1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * f_midi.c -- USB MIDI class function driver
4  *
5  * Copyright (C) 2006 Thumtronics Pty Ltd.
6  * Developed for Thumtronics by Grey Innovation
7  * Ben Williamson <ben.williamson@greyinnovation.com>
8  *
9  * Rewritten for the composite framework
10  *   Copyright (C) 2011 Daniel Mack <zonque@gmail.com>
11  *
12  * Based on drivers/usb/gadget/f_audio.c,
13  *   Copyright (C) 2008 Bryan Wu <cooloney@kernel.org>
14  *   Copyright (C) 2008 Analog Devices, Inc
15  *
16  * and drivers/usb/gadget/midi.c,
17  *   Copyright (C) 2006 Thumtronics Pty Ltd.
18  *   Ben Williamson <ben.williamson@greyinnovation.com>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/device.h>
25 #include <linux/kfifo.h>
26 #include <linux/spinlock.h>
27 
28 #include <sound/core.h>
29 #include <sound/initval.h>
30 #include <sound/rawmidi.h>
31 
32 #include <linux/usb/ch9.h>
33 #include <linux/usb/gadget.h>
34 #include <linux/usb/audio.h>
35 #include <linux/usb/midi.h>
36 
37 #include "u_f.h"
38 #include "u_midi.h"
39 
40 MODULE_AUTHOR("Ben Williamson");
41 MODULE_LICENSE("GPL v2");
42 
43 static const char f_midi_shortname[] = "f_midi";
44 static const char f_midi_longname[] = "MIDI Gadget";
45 
46 /*
47  * We can only handle 16 cables on one single endpoint, as cable numbers are
48  * stored in 4-bit fields. And as the interface currently only holds one
49  * single endpoint, this is the maximum number of ports we can allow.
50  */
51 #define MAX_PORTS 16
52 
53 /* MIDI message states */
54 enum {
55 	STATE_INITIAL = 0,	/* pseudo state */
56 	STATE_1PARAM,
57 	STATE_2PARAM_1,
58 	STATE_2PARAM_2,
59 	STATE_SYSEX_0,
60 	STATE_SYSEX_1,
61 	STATE_SYSEX_2,
62 	STATE_REAL_TIME,
63 	STATE_FINISHED,		/* pseudo state */
64 };
65 
66 /*
67  * This is a gadget, and the IN/OUT naming is from the host's perspective.
68  * USB -> OUT endpoint -> rawmidi
69  * USB <- IN endpoint  <- rawmidi
70  */
71 struct gmidi_in_port {
72 	struct snd_rawmidi_substream *substream;
73 	int active;
74 	uint8_t cable;
75 	uint8_t state;
76 	uint8_t data[2];
77 };
78 
79 struct f_midi {
80 	struct usb_function	func;
81 	struct usb_gadget	*gadget;
82 	struct usb_ep		*in_ep, *out_ep;
83 	struct snd_card		*card;
84 	struct snd_rawmidi	*rmidi;
85 	u8			ms_id;
86 
87 	struct snd_rawmidi_substream *out_substream[MAX_PORTS];
88 
89 	unsigned long		out_triggered;
90 	struct tasklet_struct	tasklet;
91 	unsigned int in_ports;
92 	unsigned int out_ports;
93 	int index;
94 	char *id;
95 	unsigned int buflen, qlen;
96 	/* This fifo is used as a buffer ring for pre-allocated IN usb_requests */
97 	DECLARE_KFIFO_PTR(in_req_fifo, struct usb_request *);
98 	spinlock_t transmit_lock;
99 	unsigned int in_last_port;
100 	unsigned char free_ref;
101 
102 	struct gmidi_in_port	in_ports_array[/* in_ports */];
103 };
104 
105 static inline struct f_midi *func_to_midi(struct usb_function *f)
106 {
107 	return container_of(f, struct f_midi, func);
108 }
109 
110 static void f_midi_transmit(struct f_midi *midi);
111 static void f_midi_rmidi_free(struct snd_rawmidi *rmidi);
112 
113 DECLARE_UAC_AC_HEADER_DESCRIPTOR(1);
114 DECLARE_USB_MIDI_OUT_JACK_DESCRIPTOR(1);
115 DECLARE_USB_MS_ENDPOINT_DESCRIPTOR(16);
116 
117 /* B.3.1  Standard AC Interface Descriptor */
118 static struct usb_interface_descriptor ac_interface_desc = {
119 	.bLength =		USB_DT_INTERFACE_SIZE,
120 	.bDescriptorType =	USB_DT_INTERFACE,
121 	/* .bInterfaceNumber =	DYNAMIC */
122 	/* .bNumEndpoints =	DYNAMIC */
123 	.bInterfaceClass =	USB_CLASS_AUDIO,
124 	.bInterfaceSubClass =	USB_SUBCLASS_AUDIOCONTROL,
125 	/* .iInterface =	DYNAMIC */
126 };
127 
128 /* B.3.2  Class-Specific AC Interface Descriptor */
129 static struct uac1_ac_header_descriptor_1 ac_header_desc = {
130 	.bLength =		UAC_DT_AC_HEADER_SIZE(1),
131 	.bDescriptorType =	USB_DT_CS_INTERFACE,
132 	.bDescriptorSubtype =	USB_MS_HEADER,
133 	.bcdADC =		cpu_to_le16(0x0100),
134 	.wTotalLength =		cpu_to_le16(UAC_DT_AC_HEADER_SIZE(1)),
135 	.bInCollection =	1,
136 	/* .baInterfaceNr =	DYNAMIC */
137 };
138 
139 /* B.4.1  Standard MS Interface Descriptor */
140 static struct usb_interface_descriptor ms_interface_desc = {
141 	.bLength =		USB_DT_INTERFACE_SIZE,
142 	.bDescriptorType =	USB_DT_INTERFACE,
143 	/* .bInterfaceNumber =	DYNAMIC */
144 	.bNumEndpoints =	2,
145 	.bInterfaceClass =	USB_CLASS_AUDIO,
146 	.bInterfaceSubClass =	USB_SUBCLASS_MIDISTREAMING,
147 	/* .iInterface =	DYNAMIC */
148 };
149 
150 /* B.4.2  Class-Specific MS Interface Descriptor */
151 static struct usb_ms_header_descriptor ms_header_desc = {
152 	.bLength =		USB_DT_MS_HEADER_SIZE,
153 	.bDescriptorType =	USB_DT_CS_INTERFACE,
154 	.bDescriptorSubtype =	USB_MS_HEADER,
155 	.bcdMSC =		cpu_to_le16(0x0100),
156 	/* .wTotalLength =	DYNAMIC */
