xref: /openbmc/linux/drivers/usb/gadget/function/f_fs.c (revision feac8c8b)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * f_fs.c -- user mode file system API for USB composite function controllers
4  *
5  * Copyright (C) 2010 Samsung Electronics
6  * Author: Michal Nazarewicz <mina86@mina86.com>
7  *
8  * Based on inode.c (GadgetFS) which was:
9  * Copyright (C) 2003-2004 David Brownell
10  * Copyright (C) 2003 Agilent Technologies
11  */
12 
13 
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16 
17 #include <linux/blkdev.h>
18 #include <linux/pagemap.h>
19 #include <linux/export.h>
20 #include <linux/hid.h>
21 #include <linux/module.h>
22 #include <linux/sched/signal.h>
23 #include <linux/uio.h>
24 #include <asm/unaligned.h>
25 
26 #include <linux/usb/composite.h>
27 #include <linux/usb/functionfs.h>
28 
29 #include <linux/aio.h>
30 #include <linux/mmu_context.h>
31 #include <linux/poll.h>
32 #include <linux/eventfd.h>
33 
34 #include "u_fs.h"
35 #include "u_f.h"
36 #include "u_os_desc.h"
37 #include "configfs.h"
38 
39 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
40 
41 /* Reference counter handling */
42 static void ffs_data_get(struct ffs_data *ffs);
43 static void ffs_data_put(struct ffs_data *ffs);
44 /* Creates new ffs_data object. */
45 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
46 	__attribute__((malloc));
47 
48 /* Opened counter handling. */
49 static void ffs_data_opened(struct ffs_data *ffs);
50 static void ffs_data_closed(struct ffs_data *ffs);
51 
52 /* Called with ffs->mutex held; take over ownership of data. */
53 static int __must_check
54 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
55 static int __must_check
56 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
57 
58 
59 /* The function structure ***************************************************/
60 
61 struct ffs_ep;
62 
63 struct ffs_function {
64 	struct usb_configuration	*conf;
65 	struct usb_gadget		*gadget;
66 	struct ffs_data			*ffs;
67 
68 	struct ffs_ep			*eps;
69 	u8				eps_revmap[16];
70 	short				*interfaces_nums;
71 
72 	struct usb_function		function;
73 };
74 
75 
76 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
77 {
78 	return container_of(f, struct ffs_function, function);
79 }
80 
81 
82 static inline enum ffs_setup_state
83 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
84 {
85 	return (enum ffs_setup_state)
86 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
87 }
88 
89 
90 static void ffs_func_eps_disable(struct ffs_function *func);
91 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
92 
93 static int ffs_func_bind(struct usb_configuration *,
94 			 struct usb_function *);
95 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
96 static void ffs_func_disable(struct usb_function *);
97 static int ffs_func_setup(struct usb_function *,
98 			  const struct usb_ctrlrequest *);
99 static bool ffs_func_req_match(struct usb_function *,
100 			       const struct usb_ctrlrequest *,
101 			       bool config0);
102 static void ffs_func_suspend(struct usb_function *);
103 static void ffs_func_resume(struct usb_function *);
104 
105 
106 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
107 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
108 
109 
110 /* The endpoints structures *************************************************/
111 
112 struct ffs_ep {
113 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
114 	struct usb_request		*req;	/* P: epfile->mutex */
115 
116 	/* [0]: full speed, [1]: high speed, [2]: super speed */
117 	struct usb_endpoint_descriptor	*descs[3];
118 
119 	u8				num;
120 
121 	int				status;	/* P: epfile->mutex */
122 };
123 
124 struct ffs_epfile {
125 	/* Protects ep->ep and ep->req. */
126 	struct mutex			mutex;
127 
128 	struct ffs_data			*ffs;
129 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
130 
131 	struct dentry			*dentry;
132 
133 	/*
134 	 * Buffer for holding data from partial reads which may happen since
135 	 * we’re rounding user read requests to a multiple of a max packet size.
136 	 *
137 	 * The pointer is initialised with NULL value and may be set by
138 	 * __ffs_epfile_read_data function to point to a temporary buffer.
139 	 *
140 	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
141 	 * data from said buffer and eventually free it.  Importantly, while the
142 	 * function is using the buffer, it sets the pointer to NULL.  This is
143 	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
144 	 * can never run concurrently (they are synchronised by epfile->mutex)
145 	 * so the latter will not assign a new value to the pointer.
146 	 *
147 	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
148 	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
149 	 * value is crux of the synchronisation between ffs_func_eps_disable and
150 	 * __ffs_epfile_read_data.
151 	 *
152 	 * Once __ffs_epfile_read_data is about to finish it will try to set the
153 	 * pointer back to its old value (as described above), but seeing as the
154 	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
155 	 * the buffer.
156 	 *
157 	 * == State transitions ==
158 	 *
159 	 * • ptr == NULL:  (initial state)
160 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
161 	 *   ◦ __ffs_epfile_read_buffered:    nop
162 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
163 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
164 	 * • ptr == DROP:
165 	 *   ◦ __ffs_epfile_read_buffer_free: nop
166 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
167 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
168 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
169 	 * • ptr == buf:
170 	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
171 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
172 	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
173 	 *                                    is always called first
174 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
175 	 * • ptr == NULL and reading:
176 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
177 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
178 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
179 	 *   ◦ reading finishes and …
180 	 *     … all data read:               free buf, go to ptr == NULL
181 	 *     … otherwise:                   go to ptr == buf and reading
182 	 * • ptr == DROP and reading:
183 	 *   ◦ __ffs_epfile_read_buffer_free: nop
184 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
185 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
186 	 *   ◦ reading finishes:              free buf, go to ptr == DROP
187 	 */
188 	struct ffs_buffer		*read_buffer;
189 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
190 
191 	char				name[5];
192 
193 	unsigned char			in;	/* P: ffs->eps_lock */
194 	unsigned char			isoc;	/* P: ffs->eps_lock */
195 
196 	unsigned char			_pad;
197 };
198 
199 struct ffs_buffer {
200 	size_t length;
201 	char *data;
202 	char storage[];
203 };
204 
205 /*  ffs_io_data structure ***************************************************/
206 
207 struct ffs_io_data {
208 	bool aio;
209 	bool read;
210 
211 	struct kiocb *kiocb;
212 	struct iov_iter data;
213 	const void *to_free;
214 	char *buf;
215 
216 	struct mm_struct *mm;
217 	struct work_struct work;
218 
219 	struct usb_ep *ep;
220 	struct usb_request *req;
221 
222 	struct ffs_data *ffs;
223 };
224 
225 struct ffs_desc_helper {
226 	struct ffs_data *ffs;
227 	unsigned interfaces_count;
228 	unsigned eps_count;
229 };
230 
231 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
232 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
233 
234 static struct dentry *
235 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
236 		   const struct file_operations *fops);
237 
238 /* Devices management *******************************************************/
239 
240 DEFINE_MUTEX(ffs_lock);
241 EXPORT_SYMBOL_GPL(ffs_lock);
242 
243 static struct ffs_dev *_ffs_find_dev(const char *name);
244 static struct ffs_dev *_ffs_alloc_dev(void);
245 static void _ffs_free_dev(struct ffs_dev *dev);
246 static void *ffs_acquire_dev(const char *dev_name);
247 static void ffs_release_dev(struct ffs_data *ffs_data);
248 static int ffs_ready(struct ffs_data *ffs);
249 static void ffs_closed(struct ffs_data *ffs);
250 
251 /* Misc helper functions ****************************************************/
252 
253 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
254 	__attribute__((warn_unused_result, nonnull));
255 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
256 	__attribute__((warn_unused_result, nonnull));
257 
258 
259 /* Control file aka ep0 *****************************************************/
260 
261 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
262 {
263 	struct ffs_data *ffs = req->context;
264 
265 	complete(&ffs->ep0req_completion);
266 }
267 
268 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
269 	__releases(&ffs->ev.waitq.lock)
270 {
271 	struct usb_request *req = ffs->ep0req;
272 	int ret;
273 
274 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
275 
276 	spin_unlock_irq(&ffs->ev.waitq.lock);
277 
278 	req->buf      = data;
279 	req->length   = len;
280 
281 	/*
282 	 * UDC layer requires to provide a buffer even for ZLP, but should
283 	 * not use it at all. Let's provide some poisoned pointer to catch
284 	 * possible bug in the driver.
285 	 */
286 	if (req->buf == NULL)
287 		req->buf = (void *)0xDEADBABE;
288 
289 	reinit_completion(&ffs->ep0req_completion);
290 
291 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
292 	if (unlikely(ret < 0))
293 		return ret;
294 
295 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
296 	if (unlikely(ret)) {
297 		usb_ep_dequeue(ffs->gadget->ep0, req);
298 		return -EINTR;
299 	}
300 
301 	ffs->setup_state = FFS_NO_SETUP;
302 	return req->status ? req->status : req->actual;
303 }
304 
305 static int __ffs_ep0_stall(struct ffs_data *ffs)
306 {
307 	if (ffs->ev.can_stall) {
308 		pr_vdebug("ep0 stall\n");
309 		usb_ep_set_halt(ffs->gadget->ep0);
310 		ffs->setup_state = FFS_NO_SETUP;
311 		return -EL2HLT;
312 	} else {
313 		pr_debug("bogus ep0 stall!\n");
314 		return -ESRCH;
315 	}
316 }
317 
318 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
319 			     size_t len, loff_t *ptr)
320 {
321 	struct ffs_data *ffs = file->private_data;
322 	ssize_t ret;
323 	char *data;
324 
325 	ENTER();
326 
327 	/* Fast check if setup was canceled */
328 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
329 		return -EIDRM;
330 
331 	/* Acquire mutex */
332 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
333 	if (unlikely(ret < 0))
334 		return ret;
335 
336 	/* Check state */
337 	switch (ffs->state) {
338 	case FFS_READ_DESCRIPTORS:
339 	case FFS_READ_STRINGS:
340 		/* Copy data */
341 		if (unlikely(len < 16)) {
342 			ret = -EINVAL;
343 			break;
344 		}
345 
346 		data = ffs_prepare_buffer(buf, len);
347 		if (IS_ERR(data)) {
348 			ret = PTR_ERR(data);
349 			break;
350 		}
351 
352 		/* Handle data */
353 		if (ffs->state == FFS_READ_DESCRIPTORS) {
354 			pr_info("read descriptors\n");
355 			ret = __ffs_data_got_descs(ffs, data, len);
356 			if (unlikely(ret < 0))
357 				break;
358 
359 			ffs->state = FFS_READ_STRINGS;
360 			ret = len;
361 		} else {
362 			pr_info("read strings\n");
363 			ret = __ffs_data_got_strings(ffs, data, len);
364 			if (unlikely(ret < 0))
365 				break;
366 
367 			ret = ffs_epfiles_create(ffs);
368 			if (unlikely(ret)) {
369 				ffs->state = FFS_CLOSING;
370 				break;
371 			}
372 
373 			ffs->state = FFS_ACTIVE;
374 			mutex_unlock(&ffs->mutex);
375 
376 			ret = ffs_ready(ffs);
377 			if (unlikely(ret < 0)) {
378 				ffs->state = FFS_CLOSING;
379 				return ret;
380 			}
381 
382 			return len;
383 		}
384 		break;
385 
386 	case FFS_ACTIVE:
387 		data = NULL;
388 		/*
389 		 * We're called from user space, we can use _irq
390 		 * rather then _irqsave
391 		 */
392 		spin_lock_irq(&ffs->ev.waitq.lock);
393 		switch (ffs_setup_state_clear_cancelled(ffs)) {
394 		case FFS_SETUP_CANCELLED:
395 			ret = -EIDRM;
396 			goto done_spin;
397 
398 		case FFS_NO_SETUP:
399 			ret = -ESRCH;
400 			goto done_spin;
401 
402 		case FFS_SETUP_PENDING:
403 			break;
404 		}
405 
406 		/* FFS_SETUP_PENDING */
407 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
408 			spin_unlock_irq(&ffs->ev.waitq.lock);
409 			ret = __ffs_ep0_stall(ffs);
410 			break;
411 		}
412 
413 		/* FFS_SETUP_PENDING and not stall */
414 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
415 
416 		spin_unlock_irq(&ffs->ev.waitq.lock);
417 
418 		data = ffs_prepare_buffer(buf, len);
419 		if (IS_ERR(data)) {
420 			ret = PTR_ERR(data);
421 			break;
422 		}
423 
424 		spin_lock_irq(&ffs->ev.waitq.lock);
425 
426 		/*
427 		 * We are guaranteed to be still in FFS_ACTIVE state
428 		 * but the state of setup could have changed from
429 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
430 		 * to check for that.  If that happened we copied data
431 		 * from user space in vain but it's unlikely.
432 		 *
433 		 * For sure we are not in FFS_NO_SETUP since this is
434 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
435 		 * transition can be performed and it's protected by
436 		 * mutex.
437 		 */
438 		if (ffs_setup_state_clear_cancelled(ffs) ==
439 		    FFS_SETUP_CANCELLED) {
440 			ret = -EIDRM;
441 done_spin:
442 			spin_unlock_irq(&ffs->ev.waitq.lock);
443 		} else {
444 			/* unlocks spinlock */
445 			ret = __ffs_ep0_queue_wait(ffs, data, len);
446 		}
447 		kfree(data);
448 		break;
449 
450 	default:
451 		ret = -EBADFD;
452 		break;
453 	}
454 
455 	mutex_unlock(&ffs->mutex);
456 	return ret;
457 }
458 
459 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
460 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
461 				     size_t n)
462 	__releases(&ffs->ev.waitq.lock)
463 {
464 	/*
465 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
466 	 * size of ffs->ev.types array (which is four) so that's how much space
467 	 * we reserve.
