xref: /openbmc/linux/drivers/usb/gadget/function/f_fs.c (revision e65e175b07bef5974045cc42238de99057669ca7)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * f_fs.c -- user mode file system API for USB composite function controllers
4  *
5  * Copyright (C) 2010 Samsung Electronics
6  * Author: Michal Nazarewicz <mina86@mina86.com>
7  *
8  * Based on inode.c (GadgetFS) which was:
9  * Copyright (C) 2003-2004 David Brownell
10  * Copyright (C) 2003 Agilent Technologies
11  */
12 
13 
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16 
17 #include <linux/blkdev.h>
18 #include <linux/pagemap.h>
19 #include <linux/export.h>
20 #include <linux/fs_parser.h>
21 #include <linux/hid.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/scatterlist.h>
25 #include <linux/sched/signal.h>
26 #include <linux/uio.h>
27 #include <linux/vmalloc.h>
28 #include <asm/unaligned.h>
29 
30 #include <linux/usb/ccid.h>
31 #include <linux/usb/composite.h>
32 #include <linux/usb/functionfs.h>
33 
34 #include <linux/aio.h>
35 #include <linux/kthread.h>
36 #include <linux/poll.h>
37 #include <linux/eventfd.h>
38 
39 #include "u_fs.h"
40 #include "u_f.h"
41 #include "u_os_desc.h"
42 #include "configfs.h"
43 
44 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
45 
46 /* Reference counter handling */
47 static void ffs_data_get(struct ffs_data *ffs);
48 static void ffs_data_put(struct ffs_data *ffs);
49 /* Creates new ffs_data object. */
50 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
51 	__attribute__((malloc));
52 
53 /* Opened counter handling. */
54 static void ffs_data_opened(struct ffs_data *ffs);
55 static void ffs_data_closed(struct ffs_data *ffs);
56 
57 /* Called with ffs->mutex held; take over ownership of data. */
58 static int __must_check
59 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
60 static int __must_check
61 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
62 
63 
64 /* The function structure ***************************************************/
65 
66 struct ffs_ep;
67 
68 struct ffs_function {
69 	struct usb_configuration	*conf;
70 	struct usb_gadget		*gadget;
71 	struct ffs_data			*ffs;
72 
73 	struct ffs_ep			*eps;
74 	u8				eps_revmap[16];
75 	short				*interfaces_nums;
76 
77 	struct usb_function		function;
78 };
79 
80 
81 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
82 {
83 	return container_of(f, struct ffs_function, function);
84 }
85 
86 
87 static inline enum ffs_setup_state
88 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
89 {
90 	return (enum ffs_setup_state)
91 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
92 }
93 
94 
95 static void ffs_func_eps_disable(struct ffs_function *func);
96 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
97 
98 static int ffs_func_bind(struct usb_configuration *,
99 			 struct usb_function *);
100 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
101 static void ffs_func_disable(struct usb_function *);
102 static int ffs_func_setup(struct usb_function *,
103 			  const struct usb_ctrlrequest *);
104 static bool ffs_func_req_match(struct usb_function *,
105 			       const struct usb_ctrlrequest *,
106 			       bool config0);
107 static void ffs_func_suspend(struct usb_function *);
108 static void ffs_func_resume(struct usb_function *);
109 
110 
111 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
112 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
113 
114 
115 /* The endpoints structures *************************************************/
116 
117 struct ffs_ep {
118 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
119 	struct usb_request		*req;	/* P: epfile->mutex */
120 
121 	/* [0]: full speed, [1]: high speed, [2]: super speed */
122 	struct usb_endpoint_descriptor	*descs[3];
123 
124 	u8				num;
125 };
126 
127 struct ffs_epfile {
128 	/* Protects ep->ep and ep->req. */
129 	struct mutex			mutex;
130 
131 	struct ffs_data			*ffs;
132 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
133 
134 	struct dentry			*dentry;
135 
136 	/*
137 	 * Buffer for holding data from partial reads which may happen since
138 	 * we’re rounding user read requests to a multiple of a max packet size.
139 	 *
140 	 * The pointer is initialised with NULL value and may be set by
141 	 * __ffs_epfile_read_data function to point to a temporary buffer.
142 	 *
143 	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
144 	 * data from said buffer and eventually free it.  Importantly, while the
145 	 * function is using the buffer, it sets the pointer to NULL.  This is
146 	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
147 	 * can never run concurrently (they are synchronised by epfile->mutex)
148 	 * so the latter will not assign a new value to the pointer.
149 	 *
150 	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
151 	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
152 	 * value is crux of the synchronisation between ffs_func_eps_disable and
153 	 * __ffs_epfile_read_data.
154 	 *
155 	 * Once __ffs_epfile_read_data is about to finish it will try to set the
156 	 * pointer back to its old value (as described above), but seeing as the
157 	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
158 	 * the buffer.
159 	 *
160 	 * == State transitions ==
161 	 *
162 	 * • ptr == NULL:  (initial state)
163 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
164 	 *   ◦ __ffs_epfile_read_buffered:    nop
165 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
166 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
167 	 * • ptr == DROP:
168 	 *   ◦ __ffs_epfile_read_buffer_free: nop
169 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
170 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
171 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
172 	 * • ptr == buf:
173 	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
174 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
175 	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
176 	 *                                    is always called first
177 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
178 	 * • ptr == NULL and reading:
179 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
180 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
181 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
182 	 *   ◦ reading finishes and …
183 	 *     … all data read:               free buf, go to ptr == NULL
184 	 *     … otherwise:                   go to ptr == buf and reading
185 	 * • ptr == DROP and reading:
186 	 *   ◦ __ffs_epfile_read_buffer_free: nop
187 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
188 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
189 	 *   ◦ reading finishes:              free buf, go to ptr == DROP
190 	 */
191 	struct ffs_buffer		*read_buffer;
192 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
193 
194 	char				name[5];
195 
196 	unsigned char			in;	/* P: ffs->eps_lock */
197 	unsigned char			isoc;	/* P: ffs->eps_lock */
198 
199 	unsigned char			_pad;
200 };
201 
202 struct ffs_buffer {
203 	size_t length;
204 	char *data;
205 	char storage[];
206 };
207 
208 /*  ffs_io_data structure ***************************************************/
209 
210 struct ffs_io_data {
211 	bool aio;
212 	bool read;
213 
214 	struct kiocb *kiocb;
215 	struct iov_iter data;
216 	const void *to_free;
217 	char *buf;
218 
219 	struct mm_struct *mm;
220 	struct work_struct work;
221 
222 	struct usb_ep *ep;
223 	struct usb_request *req;
224 	struct sg_table sgt;
225 	bool use_sg;
226 
227 	struct ffs_data *ffs;
228 
229 	int status;
230 	struct completion done;
231 };
232 
233 struct ffs_desc_helper {
234 	struct ffs_data *ffs;
235 	unsigned interfaces_count;
236 	unsigned eps_count;
237 };
238 
239 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
240 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
241 
242 static struct dentry *
243 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
244 		   const struct file_operations *fops);
245 
246 /* Devices management *******************************************************/
247 
248 DEFINE_MUTEX(ffs_lock);
249 EXPORT_SYMBOL_GPL(ffs_lock);
250 
251 static struct ffs_dev *_ffs_find_dev(const char *name);
252 static struct ffs_dev *_ffs_alloc_dev(void);
253 static void _ffs_free_dev(struct ffs_dev *dev);
254 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data);
255 static void ffs_release_dev(struct ffs_dev *ffs_dev);
256 static int ffs_ready(struct ffs_data *ffs);
257 static void ffs_closed(struct ffs_data *ffs);
258 
259 /* Misc helper functions ****************************************************/
260 
261 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
262 	__attribute__((warn_unused_result, nonnull));
263 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
264 	__attribute__((warn_unused_result, nonnull));
265 
266 
267 /* Control file aka ep0 *****************************************************/
268 
269 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
270 {
271 	struct ffs_data *ffs = req->context;
272 
273 	complete(&ffs->ep0req_completion);
274 }
275 
276 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
277 	__releases(&ffs->ev.waitq.lock)
278 {
279 	struct usb_request *req = ffs->ep0req;
280 	int ret;
281 
282 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
283 
284 	spin_unlock_irq(&ffs->ev.waitq.lock);
285 
286 	req->buf      = data;
287 	req->length   = len;
288 
289 	/*
290 	 * UDC layer requires to provide a buffer even for ZLP, but should
291 	 * not use it at all. Let's provide some poisoned pointer to catch
292 	 * possible bug in the driver.
293 	 */
294 	if (req->buf == NULL)
295 		req->buf = (void *)0xDEADBABE;
296 
297 	reinit_completion(&ffs->ep0req_completion);
298 
299 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
300 	if (ret < 0)
301 		return ret;
302 
303 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
304 	if (ret) {
305 		usb_ep_dequeue(ffs->gadget->ep0, req);
306 		return -EINTR;
307 	}
308 
309 	ffs->setup_state = FFS_NO_SETUP;
310 	return req->status ? req->status : req->actual;
311 }
312 
313 static int __ffs_ep0_stall(struct ffs_data *ffs)
314 {
315 	if (ffs->ev.can_stall) {
316 		pr_vdebug("ep0 stall\n");
317 		usb_ep_set_halt(ffs->gadget->ep0);
318 		ffs->setup_state = FFS_NO_SETUP;
319 		return -EL2HLT;
320 	} else {
321 		pr_debug("bogus ep0 stall!\n");
322 		return -ESRCH;
323 	}
324 }
325 
326 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
327 			     size_t len, loff_t *ptr)
328 {
329 	struct ffs_data *ffs = file->private_data;
330 	ssize_t ret;
331 	char *data;
332 
333 	ENTER();
334 
335 	/* Fast check if setup was canceled */
336 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
337 		return -EIDRM;
338 
339 	/* Acquire mutex */
340 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
341 	if (ret < 0)
342 		return ret;
343 
344 	/* Check state */
345 	switch (ffs->state) {
346 	case FFS_READ_DESCRIPTORS:
347 	case FFS_READ_STRINGS:
348 		/* Copy data */
349 		if (len < 16) {
350 			ret = -EINVAL;
351 			break;
352 		}
353 
354 		data = ffs_prepare_buffer(buf, len);
355 		if (IS_ERR(data)) {
356 			ret = PTR_ERR(data);
357 			break;
358 		}
359 
360 		/* Handle data */
361 		if (ffs->state == FFS_READ_DESCRIPTORS) {
362 			pr_info("read descriptors\n");
363 			ret = __ffs_data_got_descs(ffs, data, len);
364 			if (ret < 0)
365 				break;
366 
367 			ffs->state = FFS_READ_STRINGS;
368 			ret = len;
369 		} else {
370 			pr_info("read strings\n");
371 			ret = __ffs_data_got_strings(ffs, data, len);
372 			if (ret < 0)
373 				break;
374 
375 			ret = ffs_epfiles_create(ffs);
376 			if (ret) {
377 				ffs->state = FFS_CLOSING;
378 				break;
379 			}
380 
381 			ffs->state = FFS_ACTIVE;
382 			mutex_unlock(&ffs->mutex);
383 
384 			ret = ffs_ready(ffs);
385 			if (ret < 0) {
386 				ffs->state = FFS_CLOSING;
387 				return ret;
388 			}
389 
390 			return len;
391 		}
392 		break;
393 
394 	case FFS_ACTIVE:
395 		data = NULL;
396 		/*
397 		 * We're called from user space, we can use _irq
398 		 * rather then _irqsave
399 		 */
400 		spin_lock_irq(&ffs->ev.waitq.lock);
401 		switch (ffs_setup_state_clear_cancelled(ffs)) {
402 		case FFS_SETUP_CANCELLED:
403 			ret = -EIDRM;
404 			goto done_spin;
405 
406 		case FFS_NO_SETUP:
407 			ret = -ESRCH;
408 			goto done_spin;
409 
410 		case FFS_SETUP_PENDING:
411 			break;
412 		}
413 
414 		/* FFS_SETUP_PENDING */
415 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
416 			spin_unlock_irq(&ffs->ev.waitq.lock);
417 			ret = __ffs_ep0_stall(ffs);
418 			break;
419 		}
420 
421 		/* FFS_SETUP_PENDING and not stall */
422 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
423 
424 		spin_unlock_irq(&ffs->ev.waitq.lock);
425 
426 		data = ffs_prepare_buffer(buf, len);
427 		if (IS_ERR(data)) {
428 			ret = PTR_ERR(data);
429 			break;
430 		}
431 
432 		spin_lock_irq(&ffs->ev.waitq.lock);
433 
434 		/*
435 		 * We are guaranteed to be still in FFS_ACTIVE state
436 		 * but the state of setup could have changed from
437 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
438 		 * to check for that.  If that happened we copied data
439 		 * from user space in vain but it's unlikely.
440 		 *
441 		 * For sure we are not in FFS_NO_SETUP since this is
442 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
443 		 * transition can be performed and it's protected by
444 		 * mutex.
445 		 */
446 		if (ffs_setup_state_clear_cancelled(ffs) ==
447 		    FFS_SETUP_CANCELLED) {
448 			ret = -EIDRM;
449 done_spin:
450 			spin_unlock_irq(&ffs->ev.waitq.lock);
451 		} else {
452 			/* unlocks spinlock */
453 			ret = __ffs_ep0_queue_wait(ffs, data, len);
454 		}
455 		kfree(data);
456 		break;
457 
458 	default:
459 		ret = -EBADFD;
460 		break;
461 	}
462 
463 	mutex_unlock(&ffs->mutex);
464 	return ret;
465 }
466 
467 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
468 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
469 				     size_t n)
470 	__releases(&ffs->ev.waitq.lock)
471 {
472 	/*
473 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
474 	 * size of ffs->ev.types array (which is four) so that's how much space
475 	 * we reserve.