157 };
158 
159 /* B.5.1  Standard Bulk OUT Endpoint Descriptor */
160 static struct usb_endpoint_descriptor bulk_out_desc = {
161 	.bLength =		USB_DT_ENDPOINT_AUDIO_SIZE,
162 	.bDescriptorType =	USB_DT_ENDPOINT,
163 	.bEndpointAddress =	USB_DIR_OUT,
164 	.bmAttributes =		USB_ENDPOINT_XFER_BULK,
165 };
166 
167 static struct usb_ss_ep_comp_descriptor bulk_out_ss_comp_desc = {
168 	.bLength                = sizeof(bulk_out_ss_comp_desc),
169 	.bDescriptorType        = USB_DT_SS_ENDPOINT_COMP,
170 	/* .bMaxBurst           = 0, */
171 	/* .bmAttributes        = 0, */
172 };
173 
174 /* B.5.2  Class-specific MS Bulk OUT Endpoint Descriptor */
175 static struct usb_ms_endpoint_descriptor_16 ms_out_desc = {
176 	/* .bLength =		DYNAMIC */
177 	.bDescriptorType =	USB_DT_CS_ENDPOINT,
178 	.bDescriptorSubtype =	USB_MS_GENERAL,
179 	/* .bNumEmbMIDIJack =	DYNAMIC */
180 	/* .baAssocJackID =	DYNAMIC */
181 };
182 
183 /* B.6.1  Standard Bulk IN Endpoint Descriptor */
184 static struct usb_endpoint_descriptor bulk_in_desc = {
185 	.bLength =		USB_DT_ENDPOINT_AUDIO_SIZE,
186 	.bDescriptorType =	USB_DT_ENDPOINT,
187 	.bEndpointAddress =	USB_DIR_IN,
188 	.bmAttributes =		USB_ENDPOINT_XFER_BULK,
189 };
190 
191 static struct usb_ss_ep_comp_descriptor bulk_in_ss_comp_desc = {
192 	.bLength                = sizeof(bulk_in_ss_comp_desc),
193 	.bDescriptorType        = USB_DT_SS_ENDPOINT_COMP,
194 	/* .bMaxBurst           = 0, */
195 	/* .bmAttributes        = 0, */
196 };
197 
198 /* B.6.2  Class-specific MS Bulk IN Endpoint Descriptor */
199 static struct usb_ms_endpoint_descriptor_16 ms_in_desc = {
200 	/* .bLength =		DYNAMIC */
201 	.bDescriptorType =	USB_DT_CS_ENDPOINT,
202 	.bDescriptorSubtype =	USB_MS_GENERAL,
203 	/* .bNumEmbMIDIJack =	DYNAMIC */
204 	/* .baAssocJackID =	DYNAMIC */
205 };
206 
207 /* string IDs are assigned dynamically */
208 
209 #define STRING_FUNC_IDX			0
210 
211 static struct usb_string midi_string_defs[] = {
212 	[STRING_FUNC_IDX].s = "MIDI function",
213 	{  } /* end of list */
214 };
215 
216 static struct usb_gadget_strings midi_stringtab = {
217 	.language	= 0x0409,	/* en-us */
218 	.strings	= midi_string_defs,
219 };
220 
221 static struct usb_gadget_strings *midi_strings[] = {
222 	&midi_stringtab,
223 	NULL,
224 };
225 
226 static inline struct usb_request *midi_alloc_ep_req(struct usb_ep *ep,
227 						    unsigned length)
228 {
229 	return alloc_ep_req(ep, length);
230 }
231 
232 static const uint8_t f_midi_cin_length[] = {
233 	0, 0, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1
234 };
235 
236 /*
237  * Receives a chunk of MIDI data.
238  */
239 static void f_midi_read_data(struct usb_ep *ep, int cable,
240 			     uint8_t *data, int length)
241 {
242 	struct f_midi *midi = ep->driver_data;
243 	struct snd_rawmidi_substream *substream = midi->out_substream[cable];
244 
245 	if (!substream)
246 		/* Nobody is listening - throw it on the floor. */
247 		return;
248 
249 	if (!test_bit(cable, &midi->out_triggered))
250 		return;
251 
252 	snd_rawmidi_receive(substream, data, length);
253 }
254 
255 static void f_midi_handle_out_data(struct usb_ep *ep, struct usb_request *req)
256 {
257 	unsigned int i;
258 	u8 *buf = req->buf;
259 
260 	for (i = 0; i + 3 < req->actual; i += 4)
261 		if (buf[i] != 0) {
262 			int cable = buf[i] >> 4;
263 			int length = f_midi_cin_length[buf[i] & 0x0f];
264 			f_midi_read_data(ep, cable, &buf[i + 1], length);
265 		}
266 }
267 
268 static void
269 f_midi_complete(struct usb_ep *ep, struct usb_request *req)
270 {
271 	struct f_midi *midi = ep->driver_data;
272 	struct usb_composite_dev *cdev = midi->func.config->cdev;
273 	int status = req->status;
274 
275 	switch (status) {
276 	case 0:			 /* normal completion */
277 		if (ep == midi->out_ep) {
278 			/* We received stuff. req is queued again, below */
279 			f_midi_handle_out_data(ep, req);
280 		} else if (ep == midi->in_ep) {
281 			/* Our transmit completed. See if there's more to go.
282 			 * f_midi_transmit eats req, don't queue it again. */
283 			req->length = 0;
284 			f_midi_transmit(midi);
285 			return;
286 		}
287 		break;
288 
289 	/* this endpoint is normally active while we're configured */
290 	case -ECONNABORTED:	/* hardware forced ep reset */
291 	case -ECONNRESET:	/* request dequeued */
292 	case -ESHUTDOWN:	/* disconnect from host */
293 		VDBG(cdev, "%s gone (%d), %d/%d\n", ep->name, status,
294 				req->actual, req->length);
295 		if (ep == midi->out_ep) {
296 			f_midi_handle_out_data(ep, req);
297 			/* We don't need to free IN requests because it's handled
298 			 * by the midi->in_req_fifo. */
299 			free_ep_req(ep, req);
300 		}
301 		return;
302 
303 	case -EOVERFLOW:	/* buffer overrun on read means that
304 				 * we didn't provide a big enough buffer.