468 	 */
469 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
470 	const size_t size = n * sizeof *events;
471 	unsigned i = 0;
472 
473 	memset(events, 0, size);
474 
475 	do {
476 		events[i].type = ffs->ev.types[i];
477 		if (events[i].type == FUNCTIONFS_SETUP) {
478 			events[i].u.setup = ffs->ev.setup;
479 			ffs->setup_state = FFS_SETUP_PENDING;
480 		}
481 	} while (++i < n);
482 
483 	ffs->ev.count -= n;
484 	if (ffs->ev.count)
485 		memmove(ffs->ev.types, ffs->ev.types + n,
486 			ffs->ev.count * sizeof *ffs->ev.types);
487 
488 	spin_unlock_irq(&ffs->ev.waitq.lock);
489 	mutex_unlock(&ffs->mutex);
490 
491 	return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
492 }
493 
494 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
495 			    size_t len, loff_t *ptr)
496 {
497 	struct ffs_data *ffs = file->private_data;
498 	char *data = NULL;
499 	size_t n;
500 	int ret;
501 
502 	ENTER();
503 
504 	/* Fast check if setup was canceled */
505 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
506 		return -EIDRM;
507 
508 	/* Acquire mutex */
509 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
510 	if (unlikely(ret < 0))
511 		return ret;
512 
513 	/* Check state */
514 	if (ffs->state != FFS_ACTIVE) {
515 		ret = -EBADFD;
516 		goto done_mutex;
517 	}
518 
519 	/*
520 	 * We're called from user space, we can use _irq rather then
521 	 * _irqsave
522 	 */
523 	spin_lock_irq(&ffs->ev.waitq.lock);
524 
525 	switch (ffs_setup_state_clear_cancelled(ffs)) {
526 	case FFS_SETUP_CANCELLED:
527 		ret = -EIDRM;
528 		break;
529 
530 	case FFS_NO_SETUP:
531 		n = len / sizeof(struct usb_functionfs_event);
532 		if (unlikely(!n)) {
533 			ret = -EINVAL;
534 			break;
535 		}
536 
537 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
538 			ret = -EAGAIN;
539 			break;
540 		}
541 
542 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
543 							ffs->ev.count)) {
544 			ret = -EINTR;
545 			break;
546 		}
547 
548 		/* unlocks spinlock */
549 		return __ffs_ep0_read_events(ffs, buf,
550 					     min(n, (size_t)ffs->ev.count));
551 
552 	case FFS_SETUP_PENDING:
553 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
554 			spin_unlock_irq(&ffs->ev.waitq.lock);
555 			ret = __ffs_ep0_stall(ffs);
556 			goto done_mutex;
557 		}
558 
559 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
560 
561 		spin_unlock_irq(&ffs->ev.waitq.lock);
562 
563 		if (likely(len)) {
564 			data = kmalloc(len, GFP_KERNEL);
565 			if (unlikely(!data)) {
566 				ret = -ENOMEM;
567 				goto done_mutex;
568 			}
569 		}
570 
571 		spin_lock_irq(&ffs->ev.waitq.lock);
572 
573 		/* See ffs_ep0_write() */
574 		if (ffs_setup_state_clear_cancelled(ffs) ==
575 		    FFS_SETUP_CANCELLED) {
576 			ret = -EIDRM;
577 			break;
578 		}
579 
580 		/* unlocks spinlock */
581 		ret = __ffs_ep0_queue_wait(ffs, data, len);
582 		if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
583 			ret = -EFAULT;
584 		goto done_mutex;
585 
586 	default:
587 		ret = -EBADFD;
588 		break;
589 	}
590 
591 	spin_unlock_irq(&ffs->ev.waitq.lock);
592 done_mutex:
593 	mutex_unlock(&ffs->mutex);
594 	kfree(data);
595 	return ret;
596 }
597 
598 static int ffs_ep0_open(struct inode *inode, struct file *file)
599 {
600 	struct ffs_data *ffs = inode->i_private;
601 
602 	ENTER();
603 
604 	if (unlikely(ffs->state == FFS_CLOSING))
605 		return -EBUSY;
606 
607 	file->private_data = ffs;
608 	ffs_data_opened(ffs);
609 
610 	return 0;
611 }
612 
613 static int ffs_ep0_release(struct inode *inode, struct file *file)
614 {
615 	struct ffs_data *ffs = file->private_data;
616 
617 	ENTER();
618 
619 	ffs_data_closed(ffs);
620 
621 	return 0;
622 }
623 
624 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
625 {
626 	struct ffs_data *ffs = file->private_data;
627 	struct usb_gadget *gadget = ffs->gadget;
628 	long ret;
629 
630 	ENTER();
631 
632 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
633 		struct ffs_function *func = ffs->func;
634 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
635 	} else if (gadget && gadget->ops->ioctl) {
636 		ret = gadget->ops->ioctl(gadget, code, value);
637 	} else {
638 		ret = -ENOTTY;
639 	}
640 
641 	return ret;
642 }
643 
644 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
645 {
646 	struct ffs_data *ffs = file->private_data;
647 	__poll_t mask = EPOLLWRNORM;
648 	int ret;
649 
650 	poll_wait(file, &ffs->ev.waitq, wait);
651 
652 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
653 	if (unlikely(ret < 0))
654 		return mask;
655 
656 	switch (ffs->state) {
657 	case FFS_READ_DESCRIPTORS:
658 	case FFS_READ_STRINGS:
659 		mask |= EPOLLOUT;
660 		break;
661 
662 	case FFS_ACTIVE:
663 		switch (ffs->setup_state) {
664 		case FFS_NO_SETUP:
665 			if (ffs->ev.count)
666 				mask |= EPOLLIN;
667 			break;
668 
669 		case FFS_SETUP_PENDING:
670 		case FFS_SETUP_CANCELLED:
671 			mask |= (EPOLLIN | EPOLLOUT);
672 			break;
673 		}
674 	case FFS_CLOSING:
675 		break;
676 	case FFS_DEACTIVATED:
677 		break;
678 	}
679 
680 	mutex_unlock(&ffs->mutex);
681 
682 	return mask;
683 }
684 
685 static const struct file_operations ffs_ep0_operations = {
686 	.llseek =	no_llseek,
687 
688 	.open =		ffs_ep0_open,
689 	.write =	ffs_ep0_write,
690 	.read =		ffs_ep0_read,
691 	.release =	ffs_ep0_release,
692 	.unlocked_ioctl =	ffs_ep0_ioctl,
693 	.poll =		ffs_ep0_poll,
694 };
695 
696 
697 /* "Normal" endpoints operations ********************************************/
698 
699 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
700 {
701 	ENTER();
702 	if (likely(req->context)) {
703 		struct ffs_ep *ep = _ep->driver_data;
704 		ep->status = req->status ? req->status : req->actual;
705 		complete(req->context);
706 	}
707 }
708 
709 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
710 {
711 	ssize_t ret = copy_to_iter(data, data_len, iter);
712 	if (likely(ret == data_len))
713 		return ret;
714 
715 	if (unlikely(iov_iter_count(iter)))
716 		return -EFAULT;
717 
718 	/*
719 	 * Dear user space developer!
720 	 *
721 	 * TL;DR: To stop getting below error message in your kernel log, change
722 	 * user space code using functionfs to align read buffers to a max
723 	 * packet size.
724 	 *
725 	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
726 	 * packet size.  When unaligned buffer is passed to functionfs, it
727 	 * internally uses a larger, aligned buffer so that such UDCs are happy.
728 	 *
729 	 * Unfortunately, this means that host may send more data than was
730 	 * requested in read(2) system call.  f_fs doesn’t know what to do with
731 	 * that excess data so it simply drops it.
732 	 *
733 	 * Was the buffer aligned in the first place, no such problem would
734 	 * happen.
735 	 *
736 	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
737 	 * by splitting a request into multiple parts.  This splitting may still
738 	 * be a problem though so it’s likely best to align the buffer
739 	 * regardless of it being AIO or not..
740 	 *
741 	 * This only affects OUT endpoints, i.e. reading data with a read(2),
742 	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
743 	 * affected.
744 	 */
745 	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
746 	       "Align read buffer size to max packet size to avoid the problem.\n",
747 	       data_len, ret);
748 
749 	return ret;
750 }
751 
752 static void ffs_user_copy_worker(struct work_struct *work)
753 {
754 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
755 						   work);
756 	int ret = io_data->req->status ? io_data->req->status :
757 					 io_data->req->actual;
758 	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
759 
760 	if (io_data->read && ret > 0) {
761 		use_mm(io_data->mm);
762 		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
763 		unuse_mm(io_data->mm);
764 	}
765 
766 	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
767 
768 	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
769 		eventfd_signal(io_data->ffs->ffs_eventfd, 1);
770 
771 	usb_ep_free_request(io_data->ep, io_data->req);
772 
773 	if (io_data->read)
774 		kfree(io_data->to_free);
775 	kfree(io_data->buf);
776 	kfree(io_data);
777 }
778 
779 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
780 					 struct usb_request *req)
781 {
782 	struct ffs_io_data *io_data = req->context;
783 	struct ffs_data *ffs = io_data->ffs;
784 
785 	ENTER();
786 
787 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
788 	queue_work(ffs->io_completion_wq, &io_data->work);
789 }
790 
791 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
792 {
793 	/*
794 	 * See comment in struct ffs_epfile for full read_buffer pointer
795 	 * synchronisation story.
796 	 */
797 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
798 	if (buf && buf != READ_BUFFER_DROP)
799 		kfree(buf);
800 }
801 
802 /* Assumes epfile->mutex is held. */
803 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
804 					  struct iov_iter *iter)
805 {
806 	/*
807 	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
808 	 * the buffer while we are using it.  See comment in struct ffs_epfile
809 	 * for full read_buffer pointer synchronisation story.
810 	 */
811 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
812 	ssize_t ret;
813 	if (!buf || buf == READ_BUFFER_DROP)
814 		return 0;
815 
816 	ret = copy_to_iter(buf->data, buf->length, iter);
817 	if (buf->length == ret) {
818 		kfree(buf);
819 		return ret;
820 	}
821 
822 	if (unlikely(iov_iter_count(iter))) {
823 		ret = -EFAULT;
824 	} else {
825 		buf->length -= ret;
826 		buf->data += ret;
827 	}
828 
829 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
830 		kfree(buf);
831 
832 	return ret;
833 }
834 
835 /* Assumes epfile->mutex is held. */
836 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
837 				      void *data, int data_len,
838 				      struct iov_iter *iter)
839 {
840 	struct ffs_buffer *buf;
841 
842 	ssize_t ret = copy_to_iter(data, data_len, iter);
843 	if (likely(data_len == ret))
844 		return ret;
845 
846 	if (unlikely(iov_iter_count(iter)))
847 		return -EFAULT;
848 
849 	/* See ffs_copy_to_iter for more context. */
850 	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
851 		data_len, ret);
852 
853 	data_len -= ret;
854 	buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
855 	if (!buf)
856 		return -ENOMEM;
857 	buf->length = data_len;
858 	buf->data = buf->storage;
859 	memcpy(buf->storage, data + ret, data_len);
860 
861 	/*
862 	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
863 	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
864 	 * in struct ffs_epfile for full read_buffer pointer synchronisation
865 	 * story.
866 	 */
867 	if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
868 		kfree(buf);
869 
870 	return ret;
871 }
872 
873 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
874 {
875 	struct ffs_epfile *epfile = file->private_data;
876 	struct usb_request *req;
877 	struct ffs_ep *ep;
878 	char *data = NULL;
879 	ssize_t ret, data_len = -EINVAL;
880 	int halt;
881 
882 	/* Are we still active? */
883 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
884 		return -ENODEV;
885 
886 	/* Wait for endpoint to be enabled */
887 	ep = epfile->ep;
888 	if (!ep) {
889 		if (file->f_flags & O_NONBLOCK)
890 			return -EAGAIN;
891 
892 		ret = wait_event_interruptible(
893 				epfile->ffs->wait, (ep = epfile->ep));
894 		if (ret)
895 			return -EINTR;
896 	}
897 
898 	/* Do we halt? */
899 	halt = (!io_data->read == !epfile->in);
900 	if (halt && epfile->isoc)
901 		return -EINVAL;
902 
903 	/* We will be using request and read_buffer */
904 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
905 	if (unlikely(ret))
906 		goto error;
907 
908 	/* Allocate & copy */
909 	if (!halt) {
910 		struct usb_gadget *gadget;
911 
912 		/*
913 		 * Do we have buffered data from previous partial read?  Check
914 		 * that for synchronous case only because we do not have
915 		 * facility to ‘wake up’ a pending asynchronous read and push
916 		 * buffered data to it which we would need to make things behave
917 		 * consistently.
918 		 */
919 		if (!io_data->aio && io_data->read) {
920 			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
921 			if (ret)
922 				goto error_mutex;
923 		}
924 
925 		/*
926 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
927 		 * before the waiting completes, so do not assign to 'gadget'
928 		 * earlier
929 		 */
930 		gadget = epfile->ffs->gadget;
931 
932 		spin_lock_irq(&epfile->ffs->eps_lock);
933 		/* In the meantime, endpoint got disabled or changed. */
934 		if (epfile->ep != ep) {
935 			ret = -ESHUTDOWN;
936 			goto error_lock;
937 		}
938 		data_len = iov_iter_count(&io_data->data);
939 		/*
940 		 * Controller may require buffer size to be aligned to
941 		 * maxpacketsize of an out endpoint.
942 		 */
943 		if (io_data->read)
944 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
945 		spin_unlock_irq(&epfile->ffs->eps_lock);
946 
947 		data = kmalloc(data_len, GFP_KERNEL);
948 		if (unlikely(!data)) {
949 			ret = -ENOMEM;
950 			goto error_mutex;
951 		}
952 		if (!io_data->read &&
953 		    !copy_from_iter_full(data, data_len, &io_data->data)) {
954 			ret = -EFAULT;
955 			goto error_mutex;
956 		}
957 	}
958 
959 	spin_lock_irq(&epfile->ffs->eps_lock);
960 
961 	if (epfile->ep != ep) {
962 		/* In the meantime, endpoint got disabled or changed. */
963 		ret = -ESHUTDOWN;
964 	} else if (halt) {
965 		ret = usb_ep_set_halt(ep->ep);
966 		if (!ret)
967 			ret = -EBADMSG;
968 	} else if (unlikely(data_len == -EINVAL)) {
969 		/*
970 		 * Sanity Check: even though data_len can't be used
971 		 * uninitialized at the time I write this comment, some
972 		 * compilers complain about this situation.
973 		 * In order to keep the code clean from warnings, data_len is
974 		 * being initialized to -EINVAL during its declaration, which
975 		 * means we can't rely on compiler anymore to warn no future
976 		 * changes won't result in data_len being used uninitialized.
977 		 * For such reason, we're adding this redundant sanity check
978 		 * here.
