xref: /openbmc/linux/drivers/usb/gadget/function/u_fs.h (revision a06c488d)
1 /*
2  * u_fs.h
3  *
4  * Utility definitions for the FunctionFS
5  *
6  * Copyright (c) 2013 Samsung Electronics Co., Ltd.
7  *		http://www.samsung.com
8  *
9  * Author: Andrzej Pietrasiewicz <andrzej.p@samsung.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14  */
15 
16 #ifndef U_FFS_H
17 #define U_FFS_H
18 
19 #include <linux/usb/composite.h>
20 #include <linux/list.h>
21 #include <linux/mutex.h>
22 #include <linux/workqueue.h>
23 
24 #ifdef VERBOSE_DEBUG
25 #ifndef pr_vdebug
26 #  define pr_vdebug pr_debug
27 #endif /* pr_vdebug */
28 #  define ffs_dump_mem(prefix, ptr, len) \
29 	print_hex_dump_bytes(pr_fmt(prefix ": "), DUMP_PREFIX_NONE, ptr, len)
30 #else
31 #ifndef pr_vdebug
32 #  define pr_vdebug(...)                 do { } while (0)
33 #endif /* pr_vdebug */
34 #  define ffs_dump_mem(prefix, ptr, len) do { } while (0)
35 #endif /* VERBOSE_DEBUG */
36 
37 #define ENTER()    pr_vdebug("%s()\n", __func__)
38 
39 struct f_fs_opts;
40 
41 struct ffs_dev {
42 	const char *name;
43 	bool name_allocated;
44 	bool mounted;
45 	bool desc_ready;
46 	bool single;
47 	struct ffs_data *ffs_data;
48 	struct f_fs_opts *opts;
49 	struct list_head entry;
50 
51 	int (*ffs_ready_callback)(struct ffs_data *ffs);
52 	void (*ffs_closed_callback)(struct ffs_data *ffs);
53 	void *(*ffs_acquire_dev_callback)(struct ffs_dev *dev);
54 	void (*ffs_release_dev_callback)(struct ffs_dev *dev);
55 };
56 
57 extern struct mutex ffs_lock;
58 
59 static inline void ffs_dev_lock(void)
60 {
61 	mutex_lock(&ffs_lock);
62 }
63 
64 static inline void ffs_dev_unlock(void)
65 {
66 	mutex_unlock(&ffs_lock);
67 }
68 
69 int ffs_name_dev(struct ffs_dev *dev, const char *name);
70 int ffs_single_dev(struct ffs_dev *dev);
71 
72 struct ffs_epfile;
73 struct ffs_function;
74 
75 enum ffs_state {
76 	/*
77 	 * Waiting for descriptors and strings.
78 	 *
79 	 * In this state no open(2), read(2) or write(2) on epfiles
80 	 * may succeed (which should not be the problem as there
81 	 * should be no such files opened in the first place).
82 	 */
83 	FFS_READ_DESCRIPTORS,
84 	FFS_READ_STRINGS,
85 
86 	/*
87 	 * We've got descriptors and strings.  We are or have called
88 	 * functionfs_ready_callback().  functionfs_bind() may have
89 	 * been called but we don't know.
90 	 *
91 	 * This is the only state in which operations on epfiles may
92 	 * succeed.
93 	 */
94 	FFS_ACTIVE,
95 
96 	/*
97 	 * Function is visible to host, but it's not functional. All
98 	 * setup requests are stalled and transfers on another endpoints
99 	 * are refused. All epfiles, except ep0, are deleted so there
100 	 * is no way to perform any operations on them.
101 	 *
102 	 * This state is set after closing all functionfs files, when
103 	 * mount parameter "no_disconnect=1" has been set. Function will
104 	 * remain in deactivated state until filesystem is umounted or
105 	 * ep0 is opened again. In the second case functionfs state will
106 	 * be reset, and it will be ready for descriptors and strings
107 	 * writing.
108 	 *
109 	 * This is useful only when functionfs is composed to gadget
110 	 * with another function which can perform some critical
111 	 * operations, and it's strongly desired to have this operations
112 	 * completed, even after functionfs files closure.
113 	 */
114 	FFS_DEACTIVATED,
115 
116 	/*
117 	 * All endpoints have been closed.  This state is also set if
118 	 * we encounter an unrecoverable error.  The only
119 	 * unrecoverable error is situation when after reading strings
120 	 * from user space we fail to initialise epfiles or
121 	 * functionfs_ready_callback() returns with error (<0).
122 	 *
123 	 * In this state no open(2), read(2) or write(2) (both on ep0
124 	 * as well as epfile) may succeed (at this point epfiles are
125 	 * unlinked and all closed so this is not a problem; ep0 is
126 	 * also closed but ep0 file exists and so open(2) on ep0 must
127 	 * fail).
128 	 */
129 	FFS_CLOSING
130 };
131 
132 enum ffs_setup_state {
133 	/* There is no setup request pending. */
134 	FFS_NO_SETUP,
135 	/*
136 	 * User has read events and there was a setup request event
137 	 * there.  The next read/write on ep0 will handle the
138 	 * request.
139 	 */
140 	FFS_SETUP_PENDING,
141 	/*
142 	 * There was event pending but before user space handled it
143 	 * some other event was introduced which canceled existing
144 	 * setup.  If this state is set read/write on ep0 return
145 	 * -EIDRM.  This state is only set when adding event.
146 	 */
147 	FFS_SETUP_CANCELLED
148 };
149 
150 struct ffs_data {
151 	struct usb_gadget		*gadget;
152 
153 	/*
154 	 * Protect access read/write operations, only one read/write
155 	 * at a time.  As a consequence protects ep0req and company.