476 	 */
477 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
478 	const size_t size = n * sizeof *events;
479 	unsigned i = 0;
480 
481 	memset(events, 0, size);
482 
483 	do {
484 		events[i].type = ffs->ev.types[i];
485 		if (events[i].type == FUNCTIONFS_SETUP) {
486 			events[i].u.setup = ffs->ev.setup;
487 			ffs->setup_state = FFS_SETUP_PENDING;
488 		}
489 	} while (++i < n);
490 
491 	ffs->ev.count -= n;
492 	if (ffs->ev.count)
493 		memmove(ffs->ev.types, ffs->ev.types + n,
494 			ffs->ev.count * sizeof *ffs->ev.types);
495 
496 	spin_unlock_irq(&ffs->ev.waitq.lock);
497 	mutex_unlock(&ffs->mutex);
498 
499 	return copy_to_user(buf, events, size) ? -EFAULT : size;
500 }
501 
502 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
503 			    size_t len, loff_t *ptr)
504 {
505 	struct ffs_data *ffs = file->private_data;
506 	char *data = NULL;
507 	size_t n;
508 	int ret;
509 
510 	ENTER();
511 
512 	/* Fast check if setup was canceled */
513 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
514 		return -EIDRM;
515 
516 	/* Acquire mutex */
517 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
518 	if (ret < 0)
519 		return ret;
520 
521 	/* Check state */
522 	if (ffs->state != FFS_ACTIVE) {
523 		ret = -EBADFD;
524 		goto done_mutex;
525 	}
526 
527 	/*
528 	 * We're called from user space, we can use _irq rather then
529 	 * _irqsave
530 	 */
531 	spin_lock_irq(&ffs->ev.waitq.lock);
532 
533 	switch (ffs_setup_state_clear_cancelled(ffs)) {
534 	case FFS_SETUP_CANCELLED:
535 		ret = -EIDRM;
536 		break;
537 
538 	case FFS_NO_SETUP:
539 		n = len / sizeof(struct usb_functionfs_event);
540 		if (!n) {
541 			ret = -EINVAL;
542 			break;
543 		}
544 
545 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
546 			ret = -EAGAIN;
547 			break;
548 		}
549 
550 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
551 							ffs->ev.count)) {
552 			ret = -EINTR;
553 			break;
554 		}
555 
556 		/* unlocks spinlock */
557 		return __ffs_ep0_read_events(ffs, buf,
558 					     min(n, (size_t)ffs->ev.count));
559 
560 	case FFS_SETUP_PENDING:
561 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
562 			spin_unlock_irq(&ffs->ev.waitq.lock);
563 			ret = __ffs_ep0_stall(ffs);
564 			goto done_mutex;
565 		}
566 
567 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
568 
569 		spin_unlock_irq(&ffs->ev.waitq.lock);
570 
571 		if (len) {
572 			data = kmalloc(len, GFP_KERNEL);
573 			if (!data) {
574 				ret = -ENOMEM;
575 				goto done_mutex;
576 			}
577 		}
578 
579 		spin_lock_irq(&ffs->ev.waitq.lock);
580 
581 		/* See ffs_ep0_write() */
582 		if (ffs_setup_state_clear_cancelled(ffs) ==
583 		    FFS_SETUP_CANCELLED) {
584 			ret = -EIDRM;
585 			break;
586 		}
587 
588 		/* unlocks spinlock */
589 		ret = __ffs_ep0_queue_wait(ffs, data, len);
590 		if ((ret > 0) && (copy_to_user(buf, data, len)))
591 			ret = -EFAULT;
592 		goto done_mutex;
593 
594 	default:
595 		ret = -EBADFD;
596 		break;
597 	}
598 
599 	spin_unlock_irq(&ffs->ev.waitq.lock);
600 done_mutex:
601 	mutex_unlock(&ffs->mutex);
602 	kfree(data);
603 	return ret;
604 }
605 
606 static int ffs_ep0_open(struct inode *inode, struct file *file)
607 {
608 	struct ffs_data *ffs = inode->i_private;
609 
610 	ENTER();
611 
612 	if (ffs->state == FFS_CLOSING)
613 		return -EBUSY;
614 
615 	file->private_data = ffs;
616 	ffs_data_opened(ffs);
617 
618 	return stream_open(inode, file);
619 }
620 
621 static int ffs_ep0_release(struct inode *inode, struct file *file)
622 {
623 	struct ffs_data *ffs = file->private_data;
624 
625 	ENTER();
626 
627 	ffs_data_closed(ffs);
628 
629 	return 0;
630 }
631 
632 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
633 {
634 	struct ffs_data *ffs = file->private_data;
635 	struct usb_gadget *gadget = ffs->gadget;
636 	long ret;
637 
638 	ENTER();
639 
640 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
641 		struct ffs_function *func = ffs->func;
642 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
643 	} else if (gadget && gadget->ops->ioctl) {
644 		ret = gadget->ops->ioctl(gadget, code, value);
645 	} else {
646 		ret = -ENOTTY;
647 	}
648 
649 	return ret;
650 }
651 
652 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
653 {
654 	struct ffs_data *ffs = file->private_data;
655 	__poll_t mask = EPOLLWRNORM;
656 	int ret;
657 
658 	poll_wait(file, &ffs->ev.waitq, wait);
659 
660 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
661 	if (ret < 0)
662 		return mask;
663 
664 	switch (ffs->state) {
665 	case FFS_READ_DESCRIPTORS:
666 	case FFS_READ_STRINGS:
667 		mask |= EPOLLOUT;
668 		break;
669 
670 	case FFS_ACTIVE:
671 		switch (ffs->setup_state) {
672 		case FFS_NO_SETUP:
673 			if (ffs->ev.count)
674 				mask |= EPOLLIN;
675 			break;
676 
677 		case FFS_SETUP_PENDING:
678 		case FFS_SETUP_CANCELLED:
679 			mask |= (EPOLLIN | EPOLLOUT);
680 			break;
681 		}
682 		break;
683 
684 	case FFS_CLOSING:
685 		break;
686 	case FFS_DEACTIVATED:
687 		break;
688 	}
689 
690 	mutex_unlock(&ffs->mutex);
691 
692 	return mask;
693 }
694 
695 static const struct file_operations ffs_ep0_operations = {
696 	.llseek =	no_llseek,
697 
698 	.open =		ffs_ep0_open,
699 	.write =	ffs_ep0_write,
700 	.read =		ffs_ep0_read,
701 	.release =	ffs_ep0_release,
702 	.unlocked_ioctl =	ffs_ep0_ioctl,
703 	.poll =		ffs_ep0_poll,
704 };
705 
706 
707 /* "Normal" endpoints operations ********************************************/
708 
709 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
710 {
711 	struct ffs_io_data *io_data = req->context;
712 
713 	ENTER();
714 	if (req->status)
715 		io_data->status = req->status;
716 	else
717 		io_data->status = req->actual;
718 
719 	complete(&io_data->done);
720 }
721 
722 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
723 {
724 	ssize_t ret = copy_to_iter(data, data_len, iter);
725 	if (ret == data_len)
726 		return ret;
727 
728 	if (iov_iter_count(iter))
729 		return -EFAULT;
730 
731 	/*
732 	 * Dear user space developer!
733 	 *
734 	 * TL;DR: To stop getting below error message in your kernel log, change
735 	 * user space code using functionfs to align read buffers to a max
736 	 * packet size.
737 	 *
738 	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
739 	 * packet size.  When unaligned buffer is passed to functionfs, it
740 	 * internally uses a larger, aligned buffer so that such UDCs are happy.
741 	 *
742 	 * Unfortunately, this means that host may send more data than was
743 	 * requested in read(2) system call.  f_fs doesn’t know what to do with
744 	 * that excess data so it simply drops it.
745 	 *
746 	 * Was the buffer aligned in the first place, no such problem would
747 	 * happen.
748 	 *
749 	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
750 	 * by splitting a request into multiple parts.  This splitting may still
751 	 * be a problem though so it’s likely best to align the buffer
752 	 * regardless of it being AIO or not..
753 	 *
754 	 * This only affects OUT endpoints, i.e. reading data with a read(2),
755 	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
756 	 * affected.
757 	 */
758 	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
759 	       "Align read buffer size to max packet size to avoid the problem.\n",
760 	       data_len, ret);
761 
762 	return ret;
763 }
764 
765 /*
766  * allocate a virtually contiguous buffer and create a scatterlist describing it
767  * @sg_table	- pointer to a place to be filled with sg_table contents
768  * @size	- required buffer size
769  */
770 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
771 {
772 	struct page **pages;
773 	void *vaddr, *ptr;
774 	unsigned int n_pages;
775 	int i;
776 
777 	vaddr = vmalloc(sz);
778 	if (!vaddr)
779 		return NULL;
780 
781 	n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
782 	pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
783 	if (!pages) {
784 		vfree(vaddr);
785 
786 		return NULL;
787 	}
788 	for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
789 		pages[i] = vmalloc_to_page(ptr);
790 
791 	if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
792 		kvfree(pages);
793 		vfree(vaddr);
794 
795 		return NULL;
796 	}
797 	kvfree(pages);
798 
799 	return vaddr;
800 }
801 
802 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
803 	size_t data_len)
804 {
805 	if (io_data->use_sg)
806 		return ffs_build_sg_list(&io_data->sgt, data_len);
807 
808 	return kmalloc(data_len, GFP_KERNEL);
809 }
810 
811 static inline void ffs_free_buffer(struct ffs_io_data *io_data)
812 {
813 	if (!io_data->buf)
814 		return;
815 
816 	if (io_data->use_sg) {
817 		sg_free_table(&io_data->sgt);
818 		vfree(io_data->buf);
819 	} else {
820 		kfree(io_data->buf);
821 	}
822 }
823 
824 static void ffs_user_copy_worker(struct work_struct *work)
825 {
826 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
827 						   work);
828 	int ret = io_data->req->status ? io_data->req->status :
829 					 io_data->req->actual;
830 	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
831 
832 	if (io_data->read && ret > 0) {
833 		kthread_use_mm(io_data->mm);
834 		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
835 		kthread_unuse_mm(io_data->mm);
836 	}
837 
838 	io_data->kiocb->ki_complete(io_data->kiocb, ret);
839 
840 	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
841 		eventfd_signal(io_data->ffs->ffs_eventfd, 1);
842 
843 	usb_ep_free_request(io_data->ep, io_data->req);
844 
845 	if (io_data->read)
846 		kfree(io_data->to_free);
847 	ffs_free_buffer(io_data);
848 	kfree(io_data);
849 }
850 
851 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
852 					 struct usb_request *req)
853 {
854 	struct ffs_io_data *io_data = req->context;
855 	struct ffs_data *ffs = io_data->ffs;
856 
857 	ENTER();
858 
859 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
860 	queue_work(ffs->io_completion_wq, &io_data->work);
861 }
862 
863 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
864 {
865 	/*
866 	 * See comment in struct ffs_epfile for full read_buffer pointer
867 	 * synchronisation story.
868 	 */
869 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
870 	if (buf && buf != READ_BUFFER_DROP)
871 		kfree(buf);
872 }
873 
874 /* Assumes epfile->mutex is held. */
875 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
876 					  struct iov_iter *iter)
877 {
878 	/*
879 	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
880 	 * the buffer while we are using it.  See comment in struct ffs_epfile
881 	 * for full read_buffer pointer synchronisation story.
882 	 */
883 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
884 	ssize_t ret;
885 	if (!buf || buf == READ_BUFFER_DROP)
886 		return 0;
887 
888 	ret = copy_to_iter(buf->data, buf->length, iter);
889 	if (buf->length == ret) {
890 		kfree(buf);
891 		return ret;
892 	}
893 
894 	if (iov_iter_count(iter)) {
895 		ret = -EFAULT;
896 	} else {
897 		buf->length -= ret;
898 		buf->data += ret;
899 	}
900 
901 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
902 		kfree(buf);
903 
904 	return ret;
905 }
906 
907 /* Assumes epfile->mutex is held. */
908 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
909 				      void *data, int data_len,
910 				      struct iov_iter *iter)
911 {
912 	struct ffs_buffer *buf;
913 
914 	ssize_t ret = copy_to_iter(data, data_len, iter);
915 	if (data_len == ret)
916 		return ret;
917 
918 	if (iov_iter_count(iter))
919 		return -EFAULT;
920 
921 	/* See ffs_copy_to_iter for more context. */
922 	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
923 		data_len, ret);
924 
925 	data_len -= ret;
926 	buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL);
927 	if (!buf)
928 		return -ENOMEM;
929 	buf->length = data_len;
930 	buf->data = buf->storage;
931 	memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len));
932 
933 	/*
934 	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
935 	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
936 	 * in struct ffs_epfile for full read_buffer pointer synchronisation
937 	 * story.
938 	 */
939 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
940 		kfree(buf);
941 
942 	return ret;
943 }
944 
945 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
946 {
947 	struct ffs_epfile *epfile = file->private_data;
948 	struct usb_request *req;
949 	struct ffs_ep *ep;
950 	char *data = NULL;
951 	ssize_t ret, data_len = -EINVAL;
952 	int halt;
953 
954 	/* Are we still active? */
955 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
956 		return -ENODEV;
957 
958 	/* Wait for endpoint to be enabled */
959 	ep = epfile->ep;
960 	if (!ep) {
961 		if (file->f_flags & O_NONBLOCK)
962 			return -EAGAIN;
963 
964 		ret = wait_event_interruptible(
965 				epfile->ffs->wait, (ep = epfile->ep));
966 		if (ret)
967 			return -EINTR;
968 	}
969 
970 	/* Do we halt? */
971 	halt = (!io_data->read == !epfile->in);
972 	if (halt && epfile->isoc)
973 		return -EINVAL;
974 
975 	/* We will be using request and read_buffer */
976 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
977 	if (ret)
978 		goto error;
979 
980 	/* Allocate & copy */
981 	if (!halt) {
982 		struct usb_gadget *gadget;
983 
984 		/*
985 		 * Do we have buffered data from previous partial read?  Check
986 		 * that for synchronous case only because we do not have
987 		 * facility to ‘wake up’ a pending asynchronous read and push
988 		 * buffered data to it which we would need to make things behave
989 		 * consistently.