979 		 */
980 		WARN(1, "%s: data_len == -EINVAL\n", __func__);
981 		ret = -EINVAL;
982 	} else if (!io_data->aio) {
983 		DECLARE_COMPLETION_ONSTACK(done);
984 		bool interrupted = false;
985 
986 		req = ep->req;
987 		req->buf      = data;
988 		req->length   = data_len;
989 
990 		req->context  = &done;
991 		req->complete = ffs_epfile_io_complete;
992 
993 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
994 		if (unlikely(ret < 0))
995 			goto error_lock;
996 
997 		spin_unlock_irq(&epfile->ffs->eps_lock);
998 
999 		if (unlikely(wait_for_completion_interruptible(&done))) {
1000 			/*
1001 			 * To avoid race condition with ffs_epfile_io_complete,
1002 			 * dequeue the request first then check
1003 			 * status. usb_ep_dequeue API should guarantee no race
1004 			 * condition with req->complete callback.
1005 			 */
1006 			usb_ep_dequeue(ep->ep, req);
1007 			interrupted = ep->status < 0;
1008 		}
1009 
1010 		if (interrupted)
1011 			ret = -EINTR;
1012 		else if (io_data->read && ep->status > 0)
1013 			ret = __ffs_epfile_read_data(epfile, data, ep->status,
1014 						     &io_data->data);
1015 		else
1016 			ret = ep->status;
1017 		goto error_mutex;
1018 	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1019 		ret = -ENOMEM;
1020 	} else {
1021 		req->buf      = data;
1022 		req->length   = data_len;
1023 
1024 		io_data->buf = data;
1025 		io_data->ep = ep->ep;
1026 		io_data->req = req;
1027 		io_data->ffs = epfile->ffs;
1028 
1029 		req->context  = io_data;
1030 		req->complete = ffs_epfile_async_io_complete;
1031 
1032 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1033 		if (unlikely(ret)) {
1034 			usb_ep_free_request(ep->ep, req);
1035 			goto error_lock;
1036 		}
1037 
1038 		ret = -EIOCBQUEUED;
1039 		/*
1040 		 * Do not kfree the buffer in this function.  It will be freed
1041 		 * by ffs_user_copy_worker.
1042 		 */
1043 		data = NULL;
1044 	}
1045 
1046 error_lock:
1047 	spin_unlock_irq(&epfile->ffs->eps_lock);
1048 error_mutex:
1049 	mutex_unlock(&epfile->mutex);
1050 error:
1051 	kfree(data);
1052 	return ret;
1053 }
1054 
1055 static int
1056 ffs_epfile_open(struct inode *inode, struct file *file)
1057 {
1058 	struct ffs_epfile *epfile = inode->i_private;
1059 
1060 	ENTER();
1061 
1062 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1063 		return -ENODEV;
1064 
1065 	file->private_data = epfile;
1066 	ffs_data_opened(epfile->ffs);
1067 
1068 	return 0;
1069 }
1070 
1071 static int ffs_aio_cancel(struct kiocb *kiocb)
1072 {
1073 	struct ffs_io_data *io_data = kiocb->private;
1074 	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1075 	int value;
1076 
1077 	ENTER();
1078 
1079 	spin_lock_irq(&epfile->ffs->eps_lock);
1080 
1081 	if (likely(io_data && io_data->ep && io_data->req))
1082 		value = usb_ep_dequeue(io_data->ep, io_data->req);
1083 	else
1084 		value = -EINVAL;
1085 
1086 	spin_unlock_irq(&epfile->ffs->eps_lock);
1087 
1088 	return value;
1089 }
1090 
1091 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1092 {
1093 	struct ffs_io_data io_data, *p = &io_data;
1094 	ssize_t res;
1095 
1096 	ENTER();
1097 
1098 	if (!is_sync_kiocb(kiocb)) {
1099 		p = kmalloc(sizeof(io_data), GFP_KERNEL);
1100 		if (unlikely(!p))
1101 			return -ENOMEM;
1102 		p->aio = true;
1103 	} else {
1104 		p->aio = false;
1105 	}
1106 
1107 	p->read = false;
1108 	p->kiocb = kiocb;
1109 	p->data = *from;
1110 	p->mm = current->mm;
1111 
1112 	kiocb->private = p;
1113 
1114 	if (p->aio)
1115 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1116 
1117 	res = ffs_epfile_io(kiocb->ki_filp, p);
1118 	if (res == -EIOCBQUEUED)
1119 		return res;
1120 	if (p->aio)
1121 		kfree(p);
1122 	else
1123 		*from = p->data;
1124 	return res;
1125 }
1126 
1127 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1128 {
1129 	struct ffs_io_data io_data, *p = &io_data;
1130 	ssize_t res;
1131 
1132 	ENTER();
1133 
1134 	if (!is_sync_kiocb(kiocb)) {
1135 		p = kmalloc(sizeof(io_data), GFP_KERNEL);
1136 		if (unlikely(!p))
1137 			return -ENOMEM;
1138 		p->aio = true;
1139 	} else {
1140 		p->aio = false;
1141 	}
1142 
1143 	p->read = true;
1144 	p->kiocb = kiocb;
1145 	if (p->aio) {
1146 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1147 		if (!p->to_free) {
1148 			kfree(p);
1149 			return -ENOMEM;
1150 		}
1151 	} else {
1152 		p->data = *to;
1153 		p->to_free = NULL;
1154 	}
1155 	p->mm = current->mm;
1156 
1157 	kiocb->private = p;
1158 
1159 	if (p->aio)
1160 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1161 
1162 	res = ffs_epfile_io(kiocb->ki_filp, p);
1163 	if (res == -EIOCBQUEUED)
1164 		return res;
1165 
1166 	if (p->aio) {
1167 		kfree(p->to_free);
1168 		kfree(p);
1169 	} else {
1170 		*to = p->data;
1171 	}
1172 	return res;
1173 }
1174 
1175 static int
1176 ffs_epfile_release(struct inode *inode, struct file *file)
1177 {
1178 	struct ffs_epfile *epfile = inode->i_private;
1179 
1180 	ENTER();
1181 
1182 	__ffs_epfile_read_buffer_free(epfile);
1183 	ffs_data_closed(epfile->ffs);
1184 
1185 	return 0;
1186 }
1187 
1188 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1189 			     unsigned long value)
1190 {
1191 	struct ffs_epfile *epfile = file->private_data;
1192 	struct ffs_ep *ep;
1193 	int ret;
1194 
1195 	ENTER();
1196 
1197 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1198 		return -ENODEV;
1199 
1200 	/* Wait for endpoint to be enabled */
1201 	ep = epfile->ep;
1202 	if (!ep) {
1203 		if (file->f_flags & O_NONBLOCK)
1204 			return -EAGAIN;
1205 
1206 		ret = wait_event_interruptible(
1207 				epfile->ffs->wait, (ep = epfile->ep));
1208 		if (ret)
1209 			return -EINTR;
1210 	}
1211 
1212 	spin_lock_irq(&epfile->ffs->eps_lock);
1213 
1214 	/* In the meantime, endpoint got disabled or changed. */
1215 	if (epfile->ep != ep) {
1216 		spin_unlock_irq(&epfile->ffs->eps_lock);
1217 		return -ESHUTDOWN;
1218 	}
1219 
1220 	switch (code) {
1221 	case FUNCTIONFS_FIFO_STATUS:
1222 		ret = usb_ep_fifo_status(epfile->ep->ep);
1223 		break;
1224 	case FUNCTIONFS_FIFO_FLUSH:
1225 		usb_ep_fifo_flush(epfile->ep->ep);
1226 		ret = 0;
1227 		break;
1228 	case FUNCTIONFS_CLEAR_HALT:
1229 		ret = usb_ep_clear_halt(epfile->ep->ep);
1230 		break;
1231 	case FUNCTIONFS_ENDPOINT_REVMAP:
1232 		ret = epfile->ep->num;
1233 		break;
1234 	case FUNCTIONFS_ENDPOINT_DESC:
1235 	{
1236 		int desc_idx;
1237 		struct usb_endpoint_descriptor *desc;
1238 
1239 		switch (epfile->ffs->gadget->speed) {
1240 		case USB_SPEED_SUPER:
1241 			desc_idx = 2;
1242 			break;
1243 		case USB_SPEED_HIGH:
1244 			desc_idx = 1;
1245 			break;
1246 		default:
1247 			desc_idx = 0;
1248 		}
1249 		desc = epfile->ep->descs[desc_idx];
1250 
1251 		spin_unlock_irq(&epfile->ffs->eps_lock);
1252 		ret = copy_to_user((void __user *)value, desc, desc->bLength);
1253 		if (ret)
1254 			ret = -EFAULT;
1255 		return ret;
1256 	}
1257 	default:
1258 		ret = -ENOTTY;
1259 	}
1260 	spin_unlock_irq(&epfile->ffs->eps_lock);
1261 
1262 	return ret;
1263 }
1264 
1265 static const struct file_operations ffs_epfile_operations = {
1266 	.llseek =	no_llseek,
1267 
1268 	.open =		ffs_epfile_open,
1269 	.write_iter =	ffs_epfile_write_iter,
1270 	.read_iter =	ffs_epfile_read_iter,
1271 	.release =	ffs_epfile_release,
1272 	.unlocked_ioctl =	ffs_epfile_ioctl,
1273 };
1274 
1275 
1276 /* File system and super block operations ***********************************/
1277 
1278 /*
1279  * Mounting the file system creates a controller file, used first for
1280  * function configuration then later for event monitoring.
1281  */
1282 
1283 static struct inode *__must_check
1284 ffs_sb_make_inode(struct super_block *sb, void *data,
1285 		  const struct file_operations *fops,
1286 		  const struct inode_operations *iops,
1287 		  struct ffs_file_perms *perms)
1288 {
1289 	struct inode *inode;
1290 
1291 	ENTER();
1292 
1293 	inode = new_inode(sb);
1294 
1295 	if (likely(inode)) {
1296 		struct timespec ts = current_time(inode);
1297 
1298 		inode->i_ino	 = get_next_ino();
1299 		inode->i_mode    = perms->mode;
1300 		inode->i_uid     = perms->uid;
1301 		inode->i_gid     = perms->gid;
1302 		inode->i_atime   = ts;
1303 		inode->i_mtime   = ts;
1304 		inode->i_ctime   = ts;
1305 		inode->i_private = data;
1306 		if (fops)
1307 			inode->i_fop = fops;
1308 		if (iops)
1309 			inode->i_op  = iops;
1310 	}
1311 
1312 	return inode;
1313 }
1314 
1315 /* Create "regular" file */
1316 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1317 					const char *name, void *data,
1318 					const struct file_operations *fops)
1319 {
1320 	struct ffs_data	*ffs = sb->s_fs_info;
1321 	struct dentry	*dentry;
1322 	struct inode	*inode;
1323 
1324 	ENTER();
1325 
1326 	dentry = d_alloc_name(sb->s_root, name);
1327 	if (unlikely(!dentry))
1328 		return NULL;
1329 
1330 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1331 	if (unlikely(!inode)) {
1332 		dput(dentry);
1333 		return NULL;
1334 	}
1335 
1336 	d_add(dentry, inode);
1337 	return dentry;
1338 }
1339 
1340 /* Super block */
1341 static const struct super_operations ffs_sb_operations = {
1342 	.statfs =	simple_statfs,
1343 	.drop_inode =	generic_delete_inode,
1344 };
1345 
1346 struct ffs_sb_fill_data {
1347 	struct ffs_file_perms perms;
1348 	umode_t root_mode;
1349 	const char *dev_name;
1350 	bool no_disconnect;
1351 	struct ffs_data *ffs_data;
1352 };
1353 
1354 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1355 {
1356 	struct ffs_sb_fill_data *data = _data;
1357 	struct inode	*inode;
1358 	struct ffs_data	*ffs = data->ffs_data;
1359 
1360 	ENTER();
1361 
1362 	ffs->sb              = sb;
1363 	data->ffs_data       = NULL;
1364 	sb->s_fs_info        = ffs;
1365 	sb->s_blocksize      = PAGE_SIZE;
1366 	sb->s_blocksize_bits = PAGE_SHIFT;
1367 	sb->s_magic          = FUNCTIONFS_MAGIC;
1368 	sb->s_op             = &ffs_sb_operations;
1369 	sb->s_time_gran      = 1;
1370 
1371 	/* Root inode */
1372 	data->perms.mode = data->root_mode;
1373 	inode = ffs_sb_make_inode(sb, NULL,
1374 				  &simple_dir_operations,
1375 				  &simple_dir_inode_operations,
1376 				  &data->perms);
1377 	sb->s_root = d_make_root(inode);
1378 	if (unlikely(!sb->s_root))
1379 		return -ENOMEM;
1380 
1381 	/* EP0 file */
1382 	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1383 					 &ffs_ep0_operations)))
1384 		return -ENOMEM;
1385 
1386 	return 0;
1387 }
1388 
1389 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1390 {
1391 	ENTER();
1392 
1393 	if (!opts || !*opts)
1394 		return 0;
1395 
1396 	for (;;) {
1397 		unsigned long value;
1398 		char *eq, *comma;
1399 
1400 		/* Option limit */
1401 		comma = strchr(opts, ',');
1402 		if (comma)
1403 			*comma = 0;
1404 
1405 		/* Value limit */
1406 		eq = strchr(opts, '=');
1407 		if (unlikely(!eq)) {
1408 			pr_err("'=' missing in %s\n", opts);
1409 			return -EINVAL;
1410 		}
1411 		*eq = 0;
1412 
1413 		/* Parse value */
1414 		if (kstrtoul(eq + 1, 0, &value)) {
1415 			pr_err("%s: invalid value: %s\n", opts, eq + 1);
1416 			return -EINVAL;
1417 		}
1418 
1419 		/* Interpret option */
1420 		switch (eq - opts) {
1421 		case 13:
1422 			if (!memcmp(opts, "no_disconnect", 13))
1423 				data->no_disconnect = !!value;
1424 			else
1425 				goto invalid;
1426 			break;
1427 		case 5:
1428 			if (!memcmp(opts, "rmode", 5))
1429 				data->root_mode  = (value & 0555) | S_IFDIR;
1430 			else if (!memcmp(opts, "fmode", 5))
1431 				data->perms.mode = (value & 0666) | S_IFREG;
1432 			else
1433 				goto invalid;
1434 			break;
1435 
1436 		case 4:
1437 			if (!memcmp(opts, "mode", 4)) {
1438 				data->root_mode  = (value & 0555) | S_IFDIR;
1439 				data->perms.mode = (value & 0666) | S_IFREG;
1440 			} else {
1441 				goto invalid;
