xref: /openbmc/linux/drivers/usb/gadget/function/f_fs.c (revision f125e2d4)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * f_fs.c -- user mode file system API for USB composite function controllers
4  *
5  * Copyright (C) 2010 Samsung Electronics
6  * Author: Michal Nazarewicz <mina86@mina86.com>
7  *
8  * Based on inode.c (GadgetFS) which was:
9  * Copyright (C) 2003-2004 David Brownell
10  * Copyright (C) 2003 Agilent Technologies
11  */
12 
13 
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16 
17 #include <linux/blkdev.h>
18 #include <linux/pagemap.h>
19 #include <linux/export.h>
20 #include <linux/fs_parser.h>
21 #include <linux/hid.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/scatterlist.h>
25 #include <linux/sched/signal.h>
26 #include <linux/uio.h>
27 #include <linux/vmalloc.h>
28 #include <asm/unaligned.h>
29 
30 #include <linux/usb/ccid.h>
31 #include <linux/usb/composite.h>
32 #include <linux/usb/functionfs.h>
33 
34 #include <linux/aio.h>
35 #include <linux/mmu_context.h>
36 #include <linux/poll.h>
37 #include <linux/eventfd.h>
38 
39 #include "u_fs.h"
40 #include "u_f.h"
41 #include "u_os_desc.h"
42 #include "configfs.h"
43 
44 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
45 
46 /* Reference counter handling */
47 static void ffs_data_get(struct ffs_data *ffs);
48 static void ffs_data_put(struct ffs_data *ffs);
49 /* Creates new ffs_data object. */
50 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
51 	__attribute__((malloc));
52 
53 /* Opened counter handling. */
54 static void ffs_data_opened(struct ffs_data *ffs);
55 static void ffs_data_closed(struct ffs_data *ffs);
56 
57 /* Called with ffs->mutex held; take over ownership of data. */
58 static int __must_check
59 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
60 static int __must_check
61 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
62 
63 
64 /* The function structure ***************************************************/
65 
66 struct ffs_ep;
67 
68 struct ffs_function {
69 	struct usb_configuration	*conf;
70 	struct usb_gadget		*gadget;
71 	struct ffs_data			*ffs;
72 
73 	struct ffs_ep			*eps;
74 	u8				eps_revmap[16];
75 	short				*interfaces_nums;
76 
77 	struct usb_function		function;
78 };
79 
80 
81 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
82 {
83 	return container_of(f, struct ffs_function, function);
84 }
85 
86 
87 static inline enum ffs_setup_state
88 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
89 {
90 	return (enum ffs_setup_state)
91 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
92 }
93 
94 
95 static void ffs_func_eps_disable(struct ffs_function *func);
96 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
97 
98 static int ffs_func_bind(struct usb_configuration *,
99 			 struct usb_function *);
100 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
101 static void ffs_func_disable(struct usb_function *);
102 static int ffs_func_setup(struct usb_function *,
103 			  const struct usb_ctrlrequest *);
104 static bool ffs_func_req_match(struct usb_function *,
105 			       const struct usb_ctrlrequest *,
106 			       bool config0);
107 static void ffs_func_suspend(struct usb_function *);
108 static void ffs_func_resume(struct usb_function *);
109 
110 
111 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
112 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
113 
114 
115 /* The endpoints structures *************************************************/
116 
117 struct ffs_ep {
118 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
119 	struct usb_request		*req;	/* P: epfile->mutex */
120 
121 	/* [0]: full speed, [1]: high speed, [2]: super speed */
122 	struct usb_endpoint_descriptor	*descs[3];
123 
124 	u8				num;
125 
126 	int				status;	/* P: epfile->mutex */
127 };
128 
129 struct ffs_epfile {
130 	/* Protects ep->ep and ep->req. */
131 	struct mutex			mutex;
132 
133 	struct ffs_data			*ffs;
134 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
135 
136 	struct dentry			*dentry;
137 
138 	/*
139 	 * Buffer for holding data from partial reads which may happen since
140 	 * we’re rounding user read requests to a multiple of a max packet size.
141 	 *
142 	 * The pointer is initialised with NULL value and may be set by
143 	 * __ffs_epfile_read_data function to point to a temporary buffer.
144 	 *
145 	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
146 	 * data from said buffer and eventually free it.  Importantly, while the
147 	 * function is using the buffer, it sets the pointer to NULL.  This is
148 	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
149 	 * can never run concurrently (they are synchronised by epfile->mutex)
150 	 * so the latter will not assign a new value to the pointer.
151 	 *
152 	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
153 	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
154 	 * value is crux of the synchronisation between ffs_func_eps_disable and
155 	 * __ffs_epfile_read_data.
156 	 *
157 	 * Once __ffs_epfile_read_data is about to finish it will try to set the
158 	 * pointer back to its old value (as described above), but seeing as the
159 	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
160 	 * the buffer.
161 	 *
162 	 * == State transitions ==
163 	 *
164 	 * • ptr == NULL:  (initial state)
165 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
166 	 *   ◦ __ffs_epfile_read_buffered:    nop
167 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
168 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
169 	 * • ptr == DROP:
170 	 *   ◦ __ffs_epfile_read_buffer_free: nop
171 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
172 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
173 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
174 	 * • ptr == buf:
175 	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
176 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
177 	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
178 	 *                                    is always called first
179 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
180 	 * • ptr == NULL and reading:
181 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
182 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
183 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
184 	 *   ◦ reading finishes and …
185 	 *     … all data read:               free buf, go to ptr == NULL
186 	 *     … otherwise:                   go to ptr == buf and reading
187 	 * • ptr == DROP and reading:
188 	 *   ◦ __ffs_epfile_read_buffer_free: nop
189 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
190 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
191 	 *   ◦ reading finishes:              free buf, go to ptr == DROP
192 	 */
193 	struct ffs_buffer		*read_buffer;
194 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
195 
196 	char				name[5];
197 
198 	unsigned char			in;	/* P: ffs->eps_lock */
199 	unsigned char			isoc;	/* P: ffs->eps_lock */
200 
201 	unsigned char			_pad;
202 };
203 
204 struct ffs_buffer {
205 	size_t length;
206 	char *data;
207 	char storage[];
208 };
209 
210 /*  ffs_io_data structure ***************************************************/
211 
212 struct ffs_io_data {
213 	bool aio;
214 	bool read;
215 
216 	struct kiocb *kiocb;
217 	struct iov_iter data;
218 	const void *to_free;
219 	char *buf;
220 
221 	struct mm_struct *mm;
222 	struct work_struct work;
223 
224 	struct usb_ep *ep;
225 	struct usb_request *req;
226 	struct sg_table sgt;
227 	bool use_sg;
228 
229 	struct ffs_data *ffs;
230 };
231 
232 struct ffs_desc_helper {
233 	struct ffs_data *ffs;
234 	unsigned interfaces_count;
235 	unsigned eps_count;
236 };
237 
238 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
239 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
240 
241 static struct dentry *
242 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
243 		   const struct file_operations *fops);
244 
245 /* Devices management *******************************************************/
246 
247 DEFINE_MUTEX(ffs_lock);
248 EXPORT_SYMBOL_GPL(ffs_lock);
249 
250 static struct ffs_dev *_ffs_find_dev(const char *name);
251 static struct ffs_dev *_ffs_alloc_dev(void);
252 static void _ffs_free_dev(struct ffs_dev *dev);
253 static void *ffs_acquire_dev(const char *dev_name);
254 static void ffs_release_dev(struct ffs_data *ffs_data);
255 static int ffs_ready(struct ffs_data *ffs);
256 static void ffs_closed(struct ffs_data *ffs);
257 
258 /* Misc helper functions ****************************************************/
259 
260 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
261 	__attribute__((warn_unused_result, nonnull));
262 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
263 	__attribute__((warn_unused_result, nonnull));
264 
265 
266 /* Control file aka ep0 *****************************************************/
267 
268 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
269 {
270 	struct ffs_data *ffs = req->context;
271 
272 	complete(&ffs->ep0req_completion);
273 }
274 
275 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
276 	__releases(&ffs->ev.waitq.lock)
277 {
278 	struct usb_request *req = ffs->ep0req;
279 	int ret;
280 
281 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
282 
283 	spin_unlock_irq(&ffs->ev.waitq.lock);
284 
285 	req->buf      = data;
286 	req->length   = len;
287 
288 	/*
289 	 * UDC layer requires to provide a buffer even for ZLP, but should
290 	 * not use it at all. Let's provide some poisoned pointer to catch
291 	 * possible bug in the driver.
292 	 */
293 	if (req->buf == NULL)
294 		req->buf = (void *)0xDEADBABE;
295 
296 	reinit_completion(&ffs->ep0req_completion);
297 
298 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
299 	if (unlikely(ret < 0))
300 		return ret;
301 
302 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
303 	if (unlikely(ret)) {
304 		usb_ep_dequeue(ffs->gadget->ep0, req);
305 		return -EINTR;
306 	}
307 
308 	ffs->setup_state = FFS_NO_SETUP;
309 	return req->status ? req->status : req->actual;
310 }
311 
312 static int __ffs_ep0_stall(struct ffs_data *ffs)
313 {
314 	if (ffs->ev.can_stall) {
315 		pr_vdebug("ep0 stall\n");
316 		usb_ep_set_halt(ffs->gadget->ep0);
317 		ffs->setup_state = FFS_NO_SETUP;
318 		return -EL2HLT;
319 	} else {
320 		pr_debug("bogus ep0 stall!\n");
321 		return -ESRCH;
322 	}
323 }
324 
325 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
326 			     size_t len, loff_t *ptr)
327 {
328 	struct ffs_data *ffs = file->private_data;
329 	ssize_t ret;
330 	char *data;
331 
332 	ENTER();
333 
334 	/* Fast check if setup was canceled */
335 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
336 		return -EIDRM;
337 
338 	/* Acquire mutex */
339 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
340 	if (unlikely(ret < 0))
341 		return ret;
342 
343 	/* Check state */
344 	switch (ffs->state) {
345 	case FFS_READ_DESCRIPTORS:
346 	case FFS_READ_STRINGS:
347 		/* Copy data */
348 		if (unlikely(len < 16)) {
349 			ret = -EINVAL;
350 			break;
351 		}
352 
353 		data = ffs_prepare_buffer(buf, len);
354 		if (IS_ERR(data)) {
355 			ret = PTR_ERR(data);
356 			break;
357 		}
358 
359 		/* Handle data */
360 		if (ffs->state == FFS_READ_DESCRIPTORS) {
361 			pr_info("read descriptors\n");
362 			ret = __ffs_data_got_descs(ffs, data, len);
363 			if (unlikely(ret < 0))
364 				break;
365 
366 			ffs->state = FFS_READ_STRINGS;
367 			ret = len;
368 		} else {
369 			pr_info("read strings\n");
370 			ret = __ffs_data_got_strings(ffs, data, len);
371 			if (unlikely(ret < 0))
372 				break;
373 
374 			ret = ffs_epfiles_create(ffs);
375 			if (unlikely(ret)) {
376 				ffs->state = FFS_CLOSING;
377 				break;
378 			}
379 
380 			ffs->state = FFS_ACTIVE;
381 			mutex_unlock(&ffs->mutex);
382 
383 			ret = ffs_ready(ffs);
384 			if (unlikely(ret < 0)) {
385 				ffs->state = FFS_CLOSING;
386 				return ret;
387 			}
388 
389 			return len;
390 		}
391 		break;
392 
393 	case FFS_ACTIVE:
394 		data = NULL;
395 		/*
396 		 * We're called from user space, we can use _irq
397 		 * rather then _irqsave
398 		 */
399 		spin_lock_irq(&ffs->ev.waitq.lock);
400 		switch (ffs_setup_state_clear_cancelled(ffs)) {
401 		case FFS_SETUP_CANCELLED:
402 			ret = -EIDRM;
403 			goto done_spin;
404 
405 		case FFS_NO_SETUP:
406 			ret = -ESRCH;
407 			goto done_spin;
408 
409 		case FFS_SETUP_PENDING:
410 			break;
411 		}
412 
413 		/* FFS_SETUP_PENDING */
414 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
415 			spin_unlock_irq(&ffs->ev.waitq.lock);
416 			ret = __ffs_ep0_stall(ffs);
417 			break;
418 		}
419 
420 		/* FFS_SETUP_PENDING and not stall */
421 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
422 
423 		spin_unlock_irq(&ffs->ev.waitq.lock);
424 
425 		data = ffs_prepare_buffer(buf, len);
426 		if (IS_ERR(data)) {
427 			ret = PTR_ERR(data);
428 			break;
429 		}
430 
431 		spin_lock_irq(&ffs->ev.waitq.lock);
432 
433 		/*
434 		 * We are guaranteed to be still in FFS_ACTIVE state
435 		 * but the state of setup could have changed from
436 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
437 		 * to check for that.  If that happened we copied data
438 		 * from user space in vain but it's unlikely.
439 		 *
440 		 * For sure we are not in FFS_NO_SETUP since this is
441 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
442 		 * transition can be performed and it's protected by
443 		 * mutex.
444 		 */
445 		if (ffs_setup_state_clear_cancelled(ffs) ==
446 		    FFS_SETUP_CANCELLED) {
447 			ret = -EIDRM;
448 done_spin:
449 			spin_unlock_irq(&ffs->ev.waitq.lock);
450 		} else {
451 			/* unlocks spinlock */
452 			ret = __ffs_ep0_queue_wait(ffs, data, len);
453 		}
454 		kfree(data);
455 		break;
456 
457 	default:
458 		ret = -EBADFD;
459 		break;
460 	}
461 
462 	mutex_unlock(&ffs->mutex);
463 	return ret;
464 }
465 
466 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
467 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
468 				     size_t n)
469 	__releases(&ffs->ev.waitq.lock)
470 {
471 	/*
472 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
473 	 * size of ffs->ev.types array (which is four) so that's how much space
474 	 * we reserve.
