xref: /openbmc/linux/drivers/usb/gadget/function/u_fs.h (revision 981ab3f1)
1 /*
2  * u_fs.h
3  *
4  * Utility definitions for the FunctionFS
5  *
6  * Copyright (c) 2013 Samsung Electronics Co., Ltd.
7  *		http://www.samsung.com
8  *
9  * Author: Andrzej Pietrasiewicz <andrzej.p@samsung.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14  */
15 
16 #ifndef U_FFS_H
17 #define U_FFS_H
18 
19 #include <linux/usb/composite.h>
20 #include <linux/list.h>
21 #include <linux/mutex.h>
22 #include <linux/workqueue.h>
23 #include <linux/refcount.h>
24 
25 #ifdef VERBOSE_DEBUG
26 #ifndef pr_vdebug
27 #  define pr_vdebug pr_debug
28 #endif /* pr_vdebug */
29 #  define ffs_dump_mem(prefix, ptr, len) \
30 	print_hex_dump_bytes(pr_fmt(prefix ": "), DUMP_PREFIX_NONE, ptr, len)
31 #else
32 #ifndef pr_vdebug
33 #  define pr_vdebug(...)                 do { } while (0)
34 #endif /* pr_vdebug */
35 #  define ffs_dump_mem(prefix, ptr, len) do { } while (0)
36 #endif /* VERBOSE_DEBUG */
37 
38 #define ENTER()    pr_vdebug("%s()\n", __func__)
39 
40 struct f_fs_opts;
41 
42 struct ffs_dev {
43 	struct ffs_data *ffs_data;
44 	struct f_fs_opts *opts;
45 	struct list_head entry;
46 
47 	char name[41];
48 
49 	bool mounted;
50 	bool desc_ready;
51 	bool single;
52 
53 	int (*ffs_ready_callback)(struct ffs_data *ffs);
54 	void (*ffs_closed_callback)(struct ffs_data *ffs);
55 	void *(*ffs_acquire_dev_callback)(struct ffs_dev *dev);
56 	void (*ffs_release_dev_callback)(struct ffs_dev *dev);
57 };
58 
59 extern struct mutex ffs_lock;
60 
61 static inline void ffs_dev_lock(void)
62 {
63 	mutex_lock(&ffs_lock);
64 }
65 
66 static inline void ffs_dev_unlock(void)
67 {
68 	mutex_unlock(&ffs_lock);
69 }
70 
71 int ffs_name_dev(struct ffs_dev *dev, const char *name);
72 int ffs_single_dev(struct ffs_dev *dev);
73 
74 struct ffs_epfile;
75 struct ffs_function;
76 
77 enum ffs_state {
78 	/*
79 	 * Waiting for descriptors and strings.
80 	 *
81 	 * In this state no open(2), read(2) or write(2) on epfiles
82 	 * may succeed (which should not be the problem as there
83 	 * should be no such files opened in the first place).
84 	 */
85 	FFS_READ_DESCRIPTORS,
86 	FFS_READ_STRINGS,
87 
88 	/*
89 	 * We've got descriptors and strings.  We are or have called
90 	 * functionfs_ready_callback().  functionfs_bind() may have
91 	 * been called but we don't know.
92 	 *
93 	 * This is the only state in which operations on epfiles may
94 	 * succeed.
95 	 */
96 	FFS_ACTIVE,
97 
98 	/*
99 	 * Function is visible to host, but it's not functional. All
100 	 * setup requests are stalled and transfers on another endpoints
101 	 * are refused. All epfiles, except ep0, are deleted so there
102 	 * is no way to perform any operations on them.
103 	 *
104 	 * This state is set after closing all functionfs files, when
105 	 * mount parameter "no_disconnect=1" has been set. Function will
106 	 * remain in deactivated state until filesystem is umounted or
107 	 * ep0 is opened again. In the second case functionfs state will
108 	 * be reset, and it will be ready for descriptors and strings
109 	 * writing.
110 	 *
111 	 * This is useful only when functionfs is composed to gadget
112 	 * with another function which can perform some critical
113 	 * operations, and it's strongly desired to have this operations
114 	 * completed, even after functionfs files closure.
115 	 */
116 	FFS_DEACTIVATED,
117 
118 	/*
119 	 * All endpoints have been closed.  This state is also set if
120 	 * we encounter an unrecoverable error.  The only
121 	 * unrecoverable error is situation when after reading strings
122 	 * from user space we fail to initialise epfiles or
123 	 * functionfs_ready_callback() returns with error (<0).
124 	 *
125 	 * In this state no open(2), read(2) or write(2) (both on ep0
126 	 * as well as epfile) may succeed (at this point epfiles are
127 	 * unlinked and all closed so this is not a problem; ep0 is
128 	 * also closed but ep0 file exists and so open(2) on ep0 must
129 	 * fail).
130 	 */
131 	FFS_CLOSING
132 };
133 
134 enum ffs_setup_state {
135 	/* There is no setup request pending. */
136 	FFS_NO_SETUP,
137 	/*
138 	 * User has read events and there was a setup request event
139 	 * there.  The next read/write on ep0 will handle the
140 	 * request.
141 	 */
142 	FFS_SETUP_PENDING,
143 	/*
144 	 * There was event pending but before user space handled it
145 	 * some other event was introduced which canceled existing
146 	 * setup.  If this state is set read/write on ep0 return
147 	 * -EIDRM.  This state is only set when adding event.
148 	 */
149 	FFS_SETUP_CANCELLED
150 };
151 
152 struct ffs_data {
153 	struct usb_gadget		*gadget;
154 
155 	/*
156 	 * Protect access read/write operations, only one read/write
157 	 * at a time.  As a consequence protects ep0req and company.