990 		 */
991 		if (!io_data->aio && io_data->read) {
992 			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
993 			if (ret)
994 				goto error_mutex;
995 		}
996 
997 		/*
998 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
999 		 * before the waiting completes, so do not assign to 'gadget'
1000 		 * earlier
1001 		 */
1002 		gadget = epfile->ffs->gadget;
1003 
1004 		spin_lock_irq(&epfile->ffs->eps_lock);
1005 		/* In the meantime, endpoint got disabled or changed. */
1006 		if (epfile->ep != ep) {
1007 			ret = -ESHUTDOWN;
1008 			goto error_lock;
1009 		}
1010 		data_len = iov_iter_count(&io_data->data);
1011 		/*
1012 		 * Controller may require buffer size to be aligned to
1013 		 * maxpacketsize of an out endpoint.
1014 		 */
1015 		if (io_data->read)
1016 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1017 
1018 		io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1019 		spin_unlock_irq(&epfile->ffs->eps_lock);
1020 
1021 		data = ffs_alloc_buffer(io_data, data_len);
1022 		if (!data) {
1023 			ret = -ENOMEM;
1024 			goto error_mutex;
1025 		}
1026 		if (!io_data->read &&
1027 		    !copy_from_iter_full(data, data_len, &io_data->data)) {
1028 			ret = -EFAULT;
1029 			goto error_mutex;
1030 		}
1031 	}
1032 
1033 	spin_lock_irq(&epfile->ffs->eps_lock);
1034 
1035 	if (epfile->ep != ep) {
1036 		/* In the meantime, endpoint got disabled or changed. */
1037 		ret = -ESHUTDOWN;
1038 	} else if (halt) {
1039 		ret = usb_ep_set_halt(ep->ep);
1040 		if (!ret)
1041 			ret = -EBADMSG;
1042 	} else if (data_len == -EINVAL) {
1043 		/*
1044 		 * Sanity Check: even though data_len can't be used
1045 		 * uninitialized at the time I write this comment, some
1046 		 * compilers complain about this situation.
1047 		 * In order to keep the code clean from warnings, data_len is
1048 		 * being initialized to -EINVAL during its declaration, which
1049 		 * means we can't rely on compiler anymore to warn no future
1050 		 * changes won't result in data_len being used uninitialized.
1051 		 * For such reason, we're adding this redundant sanity check
1052 		 * here.
1053 		 */
1054 		WARN(1, "%s: data_len == -EINVAL\n", __func__);
1055 		ret = -EINVAL;
1056 	} else if (!io_data->aio) {
1057 		bool interrupted = false;
1058 
1059 		req = ep->req;
1060 		if (io_data->use_sg) {
1061 			req->buf = NULL;
1062 			req->sg	= io_data->sgt.sgl;
1063 			req->num_sgs = io_data->sgt.nents;
1064 		} else {
1065 			req->buf = data;
1066 			req->num_sgs = 0;
1067 		}
1068 		req->length = data_len;
1069 
1070 		io_data->buf = data;
1071 
1072 		init_completion(&io_data->done);
1073 		req->context  = io_data;
1074 		req->complete = ffs_epfile_io_complete;
1075 
1076 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1077 		if (ret < 0)
1078 			goto error_lock;
1079 
1080 		spin_unlock_irq(&epfile->ffs->eps_lock);
1081 
1082 		if (wait_for_completion_interruptible(&io_data->done)) {
1083 			spin_lock_irq(&epfile->ffs->eps_lock);
1084 			if (epfile->ep != ep) {
1085 				ret = -ESHUTDOWN;
1086 				goto error_lock;
1087 			}
1088 			/*
1089 			 * To avoid race condition with ffs_epfile_io_complete,
1090 			 * dequeue the request first then check
1091 			 * status. usb_ep_dequeue API should guarantee no race
1092 			 * condition with req->complete callback.
1093 			 */
1094 			usb_ep_dequeue(ep->ep, req);
1095 			spin_unlock_irq(&epfile->ffs->eps_lock);
1096 			wait_for_completion(&io_data->done);
1097 			interrupted = io_data->status < 0;
1098 		}
1099 
1100 		if (interrupted)
1101 			ret = -EINTR;
1102 		else if (io_data->read && io_data->status > 0)
1103 			ret = __ffs_epfile_read_data(epfile, data, io_data->status,
1104 						     &io_data->data);
1105 		else
1106 			ret = io_data->status;
1107 		goto error_mutex;
1108 	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1109 		ret = -ENOMEM;
1110 	} else {
1111 		if (io_data->use_sg) {
1112 			req->buf = NULL;
1113 			req->sg	= io_data->sgt.sgl;
1114 			req->num_sgs = io_data->sgt.nents;
1115 		} else {
1116 			req->buf = data;
1117 			req->num_sgs = 0;
1118 		}
1119 		req->length = data_len;
1120 
1121 		io_data->buf = data;
1122 		io_data->ep = ep->ep;
1123 		io_data->req = req;
1124 		io_data->ffs = epfile->ffs;
1125 
1126 		req->context  = io_data;
1127 		req->complete = ffs_epfile_async_io_complete;
1128 
1129 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1130 		if (ret) {
1131 			io_data->req = NULL;
1132 			usb_ep_free_request(ep->ep, req);
1133 			goto error_lock;
1134 		}
1135 
1136 		ret = -EIOCBQUEUED;
1137 		/*
1138 		 * Do not kfree the buffer in this function.  It will be freed
1139 		 * by ffs_user_copy_worker.
1140 		 */
1141 		data = NULL;
1142 	}
1143 
1144 error_lock:
1145 	spin_unlock_irq(&epfile->ffs->eps_lock);
1146 error_mutex:
1147 	mutex_unlock(&epfile->mutex);
1148 error:
1149 	if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1150 		ffs_free_buffer(io_data);
1151 	return ret;
1152 }
1153 
1154 static int
1155 ffs_epfile_open(struct inode *inode, struct file *file)
1156 {
1157 	struct ffs_epfile *epfile = inode->i_private;
1158 
1159 	ENTER();
1160 
1161 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1162 		return -ENODEV;
1163 
1164 	file->private_data = epfile;
1165 	ffs_data_opened(epfile->ffs);
1166 
1167 	return stream_open(inode, file);
1168 }
1169 
1170 static int ffs_aio_cancel(struct kiocb *kiocb)
1171 {
1172 	struct ffs_io_data *io_data = kiocb->private;
1173 	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1174 	unsigned long flags;
1175 	int value;
1176 
1177 	ENTER();
1178 
1179 	spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1180 
1181 	if (io_data && io_data->ep && io_data->req)
1182 		value = usb_ep_dequeue(io_data->ep, io_data->req);
1183 	else
1184 		value = -EINVAL;
1185 
1186 	spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1187 
1188 	return value;
1189 }
1190 
1191 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1192 {
1193 	struct ffs_io_data io_data, *p = &io_data;
1194 	ssize_t res;
1195 
1196 	ENTER();
1197 
1198 	if (!is_sync_kiocb(kiocb)) {
1199 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1200 		if (!p)
1201 			return -ENOMEM;
1202 		p->aio = true;
1203 	} else {
1204 		memset(p, 0, sizeof(*p));
1205 		p->aio = false;
1206 	}
1207 
1208 	p->read = false;
1209 	p->kiocb = kiocb;
1210 	p->data = *from;
1211 	p->mm = current->mm;
1212 
1213 	kiocb->private = p;
1214 
1215 	if (p->aio)
1216 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1217 
1218 	res = ffs_epfile_io(kiocb->ki_filp, p);
1219 	if (res == -EIOCBQUEUED)
1220 		return res;
1221 	if (p->aio)
1222 		kfree(p);
1223 	else
1224 		*from = p->data;
1225 	return res;
1226 }
1227 
1228 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1229 {
1230 	struct ffs_io_data io_data, *p = &io_data;
1231 	ssize_t res;
1232 
1233 	ENTER();
1234 
1235 	if (!is_sync_kiocb(kiocb)) {
1236 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1237 		if (!p)
1238 			return -ENOMEM;
1239 		p->aio = true;
1240 	} else {
1241 		memset(p, 0, sizeof(*p));
1242 		p->aio = false;
1243 	}
1244 
1245 	p->read = true;
1246 	p->kiocb = kiocb;
1247 	if (p->aio) {
1248 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1249 		if (!p->to_free) {
1250 			kfree(p);
1251 			return -ENOMEM;
1252 		}
1253 	} else {
1254 		p->data = *to;
1255 		p->to_free = NULL;
1256 	}
1257 	p->mm = current->mm;
1258 
1259 	kiocb->private = p;
1260 
1261 	if (p->aio)
1262 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1263 
1264 	res = ffs_epfile_io(kiocb->ki_filp, p);
1265 	if (res == -EIOCBQUEUED)
1266 		return res;
1267 
1268 	if (p->aio) {
1269 		kfree(p->to_free);
1270 		kfree(p);
1271 	} else {
1272 		*to = p->data;
1273 	}
1274 	return res;
1275 }
1276 
1277 static int
1278 ffs_epfile_release(struct inode *inode, struct file *file)
1279 {
1280 	struct ffs_epfile *epfile = inode->i_private;
1281 
1282 	ENTER();
1283 
1284 	__ffs_epfile_read_buffer_free(epfile);
1285 	ffs_data_closed(epfile->ffs);
1286 
1287 	return 0;
1288 }
1289 
1290 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1291 			     unsigned long value)
1292 {
1293 	struct ffs_epfile *epfile = file->private_data;
1294 	struct ffs_ep *ep;
1295 	int ret;
1296 
1297 	ENTER();
1298 
1299 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1300 		return -ENODEV;
1301 
1302 	/* Wait for endpoint to be enabled */
1303 	ep = epfile->ep;
1304 	if (!ep) {
1305 		if (file->f_flags & O_NONBLOCK)
1306 			return -EAGAIN;
1307 
1308 		ret = wait_event_interruptible(
1309 				epfile->ffs->wait, (ep = epfile->ep));
1310 		if (ret)
1311 			return -EINTR;
1312 	}
1313 
1314 	spin_lock_irq(&epfile->ffs->eps_lock);
1315 
1316 	/* In the meantime, endpoint got disabled or changed. */
1317 	if (epfile->ep != ep) {
1318 		spin_unlock_irq(&epfile->ffs->eps_lock);
1319 		return -ESHUTDOWN;
1320 	}
1321 
1322 	switch (code) {
1323 	case FUNCTIONFS_FIFO_STATUS:
1324 		ret = usb_ep_fifo_status(epfile->ep->ep);
1325 		break;
1326 	case FUNCTIONFS_FIFO_FLUSH:
1327 		usb_ep_fifo_flush(epfile->ep->ep);
1328 		ret = 0;
1329 		break;
1330 	case FUNCTIONFS_CLEAR_HALT:
1331 		ret = usb_ep_clear_halt(epfile->ep->ep);
1332 		break;
1333 	case FUNCTIONFS_ENDPOINT_REVMAP:
1334 		ret = epfile->ep->num;
1335 		break;
1336 	case FUNCTIONFS_ENDPOINT_DESC:
1337 	{
1338 		int desc_idx;
1339 		struct usb_endpoint_descriptor desc1, *desc;
1340 
1341 		switch (epfile->ffs->gadget->speed) {
1342 		case USB_SPEED_SUPER:
1343 		case USB_SPEED_SUPER_PLUS:
1344 			desc_idx = 2;
1345 			break;
1346 		case USB_SPEED_HIGH:
1347 			desc_idx = 1;
1348 			break;
1349 		default:
1350 			desc_idx = 0;
1351 		}
1352 
1353 		desc = epfile->ep->descs[desc_idx];
1354 		memcpy(&desc1, desc, desc->bLength);
1355 
1356 		spin_unlock_irq(&epfile->ffs->eps_lock);
1357 		ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1358 		if (ret)
1359 			ret = -EFAULT;
1360 		return ret;
1361 	}
1362 	default:
1363 		ret = -ENOTTY;
1364 	}
1365 	spin_unlock_irq(&epfile->ffs->eps_lock);
1366 
1367 	return ret;
1368 }
1369 
1370 static const struct file_operations ffs_epfile_operations = {
1371 	.llseek =	no_llseek,
1372 
1373 	.open =		ffs_epfile_open,
1374 	.write_iter =	ffs_epfile_write_iter,
1375 	.read_iter =	ffs_epfile_read_iter,
1376 	.release =	ffs_epfile_release,
1377 	.unlocked_ioctl =	ffs_epfile_ioctl,
1378 	.compat_ioctl = compat_ptr_ioctl,
1379 };
1380 
1381 
1382 /* File system and super block operations ***********************************/
1383 
1384 /*
1385  * Mounting the file system creates a controller file, used first for
1386  * function configuration then later for event monitoring.