1442 			}
1443 			break;
1444 
1445 		case 3:
1446 			if (!memcmp(opts, "uid", 3)) {
1447 				data->perms.uid = make_kuid(current_user_ns(), value);
1448 				if (!uid_valid(data->perms.uid)) {
1449 					pr_err("%s: unmapped value: %lu\n", opts, value);
1450 					return -EINVAL;
1451 				}
1452 			} else if (!memcmp(opts, "gid", 3)) {
1453 				data->perms.gid = make_kgid(current_user_ns(), value);
1454 				if (!gid_valid(data->perms.gid)) {
1455 					pr_err("%s: unmapped value: %lu\n", opts, value);
1456 					return -EINVAL;
1457 				}
1458 			} else {
1459 				goto invalid;
1460 			}
1461 			break;
1462 
1463 		default:
1464 invalid:
1465 			pr_err("%s: invalid option\n", opts);
1466 			return -EINVAL;
1467 		}
1468 
1469 		/* Next iteration */
1470 		if (!comma)
1471 			break;
1472 		opts = comma + 1;
1473 	}
1474 
1475 	return 0;
1476 }
1477 
1478 /* "mount -t functionfs dev_name /dev/function" ends up here */
1479 
1480 static struct dentry *
1481 ffs_fs_mount(struct file_system_type *t, int flags,
1482 	      const char *dev_name, void *opts)
1483 {
1484 	struct ffs_sb_fill_data data = {
1485 		.perms = {
1486 			.mode = S_IFREG | 0600,
1487 			.uid = GLOBAL_ROOT_UID,
1488 			.gid = GLOBAL_ROOT_GID,
1489 		},
1490 		.root_mode = S_IFDIR | 0500,
1491 		.no_disconnect = false,
1492 	};
1493 	struct dentry *rv;
1494 	int ret;
1495 	void *ffs_dev;
1496 	struct ffs_data	*ffs;
1497 
1498 	ENTER();
1499 
1500 	ret = ffs_fs_parse_opts(&data, opts);
1501 	if (unlikely(ret < 0))
1502 		return ERR_PTR(ret);
1503 
1504 	ffs = ffs_data_new(dev_name);
1505 	if (unlikely(!ffs))
1506 		return ERR_PTR(-ENOMEM);
1507 	ffs->file_perms = data.perms;
1508 	ffs->no_disconnect = data.no_disconnect;
1509 
1510 	ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1511 	if (unlikely(!ffs->dev_name)) {
1512 		ffs_data_put(ffs);
1513 		return ERR_PTR(-ENOMEM);
1514 	}
1515 
1516 	ffs_dev = ffs_acquire_dev(dev_name);
1517 	if (IS_ERR(ffs_dev)) {
1518 		ffs_data_put(ffs);
1519 		return ERR_CAST(ffs_dev);
1520 	}
1521 	ffs->private_data = ffs_dev;
1522 	data.ffs_data = ffs;
1523 
1524 	rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1525 	if (IS_ERR(rv) && data.ffs_data) {
1526 		ffs_release_dev(data.ffs_data);
1527 		ffs_data_put(data.ffs_data);
1528 	}
1529 	return rv;
1530 }
1531 
1532 static void
1533 ffs_fs_kill_sb(struct super_block *sb)
1534 {
1535 	ENTER();
1536 
1537 	kill_litter_super(sb);
1538 	if (sb->s_fs_info) {
1539 		ffs_release_dev(sb->s_fs_info);
1540 		ffs_data_closed(sb->s_fs_info);
1541 		ffs_data_put(sb->s_fs_info);
1542 	}
1543 }
1544 
1545 static struct file_system_type ffs_fs_type = {
1546 	.owner		= THIS_MODULE,
1547 	.name		= "functionfs",
1548 	.mount		= ffs_fs_mount,
1549 	.kill_sb	= ffs_fs_kill_sb,
1550 };
1551 MODULE_ALIAS_FS("functionfs");
1552 
1553 
1554 /* Driver's main init/cleanup functions *************************************/
1555 
1556 static int functionfs_init(void)
1557 {
1558 	int ret;
1559 
1560 	ENTER();
1561 
1562 	ret = register_filesystem(&ffs_fs_type);
1563 	if (likely(!ret))
1564 		pr_info("file system registered\n");
1565 	else
1566 		pr_err("failed registering file system (%d)\n", ret);
1567 
1568 	return ret;
1569 }
1570 
1571 static void functionfs_cleanup(void)
1572 {
1573 	ENTER();
1574 
1575 	pr_info("unloading\n");
1576 	unregister_filesystem(&ffs_fs_type);
1577 }
1578 
1579 
1580 /* ffs_data and ffs_function construction and destruction code **************/
1581 
1582 static void ffs_data_clear(struct ffs_data *ffs);
1583 static void ffs_data_reset(struct ffs_data *ffs);
1584 
1585 static void ffs_data_get(struct ffs_data *ffs)
1586 {
1587 	ENTER();
1588 
1589 	refcount_inc(&ffs->ref);
1590 }
1591 
1592 static void ffs_data_opened(struct ffs_data *ffs)
1593 {
1594 	ENTER();
1595 
1596 	refcount_inc(&ffs->ref);
1597 	if (atomic_add_return(1, &ffs->opened) == 1 &&
1598 			ffs->state == FFS_DEACTIVATED) {
1599 		ffs->state = FFS_CLOSING;
1600 		ffs_data_reset(ffs);
1601 	}
1602 }
1603 
1604 static void ffs_data_put(struct ffs_data *ffs)
1605 {
1606 	ENTER();
1607 
1608 	if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1609 		pr_info("%s(): freeing\n", __func__);
1610 		ffs_data_clear(ffs);
1611 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1612 		       waitqueue_active(&ffs->ep0req_completion.wait) ||
1613 		       waitqueue_active(&ffs->wait));
1614 		destroy_workqueue(ffs->io_completion_wq);
1615 		kfree(ffs->dev_name);
1616 		kfree(ffs);
1617 	}
1618 }
1619 
1620 static void ffs_data_closed(struct ffs_data *ffs)
1621 {
1622 	ENTER();
1623 
1624 	if (atomic_dec_and_test(&ffs->opened)) {
1625 		if (ffs->no_disconnect) {
1626 			ffs->state = FFS_DEACTIVATED;
1627 			if (ffs->epfiles) {
1628 				ffs_epfiles_destroy(ffs->epfiles,
1629 						   ffs->eps_count);
1630 				ffs->epfiles = NULL;
1631 			}
1632 			if (ffs->setup_state == FFS_SETUP_PENDING)
1633 				__ffs_ep0_stall(ffs);
1634 		} else {
1635 			ffs->state = FFS_CLOSING;
1636 			ffs_data_reset(ffs);
1637 		}
1638 	}
1639 	if (atomic_read(&ffs->opened) < 0) {
1640 		ffs->state = FFS_CLOSING;
1641 		ffs_data_reset(ffs);
1642 	}
1643 
1644 	ffs_data_put(ffs);
1645 }
1646 
1647 static struct ffs_data *ffs_data_new(const char *dev_name)
1648 {
1649 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1650 	if (unlikely(!ffs))
1651 		return NULL;
1652 
1653 	ENTER();
1654 
1655 	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1656 	if (!ffs->io_completion_wq) {
1657 		kfree(ffs);
1658 		return NULL;
1659 	}
1660 
1661 	refcount_set(&ffs->ref, 1);
1662 	atomic_set(&ffs->opened, 0);
1663 	ffs->state = FFS_READ_DESCRIPTORS;
1664 	mutex_init(&ffs->mutex);
1665 	spin_lock_init(&ffs->eps_lock);
1666 	init_waitqueue_head(&ffs->ev.waitq);
1667 	init_waitqueue_head(&ffs->wait);
1668 	init_completion(&ffs->ep0req_completion);
1669 
1670 	/* XXX REVISIT need to update it in some places, or do we? */
1671 	ffs->ev.can_stall = 1;
1672 
1673 	return ffs;
1674 }
1675 
1676 static void ffs_data_clear(struct ffs_data *ffs)
1677 {
1678 	ENTER();
1679 
1680 	ffs_closed(ffs);
1681 
1682 	BUG_ON(ffs->gadget);
1683 
1684 	if (ffs->epfiles)
1685 		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1686 
1687 	if (ffs->ffs_eventfd)
1688 		eventfd_ctx_put(ffs->ffs_eventfd);
1689 
1690 	kfree(ffs->raw_descs_data);
1691 	kfree(ffs->raw_strings);
1692 	kfree(ffs->stringtabs);
1693 }
1694 
1695 static void ffs_data_reset(struct ffs_data *ffs)
1696 {
1697 	ENTER();
1698 
1699 	ffs_data_clear(ffs);
1700 
1701 	ffs->epfiles = NULL;
1702 	ffs->raw_descs_data = NULL;
1703 	ffs->raw_descs = NULL;
1704 	ffs->raw_strings = NULL;
1705 	ffs->stringtabs = NULL;
1706 
1707 	ffs->raw_descs_length = 0;
1708 	ffs->fs_descs_count = 0;
1709 	ffs->hs_descs_count = 0;
1710 	ffs->ss_descs_count = 0;
1711 
1712 	ffs->strings_count = 0;
1713 	ffs->interfaces_count = 0;
1714 	ffs->eps_count = 0;
1715 
1716 	ffs->ev.count = 0;
1717 
1718 	ffs->state = FFS_READ_DESCRIPTORS;
1719 	ffs->setup_state = FFS_NO_SETUP;
1720 	ffs->flags = 0;
1721 }
1722 
1723 
1724 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1725 {
1726 	struct usb_gadget_strings **lang;
1727 	int first_id;
1728 
1729 	ENTER();
1730 
1731 	if (WARN_ON(ffs->state != FFS_ACTIVE
1732 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1733 		return -EBADFD;
1734 
1735 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1736 	if (unlikely(first_id < 0))
1737 		return first_id;
1738 
1739 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1740 	if (unlikely(!ffs->ep0req))
1741 		return -ENOMEM;
1742 	ffs->ep0req->complete = ffs_ep0_complete;
1743 	ffs->ep0req->context = ffs;
1744 
1745 	lang = ffs->stringtabs;
1746 	if (lang) {
1747 		for (; *lang; ++lang) {
1748 			struct usb_string *str = (*lang)->strings;
1749 			int id = first_id;
1750 			for (; str->s; ++id, ++str)
1751 				str->id = id;
1752 		}
1753 	}
1754 
1755 	ffs->gadget = cdev->gadget;
1756 	ffs_data_get(ffs);
1757 	return 0;
1758 }
1759 
1760 static void functionfs_unbind(struct ffs_data *ffs)
1761 {
1762 	ENTER();
1763 
1764 	if (!WARN_ON(!ffs->gadget)) {
1765 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1766 		ffs->ep0req = NULL;
1767 		ffs->gadget = NULL;
1768 		clear_bit(FFS_FL_BOUND, &ffs->flags);
1769 		ffs_data_put(ffs);
1770 	}
1771 }
1772 
1773 static int ffs_epfiles_create(struct ffs_data *ffs)
1774 {
1775 	struct ffs_epfile *epfile, *epfiles;
1776 	unsigned i, count;
1777 
1778 	ENTER();
1779 
1780 	count = ffs->eps_count;
1781 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1782 	if (!epfiles)
1783 		return -ENOMEM;
1784 
1785 	epfile = epfiles;
1786 	for (i = 1; i <= count; ++i, ++epfile) {
1787 		epfile->ffs = ffs;
1788 		mutex_init(&epfile->mutex);
1789 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1790 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1791 		else
1792 			sprintf(epfile->name, "ep%u", i);
1793 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1794 						 epfile,
1795 						 &ffs_epfile_operations);
1796 		if (unlikely(!epfile->dentry)) {
1797 			ffs_epfiles_destroy(epfiles, i - 1);
1798 			return -ENOMEM;
1799 		}
1800 	}
1801 
1802 	ffs->epfiles = epfiles;
1803 	return 0;
1804 }
1805 
1806 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1807 {
1808 	struct ffs_epfile *epfile = epfiles;
1809 
1810 	ENTER();
1811 
1812 	for (; count; --count, ++epfile) {
1813 		BUG_ON(mutex_is_locked(&epfile->mutex));
1814 		if (epfile->dentry) {
1815 			d_delete(epfile->dentry);
1816 			dput(epfile->dentry);
1817 			epfile->dentry = NULL;
1818 		}
1819 	}
1820 
1821 	kfree(epfiles);
1822 }
1823 
1824 static void ffs_func_eps_disable(struct ffs_function *func)
1825 {
1826 	struct ffs_ep *ep         = func->eps;
1827 	struct ffs_epfile *epfile = func->ffs->epfiles;
1828 	unsigned count            = func->ffs->eps_count;
1829 	unsigned long flags;
1830 
1831 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1832 	while (count--) {
1833 		/* pending requests get nuked */
1834 		if (likely(ep->ep))
1835 			usb_ep_disable(ep->ep);
1836 		++ep;
1837 
1838 		if (epfile) {
1839 			epfile->ep = NULL;
1840 			__ffs_epfile_read_buffer_free(epfile);
1841 			++epfile;
1842 		}
1843 	}
1844 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1845 }
1846 
1847 static int ffs_func_eps_enable(struct ffs_function *func)
1848 {
1849 	struct ffs_data *ffs      = func->ffs;
1850 	struct ffs_ep *ep         = func->eps;
1851 	struct ffs_epfile *epfile = ffs->epfiles;
1852 	unsigned count            = ffs->eps_count;
1853 	unsigned long flags;
1854 	int ret = 0;
1855 
1856 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1857 	while(count--) {
1858 		ep->ep->driver_data = ep;
1859 
1860 		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
1861 		if (ret) {
1862 			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
1863 					__func__, ep->ep->name, ret);
1864 			break;
1865 		}
1866 
1867 		ret = usb_ep_enable(ep->ep);
1868 		if (likely(!ret)) {
1869 			epfile->ep = ep;
1870 			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
1871 			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1872 		} else {
1873 			break;
1874 		}
1875 
1876 		++ep;
1877 		++epfile;
1878 	}
1879 
1880 	wake_up_interruptible(&ffs->wait);
1881 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1882 
1883 	return ret;
1884 }
1885 
1886 
1887 /* Parsing and building descriptors and strings *****************************/
1888 
1889 /*
1890  * This validates if data pointed by data is a valid USB descriptor as
1891  * well as record how many interfaces, endpoints and strings are
1892  * required by given configuration.  Returns address after the
1893  * descriptor or NULL if data is invalid.
