = 0; port_num < MAX_U_SERIAL_PORTS; port_num++) {
1114 		ret = gs_port_alloc(port_num, &coding);
1115 		if (ret == -EBUSY)
1116 			continue;
1117 		if (ret)
1118 			return ret;
1119 		break;
1120 	}
1121 	if (ret)
1122 		return ret;
1123 
1124 	/* ... and sysfs class devices, so mdev/udev make /dev/ttyGS* */
1125 
1126 	tty_dev = tty_port_register_device(&ports[port_num].port->port,
1127 			gs_tty_driver, port_num, NULL);
1128 	if (IS_ERR(tty_dev)) {
1129 		struct gs_port	*port;
1130 		pr_err("%s: failed to register tty for port %d, err %ld\n",
1131 				__func__, port_num, PTR_ERR(tty_dev));
1132 
1133 		ret = PTR_ERR(tty_dev);
1134 		port = ports[port_num].port;
1135 		ports[port_num].port = NULL;
1136 		gserial_free_port(port);
1137 		goto err;
1138 	}
1139 	*line_num = port_num;
1140 err:
1141 	return ret;
1142 }
1143 EXPORT_SYMBOL_GPL(gserial_alloc_line);
1144 
1145 /**
1146  * gserial_connect - notify TTY I/O glue that USB link is active
1147  * @gser: the function, set up with endpoints and descriptors
1148  * @port_num: which port is active
1149  * Context: any (usually from irq)
1150  *
1151  * This is called activate endpoints and let the TTY layer know that
1152  * the connection is active ... not unlike "carrier detect".  It won't
1153  * necessarily start I/O queues; unless the TTY is held open by any
1154  * task, there would be no point.  However, the endpoints will be
1155  * activated so the USB host can perform I/O, subject to basic USB
1156  * hardware flow control.
1157  *
1158  * Caller needs to have set up the endpoints and USB function in @dev
1159  * before calling this, as well as the appropriate (speed-specific)
1160  * endpoint descriptors, and also have allocate @port_num by calling
1161  * @gserial_alloc_line().
1162  *
1163  * Returns negative errno or zero.
1164  * On success, ep->driver_data will be overwritten.
1165  */
1166 int gserial_connect(struct gserial *gser, u8 port_num)
1167 {
1168 	struct gs_port	*port;
1169 	unsigned long	flags;
1170 	int		status;
1171 
1172 	if (port_num >= MAX_U_SERIAL_PORTS)
1173 		return -ENXIO;
1174 
1175 	port = ports[port_num].port;
1176 	if (!port) {
1177 		pr_err("serial line %d not allocated.\n", port_num);
1178 		return -EINVAL;
1179 	}
1180 	if (port->port_usb) {
1181 		pr_err("serial line %d is in use.\n", port_num);
1182 		return -EBUSY;
1183 	}
1184 
1185 	/* activate the endpoints */
1186 	status = usb_ep_enable(gser->in);
1187 	if (status < 0)
1188 		return status;
1189 	gser->in->driver_data = port;
1190 
1191 	status = usb_ep_enable(gser->out);
1192 	if (status < 0)
1193 		goto fail_out;
1194 	gser->out->driver_data = port;
1195 
1196 	/* then tell the tty glue that I/O can work */
1197 	spin_lock_irqsave(&port->port_lock, flags);
1198 	gser->ioport = port;
1199 	port->port_usb = gser;
1200 
1201 	/* REVISIT unclear how best to handle this state...
1202 	 * we don't really couple it with the Linux TTY.
1203 	 */
1204 	gser->port_line_coding = port->port_line_coding;
1205 
1206 	/* REVISIT if waiting on "carrier detect", signal. */
1207 
1208 	/* if it's already open, start I/O ... and notify the serial
1209 	 * protocol about open/close status (connect/disconnect).
1210 	 */
1211 	if (port->port.count) {
1212 		pr_debug("gserial_connect: start ttyGS%d\n", port->port_num);
1213 		gs_start_io(port);
1214 		if (gser->connect)
1215 			gser->connect(gser);
1216 	} else {
1217 		if (gser->disconnect)
1218 			gser->disconnect(gser);
1219 	}
1220 
1221 	spin_unlock_irqrestore(&port->port_lock, flags);
1222 
1223 	return status;
1224 
1225 fail_out:
1226 	usb_ep_disable(gser->in);
1227 	gser->in->driver_data = NULL;
1228 	return status;
1229 }
1230 EXPORT_SYMBOL_GPL(gserial_connect);
1231 /**
1232  * gserial_disconnect - notify TTY I/O glue that USB link is inactive
1233  * @gser: the function, on which gserial_connect() was called
1234  * Context: any (usually from irq)
1235  *
1236  * This is called to deactivate endpoints and let the TTY layer know
1237  * that the connection went inactive ... not unlike "hangup".