1387  */
1388 
1389 static struct inode *__must_check
1390 ffs_sb_make_inode(struct super_block *sb, void *data,
1391 		  const struct file_operations *fops,
1392 		  const struct inode_operations *iops,
1393 		  struct ffs_file_perms *perms)
1394 {
1395 	struct inode *inode;
1396 
1397 	ENTER();
1398 
1399 	inode = new_inode(sb);
1400 
1401 	if (inode) {
1402 		struct timespec64 ts = current_time(inode);
1403 
1404 		inode->i_ino	 = get_next_ino();
1405 		inode->i_mode    = perms->mode;
1406 		inode->i_uid     = perms->uid;
1407 		inode->i_gid     = perms->gid;
1408 		inode->i_atime   = ts;
1409 		inode->i_mtime   = ts;
1410 		inode->i_ctime   = ts;
1411 		inode->i_private = data;
1412 		if (fops)
1413 			inode->i_fop = fops;
1414 		if (iops)
1415 			inode->i_op  = iops;
1416 	}
1417 
1418 	return inode;
1419 }
1420 
1421 /* Create "regular" file */
1422 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1423 					const char *name, void *data,
1424 					const struct file_operations *fops)
1425 {
1426 	struct ffs_data	*ffs = sb->s_fs_info;
1427 	struct dentry	*dentry;
1428 	struct inode	*inode;
1429 
1430 	ENTER();
1431 
1432 	dentry = d_alloc_name(sb->s_root, name);
1433 	if (!dentry)
1434 		return NULL;
1435 
1436 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1437 	if (!inode) {
1438 		dput(dentry);
1439 		return NULL;
1440 	}
1441 
1442 	d_add(dentry, inode);
1443 	return dentry;
1444 }
1445 
1446 /* Super block */
1447 static const struct super_operations ffs_sb_operations = {
1448 	.statfs =	simple_statfs,
1449 	.drop_inode =	generic_delete_inode,
1450 };
1451 
1452 struct ffs_sb_fill_data {
1453 	struct ffs_file_perms perms;
1454 	umode_t root_mode;
1455 	const char *dev_name;
1456 	bool no_disconnect;
1457 	struct ffs_data *ffs_data;
1458 };
1459 
1460 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1461 {
1462 	struct ffs_sb_fill_data *data = fc->fs_private;
1463 	struct inode	*inode;
1464 	struct ffs_data	*ffs = data->ffs_data;
1465 
1466 	ENTER();
1467 
1468 	ffs->sb              = sb;
1469 	data->ffs_data       = NULL;
1470 	sb->s_fs_info        = ffs;
1471 	sb->s_blocksize      = PAGE_SIZE;
1472 	sb->s_blocksize_bits = PAGE_SHIFT;
1473 	sb->s_magic          = FUNCTIONFS_MAGIC;
1474 	sb->s_op             = &ffs_sb_operations;
1475 	sb->s_time_gran      = 1;
1476 
1477 	/* Root inode */
1478 	data->perms.mode = data->root_mode;
1479 	inode = ffs_sb_make_inode(sb, NULL,
1480 				  &simple_dir_operations,
1481 				  &simple_dir_inode_operations,
1482 				  &data->perms);
1483 	sb->s_root = d_make_root(inode);
1484 	if (!sb->s_root)
1485 		return -ENOMEM;
1486 
1487 	/* EP0 file */
1488 	if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations))
1489 		return -ENOMEM;
1490 
1491 	return 0;
1492 }
1493 
1494 enum {
1495 	Opt_no_disconnect,
1496 	Opt_rmode,
1497 	Opt_fmode,
1498 	Opt_mode,
1499 	Opt_uid,
1500 	Opt_gid,
1501 };
1502 
1503 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1504 	fsparam_bool	("no_disconnect",	Opt_no_disconnect),
1505 	fsparam_u32	("rmode",		Opt_rmode),
1506 	fsparam_u32	("fmode",		Opt_fmode),
1507 	fsparam_u32	("mode",		Opt_mode),
1508 	fsparam_u32	("uid",			Opt_uid),
1509 	fsparam_u32	("gid",			Opt_gid),
1510 	{}
1511 };
1512 
1513 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1514 {
1515 	struct ffs_sb_fill_data *data = fc->fs_private;
1516 	struct fs_parse_result result;
1517 	int opt;
1518 
1519 	ENTER();
1520 
1521 	opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1522 	if (opt < 0)
1523 		return opt;
1524 
1525 	switch (opt) {
1526 	case Opt_no_disconnect:
1527 		data->no_disconnect = result.boolean;
1528 		break;
1529 	case Opt_rmode:
1530 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1531 		break;
1532 	case Opt_fmode:
1533 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1534 		break;
1535 	case Opt_mode:
1536 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1537 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1538 		break;
1539 
1540 	case Opt_uid:
1541 		data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1542 		if (!uid_valid(data->perms.uid))
1543 			goto unmapped_value;
1544 		break;
1545 	case Opt_gid:
1546 		data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1547 		if (!gid_valid(data->perms.gid))
1548 			goto unmapped_value;
1549 		break;
1550 
1551 	default:
1552 		return -ENOPARAM;
1553 	}
1554 
1555 	return 0;
1556 
1557 unmapped_value:
1558 	return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
1559 }
1560 
1561 /*
1562  * Set up the superblock for a mount.
1563  */
1564 static int ffs_fs_get_tree(struct fs_context *fc)
1565 {
1566 	struct ffs_sb_fill_data *ctx = fc->fs_private;
1567 	struct ffs_data	*ffs;
1568 	int ret;
1569 
1570 	ENTER();
1571 
1572 	if (!fc->source)
1573 		return invalf(fc, "No source specified");
1574 
1575 	ffs = ffs_data_new(fc->source);
1576 	if (!ffs)
1577 		return -ENOMEM;
1578 	ffs->file_perms = ctx->perms;
1579 	ffs->no_disconnect = ctx->no_disconnect;
1580 
1581 	ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
1582 	if (!ffs->dev_name) {
1583 		ffs_data_put(ffs);
1584 		return -ENOMEM;
1585 	}
1586 
1587 	ret = ffs_acquire_dev(ffs->dev_name, ffs);
1588 	if (ret) {
1589 		ffs_data_put(ffs);
1590 		return ret;
1591 	}
1592 
1593 	ctx->ffs_data = ffs;
1594 	return get_tree_nodev(fc, ffs_sb_fill);
1595 }
1596 
1597 static void ffs_fs_free_fc(struct fs_context *fc)
1598 {
1599 	struct ffs_sb_fill_data *ctx = fc->fs_private;
1600 
1601 	if (ctx) {
1602 		if (ctx->ffs_data) {
1603 			ffs_data_put(ctx->ffs_data);
1604 		}
1605 
1606 		kfree(ctx);
1607 	}
1608 }
1609 
1610 static const struct fs_context_operations ffs_fs_context_ops = {
1611 	.free		= ffs_fs_free_fc,
1612 	.parse_param	= ffs_fs_parse_param,
1613 	.get_tree	= ffs_fs_get_tree,
1614 };
1615 
1616 static int ffs_fs_init_fs_context(struct fs_context *fc)
1617 {
1618 	struct ffs_sb_fill_data *ctx;
1619 
1620 	ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
1621 	if (!ctx)
1622 		return -ENOMEM;
1623 
1624 	ctx->perms.mode = S_IFREG | 0600;
1625 	ctx->perms.uid = GLOBAL_ROOT_UID;
1626 	ctx->perms.gid = GLOBAL_ROOT_GID;
1627 	ctx->root_mode = S_IFDIR | 0500;
1628 	ctx->no_disconnect = false;
1629 
1630 	fc->fs_private = ctx;
1631 	fc->ops = &ffs_fs_context_ops;
1632 	return 0;
1633 }
1634 
1635 static void
1636 ffs_fs_kill_sb(struct super_block *sb)
1637 {
1638 	ENTER();
1639 
1640 	kill_litter_super(sb);
1641 	if (sb->s_fs_info)
1642 		ffs_data_closed(sb->s_fs_info);
1643 }
1644 
1645 static struct file_system_type ffs_fs_type = {
1646 	.owner		= THIS_MODULE,
1647 	.name		= "functionfs",
1648 	.init_fs_context = ffs_fs_init_fs_context,
1649 	.parameters	= ffs_fs_fs_parameters,
1650 	.kill_sb	= ffs_fs_kill_sb,
1651 };
1652 MODULE_ALIAS_FS("functionfs");
1653 
1654 
1655 /* Driver's main init/cleanup functions *************************************/
1656 
1657 static int functionfs_init(void)
1658 {
1659 	int ret;
1660 
1661 	ENTER();
1662 
1663 	ret = register_filesystem(&ffs_fs_type);
1664 	if (!ret)
1665 		pr_info("file system registered\n");
1666 	else
1667 		pr_err("failed registering file system (%d)\n", ret);
1668 
1669 	return ret;
1670 }
1671 
1672 static void functionfs_cleanup(void)
1673 {
1674 	ENTER();
1675 
1676 	pr_info("unloading\n");
1677 	unregister_filesystem(&ffs_fs_type);
1678 }
1679 
1680 
1681 /* ffs_data and ffs_function construction and destruction code **************/
1682 
1683 static void ffs_data_clear(struct ffs_data *ffs);
1684 static void ffs_data_reset(struct ffs_data *ffs);
1685 
1686 static void ffs_data_get(struct ffs_data *ffs)
1687 {
1688 	ENTER();
1689 
1690 	refcount_inc(&ffs->ref);
1691 }
1692 
1693 static void ffs_data_opened(struct ffs_data *ffs)
1694 {
1695 	ENTER();
1696 
1697 	refcount_inc(&ffs->ref);
1698 	if (atomic_add_return(1, &ffs->opened) == 1 &&
1699 			ffs->state == FFS_DEACTIVATED) {
1700 		ffs->state = FFS_CLOSING;
1701 		ffs_data_reset(ffs);
1702 	}
1703 }
1704 
1705 static void ffs_data_put(struct ffs_data *ffs)
1706 {
1707 	ENTER();
1708 
1709 	if (refcount_dec_and_test(&ffs->ref)) {
1710 		pr_info("%s(): freeing\n", __func__);
1711 		ffs_data_clear(ffs);
1712 		ffs_release_dev(ffs->private_data);
1713 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1714 		       swait_active(&ffs->ep0req_completion.wait) ||
1715 		       waitqueue_active(&ffs->wait));
1716 		destroy_workqueue(ffs->io_completion_wq);
1717 		kfree(ffs->dev_name);
1718 		kfree(ffs);
1719 	}
1720 }
1721 
1722 static void ffs_data_closed(struct ffs_data *ffs)
1723 {
1724 	struct ffs_epfile *epfiles;
1725 	unsigned long flags;
1726 
1727 	ENTER();
1728 
1729 	if (atomic_dec_and_test(&ffs->opened)) {
1730 		if (ffs->no_disconnect) {
1731 			ffs->state = FFS_DEACTIVATED;
1732 			spin_lock_irqsave(&ffs->eps_lock, flags);
1733 			epfiles = ffs->epfiles;
1734 			ffs->epfiles = NULL;
1735 			spin_unlock_irqrestore(&ffs->eps_lock,
1736 							flags);
1737 
1738 			if (epfiles)
1739 				ffs_epfiles_destroy(epfiles,
1740 						 ffs->eps_count);
1741 
1742 			if (ffs->setup_state == FFS_SETUP_PENDING)
1743 				__ffs_ep0_stall(ffs);
1744 		} else {
1745 			ffs->state = FFS_CLOSING;
1746 			ffs_data_reset(ffs);
1747 		}
1748 	}
1749 	if (atomic_read(&ffs->opened) < 0) {
1750 		ffs->state = FFS_CLOSING;
1751 		ffs_data_reset(ffs);
1752 	}
1753 
1754 	ffs_data_put(ffs);
1755 }
1756 
1757 static struct ffs_data *ffs_data_new(const char *dev_name)
1758 {
1759 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1760 	if (!ffs)
1761 		return NULL;
1762 
1763 	ENTER();
1764 
1765 	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1766 	if (!ffs->io_completion_wq) {
1767 		kfree(ffs);
1768 		return NULL;
1769 	}
1770 
1771 	refcount_set(&ffs->ref, 1);
1772 	atomic_set(&ffs->opened, 0);
1773 	ffs->state = FFS_READ_DESCRIPTORS;
1774 	mutex_init(&ffs->mutex);
1775 	spin_lock_init(&ffs->eps_lock);
1776 	init_waitqueue_head(&ffs->ev.waitq);
1777 	init_waitqueue_head(&ffs->wait);
1778 	init_completion(&ffs->ep0req_completion);
1779 
1780 	/* XXX REVISIT need to update it in some places, or do we? */
1781 	ffs->ev.can_stall = 1;
1782 
1783 	return ffs;
1784 }
1785 
1786 static void ffs_data_clear(struct ffs_data *ffs)
1787 {
1788 	struct ffs_epfile *epfiles;
1789 	unsigned long flags;
1790 
1791 	ENTER();
1792 
1793 	ffs_closed(ffs);
1794 
1795 	BUG_ON(ffs->gadget);
1796 
1797 	spin_lock_irqsave(&ffs->eps_lock, flags);
1798 	epfiles = ffs->epfiles;
1799 	ffs->epfiles = NULL;
1800 	spin_unlock_irqrestore(&ffs->eps_lock, flags);
1801 
1802 	/*
1803 	 * potential race possible between ffs_func_eps_disable
1804 	 * & ffs_epfile_release therefore maintaining a local
1805 	 * copy of epfile will save us from use-after-free.