158 	 * While setup request is being processed (queued) this is
159 	 * held.
160 	 */
161 	struct mutex			mutex;
162 
163 	/*
164 	 * Protect access to endpoint related structures (basically
165 	 * usb_ep_queue(), usb_ep_dequeue(), etc. calls) except for
166 	 * endpoint zero.
167 	 */
168 	spinlock_t			eps_lock;
169 
170 	/*
171 	 * XXX REVISIT do we need our own request? Since we are not
172 	 * handling setup requests immediately user space may be so
173 	 * slow that another setup will be sent to the gadget but this
174 	 * time not to us but another function and then there could be
175 	 * a race.  Is that the case? Or maybe we can use cdev->req
176 	 * after all, maybe we just need some spinlock for that?
177 	 */
178 	struct usb_request		*ep0req;		/* P: mutex */
179 	struct completion		ep0req_completion;	/* P: mutex */
180 
181 	/* reference counter */
182 	refcount_t			ref;
183 	/* how many files are opened (EP0 and others) */
184 	atomic_t			opened;
185 
186 	/* EP0 state */
187 	enum ffs_state			state;
188 
189 	/*
190 	 * Possible transitions:
191 	 * + FFS_NO_SETUP        -> FFS_SETUP_PENDING  -- P: ev.waitq.lock
192 	 *               happens only in ep0 read which is P: mutex
193 	 * + FFS_SETUP_PENDING   -> FFS_NO_SETUP       -- P: ev.waitq.lock
194 	 *               happens only in ep0 i/o  which is P: mutex
195 	 * + FFS_SETUP_PENDING   -> FFS_SETUP_CANCELLED -- P: ev.waitq.lock
196 	 * + FFS_SETUP_CANCELLED -> FFS_NO_SETUP        -- cmpxchg
197 	 *
198 	 * This field should never be accessed directly and instead
199 	 * ffs_setup_state_clear_cancelled function should be used.
200 	 */
201 	enum ffs_setup_state		setup_state;
202 
203 	/* Events & such. */
204 	struct {
205 		u8				types[4];
206 		unsigned short			count;
207 		/* XXX REVISIT need to update it in some places, or do we? */
208 		unsigned short			can_stall;
209 		struct usb_ctrlrequest		setup;
210 
211 		wait_queue_head_t		waitq;
212 	} ev; /* the whole structure, P: ev.waitq.lock */
213 
214 	/* Flags */
215 	unsigned long			flags;
216 #define FFS_FL_CALL_CLOSED_CALLBACK 0
217 #define FFS_FL_BOUND                1
218 
219 	/* For waking up blocked threads when function is enabled. */
220 	wait_queue_head_t		wait;
221 
222 	/* Active function */
223 	struct ffs_function		*func;
224 
225 	/*
226 	 * Device name, write once when file system is mounted.
227 	 * Intended for user to read if she wants.
228 	 */
229 	const char			*dev_name;
230 	/* Private data for our user (ie. gadget).  Managed by user. */
231 	void				*private_data;
232 
233 	/* filled by __ffs_data_got_descs() */
234 	/*
235 	 * raw_descs is what you kfree, real_descs points inside of raw_descs,
236 	 * where full speed, high speed and super speed descriptors start.
237 	 * real_descs_length is the length of all those descriptors.
238 	 */
239 	const void			*raw_descs_data;
240 	const void			*raw_descs;
241 	unsigned			raw_descs_length;
242 	unsigned			fs_descs_count;
243 	unsigned			hs_descs_count;
244 	unsigned			ss_descs_count;
245 	unsigned			ms_os_descs_count;
246 	unsigned			ms_os_descs_ext_prop_count;
247 	unsigned			ms_os_descs_ext_prop_name_len;
248 	unsigned			ms_os_descs_ext_prop_data_len;
249 	void				*ms_os_descs_ext_prop_avail;
250 	void				*ms_os_descs_ext_prop_name_avail;
251 	void				*ms_os_descs_ext_prop_data_avail;
252 
253 	unsigned			user_flags;
254 
255 #define FFS_MAX_EPS_COUNT 31
256 	u8				eps_addrmap[FFS_MAX_EPS_COUNT];
257 
258 	unsigned short			strings_count;
259 	unsigned short			interfaces_count;
260 	unsigned short			eps_count;
261 	unsigned short			_pad1;
262 
263 	/* filled by __ffs_data_got_strings() */
264 	/* ids in stringtabs are set in functionfs_bind() */
265 	const void			*raw_strings;
266 	struct usb_gadget_strings	**stringtabs;
267 
268 	/*
269 	 * File system's super block, write once when file system is
270 	 * mounted.
271 	 */
272 	struct super_block		*sb;
273 
274 	/* File permissions, written once when fs is mounted */
275 	struct ffs_file_perms {
276 		umode_t				mode;
277 		kuid_t				uid;
278 		kgid_t				gid;
279 	}				file_perms;
280 
281 	struct eventfd_ctx *ffs_eventfd;
282 	bool no_disconnect;
283 	struct work_struct reset_work;
284 
285 	/*
286 	 * The endpoint files, filled by ffs_epfiles_create(),
287 	 * destroyed by ffs_epfiles_destroy().
288 	 */
289 	struct ffs_epfile		*epfiles;
290 };
291 
292 
293 struct f_fs_opts {
294 	struct usb_function_instance	func_inst;
295 	struct ffs_dev			*dev;
296 	unsigned			refcnt;
297 	bool				no_configfs;
298 };
299 
300 static inline struct f_fs_opts *to_f_fs_opts(struct usb_function_instance *fi)
301 {
302 	return container_of(fi, struct f_fs_opts, func_inst);
303 }
304 
305 #endif /* U_FFS_H */
306