1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * f_fs.c -- user mode file system API for USB composite function controllers 4 * 5 * Copyright (C) 2010 Samsung Electronics 6 * Author: Michal Nazarewicz <mina86@mina86.com> 7 * 8 * Based on inode.c (GadgetFS) which was: 9 * Copyright (C) 2003-2004 David Brownell 10 * Copyright (C) 2003 Agilent Technologies 11 */ 12 13 14 /* #define DEBUG */ 15 /* #define VERBOSE_DEBUG */ 16 17 #include <linux/blkdev.h> 18 #include <linux/pagemap.h> 19 #include <linux/export.h> 20 #include <linux/fs_parser.h> 21 #include <linux/hid.h> 22 #include <linux/mm.h> 23 #include <linux/module.h> 24 #include <linux/scatterlist.h> 25 #include <linux/sched/signal.h> 26 #include <linux/uio.h> 27 #include <linux/vmalloc.h> 28 #include <asm/unaligned.h> 29 30 #include <linux/usb/ccid.h> 31 #include <linux/usb/composite.h> 32 #include <linux/usb/functionfs.h> 33 34 #include <linux/aio.h> 35 #include <linux/mmu_context.h> 36 #include <linux/poll.h> 37 #include <linux/eventfd.h> 38 39 #include "u_fs.h" 40 #include "u_f.h" 41 #include "u_os_desc.h" 42 #include "configfs.h" 43 44 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ 45 46 /* Reference counter handling */ 47 static void ffs_data_get(struct ffs_data *ffs); 48 static void ffs_data_put(struct ffs_data *ffs); 49 /* Creates new ffs_data object. */ 50 static struct ffs_data *__must_check ffs_data_new(const char *dev_name) 51 __attribute__((malloc)); 52 53 /* Opened counter handling. */ 54 static void ffs_data_opened(struct ffs_data *ffs); 55 static void ffs_data_closed(struct ffs_data *ffs); 56 57 /* Called with ffs->mutex held; take over ownership of data. */ 58 static int __must_check 59 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); 60 static int __must_check 61 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); 62 63 64 /* The function structure ***************************************************/ 65 66 struct ffs_ep; 67 68 struct ffs_function { 69 struct usb_configuration *conf; 70 struct usb_gadget *gadget; 71 struct ffs_data *ffs; 72 73 struct ffs_ep *eps; 74 u8 eps_revmap[16]; 75 short *interfaces_nums; 76 77 struct usb_function function; 78 }; 79 80 81 static struct ffs_function *ffs_func_from_usb(struct usb_function *f) 82 { 83 return container_of(f, struct ffs_function, function); 84 } 85 86 87 static inline enum ffs_setup_state 88 ffs_setup_state_clear_cancelled(struct ffs_data *ffs) 89 { 90 return (enum ffs_setup_state) 91 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); 92 } 93 94 95 static void ffs_func_eps_disable(struct ffs_function *func); 96 static int __must_check ffs_func_eps_enable(struct ffs_function *func); 97 98 static int ffs_func_bind(struct usb_configuration *, 99 struct usb_function *); 100 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); 101 static void ffs_func_disable(struct usb_function *); 102 static int ffs_func_setup(struct usb_function *, 103 const struct usb_ctrlrequest *); 104 static bool ffs_func_req_match(struct usb_function *, 105 const struct usb_ctrlrequest *, 106 bool config0); 107 static void ffs_func_suspend(struct usb_function *); 108 static void ffs_func_resume(struct usb_function *); 109 110 111 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); 112 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); 113 114 115 /* The endpoints structures *************************************************/ 116 117 struct ffs_ep { 118 struct usb_ep *ep; /* P: ffs->eps_lock */ 119 struct usb_request *req; /* P: epfile->mutex */ 120 121 /* [0]: full speed, [1]: high speed, [2]: super speed */ 122 struct usb_endpoint_descriptor *descs[3]; 123 124 u8 num; 125 126 int status; /* P: epfile->mutex */ 127 }; 128 129 struct ffs_epfile { 130 /* Protects ep->ep and ep->req. */ 131 struct mutex mutex; 132 133 struct ffs_data *ffs; 134 struct ffs_ep *ep; /* P: ffs->eps_lock */ 135 136 struct dentry *dentry; 137 138 /* 139 * Buffer for holding data from partial reads which may happen since 140 * we’re rounding user read requests to a multiple of a max packet size. 141 * 142 * The pointer is initialised with NULL value and may be set by 143 * __ffs_epfile_read_data function to point to a temporary buffer. 144 * 145 * In normal operation, calls to __ffs_epfile_read_buffered will consume 146 * data from said buffer and eventually free it. Importantly, while the 147 * function is using the buffer, it sets the pointer to NULL. This is 148 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered 149 * can never run concurrently (they are synchronised by epfile->mutex) 150 * so the latter will not assign a new value to the pointer. 151 * 152 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is 153 * valid) and sets the pointer to READ_BUFFER_DROP value. This special 154 * value is crux of the synchronisation between ffs_func_eps_disable and 155 * __ffs_epfile_read_data. 156 * 157 * Once __ffs_epfile_read_data is about to finish it will try to set the 158 * pointer back to its old value (as described above), but seeing as the 159 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free 160 * the buffer. 161 * 162 * == State transitions == 163 * 164 * • ptr == NULL: (initial state) 165 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP 166 * ◦ __ffs_epfile_read_buffered: nop 167 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf 168 * ◦ reading finishes: n/a, not in ‘and reading’ state 169 * • ptr == DROP: 170 * ◦ __ffs_epfile_read_buffer_free: nop 171 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL 172 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop 173 * ◦ reading finishes: n/a, not in ‘and reading’ state 174 * • ptr == buf: 175 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP 176 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading 177 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered 178 * is always called first 179 * ◦ reading finishes: n/a, not in ‘and reading’ state 180 * • ptr == NULL and reading: 181 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading 182 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 183 * ◦ __ffs_epfile_read_data: n/a, mutex is held 184 * ◦ reading finishes and … 185 * … all data read: free buf, go to ptr == NULL 186 * … otherwise: go to ptr == buf and reading 187 * • ptr == DROP and reading: 188 * ◦ __ffs_epfile_read_buffer_free: nop 189 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 190 * ◦ __ffs_epfile_read_data: n/a, mutex is held 191 * ◦ reading finishes: free buf, go to ptr == DROP 192 */ 193 struct ffs_buffer *read_buffer; 194 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN)) 195 196 char name[5]; 197 198 unsigned char in; /* P: ffs->eps_lock */ 199 unsigned char isoc; /* P: ffs->eps_lock */ 200 201 unsigned char _pad; 202 }; 203 204 struct ffs_buffer { 205 size_t length; 206 char *data; 207 char storage[]; 208 }; 209 210 /* ffs_io_data structure ***************************************************/ 211 212 struct ffs_io_data { 213 bool aio; 214 bool read; 215 216 struct kiocb *kiocb; 217 struct iov_iter data; 218 const void *to_free; 219 char *buf; 220 221 struct mm_struct *mm; 222 struct work_struct work; 223 224 struct usb_ep *ep; 225 struct usb_request *req; 226 struct sg_table sgt; 227 bool use_sg; 228 229 struct ffs_data *ffs; 230 }; 231 232 struct ffs_desc_helper { 233 struct ffs_data *ffs; 234 unsigned interfaces_count; 235 unsigned eps_count; 236 }; 237 238 static int __must_check ffs_epfiles_create(struct ffs_data *ffs); 239 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count); 240 241 static struct dentry * 242 ffs_sb_create_file(struct super_block *sb, const char *name, void *data, 243 const struct file_operations *fops); 244 245 /* Devices management *******************************************************/ 246 247 DEFINE_MUTEX(ffs_lock); 248 EXPORT_SYMBOL_GPL(ffs_lock); 249 250 static struct ffs_dev *_ffs_find_dev(const char *name); 251 static struct ffs_dev *_ffs_alloc_dev(void); 252 static void _ffs_free_dev(struct ffs_dev *dev); 253 static void *ffs_acquire_dev(const char *dev_name); 254 static void ffs_release_dev(struct ffs_data *ffs_data); 255 static int ffs_ready(struct ffs_data *ffs); 256 static void ffs_closed(struct ffs_data *ffs); 257 258 /* Misc helper functions ****************************************************/ 259 260 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 261 __attribute__((warn_unused_result, nonnull)); 262 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 263 __attribute__((warn_unused_result, nonnull)); 264 265 266 /* Control file aka ep0 *****************************************************/ 267 268 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) 269 { 270 struct ffs_data *ffs = req->context; 271 272 complete(&ffs->ep0req_completion); 273 } 274 275 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) 276 __releases(&ffs->ev.waitq.lock) 277 { 278 struct usb_request *req = ffs->ep0req; 279 int ret; 280 281 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); 282 283 spin_unlock_irq(&ffs->ev.waitq.lock); 284 285 req->buf = data; 286 req->length = len; 287 288 /* 289 * UDC layer requires to provide a buffer even for ZLP, but should 290 * not use it at all. Let's provide some poisoned pointer to catch 291 * possible bug in the driver. 292 */ 293 if (req->buf == NULL) 294 req->buf = (void *)0xDEADBABE; 295 296 reinit_completion(&ffs->ep0req_completion); 297 298 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); 299 if (unlikely(ret < 0)) 300 return ret; 301 302 ret = wait_for_completion_interruptible(&ffs->ep0req_completion); 303 if (unlikely(ret)) { 304 usb_ep_dequeue(ffs->gadget->ep0, req); 305 return -EINTR; 306 } 307 308 ffs->setup_state = FFS_NO_SETUP; 309 return req->status ? req->status : req->actual; 310 } 311 312 static int __ffs_ep0_stall(struct ffs_data *ffs) 313 { 314 if (ffs->ev.can_stall) { 315 pr_vdebug("ep0 stall\n"); 316 usb_ep_set_halt(ffs->gadget->ep0); 317 ffs->setup_state = FFS_NO_SETUP; 318 return -EL2HLT; 319 } else { 320 pr_debug("bogus ep0 stall!\n"); 321 return -ESRCH; 322 } 323 } 324 325 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, 326 size_t len, loff_t *ptr) 327 { 328 struct ffs_data *ffs = file->private_data; 329 ssize_t ret; 330 char *data; 331 332 ENTER(); 333 334 /* Fast check if setup was canceled */ 335 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 336 return -EIDRM; 337 338 /* Acquire mutex */ 339 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 340 if (unlikely(ret < 0)) 341 return ret; 342 343 /* Check state */ 344 switch (ffs->state) { 345 case FFS_READ_DESCRIPTORS: 346 case FFS_READ_STRINGS: 347 /* Copy data */ 348 if (unlikely(len < 16)) { 349 ret = -EINVAL; 350 break; 351 } 352 353 data = ffs_prepare_buffer(buf, len); 354 if (IS_ERR(data)) { 355 ret = PTR_ERR(data); 356 break; 357 } 358 359 /* Handle data */ 360 if (ffs->state == FFS_READ_DESCRIPTORS) { 361 pr_info("read descriptors\n"); 362 ret = __ffs_data_got_descs(ffs, data, len); 363 if (unlikely(ret < 0)) 364 break; 365 366 ffs->state = FFS_READ_STRINGS; 367 ret = len; 368 } else { 369 pr_info("read strings\n"); 370 ret = __ffs_data_got_strings(ffs, data, len); 371 if (unlikely(ret < 0)) 372 break; 373 374 ret = ffs_epfiles_create(ffs); 375 if (unlikely(ret)) { 376 ffs->state = FFS_CLOSING; 377 break; 378 } 379 380 ffs->state = FFS_ACTIVE; 381 mutex_unlock(&ffs->mutex); 382 383 ret = ffs_ready(ffs); 384 if (unlikely(ret < 0)) { 385 ffs->state = FFS_CLOSING; 386 return ret; 387 } 388 389 return len; 390 } 391 break; 392 393 case FFS_ACTIVE: 394 data = NULL; 395 /* 396 * We're called from user space, we can use _irq 397 * rather then _irqsave 398 */ 399 spin_lock_irq(&ffs->ev.waitq.lock); 400 switch (ffs_setup_state_clear_cancelled(ffs)) { 401 case FFS_SETUP_CANCELLED: 402 ret = -EIDRM; 403 goto done_spin; 404 405 case FFS_NO_SETUP: 406 ret = -ESRCH; 407 goto done_spin; 408 409 case FFS_SETUP_PENDING: 410 break; 411 } 412 413 /* FFS_SETUP_PENDING */ 414 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { 415 spin_unlock_irq(&ffs->ev.waitq.lock); 416 ret = __ffs_ep0_stall(ffs); 417 break; 418 } 419 420 /* FFS_SETUP_PENDING and not stall */ 421 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 422 423 spin_unlock_irq(&ffs->ev.waitq.lock); 424 425 data = ffs_prepare_buffer(buf, len); 426 if (IS_ERR(data)) { 427 ret = PTR_ERR(data); 428 break; 429 } 430 431 spin_lock_irq(&ffs->ev.waitq.lock); 432 433 /* 434 * We are guaranteed to be still in FFS_ACTIVE state 435 * but the state of setup could have changed from 436 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need 437 * to check for that. If that happened we copied data 438 * from user space in vain but it's unlikely. 