1806 	 */
1807 	if (epfiles) {
1808 		ffs_epfiles_destroy(epfiles, ffs->eps_count);
1809 		ffs->epfiles = NULL;
1810 	}
1811 
1812 	if (ffs->ffs_eventfd) {
1813 		eventfd_ctx_put(ffs->ffs_eventfd);
1814 		ffs->ffs_eventfd = NULL;
1815 	}
1816 
1817 	kfree(ffs->raw_descs_data);
1818 	kfree(ffs->raw_strings);
1819 	kfree(ffs->stringtabs);
1820 }
1821 
1822 static void ffs_data_reset(struct ffs_data *ffs)
1823 {
1824 	ENTER();
1825 
1826 	ffs_data_clear(ffs);
1827 
1828 	ffs->raw_descs_data = NULL;
1829 	ffs->raw_descs = NULL;
1830 	ffs->raw_strings = NULL;
1831 	ffs->stringtabs = NULL;
1832 
1833 	ffs->raw_descs_length = 0;
1834 	ffs->fs_descs_count = 0;
1835 	ffs->hs_descs_count = 0;
1836 	ffs->ss_descs_count = 0;
1837 
1838 	ffs->strings_count = 0;
1839 	ffs->interfaces_count = 0;
1840 	ffs->eps_count = 0;
1841 
1842 	ffs->ev.count = 0;
1843 
1844 	ffs->state = FFS_READ_DESCRIPTORS;
1845 	ffs->setup_state = FFS_NO_SETUP;
1846 	ffs->flags = 0;
1847 
1848 	ffs->ms_os_descs_ext_prop_count = 0;
1849 	ffs->ms_os_descs_ext_prop_name_len = 0;
1850 	ffs->ms_os_descs_ext_prop_data_len = 0;
1851 }
1852 
1853 
1854 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1855 {
1856 	struct usb_gadget_strings **lang;
1857 	int first_id;
1858 
1859 	ENTER();
1860 
1861 	if (WARN_ON(ffs->state != FFS_ACTIVE
1862 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1863 		return -EBADFD;
1864 
1865 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1866 	if (first_id < 0)
1867 		return first_id;
1868 
1869 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1870 	if (!ffs->ep0req)
1871 		return -ENOMEM;
1872 	ffs->ep0req->complete = ffs_ep0_complete;
1873 	ffs->ep0req->context = ffs;
1874 
1875 	lang = ffs->stringtabs;
1876 	if (lang) {
1877 		for (; *lang; ++lang) {
1878 			struct usb_string *str = (*lang)->strings;
1879 			int id = first_id;
1880 			for (; str->s; ++id, ++str)
1881 				str->id = id;
1882 		}
1883 	}
1884 
1885 	ffs->gadget = cdev->gadget;
1886 	ffs_data_get(ffs);
1887 	return 0;
1888 }
1889 
1890 static void functionfs_unbind(struct ffs_data *ffs)
1891 {
1892 	ENTER();
1893 
1894 	if (!WARN_ON(!ffs->gadget)) {
1895 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1896 		ffs->ep0req = NULL;
1897 		ffs->gadget = NULL;
1898 		clear_bit(FFS_FL_BOUND, &ffs->flags);
1899 		ffs_data_put(ffs);
1900 	}
1901 }
1902 
1903 static int ffs_epfiles_create(struct ffs_data *ffs)
1904 {
1905 	struct ffs_epfile *epfile, *epfiles;
1906 	unsigned i, count;
1907 
1908 	ENTER();
1909 
1910 	count = ffs->eps_count;
1911 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1912 	if (!epfiles)
1913 		return -ENOMEM;
1914 
1915 	epfile = epfiles;
1916 	for (i = 1; i <= count; ++i, ++epfile) {
1917 		epfile->ffs = ffs;
1918 		mutex_init(&epfile->mutex);
1919 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1920 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1921 		else
1922 			sprintf(epfile->name, "ep%u", i);
1923 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1924 						 epfile,
1925 						 &ffs_epfile_operations);
1926 		if (!epfile->dentry) {
1927 			ffs_epfiles_destroy(epfiles, i - 1);
1928 			return -ENOMEM;
1929 		}
1930 	}
1931 
1932 	ffs->epfiles = epfiles;
1933 	return 0;
1934 }
1935 
1936 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1937 {
1938 	struct ffs_epfile *epfile = epfiles;
1939 
1940 	ENTER();
1941 
1942 	for (; count; --count, ++epfile) {
1943 		BUG_ON(mutex_is_locked(&epfile->mutex));
1944 		if (epfile->dentry) {
1945 			d_delete(epfile->dentry);
1946 			dput(epfile->dentry);
1947 			epfile->dentry = NULL;
1948 		}
1949 	}
1950 
1951 	kfree(epfiles);
1952 }
1953 
1954 static void ffs_func_eps_disable(struct ffs_function *func)
1955 {
1956 	struct ffs_ep *ep;
1957 	struct ffs_epfile *epfile;
1958 	unsigned short count;
1959 	unsigned long flags;
1960 
1961 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1962 	count = func->ffs->eps_count;
1963 	epfile = func->ffs->epfiles;
1964 	ep = func->eps;
1965 	while (count--) {
1966 		/* pending requests get nuked */
1967 		if (ep->ep)
1968 			usb_ep_disable(ep->ep);
1969 		++ep;
1970 
1971 		if (epfile) {
1972 			epfile->ep = NULL;
1973 			__ffs_epfile_read_buffer_free(epfile);
1974 			++epfile;
1975 		}
1976 	}
1977 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1978 }
1979 
1980 static int ffs_func_eps_enable(struct ffs_function *func)
1981 {
1982 	struct ffs_data *ffs;
1983 	struct ffs_ep *ep;
1984 	struct ffs_epfile *epfile;
1985 	unsigned short count;
1986 	unsigned long flags;
1987 	int ret = 0;
1988 
1989 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1990 	ffs = func->ffs;
1991 	ep = func->eps;
1992 	epfile = ffs->epfiles;
1993 	count = ffs->eps_count;
1994 	while(count--) {
1995 		ep->ep->driver_data = ep;
1996 
1997 		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
1998 		if (ret) {
1999 			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
2000 					__func__, ep->ep->name, ret);
2001 			break;
2002 		}
2003 
2004 		ret = usb_ep_enable(ep->ep);
2005 		if (!ret) {
2006 			epfile->ep = ep;
2007 			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
2008 			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
2009 		} else {
2010 			break;
2011 		}
2012 
2013 		++ep;
2014 		++epfile;
2015 	}
2016 
2017 	wake_up_interruptible(&ffs->wait);
2018 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2019 
2020 	return ret;
2021 }
2022 
2023 
2024 /* Parsing and building descriptors and strings *****************************/
2025 
2026 /*
2027  * This validates if data pointed by data is a valid USB descriptor as
2028  * well as record how many interfaces, endpoints and strings are
2029  * required by given configuration.  Returns address after the
2030  * descriptor or NULL if data is invalid.
2031  */
2032 
2033 enum ffs_entity_type {
2034 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
2035 };
2036 
2037 enum ffs_os_desc_type {
2038 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
2039 };
2040 
2041 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2042 				   u8 *valuep,
2043 				   struct usb_descriptor_header *desc,
2044 				   void *priv);
2045 
2046 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2047 				    struct usb_os_desc_header *h, void *data,
2048 				    unsigned len, void *priv);
2049 
2050 static int __must_check ffs_do_single_desc(char *data, unsigned len,
2051 					   ffs_entity_callback entity,
2052 					   void *priv, int *current_class)
2053 {
2054 	struct usb_descriptor_header *_ds = (void *)data;
2055 	u8 length;
2056 	int ret;
2057 
2058 	ENTER();
2059 
2060 	/* At least two bytes are required: length and type */
2061 	if (len < 2) {
2062 		pr_vdebug("descriptor too short\n");
2063 		return -EINVAL;
2064 	}
2065 
2066 	/* If we have at least as many bytes as the descriptor takes? */
2067 	length = _ds->bLength;
2068 	if (len < length) {
2069 		pr_vdebug("descriptor longer then available data\n");
2070 		return -EINVAL;
2071 	}
2072 
2073 #define __entity_check_INTERFACE(val)  1
2074 #define __entity_check_STRING(val)     (val)
2075 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
2076 #define __entity(type, val) do {					\
2077 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
2078 		if (!__entity_check_ ##type(val)) {			\
2079 			pr_vdebug("invalid entity's value\n");		\
2080 			return -EINVAL;					\
2081 		}							\
2082 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
2083 		if (ret < 0) {						\
2084 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
2085 				 (val), ret);				\
2086 			return ret;					\
2087 		}							\
2088 	} while (0)
2089 
2090 	/* Parse descriptor depending on type. */
2091 	switch (_ds->bDescriptorType) {
2092 	case USB_DT_DEVICE:
2093 	case USB_DT_CONFIG:
2094 	case USB_DT_STRING:
2095 	case USB_DT_DEVICE_QUALIFIER:
2096 		/* function can't have any of those */
2097 		pr_vdebug("descriptor reserved for gadget: %d\n",
2098 		      _ds->bDescriptorType);
2099 		return -EINVAL;
2100 
2101 	case USB_DT_INTERFACE: {
2102 		struct usb_interface_descriptor *ds = (void *)_ds;
2103 		pr_vdebug("interface descriptor\n");
2104 		if (length != sizeof *ds)
2105 			goto inv_length;
2106 
2107 		__entity(INTERFACE, ds->bInterfaceNumber);
2108 		if (ds->iInterface)
2109 			__entity(STRING, ds->iInterface);
2110 		*current_class = ds->bInterfaceClass;
2111 	}
2112 		break;
2113 
2114 	case USB_DT_ENDPOINT: {
2115 		struct usb_endpoint_descriptor *ds = (void *)_ds;
2116 		pr_vdebug("endpoint descriptor\n");
2117 		if (length != USB_DT_ENDPOINT_SIZE &&
2118 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
2119 			goto inv_length;
2120 		__entity(ENDPOINT, ds->bEndpointAddress);
2121 	}
2122 		break;
2123 
2124 	case USB_TYPE_CLASS | 0x01:
2125 		if (*current_class == USB_INTERFACE_CLASS_HID) {
2126 			pr_vdebug("hid descriptor\n");
2127 			if (length != sizeof(struct hid_descriptor))
2128 				goto inv_length;
2129 			break;
2130 		} else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2131 			pr_vdebug("ccid descriptor\n");
2132 			if (length != sizeof(struct ccid_descriptor))
2133 				goto inv_length;
2134 			break;
2135 		} else {
2136 			pr_vdebug("unknown descriptor: %d for class %d\n",
2137 			      _ds->bDescriptorType, *current_class);
2138 			return -EINVAL;
2139 		}
2140 
2141 	case USB_DT_OTG:
2142 		if (length != sizeof(struct usb_otg_descriptor))
2143 			goto inv_length;
2144 		break;
2145 
2146 	case USB_DT_INTERFACE_ASSOCIATION: {
2147 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2148 		pr_vdebug("interface association descriptor\n");
2149 		if (length != sizeof *ds)
2150 			goto inv_length;
2151 		if (ds->iFunction)
2152 			__entity(STRING, ds->iFunction);
2153 	}
2154 		break;
2155 
2156 	case USB_DT_SS_ENDPOINT_COMP:
2157 		pr_vdebug("EP SS companion descriptor\n");
2158 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2159 			goto inv_length;
2160 		break;
2161 
2162 	case USB_DT_OTHER_SPEED_CONFIG:
2163 	case USB_DT_INTERFACE_POWER:
2164 	case USB_DT_DEBUG:
2165 	case USB_DT_SECURITY:
2166 	case USB_DT_CS_RADIO_CONTROL:
2167 		/* TODO */
2168 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2169 		return -EINVAL;
2170 
2171 	default:
2172 		/* We should never be here */
2173 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2174 		return -EINVAL;
2175 
2176 inv_length:
2177 		pr_vdebug("invalid length: %d (descriptor %d)\n",
2178 			  _ds->bLength, _ds->bDescriptorType);
2179 		return -EINVAL;
2180 	}
2181 
2182 #undef __entity
2183 #undef __entity_check_DESCRIPTOR
2184 #undef __entity_check_INTERFACE
2185 #undef __entity_check_STRING
2186 #undef __entity_check_ENDPOINT
2187 
2188 	return length;
2189 }
2190 
2191 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2192 				     ffs_entity_callback entity, void *priv)
2193 {
2194 	const unsigned _len = len;
2195 	unsigned long num = 0;
2196 	int current_class = -1;
2197 
2198 	ENTER();
2199 
2200 	for (;;) {
2201 		int ret;
2202 
2203 		if (num == count)
2204 			data = NULL;
2205 
2206 		/* Record "descriptor" entity */
2207 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2208 		if (ret < 0) {
2209 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2210 				 num, ret);
2211 			return ret;
2212 		}
2213 
2214 		if (!data)
2215 			return _len - len;
2216 
2217 		ret = ffs_do_single_desc(data, len, entity, priv,
2218 			&current_class);
2219 		if (ret < 0) {
2220 			pr_debug("%s returns %d\n", __func__, ret);
2221 			return ret;
2222 		}
2223 
2224 		len -= ret;
2225 		data += ret;
2226 		++num;
2227 	}
2228 }
2229 
2230 static int __ffs_data_do_entity(enum ffs_entity_type type,
2231 				u8 *valuep, struct usb_descriptor_header *desc,
2232 				void *priv)
2233 {
2234 	struct ffs_desc_helper *helper = priv;
2235 	struct usb_endpoint_descriptor *d;
2236 
2237 	ENTER();
2238 
2239 	switch (type) {
2240 	case FFS_DESCRIPTOR:
2241 		break;
2242 
2243 	case FFS_INTERFACE:
2244 		/*
2245 		 * Interfaces are indexed from zero so if we
2246 		 * encountered interface "n" then there are at least
2247 		 * "n+1" interfaces.