1238  *
1239  * On return, the state is as if gserial_connect() had never been called;
1240  * there is no active USB I/O on these endpoints.
1241  */
1242 void gserial_disconnect(struct gserial *gser)
1243 {
1244 	struct gs_port	*port = gser->ioport;
1245 	unsigned long	flags;
1246 
1247 	if (!port)
1248 		return;
1249 
1250 	/* tell the TTY glue not to do I/O here any more */
1251 	spin_lock_irqsave(&port->port_lock, flags);
1252 
1253 	/* REVISIT as above: how best to track this? */
1254 	port->port_line_coding = gser->port_line_coding;
1255 
1256 	port->port_usb = NULL;
1257 	gser->ioport = NULL;
1258 	if (port->port.count > 0 || port->openclose) {
1259 		wake_up_interruptible(&port->drain_wait);
1260 		if (port->port.tty)
1261 			tty_hangup(port->port.tty);
1262 	}
1263 	spin_unlock_irqrestore(&port->port_lock, flags);
1264 
1265 	/* disable endpoints, aborting down any active I/O */
1266 	usb_ep_disable(gser->out);
1267 	gser->out->driver_data = NULL;
1268 
1269 	usb_ep_disable(gser->in);
1270 	gser->in->driver_data = NULL;
1271 
1272 	/* finally, free any unused/unusable I/O buffers */
1273 	spin_lock_irqsave(&port->port_lock, flags);
1274 	if (port->port.count == 0 && !port->openclose)
1275 		gs_buf_free(&port->port_write_buf);
1276 	gs_free_requests(gser->out, &port->read_pool, NULL);
1277 	gs_free_requests(gser->out, &port->read_queue, NULL);
1278 	gs_free_requests(gser->in, &port->write_pool, NULL);
1279 
1280 	port->read_allocated = port->read_started =
1281 		port->write_allocated = port->write_started = 0;
1282 
1283 	spin_unlock_irqrestore(&port->port_lock, flags);
1284 }
1285 EXPORT_SYMBOL_GPL(gserial_disconnect);
1286 
1287 static int userial_init(void)
1288 {
1289 	unsigned			i;
1290 	int				status;
1291 
1292 	gs_tty_driver = alloc_tty_driver(MAX_U_SERIAL_PORTS);
1293 	if (!gs_tty_driver)
1294 		return -ENOMEM;
1295 
1296 	gs_tty_driver->driver_name = "g_serial";
1297 	gs_tty_driver->name = "ttyGS";
1298 	/* uses dynamically assigned dev_t values */
1299 
1300 	gs_tty_driver->type = TTY_DRIVER_TYPE_SERIAL;
1301 	gs_tty_driver->subtype = SERIAL_TYPE_NORMAL;
1302 	gs_tty_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1303 	gs_tty_driver->init_termios = tty_std_termios;
1304 
1305 	/* 9600-8-N-1 ... matches defaults expected by "usbser.sys" on
1306 	 * MS-Windows.  Otherwise, most of these flags shouldn't affect
1307 	 * anything unless we were to actually hook up to a serial line.
1308 	 */
1309 	gs_tty_driver->init_termios.c_cflag =
1310 			B9600 | CS8 | CREAD | HUPCL | CLOCAL;
1311 	gs_tty_driver->init_termios.c_ispeed = 9600;
1312 	gs_tty_driver->init_termios.c_ospeed = 9600;
1313 
1314 	tty_set_operations(gs_tty_driver, &gs_tty_ops);
1315 	for (i = 0; i < MAX_U_SERIAL_PORTS; i++)
1316 		mutex_init(&ports[i].lock);
1317 
1318 	/* export the driver ... */
1319 	status = tty_register_driver(gs_tty_driver);
1320 	if (status) {
1321 		pr_err("%s: cannot register, err %d\n",
1322 				__func__, status);
1323 		goto fail;
1324 	}
1325 
1326 	pr_debug("%s: registered %d ttyGS* device%s\n", __func__,
1327 			MAX_U_SERIAL_PORTS,
1328 			(MAX_U_SERIAL_PORTS == 1) ? "" : "s");
1329 
1330 	return status;
1331 fail:
1332 	put_tty_driver(gs_tty_driver);
1333 	gs_tty_driver = NULL;
1334 	return status;
1335 }
1336 module_init(userial_init);
1337 
1338 static void userial_cleanup(void)
1339 {
1340 	tty_unregister_driver(gs_tty_driver);
1341 	put_tty_driver(gs_tty_driver);
1342 	gs_tty_driver = NULL;
1343 }
1344 module_exit(userial_cleanup);
1345 
1346 MODULE_LICENSE("GPL");
1347