439 * 440 * For sure we are not in FFS_NO_SETUP since this is 441 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP 442 * transition can be performed and it's protected by 443 * mutex. 444 */ 445 if (ffs_setup_state_clear_cancelled(ffs) == 446 FFS_SETUP_CANCELLED) { 447 ret = -EIDRM; 448 done_spin: 449 spin_unlock_irq(&ffs->ev.waitq.lock); 450 } else { 451 /* unlocks spinlock */ 452 ret = __ffs_ep0_queue_wait(ffs, data, len); 453 } 454 kfree(data); 455 break; 456 457 default: 458 ret = -EBADFD; 459 break; 460 } 461 462 mutex_unlock(&ffs->mutex); 463 return ret; 464 } 465 466 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */ 467 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, 468 size_t n) 469 __releases(&ffs->ev.waitq.lock) 470 { 471 /* 472 * n cannot be bigger than ffs->ev.count, which cannot be bigger than 473 * size of ffs->ev.types array (which is four) so that's how much space 474 * we reserve. 475 */ 476 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)]; 477 const size_t size = n * sizeof *events; 478 unsigned i = 0; 479 480 memset(events, 0, size); 481 482 do { 483 events[i].type = ffs->ev.types[i]; 484 if (events[i].type == FUNCTIONFS_SETUP) { 485 events[i].u.setup = ffs->ev.setup; 486 ffs->setup_state = FFS_SETUP_PENDING; 487 } 488 } while (++i < n); 489 490 ffs->ev.count -= n; 491 if (ffs->ev.count) 492 memmove(ffs->ev.types, ffs->ev.types + n, 493 ffs->ev.count * sizeof *ffs->ev.types); 494 495 spin_unlock_irq(&ffs->ev.waitq.lock); 496 mutex_unlock(&ffs->mutex); 497 498 return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size; 499 } 500 501 static ssize_t ffs_ep0_read(struct file *file, char __user *buf, 502 size_t len, loff_t *ptr) 503 { 504 struct ffs_data *ffs = file->private_data; 505 char *data = NULL; 506 size_t n; 507 int ret; 508 509 ENTER(); 510 511 /* Fast check if setup was canceled */ 512 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 513 return -EIDRM; 514 515 /* Acquire mutex */ 516 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 517 if (unlikely(ret < 0)) 518 return ret; 519 520 /* Check state */ 521 if (ffs->state != FFS_ACTIVE) { 522 ret = -EBADFD; 523 goto done_mutex; 524 } 525 526 /* 527 * We're called from user space, we can use _irq rather then 528 * _irqsave 529 */ 530 spin_lock_irq(&ffs->ev.waitq.lock); 531 532 switch (ffs_setup_state_clear_cancelled(ffs)) { 533 case FFS_SETUP_CANCELLED: 534 ret = -EIDRM; 535 break; 536 537 case FFS_NO_SETUP: 538 n = len / sizeof(struct usb_functionfs_event); 539 if (unlikely(!n)) { 540 ret = -EINVAL; 541 break; 542 } 543 544 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { 545 ret = -EAGAIN; 546 break; 547 } 548 549 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, 550 ffs->ev.count)) { 551 ret = -EINTR; 552 break; 553 } 554 555 /* unlocks spinlock */ 556 return __ffs_ep0_read_events(ffs, buf, 557 min(n, (size_t)ffs->ev.count)); 558 559 case FFS_SETUP_PENDING: 560 if (ffs->ev.setup.bRequestType & USB_DIR_IN) { 561 spin_unlock_irq(&ffs->ev.waitq.lock); 562 ret = __ffs_ep0_stall(ffs); 563 goto done_mutex; 564 } 565 566 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 567 568 spin_unlock_irq(&ffs->ev.waitq.lock); 569 570 if (likely(len)) { 571 data = kmalloc(len, GFP_KERNEL); 572 if (unlikely(!data)) { 573 ret = -ENOMEM; 574 goto done_mutex; 575 } 576 } 577 578 spin_lock_irq(&ffs->ev.waitq.lock); 579 580 /* See ffs_ep0_write() */ 581 if (ffs_setup_state_clear_cancelled(ffs) == 582 FFS_SETUP_CANCELLED) { 583 ret = -EIDRM; 584 break; 585 } 586 587 /* unlocks spinlock */ 588 ret = __ffs_ep0_queue_wait(ffs, data, len); 589 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len))) 590 ret = -EFAULT; 591 goto done_mutex; 592 593 default: 594 ret = -EBADFD; 595 break; 596 } 597 598 spin_unlock_irq(&ffs->ev.waitq.lock); 599 done_mutex: 600 mutex_unlock(&ffs->mutex); 601 kfree(data); 602 return ret; 603 } 604 605 static int ffs_ep0_open(struct inode *inode, struct file *file) 606 { 607 struct ffs_data *ffs = inode->i_private; 608 609 ENTER(); 610 611 if (unlikely(ffs->state == FFS_CLOSING)) 612 return -EBUSY; 613 614 file->private_data = ffs; 615 ffs_data_opened(ffs); 616 617 return 0; 618 } 619 620 static int ffs_ep0_release(struct inode *inode, struct file *file) 621 { 622 struct ffs_data *ffs = file->private_data; 623 624 ENTER(); 625 626 ffs_data_closed(ffs); 627 628 return 0; 629 } 630 631 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) 632 { 633 struct ffs_data *ffs = file->private_data; 634 struct usb_gadget *gadget = ffs->gadget; 635 long ret; 636 637 ENTER(); 638 639 if (code == FUNCTIONFS_INTERFACE_REVMAP) { 640 struct ffs_function *func = ffs->func; 641 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; 642 } else if (gadget && gadget->ops->ioctl) { 643 ret = gadget->ops->ioctl(gadget, code, value); 644 } else { 645 ret = -ENOTTY; 646 } 647 648 return ret; 649 } 650 651 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait) 652 { 653 struct ffs_data *ffs = file->private_data; 654 __poll_t mask = EPOLLWRNORM; 655 int ret; 656 657 poll_wait(file, &ffs->ev.waitq, wait); 658 659 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 660 if (unlikely(ret < 0)) 661 return mask; 662 663 switch (ffs->state) { 664 case FFS_READ_DESCRIPTORS: 665 case FFS_READ_STRINGS: 666 mask |= EPOLLOUT; 667 break; 668 669 case FFS_ACTIVE: 670 switch (ffs->setup_state) { 671 case FFS_NO_SETUP: 672 if (ffs->ev.count) 673 mask |= EPOLLIN; 674 break; 675 676 case FFS_SETUP_PENDING: 677 case FFS_SETUP_CANCELLED: 678 mask |= (EPOLLIN | EPOLLOUT); 679 break; 680 } 681 case FFS_CLOSING: 682 break; 683 case FFS_DEACTIVATED: 684 break; 685 } 686 687 mutex_unlock(&ffs->mutex); 688 689 return mask; 690 } 691 692 static const struct file_operations ffs_ep0_operations = { 693 .llseek = no_llseek, 694 695 .open = ffs_ep0_open, 696 .write = ffs_ep0_write, 697 .read = ffs_ep0_read, 698 .release = ffs_ep0_release, 699 .unlocked_ioctl = ffs_ep0_ioctl, 700 .poll = ffs_ep0_poll, 701 }; 702 703 704 /* "Normal" endpoints operations ********************************************/ 705 706 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) 707 { 708 ENTER(); 709 if (likely(req->context)) { 710 struct ffs_ep *ep = _ep->driver_data; 711 ep->status = req->status ? req->status : req->actual; 712 complete(req->context); 713 } 714 } 715 716 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter) 717 { 718 ssize_t ret = copy_to_iter(data, data_len, iter); 719 if (likely(ret == data_len)) 720 return ret; 721 722 if (unlikely(iov_iter_count(iter))) 723 return -EFAULT; 724 725 /* 726 * Dear user space developer! 727 * 728 * TL;DR: To stop getting below error message in your kernel log, change 729 * user space code using functionfs to align read buffers to a max 730 * packet size. 731 * 732 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max 733 * packet size. When unaligned buffer is passed to functionfs, it 734 * internally uses a larger, aligned buffer so that such UDCs are happy. 735 * 736 * Unfortunately, this means that host may send more data than was 737 * requested in read(2) system call. f_fs doesn’t know what to do with 738 * that excess data so it simply drops it. 739 * 740 * Was the buffer aligned in the first place, no such problem would 741 * happen. 742 * 743 * Data may be dropped only in AIO reads. Synchronous reads are handled 744 * by splitting a request into multiple parts. This splitting may still 745 * be a problem though so it’s likely best to align the buffer 746 * regardless of it being AIO or not.. 747 * 748 * This only affects OUT endpoints, i.e. reading data with a read(2), 749 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not 750 * affected. 751 */ 752 pr_err("functionfs read size %d > requested size %zd, dropping excess data. " 753 "Align read buffer size to max packet size to avoid the problem.\n", 754 data_len, ret); 755 756 return ret; 757 } 758 759 /* 760 * allocate a virtually contiguous buffer and create a scatterlist describing it 761 * @sg_table - pointer to a place to be filled with sg_table contents 762 * @size - required buffer size 763 */ 764 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz) 765 { 766 struct page **pages; 767 void *vaddr, *ptr; 768 unsigned int n_pages; 769 int i; 770 771 vaddr = vmalloc(sz); 772 if (!vaddr) 773 return NULL; 774 775 n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT; 776 pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL); 777 if (!pages) { 778 vfree(vaddr); 779 780 return NULL; 781 } 782 for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE) 783 pages[i] = vmalloc_to_page(ptr); 784 785 if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) { 786 kvfree(pages); 787 vfree(vaddr); 788 789 return NULL; 790 } 791 kvfree(pages); 792 793 return vaddr; 794 } 795 796 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data, 797 size_t data_len) 798 { 799 if (io_data->use_sg) 800 return ffs_build_sg_list(&io_data->sgt, data_len); 801 802 return kmalloc(data_len, GFP_KERNEL); 803 } 804 805 static inline void ffs_free_buffer(struct ffs_io_data *io_data) 806 { 807 if (!io_data->buf) 808 return; 809 810 if (io_data->use_sg) { 811 sg_free_table(&io_data->sgt); 812 vfree(io_data->buf); 813 } else { 814 kfree(io_data->buf); 815 } 816 } 817 818 static void ffs_user_copy_worker(struct work_struct *work) 819 { 820 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 821 work); 822 int ret = io_data->req->status ? io_data->req->status : 823 io_data->req->actual; 824 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD; 825 826 if (io_data->read && ret > 0) { 827 mm_segment_t oldfs = get_fs(); 828 829 set_fs(USER_DS); 830 use_mm(io_data->mm); 831 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data); 832 unuse_mm(io_data->mm); 833 set_fs(oldfs); 834 } 835 836 io_data->kiocb->ki_complete(io_data->kiocb, ret, ret); 837 838 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd) 839 eventfd_signal(io_data->ffs->ffs_eventfd, 1); 840 841 usb_ep_free_request(io_data->ep, io_data->req); 842 843 if (io_data->read) 844 kfree(io_data->to_free); 845 ffs_free_buffer(io_data); 846 kfree(io_data); 847 } 848 849 static void ffs_epfile_async_io_complete(struct usb_ep *_ep, 850 struct usb_request *req) 851 { 852 struct ffs_io_data *io_data = req->context; 853 struct ffs_data *ffs = io_data->ffs; 854 855 ENTER(); 856 857 INIT_WORK(&io_data->work, ffs_user_copy_worker); 858 queue_work(ffs->io_completion_wq, &io_data->work); 859 } 860 861 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile) 862 { 863 /* 864 * See comment in struct ffs_epfile for full read_buffer pointer 865 * synchronisation story. 866 */ 867 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP); 868 if (buf && buf != READ_BUFFER_DROP) 869 kfree(buf); 870 } 871 872 /* Assumes epfile->mutex is held. */ 873 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile, 874 struct iov_iter *iter) 875 { 876 /* 877 * Null out epfile->read_buffer so ffs_func_eps_disable does not free 878 * the buffer while we are using it. See comment in struct ffs_epfile 879 * for full read_buffer pointer synchronisation story. 880 */ 881 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL); 882 ssize_t ret; 883 if (!buf || buf == READ_BUFFER_DROP) 884 return 0; 885 886 ret = copy_to_iter(buf->data, buf->length, iter); 887 if (buf->length == ret) { 888 kfree(buf); 889 return ret; 890 } 891 892 if (unlikely(iov_iter_count(iter))) { 893 ret = -EFAULT; 894 } else { 895 buf->length -= ret; 896 buf->data += ret; 897 } 898 899 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 900 kfree(buf); 901 902 return ret; 903 } 904 905 /* Assumes epfile->mutex is held. */ 906 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile, 907 void *data, int data_len, 908 struct iov_iter *iter) 909 { 910 struct ffs_buffer *buf; 911 912 ssize_t ret = copy_to_iter(data, data_len, iter); 913 if (likely(data_len == ret)) 914 return ret; 915 916 if (unlikely(iov_iter_count(iter))) 917 return -EFAULT; 918 919 /* See ffs_copy_to_iter for more context. */ 920 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.", 921 data_len, ret); 922 923 data_len -= ret; 924 buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL); 925 if (!buf) 926 return -ENOMEM; 927 buf->length = data_len; 928 buf->data = buf->storage; 929 memcpy(buf->storage, data + ret, data_len); 930 931 /* 932 * At this point read_buffer is NULL or READ_BUFFER_DROP (if 933 * ffs_func_eps_disable has been called in the meanwhile). See comment 934 * in struct ffs_epfile for full read_buffer pointer synchronisation 935 * story. 