475 	 */
476 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
477 	const size_t size = n * sizeof *events;
478 	unsigned i = 0;
479 
480 	memset(events, 0, size);
481 
482 	do {
483 		events[i].type = ffs->ev.types[i];
484 		if (events[i].type == FUNCTIONFS_SETUP) {
485 			events[i].u.setup = ffs->ev.setup;
486 			ffs->setup_state = FFS_SETUP_PENDING;
487 		}
488 	} while (++i < n);
489 
490 	ffs->ev.count -= n;
491 	if (ffs->ev.count)
492 		memmove(ffs->ev.types, ffs->ev.types + n,
493 			ffs->ev.count * sizeof *ffs->ev.types);
494 
495 	spin_unlock_irq(&ffs->ev.waitq.lock);
496 	mutex_unlock(&ffs->mutex);
497 
498 	return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
499 }
500 
501 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
502 			    size_t len, loff_t *ptr)
503 {
504 	struct ffs_data *ffs = file->private_data;
505 	char *data = NULL;
506 	size_t n;
507 	int ret;
508 
509 	ENTER();
510 
511 	/* Fast check if setup was canceled */
512 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
513 		return -EIDRM;
514 
515 	/* Acquire mutex */
516 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
517 	if (unlikely(ret < 0))
518 		return ret;
519 
520 	/* Check state */
521 	if (ffs->state != FFS_ACTIVE) {
522 		ret = -EBADFD;
523 		goto done_mutex;
524 	}
525 
526 	/*
527 	 * We're called from user space, we can use _irq rather then
528 	 * _irqsave
529 	 */
530 	spin_lock_irq(&ffs->ev.waitq.lock);
531 
532 	switch (ffs_setup_state_clear_cancelled(ffs)) {
533 	case FFS_SETUP_CANCELLED:
534 		ret = -EIDRM;
535 		break;
536 
537 	case FFS_NO_SETUP:
538 		n = len / sizeof(struct usb_functionfs_event);
539 		if (unlikely(!n)) {
540 			ret = -EINVAL;
541 			break;
542 		}
543 
544 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
545 			ret = -EAGAIN;
546 			break;
547 		}
548 
549 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
550 							ffs->ev.count)) {
551 			ret = -EINTR;
552 			break;
553 		}
554 
555 		/* unlocks spinlock */
556 		return __ffs_ep0_read_events(ffs, buf,
557 					     min(n, (size_t)ffs->ev.count));
558 
559 	case FFS_SETUP_PENDING:
560 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
561 			spin_unlock_irq(&ffs->ev.waitq.lock);
562 			ret = __ffs_ep0_stall(ffs);
563 			goto done_mutex;
564 		}
565 
566 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
567 
568 		spin_unlock_irq(&ffs->ev.waitq.lock);
569 
570 		if (likely(len)) {
571 			data = kmalloc(len, GFP_KERNEL);
572 			if (unlikely(!data)) {
573 				ret = -ENOMEM;
574 				goto done_mutex;
575 			}
576 		}
577 
578 		spin_lock_irq(&ffs->ev.waitq.lock);
579 
580 		/* See ffs_ep0_write() */
581 		if (ffs_setup_state_clear_cancelled(ffs) ==
582 		    FFS_SETUP_CANCELLED) {
583 			ret = -EIDRM;
584 			break;
585 		}
586 
587 		/* unlocks spinlock */
588 		ret = __ffs_ep0_queue_wait(ffs, data, len);
589 		if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
590 			ret = -EFAULT;
591 		goto done_mutex;
592 
593 	default:
594 		ret = -EBADFD;
595 		break;
596 	}
597 
598 	spin_unlock_irq(&ffs->ev.waitq.lock);
599 done_mutex:
600 	mutex_unlock(&ffs->mutex);
601 	kfree(data);
602 	return ret;
603 }
604 
605 static int ffs_ep0_open(struct inode *inode, struct file *file)
606 {
607 	struct ffs_data *ffs = inode->i_private;
608 
609 	ENTER();
610 
611 	if (unlikely(ffs->state == FFS_CLOSING))
612 		return -EBUSY;
613 
614 	file->private_data = ffs;
615 	ffs_data_opened(ffs);
616 
617 	return 0;
618 }
619 
620 static int ffs_ep0_release(struct inode *inode, struct file *file)
621 {
622 	struct ffs_data *ffs = file->private_data;
623 
624 	ENTER();
625 
626 	ffs_data_closed(ffs);
627 
628 	return 0;
629 }
630 
631 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
632 {
633 	struct ffs_data *ffs = file->private_data;
634 	struct usb_gadget *gadget = ffs->gadget;
635 	long ret;
636 
637 	ENTER();
638 
639 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
640 		struct ffs_function *func = ffs->func;
641 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
642 	} else if (gadget && gadget->ops->ioctl) {
643 		ret = gadget->ops->ioctl(gadget, code, value);
644 	} else {
645 		ret = -ENOTTY;
646 	}
647 
648 	return ret;
649 }
650 
651 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
652 {
653 	struct ffs_data *ffs = file->private_data;
654 	__poll_t mask = EPOLLWRNORM;
655 	int ret;
656 
657 	poll_wait(file, &ffs->ev.waitq, wait);
658 
659 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
660 	if (unlikely(ret < 0))
661 		return mask;
662 
663 	switch (ffs->state) {
664 	case FFS_READ_DESCRIPTORS:
665 	case FFS_READ_STRINGS:
666 		mask |= EPOLLOUT;
667 		break;
668 
669 	case FFS_ACTIVE:
670 		switch (ffs->setup_state) {
671 		case FFS_NO_SETUP:
672 			if (ffs->ev.count)
673 				mask |= EPOLLIN;
674 			break;
675 
676 		case FFS_SETUP_PENDING:
677 		case FFS_SETUP_CANCELLED:
678 			mask |= (EPOLLIN | EPOLLOUT);
679 			break;
680 		}
681 	case FFS_CLOSING:
682 		break;
683 	case FFS_DEACTIVATED:
684 		break;
685 	}
686 
687 	mutex_unlock(&ffs->mutex);
688 
689 	return mask;
690 }
691 
692 static const struct file_operations ffs_ep0_operations = {
693 	.llseek =	no_llseek,
694 
695 	.open =		ffs_ep0_open,
696 	.write =	ffs_ep0_write,
697 	.read =		ffs_ep0_read,
698 	.release =	ffs_ep0_release,
699 	.unlocked_ioctl =	ffs_ep0_ioctl,
700 	.poll =		ffs_ep0_poll,
701 };
702 
703 
704 /* "Normal" endpoints operations ********************************************/
705 
706 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
707 {
708 	ENTER();
709 	if (likely(req->context)) {
710 		struct ffs_ep *ep = _ep->driver_data;
711 		ep->status = req->status ? req->status : req->actual;
712 		complete(req->context);
713 	}
714 }
715 
716 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
717 {
718 	ssize_t ret = copy_to_iter(data, data_len, iter);
719 	if (likely(ret == data_len))
720 		return ret;
721 
722 	if (unlikely(iov_iter_count(iter)))
723 		return -EFAULT;
724 
725 	/*
726 	 * Dear user space developer!
727 	 *
728 	 * TL;DR: To stop getting below error message in your kernel log, change
729 	 * user space code using functionfs to align read buffers to a max
730 	 * packet size.
731 	 *
732 	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
733 	 * packet size.  When unaligned buffer is passed to functionfs, it
734 	 * internally uses a larger, aligned buffer so that such UDCs are happy.
735 	 *
736 	 * Unfortunately, this means that host may send more data than was
737 	 * requested in read(2) system call.  f_fs doesn’t know what to do with
738 	 * that excess data so it simply drops it.
739 	 *
740 	 * Was the buffer aligned in the first place, no such problem would
741 	 * happen.
742 	 *
743 	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
744 	 * by splitting a request into multiple parts.  This splitting may still
745 	 * be a problem though so it’s likely best to align the buffer
746 	 * regardless of it being AIO or not..
747 	 *
748 	 * This only affects OUT endpoints, i.e. reading data with a read(2),
749 	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
750 	 * affected.
751 	 */
752 	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
753 	       "Align read buffer size to max packet size to avoid the problem.\n",
754 	       data_len, ret);
755 
756 	return ret;
757 }
758 
759 /*
760  * allocate a virtually contiguous buffer and create a scatterlist describing it
761  * @sg_table	- pointer to a place to be filled with sg_table contents
762  * @size	- required buffer size
763  */
764 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
765 {
766 	struct page **pages;
767 	void *vaddr, *ptr;
768 	unsigned int n_pages;
769 	int i;
770 
771 	vaddr = vmalloc(sz);
772 	if (!vaddr)
773 		return NULL;
774 
775 	n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
776 	pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
777 	if (!pages) {
778 		vfree(vaddr);
779 
780 		return NULL;
781 	}
782 	for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
783 		pages[i] = vmalloc_to_page(ptr);
784 
785 	if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
786 		kvfree(pages);
787 		vfree(vaddr);
788 
789 		return NULL;
790 	}
791 	kvfree(pages);
792 
793 	return vaddr;
794 }
795 
796 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
797 	size_t data_len)
798 {
799 	if (io_data->use_sg)
800 		return ffs_build_sg_list(&io_data->sgt, data_len);
801 
802 	return kmalloc(data_len, GFP_KERNEL);
803 }
804 
805 static inline void ffs_free_buffer(struct ffs_io_data *io_data)
806 {
807 	if (!io_data->buf)
808 		return;
809 
810 	if (io_data->use_sg) {
811 		sg_free_table(&io_data->sgt);
812 		vfree(io_data->buf);
813 	} else {
814 		kfree(io_data->buf);
815 	}
816 }
817 
818 static void ffs_user_copy_worker(struct work_struct *work)
819 {
820 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
821 						   work);
822 	int ret = io_data->req->status ? io_data->req->status :
823 					 io_data->req->actual;
824 	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
825 
826 	if (io_data->read && ret > 0) {
827 		mm_segment_t oldfs = get_fs();
828 
829 		set_fs(USER_DS);
830 		use_mm(io_data->mm);
831 		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
832 		unuse_mm(io_data->mm);
833 		set_fs(oldfs);
834 	}
835 
836 	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
837 
838 	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
839 		eventfd_signal(io_data->ffs->ffs_eventfd, 1);
840 
841 	usb_ep_free_request(io_data->ep, io_data->req);
842 
843 	if (io_data->read)
844 		kfree(io_data->to_free);
845 	ffs_free_buffer(io_data);
846 	kfree(io_data);
847 }
848 
849 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
850 					 struct usb_request *req)
851 {
852 	struct ffs_io_data *io_data = req->context;
853 	struct ffs_data *ffs = io_data->ffs;
854 
855 	ENTER();
856 
857 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
858 	queue_work(ffs->io_completion_wq, &io_data->work);
859 }
860 
861 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
862 {
863 	/*
864 	 * See comment in struct ffs_epfile for full read_buffer pointer
865 	 * synchronisation story.
866 	 */
867 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
868 	if (buf && buf != READ_BUFFER_DROP)
869 		kfree(buf);
870 }
871 
872 /* Assumes epfile->mutex is held. */
873 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
874 					  struct iov_iter *iter)
875 {
876 	/*
877 	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
878 	 * the buffer while we are using it.  See comment in struct ffs_epfile
879 	 * for full read_buffer pointer synchronisation story.
880 	 */
881 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
882 	ssize_t ret;
883 	if (!buf || buf == READ_BUFFER_DROP)
884 		return 0;
885 
886 	ret = copy_to_iter(buf->data, buf->length, iter);
887 	if (buf->length == ret) {
888 		kfree(buf);
889 		return ret;
890 	}
891 
892 	if (unlikely(iov_iter_count(iter))) {
893 		ret = -EFAULT;
894 	} else {
895 		buf->length -= ret;
896 		buf->data += ret;
897 	}
898 
899 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
900 		kfree(buf);
901 
902 	return ret;
903 }
904 
905 /* Assumes epfile->mutex is held. */
906 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
907 				      void *data, int data_len,
908 				      struct iov_iter *iter)
909 {
910 	struct ffs_buffer *buf;
911 
912 	ssize_t ret = copy_to_iter(data, data_len, iter);
913 	if (likely(data_len == ret))
914 		return ret;
915 
916 	if (unlikely(iov_iter_count(iter)))
917 		return -EFAULT;
918 
919 	/* See ffs_copy_to_iter for more context. */
920 	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
921 		data_len, ret);
922 
923 	data_len -= ret;
924 	buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
925 	if (!buf)
926 		return -ENOMEM;
927 	buf->length = data_len;
928 	buf->data = buf->storage;
929 	memcpy(buf->storage, data + ret, data_len);
930 
931 	/*
932 	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
933 	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
934 	 * in struct ffs_epfile for full read_buffer pointer synchronisation
935 	 * story.
936 	 */
937 	if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
938 		kfree(buf);
939 
940 	return ret;
941 }
942 
943 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
944 {
945 	struct ffs_epfile *epfile = file->private_data;
946 	struct usb_request *req;
947 	struct ffs_ep *ep;
948 	char *data = NULL;
949 	ssize_t ret, data_len = -EINVAL;
950 	int halt;
951 
952 	/* Are we still active? */
953 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
954 		return -ENODEV;
955 
956 	/* Wait for endpoint to be enabled */
957 	ep = epfile->ep;
958 	if (!ep) {
959 		if (file->f_flags & O_NONBLOCK)
960 			return -EAGAIN;
961 
962 		ret = wait_event_interruptible(
963 				epfile->ffs->wait, (ep = epfile->ep));
964 		if (ret)
965 			return -EINTR;
966 	}
967 
968 	/* Do we halt? */
969 	halt = (!io_data->read == !epfile->in);
970 	if (halt && epfile->isoc)
971 		return -EINVAL;
972 
973 	/* We will be using request and read_buffer */
974 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
975 	if (unlikely(ret))
976 		goto error;
977 
978 	/* Allocate & copy */
979 	if (!halt) {
980 		struct usb_gadget *gadget;
981 
982 		/*
983 		 * Do we have buffered data from previous partial read?  Check
984 		 * that for synchronous case only because we do not have
985 		 * facility to ‘wake up’ a pending asynchronous read and push
986 		 * buffered data to it which we would need to make things behave
987 		 * consistently.
988 		 */
989 		if (!io_data->aio && io_data->read) {
990 			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
991 			if (ret)
992 				goto error_mutex;
993 		}
994 
995 		/*
996 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
997 		 * before the waiting completes, so do not assign to 'gadget'
998 		 * earlier
999 		 */
1000 		gadget = epfile->ffs->gadget;
1001 
1002 		spin_lock_irq(&epfile->ffs->eps_lock);
1003 		/* In the meantime, endpoint got disabled or changed. */
1004 		if (epfile->ep != ep) {
1005 			ret = -ESHUTDOWN;
1006 			goto error_lock;
1007 		}
1008 		data_len = iov_iter_count(&io_data->data);
1009 		/*
1010 		 * Controller may require buffer size to be aligned to
1011 		 * maxpacketsize of an out endpoint.
1012 		 */
1013 		if (io_data->read)
1014 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1015 
1016 		io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1017 		spin_unlock_irq(&epfile->ffs->eps_lock);
1018 
1019 		data = ffs_alloc_buffer(io_data, data_len);
1020 		if (unlikely(!data)) {
1021 			ret = -ENOMEM;
1022 			goto error_mutex;
1023 		}
1024 		if (!io_data->read &&
1025 		    !copy_from_iter_full(data, data_len, &io_data->data)) {
1026 			ret = -EFAULT;
1027 			goto error_mutex;
1028 		}
1029 	}
1030 
1031 	spin_lock_irq(&epfile->ffs->eps_lock);
1032 
1033 	if (epfile->ep != ep) {
1034 		/* In the meantime, endpoint got disabled or changed. */
1035 		ret = -ESHUTDOWN;
1036 	} else if (halt) {
1037 		ret = usb_ep_set_halt(ep->ep);
1038 		if (!ret)
1039 			ret = -EBADMSG;
1040 	} else if (unlikely(data_len == -EINVAL)) {
1041 		/*
1042 		 * Sanity Check: even though data_len can't be used
1043 		 * uninitialized at the time I write this comment, some
1044 		 * compilers complain about this situation.