305 				 */
306 	default:
307 		DBG(cdev, "%s complete --> %d, %d/%d\n", ep->name,
308 				status, req->actual, req->length);
309 		break;
310 	case -EREMOTEIO:	/* short read */
311 		break;
312 	}
313 
314 	status = usb_ep_queue(ep, req, GFP_ATOMIC);
315 	if (status) {
316 		ERROR(cdev, "kill %s:  resubmit %d bytes --> %d\n",
317 				ep->name, req->length, status);
318 		usb_ep_set_halt(ep);
319 		/* FIXME recover later ... somehow */
320 	}
321 }
322 
323 static void f_midi_drop_out_substreams(struct f_midi *midi)
324 {
325 	unsigned int i;
326 
327 	for (i = 0; i < midi->in_ports; i++) {
328 		struct gmidi_in_port *port = midi->in_ports_array + i;
329 		struct snd_rawmidi_substream *substream = port->substream;
330 
331 		if (port->active && substream)
332 			snd_rawmidi_drop_output(substream);
333 	}
334 }
335 
336 static int f_midi_start_ep(struct f_midi *midi,
337 			   struct usb_function *f,
338 			   struct usb_ep *ep)
339 {
340 	int err;
341 	struct usb_composite_dev *cdev = f->config->cdev;
342 
343 	usb_ep_disable(ep);
344 
345 	err = config_ep_by_speed(midi->gadget, f, ep);
346 	if (err) {
347 		ERROR(cdev, "can't configure %s: %d\n", ep->name, err);
348 		return err;
349 	}
350 
351 	err = usb_ep_enable(ep);
352 	if (err) {
353 		ERROR(cdev, "can't start %s: %d\n", ep->name, err);
354 		return err;
355 	}
356 
357 	ep->driver_data = midi;
358 
359 	return 0;
360 }
361 
362 static int f_midi_set_alt(struct usb_function *f, unsigned intf, unsigned alt)
363 {
364 	struct f_midi *midi = func_to_midi(f);
365 	unsigned i;
366 	int err;
367 
368 	/* we only set alt for MIDIStreaming interface */
369 	if (intf != midi->ms_id)
370 		return 0;
371 
372 	err = f_midi_start_ep(midi, f, midi->in_ep);
373 	if (err)
374 		return err;
375 
376 	err = f_midi_start_ep(midi, f, midi->out_ep);
377 	if (err)
378 		return err;
379 
380 	/* pre-allocate write usb requests to use on f_midi_transmit. */
381 	while (kfifo_avail(&midi->in_req_fifo)) {
382 		struct usb_request *req =
383 			midi_alloc_ep_req(midi->in_ep, midi->buflen);
384 
385 		if (req == NULL)
386 			return -ENOMEM;
387 
388 		req->length = 0;
389 		req->complete = f_midi_complete;
390 
391 		kfifo_put(&midi->in_req_fifo, req);
392 	}
393 
394 	/* allocate a bunch of read buffers and queue them all at once. */
395 	for (i = 0; i < midi->qlen && err == 0; i++) {
396 		struct usb_request *req =
397 			midi_alloc_ep_req(midi->out_ep, midi->buflen);
398 
399 		if (req == NULL)
400 			return -ENOMEM;
401 
402 		req->complete = f_midi_complete;
403 		err = usb_ep_queue(midi->out_ep, req, GFP_ATOMIC);
404 		if (err) {
405 			ERROR(midi, "%s: couldn't enqueue request: %d\n",
406 				    midi->out_ep->name, err);
407 			free_ep_req(midi->out_ep, req);
408 			return err;
409 		}
410 	}
411 
412 	return 0;
413 }
414 
415 static void f_midi_disable(struct usb_function *f)
416 {
417 	struct f_midi *midi = func_to_midi(f);
418 	struct usb_composite_dev *cdev = f->config->cdev;
419 	struct usb_request *req = NULL;
420 
421 	DBG(cdev, "disable\n");
422 
423 	/*
424 	 * just disable endpoints, forcing completion of pending i/o.
425 	 * all our completion handlers free their requests in this case.
426 	 */
427 	usb_ep_disable(midi->in_ep);
428 	usb_ep_disable(midi->out_ep);
429 
430 	/* release IN requests */
431 	while (kfifo_get(&midi->in_req_fifo, &req))
432 		free_ep_req(midi->in_ep, req);
433 
434 	f_midi_drop_out_substreams(midi);
435 }
436 
437 static int f_midi_snd_free(struct snd_device *device)
438 {
439 	return 0;
440 }
441 
442 /*
443  * Converts MIDI commands to USB MIDI packets.
444  */
445 static void f_midi_transmit_byte(struct usb_request *req,
446 				 struct gmidi_in_port *port, uint8_t b)
447 {
448 	uint8_t p[4] = { port->cable << 4, 0, 0, 0 };
449 	uint8_t next_state = STATE_INITIAL;
450 
451 	switch (b) {
452 	case 0xf8 ... 0xff:
453 		/* System Real-Time Messages */
454 		p[0] |= 0x0f;
455 		p[1] = b;
456 		next_state = port->state;
457 		port->state = STATE_REAL_TIME;
458 		break;
459 
460 	case 0xf7:
461 		/* End of SysEx */
462 		switch (port->state) {
463 		case STATE_SYSEX_0:
464 			p[0] |= 0x05;
465 			p[1] = 0xf7;
466 			next_state = STATE_FINISHED;
467 			break;
468 		case STATE_SYSEX_1:
469 			p[0] |= 0x06;
470 			p[1] = port->data[0];
471 			p[2] = 0xf7;
472 			next_state = STATE_FINISHED;
473 			break;
474 		case STATE_SYSEX_2:
475 			p[0] |= 0x07;
476 			p[1] = port->data[0];
477 			p[2] = port->data[1];
478 			p[3] = 0xf7;
479 			next_state = STATE_FINISHED;
480 			break;
481 		default:
482 			/* Ignore byte */
483 			next_state = port->state;
484 			port->state = STATE_INITIAL;
485 		}
486 		break;
487 
488 	case 0xf0 ... 0xf6:
489 		/* System Common Messages */
490 		port->data[0] = port->data[1] = 0;
491 		port->state = STATE_INITIAL;
492 		switch (b) {
493 		case 0xf0:
494 			port->data[0] = b;
495 			port->data[1] = 0;
496 			next_state = STATE_SYSEX_1;
497 			break;
498 		case 0xf1:
499 		case 0xf3:
500 			port->data[0] = b;
501 			next_state = STATE_1PARAM;
502 			break;
503 		case 0xf2:
504 			port->data[0] = b;
505 			next_state = STATE_2PARAM_1;
506 			break;
507 		case 0xf4:
508 		case 0xf5:
509 			next_state = STATE_INITIAL;
510 			break;
511 		case 0xf6:
512 			p[0] |= 0x05;
513 			p[1] = 0xf6;
514 			next_state = STATE_FINISHED;
515 			break;
516 		}
517 		break;
518 
519 	case 0x80 ... 0xef:
520 		/*
521 		 * Channel Voice Messages, Channel Mode Messages
522 		 * and Control Change Messages.