936 */ 937 if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf))) 938 kfree(buf); 939 940 return ret; 941 } 942 943 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) 944 { 945 struct ffs_epfile *epfile = file->private_data; 946 struct usb_request *req; 947 struct ffs_ep *ep; 948 char *data = NULL; 949 ssize_t ret, data_len = -EINVAL; 950 int halt; 951 952 /* Are we still active? */ 953 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 954 return -ENODEV; 955 956 /* Wait for endpoint to be enabled */ 957 ep = epfile->ep; 958 if (!ep) { 959 if (file->f_flags & O_NONBLOCK) 960 return -EAGAIN; 961 962 ret = wait_event_interruptible( 963 epfile->ffs->wait, (ep = epfile->ep)); 964 if (ret) 965 return -EINTR; 966 } 967 968 /* Do we halt? */ 969 halt = (!io_data->read == !epfile->in); 970 if (halt && epfile->isoc) 971 return -EINVAL; 972 973 /* We will be using request and read_buffer */ 974 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); 975 if (unlikely(ret)) 976 goto error; 977 978 /* Allocate & copy */ 979 if (!halt) { 980 struct usb_gadget *gadget; 981 982 /* 983 * Do we have buffered data from previous partial read? Check 984 * that for synchronous case only because we do not have 985 * facility to ‘wake up’ a pending asynchronous read and push 986 * buffered data to it which we would need to make things behave 987 * consistently. 988 */ 989 if (!io_data->aio && io_data->read) { 990 ret = __ffs_epfile_read_buffered(epfile, &io_data->data); 991 if (ret) 992 goto error_mutex; 993 } 994 995 /* 996 * if we _do_ wait above, the epfile->ffs->gadget might be NULL 997 * before the waiting completes, so do not assign to 'gadget' 998 * earlier 999 */ 1000 gadget = epfile->ffs->gadget; 1001 1002 spin_lock_irq(&epfile->ffs->eps_lock); 1003 /* In the meantime, endpoint got disabled or changed. */ 1004 if (epfile->ep != ep) { 1005 ret = -ESHUTDOWN; 1006 goto error_lock; 1007 } 1008 data_len = iov_iter_count(&io_data->data); 1009 /* 1010 * Controller may require buffer size to be aligned to 1011 * maxpacketsize of an out endpoint. 1012 */ 1013 if (io_data->read) 1014 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len); 1015 1016 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE; 1017 spin_unlock_irq(&epfile->ffs->eps_lock); 1018 1019 data = ffs_alloc_buffer(io_data, data_len); 1020 if (unlikely(!data)) { 1021 ret = -ENOMEM; 1022 goto error_mutex; 1023 } 1024 if (!io_data->read && 1025 !copy_from_iter_full(data, data_len, &io_data->data)) { 1026 ret = -EFAULT; 1027 goto error_mutex; 1028 } 1029 } 1030 1031 spin_lock_irq(&epfile->ffs->eps_lock); 1032 1033 if (epfile->ep != ep) { 1034 /* In the meantime, endpoint got disabled or changed. */ 1035 ret = -ESHUTDOWN; 1036 } else if (halt) { 1037 ret = usb_ep_set_halt(ep->ep); 1038 if (!ret) 1039 ret = -EBADMSG; 1040 } else if (unlikely(data_len == -EINVAL)) { 1041 /* 1042 * Sanity Check: even though data_len can't be used 1043 * uninitialized at the time I write this comment, some 1044 * compilers complain about this situation. 1045 * In order to keep the code clean from warnings, data_len is 1046 * being initialized to -EINVAL during its declaration, which 1047 * means we can't rely on compiler anymore to warn no future 1048 * changes won't result in data_len being used uninitialized. 1049 * For such reason, we're adding this redundant sanity check 1050 * here. 1051 */ 1052 WARN(1, "%s: data_len == -EINVAL\n", __func__); 1053 ret = -EINVAL; 1054 } else if (!io_data->aio) { 1055 DECLARE_COMPLETION_ONSTACK(done); 1056 bool interrupted = false; 1057 1058 req = ep->req; 1059 if (io_data->use_sg) { 1060 req->buf = NULL; 1061 req->sg = io_data->sgt.sgl; 1062 req->num_sgs = io_data->sgt.nents; 1063 } else { 1064 req->buf = data; 1065 req->num_sgs = 0; 1066 } 1067 req->length = data_len; 1068 1069 io_data->buf = data; 1070 1071 req->context = &done; 1072 req->complete = ffs_epfile_io_complete; 1073 1074 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1075 if (unlikely(ret < 0)) 1076 goto error_lock; 1077 1078 spin_unlock_irq(&epfile->ffs->eps_lock); 1079 1080 if (unlikely(wait_for_completion_interruptible(&done))) { 1081 /* 1082 * To avoid race condition with ffs_epfile_io_complete, 1083 * dequeue the request first then check 1084 * status. usb_ep_dequeue API should guarantee no race 1085 * condition with req->complete callback. 1086 */ 1087 usb_ep_dequeue(ep->ep, req); 1088 wait_for_completion(&done); 1089 interrupted = ep->status < 0; 1090 } 1091 1092 if (interrupted) 1093 ret = -EINTR; 1094 else if (io_data->read && ep->status > 0) 1095 ret = __ffs_epfile_read_data(epfile, data, ep->status, 1096 &io_data->data); 1097 else 1098 ret = ep->status; 1099 goto error_mutex; 1100 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) { 1101 ret = -ENOMEM; 1102 } else { 1103 if (io_data->use_sg) { 1104 req->buf = NULL; 1105 req->sg = io_data->sgt.sgl; 1106 req->num_sgs = io_data->sgt.nents; 1107 } else { 1108 req->buf = data; 1109 req->num_sgs = 0; 1110 } 1111 req->length = data_len; 1112 1113 io_data->buf = data; 1114 io_data->ep = ep->ep; 1115 io_data->req = req; 1116 io_data->ffs = epfile->ffs; 1117 1118 req->context = io_data; 1119 req->complete = ffs_epfile_async_io_complete; 1120 1121 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1122 if (unlikely(ret)) { 1123 usb_ep_free_request(ep->ep, req); 1124 goto error_lock; 1125 } 1126 1127 ret = -EIOCBQUEUED; 1128 /* 1129 * Do not kfree the buffer in this function. It will be freed 1130 * by ffs_user_copy_worker. 1131 */ 1132 data = NULL; 1133 } 1134 1135 error_lock: 1136 spin_unlock_irq(&epfile->ffs->eps_lock); 1137 error_mutex: 1138 mutex_unlock(&epfile->mutex); 1139 error: 1140 if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */ 1141 ffs_free_buffer(io_data); 1142 return ret; 1143 } 1144 1145 static int 1146 ffs_epfile_open(struct inode *inode, struct file *file) 1147 { 1148 struct ffs_epfile *epfile = inode->i_private; 1149 1150 ENTER(); 1151 1152 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1153 return -ENODEV; 1154 1155 file->private_data = epfile; 1156 ffs_data_opened(epfile->ffs); 1157 1158 return 0; 1159 } 1160 1161 static int ffs_aio_cancel(struct kiocb *kiocb) 1162 { 1163 struct ffs_io_data *io_data = kiocb->private; 1164 struct ffs_epfile *epfile = kiocb->ki_filp->private_data; 1165 unsigned long flags; 1166 int value; 1167 1168 ENTER(); 1169 1170 spin_lock_irqsave(&epfile->ffs->eps_lock, flags); 1171 1172 if (likely(io_data && io_data->ep && io_data->req)) 1173 value = usb_ep_dequeue(io_data->ep, io_data->req); 1174 else 1175 value = -EINVAL; 1176 1177 spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags); 1178 1179 return value; 1180 } 1181 1182 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from) 1183 { 1184 struct ffs_io_data io_data, *p = &io_data; 1185 ssize_t res; 1186 1187 ENTER(); 1188 1189 if (!is_sync_kiocb(kiocb)) { 1190 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1191 if (unlikely(!p)) 1192 return -ENOMEM; 1193 p->aio = true; 1194 } else { 1195 memset(p, 0, sizeof(*p)); 1196 p->aio = false; 1197 } 1198 1199 p->read = false; 1200 p->kiocb = kiocb; 1201 p->data = *from; 1202 p->mm = current->mm; 1203 1204 kiocb->private = p; 1205 1206 if (p->aio) 1207 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1208 1209 res = ffs_epfile_io(kiocb->ki_filp, p); 1210 if (res == -EIOCBQUEUED) 1211 return res; 1212 if (p->aio) 1213 kfree(p); 1214 else 1215 *from = p->data; 1216 return res; 1217 } 1218 1219 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to) 1220 { 1221 struct ffs_io_data io_data, *p = &io_data; 1222 ssize_t res; 1223 1224 ENTER(); 1225 1226 if (!is_sync_kiocb(kiocb)) { 1227 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1228 if (unlikely(!p)) 1229 return -ENOMEM; 1230 p->aio = true; 1231 } else { 1232 memset(p, 0, sizeof(*p)); 1233 p->aio = false; 1234 } 1235 1236 p->read = true; 1237 p->kiocb = kiocb; 1238 if (p->aio) { 1239 p->to_free = dup_iter(&p->data, to, GFP_KERNEL); 1240 if (!p->to_free) { 1241 kfree(p); 1242 return -ENOMEM; 1243 } 1244 } else { 1245 p->data = *to; 1246 p->to_free = NULL; 1247 } 1248 p->mm = current->mm; 1249 1250 kiocb->private = p; 1251 1252 if (p->aio) 1253 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1254 1255 res = ffs_epfile_io(kiocb->ki_filp, p); 1256 if (res == -EIOCBQUEUED) 1257 return res; 1258 1259 if (p->aio) { 1260 kfree(p->to_free); 1261 kfree(p); 1262 } else { 1263 *to = p->data; 1264 } 1265 return res; 1266 } 1267 1268 static int 1269 ffs_epfile_release(struct inode *inode, struct file *file) 1270 { 1271 struct ffs_epfile *epfile = inode->i_private; 1272 1273 ENTER(); 1274 1275 __ffs_epfile_read_buffer_free(epfile); 1276 ffs_data_closed(epfile->ffs); 1277 1278 return 0; 1279 } 1280 1281 static long ffs_epfile_ioctl(struct file *file, unsigned code, 1282 unsigned long value) 1283 { 1284 struct ffs_epfile *epfile = file->private_data; 1285 struct ffs_ep *ep; 1286 int ret; 1287 1288 ENTER(); 1289 1290 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1291 return -ENODEV; 1292 1293 /* Wait for endpoint to be enabled */ 1294 ep = epfile->ep; 1295 if (!ep) { 1296 if (file->f_flags & O_NONBLOCK) 1297 return -EAGAIN; 1298 1299 ret = wait_event_interruptible( 1300 epfile->ffs->wait, (ep = epfile->ep)); 1301 if (ret) 1302 return -EINTR; 1303 } 1304 1305 spin_lock_irq(&epfile->ffs->eps_lock); 1306 1307 /* In the meantime, endpoint got disabled or changed. */ 1308 if (epfile->ep != ep) { 1309 spin_unlock_irq(&epfile->ffs->eps_lock); 1310 return -ESHUTDOWN; 1311 } 1312 1313 switch (code) { 1314 case FUNCTIONFS_FIFO_STATUS: 1315 ret = usb_ep_fifo_status(epfile->ep->ep); 1316 break; 1317 case FUNCTIONFS_FIFO_FLUSH: 1318 usb_ep_fifo_flush(epfile->ep->ep); 1319 ret = 0; 1320 break; 1321 case FUNCTIONFS_CLEAR_HALT: 1322 ret = usb_ep_clear_halt(epfile->ep->ep); 1323 break; 1324 case FUNCTIONFS_ENDPOINT_REVMAP: 1325 ret = epfile->ep->num; 1326 break; 1327 case FUNCTIONFS_ENDPOINT_DESC: 1328 { 1329 int desc_idx; 1330 struct usb_endpoint_descriptor *desc; 1331 1332 switch (epfile->ffs->gadget->speed) { 1333 case USB_SPEED_SUPER: 1334 desc_idx = 2; 1335 break; 1336 case USB_SPEED_HIGH: 1337 desc_idx = 1; 1338 break; 1339 default: 1340 desc_idx = 0; 1341 } 1342 desc = epfile->ep->descs[desc_idx]; 1343 1344 spin_unlock_irq(&epfile->ffs->eps_lock); 1345 ret = copy_to_user((void __user *)value, desc, desc->bLength); 1346 if (ret) 1347 ret = -EFAULT; 1348 return ret; 1349 } 1350 default: 1351 ret = -ENOTTY; 1352 } 1353 spin_unlock_irq(&epfile->ffs->eps_lock); 1354 1355 return ret; 1356 } 1357 1358 static const struct file_operations ffs_epfile_operations = { 1359 .llseek = no_llseek, 1360 1361 .open = ffs_epfile_open, 1362 .write_iter = ffs_epfile_write_iter, 1363 .read_iter = ffs_epfile_read_iter, 1364 .release = ffs_epfile_release, 1365 .unlocked_ioctl = ffs_epfile_ioctl, 1366 .compat_ioctl = compat_ptr_ioctl, 1367 }; 1368 1369 1370 /* File system and super block operations ***********************************/ 1371 1372 /* 1373 * Mounting the file system creates a controller file, used first for 1374 * function configuration then later for event monitoring. 1375 */ 1376 1377 static struct inode *__must_check 1378 ffs_sb_make_inode(struct super_block *sb, void *data, 1379 const struct file_operations *fops, 1380 const struct inode_operations *iops, 1381 struct ffs_file_perms *perms) 1382 { 1383 struct inode *inode; 1384 1385 ENTER(); 1386 1387 inode = new_inode(sb); 1388 1389 if (likely(inode)) { 1390 struct timespec64 ts = current_time(inode); 1391 1392 inode->i_ino = get_next_ino(); 1393 inode->i_mode = perms->mode; 1394 inode->i_uid = perms->uid; 1395 inode->i_gid = perms->gid; 1396 inode->i_atime = ts; 1397 inode->i_mtime = ts; 1398 inode->i_ctime = ts; 1399 inode->i_private = data; 1400 if (fops) 1401 inode->i_fop = fops; 1402 if (iops) 1403 inode->i_op = iops; 1404 } 1405 1406 return inode; 1407 } 1408 1409 /* Create "regular" file */ 1410 static struct dentry *ffs_sb_create_file(struct super_block *sb, 1411 const char *name, void *data, 1412 const struct file_operations *fops) 1413 { 1414 struct ffs_data *ffs = sb->s_fs_info; 1415 struct dentry *dentry; 1416 struct inode *inode; 1417 1418 ENTER(); 1419 1420 dentry = d_alloc_name(sb->s_root, name); 1421 if (unlikely(!dentry)) 1422 return NULL; 1423 1424 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); 1425 if (unlikely(!inode)) { 1426 dput(dentry); 1427 return NULL; 1428 } 1429 1430 d_add(dentry, inode); 1431 return dentry; 1432 } 1433 1434 /* Super block */ 1435 static const struct super_operations ffs_sb_operations = { 1436 .statfs = simple_statfs, 1437 .drop_inode = generic_delete_inode, 1438 }; 1439 1440 struct ffs_sb_fill_data { 1441 struct ffs_file_perms perms; 1442 umode_t root_mode; 1443 const char *dev_name; 1444 bool no_disconnect; 1445 struct ffs_data *ffs_data; 1446 }; 1447 1448 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc) 1449 { 1450 struct ffs_sb_fill_data *data = fc->fs_private; 1451 struct inode *inode; 1452 struct ffs_data *ffs = data->ffs_data; 1453 1454 ENTER(); 1455 1456 ffs->sb = sb; 1457 data->ffs_data = NULL; 1458 sb->s_fs_info = ffs; 1459 sb->s_blocksize = PAGE_SIZE; 1460 sb->s_blocksize_bits = PAGE_SHIFT; 1461 sb->s_magic = FUNCTIONFS_MAGIC; 1462 sb->s_op = &ffs_sb_operations; 1463 sb->s_time_gran = 1; 1464 1465 /* Root inode */ 1466 data->perms.mode = data->root_mode; 1467 inode = ffs_sb_make_inode(sb, NULL, 1468 &simple_dir_operations, 1469 &simple_dir_inode_operations, 1470 &data->perms); 1471 sb->s_root = d_make_root(inode); 1472 if (unlikely(!sb->s_root)) 1473 return -ENOMEM; 1474 1475 /* EP0 file */ 1476 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs, 1477 &ffs_ep0_operations))) 1478 return -ENOMEM; 1479 1480 return 0; 1481 } 1482 1483 enum { 1484 Opt_no_disconnect, 1485 Opt_rmode, 1486 Opt_fmode, 1487 Opt_mode, 1488 Opt_uid, 1489 Opt_gid, 1490 }; 1491 1492 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = { 1493 fsparam_bool ("no_disconnect", Opt_no_disconnect), 1494 fsparam_u32 ("rmode", Opt_rmode), 1495 fsparam_u32 ("fmode", Opt_fmode), 1496 fsparam_u32 ("mode", Opt_mode), 1497 fsparam_u32 ("uid", Opt_uid), 1498 fsparam_u32 ("gid", Opt_gid), 1499 {} 1500 }; 1501 1502 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1503 { 1504 struct ffs_sb_fill_data *data = fc->fs_private; 1505 struct fs_parse_result result; 1506 int opt; 1507 1508 ENTER(); 1509 1510 opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result); 1511 if (opt < 0) 1512 return opt; 1513 1514 switch (opt) { 1515 case Opt_no_disconnect: 1516 data->no_disconnect = result.boolean; 1517 break; 1518 case Opt_rmode: 1519 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1520 break; 1521 case Opt_fmode: 1522 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 1523 break; 1524 case Opt_mode: 1525 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1526 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 1527 break; 1528 1529 case Opt_uid: 1530 data->perms.uid = make_kuid(current_user_ns(), result.uint_32); 1531 if (!uid_valid(data->perms.uid)) 1532 goto unmapped_value; 1533 break; 1534 case Opt_gid: 1535 data->perms.gid = make_kgid(current_user_ns(), result.uint_32); 1536 if (!gid_valid(data->perms.gid)) 1537 goto unmapped_value; 1538 break; 1539 1540 default: 1541 return -ENOPARAM; 1542 } 1543 1544 return 0; 1545 1546 unmapped_value: 1547 return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32); 1548 } 1549 1550 /* 1551 * Set up the superblock for a mount. 1552 */ 1553 static int ffs_fs_get_tree(struct fs_context *fc) 1554 { 1555 struct ffs_sb_fill_data *ctx = fc->fs_private; 1556 void *ffs_dev; 1557 struct ffs_data *ffs; 1558 1559 ENTER(); 1560 1561 if (!fc->source) 1562 return invalf(fc, "No source specified"); 1563 1564 ffs = ffs_data_new(fc->source); 1565 if (unlikely(!ffs)) 1566 return -ENOMEM; 1567 ffs->file_perms = ctx->perms; 1568 ffs->no_disconnect = ctx->no_disconnect; 1569 1570 ffs->dev_name = kstrdup(fc->source, GFP_KERNEL); 1571 if (unlikely(!ffs->dev_name)) { 1572 ffs_data_put(ffs); 1573 return -ENOMEM; 1574 } 1575 1576 ffs_dev = ffs_acquire_dev(ffs->dev_name); 1577 if (IS_ERR(ffs_dev)) { 1578 ffs_data_put(ffs); 1579 return PTR_ERR(ffs_dev); 1580 } 1581 1582 ffs->private_data = ffs_dev; 1583 ctx->ffs_data = ffs; 1584 return get_tree_nodev(fc, ffs_sb_fill); 1585 } 1586 1587 static void ffs_fs_free_fc(struct fs_context *fc) 1588 { 1589 struct ffs_sb_fill_data *ctx = fc->fs_private; 1590 1591 if (ctx) { 1592 if (ctx->ffs_data) { 1593 ffs_release_dev(ctx->ffs_data); 1594 ffs_data_put(ctx->ffs_data); 1595 } 1596 1597 kfree(ctx); 1598 } 1599 } 1600 1601 static const struct fs_context_operations ffs_fs_context_ops = { 1602 .free = ffs_fs_free_fc, 1603 .parse_param = ffs_fs_parse_param, 1604 .get_tree = ffs_fs_get_tree, 1605 }; 1606 1607 static int ffs_fs_init_fs_context(struct fs_context *fc) 1608 { 1609 struct ffs_sb_fill_data *ctx; 1610 1611 ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL); 1612 if (!ctx) 1613 return -ENOMEM; 1614 1615 ctx->perms.mode = S_IFREG | 0600; 1616 ctx->perms.uid = GLOBAL_ROOT_UID; 1617 ctx->perms.gid = GLOBAL_ROOT_GID; 1618 ctx->root_mode = S_IFDIR | 0500; 1619 ctx->no_disconnect = false; 1620 1621 fc->fs_private = ctx; 1622 fc->ops = &ffs_fs_context_ops; 1623 return 0; 1624 } 1625 1626 static void 1627 ffs_fs_kill_sb(struct super_block *sb) 1628 { 1629 ENTER(); 1630 1631 kill_litter_super(sb); 1632 if (sb->s_fs_info) { 1633 ffs_release_dev(sb->s_fs_info); 1634 ffs_data_closed(sb->s_fs_info); 1635 } 1636 } 1637 1638 static struct file_system_type ffs_fs_type = { 1639 .owner = THIS_MODULE, 1640 .name = "functionfs", 1641 .init_fs_context = ffs_fs_init_fs_context, 1642 .parameters = ffs_fs_fs_parameters, 1643 .kill_sb = ffs_fs_kill_sb, 1644 }; 1645 MODULE_ALIAS_FS("functionfs"); 1646 1647 1648 /* Driver's main init/cleanup functions *************************************/ 1649 1650 static int functionfs_init(void) 1651 { 1652 int ret; 1653 1654 ENTER(); 1655 1656 ret = register_filesystem(&ffs_fs_type); 1657 if (likely(!ret)) 1658 pr_info("file system registered\n"); 1659 else 1660 pr_err("failed registering file system (%d)\n", ret); 1661 1662 return ret; 1663 } 1664 1665 static void functionfs_cleanup(void) 1666 { 1667 ENTER(); 1668 1669 pr_info("unloading\n"); 1670 unregister_filesystem(&ffs_fs_type); 1671 } 1672 1673 1674 /* ffs_data and ffs_function construction and destruction code **************/ 1675 1676 static void ffs_data_clear(struct ffs_data *ffs); 1677 static void ffs_data_reset(struct ffs_data *ffs); 1678 1679 static void ffs_data_get(struct ffs_data *ffs) 1680 { 1681 ENTER(); 1682 1683 refcount_inc(&ffs->ref); 1684 } 1685 1686 static void ffs_data_opened(struct ffs_data *ffs) 1687 { 1688 ENTER(); 1689 1690 refcount_inc(&ffs->ref); 1691 if (atomic_add_return(1, &ffs->opened) == 1 && 1692 ffs->state == FFS_DEACTIVATED) { 1693 ffs->state = FFS_CLOSING; 1694 ffs_data_reset(ffs); 1695 } 1696 } 1697 1698 static void ffs_data_put(struct ffs_data *ffs) 1699 { 1700 ENTER(); 1701 1702 if (unlikely(refcount_dec_and_test(&ffs->ref))) { 1703 pr_info("%s(): freeing\n", __func__); 1704 ffs_data_clear(ffs); 1705 BUG_ON(waitqueue_active(&ffs->ev.waitq) || 1706 waitqueue_active(&ffs->ep0req_completion.wait) || 1707 waitqueue_active(&ffs->wait)); 1708 destroy_workqueue(ffs->io_completion_wq); 1709 kfree(ffs->dev_name); 1710 kfree(ffs); 1711 } 1712 } 1713 1714 static void ffs_data_closed(struct ffs_data *ffs) 1715 { 1716 ENTER(); 1717 1718 if (atomic_dec_and_test(&ffs->opened)) { 1719 if (ffs->no_disconnect) { 1720 ffs->state = FFS_DEACTIVATED; 1721 if (ffs->epfiles) { 1722 ffs_epfiles_destroy(ffs->epfiles, 1723 ffs->eps_count); 1724 ffs->epfiles = NULL; 1725 } 1726 if (ffs->setup_state == FFS_SETUP_PENDING) 1727 __ffs_ep0_stall(ffs); 1728 } else { 1729 ffs->state = FFS_CLOSING; 1730 ffs_data_reset(ffs); 1731 } 1732 } 1733 if (atomic_read(&ffs->opened) < 0) { 1734 ffs->state = FFS_CLOSING; 1735 ffs_data_reset(ffs); 1736 } 1737 1738 ffs_data_put(ffs); 1739 } 1740 1741 static struct ffs_data *ffs_data_new(const char *dev_name) 1742 { 1743 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); 1744 if (unlikely(!ffs)) 1745 return NULL; 1746 1747 ENTER(); 1748 1749 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name); 1750 if (!ffs->io_completion_wq) { 1751 kfree(ffs); 1752 return NULL; 1753 } 1754 1755 refcount_set(&ffs->ref, 1); 1756 atomic_set(&ffs->opened, 0); 1757 ffs->state = FFS_READ_DESCRIPTORS; 1758 mutex_init(&ffs->mutex); 1759 spin_lock_init(&ffs->eps_lock); 1760 init_waitqueue_head(&ffs->ev.waitq); 1761 init_waitqueue_head(&ffs->wait); 1762 init_completion(&ffs->ep0req_completion); 1763 1764 /* XXX REVISIT need to update it in some places, or do we? */ 1765 ffs->ev.can_stall = 1; 1766 1767 return ffs; 1768 } 1769 1770 static void ffs_data_clear(struct ffs_data *ffs) 1771 { 1772 ENTER(); 1773 1774 ffs_closed(ffs); 1775 1776 BUG_ON(ffs->gadget); 1777 1778 if (ffs->epfiles) 1779 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count); 1780 1781 if (ffs->ffs_eventfd) 1782 eventfd_ctx_put(ffs->ffs_eventfd); 1783 1784 kfree(ffs->raw_descs_data); 1785 kfree(ffs->raw_strings); 1786 kfree(ffs->stringtabs); 1787 } 1788 1789 static void ffs_data_reset(struct ffs_data *ffs) 1790 { 1791 ENTER(); 1792 1793 ffs_data_clear(ffs); 1794 1795 ffs->epfiles = NULL; 1796 ffs->raw_descs_data = NULL; 1797 ffs->raw_descs = NULL; 1798 ffs->raw_strings = NULL; 1799 ffs->stringtabs = NULL; 1800 1801 ffs->raw_descs_length = 0; 1802 ffs->fs_descs_count = 0; 1803 ffs->hs_descs_count = 0; 1804 ffs->ss_descs_count = 0; 1805 1806 ffs->strings_count = 0; 1807 ffs->interfaces_count = 0; 1808 ffs->eps_count = 0; 1809 1810 ffs->ev.count = 0; 1811 1812 ffs->state = FFS_READ_DESCRIPTORS; 1813 ffs->setup_state = FFS_NO_SETUP; 1814 ffs->flags = 0; 1815 } 1816 1817 1818 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) 1819 { 1820 struct usb_gadget_strings **lang; 1821 int first_id; 1822 1823 ENTER(); 1824 1825 if (WARN_ON(ffs->state != FFS_ACTIVE 1826 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) 1827 return -EBADFD; 1828 1829 first_id = usb_string_ids_n(cdev, ffs->strings_count); 1830 if (unlikely(first_id < 0)) 1831 return first_id; 1832 1833 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); 1834 if (unlikely(!ffs->ep0req)) 1835 return -ENOMEM; 1836 ffs->ep0req->complete = ffs_ep0_complete; 1837 ffs->ep0req->context = ffs; 1838 1839 lang = ffs->stringtabs; 1840 if (lang) { 1841 for (; *lang; ++lang) { 1842 struct usb_string *str = (*lang)->strings; 1843 int id = first_id; 1844 for (; str->s; ++id, ++str) 1845 str->id = id; 1846 } 1847 } 1848 1849 ffs->gadget = cdev->gadget; 1850 ffs_data_get(ffs); 1851 return 0; 1852 } 1853 1854 static void functionfs_unbind(struct ffs_data *ffs) 1855 { 1856 ENTER(); 1857 1858 if (!WARN_ON(!ffs->gadget)) { 1859 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); 1860 ffs->ep0req = NULL; 1861 ffs->gadget = NULL; 1862 clear_bit(FFS_FL_BOUND, &ffs->flags); 1863 ffs_data_put(ffs); 1864 } 1865 } 1866 1867 static int ffs_epfiles_create(struct ffs_data *ffs) 1868 { 1869 struct ffs_epfile *epfile, *epfiles; 1870 unsigned i, count; 1871 1872 ENTER(); 1873 1874 count = ffs->eps_count; 1875 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); 1876 if (!epfiles) 1877 return -ENOMEM; 1878 1879 epfile = epfiles; 1880 for (i = 1; i <= count; ++i, ++epfile) { 1881 epfile->ffs = ffs; 1882 mutex_init(&epfile->mutex); 1883 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 1884 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]); 1885 else 1886 sprintf(epfile->name, "ep%u", i); 1887 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name, 1888 epfile, 1889 &ffs_epfile_operations); 1890 if (unlikely(!epfile->dentry)) { 1891 ffs_epfiles_destroy(epfiles, i - 1); 1892 return -ENOMEM; 1893 } 1894 } 1895 1896 ffs->epfiles = epfiles; 1897 return 0; 1898 } 1899 1900 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count) 1901 { 1902 struct ffs_epfile *epfile = epfiles; 1903 1904 ENTER(); 1905 1906 for (; count; --count, ++epfile) { 1907 BUG_ON(mutex_is_locked(&epfile->mutex)); 1908 if (epfile->dentry) { 1909 d_delete(epfile->dentry); 1910 dput(epfile->dentry); 1911 epfile->dentry = NULL; 1912 } 1913 } 1914 1915 kfree(epfiles); 1916 } 1917 1918 static void ffs_func_eps_disable(struct ffs_function *func) 1919 { 1920 struct ffs_ep *ep = func->eps; 1921 struct ffs_epfile *epfile = func->ffs->epfiles; 1922 unsigned count = func->ffs->eps_count; 1923 unsigned long flags; 1924 1925 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1926 while (count--) { 1927 /* pending requests get nuked */ 1928 if (likely(ep->ep)) 1929 usb_ep_disable(ep->ep); 1930 ++ep; 1931 1932 if (epfile) { 1933 epfile->ep = NULL; 1934 __ffs_epfile_read_buffer_free(epfile); 1935 ++epfile; 1936 } 1937 } 1938 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1939 } 1940 1941 static int ffs_func_eps_enable(struct ffs_function *func) 1942 { 1943 struct ffs_data *ffs = func->ffs; 1944 struct ffs_ep *ep = func->eps; 1945 struct ffs_epfile *epfile = ffs->epfiles; 1946 unsigned count = ffs->eps_count; 1947 unsigned long flags; 1948 int ret = 0; 1949 1950 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1951 while(count--) { 1952 ep->ep->driver_data = ep; 1953 1954 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep); 1955 if (ret) { 1956 pr_err("%s: config_ep_by_speed(%s) returned %d\n", 1957 __func__, ep->ep->name, ret); 1958 break; 1959 } 1960 1961 ret = usb_ep_enable(ep->ep); 1962 if (likely(!ret)) { 1963 epfile->ep = ep; 1964 epfile->in = usb_endpoint_dir_in(ep->ep->desc); 1965 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc); 1966 } else { 1967 break; 1968 } 1969 1970 ++ep; 1971 ++epfile; 1972 } 1973 1974 wake_up_interruptible(&ffs->wait); 1975 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1976 1977 return ret; 1978 } 1979 1980 1981 /* Parsing and building descriptors and strings *****************************/ 1982 1983 /* 1984 * This validates if data pointed by data is a valid USB descriptor as 1985 * well as record how many interfaces, endpoints and strings are 1986 * required by given configuration. Returns address after the 1987 * descriptor or NULL if data is invalid. 