1894  */
1895 
1896 enum ffs_entity_type {
1897 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1898 };
1899 
1900 enum ffs_os_desc_type {
1901 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1902 };
1903 
1904 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1905 				   u8 *valuep,
1906 				   struct usb_descriptor_header *desc,
1907 				   void *priv);
1908 
1909 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1910 				    struct usb_os_desc_header *h, void *data,
1911 				    unsigned len, void *priv);
1912 
1913 static int __must_check ffs_do_single_desc(char *data, unsigned len,
1914 					   ffs_entity_callback entity,
1915 					   void *priv)
1916 {
1917 	struct usb_descriptor_header *_ds = (void *)data;
1918 	u8 length;
1919 	int ret;
1920 
1921 	ENTER();
1922 
1923 	/* At least two bytes are required: length and type */
1924 	if (len < 2) {
1925 		pr_vdebug("descriptor too short\n");
1926 		return -EINVAL;
1927 	}
1928 
1929 	/* If we have at least as many bytes as the descriptor takes? */
1930 	length = _ds->bLength;
1931 	if (len < length) {
1932 		pr_vdebug("descriptor longer then available data\n");
1933 		return -EINVAL;
1934 	}
1935 
1936 #define __entity_check_INTERFACE(val)  1
1937 #define __entity_check_STRING(val)     (val)
1938 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
1939 #define __entity(type, val) do {					\
1940 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
1941 		if (unlikely(!__entity_check_ ##type(val))) {		\
1942 			pr_vdebug("invalid entity's value\n");		\
1943 			return -EINVAL;					\
1944 		}							\
1945 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
1946 		if (unlikely(ret < 0)) {				\
1947 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
1948 				 (val), ret);				\
1949 			return ret;					\
1950 		}							\
1951 	} while (0)
1952 
1953 	/* Parse descriptor depending on type. */
1954 	switch (_ds->bDescriptorType) {
1955 	case USB_DT_DEVICE:
1956 	case USB_DT_CONFIG:
1957 	case USB_DT_STRING:
1958 	case USB_DT_DEVICE_QUALIFIER:
1959 		/* function can't have any of those */
1960 		pr_vdebug("descriptor reserved for gadget: %d\n",
1961 		      _ds->bDescriptorType);
1962 		return -EINVAL;
1963 
1964 	case USB_DT_INTERFACE: {
1965 		struct usb_interface_descriptor *ds = (void *)_ds;
1966 		pr_vdebug("interface descriptor\n");
1967 		if (length != sizeof *ds)
1968 			goto inv_length;
1969 
1970 		__entity(INTERFACE, ds->bInterfaceNumber);
1971 		if (ds->iInterface)
1972 			__entity(STRING, ds->iInterface);
1973 	}
1974 		break;
1975 
1976 	case USB_DT_ENDPOINT: {
1977 		struct usb_endpoint_descriptor *ds = (void *)_ds;
1978 		pr_vdebug("endpoint descriptor\n");
1979 		if (length != USB_DT_ENDPOINT_SIZE &&
1980 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
1981 			goto inv_length;
1982 		__entity(ENDPOINT, ds->bEndpointAddress);
1983 	}
1984 		break;
1985 
1986 	case HID_DT_HID:
1987 		pr_vdebug("hid descriptor\n");
1988 		if (length != sizeof(struct hid_descriptor))
1989 			goto inv_length;
1990 		break;
1991 
1992 	case USB_DT_OTG:
1993 		if (length != sizeof(struct usb_otg_descriptor))
1994 			goto inv_length;
1995 		break;
1996 
1997 	case USB_DT_INTERFACE_ASSOCIATION: {
1998 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
1999 		pr_vdebug("interface association descriptor\n");
2000 		if (length != sizeof *ds)
2001 			goto inv_length;
2002 		if (ds->iFunction)
2003 			__entity(STRING, ds->iFunction);
2004 	}
2005 		break;
2006 
2007 	case USB_DT_SS_ENDPOINT_COMP:
2008 		pr_vdebug("EP SS companion descriptor\n");
2009 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2010 			goto inv_length;
2011 		break;
2012 
2013 	case USB_DT_OTHER_SPEED_CONFIG:
2014 	case USB_DT_INTERFACE_POWER:
2015 	case USB_DT_DEBUG:
2016 	case USB_DT_SECURITY:
2017 	case USB_DT_CS_RADIO_CONTROL:
2018 		/* TODO */
2019 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2020 		return -EINVAL;
2021 
2022 	default:
2023 		/* We should never be here */
2024 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2025 		return -EINVAL;
2026 
2027 inv_length:
2028 		pr_vdebug("invalid length: %d (descriptor %d)\n",
2029 			  _ds->bLength, _ds->bDescriptorType);
2030 		return -EINVAL;
2031 	}
2032 
2033 #undef __entity
2034 #undef __entity_check_DESCRIPTOR
2035 #undef __entity_check_INTERFACE
2036 #undef __entity_check_STRING
2037 #undef __entity_check_ENDPOINT
2038 
2039 	return length;
2040 }
2041 
2042 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2043 				     ffs_entity_callback entity, void *priv)
2044 {
2045 	const unsigned _len = len;
2046 	unsigned long num = 0;
2047 
2048 	ENTER();
2049 
2050 	for (;;) {
2051 		int ret;
2052 
2053 		if (num == count)
2054 			data = NULL;
2055 
2056 		/* Record "descriptor" entity */
2057 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2058 		if (unlikely(ret < 0)) {
2059 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2060 				 num, ret);
2061 			return ret;
2062 		}
2063 
2064 		if (!data)
2065 			return _len - len;
2066 
2067 		ret = ffs_do_single_desc(data, len, entity, priv);
2068 		if (unlikely(ret < 0)) {
2069 			pr_debug("%s returns %d\n", __func__, ret);
2070 			return ret;
2071 		}
2072 
2073 		len -= ret;
2074 		data += ret;
2075 		++num;
2076 	}
2077 }
2078 
2079 static int __ffs_data_do_entity(enum ffs_entity_type type,
2080 				u8 *valuep, struct usb_descriptor_header *desc,
2081 				void *priv)
2082 {
2083 	struct ffs_desc_helper *helper = priv;
2084 	struct usb_endpoint_descriptor *d;
2085 
2086 	ENTER();
2087 
2088 	switch (type) {
2089 	case FFS_DESCRIPTOR:
2090 		break;
2091 
2092 	case FFS_INTERFACE:
2093 		/*
2094 		 * Interfaces are indexed from zero so if we
2095 		 * encountered interface "n" then there are at least
2096 		 * "n+1" interfaces.
2097 		 */
2098 		if (*valuep >= helper->interfaces_count)
2099 			helper->interfaces_count = *valuep + 1;
2100 		break;
2101 
2102 	case FFS_STRING:
2103 		/*
2104 		 * Strings are indexed from 1 (0 is reserved
2105 		 * for languages list)
2106 		 */
2107 		if (*valuep > helper->ffs->strings_count)
2108 			helper->ffs->strings_count = *valuep;
2109 		break;
2110 
2111 	case FFS_ENDPOINT:
2112 		d = (void *)desc;
2113 		helper->eps_count++;
2114 		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2115 			return -EINVAL;
2116 		/* Check if descriptors for any speed were already parsed */
2117 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2118 			helper->ffs->eps_addrmap[helper->eps_count] =
2119 				d->bEndpointAddress;
2120 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2121 				d->bEndpointAddress)
2122 			return -EINVAL;
2123 		break;
2124 	}
2125 
2126 	return 0;
2127 }
2128 
2129 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2130 				   struct usb_os_desc_header *desc)
2131 {
2132 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2133 	u16 w_index = le16_to_cpu(desc->wIndex);
2134 
2135 	if (bcd_version != 1) {
2136 		pr_vdebug("unsupported os descriptors version: %d",
2137 			  bcd_version);
2138 		return -EINVAL;
2139 	}
2140 	switch (w_index) {
2141 	case 0x4:
2142 		*next_type = FFS_OS_DESC_EXT_COMPAT;
2143 		break;
2144 	case 0x5:
2145 		*next_type = FFS_OS_DESC_EXT_PROP;
2146 		break;
2147 	default:
2148 		pr_vdebug("unsupported os descriptor type: %d", w_index);
2149 		return -EINVAL;
2150 	}
2151 
2152 	return sizeof(*desc);
2153 }
2154 
2155 /*
2156  * Process all extended compatibility/extended property descriptors
2157  * of a feature descriptor
2158  */
2159 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2160 					      enum ffs_os_desc_type type,
2161 					      u16 feature_count,
2162 					      ffs_os_desc_callback entity,
2163 					      void *priv,
2164 					      struct usb_os_desc_header *h)
2165 {
2166 	int ret;
2167 	const unsigned _len = len;
2168 
2169 	ENTER();
2170 
2171 	/* loop over all ext compat/ext prop descriptors */
2172 	while (feature_count--) {
2173 		ret = entity(type, h, data, len, priv);
2174 		if (unlikely(ret < 0)) {
2175 			pr_debug("bad OS descriptor, type: %d\n", type);
2176 			return ret;
2177 		}
2178 		data += ret;
2179 		len -= ret;
2180 	}
2181 	return _len - len;
2182 }
2183 
2184 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2185 static int __must_check ffs_do_os_descs(unsigned count,
2186 					char *data, unsigned len,
2187 					ffs_os_desc_callback entity, void *priv)
2188 {
2189 	const unsigned _len = len;
2190 	unsigned long num = 0;
2191 
2192 	ENTER();
2193 
2194 	for (num = 0; num < count; ++num) {
2195 		int ret;
2196 		enum ffs_os_desc_type type;
2197 		u16 feature_count;
2198 		struct usb_os_desc_header *desc = (void *)data;
2199 
2200 		if (len < sizeof(*desc))
2201 			return -EINVAL;
2202 
2203 		/*
2204 		 * Record "descriptor" entity.
2205 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2206 		 * Move the data pointer to the beginning of extended
2207 		 * compatibilities proper or extended properties proper
2208 		 * portions of the data
2209 		 */
2210 		if (le32_to_cpu(desc->dwLength) > len)
2211 			return -EINVAL;
2212 
2213 		ret = __ffs_do_os_desc_header(&type, desc);
2214 		if (unlikely(ret < 0)) {
2215 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2216 				 num, ret);
2217 			return ret;
2218 		}
2219 		/*
2220 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2221 		 */
2222 		feature_count = le16_to_cpu(desc->wCount);
2223 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2224 		    (feature_count > 255 || desc->Reserved))
2225 				return -EINVAL;
2226 		len -= ret;
2227 		data += ret;
2228 
2229 		/*
2230 		 * Process all function/property descriptors
2231 		 * of this Feature Descriptor
2232 		 */
2233 		ret = ffs_do_single_os_desc(data, len, type,
2234 					    feature_count, entity, priv, desc);
2235 		if (unlikely(ret < 0)) {
2236 			pr_debug("%s returns %d\n", __func__, ret);
2237 			return ret;
2238 		}
2239 
2240 		len -= ret;
2241 		data += ret;
2242 	}
2243 	return _len - len;
2244 }
2245 
2246 /**
2247  * Validate contents of the buffer from userspace related to OS descriptors.
2248  */
2249 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2250 				 struct usb_os_desc_header *h, void *data,
2251 				 unsigned len, void *priv)
2252 {
2253 	struct ffs_data *ffs = priv;
2254 	u8 length;
2255 
2256 	ENTER();
2257 
2258 	switch (type) {
2259 	case FFS_OS_DESC_EXT_COMPAT: {
2260 		struct usb_ext_compat_desc *d = data;
2261 		int i;
2262 
2263 		if (len < sizeof(*d) ||
2264 		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2265 			return -EINVAL;
2266 		if (d->Reserved1 != 1) {
2267 			/*
2268 			 * According to the spec, Reserved1 must be set to 1
2269 			 * but older kernels incorrectly rejected non-zero
2270 			 * values.  We fix it here to avoid returning EINVAL
2271 			 * in response to values we used to accept.