1045 		 * In order to keep the code clean from warnings, data_len is
1046 		 * being initialized to -EINVAL during its declaration, which
1047 		 * means we can't rely on compiler anymore to warn no future
1048 		 * changes won't result in data_len being used uninitialized.
1049 		 * For such reason, we're adding this redundant sanity check
1050 		 * here.
1051 		 */
1052 		WARN(1, "%s: data_len == -EINVAL\n", __func__);
1053 		ret = -EINVAL;
1054 	} else if (!io_data->aio) {
1055 		DECLARE_COMPLETION_ONSTACK(done);
1056 		bool interrupted = false;
1057 
1058 		req = ep->req;
1059 		if (io_data->use_sg) {
1060 			req->buf = NULL;
1061 			req->sg	= io_data->sgt.sgl;
1062 			req->num_sgs = io_data->sgt.nents;
1063 		} else {
1064 			req->buf = data;
1065 			req->num_sgs = 0;
1066 		}
1067 		req->length = data_len;
1068 
1069 		io_data->buf = data;
1070 
1071 		req->context  = &done;
1072 		req->complete = ffs_epfile_io_complete;
1073 
1074 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1075 		if (unlikely(ret < 0))
1076 			goto error_lock;
1077 
1078 		spin_unlock_irq(&epfile->ffs->eps_lock);
1079 
1080 		if (unlikely(wait_for_completion_interruptible(&done))) {
1081 			/*
1082 			 * To avoid race condition with ffs_epfile_io_complete,
1083 			 * dequeue the request first then check
1084 			 * status. usb_ep_dequeue API should guarantee no race
1085 			 * condition with req->complete callback.
1086 			 */
1087 			usb_ep_dequeue(ep->ep, req);
1088 			wait_for_completion(&done);
1089 			interrupted = ep->status < 0;
1090 		}
1091 
1092 		if (interrupted)
1093 			ret = -EINTR;
1094 		else if (io_data->read && ep->status > 0)
1095 			ret = __ffs_epfile_read_data(epfile, data, ep->status,
1096 						     &io_data->data);
1097 		else
1098 			ret = ep->status;
1099 		goto error_mutex;
1100 	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1101 		ret = -ENOMEM;
1102 	} else {
1103 		if (io_data->use_sg) {
1104 			req->buf = NULL;
1105 			req->sg	= io_data->sgt.sgl;
1106 			req->num_sgs = io_data->sgt.nents;
1107 		} else {
1108 			req->buf = data;
1109 			req->num_sgs = 0;
1110 		}
1111 		req->length = data_len;
1112 
1113 		io_data->buf = data;
1114 		io_data->ep = ep->ep;
1115 		io_data->req = req;
1116 		io_data->ffs = epfile->ffs;
1117 
1118 		req->context  = io_data;
1119 		req->complete = ffs_epfile_async_io_complete;
1120 
1121 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1122 		if (unlikely(ret)) {
1123 			usb_ep_free_request(ep->ep, req);
1124 			goto error_lock;
1125 		}
1126 
1127 		ret = -EIOCBQUEUED;
1128 		/*
1129 		 * Do not kfree the buffer in this function.  It will be freed
1130 		 * by ffs_user_copy_worker.
1131 		 */
1132 		data = NULL;
1133 	}
1134 
1135 error_lock:
1136 	spin_unlock_irq(&epfile->ffs->eps_lock);
1137 error_mutex:
1138 	mutex_unlock(&epfile->mutex);
1139 error:
1140 	if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1141 		ffs_free_buffer(io_data);
1142 	return ret;
1143 }
1144 
1145 static int
1146 ffs_epfile_open(struct inode *inode, struct file *file)
1147 {
1148 	struct ffs_epfile *epfile = inode->i_private;
1149 
1150 	ENTER();
1151 
1152 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1153 		return -ENODEV;
1154 
1155 	file->private_data = epfile;
1156 	ffs_data_opened(epfile->ffs);
1157 
1158 	return 0;
1159 }
1160 
1161 static int ffs_aio_cancel(struct kiocb *kiocb)
1162 {
1163 	struct ffs_io_data *io_data = kiocb->private;
1164 	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1165 	unsigned long flags;
1166 	int value;
1167 
1168 	ENTER();
1169 
1170 	spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1171 
1172 	if (likely(io_data && io_data->ep && io_data->req))
1173 		value = usb_ep_dequeue(io_data->ep, io_data->req);
1174 	else
1175 		value = -EINVAL;
1176 
1177 	spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1178 
1179 	return value;
1180 }
1181 
1182 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1183 {
1184 	struct ffs_io_data io_data, *p = &io_data;
1185 	ssize_t res;
1186 
1187 	ENTER();
1188 
1189 	if (!is_sync_kiocb(kiocb)) {
1190 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1191 		if (unlikely(!p))
1192 			return -ENOMEM;
1193 		p->aio = true;
1194 	} else {
1195 		memset(p, 0, sizeof(*p));
1196 		p->aio = false;
1197 	}
1198 
1199 	p->read = false;
1200 	p->kiocb = kiocb;
1201 	p->data = *from;
1202 	p->mm = current->mm;
1203 
1204 	kiocb->private = p;
1205 
1206 	if (p->aio)
1207 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1208 
1209 	res = ffs_epfile_io(kiocb->ki_filp, p);
1210 	if (res == -EIOCBQUEUED)
1211 		return res;
1212 	if (p->aio)
1213 		kfree(p);
1214 	else
1215 		*from = p->data;
1216 	return res;
1217 }
1218 
1219 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1220 {
1221 	struct ffs_io_data io_data, *p = &io_data;
1222 	ssize_t res;
1223 
1224 	ENTER();
1225 
1226 	if (!is_sync_kiocb(kiocb)) {
1227 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1228 		if (unlikely(!p))
1229 			return -ENOMEM;
1230 		p->aio = true;
1231 	} else {
1232 		memset(p, 0, sizeof(*p));
1233 		p->aio = false;
1234 	}
1235 
1236 	p->read = true;
1237 	p->kiocb = kiocb;
1238 	if (p->aio) {
1239 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1240 		if (!p->to_free) {
1241 			kfree(p);
1242 			return -ENOMEM;
1243 		}
1244 	} else {
1245 		p->data = *to;
1246 		p->to_free = NULL;
1247 	}
1248 	p->mm = current->mm;
1249 
1250 	kiocb->private = p;
1251 
1252 	if (p->aio)
1253 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1254 
1255 	res = ffs_epfile_io(kiocb->ki_filp, p);
1256 	if (res == -EIOCBQUEUED)
1257 		return res;
1258 
1259 	if (p->aio) {
1260 		kfree(p->to_free);
1261 		kfree(p);
1262 	} else {
1263 		*to = p->data;
1264 	}
1265 	return res;
1266 }
1267 
1268 static int
1269 ffs_epfile_release(struct inode *inode, struct file *file)
1270 {
1271 	struct ffs_epfile *epfile = inode->i_private;
1272 
1273 	ENTER();
1274 
1275 	__ffs_epfile_read_buffer_free(epfile);
1276 	ffs_data_closed(epfile->ffs);
1277 
1278 	return 0;
1279 }
1280 
1281 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1282 			     unsigned long value)
1283 {
1284 	struct ffs_epfile *epfile = file->private_data;
1285 	struct ffs_ep *ep;
1286 	int ret;
1287 
1288 	ENTER();
1289 
1290 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1291 		return -ENODEV;
1292 
1293 	/* Wait for endpoint to be enabled */
1294 	ep = epfile->ep;
1295 	if (!ep) {
1296 		if (file->f_flags & O_NONBLOCK)
1297 			return -EAGAIN;
1298 
1299 		ret = wait_event_interruptible(
1300 				epfile->ffs->wait, (ep = epfile->ep));
1301 		if (ret)
1302 			return -EINTR;
1303 	}
1304 
1305 	spin_lock_irq(&epfile->ffs->eps_lock);
1306 
1307 	/* In the meantime, endpoint got disabled or changed. */
1308 	if (epfile->ep != ep) {
1309 		spin_unlock_irq(&epfile->ffs->eps_lock);
1310 		return -ESHUTDOWN;
1311 	}
1312 
1313 	switch (code) {
1314 	case FUNCTIONFS_FIFO_STATUS:
1315 		ret = usb_ep_fifo_status(epfile->ep->ep);
1316 		break;
1317 	case FUNCTIONFS_FIFO_FLUSH:
1318 		usb_ep_fifo_flush(epfile->ep->ep);
1319 		ret = 0;
1320 		break;
1321 	case FUNCTIONFS_CLEAR_HALT:
1322 		ret = usb_ep_clear_halt(epfile->ep->ep);
1323 		break;
1324 	case FUNCTIONFS_ENDPOINT_REVMAP:
1325 		ret = epfile->ep->num;
1326 		break;
1327 	case FUNCTIONFS_ENDPOINT_DESC:
1328 	{
1329 		int desc_idx;
1330 		struct usb_endpoint_descriptor *desc;
1331 
1332 		switch (epfile->ffs->gadget->speed) {
1333 		case USB_SPEED_SUPER:
1334 			desc_idx = 2;
1335 			break;
1336 		case USB_SPEED_HIGH:
1337 			desc_idx = 1;
1338 			break;
1339 		default:
1340 			desc_idx = 0;
1341 		}
1342 		desc = epfile->ep->descs[desc_idx];
1343 
1344 		spin_unlock_irq(&epfile->ffs->eps_lock);
1345 		ret = copy_to_user((void __user *)value, desc, desc->bLength);
1346 		if (ret)
1347 			ret = -EFAULT;
1348 		return ret;
1349 	}
1350 	default:
1351 		ret = -ENOTTY;
1352 	}
1353 	spin_unlock_irq(&epfile->ffs->eps_lock);
1354 
1355 	return ret;
1356 }
1357 
1358 static const struct file_operations ffs_epfile_operations = {
1359 	.llseek =	no_llseek,
1360 
1361 	.open =		ffs_epfile_open,
1362 	.write_iter =	ffs_epfile_write_iter,
1363 	.read_iter =	ffs_epfile_read_iter,
1364 	.release =	ffs_epfile_release,
1365 	.unlocked_ioctl =	ffs_epfile_ioctl,
1366 	.compat_ioctl = compat_ptr_ioctl,
1367 };
1368 
1369 
1370 /* File system and super block operations ***********************************/
1371 
1372 /*
1373  * Mounting the file system creates a controller file, used first for
1374  * function configuration then later for event monitoring.
1375  */
1376 
1377 static struct inode *__must_check
1378 ffs_sb_make_inode(struct super_block *sb, void *data,
1379 		  const struct file_operations *fops,
1380 		  const struct inode_operations *iops,
1381 		  struct ffs_file_perms *perms)
1382 {
1383 	struct inode *inode;
1384 
1385 	ENTER();
1386 
1387 	inode = new_inode(sb);
1388 
1389 	if (likely(inode)) {
1390 		struct timespec64 ts = current_time(inode);
1391 
1392 		inode->i_ino	 = get_next_ino();
1393 		inode->i_mode    = perms->mode;
1394 		inode->i_uid     = perms->uid;
1395 		inode->i_gid     = perms->gid;
1396 		inode->i_atime   = ts;
1397 		inode->i_mtime   = ts;
1398 		inode->i_ctime   = ts;
1399 		inode->i_private = data;
1400 		if (fops)
1401 			inode->i_fop = fops;
1402 		if (iops)
1403 			inode->i_op  = iops;
1404 	}
1405 
1406 	return inode;
1407 }
1408 
1409 /* Create "regular" file */
1410 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1411 					const char *name, void *data,
1412 					const struct file_operations *fops)
1413 {
1414 	struct ffs_data	*ffs = sb->s_fs_info;
1415 	struct dentry	*dentry;
1416 	struct inode	*inode;
1417 
1418 	ENTER();
1419 
1420 	dentry = d_alloc_name(sb->s_root, name);
1421 	if (unlikely(!dentry))
1422 		return NULL;
1423 
1424 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1425 	if (unlikely(!inode)) {
1426 		dput(dentry);
1427 		return NULL;
1428 	}
1429 
1430 	d_add(dentry, inode);
1431 	return dentry;
1432 }
1433 
1434 /* Super block */
1435 static const struct super_operations ffs_sb_operations = {
1436 	.statfs =	simple_statfs,
1437 	.drop_inode =	generic_delete_inode,
1438 };
1439 
1440 struct ffs_sb_fill_data {
1441 	struct ffs_file_perms perms;
1442 	umode_t root_mode;
1443 	const char *dev_name;
1444 	bool no_disconnect;
1445 	struct ffs_data *ffs_data;
1446 };
1447 
1448 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1449 {
1450 	struct ffs_sb_fill_data *data = fc->fs_private;
1451 	struct inode	*inode;
1452 	struct ffs_data	*ffs = data->ffs_data;
1453 
1454 	ENTER();
1455 
1456 	ffs->sb              = sb;
1457 	data->ffs_data       = NULL;
1458 	sb->s_fs_info        = ffs;
1459 	sb->s_blocksize      = PAGE_SIZE;
1460 	sb->s_blocksize_bits = PAGE_SHIFT;
1461 	sb->s_magic          = FUNCTIONFS_MAGIC;
1462 	sb->s_op             = &ffs_sb_operations;
1463 	sb->s_time_gran      = 1;
1464 
1465 	/* Root inode */
1466 	data->perms.mode = data->root_mode;
1467 	inode = ffs_sb_make_inode(sb, NULL,
1468 				  &simple_dir_operations,
1469 				  &simple_dir_inode_operations,
1470 				  &data->perms);
1471 	sb->s_root = d_make_root(inode);
1472 	if (unlikely(!sb->s_root))
1473 		return -ENOMEM;
1474 
1475 	/* EP0 file */
1476 	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1477 					 &ffs_ep0_operations)))
1478 		return -ENOMEM;
1479 
1480 	return 0;
1481 }
1482 
1483 enum {
1484 	Opt_no_disconnect,
1485 	Opt_rmode,
1486 	Opt_fmode,
1487 	Opt_mode,
1488 	Opt_uid,
1489 	Opt_gid,
1490 };
1491 
1492 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1493 	fsparam_bool	("no_disconnect",	Opt_no_disconnect),
1494 	fsparam_u32	("rmode",		Opt_rmode),
1495 	fsparam_u32	("fmode",		Opt_fmode),
1496 	fsparam_u32	("mode",		Opt_mode),
1497 	fsparam_u32	("uid",			Opt_uid),
1498 	fsparam_u32	("gid",			Opt_gid),
1499 	{}
1500 };
1501 
1502 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1503 {
1504 	struct ffs_sb_fill_data *data = fc->fs_private;
1505 	struct fs_parse_result result;
1506 	int opt;
1507 
1508 	ENTER();
1509 
1510 	opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1511 	if (opt < 0)
1512 		return opt;
1513 
1514 	switch (opt) {
1515 	case Opt_no_disconnect:
1516 		data->no_disconnect = result.boolean;
1517 		break;
1518 	case Opt_rmode:
1519 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1520 		break;
1521 	case Opt_fmode:
1522 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1523 		break;
1524 	case Opt_mode:
1525 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1526 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1527 		break;
1528 
1529 	case Opt_uid:
1530 		data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1531 		if (!uid_valid(data->perms.uid))
1532 			goto unmapped_value;
1533 		break;
1534 	case Opt_gid:
1535 		data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1536 		if (!gid_valid(data->perms.gid))
1537 			goto unmapped_value;
1538 		break;
1539 
1540 	default:
1541 		return -ENOPARAM;
1542 	}
1543 
1544 	return 0;
1545 
1546 unmapped_value:
1547 	return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
1548 }
1549 
1550 /*
1551  * Set up the superblock for a mount.