1988 */ 1989 1990 enum ffs_entity_type { 1991 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT 1992 }; 1993 1994 enum ffs_os_desc_type { 1995 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP 1996 }; 1997 1998 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, 1999 u8 *valuep, 2000 struct usb_descriptor_header *desc, 2001 void *priv); 2002 2003 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, 2004 struct usb_os_desc_header *h, void *data, 2005 unsigned len, void *priv); 2006 2007 static int __must_check ffs_do_single_desc(char *data, unsigned len, 2008 ffs_entity_callback entity, 2009 void *priv, int *current_class) 2010 { 2011 struct usb_descriptor_header *_ds = (void *)data; 2012 u8 length; 2013 int ret; 2014 2015 ENTER(); 2016 2017 /* At least two bytes are required: length and type */ 2018 if (len < 2) { 2019 pr_vdebug("descriptor too short\n"); 2020 return -EINVAL; 2021 } 2022 2023 /* If we have at least as many bytes as the descriptor takes? */ 2024 length = _ds->bLength; 2025 if (len < length) { 2026 pr_vdebug("descriptor longer then available data\n"); 2027 return -EINVAL; 2028 } 2029 2030 #define __entity_check_INTERFACE(val) 1 2031 #define __entity_check_STRING(val) (val) 2032 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) 2033 #define __entity(type, val) do { \ 2034 pr_vdebug("entity " #type "(%02x)\n", (val)); \ 2035 if (unlikely(!__entity_check_ ##type(val))) { \ 2036 pr_vdebug("invalid entity's value\n"); \ 2037 return -EINVAL; \ 2038 } \ 2039 ret = entity(FFS_ ##type, &val, _ds, priv); \ 2040 if (unlikely(ret < 0)) { \ 2041 pr_debug("entity " #type "(%02x); ret = %d\n", \ 2042 (val), ret); \ 2043 return ret; \ 2044 } \ 2045 } while (0) 2046 2047 /* Parse descriptor depending on type. */ 2048 switch (_ds->bDescriptorType) { 2049 case USB_DT_DEVICE: 2050 case USB_DT_CONFIG: 2051 case USB_DT_STRING: 2052 case USB_DT_DEVICE_QUALIFIER: 2053 /* function can't have any of those */ 2054 pr_vdebug("descriptor reserved for gadget: %d\n", 2055 _ds->bDescriptorType); 2056 return -EINVAL; 2057 2058 case USB_DT_INTERFACE: { 2059 struct usb_interface_descriptor *ds = (void *)_ds; 2060 pr_vdebug("interface descriptor\n"); 2061 if (length != sizeof *ds) 2062 goto inv_length; 2063 2064 __entity(INTERFACE, ds->bInterfaceNumber); 2065 if (ds->iInterface) 2066 __entity(STRING, ds->iInterface); 2067 *current_class = ds->bInterfaceClass; 2068 } 2069 break; 2070 2071 case USB_DT_ENDPOINT: { 2072 struct usb_endpoint_descriptor *ds = (void *)_ds; 2073 pr_vdebug("endpoint descriptor\n"); 2074 if (length != USB_DT_ENDPOINT_SIZE && 2075 length != USB_DT_ENDPOINT_AUDIO_SIZE) 2076 goto inv_length; 2077 __entity(ENDPOINT, ds->bEndpointAddress); 2078 } 2079 break; 2080 2081 case USB_TYPE_CLASS | 0x01: 2082 if (*current_class == USB_INTERFACE_CLASS_HID) { 2083 pr_vdebug("hid descriptor\n"); 2084 if (length != sizeof(struct hid_descriptor)) 2085 goto inv_length; 2086 break; 2087 } else if (*current_class == USB_INTERFACE_CLASS_CCID) { 2088 pr_vdebug("ccid descriptor\n"); 2089 if (length != sizeof(struct ccid_descriptor)) 2090 goto inv_length; 2091 break; 2092 } else { 2093 pr_vdebug("unknown descriptor: %d for class %d\n", 2094 _ds->bDescriptorType, *current_class); 2095 return -EINVAL; 2096 } 2097 2098 case USB_DT_OTG: 2099 if (length != sizeof(struct usb_otg_descriptor)) 2100 goto inv_length; 2101 break; 2102 2103 case USB_DT_INTERFACE_ASSOCIATION: { 2104 struct usb_interface_assoc_descriptor *ds = (void *)_ds; 2105 pr_vdebug("interface association descriptor\n"); 2106 if (length != sizeof *ds) 2107 goto inv_length; 2108 if (ds->iFunction) 2109 __entity(STRING, ds->iFunction); 2110 } 2111 break; 2112 2113 case USB_DT_SS_ENDPOINT_COMP: 2114 pr_vdebug("EP SS companion descriptor\n"); 2115 if (length != sizeof(struct usb_ss_ep_comp_descriptor)) 2116 goto inv_length; 2117 break; 2118 2119 case USB_DT_OTHER_SPEED_CONFIG: 2120 case USB_DT_INTERFACE_POWER: 2121 case USB_DT_DEBUG: 2122 case USB_DT_SECURITY: 2123 case USB_DT_CS_RADIO_CONTROL: 2124 /* TODO */ 2125 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); 2126 return -EINVAL; 2127 2128 default: 2129 /* We should never be here */ 2130 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); 2131 return -EINVAL; 2132 2133 inv_length: 2134 pr_vdebug("invalid length: %d (descriptor %d)\n", 2135 _ds->bLength, _ds->bDescriptorType); 2136 return -EINVAL; 2137 } 2138 2139 #undef __entity 2140 #undef __entity_check_DESCRIPTOR 2141 #undef __entity_check_INTERFACE 2142 #undef __entity_check_STRING 2143 #undef __entity_check_ENDPOINT 2144 2145 return length; 2146 } 2147 2148 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, 2149 ffs_entity_callback entity, void *priv) 2150 { 2151 const unsigned _len = len; 2152 unsigned long num = 0; 2153 int current_class = -1; 2154 2155 ENTER(); 2156 2157 for (;;) { 2158 int ret; 2159 2160 if (num == count) 2161 data = NULL; 2162 2163 /* Record "descriptor" entity */ 2164 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); 2165 if (unlikely(ret < 0)) { 2166 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", 2167 num, ret); 2168 return ret; 2169 } 2170 2171 if (!data) 2172 return _len - len; 2173 2174 ret = ffs_do_single_desc(data, len, entity, priv, 2175 ¤t_class); 2176 if (unlikely(ret < 0)) { 2177 pr_debug("%s returns %d\n", __func__, ret); 2178 return ret; 2179 } 2180 2181 len -= ret; 2182 data += ret; 2183 ++num; 2184 } 2185 } 2186 2187 static int __ffs_data_do_entity(enum ffs_entity_type type, 2188 u8 *valuep, struct usb_descriptor_header *desc, 2189 void *priv) 2190 { 2191 struct ffs_desc_helper *helper = priv; 2192 struct usb_endpoint_descriptor *d; 2193 2194 ENTER(); 2195 2196 switch (type) { 2197 case FFS_DESCRIPTOR: 2198 break; 2199 2200 case FFS_INTERFACE: 2201 /* 2202 * Interfaces are indexed from zero so if we 2203 * encountered interface "n" then there are at least 2204 * "n+1" interfaces. 2205 */ 2206 if (*valuep >= helper->interfaces_count) 2207 helper->interfaces_count = *valuep + 1; 2208 break; 2209 2210 case FFS_STRING: 2211 /* 2212 * Strings are indexed from 1 (0 is reserved 2213 * for languages list) 2214 */ 2215 if (*valuep > helper->ffs->strings_count) 2216 helper->ffs->strings_count = *valuep; 2217 break; 2218 2219 case FFS_ENDPOINT: 2220 d = (void *)desc; 2221 helper->eps_count++; 2222 if (helper->eps_count >= FFS_MAX_EPS_COUNT) 2223 return -EINVAL; 2224 /* Check if descriptors for any speed were already parsed */ 2225 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count) 2226 helper->ffs->eps_addrmap[helper->eps_count] = 2227 d->bEndpointAddress; 2228 else if (helper->ffs->eps_addrmap[helper->eps_count] != 2229 d->bEndpointAddress) 2230 return -EINVAL; 2231 break; 2232 } 2233 2234 return 0; 2235 } 2236 2237 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, 2238 struct usb_os_desc_header *desc) 2239 { 2240 u16 bcd_version = le16_to_cpu(desc->bcdVersion); 2241 u16 w_index = le16_to_cpu(desc->wIndex); 2242 2243 if (bcd_version != 1) { 2244 pr_vdebug("unsupported os descriptors version: %d", 2245 bcd_version); 2246 return -EINVAL; 2247 } 2248 switch (w_index) { 2249 case 0x4: 2250 *next_type = FFS_OS_DESC_EXT_COMPAT; 2251 break; 2252 case 0x5: 2253 *next_type = FFS_OS_DESC_EXT_PROP; 2254 break; 2255 default: 2256 pr_vdebug("unsupported os descriptor type: %d", w_index); 2257 return -EINVAL; 2258 } 2259 2260 return sizeof(*desc); 2261 } 2262 2263 /* 2264 * Process all extended compatibility/extended property descriptors 2265 * of a feature descriptor 2266 */ 2267 static int __must_check ffs_do_single_os_desc(char *data, unsigned len, 2268 enum ffs_os_desc_type type, 2269 u16 feature_count, 2270 ffs_os_desc_callback entity, 2271 void *priv, 2272 struct usb_os_desc_header *h) 2273 { 2274 int ret; 2275 const unsigned _len = len; 2276 2277 ENTER(); 2278 2279 /* loop over all ext compat/ext prop descriptors */ 2280 while (feature_count--) { 2281 ret = entity(type, h, data, len, priv); 2282 if (unlikely(ret < 0)) { 2283 pr_debug("bad OS descriptor, type: %d\n", type); 2284 return ret; 2285 } 2286 data += ret; 2287 len -= ret; 2288 } 2289 return _len - len; 2290 } 2291 2292 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ 2293 static int __must_check ffs_do_os_descs(unsigned count, 2294 char *data, unsigned len, 2295 ffs_os_desc_callback entity, void *priv) 2296 { 2297 const unsigned _len = len; 2298 unsigned long num = 0; 2299 2300 ENTER(); 2301 2302 for (num = 0; num < count; ++num) { 2303 int ret; 2304 enum ffs_os_desc_type type; 2305 u16 feature_count; 2306 struct usb_os_desc_header *desc = (void *)data; 2307 2308 if (len < sizeof(*desc)) 2309 return -EINVAL; 2310 2311 /* 2312 * Record "descriptor" entity. 2313 * Process dwLength, bcdVersion, wIndex, get b/wCount. 2314 * Move the data pointer to the beginning of extended 2315 * compatibilities proper or extended properties proper 2316 * portions of the data 2317 */ 2318 if (le32_to_cpu(desc->dwLength) > len) 2319 return -EINVAL; 2320 2321 ret = __ffs_do_os_desc_header(&type, desc); 2322 if (unlikely(ret < 0)) { 2323 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", 2324 num, ret); 2325 return ret; 2326 } 2327 /* 2328 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" 2329 */ 2330 feature_count = le16_to_cpu(desc->wCount); 2331 if (type == FFS_OS_DESC_EXT_COMPAT && 2332 (feature_count > 255 || desc->Reserved)) 2333 return -EINVAL; 2334 len -= ret; 2335 data += ret; 2336 2337 /* 2338 * Process all function/property descriptors 2339 * of this Feature Descriptor 2340 */ 2341 ret = ffs_do_single_os_desc(data, len, type, 2342 feature_count, entity, priv, desc); 2343 if (unlikely(ret < 0)) { 2344 pr_debug("%s returns %d\n", __func__, ret); 2345 return ret; 2346 } 2347 2348 len -= ret; 2349 data += ret; 2350 } 2351 return _len - len; 2352 } 2353 2354 /** 2355 * Validate contents of the buffer from userspace related to OS descriptors. 2356 */ 2357 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, 2358 struct usb_os_desc_header *h, void *data, 2359 unsigned len, void *priv) 2360 { 2361 struct ffs_data *ffs = priv; 2362 u8 length; 2363 2364 ENTER(); 2365 2366 switch (type) { 2367 case FFS_OS_DESC_EXT_COMPAT: { 2368 struct usb_ext_compat_desc *d = data; 2369 int i; 2370 2371 if (len < sizeof(*d) || 2372 d->bFirstInterfaceNumber >= ffs->interfaces_count) 2373 return -EINVAL; 2374 if (d->Reserved1 != 1) { 2375 /* 2376 * According to the spec, Reserved1 must be set to 1 2377 * but older kernels incorrectly rejected non-zero 2378 * values. We fix it here to avoid returning EINVAL 2379 * in response to values we used to accept. 2380 */ 2381 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n"); 2382 d->Reserved1 = 1; 2383 } 2384 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) 2385 if (d->Reserved2[i]) 2386 return -EINVAL; 2387 2388 length = sizeof(struct usb_ext_compat_desc); 2389 } 2390 break; 2391 case FFS_OS_DESC_EXT_PROP: { 2392 struct usb_ext_prop_desc *d = data; 2393 u32 type, pdl; 2394 u16 pnl; 2395 2396 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) 2397 return -EINVAL; 2398 length = le32_to_cpu(d->dwSize); 2399 if (len < length) 2400 return -EINVAL; 2401 type = le32_to_cpu(d->dwPropertyDataType); 2402 if (type < USB_EXT_PROP_UNICODE || 2403 type > USB_EXT_PROP_UNICODE_MULTI) { 2404 pr_vdebug("unsupported os descriptor property type: %d", 2405 type); 2406 return -EINVAL; 2407 } 2408 pnl = le16_to_cpu(d->wPropertyNameLength); 2409 if (length < 14 + pnl) { 2410 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n", 2411 length, pnl, type); 2412 return -EINVAL; 2413 } 2414 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl)); 2415 if (length != 14 + pnl + pdl) { 2416 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", 2417 length, pnl, pdl, type); 2418 return -EINVAL; 2419 } 2420 ++ffs->ms_os_descs_ext_prop_count; 2421 /* property name reported to the host as "WCHAR"s */ 2422 ffs->ms_os_descs_ext_prop_name_len += pnl * 2; 2423 ffs->ms_os_descs_ext_prop_data_len += pdl; 2424 } 2425 break; 2426 default: 2427 pr_vdebug("unknown descriptor: %d\n", type); 2428 return -EINVAL; 2429 } 2430 return length; 2431 } 2432 2433 static int __ffs_data_got_descs(struct ffs_data *ffs, 2434 char *const _data, size_t len) 2435 { 2436 char *data = _data, *raw_descs; 2437 unsigned os_descs_count = 0, counts[3], flags; 2438 int ret = -EINVAL, i; 2439 struct ffs_desc_helper helper; 2440 2441 ENTER(); 2442 2443 if (get_unaligned_le32(data + 4) != len) 2444 goto error; 2445 2446 switch (get_unaligned_le32(data)) { 2447 case FUNCTIONFS_DESCRIPTORS_MAGIC: 2448 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; 2449 data += 8; 2450 len -= 8; 2451 break; 2452 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: 2453 flags = get_unaligned_le32(data + 8); 2454 ffs->user_flags = flags; 2455 if (flags & ~(FUNCTIONFS_HAS_FS_DESC | 2456 FUNCTIONFS_HAS_HS_DESC | 2457 FUNCTIONFS_HAS_SS_DESC | 2458 FUNCTIONFS_HAS_MS_OS_DESC | 2459 FUNCTIONFS_VIRTUAL_ADDR | 2460 FUNCTIONFS_EVENTFD | 2461 FUNCTIONFS_ALL_CTRL_RECIP | 2462 FUNCTIONFS_CONFIG0_SETUP)) { 2463 ret = -ENOSYS; 2464 goto error; 2465 } 2466 data += 12; 2467 len -= 12; 2468 break; 2469 default: 2470 goto error; 2471 } 2472 2473 if (flags & FUNCTIONFS_EVENTFD) { 2474 if (len < 4) 2475 goto error; 2476 ffs->ffs_eventfd = 2477 eventfd_ctx_fdget((int)get_unaligned_le32(data)); 2478 if (IS_ERR(ffs->ffs_eventfd)) { 2479 ret = PTR_ERR(ffs->ffs_eventfd); 2480 ffs->ffs_eventfd = NULL; 2481 goto error; 2482 } 2483 data += 4; 2484 len -= 4; 2485 } 2486 2487 /* Read fs_count, hs_count and ss_count (if present) */ 2488 for (i = 0; i < 3; ++i) { 2489 if (!