2272 			 */
2273 			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2274 			d->Reserved1 = 1;
2275 		}
2276 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2277 			if (d->Reserved2[i])
2278 				return -EINVAL;
2279 
2280 		length = sizeof(struct usb_ext_compat_desc);
2281 	}
2282 		break;
2283 	case FFS_OS_DESC_EXT_PROP: {
2284 		struct usb_ext_prop_desc *d = data;
2285 		u32 type, pdl;
2286 		u16 pnl;
2287 
2288 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2289 			return -EINVAL;
2290 		length = le32_to_cpu(d->dwSize);
2291 		if (len < length)
2292 			return -EINVAL;
2293 		type = le32_to_cpu(d->dwPropertyDataType);
2294 		if (type < USB_EXT_PROP_UNICODE ||
2295 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2296 			pr_vdebug("unsupported os descriptor property type: %d",
2297 				  type);
2298 			return -EINVAL;
2299 		}
2300 		pnl = le16_to_cpu(d->wPropertyNameLength);
2301 		if (length < 14 + pnl) {
2302 			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2303 				  length, pnl, type);
2304 			return -EINVAL;
2305 		}
2306 		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2307 		if (length != 14 + pnl + pdl) {
2308 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2309 				  length, pnl, pdl, type);
2310 			return -EINVAL;
2311 		}
2312 		++ffs->ms_os_descs_ext_prop_count;
2313 		/* property name reported to the host as "WCHAR"s */
2314 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2315 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2316 	}
2317 		break;
2318 	default:
2319 		pr_vdebug("unknown descriptor: %d\n", type);
2320 		return -EINVAL;
2321 	}
2322 	return length;
2323 }
2324 
2325 static int __ffs_data_got_descs(struct ffs_data *ffs,
2326 				char *const _data, size_t len)
2327 {
2328 	char *data = _data, *raw_descs;
2329 	unsigned os_descs_count = 0, counts[3], flags;
2330 	int ret = -EINVAL, i;
2331 	struct ffs_desc_helper helper;
2332 
2333 	ENTER();
2334 
2335 	if (get_unaligned_le32(data + 4) != len)
2336 		goto error;
2337 
2338 	switch (get_unaligned_le32(data)) {
2339 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2340 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2341 		data += 8;
2342 		len  -= 8;
2343 		break;
2344 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2345 		flags = get_unaligned_le32(data + 8);
2346 		ffs->user_flags = flags;
2347 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2348 			      FUNCTIONFS_HAS_HS_DESC |
2349 			      FUNCTIONFS_HAS_SS_DESC |
2350 			      FUNCTIONFS_HAS_MS_OS_DESC |
2351 			      FUNCTIONFS_VIRTUAL_ADDR |
2352 			      FUNCTIONFS_EVENTFD |
2353 			      FUNCTIONFS_ALL_CTRL_RECIP |
2354 			      FUNCTIONFS_CONFIG0_SETUP)) {
2355 			ret = -ENOSYS;
2356 			goto error;
2357 		}
2358 		data += 12;
2359 		len  -= 12;
2360 		break;
2361 	default:
2362 		goto error;
2363 	}
2364 
2365 	if (flags & FUNCTIONFS_EVENTFD) {
2366 		if (len < 4)
2367 			goto error;
2368 		ffs->ffs_eventfd =
2369 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2370 		if (IS_ERR(ffs->ffs_eventfd)) {
2371 			ret = PTR_ERR(ffs->ffs_eventfd);
2372 			ffs->ffs_eventfd = NULL;
2373 			goto error;
2374 		}
2375 		data += 4;
2376 		len  -= 4;
2377 	}
2378 
2379 	/* Read fs_count, hs_count and ss_count (if present) */
2380 	for (i = 0; i < 3; ++i) {
2381 		if (!(flags & (1 << i))) {
2382 			counts[i] = 0;
2383 		} else if (len < 4) {
2384 			goto error;
2385 		} else {
2386 			counts[i] = get_unaligned_le32(data);
2387 			data += 4;
2388 			len  -= 4;
2389 		}
2390 	}
2391 	if (flags & (1 << i)) {
2392 		if (len < 4) {
2393 			goto error;
2394 		}
2395 		os_descs_count = get_unaligned_le32(data);
2396 		data += 4;
2397 		len -= 4;
2398 	};
2399 
2400 	/* Read descriptors */
2401 	raw_descs = data;
2402 	helper.ffs = ffs;
2403 	for (i = 0; i < 3; ++i) {
2404 		if (!counts[i])
2405 			continue;
2406 		helper.interfaces_count = 0;
2407 		helper.eps_count = 0;
2408 		ret = ffs_do_descs(counts[i], data, len,
2409 				   __ffs_data_do_entity, &helper);
2410 		if (ret < 0)
2411 			goto error;
2412 		if (!ffs->eps_count && !ffs->interfaces_count) {
2413 			ffs->eps_count = helper.eps_count;
2414 			ffs->interfaces_count = helper.interfaces_count;
2415 		} else {
2416 			if (ffs->eps_count != helper.eps_count) {
2417 				ret = -EINVAL;
2418 				goto error;
2419 			}
2420 			if (ffs->interfaces_count != helper.interfaces_count) {
2421 				ret = -EINVAL;
2422 				goto error;
2423 			}
2424 		}
2425 		data += ret;
2426 		len  -= ret;
2427 	}
2428 	if (os_descs_count) {
2429 		ret = ffs_do_os_descs(os_descs_count, data, len,
2430 				      __ffs_data_do_os_desc, ffs);
2431 		if (ret < 0)
2432 			goto error;
2433 		data += ret;
2434 		len -= ret;
2435 	}
2436 
2437 	if (raw_descs == data || len) {
2438 		ret = -EINVAL;
2439 		goto error;
2440 	}
2441 
2442 	ffs->raw_descs_data	= _data;
2443 	ffs->raw_descs		= raw_descs;
2444 	ffs->raw_descs_length	= data - raw_descs;
2445 	ffs->fs_descs_count	= counts[0];
2446 	ffs->hs_descs_count	= counts[1];
2447 	ffs->ss_descs_count	= counts[2];
2448 	ffs->ms_os_descs_count	= os_descs_count;
2449 
2450 	return 0;
2451 
2452 error:
2453 	kfree(_data);
2454 	return ret;
2455 }
2456 
2457 static int __ffs_data_got_strings(struct ffs_data *ffs,
2458 				  char *const _data, size_t len)
2459 {
2460 	u32 str_count, needed_count, lang_count;
2461 	struct usb_gadget_strings **stringtabs, *t;
2462 	const char *data = _data;
2463 	struct usb_string *s;
2464 
2465 	ENTER();
2466 
2467 	if (unlikely(len < 16 ||
2468 		     get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2469 		     get_unaligned_le32(data + 4) != len))
2470 		goto error;
2471 	str_count  = get_unaligned_le32(data + 8);
2472 	lang_count = get_unaligned_le32(data + 12);
2473 
2474 	/* if one is zero the other must be zero */
2475 	if (unlikely(!str_count != !lang_count))
2476 		goto error;
2477 
2478 	/* Do we have at least as many strings as descriptors need? */
2479 	needed_count = ffs->strings_count;
2480 	if (unlikely(str_count < needed_count))
2481 		goto error;
2482 
2483 	/*
2484 	 * If we don't need any strings just return and free all
2485 	 * memory.
2486 	 */
2487 	if (!needed_count) {
2488 		kfree(_data);
2489 		return 0;
2490 	}
2491 
2492 	/* Allocate everything in one chunk so there's less maintenance. */
2493 	{
2494 		unsigned i = 0;
2495 		vla_group(d);
2496 		vla_item(d, struct usb_gadget_strings *, stringtabs,
2497 			lang_count + 1);
2498 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2499 		vla_item(d, struct usb_string, strings,
2500 			lang_count*(needed_count+1));
2501 
2502 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2503 
2504 		if (unlikely(!vlabuf)) {
2505 			kfree(_data);
2506 			return -ENOMEM;
2507 		}
2508 
2509 		/* Initialize the VLA pointers */
2510 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2511 		t = vla_ptr(vlabuf, d, stringtab);
2512 		i = lang_count;
2513 		do {
2514 			*stringtabs++ = t++;
2515 		} while (--i);
2516 		*stringtabs = NULL;
2517 
2518 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2519 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2520 		t = vla_ptr(vlabuf, d, stringtab);
2521 		s = vla_ptr(vlabuf, d, strings);
2522 	}
2523 
2524 	/* For each language */
2525 	data += 16;
2526 	len -= 16;
2527 
2528 	do { /* lang_count > 0 so we can use do-while */
2529 		unsigned needed = needed_count;
2530 
2531 		if (unlikely(len < 3))
2532 			goto error_free;
2533 		t->language = get_unaligned_le16(data);
2534 		t->strings  = s;
2535 		++t;
2536 
2537 		data += 2;
2538 		len -= 2;
2539 
2540 		/* For each string */
2541 		do { /* str_count > 0 so we can use do-while */
2542 			size_t length = strnlen(data, len);
2543 
2544 			if (unlikely(length == len))
2545 				goto error_free;
2546 
2547 			/*
2548 			 * User may provide more strings then we need,
2549 			 * if that's the case we simply ignore the
2550 			 * rest
2551 			 */
2552 			if (likely(needed)) {
2553 				/*
2554 				 * s->id will be set while adding
2555 				 * function to configuration so for
2556 				 * now just leave garbage here.
2557 				 */
2558 				s->s = data;
2559 				--needed;
2560 				++s;
2561 			}
2562 
2563 			data += length + 1;
2564 			len -= length + 1;
2565 		} while (--str_count);
2566 
2567 		s->id = 0;   /* terminator */
2568 		s->s = NULL;
2569 		++s;
2570 
2571 	} while (--lang_count);
2572 
2573 	/* Some garbage left? */
2574 	if (unlikely(len))
2575 		goto error_free;
2576 
2577 	/* Done! */
2578 	ffs->stringtabs = stringtabs;
2579 	ffs->raw_strings = _data;
2580 
2581 	return 0;
2582 
2583 error_free:
2584 	kfree(stringtabs);
2585 error:
2586 	kfree(_data);
2587 	return -EINVAL;
2588 }
2589 
2590 
2591 /* Events handling and management *******************************************/
2592 
2593 static void __ffs_event_add(struct ffs_data *ffs,
2594 			    enum usb_functionfs_event_type type)
2595 {
2596 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2597 	int neg = 0;
2598 
2599 	/*
2600 	 * Abort any unhandled setup
2601 	 *
2602 	 * We do not need to worry about some cmpxchg() changing value
2603 	 * of ffs->setup_state without holding the lock because when
2604 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2605 	 * the source does nothing.
2606 	 */
2607 	if (ffs->setup_state == FFS_SETUP_PENDING)
2608 		ffs->setup_state = FFS_SETUP_CANCELLED;
2609 
2610 	/*
2611 	 * Logic of this function guarantees that there are at most four pending
2612 	 * evens on ffs->ev.types queue.  This is important because the queue
2613 	 * has space for four elements only and __ffs_ep0_read_events function
2614 	 * depends on that limit as well.  If more event types are added, those
2615 	 * limits have to be revisited or guaranteed to still hold.
2616 	 */
2617 	switch (type) {
2618 	case FUNCTIONFS_RESUME:
2619 		rem_type2 = FUNCTIONFS_SUSPEND;
2620 		/* FALL THROUGH */
2621 	case FUNCTIONFS_SUSPEND:
2622 	case FUNCTIONFS_SETUP:
2623 		rem_type1 = type;
2624 		/* Discard all similar events */
2625 		break;
2626 
2627 	case FUNCTIONFS_BIND:
2628 	case FUNCTIONFS_UNBIND:
2629 	case FUNCTIONFS_DISABLE:
2630 	case FUNCTIONFS_ENABLE:
2631 		/* Discard everything other then power management. */
2632 		rem_type1 = FUNCTIONFS_SUSPEND;
2633 		rem_type2 = FUNCTIONFS_RESUME;
2634 		neg = 1;
2635 		break;
2636 
2637 	default:
2638 		WARN(1, "%d: unknown event, this should not happen\n", type);
2639 		return;
2640 	}
2641 
2642 	{
2643 		u8 *ev  = ffs->ev.types, *out = ev;
2644 		unsigned n = ffs->ev.count;
2645 		for (; n; --n, ++ev)
2646 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2647 				*out++ = *ev;
2648 			else
2649 				pr_vdebug("purging event %d\n", *ev);
2650 		ffs->ev.count = out - ffs->ev.types;
2651 	}
2652 
2653 	pr_vdebug("adding event %d\n", type);
2654 	ffs->ev.types[ffs->ev.count++] = type;
2655 	wake_up_locked(&ffs->ev.waitq);
2656 	if (ffs->ffs_eventfd)
2657 		eventfd_signal(ffs->ffs_eventfd, 1);
2658 }
2659 
2660 static void ffs_event_add(struct ffs_data *ffs,
2661 			  enum usb_functionfs_event_type type)
2662 {
2663 	unsigned long flags;
2664 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2665 	__ffs_event_add(ffs, type);
2666 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2667 }
2668 
2669 /* Bind/unbind USB function hooks *******************************************/
2670 
2671 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2672 {
2673 	int i;
2674 
2675 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2676 		if (ffs->eps_addrmap[i] == endpoint_address)
2677 			return i;
2678 	return -ENOENT;
2679 }
2680 
2681 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2682 				    struct usb_descriptor_header *desc,
2683 				    void *priv)
2684 {
2685 	struct usb_endpoint_descriptor *ds = (void *)desc;
2686 	struct ffs_function *func = priv;
2687 	struct ffs_ep *ffs_ep;
2688 	unsigned ep_desc_id;
2689 	int idx;
2690 	static const char *speed_names[] = { "full", "high", "super" };
2691 
2692 	if (type != FFS_DESCRIPTOR)
2693 		return 0;
2694 
2695 	/*
2696 	 * If ss_descriptors is not NULL, we are reading super speed
2697 	 * descriptors; if hs_descriptors is not NULL, we are reading high
2698 	 * speed descriptors; otherwise, we are reading full speed
2699 	 * descriptors.
2700 	 */
2701 	if (func->function.ss_descriptors) {
2702 		ep_desc_id = 2;
2703 		func->function.ss_descriptors[(long)valuep] = desc;
2704 	} else if (func->function.hs_descriptors) {
2705 		ep_desc_id = 1;
2706 		func->function.hs_descriptors[(long)valuep] = desc;
2707 	} else {
2708 		ep_desc_id = 0;
2709 		func->function.fs_descriptors[(long)valuep]    = desc;
2710 	}
2711 
2712 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2713 		return 0;
2714 
2715 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2716 	if (idx < 0)
2717 		return idx;
2718 
2719 	ffs_ep = func->eps + idx;
2720 
2721 	if (unlikely(ffs_ep->descs[ep_desc_id])) {
2722 		pr_err("two %sspeed descriptors for EP %d\n",
2723 			  speed_names[ep_desc_id],
2724 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2725 		return -EINVAL;
2726 	}
2727 	ffs_ep->descs[ep_desc_id] = ds;
2728 
2729 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2730 	if (ffs_ep->ep) {
2731 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2732 		if (!ds->wMaxPacketSize)
2733 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2734 	} else {
2735 		struct usb_request *req;
2736 		struct usb_ep *ep;
2737 		u8 bEndpointAddress;
2738 
2739 		/*
2740 		 * We back up bEndpointAddress because autoconfig overwrites
2741 		 * it with physical endpoint address.
2742 		 */
2743 		bEndpointAddress = ds->bEndpointAddress;
2744 		pr_vdebug("autoconfig\n");
2745 		ep = usb_ep_autoconfig(func->gadget, ds);
2746 		if (unlikely(!ep))
2747 			return -ENOTSUPP;
2748 		ep->driver_data = func->eps + idx;
2749 
2750 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2751 		if (unlikely(!req))
2752 			return -ENOMEM;
2753 
2754 		ffs_ep->ep  = ep;
2755 		ffs_ep->req = req;
2756 		func->eps_revmap[ds->bEndpointAddress &
2757 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2758 		/*
2759 		 * If we use virtual address mapping, we restore
2760 		 * original bEndpointAddress value.
2761 		 */
2762 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2763 			ds->bEndpointAddress = bEndpointAddress;
2764 	}
2765 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2766 
2767 	return 0;
2768 }
2769 
2770 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2771 				   struct usb_descriptor_header *desc,
2772 				   void *priv)
2773 {
2774 	struct ffs_function *func = priv;
2775 	unsigned idx;
2776 	u8 newValue;
2777 
2778 	switch (type) {
2779 	default:
2780 	case FFS_DESCRIPTOR:
2781 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2782 		return 0;
2783 
2784 	case FFS_INTERFACE:
2785 		idx = *valuep;
2786 		if (func->interfaces_nums[idx] < 0) {
2787 			int id = usb_interface_id(func->conf, &func->function);
2788 			if (unlikely(id < 0))
2789 				return id;
2790 			func->interfaces_nums[idx] = id;
2791 		}
2792 		newValue = func->interfaces_nums[idx];
2793 		break;
2794 
2795 	case FFS_STRING:
2796 		/* String' IDs are allocated when fsf_data is bound to cdev */
2797 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2798 		break;
2799 
2800 	case FFS_ENDPOINT:
2801 		/*
2802 		 * USB_DT_ENDPOINT are handled in
2803 		 * __ffs_func_bind_do_descs().