1552  */
1553 static int ffs_fs_get_tree(struct fs_context *fc)
1554 {
1555 	struct ffs_sb_fill_data *ctx = fc->fs_private;
1556 	void *ffs_dev;
1557 	struct ffs_data	*ffs;
1558 
1559 	ENTER();
1560 
1561 	if (!fc->source)
1562 		return invalf(fc, "No source specified");
1563 
1564 	ffs = ffs_data_new(fc->source);
1565 	if (unlikely(!ffs))
1566 		return -ENOMEM;
1567 	ffs->file_perms = ctx->perms;
1568 	ffs->no_disconnect = ctx->no_disconnect;
1569 
1570 	ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
1571 	if (unlikely(!ffs->dev_name)) {
1572 		ffs_data_put(ffs);
1573 		return -ENOMEM;
1574 	}
1575 
1576 	ffs_dev = ffs_acquire_dev(ffs->dev_name);
1577 	if (IS_ERR(ffs_dev)) {
1578 		ffs_data_put(ffs);
1579 		return PTR_ERR(ffs_dev);
1580 	}
1581 
1582 	ffs->private_data = ffs_dev;
1583 	ctx->ffs_data = ffs;
1584 	return get_tree_nodev(fc, ffs_sb_fill);
1585 }
1586 
1587 static void ffs_fs_free_fc(struct fs_context *fc)
1588 {
1589 	struct ffs_sb_fill_data *ctx = fc->fs_private;
1590 
1591 	if (ctx) {
1592 		if (ctx->ffs_data) {
1593 			ffs_release_dev(ctx->ffs_data);
1594 			ffs_data_put(ctx->ffs_data);
1595 		}
1596 
1597 		kfree(ctx);
1598 	}
1599 }
1600 
1601 static const struct fs_context_operations ffs_fs_context_ops = {
1602 	.free		= ffs_fs_free_fc,
1603 	.parse_param	= ffs_fs_parse_param,
1604 	.get_tree	= ffs_fs_get_tree,
1605 };
1606 
1607 static int ffs_fs_init_fs_context(struct fs_context *fc)
1608 {
1609 	struct ffs_sb_fill_data *ctx;
1610 
1611 	ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
1612 	if (!ctx)
1613 		return -ENOMEM;
1614 
1615 	ctx->perms.mode = S_IFREG | 0600;
1616 	ctx->perms.uid = GLOBAL_ROOT_UID;
1617 	ctx->perms.gid = GLOBAL_ROOT_GID;
1618 	ctx->root_mode = S_IFDIR | 0500;
1619 	ctx->no_disconnect = false;
1620 
1621 	fc->fs_private = ctx;
1622 	fc->ops = &ffs_fs_context_ops;
1623 	return 0;
1624 }
1625 
1626 static void
1627 ffs_fs_kill_sb(struct super_block *sb)
1628 {
1629 	ENTER();
1630 
1631 	kill_litter_super(sb);
1632 	if (sb->s_fs_info) {
1633 		ffs_release_dev(sb->s_fs_info);
1634 		ffs_data_closed(sb->s_fs_info);
1635 	}
1636 }
1637 
1638 static struct file_system_type ffs_fs_type = {
1639 	.owner		= THIS_MODULE,
1640 	.name		= "functionfs",
1641 	.init_fs_context = ffs_fs_init_fs_context,
1642 	.parameters	= ffs_fs_fs_parameters,
1643 	.kill_sb	= ffs_fs_kill_sb,
1644 };
1645 MODULE_ALIAS_FS("functionfs");
1646 
1647 
1648 /* Driver's main init/cleanup functions *************************************/
1649 
1650 static int functionfs_init(void)
1651 {
1652 	int ret;
1653 
1654 	ENTER();
1655 
1656 	ret = register_filesystem(&ffs_fs_type);
1657 	if (likely(!ret))
1658 		pr_info("file system registered\n");
1659 	else
1660 		pr_err("failed registering file system (%d)\n", ret);
1661 
1662 	return ret;
1663 }
1664 
1665 static void functionfs_cleanup(void)
1666 {
1667 	ENTER();
1668 
1669 	pr_info("unloading\n");
1670 	unregister_filesystem(&ffs_fs_type);
1671 }
1672 
1673 
1674 /* ffs_data and ffs_function construction and destruction code **************/
1675 
1676 static void ffs_data_clear(struct ffs_data *ffs);
1677 static void ffs_data_reset(struct ffs_data *ffs);
1678 
1679 static void ffs_data_get(struct ffs_data *ffs)
1680 {
1681 	ENTER();
1682 
1683 	refcount_inc(&ffs->ref);
1684 }
1685 
1686 static void ffs_data_opened(struct ffs_data *ffs)
1687 {
1688 	ENTER();
1689 
1690 	refcount_inc(&ffs->ref);
1691 	if (atomic_add_return(1, &ffs->opened) == 1 &&
1692 			ffs->state == FFS_DEACTIVATED) {
1693 		ffs->state = FFS_CLOSING;
1694 		ffs_data_reset(ffs);
1695 	}
1696 }
1697 
1698 static void ffs_data_put(struct ffs_data *ffs)
1699 {
1700 	ENTER();
1701 
1702 	if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1703 		pr_info("%s(): freeing\n", __func__);
1704 		ffs_data_clear(ffs);
1705 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1706 		       waitqueue_active(&ffs->ep0req_completion.wait) ||
1707 		       waitqueue_active(&ffs->wait));
1708 		destroy_workqueue(ffs->io_completion_wq);
1709 		kfree(ffs->dev_name);
1710 		kfree(ffs);
1711 	}
1712 }
1713 
1714 static void ffs_data_closed(struct ffs_data *ffs)
1715 {
1716 	ENTER();
1717 
1718 	if (atomic_dec_and_test(&ffs->opened)) {
1719 		if (ffs->no_disconnect) {
1720 			ffs->state = FFS_DEACTIVATED;
1721 			if (ffs->epfiles) {
1722 				ffs_epfiles_destroy(ffs->epfiles,
1723 						   ffs->eps_count);
1724 				ffs->epfiles = NULL;
1725 			}
1726 			if (ffs->setup_state == FFS_SETUP_PENDING)
1727 				__ffs_ep0_stall(ffs);
1728 		} else {
1729 			ffs->state = FFS_CLOSING;
1730 			ffs_data_reset(ffs);
1731 		}
1732 	}
1733 	if (atomic_read(&ffs->opened) < 0) {
1734 		ffs->state = FFS_CLOSING;
1735 		ffs_data_reset(ffs);
1736 	}
1737 
1738 	ffs_data_put(ffs);
1739 }
1740 
1741 static struct ffs_data *ffs_data_new(const char *dev_name)
1742 {
1743 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1744 	if (unlikely(!ffs))
1745 		return NULL;
1746 
1747 	ENTER();
1748 
1749 	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1750 	if (!ffs->io_completion_wq) {
1751 		kfree(ffs);
1752 		return NULL;
1753 	}
1754 
1755 	refcount_set(&ffs->ref, 1);
1756 	atomic_set(&ffs->opened, 0);
1757 	ffs->state = FFS_READ_DESCRIPTORS;
1758 	mutex_init(&ffs->mutex);
1759 	spin_lock_init(&ffs->eps_lock);
1760 	init_waitqueue_head(&ffs->ev.waitq);
1761 	init_waitqueue_head(&ffs->wait);
1762 	init_completion(&ffs->ep0req_completion);
1763 
1764 	/* XXX REVISIT need to update it in some places, or do we? */
1765 	ffs->ev.can_stall = 1;
1766 
1767 	return ffs;
1768 }
1769 
1770 static void ffs_data_clear(struct ffs_data *ffs)
1771 {
1772 	ENTER();
1773 
1774 	ffs_closed(ffs);
1775 
1776 	BUG_ON(ffs->gadget);
1777 
1778 	if (ffs->epfiles)
1779 		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1780 
1781 	if (ffs->ffs_eventfd)
1782 		eventfd_ctx_put(ffs->ffs_eventfd);
1783 
1784 	kfree(ffs->raw_descs_data);
1785 	kfree(ffs->raw_strings);
1786 	kfree(ffs->stringtabs);
1787 }
1788 
1789 static void ffs_data_reset(struct ffs_data *ffs)
1790 {
1791 	ENTER();
1792 
1793 	ffs_data_clear(ffs);
1794 
1795 	ffs->epfiles = NULL;
1796 	ffs->raw_descs_data = NULL;
1797 	ffs->raw_descs = NULL;
1798 	ffs->raw_strings = NULL;
1799 	ffs->stringtabs = NULL;
1800 
1801 	ffs->raw_descs_length = 0;
1802 	ffs->fs_descs_count = 0;
1803 	ffs->hs_descs_count = 0;
1804 	ffs->ss_descs_count = 0;
1805 
1806 	ffs->strings_count = 0;
1807 	ffs->interfaces_count = 0;
1808 	ffs->eps_count = 0;
1809 
1810 	ffs->ev.count = 0;
1811 
1812 	ffs->state = FFS_READ_DESCRIPTORS;
1813 	ffs->setup_state = FFS_NO_SETUP;
1814 	ffs->flags = 0;
1815 }
1816 
1817 
1818 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1819 {
1820 	struct usb_gadget_strings **lang;
1821 	int first_id;
1822 
1823 	ENTER();
1824 
1825 	if (WARN_ON(ffs->state != FFS_ACTIVE
1826 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1827 		return -EBADFD;
1828 
1829 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1830 	if (unlikely(first_id < 0))
1831 		return first_id;
1832 
1833 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1834 	if (unlikely(!ffs->ep0req))
1835 		return -ENOMEM;
1836 	ffs->ep0req->complete = ffs_ep0_complete;
1837 	ffs->ep0req->context = ffs;
1838 
1839 	lang = ffs->stringtabs;
1840 	if (lang) {
1841 		for (; *lang; ++lang) {
1842 			struct usb_string *str = (*lang)->strings;
1843 			int id = first_id;
1844 			for (; str->s; ++id, ++str)
1845 				str->id = id;
1846 		}
1847 	}
1848 
1849 	ffs->gadget = cdev->gadget;
1850 	ffs_data_get(ffs);
1851 	return 0;
1852 }
1853 
1854 static void functionfs_unbind(struct ffs_data *ffs)
1855 {
1856 	ENTER();
1857 
1858 	if (!WARN_ON(!ffs->gadget)) {
1859 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1860 		ffs->ep0req = NULL;
1861 		ffs->gadget = NULL;
1862 		clear_bit(FFS_FL_BOUND, &ffs->flags);
1863 		ffs_data_put(ffs);
1864 	}
1865 }
1866 
1867 static int ffs_epfiles_create(struct ffs_data *ffs)
1868 {
1869 	struct ffs_epfile *epfile, *epfiles;
1870 	unsigned i, count;
1871 
1872 	ENTER();
1873 
1874 	count = ffs->eps_count;
1875 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1876 	if (!epfiles)
1877 		return -ENOMEM;
1878 
1879 	epfile = epfiles;
1880 	for (i = 1; i <= count; ++i, ++epfile) {
1881 		epfile->ffs = ffs;
1882 		mutex_init(&epfile->mutex);
1883 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1884 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1885 		else
1886 			sprintf(epfile->name, "ep%u", i);
1887 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1888 						 epfile,
1889 						 &ffs_epfile_operations);
1890 		if (unlikely(!epfile->dentry)) {
1891 			ffs_epfiles_destroy(epfiles, i - 1);
1892 			return -ENOMEM;
1893 		}
1894 	}
1895 
1896 	ffs->epfiles = epfiles;
1897 	return 0;
1898 }
1899 
1900 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1901 {
1902 	struct ffs_epfile *epfile = epfiles;
1903 
1904 	ENTER();
1905 
1906 	for (; count; --count, ++epfile) {
1907 		BUG_ON(mutex_is_locked(&epfile->mutex));
1908 		if (epfile->dentry) {
1909 			d_delete(epfile->dentry);
1910 			dput(epfile->dentry);
1911 			epfile->dentry = NULL;
1912 		}
1913 	}
1914 
1915 	kfree(epfiles);
1916 }
1917 
1918 static void ffs_func_eps_disable(struct ffs_function *func)
1919 {
1920 	struct ffs_ep *ep         = func->eps;
1921 	struct ffs_epfile *epfile = func->ffs->epfiles;
1922 	unsigned count            = func->ffs->eps_count;
1923 	unsigned long flags;
1924 
1925 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1926 	while (count--) {
1927 		/* pending requests get nuked */
1928 		if (likely(ep->ep))
1929 			usb_ep_disable(ep->ep);
1930 		++ep;
1931 
1932 		if (epfile) {
1933 			epfile->ep = NULL;
1934 			__ffs_epfile_read_buffer_free(epfile);
1935 			++epfile;
1936 		}
1937 	}
1938 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1939 }
1940 
1941 static int ffs_func_eps_enable(struct ffs_function *func)
1942 {
1943 	struct ffs_data *ffs      = func->ffs;
1944 	struct ffs_ep *ep         = func->eps;
1945 	struct ffs_epfile *epfile = ffs->epfiles;
1946 	unsigned count            = ffs->eps_count;
1947 	unsigned long flags;
1948 	int ret = 0;
1949 
1950 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1951 	while(count--) {
1952 		ep->ep->driver_data = ep;
1953 
1954 		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
1955 		if (ret) {
1956 			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
1957 					__func__, ep->ep->name, ret);
1958 			break;
1959 		}
1960 
1961 		ret = usb_ep_enable(ep->ep);
1962 		if (likely(!ret)) {
1963 			epfile->ep = ep;
1964 			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
1965 			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1966 		} else {
1967 			break;
1968 		}
1969 
1970 		++ep;
1971 		++epfile;
1972 	}
1973 
1974 	wake_up_interruptible(&ffs->wait);
1975 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1976 
1977 	return ret;
1978 }
1979 
1980 
1981 /* Parsing and building descriptors and strings *****************************/
1982 
1983 /*
1984  * This validates if data pointed by data is a valid USB descriptor as
1985  * well as record how many interfaces, endpoints and strings are
1986  * required by given configuration.  Returns address after the
1987  * descriptor or NULL if data is invalid.