(flags & (1 << i))) { 2490 counts[i] = 0; 2491 } else if (len < 4) { 2492 goto error; 2493 } else { 2494 counts[i] = get_unaligned_le32(data); 2495 data += 4; 2496 len -= 4; 2497 } 2498 } 2499 if (flags & (1 << i)) { 2500 if (len < 4) { 2501 goto error; 2502 } 2503 os_descs_count = get_unaligned_le32(data); 2504 data += 4; 2505 len -= 4; 2506 }; 2507 2508 /* Read descriptors */ 2509 raw_descs = data; 2510 helper.ffs = ffs; 2511 for (i = 0; i < 3; ++i) { 2512 if (!counts[i]) 2513 continue; 2514 helper.interfaces_count = 0; 2515 helper.eps_count = 0; 2516 ret = ffs_do_descs(counts[i], data, len, 2517 __ffs_data_do_entity, &helper); 2518 if (ret < 0) 2519 goto error; 2520 if (!ffs->eps_count && !ffs->interfaces_count) { 2521 ffs->eps_count = helper.eps_count; 2522 ffs->interfaces_count = helper.interfaces_count; 2523 } else { 2524 if (ffs->eps_count != helper.eps_count) { 2525 ret = -EINVAL; 2526 goto error; 2527 } 2528 if (ffs->interfaces_count != helper.interfaces_count) { 2529 ret = -EINVAL; 2530 goto error; 2531 } 2532 } 2533 data += ret; 2534 len -= ret; 2535 } 2536 if (os_descs_count) { 2537 ret = ffs_do_os_descs(os_descs_count, data, len, 2538 __ffs_data_do_os_desc, ffs); 2539 if (ret < 0) 2540 goto error; 2541 data += ret; 2542 len -= ret; 2543 } 2544 2545 if (raw_descs == data || len) { 2546 ret = -EINVAL; 2547 goto error; 2548 } 2549 2550 ffs->raw_descs_data = _data; 2551 ffs->raw_descs = raw_descs; 2552 ffs->raw_descs_length = data - raw_descs; 2553 ffs->fs_descs_count = counts[0]; 2554 ffs->hs_descs_count = counts[1]; 2555 ffs->ss_descs_count = counts[2]; 2556 ffs->ms_os_descs_count = os_descs_count; 2557 2558 return 0; 2559 2560 error: 2561 kfree(_data); 2562 return ret; 2563 } 2564 2565 static int __ffs_data_got_strings(struct ffs_data *ffs, 2566 char *const _data, size_t len) 2567 { 2568 u32 str_count, needed_count, lang_count; 2569 struct usb_gadget_strings **stringtabs, *t; 2570 const char *data = _data; 2571 struct usb_string *s; 2572 2573 ENTER(); 2574 2575 if (unlikely(len < 16 || 2576 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || 2577 get_unaligned_le32(data + 4) != len)) 2578 goto error; 2579 str_count = get_unaligned_le32(data + 8); 2580 lang_count = get_unaligned_le32(data + 12); 2581 2582 /* if one is zero the other must be zero */ 2583 if (unlikely(!str_count != !lang_count)) 2584 goto error; 2585 2586 /* Do we have at least as many strings as descriptors need? */ 2587 needed_count = ffs->strings_count; 2588 if (unlikely(str_count < needed_count)) 2589 goto error; 2590 2591 /* 2592 * If we don't need any strings just return and free all 2593 * memory. 2594 */ 2595 if (!needed_count) { 2596 kfree(_data); 2597 return 0; 2598 } 2599 2600 /* Allocate everything in one chunk so there's less maintenance. */ 2601 { 2602 unsigned i = 0; 2603 vla_group(d); 2604 vla_item(d, struct usb_gadget_strings *, stringtabs, 2605 lang_count + 1); 2606 vla_item(d, struct usb_gadget_strings, stringtab, lang_count); 2607 vla_item(d, struct usb_string, strings, 2608 lang_count*(needed_count+1)); 2609 2610 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); 2611 2612 if (unlikely(!vlabuf)) { 2613 kfree(_data); 2614 return -ENOMEM; 2615 } 2616 2617 /* Initialize the VLA pointers */ 2618 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2619 t = vla_ptr(vlabuf, d, stringtab); 2620 i = lang_count; 2621 do { 2622 *stringtabs++ = t++; 2623 } while (--i); 2624 *stringtabs = NULL; 2625 2626 /* stringtabs = vlabuf = d_stringtabs for later kfree */ 2627 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2628 t = vla_ptr(vlabuf, d, stringtab); 2629 s = vla_ptr(vlabuf, d, strings); 2630 } 2631 2632 /* For each language */ 2633 data += 16; 2634 len -= 16; 2635 2636 do { /* lang_count > 0 so we can use do-while */ 2637 unsigned needed = needed_count; 2638 2639 if (unlikely(len < 3)) 2640 goto error_free; 2641 t->language = get_unaligned_le16(data); 2642 t->strings = s; 2643 ++t; 2644 2645 data += 2; 2646 len -= 2; 2647 2648 /* For each string */ 2649 do { /* str_count > 0 so we can use do-while */ 2650 size_t length = strnlen(data, len); 2651 2652 if (unlikely(length == len)) 2653 goto error_free; 2654 2655 /* 2656 * User may provide more strings then we need, 2657 * if that's the case we simply ignore the 2658 * rest 2659 */ 2660 if (likely(needed)) { 2661 /* 2662 * s->id will be set while adding 2663 * function to configuration so for 2664 * now just leave garbage here. 2665 */ 2666 s->s = data; 2667 --needed; 2668 ++s; 2669 } 2670 2671 data += length + 1; 2672 len -= length + 1; 2673 } while (--str_count); 2674 2675 s->id = 0; /* terminator */ 2676 s->s = NULL; 2677 ++s; 2678 2679 } while (--lang_count); 2680 2681 /* Some garbage left? */ 2682 if (unlikely(len)) 2683 goto error_free; 2684 2685 /* Done! */ 2686 ffs->stringtabs = stringtabs; 2687 ffs->raw_strings = _data; 2688 2689 return 0; 2690 2691 error_free: 2692 kfree(stringtabs); 2693 error: 2694 kfree(_data); 2695 return -EINVAL; 2696 } 2697 2698 2699 /* Events handling and management *******************************************/ 2700 2701 static void __ffs_event_add(struct ffs_data *ffs, 2702 enum usb_functionfs_event_type type) 2703 { 2704 enum usb_functionfs_event_type rem_type1, rem_type2 = type; 2705 int neg = 0; 2706 2707 /* 2708 * Abort any unhandled setup 2709 * 2710 * We do not need to worry about some cmpxchg() changing value 2711 * of ffs->setup_state without holding the lock because when 2712 * state is FFS_SETUP_PENDING cmpxchg() in several places in 2713 * the source does nothing. 2714 */ 2715 if (ffs->setup_state == FFS_SETUP_PENDING) 2716 ffs->setup_state = FFS_SETUP_CANCELLED; 2717 2718 /* 2719 * Logic of this function guarantees that there are at most four pending 2720 * evens on ffs->ev.types queue. This is important because the queue 2721 * has space for four elements only and __ffs_ep0_read_events function 2722 * depends on that limit as well. If more event types are added, those 2723 * limits have to be revisited or guaranteed to still hold. 2724 */ 2725 switch (type) { 2726 case FUNCTIONFS_RESUME: 2727 rem_type2 = FUNCTIONFS_SUSPEND; 2728 /* FALL THROUGH */ 2729 case FUNCTIONFS_SUSPEND: 2730 case FUNCTIONFS_SETUP: 2731 rem_type1 = type; 2732 /* Discard all similar events */ 2733 break; 2734 2735 case FUNCTIONFS_BIND: 2736 case FUNCTIONFS_UNBIND: 2737 case FUNCTIONFS_DISABLE: 2738 case FUNCTIONFS_ENABLE: 2739 /* Discard everything other then power management. */ 2740 rem_type1 = FUNCTIONFS_SUSPEND; 2741 rem_type2 = FUNCTIONFS_RESUME; 2742 neg = 1; 2743 break; 2744 2745 default: 2746 WARN(1, "%d: unknown event, this should not happen\n", type); 2747 return; 2748 } 2749 2750 { 2751 u8 *ev = ffs->ev.types, *out = ev; 2752 unsigned n = ffs->ev.count; 2753 for (; n; --n, ++ev) 2754 if ((*ev == rem_type1 || *ev == rem_type2) == neg) 2755 *out++ = *ev; 2756 else 2757 pr_vdebug("purging event %d\n", *ev); 2758 ffs->ev.count = out - ffs->ev.types; 2759 } 2760 2761 pr_vdebug("adding event %d\n", type); 2762 ffs->ev.types[ffs->ev.count++] = type; 2763 wake_up_locked(&ffs->ev.waitq); 2764 if (ffs->ffs_eventfd) 2765 eventfd_signal(ffs->ffs_eventfd, 1); 2766 } 2767 2768 static void ffs_event_add(struct ffs_data *ffs, 2769 enum usb_functionfs_event_type type) 2770 { 2771 unsigned long flags; 2772 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 2773 __ffs_event_add(ffs, type); 2774 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 2775 } 2776 2777 /* Bind/unbind USB function hooks *******************************************/ 2778 2779 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address) 2780 { 2781 int i; 2782 2783 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i) 2784 if (ffs->eps_addrmap[i] == endpoint_address) 2785 return i; 2786 return -ENOENT; 2787 } 2788 2789 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, 2790 struct usb_descriptor_header *desc, 2791 void *priv) 2792 { 2793 struct usb_endpoint_descriptor *ds = (void *)desc; 2794 struct ffs_function *func = priv; 2795 struct ffs_ep *ffs_ep; 2796 unsigned ep_desc_id; 2797 int idx; 2798 static const char *speed_names[] = { "full", "high", "super" }; 2799 2800 if (type != FFS_DESCRIPTOR) 2801 return 0; 2802 2803 /* 2804 * If ss_descriptors is not NULL, we are reading super speed 2805 * descriptors; if hs_descriptors is not NULL, we are reading high 2806 * speed descriptors; otherwise, we are reading full speed 2807 * descriptors. 2808 */ 2809 if (func->function.ss_descriptors) { 2810 ep_desc_id = 2; 2811 func->function.ss_descriptors[(long)valuep] = desc; 2812 } else if (func->function.hs_descriptors) { 2813 ep_desc_id = 1; 2814 func->function.hs_descriptors[(long)valuep] = desc; 2815 } else { 2816 ep_desc_id = 0; 2817 func->function.fs_descriptors[(long)valuep] = desc; 2818 } 2819 2820 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) 2821 return 0; 2822 2823 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1; 2824 if (idx < 0) 2825 return idx; 2826 2827 ffs_ep = func->eps + idx; 2828 2829 if (unlikely(ffs_ep->descs[ep_desc_id])) { 2830 pr_err("two %sspeed descriptors for EP %d\n", 2831 speed_names[ep_desc_id], 2832 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); 2833 return -EINVAL; 2834 } 2835 ffs_ep->descs[ep_desc_id] = ds; 2836 2837 ffs_dump_mem(": Original ep desc", ds, ds->bLength); 2838 if (ffs_ep->ep) { 2839 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; 2840 if (!ds->wMaxPacketSize) 2841 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; 2842 } else { 2843 struct usb_request *req; 2844 struct usb_ep *ep; 2845 u8 bEndpointAddress; 2846 u16 wMaxPacketSize; 2847 2848 /* 2849 * We back up bEndpointAddress because autoconfig overwrites 2850 * it with physical endpoint address. 2851 */ 2852 bEndpointAddress = ds->bEndpointAddress; 2853 /* 2854 * We back up wMaxPacketSize because autoconfig treats 2855 * endpoint descriptors as if they were full speed. 2856 */ 2857 wMaxPacketSize = ds->wMaxPacketSize; 2858 pr_vdebug("autoconfig\n"); 2859 ep = usb_ep_autoconfig(func->gadget, ds); 2860 if (unlikely(!ep)) 2861 return -ENOTSUPP; 2862 ep->driver_data = func->eps + idx; 2863 2864 req = usb_ep_alloc_request(ep, GFP_KERNEL); 2865 if (unlikely(!req)) 2866 return -ENOMEM; 2867 2868 ffs_ep->ep = ep; 2869 ffs_ep->req = req; 2870 func->eps_revmap[ds->bEndpointAddress & 2871 USB_ENDPOINT_NUMBER_MASK] = idx + 1; 2872 /* 2873 * If we use virtual address mapping, we restore 2874 * original bEndpointAddress value. 2875 */ 2876 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 2877 ds->bEndpointAddress = bEndpointAddress; 2878 /* 2879 * Restore wMaxPacketSize which was potentially 2880 * overwritten by autoconfig. 2881 */ 2882 ds->wMaxPacketSize = wMaxPacketSize; 2883 } 2884 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); 2885 2886 return 0; 2887 } 2888 2889 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, 2890 struct usb_descriptor_header *desc, 2891 void *priv) 2892 { 2893 struct ffs_function *func = priv; 2894 unsigned idx; 2895 u8 newValue; 2896 2897 switch (type) { 2898 default: 2899 case FFS_DESCRIPTOR: 2900 /* Handled in previous pass by __ffs_func_bind_do_descs() */ 2901 return 0; 2902 2903 case FFS_INTERFACE: 2904 idx = *valuep; 2905 if (func->interfaces_nums[idx] < 0) { 2906 int id = usb_interface_id(func->conf, &func->function); 2907 if (unlikely(id < 0)) 2908 return id; 2909 func->interfaces_nums[idx] = id; 2910 } 2911 newValue = func->interfaces_nums[idx]; 2912 break; 2913 2914 case FFS_STRING: 2915 /* String' IDs are allocated when fsf_data is bound to cdev */ 2916 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; 2917 break; 2918 2919 case FFS_ENDPOINT: 2920 /* 2921 * USB_DT_ENDPOINT are handled in 2922 * __ffs_func_bind_do_descs(). 