523 		 */
524 		port->data[0] = b;
525 		port->data[1] = 0;
526 		port->state = STATE_INITIAL;
527 		if (b >= 0xc0 && b <= 0xdf)
528 			next_state = STATE_1PARAM;
529 		else
530 			next_state = STATE_2PARAM_1;
531 		break;
532 
533 	case 0x00 ... 0x7f:
534 		/* Message parameters */
535 		switch (port->state) {
536 		case STATE_1PARAM:
537 			if (port->data[0] < 0xf0)
538 				p[0] |= port->data[0] >> 4;
539 			else
540 				p[0] |= 0x02;
541 
542 			p[1] = port->data[0];
543 			p[2] = b;
544 			/* This is to allow Running State Messages */
545 			next_state = STATE_1PARAM;
546 			break;
547 		case STATE_2PARAM_1:
548 			port->data[1] = b;
549 			next_state = STATE_2PARAM_2;
550 			break;
551 		case STATE_2PARAM_2:
552 			if (port->data[0] < 0xf0)
553 				p[0] |= port->data[0] >> 4;
554 			else
555 				p[0] |= 0x03;
556 
557 			p[1] = port->data[0];
558 			p[2] = port->data[1];
559 			p[3] = b;
560 			/* This is to allow Running State Messages */
561 			next_state = STATE_2PARAM_1;
562 			break;
563 		case STATE_SYSEX_0:
564 			port->data[0] = b;
565 			next_state = STATE_SYSEX_1;
566 			break;
567 		case STATE_SYSEX_1:
568 			port->data[1] = b;
569 			next_state = STATE_SYSEX_2;
570 			break;
571 		case STATE_SYSEX_2:
572 			p[0] |= 0x04;
573 			p[1] = port->data[0];
574 			p[2] = port->data[1];
575 			p[3] = b;
576 			next_state = STATE_SYSEX_0;
577 			break;
578 		}
579 		break;
580 	}
581 
582 	/* States where we have to write into the USB request */
583 	if (next_state == STATE_FINISHED ||
584 	    port->state == STATE_SYSEX_2 ||
585 	    port->state == STATE_1PARAM ||
586 	    port->state == STATE_2PARAM_2 ||
587 	    port->state == STATE_REAL_TIME) {
588 
589 		unsigned int length = req->length;
590 		u8 *buf = (u8 *)req->buf + length;
591 
592 		memcpy(buf, p, sizeof(p));
593 		req->length = length + sizeof(p);
594 
595 		if (next_state == STATE_FINISHED) {
596 			next_state = STATE_INITIAL;
597 			port->data[0] = port->data[1] = 0;
598 		}
599 	}
600 
601 	port->state = next_state;
602 }
603 
604 static int f_midi_do_transmit(struct f_midi *midi, struct usb_ep *ep)
605 {
606 	struct usb_request *req = NULL;
607 	unsigned int len, i;
608 	bool active = false;
609 	int err;
610 
611 	/*
612 	 * We peek the request in order to reuse it if it fails to enqueue on
613 	 * its endpoint
614 	 */
615 	len = kfifo_peek(&midi->in_req_fifo, &req);
616 	if (len != 1) {
617 		ERROR(midi, "%s: Couldn't get usb request\n", __func__);
618 		return -1;
619 	}
620 
621 	/*
622 	 * If buffer overrun, then we ignore this transmission.
623 	 * IMPORTANT: This will cause the user-space rawmidi device to block
624 	 * until a) usb requests have been completed or b) snd_rawmidi_write()
625 	 * times out.
626 	 */
627 	if (req->length > 0)
628 		return 0;
629 
630 	for (i = midi->in_last_port; i < midi->in_ports; ++i) {
631 		struct gmidi_in_port *port = midi->in_ports_array + i;
632 		struct snd_rawmidi_substream *substream = port->substream;
633 
634 		if (!port->active || !substream)
635 			continue;
636 
637 		while (req->length + 3 < midi->buflen) {
638 			uint8_t b;
639 
640 			if (snd_rawmidi_transmit(substream, &b, 1) != 1) {
641 				port->active = 0;
642 				break;
643 			}
644 			f_midi_transmit_byte(req, port, b);
645 		}
646 
647 		active = !!port->active;
648 		if (active)
649 			break;
650 	}
651 	midi->in_last_port = active ? i : 0;
652 
653 	if (req->length <= 0)
654 		goto done;
655 
656 	err = usb_ep_queue(ep, req, GFP_ATOMIC);
657 	if (err < 0) {
658 		ERROR(midi, "%s failed to queue req: %d\n",
659 		      midi->in_ep->name, err);
660 		req->length = 0; /* Re-use request next time. */
661 	} else {
662 		/* Upon success, put request at the back of the queue. */
663 		kfifo_skip(&midi->in_req_fifo);
664 		kfifo_put(&midi->in_req_fifo, req);
665 	}
666 
667 done:
668 	return active;
669 }
670 
671 static void f_midi_transmit(struct f_midi *midi)
672 {
673 	struct usb_ep *ep = midi->in_ep;
674 	int ret;
675 	unsigned long flags;
676 
677 	/* We only care about USB requests if IN endpoint is enabled */
678 	if (!ep || !ep->enabled)
679 		goto drop_out;
680 
681 	spin_lock_irqsave(&midi->transmit_lock, flags);
682 
683 	do {
684 		ret = f_midi_do_transmit(midi, ep);
685 		if (ret < 0) {
686 			spin_unlock_irqrestore(&midi->transmit_lock, flags);