1988  */
1989 
1990 enum ffs_entity_type {
1991 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1992 };
1993 
1994 enum ffs_os_desc_type {
1995 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1996 };
1997 
1998 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1999 				   u8 *valuep,
2000 				   struct usb_descriptor_header *desc,
2001 				   void *priv);
2002 
2003 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2004 				    struct usb_os_desc_header *h, void *data,
2005 				    unsigned len, void *priv);
2006 
2007 static int __must_check ffs_do_single_desc(char *data, unsigned len,
2008 					   ffs_entity_callback entity,
2009 					   void *priv, int *current_class)
2010 {
2011 	struct usb_descriptor_header *_ds = (void *)data;
2012 	u8 length;
2013 	int ret;
2014 
2015 	ENTER();
2016 
2017 	/* At least two bytes are required: length and type */
2018 	if (len < 2) {
2019 		pr_vdebug("descriptor too short\n");
2020 		return -EINVAL;
2021 	}
2022 
2023 	/* If we have at least as many bytes as the descriptor takes? */
2024 	length = _ds->bLength;
2025 	if (len < length) {
2026 		pr_vdebug("descriptor longer then available data\n");
2027 		return -EINVAL;
2028 	}
2029 
2030 #define __entity_check_INTERFACE(val)  1
2031 #define __entity_check_STRING(val)     (val)
2032 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
2033 #define __entity(type, val) do {					\
2034 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
2035 		if (unlikely(!__entity_check_ ##type(val))) {		\
2036 			pr_vdebug("invalid entity's value\n");		\
2037 			return -EINVAL;					\
2038 		}							\
2039 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
2040 		if (unlikely(ret < 0)) {				\
2041 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
2042 				 (val), ret);				\
2043 			return ret;					\
2044 		}							\
2045 	} while (0)
2046 
2047 	/* Parse descriptor depending on type. */
2048 	switch (_ds->bDescriptorType) {
2049 	case USB_DT_DEVICE:
2050 	case USB_DT_CONFIG:
2051 	case USB_DT_STRING:
2052 	case USB_DT_DEVICE_QUALIFIER:
2053 		/* function can't have any of those */
2054 		pr_vdebug("descriptor reserved for gadget: %d\n",
2055 		      _ds->bDescriptorType);
2056 		return -EINVAL;
2057 
2058 	case USB_DT_INTERFACE: {
2059 		struct usb_interface_descriptor *ds = (void *)_ds;
2060 		pr_vdebug("interface descriptor\n");
2061 		if (length != sizeof *ds)
2062 			goto inv_length;
2063 
2064 		__entity(INTERFACE, ds->bInterfaceNumber);
2065 		if (ds->iInterface)
2066 			__entity(STRING, ds->iInterface);
2067 		*current_class = ds->bInterfaceClass;
2068 	}
2069 		break;
2070 
2071 	case USB_DT_ENDPOINT: {
2072 		struct usb_endpoint_descriptor *ds = (void *)_ds;
2073 		pr_vdebug("endpoint descriptor\n");
2074 		if (length != USB_DT_ENDPOINT_SIZE &&
2075 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
2076 			goto inv_length;
2077 		__entity(ENDPOINT, ds->bEndpointAddress);
2078 	}
2079 		break;
2080 
2081 	case USB_TYPE_CLASS | 0x01:
2082                 if (*current_class == USB_INTERFACE_CLASS_HID) {
2083 			pr_vdebug("hid descriptor\n");
2084 			if (length != sizeof(struct hid_descriptor))
2085 				goto inv_length;
2086 			break;
2087 		} else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2088 			pr_vdebug("ccid descriptor\n");
2089 			if (length != sizeof(struct ccid_descriptor))
2090 				goto inv_length;
2091 			break;
2092 		} else {
2093 			pr_vdebug("unknown descriptor: %d for class %d\n",
2094 			      _ds->bDescriptorType, *current_class);
2095 			return -EINVAL;
2096 		}
2097 
2098 	case USB_DT_OTG:
2099 		if (length != sizeof(struct usb_otg_descriptor))
2100 			goto inv_length;
2101 		break;
2102 
2103 	case USB_DT_INTERFACE_ASSOCIATION: {
2104 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2105 		pr_vdebug("interface association descriptor\n");
2106 		if (length != sizeof *ds)
2107 			goto inv_length;
2108 		if (ds->iFunction)
2109 			__entity(STRING, ds->iFunction);
2110 	}
2111 		break;
2112 
2113 	case USB_DT_SS_ENDPOINT_COMP:
2114 		pr_vdebug("EP SS companion descriptor\n");
2115 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2116 			goto inv_length;
2117 		break;
2118 
2119 	case USB_DT_OTHER_SPEED_CONFIG:
2120 	case USB_DT_INTERFACE_POWER:
2121 	case USB_DT_DEBUG:
2122 	case USB_DT_SECURITY:
2123 	case USB_DT_CS_RADIO_CONTROL:
2124 		/* TODO */
2125 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2126 		return -EINVAL;
2127 
2128 	default:
2129 		/* We should never be here */
2130 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2131 		return -EINVAL;
2132 
2133 inv_length:
2134 		pr_vdebug("invalid length: %d (descriptor %d)\n",
2135 			  _ds->bLength, _ds->bDescriptorType);
2136 		return -EINVAL;
2137 	}
2138 
2139 #undef __entity
2140 #undef __entity_check_DESCRIPTOR
2141 #undef __entity_check_INTERFACE
2142 #undef __entity_check_STRING
2143 #undef __entity_check_ENDPOINT
2144 
2145 	return length;
2146 }
2147 
2148 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2149 				     ffs_entity_callback entity, void *priv)
2150 {
2151 	const unsigned _len = len;
2152 	unsigned long num = 0;
2153 	int current_class = -1;
2154 
2155 	ENTER();
2156 
2157 	for (;;) {
2158 		int ret;
2159 
2160 		if (num == count)
2161 			data = NULL;
2162 
2163 		/* Record "descriptor" entity */
2164 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2165 		if (unlikely(ret < 0)) {
2166 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2167 				 num, ret);
2168 			return ret;
2169 		}
2170 
2171 		if (!data)
2172 			return _len - len;
2173 
2174 		ret = ffs_do_single_desc(data, len, entity, priv,
2175 			&current_class);
2176 		if (unlikely(ret < 0)) {
2177 			pr_debug("%s returns %d\n", __func__, ret);
2178 			return ret;
2179 		}
2180 
2181 		len -= ret;
2182 		data += ret;
2183 		++num;
2184 	}
2185 }
2186 
2187 static int __ffs_data_do_entity(enum ffs_entity_type type,
2188 				u8 *valuep, struct usb_descriptor_header *desc,
2189 				void *priv)
2190 {
2191 	struct ffs_desc_helper *helper = priv;
2192 	struct usb_endpoint_descriptor *d;
2193 
2194 	ENTER();
2195 
2196 	switch (type) {
2197 	case FFS_DESCRIPTOR:
2198 		break;
2199 
2200 	case FFS_INTERFACE:
2201 		/*
2202 		 * Interfaces are indexed from zero so if we
2203 		 * encountered interface "n" then there are at least
2204 		 * "n+1" interfaces.
2205 		 */
2206 		if (*valuep >= helper->interfaces_count)
2207 			helper->interfaces_count = *valuep + 1;
2208 		break;
2209 
2210 	case FFS_STRING:
2211 		/*
2212 		 * Strings are indexed from 1 (0 is reserved
2213 		 * for languages list)
2214 		 */
2215 		if (*valuep > helper->ffs->strings_count)
2216 			helper->ffs->strings_count = *valuep;
2217 		break;
2218 
2219 	case FFS_ENDPOINT:
2220 		d = (void *)desc;
2221 		helper->eps_count++;
2222 		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2223 			return -EINVAL;
2224 		/* Check if descriptors for any speed were already parsed */
2225 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2226 			helper->ffs->eps_addrmap[helper->eps_count] =
2227 				d->bEndpointAddress;
2228 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2229 				d->bEndpointAddress)
2230 			return -EINVAL;
2231 		break;
2232 	}
2233 
2234 	return 0;
2235 }
2236 
2237 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2238 				   struct usb_os_desc_header *desc)
2239 {
2240 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2241 	u16 w_index = le16_to_cpu(desc->wIndex);
2242 
2243 	if (bcd_version != 1) {
2244 		pr_vdebug("unsupported os descriptors version: %d",
2245 			  bcd_version);
2246 		return -EINVAL;
2247 	}
2248 	switch (w_index) {
2249 	case 0x4:
2250 		*next_type = FFS_OS_DESC_EXT_COMPAT;
2251 		break;
2252 	case 0x5:
2253 		*next_type = FFS_OS_DESC_EXT_PROP;
2254 		break;
2255 	default:
2256 		pr_vdebug("unsupported os descriptor type: %d", w_index);
2257 		return -EINVAL;
2258 	}
2259 
2260 	return sizeof(*desc);
2261 }
2262 
2263 /*
2264  * Process all extended compatibility/extended property descriptors
2265  * of a feature descriptor
2266  */
2267 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2268 					      enum ffs_os_desc_type type,
2269 					      u16 feature_count,
2270 					      ffs_os_desc_callback entity,
2271 					      void *priv,
2272 					      struct usb_os_desc_header *h)
2273 {
2274 	int ret;
2275 	const unsigned _len = len;
2276 
2277 	ENTER();
2278 
2279 	/* loop over all ext compat/ext prop descriptors */
2280 	while (feature_count--) {
2281 		ret = entity(type, h, data, len, priv);
2282 		if (unlikely(ret < 0)) {
2283 			pr_debug("bad OS descriptor, type: %d\n", type);
2284 			return ret;
2285 		}
2286 		data += ret;
2287 		len -= ret;
2288 	}
2289 	return _len - len;
2290 }
2291 
2292 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2293 static int __must_check ffs_do_os_descs(unsigned count,
2294 					char *data, unsigned len,
2295 					ffs_os_desc_callback entity, void *priv)
2296 {
2297 	const unsigned _len = len;
2298 	unsigned long num = 0;
2299 
2300 	ENTER();
2301 
2302 	for (num = 0; num < count; ++num) {
2303 		int ret;
2304 		enum ffs_os_desc_type type;
2305 		u16 feature_count;
2306 		struct usb_os_desc_header *desc = (void *)data;
2307 
2308 		if (len < sizeof(*desc))
2309 			return -EINVAL;
2310 
2311 		/*
2312 		 * Record "descriptor" entity.
2313 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2314 		 * Move the data pointer to the beginning of extended
2315 		 * compatibilities proper or extended properties proper
2316 		 * portions of the data
2317 		 */
2318 		if (le32_to_cpu(desc->dwLength) > len)
2319 			return -EINVAL;
2320 
2321 		ret = __ffs_do_os_desc_header(&type, desc);
2322 		if (unlikely(ret < 0)) {
2323 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2324 				 num, ret);
2325 			return ret;
2326 		}
2327 		/*
2328 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2329 		 */
2330 		feature_count = le16_to_cpu(desc->wCount);
2331 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2332 		    (feature_count > 255 || desc->Reserved))
2333 				return -EINVAL;
2334 		len -= ret;
2335 		data += ret;
2336 
2337 		/*
2338 		 * Process all function/property descriptors
2339 		 * of this Feature Descriptor
2340 		 */
2341 		ret = ffs_do_single_os_desc(data, len, type,
2342 					    feature_count, entity, priv, desc);
2343 		if (unlikely(ret < 0)) {
2344 			pr_debug("%s returns %d\n", __func__, ret);
2345 			return ret;
2346 		}
2347 
2348 		len -= ret;
2349 		data += ret;
2350 	}
2351 	return _len - len;
2352 }
2353 
2354 /**
2355  * Validate contents of the buffer from userspace related to OS descriptors.
2356  */
2357 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2358 				 struct usb_os_desc_header *h, void *data,
2359 				 unsigned len, void *priv)
2360 {
2361 	struct ffs_data *ffs = priv;
2362 	u8 length;
2363 
2364 	ENTER();
2365 
2366 	switch (type) {
2367 	case FFS_OS_DESC_EXT_COMPAT: {
2368 		struct usb_ext_compat_desc *d = data;
2369 		int i;
2370 
2371 		if (len < sizeof(*d) ||
2372 		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2373 			return -EINVAL;
2374 		if (d->Reserved1 != 1) {
2375 			/*
2376 			 * According to the spec, Reserved1 must be set to 1
2377 			 * but older kernels incorrectly rejected non-zero
2378 			 * values.  We fix it here to avoid returning EINVAL
2379 			 * in response to values we used to accept.