2923 */ 2924 if (desc->bDescriptorType == USB_DT_ENDPOINT) 2925 return 0; 2926 2927 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; 2928 if (unlikely(!func->eps[idx].ep)) 2929 return -EINVAL; 2930 2931 { 2932 struct usb_endpoint_descriptor **descs; 2933 descs = func->eps[idx].descs; 2934 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; 2935 } 2936 break; 2937 } 2938 2939 pr_vdebug("%02x -> %02x\n", *valuep, newValue); 2940 *valuep = newValue; 2941 return 0; 2942 } 2943 2944 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, 2945 struct usb_os_desc_header *h, void *data, 2946 unsigned len, void *priv) 2947 { 2948 struct ffs_function *func = priv; 2949 u8 length = 0; 2950 2951 switch (type) { 2952 case FFS_OS_DESC_EXT_COMPAT: { 2953 struct usb_ext_compat_desc *desc = data; 2954 struct usb_os_desc_table *t; 2955 2956 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; 2957 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; 2958 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID, 2959 ARRAY_SIZE(desc->CompatibleID) + 2960 ARRAY_SIZE(desc->SubCompatibleID)); 2961 length = sizeof(*desc); 2962 } 2963 break; 2964 case FFS_OS_DESC_EXT_PROP: { 2965 struct usb_ext_prop_desc *desc = data; 2966 struct usb_os_desc_table *t; 2967 struct usb_os_desc_ext_prop *ext_prop; 2968 char *ext_prop_name; 2969 char *ext_prop_data; 2970 2971 t = &func->function.os_desc_table[h->interface]; 2972 t->if_id = func->interfaces_nums[h->interface]; 2973 2974 ext_prop = func->ffs->ms_os_descs_ext_prop_avail; 2975 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); 2976 2977 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); 2978 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); 2979 ext_prop->data_len = le32_to_cpu(*(__le32 *) 2980 usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); 2981 length = ext_prop->name_len + ext_prop->data_len + 14; 2982 2983 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; 2984 func->ffs->ms_os_descs_ext_prop_name_avail += 2985 ext_prop->name_len; 2986 2987 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; 2988 func->ffs->ms_os_descs_ext_prop_data_avail += 2989 ext_prop->data_len; 2990 memcpy(ext_prop_data, 2991 usb_ext_prop_data_ptr(data, ext_prop->name_len), 2992 ext_prop->data_len); 2993 /* unicode data reported to the host as "WCHAR"s */ 2994 switch (ext_prop->type) { 2995 case USB_EXT_PROP_UNICODE: 2996 case USB_EXT_PROP_UNICODE_ENV: 2997 case USB_EXT_PROP_UNICODE_LINK: 2998 case USB_EXT_PROP_UNICODE_MULTI: 2999 ext_prop->data_len *= 2; 3000 break; 3001 } 3002 ext_prop->data = ext_prop_data; 3003 3004 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), 3005 ext_prop->name_len); 3006 /* property name reported to the host as "WCHAR"s */ 3007 ext_prop->name_len *= 2; 3008 ext_prop->name = ext_prop_name; 3009 3010 t->os_desc->ext_prop_len += 3011 ext_prop->name_len + ext_prop->data_len + 14; 3012 ++t->os_desc->ext_prop_count; 3013 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); 3014 } 3015 break; 3016 default: 3017 pr_vdebug("unknown descriptor: %d\n", type); 3018 } 3019 3020 return length; 3021 } 3022 3023 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, 3024 struct usb_configuration *c) 3025 { 3026 struct ffs_function *func = ffs_func_from_usb(f); 3027 struct f_fs_opts *ffs_opts = 3028 container_of(f->fi, struct f_fs_opts, func_inst); 3029 int ret; 3030 3031 ENTER(); 3032 3033 /* 3034 * Legacy gadget triggers binding in functionfs_ready_callback, 3035 * which already uses locking; taking the same lock here would 3036 * cause a deadlock. 3037 * 3038 * Configfs-enabled gadgets however do need ffs_dev_lock. 3039 */ 3040 if (!ffs_opts->no_configfs) 3041 ffs_dev_lock(); 3042 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; 3043 func->ffs = ffs_opts->dev->ffs_data; 3044 if (!ffs_opts->no_configfs) 3045 ffs_dev_unlock(); 3046 if (ret) 3047 return ERR_PTR(ret); 3048 3049 func->conf = c; 3050 func->gadget = c->cdev->gadget; 3051 3052 /* 3053 * in drivers/usb/gadget/configfs.c:configfs_composite_bind() 3054 * configurations are bound in sequence with list_for_each_entry, 3055 * in each configuration its functions are bound in sequence 3056 * with list_for_each_entry, so we assume no race condition 3057 * with regard to ffs_opts->bound access 3058 */ 3059 if (!ffs_opts->refcnt) { 3060 ret = functionfs_bind(func->ffs, c->cdev); 3061 if (ret) 3062 return ERR_PTR(ret); 3063 } 3064 ffs_opts->refcnt++; 3065 func->function.strings = func->ffs->stringtabs; 3066 3067 return ffs_opts; 3068 } 3069 3070 static int _ffs_func_bind(struct usb_configuration *c, 3071 struct usb_function *f) 3072 { 3073 struct ffs_function *func = ffs_func_from_usb(f); 3074 struct ffs_data *ffs = func->ffs; 3075 3076 const int full = !!func->ffs->fs_descs_count; 3077 const int high = !!func->ffs->hs_descs_count; 3078 const int super = !!func->ffs->ss_descs_count; 3079 3080 int fs_len, hs_len, ss_len, ret, i; 3081 struct ffs_ep *eps_ptr; 3082 3083 /* Make it a single chunk, less management later on */ 3084 vla_group(d); 3085 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); 3086 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, 3087 full ? ffs->fs_descs_count + 1 : 0); 3088 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, 3089 high ? ffs->hs_descs_count + 1 : 0); 3090 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, 3091 super ? ffs->ss_descs_count + 1 : 0); 3092 vla_item_with_sz(d, short, inums, ffs->interfaces_count); 3093 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, 3094 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3095 vla_item_with_sz(d, char[16], ext_compat, 3096 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3097 vla_item_with_sz(d, struct usb_os_desc, os_desc, 3098 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3099 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, 3100 ffs->ms_os_descs_ext_prop_count); 3101 vla_item_with_sz(d, char, ext_prop_name, 3102 ffs->ms_os_descs_ext_prop_name_len); 3103 vla_item_with_sz(d, char, ext_prop_data, 3104 ffs->ms_os_descs_ext_prop_data_len); 3105 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); 3106 char *vlabuf; 3107 3108 ENTER(); 3109 3110 /* Has descriptors only for speeds gadget does not support */ 3111 if (unlikely(!(full | high | super))) 3112 return -ENOTSUPP; 3113 3114 /* Allocate a single chunk, less management later on */ 3115 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); 3116 if (unlikely(!vlabuf)) 3117 return -ENOMEM; 3118 3119 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); 3120 ffs->ms_os_descs_ext_prop_name_avail = 3121 vla_ptr(vlabuf, d, ext_prop_name); 3122 ffs->ms_os_descs_ext_prop_data_avail = 3123 vla_ptr(vlabuf, d, ext_prop_data); 3124 3125 /* Copy descriptors */ 3126 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, 3127 ffs->raw_descs_length); 3128 3129 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); 3130 eps_ptr = vla_ptr(vlabuf, d, eps); 3131 for (i = 0; i < ffs->eps_count; i++) 3132 eps_ptr[i].num = -1; 3133 3134 /* Save pointers 3135 * d_eps == vlabuf, func->eps used to kfree vlabuf later 3136 */ 3137 func->eps = vla_ptr(vlabuf, d, eps); 3138 func->interfaces_nums = vla_ptr(vlabuf, d, inums); 3139 3140 /* 3141 * Go through all the endpoint descriptors and allocate 3142 * endpoints first, so that later we can rewrite the endpoint 3143 * numbers without worrying that it may be described later on. 3144 */ 3145 if (likely(full)) { 3146 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); 3147 fs_len = ffs_do_descs(ffs->fs_descs_count, 3148 vla_ptr(vlabuf, d, raw_descs), 3149 d_raw_descs__sz, 3150 __ffs_func_bind_do_descs, func); 3151 if (unlikely(fs_len < 0)) { 3152 ret = fs_len; 3153 goto error; 3154 } 3155 } else { 3156 fs_len = 0; 3157 } 3158 3159 if (likely(high)) { 3160 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); 3161 hs_len = ffs_do_descs(ffs->hs_descs_count, 3162 vla_ptr(vlabuf, d, raw_descs) + fs_len, 3163 d_raw_descs__sz - fs_len, 3164 __ffs_func_bind_do_descs, func); 3165 if (unlikely(hs_len < 0)) { 3166 ret = hs_len; 3167 goto error; 3168 } 3169 } else { 3170 hs_len = 0; 3171 } 3172 3173 if (likely(super)) { 3174 func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs); 3175 ss_len = ffs_do_descs(ffs->ss_descs_count, 3176 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, 3177 d_raw_descs__sz - fs_len - hs_len, 3178 __ffs_func_bind_do_descs, func); 3179 if (unlikely(ss_len < 0)) { 3180 ret = ss_len; 3181 goto error; 3182 } 3183 } else { 3184 ss_len = 0; 3185 } 3186 3187 /* 3188 * Now handle interface numbers allocation and interface and 3189 * endpoint numbers rewriting. We can do that in one go 3190 * now. 3191 */ 3192 ret = ffs_do_descs(ffs->fs_descs_count + 3193 (high ? ffs->hs_descs_count : 0) + 3194 (super ? ffs->ss_descs_count : 0), 3195 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, 3196 __ffs_func_bind_do_nums, func); 3197 if (unlikely(ret < 0)) 3198 goto error; 3199 3200 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); 3201 if (c->cdev->use_os_string) { 3202 for (i = 0; i < ffs->interfaces_count; ++i) { 3203 struct usb_os_desc *desc; 3204 3205 desc = func->function.os_desc_table[i].os_desc = 3206 vla_ptr(vlabuf, d, os_desc) + 3207 i * sizeof(struct usb_os_desc); 3208 desc->ext_compat_id = 3209 vla_ptr(vlabuf, d, ext_compat) + i * 16; 3210 INIT_LIST_HEAD(&desc->ext_prop); 3211 } 3212 ret = ffs_do_os_descs(ffs->ms_os_descs_count, 3213 vla_ptr(vlabuf, d, raw_descs) + 3214 fs_len + hs_len + ss_len, 3215 d_raw_descs__sz - fs_len - hs_len - 3216 ss_len, 3217 __ffs_func_bind_do_os_desc, func); 3218 if (unlikely(ret < 0)) 3219 goto error; 3220 } 3221 func->function.os_desc_n = 3222 c->cdev->use_os_string ? ffs->interfaces_count : 0; 3223 3224 /* And we're done */ 3225 ffs_event_add(ffs, FUNCTIONFS_BIND); 3226 return 0; 3227 3228 error: 3229 /* XXX Do we need to release all claimed endpoints here? */ 3230 return ret; 3231 } 3232 3233 static int ffs_func_bind(struct usb_configuration *c, 3234 struct usb_function *f) 3235 { 3236 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); 3237 struct ffs_function *func = ffs_func_from_usb(f); 3238 int ret; 3239 3240 if (IS_ERR(ffs_opts)) 3241 return PTR_ERR(ffs_opts); 3242 3243 ret = _ffs_func_bind(c, f); 3244 if (ret && !--ffs_opts->refcnt) 3245 functionfs_unbind(func->ffs); 3246 3247 return ret; 3248 } 3249 3250 3251 /* Other USB function hooks *************************************************/ 3252 3253 static void ffs_reset_work(struct work_struct *work) 3254 { 3255 struct ffs_data *ffs = container_of(work, 3256 struct ffs_data, reset_work); 3257 ffs_data_reset(ffs); 3258 } 3259 3260 static int ffs_func_set_alt(struct usb_function *f, 3261 unsigned interface, unsigned alt) 3262 { 3263 struct ffs_function *func = ffs_func_from_usb(f); 3264 struct ffs_data *ffs = func->ffs; 3265 int ret = 0, intf; 3266 3267 if (alt != (unsigned)-1) { 3268 intf = ffs_func_revmap_intf(func, interface); 3269 if (unlikely(intf < 0)) 3270 return intf; 3271 } 3272 3273 if (ffs->func) 3274 ffs_func_eps_disable(ffs->func); 3275 3276 if (ffs->state == FFS_DEACTIVATED) { 3277 ffs->state = FFS_CLOSING; 3278 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3279 schedule_work(&ffs->reset_work); 3280 return -ENODEV; 3281 } 3282 3283 if (ffs->state != FFS_ACTIVE) 3284 return -ENODEV; 3285 3286 if (alt == (unsigned)-1) { 3287 ffs->func = NULL; 3288 ffs_event_add(ffs, FUNCTIONFS_DISABLE); 3289 return 0; 3290 } 3291 3292 ffs->func = func; 3293 ret = ffs_func_eps_enable(func); 3294 if (likely(ret >= 0)) 3295 ffs_event_add(ffs, FUNCTIONFS_ENABLE); 3296 return ret; 3297 } 3298 3299 static void ffs_func_disable(struct usb_function *f) 3300 { 3301 ffs_func_set_alt(f, 0, (unsigned)-1); 3302 } 3303 3304 static int ffs_func_setup(struct usb_function *f, 3305 const struct usb_ctrlrequest *creq) 3306 { 3307 struct ffs_function *func = ffs_func_from_usb(f); 3308 struct ffs_data *ffs = func->ffs; 3309 unsigned long flags; 3310 int ret; 3311 3312 ENTER(); 3313 3314 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); 3315 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); 3316 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); 3317 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); 3318 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); 3319 3320 /* 3321 * Most requests directed to interface go through here 3322 * (notable exceptions are set/get interface) so we need to 3323 * handle them. All other either handled by composite or 3324 * passed to usb_configuration->setup() (if one is set). No 3325 * matter, we will handle requests directed to endpoint here 3326 * as well (as it's