687 			goto drop_out;
688 		}
689 	} while (ret);
690 
691 	spin_unlock_irqrestore(&midi->transmit_lock, flags);
692 
693 	return;
694 
695 drop_out:
696 	f_midi_drop_out_substreams(midi);
697 }
698 
699 static void f_midi_in_tasklet(unsigned long data)
700 {
701 	struct f_midi *midi = (struct f_midi *) data;
702 	f_midi_transmit(midi);
703 }
704 
705 static int f_midi_in_open(struct snd_rawmidi_substream *substream)
706 {
707 	struct f_midi *midi = substream->rmidi->private_data;
708 	struct gmidi_in_port *port;
709 
710 	if (substream->number >= midi->in_ports)
711 		return -EINVAL;
712 
713 	VDBG(midi, "%s()\n", __func__);
714 	port = midi->in_ports_array + substream->number;
715 	port->substream = substream;
716 	port->state = STATE_INITIAL;
717 	return 0;
718 }
719 
720 static int f_midi_in_close(struct snd_rawmidi_substream *substream)
721 {
722 	struct f_midi *midi = substream->rmidi->private_data;
723 
724 	VDBG(midi, "%s()\n", __func__);
725 	return 0;
726 }
727 
728 static void f_midi_in_trigger(struct snd_rawmidi_substream *substream, int up)
729 {
730 	struct f_midi *midi = substream->rmidi->private_data;
731 
732 	if (substream->number >= midi->in_ports)
733 		return;
734 
735 	VDBG(midi, "%s() %d\n", __func__, up);
736 	midi->in_ports_array[substream->number].active = up;
737 	if (up)
738 		tasklet_hi_schedule(&midi->tasklet);
739 }
740 
741 static int f_midi_out_open(struct snd_rawmidi_substream *substream)
742 {
743 	struct f_midi *midi = substream->rmidi->private_data;
744 
745 	if (substream->number >= MAX_PORTS)
746 		return -EINVAL;
747 
748 	VDBG(midi, "%s()\n", __func__);
749 	midi->out_substream[substream->number] = substream;
750 	return 0;
751 }
752 
753 static int f_midi_out_close(struct snd_rawmidi_substream *substream)
754 {
755 	struct f_midi *midi = substream->rmidi->private_data;
756 
757 	VDBG(midi, "%s()\n", __func__);
758 	return 0;
759 }
760 
761 static void f_midi_out_trigger(struct snd_rawmidi_substream *substream, int up)
762 {
763 	struct f_midi *midi = substream->rmidi->private_data;
764 
765 	VDBG(midi, "%s()\n", __func__);
766 
767 	if (up)
768 		set_bit(substream->number, &midi->out_triggered);
769 	else
770 		clear_bit(substream->number, &midi->out_triggered);
771 }
772 
773 static const struct snd_rawmidi_ops gmidi_in_ops = {
774 	.open = f_midi_in_open,
775 	.close = f_midi_in_close,
776 	.trigger = f_midi_in_trigger,
777 };
778 
779 static const struct snd_rawmidi_ops gmidi_out_ops = {
780 	.open = f_midi_out_open,
781 	.close = f_midi_out_close,
782 	.trigger = f_midi_out_trigger
783 };
784 
785 static inline void f_midi_unregister_card(struct f_midi *midi)
786 {
787 	if (midi->card) {
788 		snd_card_free(midi->card);
789 		midi->card = NULL;
790 	}
791 }
792 
793 /* register as a sound "card" */
794 static int f_midi_register_card(struct f_midi *midi)
795 {
796 	struct snd_card *card;
797 	struct snd_rawmidi *rmidi;
798 	int err;
799 	static struct snd_device_ops ops = {
800 		.dev_free = f_midi_snd_free,
801 	};
802 
803 	err = snd_card_new(&midi->gadget->dev, midi->index, midi->id,
804 			   THIS_MODULE, 0, &card);
805 	if (err < 0) {
806 		ERROR(midi, "snd_card_new() failed\n");
807 		goto fail;
808 	}
809 	midi->card = card;
810 
811 	err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, midi, &ops);
812 	if (err < 0) {
813 		ERROR(midi, "snd_device_new() failed: error %d\n", err);
814 		goto fail;
815 	}
816 
817 	strcpy(card->driver, f_midi_longname);
818 	strcpy(card->longname, f_midi_longname);
819 	strcpy(card->shortname, f_midi_shortname);
820 
821 	/* Set up rawmidi */
822 	snd_component_add(card, "MIDI");
823 	err = snd_rawmidi_new(card, card->longname, 0,
824 			      midi->out_ports, midi->in_ports, &rmidi);
825 	if (err < 0) {
826 		ERROR(midi, "snd_rawmidi_new() failed: error %d\n", err);
827 		goto fail;
828 	}
829 	midi->rmidi = rmidi;
830 	midi->in_last_port = 0;
831 	strcpy(rmidi->name, card->shortname);
832 	rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
833 			    SNDRV_RAWMIDI_INFO_INPUT |
834 			    SNDRV_RAWMIDI_INFO_DUPLEX;
835 	rmidi->private_data = midi;
836 	rmidi->private_free = f_midi_rmidi_free;
837 	midi->free_ref++;
838 
839 	/*
840 	 * Yes, rawmidi OUTPUT = USB IN, and rawmidi INPUT = USB OUT.
841 	 * It's an upside-down world being a gadget.