2248 		 */
2249 		if (*valuep >= helper->interfaces_count)
2250 			helper->interfaces_count = *valuep + 1;
2251 		break;
2252 
2253 	case FFS_STRING:
2254 		/*
2255 		 * Strings are indexed from 1 (0 is reserved
2256 		 * for languages list)
2257 		 */
2258 		if (*valuep > helper->ffs->strings_count)
2259 			helper->ffs->strings_count = *valuep;
2260 		break;
2261 
2262 	case FFS_ENDPOINT:
2263 		d = (void *)desc;
2264 		helper->eps_count++;
2265 		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2266 			return -EINVAL;
2267 		/* Check if descriptors for any speed were already parsed */
2268 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2269 			helper->ffs->eps_addrmap[helper->eps_count] =
2270 				d->bEndpointAddress;
2271 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2272 				d->bEndpointAddress)
2273 			return -EINVAL;
2274 		break;
2275 	}
2276 
2277 	return 0;
2278 }
2279 
2280 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2281 				   struct usb_os_desc_header *desc)
2282 {
2283 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2284 	u16 w_index = le16_to_cpu(desc->wIndex);
2285 
2286 	if (bcd_version != 1) {
2287 		pr_vdebug("unsupported os descriptors version: %d",
2288 			  bcd_version);
2289 		return -EINVAL;
2290 	}
2291 	switch (w_index) {
2292 	case 0x4:
2293 		*next_type = FFS_OS_DESC_EXT_COMPAT;
2294 		break;
2295 	case 0x5:
2296 		*next_type = FFS_OS_DESC_EXT_PROP;
2297 		break;
2298 	default:
2299 		pr_vdebug("unsupported os descriptor type: %d", w_index);
2300 		return -EINVAL;
2301 	}
2302 
2303 	return sizeof(*desc);
2304 }
2305 
2306 /*
2307  * Process all extended compatibility/extended property descriptors
2308  * of a feature descriptor
2309  */
2310 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2311 					      enum ffs_os_desc_type type,
2312 					      u16 feature_count,
2313 					      ffs_os_desc_callback entity,
2314 					      void *priv,
2315 					      struct usb_os_desc_header *h)
2316 {
2317 	int ret;
2318 	const unsigned _len = len;
2319 
2320 	ENTER();
2321 
2322 	/* loop over all ext compat/ext prop descriptors */
2323 	while (feature_count--) {
2324 		ret = entity(type, h, data, len, priv);
2325 		if (ret < 0) {
2326 			pr_debug("bad OS descriptor, type: %d\n", type);
2327 			return ret;
2328 		}
2329 		data += ret;
2330 		len -= ret;
2331 	}
2332 	return _len - len;
2333 }
2334 
2335 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2336 static int __must_check ffs_do_os_descs(unsigned count,
2337 					char *data, unsigned len,
2338 					ffs_os_desc_callback entity, void *priv)
2339 {
2340 	const unsigned _len = len;
2341 	unsigned long num = 0;
2342 
2343 	ENTER();
2344 
2345 	for (num = 0; num < count; ++num) {
2346 		int ret;
2347 		enum ffs_os_desc_type type;
2348 		u16 feature_count;
2349 		struct usb_os_desc_header *desc = (void *)data;
2350 
2351 		if (len < sizeof(*desc))
2352 			return -EINVAL;
2353 
2354 		/*
2355 		 * Record "descriptor" entity.
2356 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2357 		 * Move the data pointer to the beginning of extended
2358 		 * compatibilities proper or extended properties proper
2359 		 * portions of the data
2360 		 */
2361 		if (le32_to_cpu(desc->dwLength) > len)
2362 			return -EINVAL;
2363 
2364 		ret = __ffs_do_os_desc_header(&type, desc);
2365 		if (ret < 0) {
2366 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2367 				 num, ret);
2368 			return ret;
2369 		}
2370 		/*
2371 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2372 		 */
2373 		feature_count = le16_to_cpu(desc->wCount);
2374 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2375 		    (feature_count > 255 || desc->Reserved))
2376 				return -EINVAL;
2377 		len -= ret;
2378 		data += ret;
2379 
2380 		/*
2381 		 * Process all function/property descriptors
2382 		 * of this Feature Descriptor
2383 		 */
2384 		ret = ffs_do_single_os_desc(data, len, type,
2385 					    feature_count, entity, priv, desc);
2386 		if (ret < 0) {
2387 			pr_debug("%s returns %d\n", __func__, ret);
2388 			return ret;
2389 		}
2390 
2391 		len -= ret;
2392 		data += ret;
2393 	}
2394 	return _len - len;
2395 }
2396 
2397 /*
2398  * Validate contents of the buffer from userspace related to OS descriptors.
2399  */
2400 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2401 				 struct usb_os_desc_header *h, void *data,
2402 				 unsigned len, void *priv)
2403 {
2404 	struct ffs_data *ffs = priv;
2405 	u8 length;
2406 
2407 	ENTER();
2408 
2409 	switch (type) {
2410 	case FFS_OS_DESC_EXT_COMPAT: {
2411 		struct usb_ext_compat_desc *d = data;
2412 		int i;
2413 
2414 		if (len < sizeof(*d) ||
2415 		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2416 			return -EINVAL;
2417 		if (d->Reserved1 != 1) {
2418 			/*
2419 			 * According to the spec, Reserved1 must be set to 1
2420 			 * but older kernels incorrectly rejected non-zero
2421 			 * values.  We fix it here to avoid returning EINVAL
2422 			 * in response to values we used to accept.
2423 			 */
2424 			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2425 			d->Reserved1 = 1;
2426 		}
2427 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2428 			if (d->Reserved2[i])
2429 				return -EINVAL;
2430 
2431 		length = sizeof(struct usb_ext_compat_desc);
2432 	}
2433 		break;
2434 	case FFS_OS_DESC_EXT_PROP: {
2435 		struct usb_ext_prop_desc *d = data;
2436 		u32 type, pdl;
2437 		u16 pnl;
2438 
2439 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2440 			return -EINVAL;
2441 		length = le32_to_cpu(d->dwSize);
2442 		if (len < length)
2443 			return -EINVAL;
2444 		type = le32_to_cpu(d->dwPropertyDataType);
2445 		if (type < USB_EXT_PROP_UNICODE ||
2446 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2447 			pr_vdebug("unsupported os descriptor property type: %d",
2448 				  type);
2449 			return -EINVAL;
2450 		}
2451 		pnl = le16_to_cpu(d->wPropertyNameLength);
2452 		if (length < 14 + pnl) {
2453 			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2454 				  length, pnl, type);
2455 			return -EINVAL;
2456 		}
2457 		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2458 		if (length != 14 + pnl + pdl) {
2459 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2460 				  length, pnl, pdl, type);
2461 			return -EINVAL;
2462 		}
2463 		++ffs->ms_os_descs_ext_prop_count;
2464 		/* property name reported to the host as "WCHAR"s */
2465 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2466 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2467 	}
2468 		break;
2469 	default:
2470 		pr_vdebug("unknown descriptor: %d\n", type);
2471 		return -EINVAL;
2472 	}
2473 	return length;
2474 }
2475 
2476 static int __ffs_data_got_descs(struct ffs_data *ffs,
2477 				char *const _data, size_t len)
2478 {
2479 	char *data = _data, *raw_descs;
2480 	unsigned os_descs_count = 0, counts[3], flags;
2481 	int ret = -EINVAL, i;
2482 	struct ffs_desc_helper helper;
2483 
2484 	ENTER();
2485 
2486 	if (get_unaligned_le32(data + 4) != len)
2487 		goto error;
2488 
2489 	switch (get_unaligned_le32(data)) {
2490 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2491 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2492 		data += 8;
2493 		len  -= 8;
2494 		break;
2495 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2496 		flags = get_unaligned_le32(data + 8);
2497 		ffs->user_flags = flags;
2498 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2499 			      FUNCTIONFS_HAS_HS_DESC |
2500 			      FUNCTIONFS_HAS_SS_DESC |
2501 			      FUNCTIONFS_HAS_MS_OS_DESC |
2502 			      FUNCTIONFS_VIRTUAL_ADDR |
2503 			      FUNCTIONFS_EVENTFD |
2504 			      FUNCTIONFS_ALL_CTRL_RECIP |
2505 			      FUNCTIONFS_CONFIG0_SETUP)) {
2506 			ret = -ENOSYS;
2507 			goto error;
2508 		}
2509 		data += 12;
2510 		len  -= 12;
2511 		break;
2512 	default:
2513 		goto error;
2514 	}
2515 
2516 	if (flags & FUNCTIONFS_EVENTFD) {
2517 		if (len < 4)
2518 			goto error;
2519 		ffs->ffs_eventfd =
2520 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2521 		if (IS_ERR(ffs->ffs_eventfd)) {
2522 			ret = PTR_ERR(ffs->ffs_eventfd);
2523 			ffs->ffs_eventfd = NULL;
2524 			goto error;
2525 		}
2526 		data += 4;
2527 		len  -= 4;
2528 	}
2529 
2530 	/* Read fs_count, hs_count and ss_count (if present) */
2531 	for (i = 0; i < 3; ++i) {
2532 		if (!(flags & (1 << i))) {
2533 			counts[i] = 0;
2534 		} else if (len < 4) {
2535 			goto error;
2536 		} else {
2537 			counts[i] = get_unaligned_le32(data);
2538 			data += 4;
2539 			len  -= 4;
2540 		}
2541 	}
2542 	if (flags & (1 << i)) {
2543 		if (len < 4) {
2544 			goto error;
2545 		}
2546 		os_descs_count = get_unaligned_le32(data);
2547 		data += 4;
2548 		len -= 4;
2549 	}
2550 
2551 	/* Read descriptors */
2552 	raw_descs = data;
2553 	helper.ffs = ffs;
2554 	for (i = 0; i < 3; ++i) {
2555 		if (!counts[i])
2556 			continue;
2557 		helper.interfaces_count = 0;
2558 		helper.eps_count = 0;
2559 		ret = ffs_do_descs(counts[i], data, len,
2560 				   __ffs_data_do_entity, &helper);
2561 		if (ret < 0)
2562 			goto error;
2563 		if (!ffs->eps_count && !ffs->interfaces_count) {
2564 			ffs->eps_count = helper.eps_count;
2565 			ffs->interfaces_count = helper.interfaces_count;
2566 		} else {
2567 			if (ffs->eps_count != helper.eps_count) {
2568 				ret = -EINVAL;
2569 				goto error;
2570 			}
2571 			if (ffs->interfaces_count != helper.interfaces_count) {
2572 				ret = -EINVAL;
2573 				goto error;
2574 			}
2575 		}
2576 		data += ret;
2577 		len  -= ret;
2578 	}
2579 	if (os_descs_count) {
2580 		ret = ffs_do_os_descs(os_descs_count, data, len,
2581 				      __ffs_data_do_os_desc, ffs);
2582 		if (ret < 0)
2583 			goto error;
2584 		data += ret;
2585 		len -= ret;
2586 	}
2587 
2588 	if (raw_descs == data || len) {
2589 		ret = -EINVAL;
2590 		goto error;
2591 	}
2592 
2593 	ffs->raw_descs_data	= _data;
2594 	ffs->raw_descs		= raw_descs;
2595 	ffs->raw_descs_length	= data - raw_descs;
2596 	ffs->fs_descs_count	= counts[0];
2597 	ffs->hs_descs_count	= counts[1];
2598 	ffs->ss_descs_count	= counts[2];
2599 	ffs->ms_os_descs_count	= os_descs_count;
2600 
2601 	return 0;
2602 
2603 error:
2604 	kfree(_data);
2605 	return ret;
2606 }
2607 
2608 static int __ffs_data_got_strings(struct ffs_data *ffs,
2609 				  char *const _data, size_t len)
2610 {
2611 	u32 str_count, needed_count, lang_count;
2612 	struct usb_gadget_strings **stringtabs, *t;
2613 	const char *data = _data;
2614 	struct usb_string *s;
2615 
2616 	ENTER();
2617 
2618 	if (len < 16 ||
2619 	    get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2620 	    get_unaligned_le32(data + 4) != len)
2621 		goto error;
2622 	str_count  = get_unaligned_le32(data + 8);
2623 	lang_count = get_unaligned_le32(data + 12);
2624 
2625 	/* if one is zero the other must be zero */
2626 	if (!str_count != !lang_count)
2627 		goto error;
2628 
2629 	/* Do we have at least as many strings as descriptors need? */
2630 	needed_count = ffs->strings_count;
2631 	if (str_count < needed_count)
2632 		goto error;
2633 
2634 	/*
2635 	 * If we don't need any strings just return and free all
2636 	 * memory.
2637 	 */
2638 	if (!needed_count) {
2639 		kfree(_data);
2640 		return 0;
2641 	}
2642 
2643 	/* Allocate everything in one chunk so there's less maintenance. */
2644 	{
2645 		unsigned i = 0;
2646 		vla_group(d);
2647 		vla_item(d, struct usb_gadget_strings *, stringtabs,
2648 			size_add(lang_count, 1));
2649 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2650 		vla_item(d, struct usb_string, strings,
2651 			size_mul(lang_count, (needed_count + 1)));
2652 
2653 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2654 
2655 		if (!vlabuf) {
2656 			kfree(_data);
2657 			return -ENOMEM;
2658 		}
2659 
2660 		/* Initialize the VLA pointers */
2661 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2662 		t = vla_ptr(vlabuf, d, stringtab);
2663 		i = lang_count;
2664 		do {
2665 			*stringtabs++ = t++;
2666 		} while (--i);
2667 		*stringtabs = NULL;
2668 
2669 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2670 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2671 		t = vla_ptr(vlabuf, d, stringtab);
2672 		s = vla_ptr(vlabuf, d, strings);
2673 	}
2674 
2675 	/* For each language */
2676 	data += 16;
2677 	len -= 16;
2678 
2679 	do { /* lang_count > 0 so we can use do-while */
2680 		unsigned needed = needed_count;
2681 		u32 str_per_lang = str_count;
2682 
2683 		if (len < 3)
2684 			goto error_free;
2685 		t->language = get_unaligned_le16(data);
2686 		t->strings  = s;
2687 		++t;
2688 
2689 		data += 2;
2690 		len -= 2;
2691 
2692 		/* For each string */
2693 		do { /* str_count > 0 so we can use do-while */
2694 			size_t length = strnlen(data, len);
2695 
2696 			if (length == len)
2697 				goto error_free;
2698 
2699 			/*
2700 			 * User may provide more strings then we need,
2701 			 * if that's the case we simply ignore the
2702 			 * rest
2703 			 */
2704 			if (needed) {
2705 				/*
2706 				 * s->id will be set while adding
2707 				 * function to configuration so for
2708 				 * now just leave garbage here.
2709 				 */
2710 				s->s = data;
2711 				--needed;
2712 				++s;
2713 			}
2714 
2715 			data += length + 1;
2716 			len -= length + 1;
2717 		} while (--str_per_lang);
2718 
2719 		s->id = 0;   /* terminator */
2720 		s->s = NULL;
2721 		++s;
2722 
2723 	} while (--lang_count);
2724 
2725 	/* Some garbage left? */
2726 	if (len)
2727 		goto error_free;
2728 
2729 	/* Done! */
2730 	ffs->stringtabs = stringtabs;
2731 	ffs->raw_strings = _data;
2732 
2733 	return 0;
2734 
2735 error_free:
2736 	kfree(stringtabs);
2737 error:
2738 	kfree(_data);
2739 	return -EINVAL;
2740 }
2741 
2742 
2743 /* Events handling and management *******************************************/
2744 
2745 static void __ffs_event_add(struct ffs_data *ffs,
2746 			    enum usb_functionfs_event_type type)
2747 {
2748 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2749 	int neg = 0;
2750 
2751 	/*
2752 	 * Abort any unhandled setup
2753 	 *
2754 	 * We do not need to worry about some cmpxchg() changing value
2755 	 * of ffs->setup_state without holding the lock because when
2756 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2757 	 * the source does nothing.