2804 		 */
2805 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2806 			return 0;
2807 
2808 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2809 		if (unlikely(!func->eps[idx].ep))
2810 			return -EINVAL;
2811 
2812 		{
2813 			struct usb_endpoint_descriptor **descs;
2814 			descs = func->eps[idx].descs;
2815 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2816 		}
2817 		break;
2818 	}
2819 
2820 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2821 	*valuep = newValue;
2822 	return 0;
2823 }
2824 
2825 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2826 				      struct usb_os_desc_header *h, void *data,
2827 				      unsigned len, void *priv)
2828 {
2829 	struct ffs_function *func = priv;
2830 	u8 length = 0;
2831 
2832 	switch (type) {
2833 	case FFS_OS_DESC_EXT_COMPAT: {
2834 		struct usb_ext_compat_desc *desc = data;
2835 		struct usb_os_desc_table *t;
2836 
2837 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2838 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2839 		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2840 		       ARRAY_SIZE(desc->CompatibleID) +
2841 		       ARRAY_SIZE(desc->SubCompatibleID));
2842 		length = sizeof(*desc);
2843 	}
2844 		break;
2845 	case FFS_OS_DESC_EXT_PROP: {
2846 		struct usb_ext_prop_desc *desc = data;
2847 		struct usb_os_desc_table *t;
2848 		struct usb_os_desc_ext_prop *ext_prop;
2849 		char *ext_prop_name;
2850 		char *ext_prop_data;
2851 
2852 		t = &func->function.os_desc_table[h->interface];
2853 		t->if_id = func->interfaces_nums[h->interface];
2854 
2855 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2856 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2857 
2858 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2859 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2860 		ext_prop->data_len = le32_to_cpu(*(__le32 *)
2861 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2862 		length = ext_prop->name_len + ext_prop->data_len + 14;
2863 
2864 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2865 		func->ffs->ms_os_descs_ext_prop_name_avail +=
2866 			ext_prop->name_len;
2867 
2868 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2869 		func->ffs->ms_os_descs_ext_prop_data_avail +=
2870 			ext_prop->data_len;
2871 		memcpy(ext_prop_data,
2872 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2873 		       ext_prop->data_len);
2874 		/* unicode data reported to the host as "WCHAR"s */
2875 		switch (ext_prop->type) {
2876 		case USB_EXT_PROP_UNICODE:
2877 		case USB_EXT_PROP_UNICODE_ENV:
2878 		case USB_EXT_PROP_UNICODE_LINK:
2879 		case USB_EXT_PROP_UNICODE_MULTI:
2880 			ext_prop->data_len *= 2;
2881 			break;
2882 		}
2883 		ext_prop->data = ext_prop_data;
2884 
2885 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2886 		       ext_prop->name_len);
2887 		/* property name reported to the host as "WCHAR"s */
2888 		ext_prop->name_len *= 2;
2889 		ext_prop->name = ext_prop_name;
2890 
2891 		t->os_desc->ext_prop_len +=
2892 			ext_prop->name_len + ext_prop->data_len + 14;
2893 		++t->os_desc->ext_prop_count;
2894 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2895 	}
2896 		break;
2897 	default:
2898 		pr_vdebug("unknown descriptor: %d\n", type);
2899 	}
2900 
2901 	return length;
2902 }
2903 
2904 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2905 						struct usb_configuration *c)
2906 {
2907 	struct ffs_function *func = ffs_func_from_usb(f);
2908 	struct f_fs_opts *ffs_opts =
2909 		container_of(f->fi, struct f_fs_opts, func_inst);
2910 	int ret;
2911 
2912 	ENTER();
2913 
2914 	/*
2915 	 * Legacy gadget triggers binding in functionfs_ready_callback,
2916 	 * which already uses locking; taking the same lock here would
2917 	 * cause a deadlock.
2918 	 *
2919 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
2920 	 */
2921 	if (!ffs_opts->no_configfs)
2922 		ffs_dev_lock();
2923 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2924 	func->ffs = ffs_opts->dev->ffs_data;
2925 	if (!ffs_opts->no_configfs)
2926 		ffs_dev_unlock();
2927 	if (ret)
2928 		return ERR_PTR(ret);
2929 
2930 	func->conf = c;
2931 	func->gadget = c->cdev->gadget;
2932 
2933 	/*
2934 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2935 	 * configurations are bound in sequence with list_for_each_entry,
2936 	 * in each configuration its functions are bound in sequence
2937 	 * with list_for_each_entry, so we assume no race condition
2938 	 * with regard to ffs_opts->bound access
2939 	 */
2940 	if (!ffs_opts->refcnt) {
2941 		ret = functionfs_bind(func->ffs, c->cdev);
2942 		if (ret)
2943 			return ERR_PTR(ret);
2944 	}
2945 	ffs_opts->refcnt++;
2946 	func->function.strings = func->ffs->stringtabs;
2947 
2948 	return ffs_opts;
2949 }
2950 
2951 static int _ffs_func_bind(struct usb_configuration *c,
2952 			  struct usb_function *f)
2953 {
2954 	struct ffs_function *func = ffs_func_from_usb(f);
2955 	struct ffs_data *ffs = func->ffs;
2956 
2957 	const int full = !!func->ffs->fs_descs_count;
2958 	const int high = !!func->ffs->hs_descs_count;
2959 	const int super = !!func->ffs->ss_descs_count;
2960 
2961 	int fs_len, hs_len, ss_len, ret, i;
2962 	struct ffs_ep *eps_ptr;
2963 
2964 	/* Make it a single chunk, less management later on */
2965 	vla_group(d);
2966 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2967 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2968 		full ? ffs->fs_descs_count + 1 : 0);
2969 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2970 		high ? ffs->hs_descs_count + 1 : 0);
2971 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2972 		super ? ffs->ss_descs_count + 1 : 0);
2973 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2974 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2975 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2976 	vla_item_with_sz(d, char[16], ext_compat,
2977 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2978 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
2979 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2980 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
2981 			 ffs->ms_os_descs_ext_prop_count);
2982 	vla_item_with_sz(d, char, ext_prop_name,
2983 			 ffs->ms_os_descs_ext_prop_name_len);
2984 	vla_item_with_sz(d, char, ext_prop_data,
2985 			 ffs->ms_os_descs_ext_prop_data_len);
2986 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
2987 	char *vlabuf;
2988 
2989 	ENTER();
2990 
2991 	/* Has descriptors only for speeds gadget does not support */
2992 	if (unlikely(!(full | high | super)))
2993 		return -ENOTSUPP;
2994 
2995 	/* Allocate a single chunk, less management later on */
2996 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
2997 	if (unlikely(!vlabuf))
2998 		return -ENOMEM;
2999 
3000 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3001 	ffs->ms_os_descs_ext_prop_name_avail =
3002 		vla_ptr(vlabuf, d, ext_prop_name);
3003 	ffs->ms_os_descs_ext_prop_data_avail =
3004 		vla_ptr(vlabuf, d, ext_prop_data);
3005 
3006 	/* Copy descriptors  */
3007 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3008 	       ffs->raw_descs_length);
3009 
3010 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3011 	eps_ptr = vla_ptr(vlabuf, d, eps);
3012 	for (i = 0; i < ffs->eps_count; i++)
3013 		eps_ptr[i].num = -1;
3014 
3015 	/* Save pointers
3016 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3017 	*/
3018 	func->eps             = vla_ptr(vlabuf, d, eps);
3019 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3020 
3021 	/*
3022 	 * Go through all the endpoint descriptors and allocate
3023 	 * endpoints first, so that later we can rewrite the endpoint
3024 	 * numbers without worrying that it may be described later on.
3025 	 */
3026 	if (likely(full)) {
3027 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3028 		fs_len = ffs_do_descs(ffs->fs_descs_count,
3029 				      vla_ptr(vlabuf, d, raw_descs),
3030 				      d_raw_descs__sz,
3031 				      __ffs_func_bind_do_descs, func);
3032 		if (unlikely(fs_len < 0)) {
3033 			ret = fs_len;
3034 			goto error;
3035 		}
3036 	} else {
3037 		fs_len = 0;
3038 	}
3039 
3040 	if (likely(high)) {
3041 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3042 		hs_len = ffs_do_descs(ffs->hs_descs_count,
3043 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3044 				      d_raw_descs__sz - fs_len,
3045 				      __ffs_func_bind_do_descs, func);
3046 		if (unlikely(hs_len < 0)) {
3047 			ret = hs_len;
3048 			goto error;
3049 		}
3050 	} else {
3051 		hs_len = 0;
3052 	}
3053 
3054 	if (likely(super)) {
3055 		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3056 		ss_len = ffs_do_descs(ffs->ss_descs_count,
3057 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3058 				d_raw_descs__sz - fs_len - hs_len,
3059 				__ffs_func_bind_do_descs, func);
3060 		if (unlikely(ss_len < 0)) {
3061 			ret = ss_len;
3062 			goto error;
3063 		}
3064 	} else {
3065 		ss_len = 0;
3066 	}
3067 
3068 	/*
3069 	 * Now handle interface numbers allocation and interface and
3070 	 * endpoint numbers rewriting.  We can do that in one go
3071 	 * now.
3072 	 */
3073 	ret = ffs_do_descs(ffs->fs_descs_count +
3074 			   (high ? ffs->hs_descs_count : 0) +
3075 			   (super ? ffs->ss_descs_count : 0),
3076 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3077 			   __ffs_func_bind_do_nums, func);
3078 	if (unlikely(ret < 0))
3079 		goto error;
3080 
3081 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3082 	if (c->cdev->use_os_string) {
3083 		for (i = 0; i < ffs->interfaces_count; ++i) {
3084 			struct usb_os_desc *desc;
3085 
3086 			desc = func->function.os_desc_table[i].os_desc =
3087 				vla_ptr(vlabuf, d, os_desc) +
3088 				i * sizeof(struct usb_os_desc);
3089 			desc->ext_compat_id =
3090 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3091 			INIT_LIST_HEAD(&desc->ext_prop);
3092 		}
3093 		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3094 				      vla_ptr(vlabuf, d, raw_descs) +
3095 				      fs_len + hs_len + ss_len,
3096 				      d_raw_descs__sz - fs_len - hs_len -
3097 				      ss_len,
3098 				      __ffs_func_bind_do_os_desc, func);
3099 		if (unlikely(ret < 0))
3100 			goto error;
3101 	}
3102 	func->function.os_desc_n =
3103 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3104 
3105 	/* And we're done */
3106 	ffs_event_add(ffs, FUNCTIONFS_BIND);
3107 	return 0;
3108 
3109 error:
3110 	/* XXX Do we need to release all claimed endpoints here? */
3111 	return ret;
3112 }
3113 
3114 static int ffs_func_bind(struct usb_configuration *c,
3115 			 struct usb_function *f)
3116 {
3117 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3118 	struct ffs_function *func = ffs_func_from_usb(f);
3119 	int ret;
3120 
3121 	if (IS_ERR(ffs_opts))
3122 		return PTR_ERR(ffs_opts);
3123 
3124 	ret = _ffs_func_bind(c, f);
3125 	if (ret && !--ffs_opts->refcnt)
3126 		functionfs_unbind(func->ffs);
3127 
3128 	return ret;
3129 }
3130 
3131 
3132 /* Other USB function hooks *************************************************/
3133 
3134 static void ffs_reset_work(struct work_struct *work)
3135 {
3136 	struct ffs_data *ffs = container_of(work,
3137 		struct ffs_data, reset_work);
3138 	ffs_data_reset(ffs);
3139 }
3140 
3141 static int ffs_func_set_alt(struct usb_function *f,
3142 			    unsigned interface, unsigned alt)
3143 {
3144 	struct ffs_function *func = ffs_func_from_usb(f);
3145 	struct ffs_data *ffs = func->ffs;
3146 	int ret = 0, intf;
3147 
3148 	if (alt != (unsigned)-1) {
3149 		intf = ffs_func_revmap_intf(func, interface);
3150 		if (unlikely(intf < 0))
3151 			return intf;
3152 	}
3153 
3154 	if (ffs->func)
3155 		ffs_func_eps_disable(ffs->func);
3156 
3157 	if (ffs->state == FFS_DEACTIVATED) {
3158 		ffs->state = FFS_CLOSING;
3159 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3160 		schedule_work(&ffs->reset_work);
3161 		return -ENODEV;
3162 	}
3163 
3164 	if (ffs->state != FFS_ACTIVE)
3165 		return -ENODEV;
3166 
3167 	if (alt == (unsigned)-1) {
3168 		ffs->func = NULL;
3169 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3170 		return 0;
3171 	}
3172 
3173 	ffs->func = func;
3174 	ret = ffs_func_eps_enable(func);
3175 	if (likely(ret >= 0))
3176 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3177 	return ret;
3178 }
3179 
3180 static void ffs_func_disable(struct usb_function *f)
3181 {
3182 	ffs_func_set_alt(f, 0, (unsigned)-1);
3183 }
3184 
3185 static int ffs_func_setup(struct usb_function *f,
3186 			  const struct usb_ctrlrequest *creq)
3187 {
3188 	struct ffs_function *func = ffs_func_from_usb(f);
3189 	struct ffs_data *ffs = func->ffs;
3190 	unsigned long flags;
3191 	int ret;
3192 
3193 	ENTER();
3194 
3195 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3196 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3197 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3198 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3199 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3200 
3201 	/*
3202 	 * Most requests directed to interface go through here
3203 	 * (notable exceptions are set/get interface) so we need to
3204 	 * handle them.  All other either handled by composite or
3205 	 * passed to usb_configuration->setup() (if one is set).  No
3206 	 * matter, we will handle requests directed to endpoint here
3207 	 * as well (as it's straightforward).  Other request recipient
3208 	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3209 	 * is being used.