842 	 */
843 	snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &gmidi_in_ops);
844 	snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &gmidi_out_ops);
845 
846 	/* register it - we're ready to go */
847 	err = snd_card_register(card);
848 	if (err < 0) {
849 		ERROR(midi, "snd_card_register() failed\n");
850 		goto fail;
851 	}
852 
853 	VDBG(midi, "%s() finished ok\n", __func__);
854 	return 0;
855 
856 fail:
857 	f_midi_unregister_card(midi);
858 	return err;
859 }
860 
861 /* MIDI function driver setup/binding */
862 
863 static int f_midi_bind(struct usb_configuration *c, struct usb_function *f)
864 {
865 	struct usb_descriptor_header **midi_function;
866 	struct usb_midi_in_jack_descriptor jack_in_ext_desc[MAX_PORTS];
867 	struct usb_midi_in_jack_descriptor jack_in_emb_desc[MAX_PORTS];
868 	struct usb_midi_out_jack_descriptor_1 jack_out_ext_desc[MAX_PORTS];
869 	struct usb_midi_out_jack_descriptor_1 jack_out_emb_desc[MAX_PORTS];
870 	struct usb_composite_dev *cdev = c->cdev;
871 	struct f_midi *midi = func_to_midi(f);
872 	struct usb_string *us;
873 	int status, n, jack = 1, i = 0, endpoint_descriptor_index = 0;
874 
875 	midi->gadget = cdev->gadget;
876 	tasklet_init(&midi->tasklet, f_midi_in_tasklet, (unsigned long) midi);
877 	status = f_midi_register_card(midi);
878 	if (status < 0)
879 		goto fail_register;
880 
881 	/* maybe allocate device-global string ID */
882 	us = usb_gstrings_attach(c->cdev, midi_strings,
883 				 ARRAY_SIZE(midi_string_defs));
884 	if (IS_ERR(us)) {
885 		status = PTR_ERR(us);
886 		goto fail;
887 	}
888 	ac_interface_desc.iInterface = us[STRING_FUNC_IDX].id;
889 
890 	/* We have two interfaces, AudioControl and MIDIStreaming */
891 	status = usb_interface_id(c, f);
892 	if (status < 0)
893 		goto fail;
894 	ac_interface_desc.bInterfaceNumber = status;
895 
896 	status = usb_interface_id(c, f);
897 	if (status < 0)
898 		goto fail;
899 	ms_interface_desc.bInterfaceNumber = status;
900 	ac_header_desc.baInterfaceNr[0] = status;
901 	midi->ms_id = status;
902 
903 	status = -ENODEV;
904 
905 	/* allocate instance-specific endpoints */
906 	midi->in_ep = usb_ep_autoconfig(cdev->gadget, &bulk_in_desc);
907 	if (!midi->in_ep)
908 		goto fail;
909 
910 	midi->out_ep = usb_ep_autoconfig(cdev->gadget, &bulk_out_desc);
911 	if (!midi->out_ep)
912 		goto fail;
913 
914 	/* allocate temporary function list */
915 	midi_function = kcalloc((MAX_PORTS * 4) + 11, sizeof(*midi_function),
916 				GFP_KERNEL);
917 	if (!midi_function) {
918 		status = -ENOMEM;
919 		goto fail;
920 	}
921 
922 	/*
923 	 * construct the function's descriptor set. As the number of
924 	 * input and output MIDI ports is configurable, we have to do
925 	 * it that way.
926 	 */
927 
928 	/* add the headers - these are always the same */
929 	midi_function[i++] = (struct usb_descriptor_header *) &ac_interface_desc;
930 	midi_function[i++] = (struct usb_descriptor_header *) &ac_header_desc;
931 	midi_function[i++] = (struct usb_descriptor_header *) &ms_interface_desc;
932 
933 	/* calculate the header's wTotalLength */
934 	n = USB_DT_MS_HEADER_SIZE
935 		+ (midi->in_ports + midi->out_ports) *
936 			(USB_DT_MIDI_IN_SIZE + USB_DT_MIDI_OUT_SIZE(1));
937 	ms_header_desc.wTotalLength = cpu_to_le16(n);
938 
939 	midi_function[i++] = (struct usb_descriptor_header *) &ms_header_desc;
940 
941 	/* configure the external IN jacks, each linked to an embedded OUT jack */
942 	for (n = 0; n < midi->in_ports; n++) {
943 		struct usb_midi_in_jack_descriptor *in_ext = &jack_in_ext_desc[n];
944 		struct usb_midi_out_jack_descriptor_1 *out_emb = &jack_out_emb_desc[n];
945 
946 		in_ext->bLength			= USB_DT_MIDI_IN_SIZE;
947 		in_ext->bDescriptorType		= USB_DT_CS_INTERFACE;
948 		in_ext->bDescriptorSubtype	= USB_MS_MIDI_IN_JACK;
949 		in_ext->bJackType		= USB_MS_EXTERNAL;
950 		in_ext->bJackID			= jack++;
951 		in_ext->iJack			= 0;
952 		midi_function[i++] = (struct usb_descriptor_header *) in_ext;
953 
954 		out_emb->bLength		= USB_DT_MIDI_OUT_SIZE(1);
955 		out_emb->bDescriptorType	= USB_DT_CS_INTERFACE;
956 		out_emb->bDescriptorSubtype	= USB_MS_MIDI_OUT_JACK;
957 		out_emb->bJackType		= USB_MS_EMBEDDED;
958 		out_emb->bJackID		= jack++;
959 		out_emb->bNrInputPins		= 1;
960 		out_emb->pins[0].baSourcePin	= 1;
961 		out_emb->pins[0].baSourceID	= in_ext->bJackID;
962 		out_emb->iJack			= 0;
963 		midi_function[i++] = (struct usb_descriptor_header *) out_emb;
964 
965 		/* link it to the endpoint */
966 		ms_in_desc.baAssocJackID[n] = out_emb->bJackID;
967 	}
968 
969 	/* configure the external OUT jacks, each linked to an embedded IN jack */
970 	for (n = 0; n < midi->out_ports; n++) {
971 		struct usb_midi_in_jack_descriptor *in_emb = &jack_in_emb_desc[n];
972 		struct usb_midi_out_jack_descriptor_1 *out_ext = &jack_out_ext_desc[n];
973 
974 		in_emb->bLength			= USB_DT_MIDI_IN_SIZE;
975 		in_emb->bDescriptorType		= USB_DT_CS_INTERFACE;
976 		in_emb->bDescriptorSubtype	= USB_MS_MIDI_IN_JACK;
977 		in_emb->bJackType		= USB_MS_EMBEDDED;
978 		in_emb->bJackID			= jack++;
979 		in_emb->iJack			= 0;
980 		midi_function[i++] = (struct usb_descriptor_header *) in_emb;
981 
982 		out_ext->bLength =		USB_DT_MIDI_OUT_SIZE(1);
983 		out_ext->bDescriptorType =	USB_DT_CS_INTERFACE;