2758 	 */
2759 	if (ffs->setup_state == FFS_SETUP_PENDING)
2760 		ffs->setup_state = FFS_SETUP_CANCELLED;
2761 
2762 	/*
2763 	 * Logic of this function guarantees that there are at most four pending
2764 	 * evens on ffs->ev.types queue.  This is important because the queue
2765 	 * has space for four elements only and __ffs_ep0_read_events function
2766 	 * depends on that limit as well.  If more event types are added, those
2767 	 * limits have to be revisited or guaranteed to still hold.
2768 	 */
2769 	switch (type) {
2770 	case FUNCTIONFS_RESUME:
2771 		rem_type2 = FUNCTIONFS_SUSPEND;
2772 		fallthrough;
2773 	case FUNCTIONFS_SUSPEND:
2774 	case FUNCTIONFS_SETUP:
2775 		rem_type1 = type;
2776 		/* Discard all similar events */
2777 		break;
2778 
2779 	case FUNCTIONFS_BIND:
2780 	case FUNCTIONFS_UNBIND:
2781 	case FUNCTIONFS_DISABLE:
2782 	case FUNCTIONFS_ENABLE:
2783 		/* Discard everything other then power management. */
2784 		rem_type1 = FUNCTIONFS_SUSPEND;
2785 		rem_type2 = FUNCTIONFS_RESUME;
2786 		neg = 1;
2787 		break;
2788 
2789 	default:
2790 		WARN(1, "%d: unknown event, this should not happen\n", type);
2791 		return;
2792 	}
2793 
2794 	{
2795 		u8 *ev  = ffs->ev.types, *out = ev;
2796 		unsigned n = ffs->ev.count;
2797 		for (; n; --n, ++ev)
2798 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2799 				*out++ = *ev;
2800 			else
2801 				pr_vdebug("purging event %d\n", *ev);
2802 		ffs->ev.count = out - ffs->ev.types;
2803 	}
2804 
2805 	pr_vdebug("adding event %d\n", type);
2806 	ffs->ev.types[ffs->ev.count++] = type;
2807 	wake_up_locked(&ffs->ev.waitq);
2808 	if (ffs->ffs_eventfd)
2809 		eventfd_signal(ffs->ffs_eventfd, 1);
2810 }
2811 
2812 static void ffs_event_add(struct ffs_data *ffs,
2813 			  enum usb_functionfs_event_type type)
2814 {
2815 	unsigned long flags;
2816 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2817 	__ffs_event_add(ffs, type);
2818 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2819 }
2820 
2821 /* Bind/unbind USB function hooks *******************************************/
2822 
2823 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2824 {
2825 	int i;
2826 
2827 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2828 		if (ffs->eps_addrmap[i] == endpoint_address)
2829 			return i;
2830 	return -ENOENT;
2831 }
2832 
2833 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2834 				    struct usb_descriptor_header *desc,
2835 				    void *priv)
2836 {
2837 	struct usb_endpoint_descriptor *ds = (void *)desc;
2838 	struct ffs_function *func = priv;
2839 	struct ffs_ep *ffs_ep;
2840 	unsigned ep_desc_id;
2841 	int idx;
2842 	static const char *speed_names[] = { "full", "high", "super" };
2843 
2844 	if (type != FFS_DESCRIPTOR)
2845 		return 0;
2846 
2847 	/*
2848 	 * If ss_descriptors is not NULL, we are reading super speed
2849 	 * descriptors; if hs_descriptors is not NULL, we are reading high
2850 	 * speed descriptors; otherwise, we are reading full speed
2851 	 * descriptors.
2852 	 */
2853 	if (func->function.ss_descriptors) {
2854 		ep_desc_id = 2;
2855 		func->function.ss_descriptors[(long)valuep] = desc;
2856 	} else if (func->function.hs_descriptors) {
2857 		ep_desc_id = 1;
2858 		func->function.hs_descriptors[(long)valuep] = desc;
2859 	} else {
2860 		ep_desc_id = 0;
2861 		func->function.fs_descriptors[(long)valuep]    = desc;
2862 	}
2863 
2864 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2865 		return 0;
2866 
2867 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2868 	if (idx < 0)
2869 		return idx;
2870 
2871 	ffs_ep = func->eps + idx;
2872 
2873 	if (ffs_ep->descs[ep_desc_id]) {
2874 		pr_err("two %sspeed descriptors for EP %d\n",
2875 			  speed_names[ep_desc_id],
2876 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2877 		return -EINVAL;
2878 	}
2879 	ffs_ep->descs[ep_desc_id] = ds;
2880 
2881 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2882 	if (ffs_ep->ep) {
2883 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2884 		if (!ds->wMaxPacketSize)
2885 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2886 	} else {
2887 		struct usb_request *req;
2888 		struct usb_ep *ep;
2889 		u8 bEndpointAddress;
2890 		u16 wMaxPacketSize;
2891 
2892 		/*
2893 		 * We back up bEndpointAddress because autoconfig overwrites
2894 		 * it with physical endpoint address.
2895 		 */
2896 		bEndpointAddress = ds->bEndpointAddress;
2897 		/*
2898 		 * We back up wMaxPacketSize because autoconfig treats
2899 		 * endpoint descriptors as if they were full speed.
2900 		 */
2901 		wMaxPacketSize = ds->wMaxPacketSize;
2902 		pr_vdebug("autoconfig\n");
2903 		ep = usb_ep_autoconfig(func->gadget, ds);
2904 		if (!ep)
2905 			return -ENOTSUPP;
2906 		ep->driver_data = func->eps + idx;
2907 
2908 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2909 		if (!req)
2910 			return -ENOMEM;
2911 
2912 		ffs_ep->ep  = ep;
2913 		ffs_ep->req = req;
2914 		func->eps_revmap[ds->bEndpointAddress &
2915 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2916 		/*
2917 		 * If we use virtual address mapping, we restore
2918 		 * original bEndpointAddress value.
2919 		 */
2920 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2921 			ds->bEndpointAddress = bEndpointAddress;
2922 		/*
2923 		 * Restore wMaxPacketSize which was potentially
2924 		 * overwritten by autoconfig.
2925 		 */
2926 		ds->wMaxPacketSize = wMaxPacketSize;
2927 	}
2928 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2929 
2930 	return 0;
2931 }
2932 
2933 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2934 				   struct usb_descriptor_header *desc,
2935 				   void *priv)
2936 {
2937 	struct ffs_function *func = priv;
2938 	unsigned idx;
2939 	u8 newValue;
2940 
2941 	switch (type) {
2942 	default:
2943 	case FFS_DESCRIPTOR:
2944 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2945 		return 0;
2946 
2947 	case FFS_INTERFACE:
2948 		idx = *valuep;
2949 		if (func->interfaces_nums[idx] < 0) {
2950 			int id = usb_interface_id(func->conf, &func->function);
2951 			if (id < 0)
2952 				return id;
2953 			func->interfaces_nums[idx] = id;
2954 		}
2955 		newValue = func->interfaces_nums[idx];
2956 		break;
2957 
2958 	case FFS_STRING:
2959 		/* String' IDs are allocated when fsf_data is bound to cdev */
2960 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2961 		break;
2962 
2963 	case FFS_ENDPOINT:
2964 		/*
2965 		 * USB_DT_ENDPOINT are handled in
2966 		 * __ffs_func_bind_do_descs().
2967 		 */
2968 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2969 			return 0;
2970 
2971 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2972 		if (!func->eps[idx].ep)
2973 			return -EINVAL;
2974 
2975 		{
2976 			struct usb_endpoint_descriptor **descs;
2977 			descs = func->eps[idx].descs;
2978 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2979 		}
2980 		break;
2981 	}
2982 
2983 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2984 	*valuep = newValue;
2985 	return 0;
2986 }
2987 
2988 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2989 				      struct usb_os_desc_header *h, void *data,
2990 				      unsigned len, void *priv)
2991 {
2992 	struct ffs_function *func = priv;
2993 	u8 length = 0;
2994 
2995 	switch (type) {
2996 	case FFS_OS_DESC_EXT_COMPAT: {
2997 		struct usb_ext_compat_desc *desc = data;
2998 		struct usb_os_desc_table *t;
2999 
3000 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
3001 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
3002 		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
3003 		       ARRAY_SIZE(desc->CompatibleID) +
3004 		       ARRAY_SIZE(desc->SubCompatibleID));
3005 		length = sizeof(*desc);
3006 	}
3007 		break;
3008 	case FFS_OS_DESC_EXT_PROP: {
3009 		struct usb_ext_prop_desc *desc = data;
3010 		struct usb_os_desc_table *t;
3011 		struct usb_os_desc_ext_prop *ext_prop;
3012 		char *ext_prop_name;
3013 		char *ext_prop_data;
3014 
3015 		t = &func->function.os_desc_table[h->interface];
3016 		t->if_id = func->interfaces_nums[h->interface];
3017 
3018 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
3019 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
3020 
3021 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
3022 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
3023 		ext_prop->data_len = le32_to_cpu(*(__le32 *)
3024 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
3025 		length = ext_prop->name_len + ext_prop->data_len + 14;
3026 
3027 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
3028 		func->ffs->ms_os_descs_ext_prop_name_avail +=
3029 			ext_prop->name_len;
3030 
3031 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
3032 		func->ffs->ms_os_descs_ext_prop_data_avail +=
3033 			ext_prop->data_len;
3034 		memcpy(ext_prop_data,
3035 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
3036 		       ext_prop->data_len);
3037 		/* unicode data reported to the host as "WCHAR"s */
3038 		switch (ext_prop->type) {
3039 		case USB_EXT_PROP_UNICODE:
3040 		case USB_EXT_PROP_UNICODE_ENV:
3041 		case USB_EXT_PROP_UNICODE_LINK:
3042 		case USB_EXT_PROP_UNICODE_MULTI:
3043 			ext_prop->data_len *= 2;
3044 			break;
3045 		}
3046 		ext_prop->data = ext_prop_data;
3047 
3048 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3049 		       ext_prop->name_len);
3050 		/* property name reported to the host as "WCHAR"s */
3051 		ext_prop->name_len *= 2;
3052 		ext_prop->name = ext_prop_name;
3053 
3054 		t->os_desc->ext_prop_len +=
3055 			ext_prop->name_len + ext_prop->data_len + 14;
3056 		++t->os_desc->ext_prop_count;
3057 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3058 	}
3059 		break;
3060 	default:
3061 		pr_vdebug("unknown descriptor: %d\n", type);
3062 	}
3063 
3064 	return length;
3065 }
3066 
3067 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3068 						struct usb_configuration *c)
3069 {
3070 	struct ffs_function *func = ffs_func_from_usb(f);
3071 	struct f_fs_opts *ffs_opts =
3072 		container_of(f->fi, struct f_fs_opts, func_inst);
3073 	struct ffs_data *ffs_data;
3074 	int ret;
3075 
3076 	ENTER();
3077 
3078 	/*
3079 	 * Legacy gadget triggers binding in functionfs_ready_callback,
3080 	 * which already uses locking; taking the same lock here would
3081 	 * cause a deadlock.
3082 	 *
3083 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
3084 	 */
3085 	if (!ffs_opts->no_configfs)
3086 		ffs_dev_lock();
3087 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3088 	ffs_data = ffs_opts->dev->ffs_data;
3089 	if (!ffs_opts->no_configfs)
3090 		ffs_dev_unlock();
3091 	if (ret)
3092 		return ERR_PTR(ret);
3093 
3094 	func->ffs = ffs_data;
3095 	func->conf = c;
3096 	func->gadget = c->cdev->gadget;
3097 
3098 	/*
3099 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3100 	 * configurations are bound in sequence with list_for_each_entry,
3101 	 * in each configuration its functions are bound in sequence
3102 	 * with list_for_each_entry, so we assume no race condition
3103 	 * with regard to ffs_opts->bound access
3104 	 */
3105 	if (!ffs_opts->refcnt) {
3106 		ret = functionfs_bind(func->ffs, c->cdev);
3107 		if (ret)
3108 			return ERR_PTR(ret);
3109 	}
3110 	ffs_opts->refcnt++;
3111 	func->function.strings = func->ffs->stringtabs;
3112 
3113 	return ffs_opts;
3114 }
3115 
3116 static int _ffs_func_bind(struct usb_configuration *c,
3117 			  struct usb_function *f)
3118 {
3119 	struct ffs_function *func = ffs_func_from_usb(f);
3120 	struct ffs_data *ffs = func->ffs;
3121 
3122 	const int full = !!func->ffs->fs_descs_count;
3123 	const int high = !!func->ffs->hs_descs_count;
3124 	const int super = !!func->ffs->ss_descs_count;
3125 
3126 	int fs_len, hs_len, ss_len, ret, i;
3127 	struct ffs_ep *eps_ptr;
3128 
3129 	/* Make it a single chunk, less management later on */
3130 	vla_group(d);
3131 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3132 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3133 		full ? ffs->fs_descs_count + 1 : 0);
3134 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3135 		high ? ffs->hs_descs_count + 1 : 0);
3136 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3137 		super ? ffs->ss_descs_count + 1 : 0);
3138 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3139 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3140 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3141 	vla_item_with_sz(d, char[16], ext_compat,
3142 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3143 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
3144 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3145 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3146 			 ffs->ms_os_descs_ext_prop_count);
3147 	vla_item_with_sz(d, char, ext_prop_name,
3148 			 ffs->ms_os_descs_ext_prop_name_len);
3149 	vla_item_with_sz(d, char, ext_prop_data,
3150 			 ffs->ms_os_descs_ext_prop_data_len);
3151 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3152 	char *vlabuf;
3153 
3154 	ENTER();
3155 
3156 	/* Has descriptors only for speeds gadget does not support */
3157 	if (!(full | high | super))
3158 		return -ENOTSUPP;
3159 
3160 	/* Allocate a single chunk, less management later on */
3161 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3162 	if (!vlabuf)
3163 		return -ENOMEM;
3164 
3165 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3166 	ffs->ms_os_descs_ext_prop_name_avail =
3167 		vla_ptr(vlabuf, d, ext_prop_name);
3168 	ffs->ms_os_descs_ext_prop_data_avail =
3169 		vla_ptr(vlabuf, d, ext_prop_data);
3170 
3171 	/* Copy descriptors  */
3172 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3173 	       ffs->raw_descs_length);
3174 
3175 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3176 	eps_ptr = vla_ptr(vlabuf, d, eps);
3177 	for (i = 0; i < ffs->eps_count; i++)
3178 		eps_ptr[i].num = -1;
3179 
3180 	/* Save pointers
3181 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3182 	*/
3183 	func->eps             = vla_ptr(vlabuf, d, eps);
3184 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3185 
3186 	/*
3187 	 * Go through all the endpoint descriptors and allocate
3188 	 * endpoints first, so that later we can rewrite the endpoint
3189 	 * numbers without worrying that it may be described later on.