2380 			 */
2381 			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2382 			d->Reserved1 = 1;
2383 		}
2384 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2385 			if (d->Reserved2[i])
2386 				return -EINVAL;
2387 
2388 		length = sizeof(struct usb_ext_compat_desc);
2389 	}
2390 		break;
2391 	case FFS_OS_DESC_EXT_PROP: {
2392 		struct usb_ext_prop_desc *d = data;
2393 		u32 type, pdl;
2394 		u16 pnl;
2395 
2396 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2397 			return -EINVAL;
2398 		length = le32_to_cpu(d->dwSize);
2399 		if (len < length)
2400 			return -EINVAL;
2401 		type = le32_to_cpu(d->dwPropertyDataType);
2402 		if (type < USB_EXT_PROP_UNICODE ||
2403 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2404 			pr_vdebug("unsupported os descriptor property type: %d",
2405 				  type);
2406 			return -EINVAL;
2407 		}
2408 		pnl = le16_to_cpu(d->wPropertyNameLength);
2409 		if (length < 14 + pnl) {
2410 			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2411 				  length, pnl, type);
2412 			return -EINVAL;
2413 		}
2414 		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2415 		if (length != 14 + pnl + pdl) {
2416 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2417 				  length, pnl, pdl, type);
2418 			return -EINVAL;
2419 		}
2420 		++ffs->ms_os_descs_ext_prop_count;
2421 		/* property name reported to the host as "WCHAR"s */
2422 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2423 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2424 	}
2425 		break;
2426 	default:
2427 		pr_vdebug("unknown descriptor: %d\n", type);
2428 		return -EINVAL;
2429 	}
2430 	return length;
2431 }
2432 
2433 static int __ffs_data_got_descs(struct ffs_data *ffs,
2434 				char *const _data, size_t len)
2435 {
2436 	char *data = _data, *raw_descs;
2437 	unsigned os_descs_count = 0, counts[3], flags;
2438 	int ret = -EINVAL, i;
2439 	struct ffs_desc_helper helper;
2440 
2441 	ENTER();
2442 
2443 	if (get_unaligned_le32(data + 4) != len)
2444 		goto error;
2445 
2446 	switch (get_unaligned_le32(data)) {
2447 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2448 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2449 		data += 8;
2450 		len  -= 8;
2451 		break;
2452 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2453 		flags = get_unaligned_le32(data + 8);
2454 		ffs->user_flags = flags;
2455 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2456 			      FUNCTIONFS_HAS_HS_DESC |
2457 			      FUNCTIONFS_HAS_SS_DESC |
2458 			      FUNCTIONFS_HAS_MS_OS_DESC |
2459 			      FUNCTIONFS_VIRTUAL_ADDR |
2460 			      FUNCTIONFS_EVENTFD |
2461 			      FUNCTIONFS_ALL_CTRL_RECIP |
2462 			      FUNCTIONFS_CONFIG0_SETUP)) {
2463 			ret = -ENOSYS;
2464 			goto error;
2465 		}
2466 		data += 12;
2467 		len  -= 12;
2468 		break;
2469 	default:
2470 		goto error;
2471 	}
2472 
2473 	if (flags & FUNCTIONFS_EVENTFD) {
2474 		if (len < 4)
2475 			goto error;
2476 		ffs->ffs_eventfd =
2477 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2478 		if (IS_ERR(ffs->ffs_eventfd)) {
2479 			ret = PTR_ERR(ffs->ffs_eventfd);
2480 			ffs->ffs_eventfd = NULL;
2481 			goto error;
2482 		}
2483 		data += 4;
2484 		len  -= 4;
2485 	}
2486 
2487 	/* Read fs_count, hs_count and ss_count (if present) */
2488 	for (i = 0; i < 3; ++i) {
2489 		if (!(flags & (1 << i))) {
2490 			counts[i] = 0;
2491 		} else if (len < 4) {
2492 			goto error;
2493 		} else {
2494 			counts[i] = get_unaligned_le32(data);
2495 			data += 4;
2496 			len  -= 4;
2497 		}
2498 	}
2499 	if (flags & (1 << i)) {
2500 		if (len < 4) {
2501 			goto error;
2502 		}
2503 		os_descs_count = get_unaligned_le32(data);
2504 		data += 4;
2505 		len -= 4;
2506 	};
2507 
2508 	/* Read descriptors */
2509 	raw_descs = data;
2510 	helper.ffs = ffs;
2511 	for (i = 0; i < 3; ++i) {
2512 		if (!counts[i])
2513 			continue;
2514 		helper.interfaces_count = 0;
2515 		helper.eps_count = 0;
2516 		ret = ffs_do_descs(counts[i], data, len,
2517 				   __ffs_data_do_entity, &helper);
2518 		if (ret < 0)
2519 			goto error;
2520 		if (!ffs->eps_count && !ffs->interfaces_count) {
2521 			ffs->eps_count = helper.eps_count;
2522 			ffs->interfaces_count = helper.interfaces_count;
2523 		} else {
2524 			if (ffs->eps_count != helper.eps_count) {
2525 				ret = -EINVAL;
2526 				goto error;
2527 			}
2528 			if (ffs->interfaces_count != helper.interfaces_count) {
2529 				ret = -EINVAL;
2530 				goto error;
2531 			}
2532 		}
2533 		data += ret;
2534 		len  -= ret;
2535 	}
2536 	if (os_descs_count) {
2537 		ret = ffs_do_os_descs(os_descs_count, data, len,
2538 				      __ffs_data_do_os_desc, ffs);
2539 		if (ret < 0)
2540 			goto error;
2541 		data += ret;
2542 		len -= ret;
2543 	}
2544 
2545 	if (raw_descs == data || len) {
2546 		ret = -EINVAL;
2547 		goto error;
2548 	}
2549 
2550 	ffs->raw_descs_data	= _data;
2551 	ffs->raw_descs		= raw_descs;
2552 	ffs->raw_descs_length	= data - raw_descs;
2553 	ffs->fs_descs_count	= counts[0];
2554 	ffs->hs_descs_count	= counts[1];
2555 	ffs->ss_descs_count	= counts[2];
2556 	ffs->ms_os_descs_count	= os_descs_count;
2557 
2558 	return 0;
2559 
2560 error:
2561 	kfree(_data);
2562 	return ret;
2563 }
2564 
2565 static int __ffs_data_got_strings(struct ffs_data *ffs,
2566 				  char *const _data, size_t len)
2567 {
2568 	u32 str_count, needed_count, lang_count;
2569 	struct usb_gadget_strings **stringtabs, *t;
2570 	const char *data = _data;
2571 	struct usb_string *s;
2572 
2573 	ENTER();
2574 
2575 	if (unlikely(len < 16 ||
2576 		     get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2577 		     get_unaligned_le32(data + 4) != len))
2578 		goto error;
2579 	str_count  = get_unaligned_le32(data + 8);
2580 	lang_count = get_unaligned_le32(data + 12);
2581 
2582 	/* if one is zero the other must be zero */
2583 	if (unlikely(!str_count != !lang_count))
2584 		goto error;
2585 
2586 	/* Do we have at least as many strings as descriptors need? */
2587 	needed_count = ffs->strings_count;
2588 	if (unlikely(str_count < needed_count))
2589 		goto error;
2590 
2591 	/*
2592 	 * If we don't need any strings just return and free all
2593 	 * memory.
2594 	 */
2595 	if (!needed_count) {
2596 		kfree(_data);
2597 		return 0;
2598 	}
2599 
2600 	/* Allocate everything in one chunk so there's less maintenance. */
2601 	{
2602 		unsigned i = 0;
2603 		vla_group(d);
2604 		vla_item(d, struct usb_gadget_strings *, stringtabs,
2605 			lang_count + 1);
2606 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2607 		vla_item(d, struct usb_string, strings,
2608 			lang_count*(needed_count+1));
2609 
2610 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2611 
2612 		if (unlikely(!vlabuf)) {
2613 			kfree(_data);
2614 			return -ENOMEM;
2615 		}
2616 
2617 		/* Initialize the VLA pointers */
2618 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2619 		t = vla_ptr(vlabuf, d, stringtab);
2620 		i = lang_count;
2621 		do {
2622 			*stringtabs++ = t++;
2623 		} while (--i);
2624 		*stringtabs = NULL;
2625 
2626 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2627 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2628 		t = vla_ptr(vlabuf, d, stringtab);
2629 		s = vla_ptr(vlabuf, d, strings);
2630 	}
2631 
2632 	/* For each language */
2633 	data += 16;
2634 	len -= 16;
2635 
2636 	do { /* lang_count > 0 so we can use do-while */
2637 		unsigned needed = needed_count;
2638 
2639 		if (unlikely(len < 3))
2640 			goto error_free;
2641 		t->language = get_unaligned_le16(data);
2642 		t->strings  = s;
2643 		++t;
2644 
2645 		data += 2;
2646 		len -= 2;
2647 
2648 		/* For each string */
2649 		do { /* str_count > 0 so we can use do-while */
2650 			size_t length = strnlen(data, len);
2651 
2652 			if (unlikely(length == len))
2653 				goto error_free;
2654 
2655 			/*
2656 			 * User may provide more strings then we need,
2657 			 * if that's the case we simply ignore the
2658 			 * rest
2659 			 */
2660 			if (likely(needed)) {
2661 				/*
2662 				 * s->id will be set while adding
2663 				 * function to configuration so for
2664 				 * now just leave garbage here.
2665 				 */
2666 				s->s = data;
2667 				--needed;
2668 				++s;
2669 			}
2670 
2671 			data += length + 1;
2672 			len -= length + 1;
2673 		} while (--str_count);
2674 
2675 		s->id = 0;   /* terminator */
2676 		s->s = NULL;
2677 		++s;
2678 
2679 	} while (--lang_count);
2680 
2681 	/* Some garbage left? */
2682 	if (unlikely(len))
2683 		goto error_free;
2684 
2685 	/* Done! */
2686 	ffs->stringtabs = stringtabs;
2687 	ffs->raw_strings = _data;
2688 
2689 	return 0;
2690 
2691 error_free:
2692 	kfree(stringtabs);
2693 error:
2694 	kfree(_data);
2695 	return -EINVAL;
2696 }
2697 
2698 
2699 /* Events handling and management *******************************************/
2700 
2701 static void __ffs_event_add(struct ffs_data *ffs,
2702 			    enum usb_functionfs_event_type type)
2703 {
2704 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2705 	int neg = 0;
2706 
2707 	/*
2708 	 * Abort any unhandled setup
2709 	 *
2710 	 * We do not need to worry about some cmpxchg() changing value
2711 	 * of ffs->setup_state without holding the lock because when
2712 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2713 	 * the source does nothing.
2714 	 */
2715 	if (ffs->setup_state == FFS_SETUP_PENDING)
2716 		ffs->setup_state = FFS_SETUP_CANCELLED;
2717 
2718 	/*
2719 	 * Logic of this function guarantees that there are at most four pending
2720 	 * evens on ffs->ev.types queue.  This is important because the queue
2721 	 * has space for four elements only and __ffs_ep0_read_events function
2722 	 * depends on that limit as well.  If more event types are added, those
2723 	 * limits have to be revisited or guaranteed to still hold.
2724 	 */
2725 	switch (type) {
2726 	case FUNCTIONFS_RESUME:
2727 		rem_type2 = FUNCTIONFS_SUSPEND;
2728 		/* FALL THROUGH */
2729 	case FUNCTIONFS_SUSPEND:
2730 	case FUNCTIONFS_SETUP:
2731 		rem_type1 = type;
2732 		/* Discard all similar events */
2733 		break;
2734 
2735 	case FUNCTIONFS_BIND:
2736 	case FUNCTIONFS_UNBIND:
2737 	case FUNCTIONFS_DISABLE:
2738 	case FUNCTIONFS_ENABLE:
2739 		/* Discard everything other then power management. */
2740 		rem_type1 = FUNCTIONFS_SUSPEND;
2741 		rem_type2 = FUNCTIONFS_RESUME;
2742 		neg = 1;
2743 		break;
2744 
2745 	default:
2746 		WARN(1, "%d: unknown event, this should not happen\n", type);
2747 		return;
2748 	}
2749 
2750 	{
2751 		u8 *ev  = ffs->ev.types, *out = ev;
2752 		unsigned n = ffs->ev.count;
2753 		for (; n; --n, ++ev)
2754 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2755 				*out++ = *ev;
2756 			else
2757 				pr_vdebug("purging event %d\n", *ev);
2758 		ffs->ev.count = out - ffs->ev.types;
2759 	}
2760 
2761 	pr_vdebug("adding event %d\n", type);
2762 	ffs->ev.types[ffs->ev.count++] = type;
2763 	wake_up_locked(&ffs->ev.waitq);
2764 	if (ffs->ffs_eventfd)
2765 		eventfd_signal(ffs->ffs_eventfd, 1);
2766 }
2767 
2768 static void ffs_event_add(struct ffs_data *ffs,
2769 			  enum usb_functionfs_event_type type)
2770 {
2771 	unsigned long flags;
2772 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2773 	__ffs_event_add(ffs, type);
2774 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2775 }
2776 
2777 /* Bind/unbind USB function hooks *******************************************/
2778 
2779 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2780 {
2781 	int i;
2782 
2783 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2784 		if (ffs->eps_addrmap[i] == endpoint_address)
2785 			return i;
2786 	return -ENOENT;
2787 }
2788 
2789 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2790 				    struct usb_descriptor_header *desc,
2791 				    void *priv)
2792 {
2793 	struct usb_endpoint_descriptor *ds = (void *)desc;
2794 	struct ffs_function *func = priv;
2795 	struct ffs_ep *ffs_ep;
2796 	unsigned ep_desc_id;
2797 	int idx;
2798 	static const char *speed_names[] = { "full", "high", "super" };
2799 
2800 	if (type != FFS_DESCRIPTOR)
2801 		return 0;
2802 
2803 	/*
2804 	 * If ss_descriptors is not NULL, we are reading super speed
2805 	 * descriptors; if hs_descriptors is not NULL, we are reading high
2806 	 * speed descriptors; otherwise, we are reading full speed
2807 	 * descriptors.
2808 	 */
2809 	if (func->function.ss_descriptors) {
2810 		ep_desc_id = 2;
2811 		func->function.ss_descriptors[(long)valuep] = desc;
2812 	} else if (func->function.hs_descriptors) {
2813 		ep_desc_id = 1;
2814 		func->function.hs_descriptors[(long)valuep] = desc;
2815 	} else {
2816 		ep_desc_id = 0;
2817 		func->function.fs_descriptors[(long)valuep]    = desc;
2818 	}
2819 
2820 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2821 		return 0;
2822 
2823 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2824 	if (idx < 0)
2825 		return idx;
2826 
2827 	ffs_ep = func->eps + idx;
2828 
2829 	if (unlikely(ffs_ep->descs[ep_desc_id])) {
2830 		pr_err("two %sspeed descriptors for EP %d\n",
2831 			  speed_names[ep_desc_id],
2832 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2833 		return -EINVAL;
2834 	}
2835 	ffs_ep->descs[ep_desc_id] = ds;
2836 
2837 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2838 	if (ffs_ep->ep) {
2839 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2840 		if (!ds->wMaxPacketSize)
2841 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2842 	} else {
2843 		struct usb_request *req;
2844 		struct usb_ep *ep;
2845 		u8 bEndpointAddress;
2846 		u16 wMaxPacketSize;
2847 
2848 		/*
2849 		 * We back up bEndpointAddress because autoconfig overwrites
2850 		 * it with physical endpoint address.
2851 		 */
2852 		bEndpointAddress = ds->bEndpointAddress;
2853 		/*
2854 		 * We back up wMaxPacketSize because autoconfig treats
2855 		 * endpoint descriptors as if they were full speed.
2856 		 */
2857 		wMaxPacketSize = ds->wMaxPacketSize;
2858 		pr_vdebug("autoconfig\n");
2859 		ep = usb_ep_autoconfig(func->gadget, ds);
2860 		if (unlikely(!ep))
2861 			return -ENOTSUPP;
2862 		ep->driver_data = func->eps + idx;
2863 
2864 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2865 		if (unlikely(!req))
2866 			return -ENOMEM;
2867 
2868 		ffs_ep->ep  = ep;
2869 		ffs_ep->req = req;
2870 		func->eps_revmap[ds->bEndpointAddress &
2871 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2872 		/*
2873 		 * If we use virtual address mapping, we restore
2874 		 * original bEndpointAddress value.
2875 		 */
2876 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2877 			ds->bEndpointAddress = bEndpointAddress;
2878 		/*
2879 		 * Restore wMaxPacketSize which was potentially
2880 		 * overwritten by autoconfig.