straightforward). Other request recipient 3327 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP 3328 * is being used. 3329 */ 3330 if (ffs->state != FFS_ACTIVE) 3331 return -ENODEV; 3332 3333 switch (creq->bRequestType & USB_RECIP_MASK) { 3334 case USB_RECIP_INTERFACE: 3335 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); 3336 if (unlikely(ret < 0)) 3337 return ret; 3338 break; 3339 3340 case USB_RECIP_ENDPOINT: 3341 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); 3342 if (unlikely(ret < 0)) 3343 return ret; 3344 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3345 ret = func->ffs->eps_addrmap[ret]; 3346 break; 3347 3348 default: 3349 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP) 3350 ret = le16_to_cpu(creq->wIndex); 3351 else 3352 return -EOPNOTSUPP; 3353 } 3354 3355 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3356 ffs->ev.setup = *creq; 3357 ffs->ev.setup.wIndex = cpu_to_le16(ret); 3358 __ffs_event_add(ffs, FUNCTIONFS_SETUP); 3359 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3360 3361 return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0; 3362 } 3363 3364 static bool ffs_func_req_match(struct usb_function *f, 3365 const struct usb_ctrlrequest *creq, 3366 bool config0) 3367 { 3368 struct ffs_function *func = ffs_func_from_usb(f); 3369 3370 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP)) 3371 return false; 3372 3373 switch (creq->bRequestType & USB_RECIP_MASK) { 3374 case USB_RECIP_INTERFACE: 3375 return (ffs_func_revmap_intf(func, 3376 le16_to_cpu(creq->wIndex)) >= 0); 3377 case USB_RECIP_ENDPOINT: 3378 return (ffs_func_revmap_ep(func, 3379 le16_to_cpu(creq->wIndex)) >= 0); 3380 default: 3381 return (bool) (func->ffs->user_flags & 3382 FUNCTIONFS_ALL_CTRL_RECIP); 3383 } 3384 } 3385 3386 static void ffs_func_suspend(struct usb_function *f) 3387 { 3388 ENTER(); 3389 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); 3390 } 3391 3392 static void ffs_func_resume(struct usb_function *f) 3393 { 3394 ENTER(); 3395 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); 3396 } 3397 3398 3399 /* Endpoint and interface numbers reverse mapping ***************************/ 3400 3401 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) 3402 { 3403 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; 3404 return num ? num : -EDOM; 3405 } 3406 3407 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) 3408 { 3409 short *nums = func->interfaces_nums; 3410 unsigned count = func->ffs->interfaces_count; 3411 3412 for (; count; --count, ++nums) { 3413 if (*nums >= 0 && *nums == intf) 3414 return nums - func->interfaces_nums; 3415 } 3416 3417 return -EDOM; 3418 } 3419 3420 3421 /* Devices management *******************************************************/ 3422 3423 static LIST_HEAD(ffs_devices); 3424 3425 static struct ffs_dev *_ffs_do_find_dev(const char *name) 3426 { 3427 struct ffs_dev *dev; 3428 3429 if (!name) 3430 return NULL; 3431 3432 list_for_each_entry(dev, &ffs_devices, entry) { 3433 if (strcmp(dev->name, name) == 0) 3434 return dev; 3435 } 3436 3437 return NULL; 3438 } 3439 3440 /* 3441 * ffs_lock must be taken by the caller of this function 3442 */ 3443 static struct ffs_dev *_ffs_get_single_dev(void) 3444 { 3445 struct ffs_dev *dev; 3446 3447 if (list_is_singular(&ffs_devices)) { 3448 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); 3449 if (dev->single) 3450 return dev; 3451 } 3452 3453 return NULL; 3454 } 3455 3456 /* 3457 * ffs_lock must be taken by the caller of this function 3458 */ 3459 static struct ffs_dev *_ffs_find_dev(const char *name) 3460 { 3461 struct ffs_dev *dev; 3462 3463 dev = _ffs_get_single_dev(); 3464 if (dev) 3465 return dev; 3466 3467 return _ffs_do_find_dev(name); 3468 } 3469 3470 /* Configfs support *********************************************************/ 3471 3472 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) 3473 { 3474 return container_of(to_config_group(item), struct f_fs_opts, 3475 func_inst.group); 3476 } 3477 3478 static void ffs_attr_release(struct config_item *item) 3479 { 3480 struct f_fs_opts *opts = to_ffs_opts(item); 3481 3482 usb_put_function_instance(&opts->func_inst); 3483 } 3484 3485 static struct configfs_item_operations ffs_item_ops = { 3486 .release = ffs_attr_release, 3487 }; 3488 3489 static const struct config_item_type ffs_func_type = { 3490 .ct_item_ops = &ffs_item_ops, 3491 .ct_owner = THIS_MODULE, 3492 }; 3493 3494 3495 /* Function registration interface ******************************************/ 3496 3497 static void ffs_free_inst(struct usb_function_instance *f) 3498 { 3499 struct f_fs_opts *opts; 3500 3501 opts = to_f_fs_opts(f); 3502 ffs_dev_lock(); 3503 _ffs_free_dev(opts->dev); 3504 ffs_dev_unlock(); 3505 kfree(opts); 3506 } 3507 3508 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) 3509 { 3510 if (strlen(name) >= sizeof_field(struct ffs_dev, name)) 3511 return -ENAMETOOLONG; 3512 return ffs_name_dev(to_f_fs_opts(fi)->dev, name); 3513 } 3514 3515 static struct usb_function_instance *ffs_alloc_inst(void) 3516 { 3517 struct f_fs_opts *opts; 3518 struct ffs_dev *dev; 3519 3520 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 3521 if (!opts) 3522 return ERR_PTR(-ENOMEM); 3523 3524 opts->func_inst.set_inst_name = ffs_set_inst_name; 3525 opts->func_inst.free_func_inst = ffs_free_inst; 3526 ffs_dev_lock(); 3527 dev = _ffs_alloc_dev(); 3528 ffs_dev_unlock(); 3529 if (IS_ERR(dev)) { 3530 kfree(opts); 3531 return ERR_CAST(dev); 3532 } 3533 opts->dev = dev; 3534 dev->opts = opts; 3535 3536 config_group_init_type_name(&opts->func_inst.group, "", 3537 &ffs_func_type); 3538 return &opts->func_inst; 3539 } 3540 3541 static void ffs_free(struct usb_function *f) 3542 { 3543 kfree(ffs_func_from_usb(f)); 3544 } 3545 3546 static void ffs_func_unbind(struct usb_configuration *c, 3547 struct usb_function *f) 3548 { 3549 struct ffs_function *func = ffs_func_from_usb(f); 3550 struct ffs_data *ffs = func->ffs; 3551 struct f_fs_opts *opts = 3552 container_of(f->fi, struct f_fs_opts, func_inst); 3553 struct ffs_ep *ep = func->eps; 3554 unsigned count = ffs->eps_count; 3555 unsigned long flags; 3556 3557 ENTER(); 3558 if (ffs->func == func) { 3559 ffs_func_eps_disable(func); 3560 ffs->func = NULL; 3561 } 3562 3563 if (!--opts->refcnt) 3564 functionfs_unbind(ffs); 3565 3566 /* cleanup after autoconfig */ 3567 spin_lock_irqsave(&func->ffs->eps_lock, flags); 3568 while (count--) { 3569 if (ep->ep && ep->req) 3570 usb_ep_free_request(ep->ep, ep->req); 3571 ep->req = NULL; 3572 ++ep; 3573 } 3574 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 3575 kfree(func->eps); 3576 func->eps = NULL; 3577 /* 3578 * eps, descriptors and interfaces_nums are allocated in the 3579 * same chunk so only one free is required. 3580 */ 3581 func->function.fs_descriptors = NULL; 3582 func->function.hs_descriptors = NULL; 3583 func->function.ss_descriptors = NULL; 3584 func->interfaces_nums = NULL; 3585 3586 ffs_event_add(ffs, FUNCTIONFS_UNBIND); 3587 } 3588 3589 static struct usb_function *ffs_alloc(struct usb_function_instance *fi) 3590 { 3591 struct ffs_function *func; 3592 3593 ENTER(); 3594 3595 func = kzalloc(sizeof(*func), GFP_KERNEL); 3596 if (unlikely(!func)) 3597 return ERR_PTR(-ENOMEM); 3598 3599 func->function.name = "Function FS Gadget"; 3600 3601 func->function.bind = ffs_func_bind; 3602 func->function.unbind = ffs_func_unbind; 3603 func->function.set_alt = ffs_func_set_alt; 3604 func->function.disable = ffs_func_disable; 3605 func->function.setup = ffs_func_setup; 3606 func->function.req_match = ffs_func_req_match; 3607 func->function.suspend = ffs_func_suspend; 3608 func->function.resume = ffs_func_resume; 3609 func->function.free_func = ffs_free; 3610 3611 return &func->function; 3612 } 3613 3614 /* 3615 * ffs_lock must be taken by the caller of this function 3616 */ 3617 static struct ffs_dev *_ffs_alloc_dev(void) 3618 { 3619 struct ffs_dev *dev; 3620 int ret; 3621 3622 if (_ffs_get_single_dev()) 3623 return ERR_PTR(-EBUSY); 3624 3625 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3626 if (!dev) 3627 return ERR_PTR(-ENOMEM); 3628 3629 if (list_empty(&ffs_devices)) { 3630 ret = functionfs_init(); 3631 if (ret) { 3632 kfree(dev); 3633 return ERR_PTR(ret); 3634 } 3635 } 3636 3637 list_add(&dev->entry, &ffs_devices); 3638 3639 return dev; 3640 } 3641 3642 int ffs_name_dev(struct ffs_dev *dev, const char *name) 3643 { 3644 struct ffs_dev *existing; 3645 int ret = 0; 3646 3647 ffs_dev_lock(); 3648 3649 existing = _ffs_do_find_dev(name); 3650 if (!existing) 3651 strlcpy(dev->name, name, ARRAY_SIZE(dev->name)); 3652 else if (existing != dev) 3653 ret = -EBUSY; 3654 3655 ffs_dev_unlock(); 3656 3657 return ret; 3658 } 3659 EXPORT_SYMBOL_GPL(ffs_name_dev); 3660 3661 int ffs_single_dev(struct ffs_dev *dev) 3662 { 3663 int ret; 3664 3665 ret = 0; 3666 ffs_dev_lock(); 3667 3668 if (!list_is_singular(&ffs_devices)) 3669 ret = -EBUSY; 3670 else 3671 dev->single = true; 3672 3673 ffs_dev_unlock(); 3674 return ret; 3675 } 3676 EXPORT_SYMBOL_GPL(ffs_single_dev); 3677 3678 /* 3679 * ffs_lock must be taken by the caller of this function 3680 */ 3681 static void _ffs_free_dev(struct ffs_dev *dev) 3682 { 3683 list_del(&dev->entry); 3684 3685 /* Clear the private_data pointer to stop incorrect dev access */ 3686 if (dev->ffs_data) 3687 dev->ffs_data->private_data = NULL; 3688 3689 kfree(dev); 3690 if (list_empty(&ffs_devices)) 3691 functionfs_cleanup(); 3692 } 3693 3694 static void *ffs_acquire_dev(const char *dev_name) 3695 { 3696 struct ffs_dev *ffs_dev; 3697 3698 ENTER(); 3699 ffs_dev_lock(); 3700 3701 ffs_dev = _ffs_find_dev(dev_name); 3702 if (!ffs_dev) 3703 ffs_dev = ERR_PTR(-ENOENT); 3704 else if (ffs_dev->mounted) 3705 ffs_dev = ERR_PTR(-EBUSY); 3706 else if (ffs_dev->ffs_acquire_dev_callback && 3707 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) 3708 ffs_dev = ERR_PTR(-ENOENT); 3709 else 3710 ffs_dev->mounted = true; 3711 3712 ffs_dev_unlock(); 3713 return ffs_dev; 3714 } 3715 3716 static void ffs_release_dev(struct ffs_data *ffs_data) 3717 { 3718 struct ffs_dev *ffs_dev; 3719 3720 ENTER(); 3721 ffs_dev_lock(); 3722 3723 ffs_dev = ffs_data->private_data; 3724 if (ffs_dev) { 3725 ffs_dev->mounted = false; 3726 3727 if (ffs_dev->ffs_release_dev_callback) 3728 ffs_dev->ffs_release_dev_callback(ffs_dev); 3729 } 3730 3731 ffs_dev_unlock(); 3732 } 3733 3734 static int ffs_ready(struct ffs_data *ffs) 3735 { 3736 struct ffs_dev *ffs_obj; 3737 int ret = 0; 3738 3739 ENTER(); 3740 ffs_dev_lock(); 3741 3742 ffs_obj = ffs->private_data; 3743 if (!ffs_obj) { 3744 ret = -EINVAL; 3745 goto done; 3746 } 3747 if (WARN_ON(ffs_obj->desc_ready)) { 3748 ret = -EBUSY; 3749 goto done; 3750 } 3751 3752 ffs_obj->desc_ready = true; 3753 ffs_obj->ffs_data = ffs; 3754 3755 if (ffs_obj->ffs_ready_callback) { 3756 ret = ffs_obj->ffs_ready_callback(ffs); 3757 if (ret) 3758 goto done; 3759 } 3760 3761 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); 3762 done: 3763 ffs_dev_unlock(); 3764 return ret; 3765 } 3766 3767 static void ffs_closed(struct ffs_data *ffs) 3768 { 3769 struct ffs_dev *ffs_obj; 3770 struct f_fs_opts *opts; 3771 struct config_item *ci; 3772 3773 ENTER(); 3774 ffs_dev_lock(); 3775 3776 ffs_obj = ffs->private_data; 3777 if (!ffs_obj) 3778 goto done; 3779 3780 ffs_obj->desc_ready = false; 3781 ffs_obj->ffs_data = NULL; 3782 3783 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) && 3784 ffs_obj->ffs_closed_callback) 3785 ffs_obj->ffs_closed_callback(ffs); 3786 3787 if (ffs_obj->opts) 3788 opts = ffs_obj->opts; 3789 else 3790 goto done; 3791 3792 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent 3793 || !kref_read(&opts->func_inst.group.cg_item.ci_kref)) 3794 goto done; 3795 3796 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent; 3797 ffs_dev_unlock(); 3798 3799 if (test_bit(FFS_FL_BOUND, &ffs->flags)) 3800 unregister_gadget_item(ci); 3801 return; 3802 done: 3803 ffs_dev_unlock(); 3804 } 3805 3806 /* Misc helper functions ****************************************************/ 3807 3808 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 3809 { 3810 return nonblock 3811 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN 3812 : mutex_lock_interruptible(mutex); 3813 } 3814 3815 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 3816 { 3817 char *data; 3818 3819 if (unlikely(!len)) 3820 return NULL; 3821 3822 data = kmalloc(len, GFP_KERNEL); 3823 if (unlikely(!data)) 3824 return ERR_PTR(-ENOMEM); 3825 3826 if (unlikely(copy_from_user(data, buf, len))) { 3827 kfree(data); 3828 return ERR_PTR(-EFAULT); 3829 } 3830 3831 pr_vdebug("Buffer from user space:\n"); 3832 ffs_dump_mem("", data, len); 3833 3834 return data; 3835 } 3836 3837 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); 3838 MODULE_LICENSE("GPL"); 3839 MODULE_AUTHOR("Michal Nazarewicz"); 3840