156 	 * While setup request is being processed (queued) this is
157 	 * held.
158 	 */
159 	struct mutex			mutex;
160 
161 	/*
162 	 * Protect access to endpoint related structures (basically
163 	 * usb_ep_queue(), usb_ep_dequeue(), etc. calls) except for
164 	 * endpoint zero.
165 	 */
166 	spinlock_t			eps_lock;
167 
168 	/*
169 	 * XXX REVISIT do we need our own request? Since we are not
170 	 * handling setup requests immediately user space may be so
171 	 * slow that another setup will be sent to the gadget but this
172 	 * time not to us but another function and then there could be
173 	 * a race.  Is that the case? Or maybe we can use cdev->req
174 	 * after all, maybe we just need some spinlock for that?
175 	 */
176 	struct usb_request		*ep0req;		/* P: mutex */
177 	struct completion		ep0req_completion;	/* P: mutex */
178 
179 	/* reference counter */
180 	atomic_t			ref;
181 	/* how many files are opened (EP0 and others) */
182 	atomic_t			opened;
183 
184 	/* EP0 state */
185 	enum ffs_state			state;
186 
187 	/*
188 	 * Possible transitions:
189 	 * + FFS_NO_SETUP        -> FFS_SETUP_PENDING  -- P: ev.waitq.lock
190 	 *               happens only in ep0 read which is P: mutex
191 	 * + FFS_SETUP_PENDING   -> FFS_NO_SETUP       -- P: ev.waitq.lock
192 	 *               happens only in ep0 i/o  which is P: mutex
193 	 * + FFS_SETUP_PENDING   -> FFS_SETUP_CANCELLED -- P: ev.waitq.lock
194 	 * + FFS_SETUP_CANCELLED -> FFS_NO_SETUP        -- cmpxchg
195 	 *
196 	 * This field should never be accessed directly and instead
197 	 * ffs_setup_state_clear_cancelled function should be used.
198 	 */
199 	enum ffs_setup_state		setup_state;
200 
201 	/* Events & such. */
202 	struct {
203 		u8				types[4];
204 		unsigned short			count;
205 		/* XXX REVISIT need to update it in some places, or do we? */
206 		unsigned short			can_stall;
207 		struct usb_ctrlrequest		setup;
208 
209 		wait_queue_head_t		waitq;
210 	} ev; /* the whole structure, P: ev.waitq.lock */
211 
212 	/* Flags */
213 	unsigned long			flags;
214 #define FFS_FL_CALL_CLOSED_CALLBACK 0
215 #define FFS_FL_BOUND                1
216 
217 	/* Active function */
218 	struct ffs_function		*func;
219 
220 	/*
221 	 * Device name, write once when file system is mounted.
222 	 * Intended for user to read if she wants.
223 	 */
224 	const char			*dev_name;
225 	/* Private data for our user (ie. gadget).  Managed by user. */
226 	void				*private_data;
227 
228 	/* filled by __ffs_data_got_descs() */
229 	/*
230 	 * raw_descs is what you kfree, real_descs points inside of raw_descs,
231 	 * where full speed, high speed and super speed descriptors start.
232 	 * real_descs_length is the length of all those descriptors.
233 	 */
234 	const void			*raw_descs_data;
235 	const void			*raw_descs;
236 	unsigned			raw_descs_length;
237 	unsigned			fs_descs_count;
238 	unsigned			hs_descs_count;
239 	unsigned			ss_descs_count;
240 	unsigned			ms_os_descs_count;
241 	unsigned			ms_os_descs_ext_prop_count;
242 	unsigned			ms_os_descs_ext_prop_name_len;
243 	unsigned			ms_os_descs_ext_prop_data_len;
244 	void				*ms_os_descs_ext_prop_avail;
245 	void				*ms_os_descs_ext_prop_name_avail;
246 	void				*ms_os_descs_ext_prop_data_avail;
247 
248 	unsigned			user_flags;
249 
250 	u8				eps_addrmap[15];
251 
252 	unsigned short			strings_count;
253 	unsigned short			interfaces_count;
254 	unsigned short			eps_count;
255 	unsigned short			_pad1;
256 
257 	/* filled by __ffs_data_got_strings() */
258 	/* ids in stringtabs are set in functionfs_bind() */
259 	const void			*raw_strings;
260 	struct usb_gadget_strings	**stringtabs;
261 
262 	/*
263 	 * File system's super block, write once when file system is
264 	 * mounted.
265 	 */
266 	struct super_block		*sb;
267 
268 	/* File permissions, written once when fs is mounted */
269 	struct ffs_file_perms {
270 		umode_t				mode;
271 		kuid_t				uid;
272 		kgid_t				gid;
273 	}				file_perms;
274 
275 	struct eventfd_ctx *ffs_eventfd;
276 	bool no_disconnect;
277 	struct work_struct reset_work;
278 
279 	/*
280 	 * The endpoint files, filled by ffs_epfiles_create(),
281 	 * destroyed by ffs_epfiles_destroy().
282 	 */
283 	struct ffs_epfile		*epfiles;
284 };
285 
286 
287 struct f_fs_opts {
288 	struct usb_function_instance	func_inst;
289 	struct ffs_dev			*dev;
290 	unsigned			refcnt;
291 	bool				no_configfs;
292 };
293 
294 static inline struct f_fs_opts *to_f_fs_opts(struct usb_function_instance *fi)
295 {
296 	return container_of(fi, struct f_fs_opts, func_inst);
297 }
298 
299 #endif /* U_FFS_H */
300