xref: /openbmc/linux/drivers/usb/gadget/function/u_fs.h (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * u_fs.h
4  *
5  * Utility definitions for the FunctionFS
6  *
7  * Copyright (c) 2013 Samsung Electronics Co., Ltd.
8  *		http://www.samsung.com
9  *
10  * Author: Andrzej Pietrasiewicz <andrzej.p@samsung.com>
11  */
12 
13 #ifndef U_FFS_H
14 #define U_FFS_H
15 
16 #include <linux/usb/composite.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/workqueue.h>
20 #include <linux/refcount.h>
21 
22 #ifdef VERBOSE_DEBUG
23 #ifndef pr_vdebug
24 #  define pr_vdebug pr_debug
25 #endif /* pr_vdebug */
26 #  define ffs_dump_mem(prefix, ptr, len) \
27 	print_hex_dump_bytes(pr_fmt(prefix ": "), DUMP_PREFIX_NONE, ptr, len)
28 #else
29 #ifndef pr_vdebug
30 #  define pr_vdebug(...)                 do { } while (0)
31 #endif /* pr_vdebug */
32 #  define ffs_dump_mem(prefix, ptr, len) do { } while (0)
33 #endif /* VERBOSE_DEBUG */
34 
35 #define ENTER()    pr_vdebug("%s()\n", __func__)
36 
37 struct f_fs_opts;
38 
39 struct ffs_dev {
40 	struct ffs_data *ffs_data;
41 	struct f_fs_opts *opts;
42 	struct list_head entry;
43 
44 	char name[41];
45 
46 	bool mounted;
47 	bool desc_ready;
48 	bool single;
49 
50 	int (*ffs_ready_callback)(struct ffs_data *ffs);
51 	void (*ffs_closed_callback)(struct ffs_data *ffs);
52 	void *(*ffs_acquire_dev_callback)(struct ffs_dev *dev);
53 	void (*ffs_release_dev_callback)(struct ffs_dev *dev);
54 };
55 
56 extern struct mutex ffs_lock;
57 
58 static inline void ffs_dev_lock(void)
59 {
60 	mutex_lock(&ffs_lock);
61 }
62 
63 static inline void ffs_dev_unlock(void)
64 {
65 	mutex_unlock(&ffs_lock);
66 }
67 
68 int ffs_name_dev(struct ffs_dev *dev, const char *name);
69 int ffs_single_dev(struct ffs_dev *dev);
70 
71 struct ffs_epfile;
72 struct ffs_function;
73 
74 enum ffs_state {
75 	/*
76 	 * Waiting for descriptors and strings.
77 	 *
78 	 * In this state no open(2), read(2) or write(2) on epfiles
79 	 * may succeed (which should not be the problem as there
80 	 * should be no such files opened in the first place).
81 	 */
82 	FFS_READ_DESCRIPTORS,
83 	FFS_READ_STRINGS,
84 
85 	/*
86 	 * We've got descriptors and strings.  We are or have called
87 	 * functionfs_ready_callback().  functionfs_bind() may have
88 	 * been called but we don't know.
89 	 *
90 	 * This is the only state in which operations on epfiles may
91 	 * succeed.
92 	 */
93 	FFS_ACTIVE,
94 
95 	/*
96 	 * Function is visible to host, but it's not functional. All
97 	 * setup requests are stalled and transfers on another endpoints
98 	 * are refused. All epfiles, except ep0, are deleted so there
99 	 * is no way to perform any operations on them.
100 	 *
101 	 * This state is set after closing all functionfs files, when
102 	 * mount parameter "no_disconnect=1" has been set. Function will
103 	 * remain in deactivated state until filesystem is umounted or
104 	 * ep0 is opened again. In the second case functionfs state will
105 	 * be reset, and it will be ready for descriptors and strings
106 	 * writing.
107 	 *
108 	 * This is useful only when functionfs is composed to gadget
109 	 * with another function which can perform some critical
110 	 * operations, and it's strongly desired to have this operations
111 	 * completed, even after functionfs files closure.
112 	 */
113 	FFS_DEACTIVATED,
114 
115 	/*
116 	 * All endpoints have been closed.  This state is also set if
117 	 * we encounter an unrecoverable error.  The only
118 	 * unrecoverable error is situation when after reading strings
119 	 * from user space we fail to initialise epfiles or
120 	 * functionfs_ready_callback() returns with error (<0).
121 	 *
122 	 * In this state no open(2), read(2) or write(2) (both on ep0
123 	 * as well as epfile) may succeed (at this point epfiles are
124 	 * unlinked and all closed so this is not a problem; ep0 is
125 	 * also closed but ep0 file exists and so open(2) on ep0 must
126 	 * fail).
127 	 */
128 	FFS_CLOSING
129 };
130 
131 enum ffs_setup_state {
132 	/* There is no setup request pending. */
133 	FFS_NO_SETUP,
134 	/*
135 	 * User has read events and there was a setup request event
136 	 * there.  The next read/write on ep0 will handle the
137 	 * request.
138 	 */
139 	FFS_SETUP_PENDING,
140 	/*
141 	 * There was event pending but before user space handled it
142 	 * some other event was introduced which canceled existing
143 	 * setup.  If this state is set read/write on ep0 return
144 	 * -EIDRM.  This state is only set when adding event.
145 	 */
146 	FFS_SETUP_CANCELLED
147 };
148 
149 struct ffs_data {
150 	struct usb_gadget		*gadget;
151 
152 	/*
153 	 * Protect access read/write operations, only one read/write
154 	 * at a time.  As a consequence protects ep0req and company.
155 	 * While setup request is being processed (queued) this is
156 	 * held.