984 		out_ext->bDescriptorSubtype =	USB_MS_MIDI_OUT_JACK;
985 		out_ext->bJackType =		USB_MS_EXTERNAL;
986 		out_ext->bJackID =		jack++;
987 		out_ext->bNrInputPins =		1;
988 		out_ext->iJack =		0;
989 		out_ext->pins[0].baSourceID =	in_emb->bJackID;
990 		out_ext->pins[0].baSourcePin =	1;
991 		midi_function[i++] = (struct usb_descriptor_header *) out_ext;
992 
993 		/* link it to the endpoint */
994 		ms_out_desc.baAssocJackID[n] = in_emb->bJackID;
995 	}
996 
997 	/* configure the endpoint descriptors ... */
998 	ms_out_desc.bLength = USB_DT_MS_ENDPOINT_SIZE(midi->in_ports);
999 	ms_out_desc.bNumEmbMIDIJack = midi->in_ports;
1000 
1001 	ms_in_desc.bLength = USB_DT_MS_ENDPOINT_SIZE(midi->out_ports);
1002 	ms_in_desc.bNumEmbMIDIJack = midi->out_ports;
1003 
1004 	/* ... and add them to the list */
1005 	endpoint_descriptor_index = i;
1006 	midi_function[i++] = (struct usb_descriptor_header *) &bulk_out_desc;
1007 	midi_function[i++] = (struct usb_descriptor_header *) &ms_out_desc;
1008 	midi_function[i++] = (struct usb_descriptor_header *) &bulk_in_desc;
1009 	midi_function[i++] = (struct usb_descriptor_header *) &ms_in_desc;
1010 	midi_function[i++] = NULL;
1011 
1012 	/*
1013 	 * support all relevant hardware speeds... we expect that when
1014 	 * hardware is dual speed, all bulk-capable endpoints work at
1015 	 * both speeds
1016 	 */
1017 	/* copy descriptors, and track endpoint copies */
1018 	f->fs_descriptors = usb_copy_descriptors(midi_function);
1019 	if (!f->fs_descriptors)
1020 		goto fail_f_midi;
1021 
1022 	if (gadget_is_dualspeed(c->cdev->gadget)) {
1023 		bulk_in_desc.wMaxPacketSize = cpu_to_le16(512);
1024 		bulk_out_desc.wMaxPacketSize = cpu_to_le16(512);
1025 		f->hs_descriptors = usb_copy_descriptors(midi_function);
1026 		if (!f->hs_descriptors)
1027 			goto fail_f_midi;
1028 	}
1029 
1030 	if (gadget_is_superspeed(c->cdev->gadget)) {
1031 		bulk_in_desc.wMaxPacketSize = cpu_to_le16(1024);
1032 		bulk_out_desc.wMaxPacketSize = cpu_to_le16(1024);
1033 		i = endpoint_descriptor_index;
1034 		midi_function[i++] = (struct usb_descriptor_header *)
1035 				     &bulk_out_desc;
1036 		midi_function[i++] = (struct usb_descriptor_header *)
1037 				     &bulk_out_ss_comp_desc;
1038 		midi_function[i++] = (struct usb_descriptor_header *)
1039 				     &ms_out_desc;
1040 		midi_function[i++] = (struct usb_descriptor_header *)
1041 				     &bulk_in_desc;
1042 		midi_function[i++] = (struct usb_descriptor_header *)
1043 				     &bulk_in_ss_comp_desc;
1044 		midi_function[i++] = (struct usb_descriptor_header *)
1045 				     &ms_in_desc;
1046 		f->ss_descriptors = usb_copy_descriptors(midi_function);
1047 		if (!f->ss_descriptors)
1048 			goto fail_f_midi;
1049 	}
1050 
1051 	kfree(midi_function);
1052 
1053 	return 0;
1054 
1055 fail_f_midi:
1056 	kfree(midi_function);
1057 	usb_free_all_descriptors(f);
1058 fail:
1059 	f_midi_unregister_card(midi);
1060 fail_register:
1061 	ERROR(cdev, "%s: can't bind, err %d\n", f->name, status);
1062 
1063 	return status;
1064 }
1065 
1066 static inline struct f_midi_opts *to_f_midi_opts(struct config_item *item)
1067 {
1068 	return container_of(to_config_group(item), struct f_midi_opts,
1069 			    func_inst.group);
1070 }
1071 
1072 static void midi_attr_release(struct config_item *item)
1073 {
1074 	struct f_midi_opts *opts = to_f_midi_opts(item);
1075 
1076 	usb_put_function_instance(&opts->func_inst);
1077 }
1078 
1079 static struct configfs_item_operations midi_item_ops = {
1080 	.release	= midi_attr_release,
1081 };
1082 
1083 #define F_MIDI_OPT(name, test_limit, limit)				\
1084 static ssize_t f_midi_opts_##name##_show(struct config_item *item, char *page) \
1085 {									\
1086 	struct f_midi_opts *opts = to_f_midi_opts(item);		\
1087 	int result;							\
1088 									\
1089 	mutex_lock(&opts->lock);					\
1090 	result = sprintf(page, "%d\n", opts->name);			\
1091 	mutex_unlock(&opts->lock);					\
1092 									\
1093 	return result;							\
1094 }									\
1095 									\
1096 static ssize_t f_midi_opts_##name##_store(struct config_item *item,	\
1097 					 const char *page, size_t len)	\
1098 {									\
1099 	struct f_midi_opts *opts = to_f_midi_opts(item);		\
1100 	int ret;							\
1101 	u32 num;							\
1102 									\
1103 	mutex_lock(&opts->lock);					\
1104 	if (opts->refcnt) {						\
1105 		ret = -EBUSY;						\
1106 		goto end;						\
1107 	}								\
1108 									\
1109 	ret = kstrtou32(page, 0, &num);					\
1110 	if (ret)							\
1111 		goto end;						\
1112 									\
1113 	if (test_limit && num > limit) {				\
1114 		ret = -EINVAL;						\
1115 		goto end;						\
1116 	}								\
1117 	opts->name = num;						\
1118 	ret = len;							\
1119 									\
1120 end:									\
1121 	mutex_unlock(&opts->lock);					\
1122 	return ret;							\
1123 }									\
1124 									\
1125 CONFIGFS_ATTR(f_midi_opts_, name);
1126 
1127 F_MIDI_OPT(index, true, SNDRV_CARDS);
1128 F_MIDI_OPT(buflen, false, 0);
1129 F_MIDI_OPT(qlen, false, 0);
1130 F_MIDI_OPT(in_ports, true, MAX_PORTS);
1131 F_MIDI_OPT(out_ports, true, MAX_PORTS);
1132 
1133 static ssize_t f_midi_opts_id_show(struct config_item *item, char *page)
1134 {
1135 	struct f_midi_opts *opts = to_f_midi_opts(item);