2881 		 */
2882 		ds->wMaxPacketSize = wMaxPacketSize;
2883 	}
2884 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2885 
2886 	return 0;
2887 }
2888 
2889 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2890 				   struct usb_descriptor_header *desc,
2891 				   void *priv)
2892 {
2893 	struct ffs_function *func = priv;
2894 	unsigned idx;
2895 	u8 newValue;
2896 
2897 	switch (type) {
2898 	default:
2899 	case FFS_DESCRIPTOR:
2900 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2901 		return 0;
2902 
2903 	case FFS_INTERFACE:
2904 		idx = *valuep;
2905 		if (func->interfaces_nums[idx] < 0) {
2906 			int id = usb_interface_id(func->conf, &func->function);
2907 			if (unlikely(id < 0))
2908 				return id;
2909 			func->interfaces_nums[idx] = id;
2910 		}
2911 		newValue = func->interfaces_nums[idx];
2912 		break;
2913 
2914 	case FFS_STRING:
2915 		/* String' IDs are allocated when fsf_data is bound to cdev */
2916 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2917 		break;
2918 
2919 	case FFS_ENDPOINT:
2920 		/*
2921 		 * USB_DT_ENDPOINT are handled in
2922 		 * __ffs_func_bind_do_descs().
2923 		 */
2924 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2925 			return 0;
2926 
2927 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2928 		if (unlikely(!func->eps[idx].ep))
2929 			return -EINVAL;
2930 
2931 		{
2932 			struct usb_endpoint_descriptor **descs;
2933 			descs = func->eps[idx].descs;
2934 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2935 		}
2936 		break;
2937 	}
2938 
2939 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2940 	*valuep = newValue;
2941 	return 0;
2942 }
2943 
2944 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2945 				      struct usb_os_desc_header *h, void *data,
2946 				      unsigned len, void *priv)
2947 {
2948 	struct ffs_function *func = priv;
2949 	u8 length = 0;
2950 
2951 	switch (type) {
2952 	case FFS_OS_DESC_EXT_COMPAT: {
2953 		struct usb_ext_compat_desc *desc = data;
2954 		struct usb_os_desc_table *t;
2955 
2956 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2957 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2958 		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2959 		       ARRAY_SIZE(desc->CompatibleID) +
2960 		       ARRAY_SIZE(desc->SubCompatibleID));
2961 		length = sizeof(*desc);
2962 	}
2963 		break;
2964 	case FFS_OS_DESC_EXT_PROP: {
2965 		struct usb_ext_prop_desc *desc = data;
2966 		struct usb_os_desc_table *t;
2967 		struct usb_os_desc_ext_prop *ext_prop;
2968 		char *ext_prop_name;
2969 		char *ext_prop_data;
2970 
2971 		t = &func->function.os_desc_table[h->interface];
2972 		t->if_id = func->interfaces_nums[h->interface];
2973 
2974 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2975 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2976 
2977 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2978 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2979 		ext_prop->data_len = le32_to_cpu(*(__le32 *)
2980 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2981 		length = ext_prop->name_len + ext_prop->data_len + 14;
2982 
2983 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2984 		func->ffs->ms_os_descs_ext_prop_name_avail +=
2985 			ext_prop->name_len;
2986 
2987 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2988 		func->ffs->ms_os_descs_ext_prop_data_avail +=
2989 			ext_prop->data_len;
2990 		memcpy(ext_prop_data,
2991 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2992 		       ext_prop->data_len);
2993 		/* unicode data reported to the host as "WCHAR"s */
2994 		switch (ext_prop->type) {
2995 		case USB_EXT_PROP_UNICODE:
2996 		case USB_EXT_PROP_UNICODE_ENV:
2997 		case USB_EXT_PROP_UNICODE_LINK:
2998 		case USB_EXT_PROP_UNICODE_MULTI:
2999 			ext_prop->data_len *= 2;
3000 			break;
3001 		}
3002 		ext_prop->data = ext_prop_data;
3003 
3004 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3005 		       ext_prop->name_len);
3006 		/* property name reported to the host as "WCHAR"s */
3007 		ext_prop->name_len *= 2;
3008 		ext_prop->name = ext_prop_name;
3009 
3010 		t->os_desc->ext_prop_len +=
3011 			ext_prop->name_len + ext_prop->data_len + 14;
3012 		++t->os_desc->ext_prop_count;
3013 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3014 	}
3015 		break;
3016 	default:
3017 		pr_vdebug("unknown descriptor: %d\n", type);
3018 	}
3019 
3020 	return length;
3021 }
3022 
3023 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3024 						struct usb_configuration *c)
3025 {
3026 	struct ffs_function *func = ffs_func_from_usb(f);
3027 	struct f_fs_opts *ffs_opts =
3028 		container_of(f->fi, struct f_fs_opts, func_inst);
3029 	int ret;
3030 
3031 	ENTER();
3032 
3033 	/*
3034 	 * Legacy gadget triggers binding in functionfs_ready_callback,
3035 	 * which already uses locking; taking the same lock here would
3036 	 * cause a deadlock.
3037 	 *
3038 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
3039 	 */
3040 	if (!ffs_opts->no_configfs)
3041 		ffs_dev_lock();
3042 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3043 	func->ffs = ffs_opts->dev->ffs_data;
3044 	if (!ffs_opts->no_configfs)
3045 		ffs_dev_unlock();
3046 	if (ret)
3047 		return ERR_PTR(ret);
3048 
3049 	func->conf = c;
3050 	func->gadget = c->cdev->gadget;
3051 
3052 	/*
3053 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3054 	 * configurations are bound in sequence with list_for_each_entry,
3055 	 * in each configuration its functions are bound in sequence
3056 	 * with list_for_each_entry, so we assume no race condition
3057 	 * with regard to ffs_opts->bound access
3058 	 */
3059 	if (!ffs_opts->refcnt) {
3060 		ret = functionfs_bind(func->ffs, c->cdev);
3061 		if (ret)
3062 			return ERR_PTR(ret);
3063 	}
3064 	ffs_opts->refcnt++;
3065 	func->function.strings = func->ffs->stringtabs;
3066 
3067 	return ffs_opts;
3068 }
3069 
3070 static int _ffs_func_bind(struct usb_configuration *c,
3071 			  struct usb_function *f)
3072 {
3073 	struct ffs_function *func = ffs_func_from_usb(f);
3074 	struct ffs_data *ffs = func->ffs;
3075 
3076 	const int full = !!func->ffs->fs_descs_count;
3077 	const int high = !!func->ffs->hs_descs_count;
3078 	const int super = !!func->ffs->ss_descs_count;
3079 
3080 	int fs_len, hs_len, ss_len, ret, i;
3081 	struct ffs_ep *eps_ptr;
3082 
3083 	/* Make it a single chunk, less management later on */
3084 	vla_group(d);
3085 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3086 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3087 		full ? ffs->fs_descs_count + 1 : 0);
3088 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3089 		high ? ffs->hs_descs_count + 1 : 0);
3090 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3091 		super ? ffs->ss_descs_count + 1 : 0);
3092 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3093 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3094 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3095 	vla_item_with_sz(d, char[16], ext_compat,
3096 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3097 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
3098 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3099 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3100 			 ffs->ms_os_descs_ext_prop_count);
3101 	vla_item_with_sz(d, char, ext_prop_name,
3102 			 ffs->ms_os_descs_ext_prop_name_len);
3103 	vla_item_with_sz(d, char, ext_prop_data,
3104 			 ffs->ms_os_descs_ext_prop_data_len);
3105 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3106 	char *vlabuf;
3107 
3108 	ENTER();
3109 
3110 	/* Has descriptors only for speeds gadget does not support */
3111 	if (unlikely(!(full | high | super)))
3112 		return -ENOTSUPP;
3113 
3114 	/* Allocate a single chunk, less management later on */
3115 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3116 	if (unlikely(!vlabuf))
3117 		return -ENOMEM;
3118 
3119 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3120 	ffs->ms_os_descs_ext_prop_name_avail =
3121 		vla_ptr(vlabuf, d, ext_prop_name);
3122 	ffs->ms_os_descs_ext_prop_data_avail =
3123 		vla_ptr(vlabuf, d, ext_prop_data);
3124 
3125 	/* Copy descriptors  */
3126 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3127 	       ffs->raw_descs_length);
3128 
3129 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3130 	eps_ptr = vla_ptr(vlabuf, d, eps);
3131 	for (i = 0; i < ffs->eps_count; i++)
3132 		eps_ptr[i].num = -1;
3133 
3134 	/* Save pointers
3135 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3136 	*/
3137 	func->eps             = vla_ptr(vlabuf, d, eps);
3138 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3139 
3140 	/*
3141 	 * Go through all the endpoint descriptors and allocate
3142 	 * endpoints first, so that later we can rewrite the endpoint
3143 	 * numbers without worrying that it may be described later on.
3144 	 */
3145 	if (likely(full)) {
3146 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3147 		fs_len = ffs_do_descs(ffs->fs_descs_count,
3148 				      vla_ptr(vlabuf, d, raw_descs),
3149 				      d_raw_descs__sz,
3150 				      __ffs_func_bind_do_descs, func);
3151 		if (unlikely(fs_len < 0)) {
3152 			ret = fs_len;
3153 			goto error;
3154 		}
3155 	} else {
3156 		fs_len = 0;
3157 	}
3158 
3159 	if (likely(high)) {
3160 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3161 		hs_len = ffs_do_descs(ffs->hs_descs_count,
3162 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3163 				      d_raw_descs__sz - fs_len,
3164 				      __ffs_func_bind_do_descs, func);
3165 		if (unlikely(hs_len < 0)) {
3166 			ret = hs_len;
3167 			goto error;
3168 		}
3169 	} else {
3170 		hs_len = 0;
3171 	}
3172 
3173 	if (likely(super)) {
3174 		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3175 		ss_len = ffs_do_descs(ffs->ss_descs_count,
3176 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3177 				d_raw_descs__sz - fs_len - hs_len,
3178 				__ffs_func_bind_do_descs, func);
3179 		if (unlikely(ss_len < 0)) {
3180 			ret = ss_len;
3181 			goto error;
3182 		}
3183 	} else {
3184 		ss_len = 0;
3185 	}
3186 
3187 	/*
3188 	 * Now handle interface numbers allocation and interface and
3189 	 * endpoint numbers rewriting.  We can do that in one go
3190 	 * now.
3191 	 */
3192 	ret = ffs_do_descs(ffs->fs_descs_count +
3193 			   (high ? ffs->hs_descs_count : 0) +
3194 			   (super ? ffs->ss_descs_count : 0),
3195 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3196 			   __ffs_func_bind_do_nums, func);
3197 	if (unlikely(ret < 0))
3198 		goto error;
3199 
3200 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3201 	if (c->cdev->use_os_string) {
3202 		for (i = 0; i < ffs->interfaces_count; ++i) {
3203 			struct usb_os_desc *desc;
3204 
3205 			desc = func->function.os_desc_table[i].os_desc =
3206 				vla_ptr(vlabuf, d, os_desc) +
3207 				i * sizeof(struct usb_os_desc);
3208 			desc->ext_compat_id =
3209 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3210 			INIT_LIST_HEAD(&desc->ext_prop);
3211 		}
3212 		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3213 				      vla_ptr(vlabuf, d, raw_descs) +
3214 				      fs_len + hs_len + ss_len,
3215 				      d_raw_descs__sz - fs_len - hs_len -
3216 				      ss_len,
3217 				      __ffs_func_bind_do_os_desc, func);
3218 		if (unlikely(ret < 0))
3219 			goto error;
3220 	}
3221 	func->function.os_desc_n =
3222 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3223 
3224 	/* And we're done */
3225 	ffs_event_add(ffs, FUNCTIONFS_BIND);
3226 	return 0;
3227 
3228 error:
3229 	/* XXX Do we need to release all claimed endpoints here? */
3230 	return ret;
3231 }
3232 
3233 static int ffs_func_bind(struct usb_configuration *c,
3234 			 struct usb_function *f)
3235 {
3236 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3237 	struct ffs_function *func = ffs_func_from_usb(f);
3238 	int ret;
3239 
3240 	if (IS_ERR(ffs_opts))
3241 		return PTR_ERR(ffs_opts);
3242 
3243 	ret = _ffs_func_bind(c, f);
3244 	if (ret && !--ffs_opts->refcnt)
3245 		functionfs_unbind(func->ffs);
3246 
3247 	return ret;
3248 }
3249 
3250 
3251 /* Other USB function hooks *************************************************/
3252 
3253 static void ffs_reset_work(struct work_struct *work)
3254 {
3255 	struct ffs_data *ffs = container_of(work,
3256 		struct ffs_data, reset_work);
3257 	ffs_data_reset(ffs);
3258 }
3259 
3260 static int ffs_func_set_alt(struct usb_function *f,
3261 			    unsigned interface, unsigned alt)
3262 {
3263 	struct ffs_function *func = ffs_func_from_usb(f);
3264 	struct ffs_data *ffs = func->ffs;
3265 	int ret = 0, intf;
3266 
3267 	if (alt != (unsigned)-1) {
3268 		intf = ffs_func_revmap_intf(func, interface);
3269 		if (unlikely(intf < 0))
3270 			return intf;
3271 	}
3272 
3273 	if (ffs->func)
3274 		ffs_func_eps_disable(ffs->func);
3275 
3276 	if (ffs->state == FFS_DEACTIVATED) {
3277 		ffs->state = FFS_CLOSING;
3278 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3279 		schedule_work(&ffs->reset_work);
3280 		return -ENODEV;
3281 	}
3282 
3283 	if (ffs->state != FFS_ACTIVE)
3284 		return -ENODEV;
3285 
3286 	if (alt == (unsigned)-1) {
3287 		ffs->func = NULL;
3288 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3289 		return 0;
3290 	}
3291 
3292 	ffs->func = func;
3293 	ret = ffs_func_eps_enable(func);
3294 	if (likely(ret >= 0))
3295 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3296 	return ret;
3297 }
3298 
3299 static void ffs_func_disable(struct usb_function *f)
3300 {
3301 	ffs_func_set_alt(f, 0, (unsigned)-1);
3302 }
3303 
3304 static int ffs_func_setup(struct usb_function *f,
3305 			  const struct usb_ctrlrequest *creq)
3306 {
3307 	struct ffs_function *func = ffs_func_from_usb(f);
3308 	struct ffs_data *ffs = func->ffs;
3309 	unsigned long flags;
3310 	int ret;
3311 
3312 	ENTER();
3313 
3314 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3315 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3316 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3317 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3318 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3319 
3320 	/*
3321 	 * Most requests directed to interface go through here
3322 	 * (notable exceptions are set/get interface) so we need to
3323 	 * handle them.  All other either handled by composite or
3324 	 * passed to usb_configuration->setup() (if one is set).  No
3325 	 * matter, we will handle requests directed to endpoint here
3326 	 * as well (as it's straightforward).  Other request recipient
3327 	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3328 	 * is being used.