157 	 */
158 	struct mutex			mutex;
159 
160 	/*
161 	 * Protect access to endpoint related structures (basically
162 	 * usb_ep_queue(), usb_ep_dequeue(), etc. calls) except for
163 	 * endpoint zero.
164 	 */
165 	spinlock_t			eps_lock;
166 
167 	/*
168 	 * XXX REVISIT do we need our own request? Since we are not
169 	 * handling setup requests immediately user space may be so
170 	 * slow that another setup will be sent to the gadget but this
171 	 * time not to us but another function and then there could be
172 	 * a race.  Is that the case? Or maybe we can use cdev->req
173 	 * after all, maybe we just need some spinlock for that?
174 	 */
175 	struct usb_request		*ep0req;		/* P: mutex */
176 	struct completion		ep0req_completion;	/* P: mutex */
177 
178 	/* reference counter */
179 	refcount_t			ref;
180 	/* how many files are opened (EP0 and others) */
181 	atomic_t			opened;
182 
183 	/* EP0 state */
184 	enum ffs_state			state;
185 
186 	/*
187 	 * Possible transitions:
188 	 * + FFS_NO_SETUP        -> FFS_SETUP_PENDING  -- P: ev.waitq.lock
189 	 *               happens only in ep0 read which is P: mutex
190 	 * + FFS_SETUP_PENDING   -> FFS_NO_SETUP       -- P: ev.waitq.lock
191 	 *               happens only in ep0 i/o  which is P: mutex
192 	 * + FFS_SETUP_PENDING   -> FFS_SETUP_CANCELLED -- P: ev.waitq.lock
193 	 * + FFS_SETUP_CANCELLED -> FFS_NO_SETUP        -- cmpxchg
194 	 *
195 	 * This field should never be accessed directly and instead
196 	 * ffs_setup_state_clear_cancelled function should be used.
197 	 */
198 	enum ffs_setup_state		setup_state;
199 
200 	/* Events & such. */
201 	struct {
202 		u8				types[4];
203 		unsigned short			count;
204 		/* XXX REVISIT need to update it in some places, or do we? */
205 		unsigned short			can_stall;
206 		struct usb_ctrlrequest		setup;
207 
208 		wait_queue_head_t		waitq;
209 	} ev; /* the whole structure, P: ev.waitq.lock */
210 
211 	/* Flags */
212 	unsigned long			flags;
213 #define FFS_FL_CALL_CLOSED_CALLBACK 0
214 #define FFS_FL_BOUND                1
215 
216 	/* For waking up blocked threads when function is enabled. */
217 	wait_queue_head_t		wait;
218 
219 	/* Active function */
220 	struct ffs_function		*func;
221 
222 	/*
223 	 * Device name, write once when file system is mounted.
224 	 * Intended for user to read if she wants.
225 	 */
226 	const char			*dev_name;
227 	/* Private data for our user (ie. gadget).  Managed by user. */
228 	void				*private_data;
229 
230 	/* filled by __ffs_data_got_descs() */
231 	/*
232 	 * raw_descs is what you kfree, real_descs points inside of raw_descs,
233 	 * where full speed, high speed and super speed descriptors start.
234 	 * real_descs_length is the length of all those descriptors.
235 	 */
236 	const void			*raw_descs_data;
237 	const void			*raw_descs;
238 	unsigned			raw_descs_length;
239 	unsigned			fs_descs_count;
240 	unsigned			hs_descs_count;
241 	unsigned			ss_descs_count;
242 	unsigned			ms_os_descs_count;
243 	unsigned			ms_os_descs_ext_prop_count;
244 	unsigned			ms_os_descs_ext_prop_name_len;
245 	unsigned			ms_os_descs_ext_prop_data_len;
246 	void				*ms_os_descs_ext_prop_avail;
247 	void				*ms_os_descs_ext_prop_name_avail;
248 	void				*ms_os_descs_ext_prop_data_avail;
249 
250 	unsigned			user_flags;
251 
252 #define FFS_MAX_EPS_COUNT 31
253 	u8				eps_addrmap[FFS_MAX_EPS_COUNT];
254 
255 	unsigned short			strings_count;
256 	unsigned short			interfaces_count;
257 	unsigned short			eps_count;
258 	unsigned short			_pad1;
259 
260 	/* filled by __ffs_data_got_strings() */
261 	/* ids in stringtabs are set in functionfs_bind() */
262 	const void			*raw_strings;
263 	struct usb_gadget_strings	**stringtabs;
264 
265 	/*
266 	 * File system's super block, write once when file system is
267 	 * mounted.
268 	 */
269 	struct super_block		*sb;
270 
271 	/* File permissions, written once when fs is mounted */
272 	struct ffs_file_perms {
273 		umode_t				mode;
274 		kuid_t				uid;
275 		kgid_t				gid;
276 	}				file_perms;
277 
278 	struct eventfd_ctx *ffs_eventfd;
279 	struct workqueue_struct *io_completion_wq;
280 	bool no_disconnect;
281 	struct work_struct reset_work;
282 
283 	/*
284 	 * The endpoint files, filled by ffs_epfiles_create(),
285 	 * destroyed by ffs_epfiles_destroy().
286 	 */
287 	struct ffs_epfile		*epfiles;
288 };
289 
290 
291 struct f_fs_opts {
292 	struct usb_function_instance	func_inst;
293 	struct ffs_dev			*dev;
294 	unsigned			refcnt;
295 	bool				no_configfs;
296 };
297 
298 static inline struct f_fs_opts *to_f_fs_opts(struct usb_function_instance *fi)
299 {
300 	return container_of(fi, struct f_fs_opts, func_inst);
301 }
302 
303 #endif /* U_FFS_H */
304