1136 	int result;
1137 
1138 	mutex_lock(&opts->lock);
1139 	if (opts->id) {
1140 		result = strlcpy(page, opts->id, PAGE_SIZE);
1141 	} else {
1142 		page[0] = 0;
1143 		result = 0;
1144 	}
1145 
1146 	mutex_unlock(&opts->lock);
1147 
1148 	return result;
1149 }
1150 
1151 static ssize_t f_midi_opts_id_store(struct config_item *item,
1152 				    const char *page, size_t len)
1153 {
1154 	struct f_midi_opts *opts = to_f_midi_opts(item);
1155 	int ret;
1156 	char *c;
1157 
1158 	mutex_lock(&opts->lock);
1159 	if (opts->refcnt) {
1160 		ret = -EBUSY;
1161 		goto end;
1162 	}
1163 
1164 	c = kstrndup(page, len, GFP_KERNEL);
1165 	if (!c) {
1166 		ret = -ENOMEM;
1167 		goto end;
1168 	}
1169 	if (opts->id_allocated)
1170 		kfree(opts->id);
1171 	opts->id = c;
1172 	opts->id_allocated = true;
1173 	ret = len;
1174 end:
1175 	mutex_unlock(&opts->lock);
1176 	return ret;
1177 }
1178 
1179 CONFIGFS_ATTR(f_midi_opts_, id);
1180 
1181 static struct configfs_attribute *midi_attrs[] = {
1182 	&f_midi_opts_attr_index,
1183 	&f_midi_opts_attr_buflen,
1184 	&f_midi_opts_attr_qlen,
1185 	&f_midi_opts_attr_in_ports,
1186 	&f_midi_opts_attr_out_ports,
1187 	&f_midi_opts_attr_id,
1188 	NULL,
1189 };
1190 
1191 static const struct config_item_type midi_func_type = {
1192 	.ct_item_ops	= &midi_item_ops,
1193 	.ct_attrs	= midi_attrs,
1194 	.ct_owner	= THIS_MODULE,
1195 };
1196 
1197 static void f_midi_free_inst(struct usb_function_instance *f)
1198 {
1199 	struct f_midi_opts *opts;
1200 
1201 	opts = container_of(f, struct f_midi_opts, func_inst);
1202 
1203 	if (opts->id_allocated)
1204 		kfree(opts->id);
1205 
1206 	kfree(opts);
1207 }
1208 
1209 static struct usb_function_instance *f_midi_alloc_inst(void)
1210 {
1211 	struct f_midi_opts *opts;
1212 
1213 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
1214 	if (!opts)
1215 		return ERR_PTR(-ENOMEM);
1216 
1217 	mutex_init(&opts->lock);
1218 	opts->func_inst.free_func_inst = f_midi_free_inst;
1219 	opts->index = SNDRV_DEFAULT_IDX1;
1220 	opts->id = SNDRV_DEFAULT_STR1;
1221 	opts->buflen = 512;
1222 	opts->qlen = 32;
1223 	opts->in_ports = 1;
1224 	opts->out_ports = 1;
1225 
1226 	config_group_init_type_name(&opts->func_inst.group, "",
1227 				    &midi_func_type);
1228 
1229 	return &opts->func_inst;
1230 }
1231 
1232 static void f_midi_free(struct usb_function *f)
1233 {
1234 	struct f_midi *midi;
1235 	struct f_midi_opts *opts;
1236 
1237 	midi = func_to_midi(f);
1238 	opts = container_of(f->fi, struct f_midi_opts, func_inst);
1239 	mutex_lock(&opts->lock);
1240 	if (!--midi->free_ref) {
1241 		kfree(midi->id);
1242 		kfifo_free(&midi->in_req_fifo);
1243 		kfree(midi);
1244 		--opts->refcnt;
1245 	}
1246 	mutex_unlock(&opts->lock);
1247 }
1248 
1249 static void f_midi_rmidi_free(struct snd_rawmidi *rmidi)
1250 {
1251 	f_midi_free(rmidi->private_data);
1252 }
1253 
1254 static void f_midi_unbind(struct usb_configuration *c, struct usb_function *f)
1255 {
1256 	struct usb_composite_dev *cdev = f->config->cdev;
1257 	struct f_midi *midi = func_to_midi(f);
1258 	struct snd_card *card;
1259 
1260 	DBG(cdev, "unbind\n");
1261 
1262 	/* just to be sure */
1263 	f_midi_disable(f);
1264 
1265 	card = midi->card;
1266 	midi->card = NULL;
1267 	if (card)
1268 		snd_card_free_when_closed(card);
1269 
1270 	usb_free_all_descriptors(f);
1271 }
1272 
1273 static struct usb_function *f_midi_alloc(struct usb_function_instance *fi)
1274 {
1275 	struct f_midi *midi = NULL;
1276 	struct f_midi_opts *opts;
1277 	int status, i;
1278 
1279 	opts = container_of(fi, struct f_midi_opts, func_inst);
1280 
1281 	mutex_lock(&opts->lock);
1282 	/* sanity check */
1283 	if (opts->in_ports > MAX_PORTS || opts->out_ports > MAX_PORTS) {
1284 		status = -EINVAL;
1285 		goto setup_fail;
1286 	}
1287 
1288 	/* allocate and initialize one new instance */
1289 	midi = kzalloc(
1290 		sizeof(*midi) + opts->in_ports * sizeof(*midi->in_ports_array),
1291 		GFP_KERNEL);
1292 	if (!midi) {
1293 		status = -ENOMEM;
1294 		goto setup_fail;
1295 	}
1296 
1297 	for (i = 0; i < opts->in_ports; i++)
1298 		midi->in_ports_array[i].cable = i;
1299 
1300 	/* set up ALSA midi devices */
1301 	midi->id = kstrdup(opts->id, GFP_KERNEL);
1302 	if (opts->id && !midi->id) {
1303 		status = -ENOMEM;
1304 		goto setup_fail;
1305 	}
1306 	midi->in_ports = opts->in_ports;
1307 	midi->out_ports = opts->out_ports;
1308 	midi->index = opts->index;
1309 	midi->buflen = opts->buflen;
1310 	midi->qlen = opts->qlen;
1311 	midi->in_last_port = 0;
1312 	midi->free_ref = 1;
1313 
1314 	status = kfifo_alloc(&midi->in_req_fifo, midi->qlen, GFP_KERNEL);
1315 	if (status)
1316 		goto setup_fail;
1317 
1318 	spin_lock_init(&midi->transmit_lock);
1319 
1320 	++opts->refcnt;
1321 	mutex_unlock(&opts->lock);
1322 
1323 	midi->func.name		= "gmidi function";
1324 	midi->func.bind		= f_midi_bind;
1325 	midi->func.unbind	= f_midi_unbind;
1326 	midi->func.set_alt	= f_midi_set_alt;
1327 	midi->func.disable	= f_midi_disable;
1328 	midi->func.free_func	= f_midi_free;
1329 
1330 	return &midi->func;
1331 
1332 setup_fail:
1333 	mutex_unlock(&opts->lock);
1334 	kfree(midi);
1335 	return ERR_PTR(status);
1336 }
1337 
1338 DECLARE_USB_FUNCTION_INIT(midi, f_midi_alloc_inst, f_midi_alloc);
1339