3210 	 */
3211 	if (ffs->state != FFS_ACTIVE)
3212 		return -ENODEV;
3213 
3214 	switch (creq->bRequestType & USB_RECIP_MASK) {
3215 	case USB_RECIP_INTERFACE:
3216 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3217 		if (unlikely(ret < 0))
3218 			return ret;
3219 		break;
3220 
3221 	case USB_RECIP_ENDPOINT:
3222 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3223 		if (unlikely(ret < 0))
3224 			return ret;
3225 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3226 			ret = func->ffs->eps_addrmap[ret];
3227 		break;
3228 
3229 	default:
3230 		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3231 			ret = le16_to_cpu(creq->wIndex);
3232 		else
3233 			return -EOPNOTSUPP;
3234 	}
3235 
3236 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3237 	ffs->ev.setup = *creq;
3238 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3239 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3240 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3241 
3242 	return 0;
3243 }
3244 
3245 static bool ffs_func_req_match(struct usb_function *f,
3246 			       const struct usb_ctrlrequest *creq,
3247 			       bool config0)
3248 {
3249 	struct ffs_function *func = ffs_func_from_usb(f);
3250 
3251 	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3252 		return false;
3253 
3254 	switch (creq->bRequestType & USB_RECIP_MASK) {
3255 	case USB_RECIP_INTERFACE:
3256 		return (ffs_func_revmap_intf(func,
3257 					     le16_to_cpu(creq->wIndex)) >= 0);
3258 	case USB_RECIP_ENDPOINT:
3259 		return (ffs_func_revmap_ep(func,
3260 					   le16_to_cpu(creq->wIndex)) >= 0);
3261 	default:
3262 		return (bool) (func->ffs->user_flags &
3263 			       FUNCTIONFS_ALL_CTRL_RECIP);
3264 	}
3265 }
3266 
3267 static void ffs_func_suspend(struct usb_function *f)
3268 {
3269 	ENTER();
3270 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3271 }
3272 
3273 static void ffs_func_resume(struct usb_function *f)
3274 {
3275 	ENTER();
3276 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3277 }
3278 
3279 
3280 /* Endpoint and interface numbers reverse mapping ***************************/
3281 
3282 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3283 {
3284 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3285 	return num ? num : -EDOM;
3286 }
3287 
3288 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3289 {
3290 	short *nums = func->interfaces_nums;
3291 	unsigned count = func->ffs->interfaces_count;
3292 
3293 	for (; count; --count, ++nums) {
3294 		if (*nums >= 0 && *nums == intf)
3295 			return nums - func->interfaces_nums;
3296 	}
3297 
3298 	return -EDOM;
3299 }
3300 
3301 
3302 /* Devices management *******************************************************/
3303 
3304 static LIST_HEAD(ffs_devices);
3305 
3306 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3307 {
3308 	struct ffs_dev *dev;
3309 
3310 	if (!name)
3311 		return NULL;
3312 
3313 	list_for_each_entry(dev, &ffs_devices, entry) {
3314 		if (strcmp(dev->name, name) == 0)
3315 			return dev;
3316 	}
3317 
3318 	return NULL;
3319 }
3320 
3321 /*
3322  * ffs_lock must be taken by the caller of this function
3323  */
3324 static struct ffs_dev *_ffs_get_single_dev(void)
3325 {
3326 	struct ffs_dev *dev;
3327 
3328 	if (list_is_singular(&ffs_devices)) {
3329 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3330 		if (dev->single)
3331 			return dev;
3332 	}
3333 
3334 	return NULL;
3335 }
3336 
3337 /*
3338  * ffs_lock must be taken by the caller of this function
3339  */
3340 static struct ffs_dev *_ffs_find_dev(const char *name)
3341 {
3342 	struct ffs_dev *dev;
3343 
3344 	dev = _ffs_get_single_dev();
3345 	if (dev)
3346 		return dev;
3347 
3348 	return _ffs_do_find_dev(name);
3349 }
3350 
3351 /* Configfs support *********************************************************/
3352 
3353 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3354 {
3355 	return container_of(to_config_group(item), struct f_fs_opts,
3356 			    func_inst.group);
3357 }
3358 
3359 static void ffs_attr_release(struct config_item *item)
3360 {
3361 	struct f_fs_opts *opts = to_ffs_opts(item);
3362 
3363 	usb_put_function_instance(&opts->func_inst);
3364 }
3365 
3366 static struct configfs_item_operations ffs_item_ops = {
3367 	.release	= ffs_attr_release,
3368 };
3369 
3370 static const struct config_item_type ffs_func_type = {
3371 	.ct_item_ops	= &ffs_item_ops,
3372 	.ct_owner	= THIS_MODULE,
3373 };
3374 
3375 
3376 /* Function registration interface ******************************************/
3377 
3378 static void ffs_free_inst(struct usb_function_instance *f)
3379 {
3380 	struct f_fs_opts *opts;
3381 
3382 	opts = to_f_fs_opts(f);
3383 	ffs_dev_lock();
3384 	_ffs_free_dev(opts->dev);
3385 	ffs_dev_unlock();
3386 	kfree(opts);
3387 }
3388 
3389 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3390 {
3391 	if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name))
3392 		return -ENAMETOOLONG;
3393 	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3394 }
3395 
3396 static struct usb_function_instance *ffs_alloc_inst(void)
3397 {
3398 	struct f_fs_opts *opts;
3399 	struct ffs_dev *dev;
3400 
3401 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3402 	if (!opts)
3403 		return ERR_PTR(-ENOMEM);
3404 
3405 	opts->func_inst.set_inst_name = ffs_set_inst_name;
3406 	opts->func_inst.free_func_inst = ffs_free_inst;
3407 	ffs_dev_lock();
3408 	dev = _ffs_alloc_dev();
3409 	ffs_dev_unlock();
3410 	if (IS_ERR(dev)) {
3411 		kfree(opts);
3412 		return ERR_CAST(dev);
3413 	}
3414 	opts->dev = dev;
3415 	dev->opts = opts;
3416 
3417 	config_group_init_type_name(&opts->func_inst.group, "",
3418 				    &ffs_func_type);
3419 	return &opts->func_inst;
3420 }
3421 
3422 static void ffs_free(struct usb_function *f)
3423 {
3424 	kfree(ffs_func_from_usb(f));
3425 }
3426 
3427 static void ffs_func_unbind(struct usb_configuration *c,
3428 			    struct usb_function *f)
3429 {
3430 	struct ffs_function *func = ffs_func_from_usb(f);
3431 	struct ffs_data *ffs = func->ffs;
3432 	struct f_fs_opts *opts =
3433 		container_of(f->fi, struct f_fs_opts, func_inst);
3434 	struct ffs_ep *ep = func->eps;
3435 	unsigned count = ffs->eps_count;
3436 	unsigned long flags;
3437 
3438 	ENTER();
3439 	if (ffs->func == func) {
3440 		ffs_func_eps_disable(func);
3441 		ffs->func = NULL;
3442 	}
3443 
3444 	if (!--opts->refcnt)
3445 		functionfs_unbind(ffs);
3446 
3447 	/* cleanup after autoconfig */
3448 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3449 	while (count--) {
3450 		if (ep->ep && ep->req)
3451 			usb_ep_free_request(ep->ep, ep->req);
3452 		ep->req = NULL;
3453 		++ep;
3454 	}
3455 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3456 	kfree(func->eps);
3457 	func->eps = NULL;
3458 	/*
3459 	 * eps, descriptors and interfaces_nums are allocated in the
3460 	 * same chunk so only one free is required.
3461 	 */
3462 	func->function.fs_descriptors = NULL;
3463 	func->function.hs_descriptors = NULL;
3464 	func->function.ss_descriptors = NULL;
3465 	func->interfaces_nums = NULL;
3466 
3467 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3468 }
3469 
3470 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3471 {
3472 	struct ffs_function *func;
3473 
3474 	ENTER();
3475 
3476 	func = kzalloc(sizeof(*func), GFP_KERNEL);
3477 	if (unlikely(!func))
3478 		return ERR_PTR(-ENOMEM);
3479 
3480 	func->function.name    = "Function FS Gadget";
3481 
3482 	func->function.bind    = ffs_func_bind;
3483 	func->function.unbind  = ffs_func_unbind;
3484 	func->function.set_alt = ffs_func_set_alt;
3485 	func->function.disable = ffs_func_disable;
3486 	func->function.setup   = ffs_func_setup;
3487 	func->function.req_match = ffs_func_req_match;
3488 	func->function.suspend = ffs_func_suspend;
3489 	func->function.resume  = ffs_func_resume;
3490 	func->function.free_func = ffs_free;
3491 
3492 	return &func->function;
3493 }
3494 
3495 /*
3496  * ffs_lock must be taken by the caller of this function
3497  */
3498 static struct ffs_dev *_ffs_alloc_dev(void)
3499 {
3500 	struct ffs_dev *dev;
3501 	int ret;
3502 
3503 	if (_ffs_get_single_dev())
3504 			return ERR_PTR(-EBUSY);
3505 
3506 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3507 	if (!dev)
3508 		return ERR_PTR(-ENOMEM);
3509 
3510 	if (list_empty(&ffs_devices)) {
3511 		ret = functionfs_init();
3512 		if (ret) {
3513 			kfree(dev);
3514 			return ERR_PTR(ret);
3515 		}
3516 	}
3517 
3518 	list_add(&dev->entry, &ffs_devices);
3519 
3520 	return dev;
3521 }
3522 
3523 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3524 {
3525 	struct ffs_dev *existing;
3526 	int ret = 0;
3527 
3528 	ffs_dev_lock();
3529 
3530 	existing = _ffs_do_find_dev(name);
3531 	if (!existing)
3532 		strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3533 	else if (existing != dev)
3534 		ret = -EBUSY;
3535 
3536 	ffs_dev_unlock();
3537 
3538 	return ret;
3539 }
3540 EXPORT_SYMBOL_GPL(ffs_name_dev);
3541 
3542 int ffs_single_dev(struct ffs_dev *dev)
3543 {
3544 	int ret;
3545 
3546 	ret = 0;
3547 	ffs_dev_lock();
3548 
3549 	if (!list_is_singular(&ffs_devices))
3550 		ret = -EBUSY;
3551 	else
3552 		dev->single = true;
3553 
3554 	ffs_dev_unlock();
3555 	return ret;
3556 }
3557 EXPORT_SYMBOL_GPL(ffs_single_dev);
3558 
3559 /*
3560  * ffs_lock must be taken by the caller of this function
3561  */
3562 static void _ffs_free_dev(struct ffs_dev *dev)
3563 {
3564 	list_del(&dev->entry);
3565 
3566 	/* Clear the private_data pointer to stop incorrect dev access */
3567 	if (dev->ffs_data)
3568 		dev->ffs_data->private_data = NULL;
3569 
3570 	kfree(dev);
3571 	if (list_empty(&ffs_devices))
3572 		functionfs_cleanup();
3573 }
3574 
3575 static void *ffs_acquire_dev(const char *dev_name)
3576 {
3577 	struct ffs_dev *ffs_dev;
3578 
3579 	ENTER();
3580 	ffs_dev_lock();
3581 
3582 	ffs_dev = _ffs_find_dev(dev_name);
3583 	if (!ffs_dev)
3584 		ffs_dev = ERR_PTR(-ENOENT);
3585 	else if (ffs_dev->mounted)
3586 		ffs_dev = ERR_PTR(-EBUSY);
3587 	else if (ffs_dev->ffs_acquire_dev_callback &&
3588 	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3589 		ffs_dev = ERR_PTR(-ENOENT);
3590 	else
3591 		ffs_dev->mounted = true;
3592 
3593 	ffs_dev_unlock();
3594 	return ffs_dev;
3595 }
3596 
3597 static void ffs_release_dev(struct ffs_data *ffs_data)
3598 {
3599 	struct ffs_dev *ffs_dev;
3600 
3601 	ENTER();
3602 	ffs_dev_lock();
3603 
3604 	ffs_dev = ffs_data->private_data;
3605 	if (ffs_dev) {
3606 		ffs_dev->mounted = false;
3607 
3608 		if (ffs_dev->ffs_release_dev_callback)
3609 			ffs_dev->ffs_release_dev_callback(ffs_dev);
3610 	}
3611 
3612 	ffs_dev_unlock();
3613 }
3614 
3615 static int ffs_ready(struct ffs_data *ffs)
3616 {
3617 	struct ffs_dev *ffs_obj;
3618 	int ret = 0;
3619 
3620 	ENTER();
3621 	ffs_dev_lock();
3622 
3623 	ffs_obj = ffs->private_data;
3624 	if (!ffs_obj) {
3625 		ret = -EINVAL;
3626 		goto done;
3627 	}
3628 	if (WARN_ON(ffs_obj->desc_ready)) {
3629 		ret = -EBUSY;
3630 		goto done;
3631 	}
3632 
3633 	ffs_obj->desc_ready = true;
3634 	ffs_obj->ffs_data = ffs;
3635 
3636 	if (ffs_obj->ffs_ready_callback) {
3637 		ret = ffs_obj->ffs_ready_callback(ffs);
3638 		if (ret)
3639 			goto done;
3640 	}
3641 
3642 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3643 done:
3644 	ffs_dev_unlock();
3645 	return ret;
3646 }
3647 
3648 static void ffs_closed(struct ffs_data *ffs)
3649 {
3650 	struct ffs_dev *ffs_obj;
3651 	struct f_fs_opts *opts;
3652 	struct config_item *ci;
3653 
3654 	ENTER();
3655 	ffs_dev_lock();
3656 
3657 	ffs_obj = ffs->private_data;
3658 	if (!ffs_obj)
3659 		goto done;
3660 
3661 	ffs_obj->desc_ready = false;
3662 	ffs_obj->ffs_data = NULL;
3663 
3664 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3665 	    ffs_obj->ffs_closed_callback)
3666 		ffs_obj->ffs_closed_callback(ffs);
3667 
3668 	if (ffs_obj->opts)
3669 		opts = ffs_obj->opts;
3670 	else
3671 		goto done;
3672 
3673 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3674 	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3675 		goto done;
3676 
3677 	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3678 	ffs_dev_unlock();
3679 
3680 	if (test_bit(FFS_FL_BOUND, &ffs->flags))
3681 		unregister_gadget_item(ci);
3682 	return;
3683 done:
3684 	ffs_dev_unlock();
3685 }
3686 
3687 /* Misc helper functions ****************************************************/
3688 
3689 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3690 {
3691 	return nonblock
3692 		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3693 		: mutex_lock_interruptible(mutex);
3694 }
3695 
3696 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3697 {
3698 	char *data;
3699 
3700 	if (unlikely(!len))
3701 		return NULL;
3702 
3703 	data = kmalloc(len, GFP_KERNEL);
3704 	if (unlikely(!data))
3705 		return ERR_PTR(-ENOMEM);
3706 
3707 	if (unlikely(copy_from_user(data, buf, len))) {
3708 		kfree(data);
3709 		return ERR_PTR(-EFAULT);
3710 	}
3711 
3712 	pr_vdebug("Buffer from user space:\n");
3713 	ffs_dump_mem("", data, len);
3714 
3715 	return data;
3716 }
3717 
3718 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3719 MODULE_LICENSE("GPL");
3720 MODULE_AUTHOR("Michal Nazarewicz");
3721