3329 	 */
3330 	if (ffs->state != FFS_ACTIVE)
3331 		return -ENODEV;
3332 
3333 	switch (creq->bRequestType & USB_RECIP_MASK) {
3334 	case USB_RECIP_INTERFACE:
3335 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3336 		if (unlikely(ret < 0))
3337 			return ret;
3338 		break;
3339 
3340 	case USB_RECIP_ENDPOINT:
3341 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3342 		if (unlikely(ret < 0))
3343 			return ret;
3344 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3345 			ret = func->ffs->eps_addrmap[ret];
3346 		break;
3347 
3348 	default:
3349 		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3350 			ret = le16_to_cpu(creq->wIndex);
3351 		else
3352 			return -EOPNOTSUPP;
3353 	}
3354 
3355 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3356 	ffs->ev.setup = *creq;
3357 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3358 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3359 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3360 
3361 	return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3362 }
3363 
3364 static bool ffs_func_req_match(struct usb_function *f,
3365 			       const struct usb_ctrlrequest *creq,
3366 			       bool config0)
3367 {
3368 	struct ffs_function *func = ffs_func_from_usb(f);
3369 
3370 	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3371 		return false;
3372 
3373 	switch (creq->bRequestType & USB_RECIP_MASK) {
3374 	case USB_RECIP_INTERFACE:
3375 		return (ffs_func_revmap_intf(func,
3376 					     le16_to_cpu(creq->wIndex)) >= 0);
3377 	case USB_RECIP_ENDPOINT:
3378 		return (ffs_func_revmap_ep(func,
3379 					   le16_to_cpu(creq->wIndex)) >= 0);
3380 	default:
3381 		return (bool) (func->ffs->user_flags &
3382 			       FUNCTIONFS_ALL_CTRL_RECIP);
3383 	}
3384 }
3385 
3386 static void ffs_func_suspend(struct usb_function *f)
3387 {
3388 	ENTER();
3389 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3390 }
3391 
3392 static void ffs_func_resume(struct usb_function *f)
3393 {
3394 	ENTER();
3395 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3396 }
3397 
3398 
3399 /* Endpoint and interface numbers reverse mapping ***************************/
3400 
3401 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3402 {
3403 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3404 	return num ? num : -EDOM;
3405 }
3406 
3407 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3408 {
3409 	short *nums = func->interfaces_nums;
3410 	unsigned count = func->ffs->interfaces_count;
3411 
3412 	for (; count; --count, ++nums) {
3413 		if (*nums >= 0 && *nums == intf)
3414 			return nums - func->interfaces_nums;
3415 	}
3416 
3417 	return -EDOM;
3418 }
3419 
3420 
3421 /* Devices management *******************************************************/
3422 
3423 static LIST_HEAD(ffs_devices);
3424 
3425 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3426 {
3427 	struct ffs_dev *dev;
3428 
3429 	if (!name)
3430 		return NULL;
3431 
3432 	list_for_each_entry(dev, &ffs_devices, entry) {
3433 		if (strcmp(dev->name, name) == 0)
3434 			return dev;
3435 	}
3436 
3437 	return NULL;
3438 }
3439 
3440 /*
3441  * ffs_lock must be taken by the caller of this function
3442  */
3443 static struct ffs_dev *_ffs_get_single_dev(void)
3444 {
3445 	struct ffs_dev *dev;
3446 
3447 	if (list_is_singular(&ffs_devices)) {
3448 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3449 		if (dev->single)
3450 			return dev;
3451 	}
3452 
3453 	return NULL;
3454 }
3455 
3456 /*
3457  * ffs_lock must be taken by the caller of this function
3458  */
3459 static struct ffs_dev *_ffs_find_dev(const char *name)
3460 {
3461 	struct ffs_dev *dev;
3462 
3463 	dev = _ffs_get_single_dev();
3464 	if (dev)
3465 		return dev;
3466 
3467 	return _ffs_do_find_dev(name);
3468 }
3469 
3470 /* Configfs support *********************************************************/
3471 
3472 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3473 {
3474 	return container_of(to_config_group(item), struct f_fs_opts,
3475 			    func_inst.group);
3476 }
3477 
3478 static void ffs_attr_release(struct config_item *item)
3479 {
3480 	struct f_fs_opts *opts = to_ffs_opts(item);
3481 
3482 	usb_put_function_instance(&opts->func_inst);
3483 }
3484 
3485 static struct configfs_item_operations ffs_item_ops = {
3486 	.release	= ffs_attr_release,
3487 };
3488 
3489 static const struct config_item_type ffs_func_type = {
3490 	.ct_item_ops	= &ffs_item_ops,
3491 	.ct_owner	= THIS_MODULE,
3492 };
3493 
3494 
3495 /* Function registration interface ******************************************/
3496 
3497 static void ffs_free_inst(struct usb_function_instance *f)
3498 {
3499 	struct f_fs_opts *opts;
3500 
3501 	opts = to_f_fs_opts(f);
3502 	ffs_dev_lock();
3503 	_ffs_free_dev(opts->dev);
3504 	ffs_dev_unlock();
3505 	kfree(opts);
3506 }
3507 
3508 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3509 {
3510 	if (strlen(name) >= sizeof_field(struct ffs_dev, name))
3511 		return -ENAMETOOLONG;
3512 	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3513 }
3514 
3515 static struct usb_function_instance *ffs_alloc_inst(void)
3516 {
3517 	struct f_fs_opts *opts;
3518 	struct ffs_dev *dev;
3519 
3520 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3521 	if (!opts)
3522 		return ERR_PTR(-ENOMEM);
3523 
3524 	opts->func_inst.set_inst_name = ffs_set_inst_name;
3525 	opts->func_inst.free_func_inst = ffs_free_inst;
3526 	ffs_dev_lock();
3527 	dev = _ffs_alloc_dev();
3528 	ffs_dev_unlock();
3529 	if (IS_ERR(dev)) {
3530 		kfree(opts);
3531 		return ERR_CAST(dev);
3532 	}
3533 	opts->dev = dev;
3534 	dev->opts = opts;
3535 
3536 	config_group_init_type_name(&opts->func_inst.group, "",
3537 				    &ffs_func_type);
3538 	return &opts->func_inst;
3539 }
3540 
3541 static void ffs_free(struct usb_function *f)
3542 {
3543 	kfree(ffs_func_from_usb(f));
3544 }
3545 
3546 static void ffs_func_unbind(struct usb_configuration *c,
3547 			    struct usb_function *f)
3548 {
3549 	struct ffs_function *func = ffs_func_from_usb(f);
3550 	struct ffs_data *ffs = func->ffs;
3551 	struct f_fs_opts *opts =
3552 		container_of(f->fi, struct f_fs_opts, func_inst);
3553 	struct ffs_ep *ep = func->eps;
3554 	unsigned count = ffs->eps_count;
3555 	unsigned long flags;
3556 
3557 	ENTER();
3558 	if (ffs->func == func) {
3559 		ffs_func_eps_disable(func);
3560 		ffs->func = NULL;
3561 	}
3562 
3563 	if (!--opts->refcnt)
3564 		functionfs_unbind(ffs);
3565 
3566 	/* cleanup after autoconfig */
3567 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3568 	while (count--) {
3569 		if (ep->ep && ep->req)
3570 			usb_ep_free_request(ep->ep, ep->req);
3571 		ep->req = NULL;
3572 		++ep;
3573 	}
3574 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3575 	kfree(func->eps);
3576 	func->eps = NULL;
3577 	/*
3578 	 * eps, descriptors and interfaces_nums are allocated in the
3579 	 * same chunk so only one free is required.
3580 	 */
3581 	func->function.fs_descriptors = NULL;
3582 	func->function.hs_descriptors = NULL;
3583 	func->function.ss_descriptors = NULL;
3584 	func->interfaces_nums = NULL;
3585 
3586 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3587 }
3588 
3589 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3590 {
3591 	struct ffs_function *func;
3592 
3593 	ENTER();
3594 
3595 	func = kzalloc(sizeof(*func), GFP_KERNEL);
3596 	if (unlikely(!func))
3597 		return ERR_PTR(-ENOMEM);
3598 
3599 	func->function.name    = "Function FS Gadget";
3600 
3601 	func->function.bind    = ffs_func_bind;
3602 	func->function.unbind  = ffs_func_unbind;
3603 	func->function.set_alt = ffs_func_set_alt;
3604 	func->function.disable = ffs_func_disable;
3605 	func->function.setup   = ffs_func_setup;
3606 	func->function.req_match = ffs_func_req_match;
3607 	func->function.suspend = ffs_func_suspend;
3608 	func->function.resume  = ffs_func_resume;
3609 	func->function.free_func = ffs_free;
3610 
3611 	return &func->function;
3612 }
3613 
3614 /*
3615  * ffs_lock must be taken by the caller of this function
3616  */
3617 static struct ffs_dev *_ffs_alloc_dev(void)
3618 {
3619 	struct ffs_dev *dev;
3620 	int ret;
3621 
3622 	if (_ffs_get_single_dev())
3623 			return ERR_PTR(-EBUSY);
3624 
3625 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3626 	if (!dev)
3627 		return ERR_PTR(-ENOMEM);
3628 
3629 	if (list_empty(&ffs_devices)) {
3630 		ret = functionfs_init();
3631 		if (ret) {
3632 			kfree(dev);
3633 			return ERR_PTR(ret);
3634 		}
3635 	}
3636 
3637 	list_add(&dev->entry, &ffs_devices);
3638 
3639 	return dev;
3640 }
3641 
3642 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3643 {
3644 	struct ffs_dev *existing;
3645 	int ret = 0;
3646 
3647 	ffs_dev_lock();
3648 
3649 	existing = _ffs_do_find_dev(name);
3650 	if (!existing)
3651 		strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3652 	else if (existing != dev)
3653 		ret = -EBUSY;
3654 
3655 	ffs_dev_unlock();
3656 
3657 	return ret;
3658 }
3659 EXPORT_SYMBOL_GPL(ffs_name_dev);
3660 
3661 int ffs_single_dev(struct ffs_dev *dev)
3662 {
3663 	int ret;
3664 
3665 	ret = 0;
3666 	ffs_dev_lock();
3667 
3668 	if (!list_is_singular(&ffs_devices))
3669 		ret = -EBUSY;
3670 	else
3671 		dev->single = true;
3672 
3673 	ffs_dev_unlock();
3674 	return ret;
3675 }
3676 EXPORT_SYMBOL_GPL(ffs_single_dev);
3677 
3678 /*
3679  * ffs_lock must be taken by the caller of this function
3680  */
3681 static void _ffs_free_dev(struct ffs_dev *dev)
3682 {
3683 	list_del(&dev->entry);
3684 
3685 	/* Clear the private_data pointer to stop incorrect dev access */
3686 	if (dev->ffs_data)
3687 		dev->ffs_data->private_data = NULL;
3688 
3689 	kfree(dev);
3690 	if (list_empty(&ffs_devices))
3691 		functionfs_cleanup();
3692 }
3693 
3694 static void *ffs_acquire_dev(const char *dev_name)
3695 {
3696 	struct ffs_dev *ffs_dev;
3697 
3698 	ENTER();
3699 	ffs_dev_lock();
3700 
3701 	ffs_dev = _ffs_find_dev(dev_name);
3702 	if (!ffs_dev)
3703 		ffs_dev = ERR_PTR(-ENOENT);
3704 	else if (ffs_dev->mounted)
3705 		ffs_dev = ERR_PTR(-EBUSY);
3706 	else if (ffs_dev->ffs_acquire_dev_callback &&
3707 	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3708 		ffs_dev = ERR_PTR(-ENOENT);
3709 	else
3710 		ffs_dev->mounted = true;
3711 
3712 	ffs_dev_unlock();
3713 	return ffs_dev;
3714 }
3715 
3716 static void ffs_release_dev(struct ffs_data *ffs_data)
3717 {
3718 	struct ffs_dev *ffs_dev;
3719 
3720 	ENTER();
3721 	ffs_dev_lock();
3722 
3723 	ffs_dev = ffs_data->private_data;
3724 	if (ffs_dev) {
3725 		ffs_dev->mounted = false;
3726 
3727 		if (ffs_dev->ffs_release_dev_callback)
3728 			ffs_dev->ffs_release_dev_callback(ffs_dev);
3729 	}
3730 
3731 	ffs_dev_unlock();
3732 }
3733 
3734 static int ffs_ready(struct ffs_data *ffs)
3735 {
3736 	struct ffs_dev *ffs_obj;
3737 	int ret = 0;
3738 
3739 	ENTER();
3740 	ffs_dev_lock();
3741 
3742 	ffs_obj = ffs->private_data;
3743 	if (!ffs_obj) {
3744 		ret = -EINVAL;
3745 		goto done;
3746 	}
3747 	if (WARN_ON(ffs_obj->desc_ready)) {
3748 		ret = -EBUSY;
3749 		goto done;
3750 	}
3751 
3752 	ffs_obj->desc_ready = true;
3753 	ffs_obj->ffs_data = ffs;
3754 
3755 	if (ffs_obj->ffs_ready_callback) {
3756 		ret = ffs_obj->ffs_ready_callback(ffs);
3757 		if (ret)
3758 			goto done;
3759 	}
3760 
3761 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3762 done:
3763 	ffs_dev_unlock();
3764 	return ret;
3765 }
3766 
3767 static void ffs_closed(struct ffs_data *ffs)
3768 {
3769 	struct ffs_dev *ffs_obj;
3770 	struct f_fs_opts *opts;
3771 	struct config_item *ci;
3772 
3773 	ENTER();
3774 	ffs_dev_lock();
3775 
3776 	ffs_obj = ffs->private_data;
3777 	if (!ffs_obj)
3778 		goto done;
3779 
3780 	ffs_obj->desc_ready = false;
3781 	ffs_obj->ffs_data = NULL;
3782 
3783 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3784 	    ffs_obj->ffs_closed_callback)
3785 		ffs_obj->ffs_closed_callback(ffs);
3786 
3787 	if (ffs_obj->opts)
3788 		opts = ffs_obj->opts;
3789 	else
3790 		goto done;
3791 
3792 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3793 	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3794 		goto done;
3795 
3796 	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3797 	ffs_dev_unlock();
3798 
3799 	if (test_bit(FFS_FL_BOUND, &ffs->flags))
3800 		unregister_gadget_item(ci);
3801 	return;
3802 done:
3803 	ffs_dev_unlock();
3804 }
3805 
3806 /* Misc helper functions ****************************************************/
3807 
3808 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3809 {
3810 	return nonblock
3811 		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3812 		: mutex_lock_interruptible(mutex);
3813 }
3814 
3815 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3816 {
3817 	char *data;
3818 
3819 	if (unlikely(!len))
3820 		return NULL;
3821 
3822 	data = kmalloc(len, GFP_KERNEL);
3823 	if (unlikely(!data))
3824 		return ERR_PTR(-ENOMEM);
3825 
3826 	if (unlikely(copy_from_user(data, buf, len))) {
3827 		kfree(data);
3828 		return ERR_PTR(-EFAULT);
3829 	}
3830 
3831 	pr_vdebug("Buffer from user space:\n");
3832 	ffs_dump_mem("", data, len);
3833 
3834 	return data;
3835 }
3836 
3837 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3838 MODULE_LICENSE("GPL");
3839 MODULE_AUTHOR("Michal Nazarewicz");
3840