3190 	 */
3191 	if (full) {
3192 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3193 		fs_len = ffs_do_descs(ffs->fs_descs_count,
3194 				      vla_ptr(vlabuf, d, raw_descs),
3195 				      d_raw_descs__sz,
3196 				      __ffs_func_bind_do_descs, func);
3197 		if (fs_len < 0) {
3198 			ret = fs_len;
3199 			goto error;
3200 		}
3201 	} else {
3202 		fs_len = 0;
3203 	}
3204 
3205 	if (high) {
3206 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3207 		hs_len = ffs_do_descs(ffs->hs_descs_count,
3208 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3209 				      d_raw_descs__sz - fs_len,
3210 				      __ffs_func_bind_do_descs, func);
3211 		if (hs_len < 0) {
3212 			ret = hs_len;
3213 			goto error;
3214 		}
3215 	} else {
3216 		hs_len = 0;
3217 	}
3218 
3219 	if (super) {
3220 		func->function.ss_descriptors = func->function.ssp_descriptors =
3221 			vla_ptr(vlabuf, d, ss_descs);
3222 		ss_len = ffs_do_descs(ffs->ss_descs_count,
3223 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3224 				d_raw_descs__sz - fs_len - hs_len,
3225 				__ffs_func_bind_do_descs, func);
3226 		if (ss_len < 0) {
3227 			ret = ss_len;
3228 			goto error;
3229 		}
3230 	} else {
3231 		ss_len = 0;
3232 	}
3233 
3234 	/*
3235 	 * Now handle interface numbers allocation and interface and
3236 	 * endpoint numbers rewriting.  We can do that in one go
3237 	 * now.
3238 	 */
3239 	ret = ffs_do_descs(ffs->fs_descs_count +
3240 			   (high ? ffs->hs_descs_count : 0) +
3241 			   (super ? ffs->ss_descs_count : 0),
3242 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3243 			   __ffs_func_bind_do_nums, func);
3244 	if (ret < 0)
3245 		goto error;
3246 
3247 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3248 	if (c->cdev->use_os_string) {
3249 		for (i = 0; i < ffs->interfaces_count; ++i) {
3250 			struct usb_os_desc *desc;
3251 
3252 			desc = func->function.os_desc_table[i].os_desc =
3253 				vla_ptr(vlabuf, d, os_desc) +
3254 				i * sizeof(struct usb_os_desc);
3255 			desc->ext_compat_id =
3256 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3257 			INIT_LIST_HEAD(&desc->ext_prop);
3258 		}
3259 		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3260 				      vla_ptr(vlabuf, d, raw_descs) +
3261 				      fs_len + hs_len + ss_len,
3262 				      d_raw_descs__sz - fs_len - hs_len -
3263 				      ss_len,
3264 				      __ffs_func_bind_do_os_desc, func);
3265 		if (ret < 0)
3266 			goto error;
3267 	}
3268 	func->function.os_desc_n =
3269 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3270 
3271 	/* And we're done */
3272 	ffs_event_add(ffs, FUNCTIONFS_BIND);
3273 	return 0;
3274 
3275 error:
3276 	/* XXX Do we need to release all claimed endpoints here? */
3277 	return ret;
3278 }
3279 
3280 static int ffs_func_bind(struct usb_configuration *c,
3281 			 struct usb_function *f)
3282 {
3283 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3284 	struct ffs_function *func = ffs_func_from_usb(f);
3285 	int ret;
3286 
3287 	if (IS_ERR(ffs_opts))
3288 		return PTR_ERR(ffs_opts);
3289 
3290 	ret = _ffs_func_bind(c, f);
3291 	if (ret && !--ffs_opts->refcnt)
3292 		functionfs_unbind(func->ffs);
3293 
3294 	return ret;
3295 }
3296 
3297 
3298 /* Other USB function hooks *************************************************/
3299 
3300 static void ffs_reset_work(struct work_struct *work)
3301 {
3302 	struct ffs_data *ffs = container_of(work,
3303 		struct ffs_data, reset_work);
3304 	ffs_data_reset(ffs);
3305 }
3306 
3307 static int ffs_func_set_alt(struct usb_function *f,
3308 			    unsigned interface, unsigned alt)
3309 {
3310 	struct ffs_function *func = ffs_func_from_usb(f);
3311 	struct ffs_data *ffs = func->ffs;
3312 	int ret = 0, intf;
3313 
3314 	if (alt != (unsigned)-1) {
3315 		intf = ffs_func_revmap_intf(func, interface);
3316 		if (intf < 0)
3317 			return intf;
3318 	}
3319 
3320 	if (ffs->func)
3321 		ffs_func_eps_disable(ffs->func);
3322 
3323 	if (ffs->state == FFS_DEACTIVATED) {
3324 		ffs->state = FFS_CLOSING;
3325 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3326 		schedule_work(&ffs->reset_work);
3327 		return -ENODEV;
3328 	}
3329 
3330 	if (ffs->state != FFS_ACTIVE)
3331 		return -ENODEV;
3332 
3333 	if (alt == (unsigned)-1) {
3334 		ffs->func = NULL;
3335 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3336 		return 0;
3337 	}
3338 
3339 	ffs->func = func;
3340 	ret = ffs_func_eps_enable(func);
3341 	if (ret >= 0)
3342 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3343 	return ret;
3344 }
3345 
3346 static void ffs_func_disable(struct usb_function *f)
3347 {
3348 	ffs_func_set_alt(f, 0, (unsigned)-1);
3349 }
3350 
3351 static int ffs_func_setup(struct usb_function *f,
3352 			  const struct usb_ctrlrequest *creq)
3353 {
3354 	struct ffs_function *func = ffs_func_from_usb(f);
3355 	struct ffs_data *ffs = func->ffs;
3356 	unsigned long flags;
3357 	int ret;
3358 
3359 	ENTER();
3360 
3361 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3362 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3363 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3364 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3365 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3366 
3367 	/*
3368 	 * Most requests directed to interface go through here
3369 	 * (notable exceptions are set/get interface) so we need to
3370 	 * handle them.  All other either handled by composite or
3371 	 * passed to usb_configuration->setup() (if one is set).  No
3372 	 * matter, we will handle requests directed to endpoint here
3373 	 * as well (as it's straightforward).  Other request recipient
3374 	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3375 	 * is being used.
3376 	 */
3377 	if (ffs->state != FFS_ACTIVE)
3378 		return -ENODEV;
3379 
3380 	switch (creq->bRequestType & USB_RECIP_MASK) {
3381 	case USB_RECIP_INTERFACE:
3382 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3383 		if (ret < 0)
3384 			return ret;
3385 		break;
3386 
3387 	case USB_RECIP_ENDPOINT:
3388 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3389 		if (ret < 0)
3390 			return ret;
3391 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3392 			ret = func->ffs->eps_addrmap[ret];
3393 		break;
3394 
3395 	default:
3396 		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3397 			ret = le16_to_cpu(creq->wIndex);
3398 		else
3399 			return -EOPNOTSUPP;
3400 	}
3401 
3402 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3403 	ffs->ev.setup = *creq;
3404 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3405 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3406 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3407 
3408 	return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3409 }
3410 
3411 static bool ffs_func_req_match(struct usb_function *f,
3412 			       const struct usb_ctrlrequest *creq,
3413 			       bool config0)
3414 {
3415 	struct ffs_function *func = ffs_func_from_usb(f);
3416 
3417 	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3418 		return false;
3419 
3420 	switch (creq->bRequestType & USB_RECIP_MASK) {
3421 	case USB_RECIP_INTERFACE:
3422 		return (ffs_func_revmap_intf(func,
3423 					     le16_to_cpu(creq->wIndex)) >= 0);
3424 	case USB_RECIP_ENDPOINT:
3425 		return (ffs_func_revmap_ep(func,
3426 					   le16_to_cpu(creq->wIndex)) >= 0);
3427 	default:
3428 		return (bool) (func->ffs->user_flags &
3429 			       FUNCTIONFS_ALL_CTRL_RECIP);
3430 	}
3431 }
3432 
3433 static void ffs_func_suspend(struct usb_function *f)
3434 {
3435 	ENTER();
3436 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3437 }
3438 
3439 static void ffs_func_resume(struct usb_function *f)
3440 {
3441 	ENTER();
3442 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3443 }
3444 
3445 
3446 /* Endpoint and interface numbers reverse mapping ***************************/
3447 
3448 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3449 {
3450 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3451 	return num ? num : -EDOM;
3452 }
3453 
3454 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3455 {
3456 	short *nums = func->interfaces_nums;
3457 	unsigned count = func->ffs->interfaces_count;
3458 
3459 	for (; count; --count, ++nums) {
3460 		if (*nums >= 0 && *nums == intf)
3461 			return nums - func->interfaces_nums;
3462 	}
3463 
3464 	return -EDOM;
3465 }
3466 
3467 
3468 /* Devices management *******************************************************/
3469 
3470 static LIST_HEAD(ffs_devices);
3471 
3472 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3473 {
3474 	struct ffs_dev *dev;
3475 
3476 	if (!name)
3477 		return NULL;
3478 
3479 	list_for_each_entry(dev, &ffs_devices, entry) {
3480 		if (strcmp(dev->name, name) == 0)
3481 			return dev;
3482 	}
3483 
3484 	return NULL;
3485 }
3486 
3487 /*
3488  * ffs_lock must be taken by the caller of this function
3489  */
3490 static struct ffs_dev *_ffs_get_single_dev(void)
3491 {
3492 	struct ffs_dev *dev;
3493 
3494 	if (list_is_singular(&ffs_devices)) {
3495 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3496 		if (dev->single)
3497 			return dev;
3498 	}
3499 
3500 	return NULL;
3501 }
3502 
3503 /*
3504  * ffs_lock must be taken by the caller of this function
3505  */
3506 static struct ffs_dev *_ffs_find_dev(const char *name)
3507 {
3508 	struct ffs_dev *dev;
3509 
3510 	dev = _ffs_get_single_dev();
3511 	if (dev)
3512 		return dev;
3513 
3514 	return _ffs_do_find_dev(name);
3515 }
3516 
3517 /* Configfs support *********************************************************/
3518 
3519 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3520 {
3521 	return container_of(to_config_group(item), struct f_fs_opts,
3522 			    func_inst.group);
3523 }
3524 
3525 static void ffs_attr_release(struct config_item *item)
3526 {
3527 	struct f_fs_opts *opts = to_ffs_opts(item);
3528 
3529 	usb_put_function_instance(&opts->func_inst);
3530 }
3531 
3532 static struct configfs_item_operations ffs_item_ops = {
3533 	.release	= ffs_attr_release,
3534 };
3535 
3536 static const struct config_item_type ffs_func_type = {
3537 	.ct_item_ops	= &ffs_item_ops,
3538 	.ct_owner	= THIS_MODULE,
3539 };
3540 
3541 
3542 /* Function registration interface ******************************************/
3543 
3544 static void ffs_free_inst(struct usb_function_instance *f)
3545 {
3546 	struct f_fs_opts *opts;
3547 
3548 	opts = to_f_fs_opts(f);
3549 	ffs_release_dev(opts->dev);
3550 	ffs_dev_lock();
3551 	_ffs_free_dev(opts->dev);
3552 	ffs_dev_unlock();
3553 	kfree(opts);
3554 }
3555 
3556 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3557 {
3558 	if (strlen(name) >= sizeof_field(struct ffs_dev, name))
3559 		return -ENAMETOOLONG;
3560 	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3561 }
3562 
3563 static struct usb_function_instance *ffs_alloc_inst(void)
3564 {
3565 	struct f_fs_opts *opts;
3566 	struct ffs_dev *dev;
3567 
3568 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3569 	if (!opts)
3570 		return ERR_PTR(-ENOMEM);
3571 
3572 	opts->func_inst.set_inst_name = ffs_set_inst_name;
3573 	opts->func_inst.free_func_inst = ffs_free_inst;
3574 	ffs_dev_lock();
3575 	dev = _ffs_alloc_dev();
3576 	ffs_dev_unlock();
3577 	if (IS_ERR(dev)) {
3578 		kfree(opts);
3579 		return ERR_CAST(dev);
3580 	}
3581 	opts->dev = dev;
3582 	dev->opts = opts;
3583 
3584 	config_group_init_type_name(&opts->func_inst.group, "",
3585 				    &ffs_func_type);
3586 	return &opts->func_inst;
3587 }
3588 
3589 static void ffs_free(struct usb_function *f)
3590 {
3591 	kfree(ffs_func_from_usb(f));
3592 }
3593 
3594 static void ffs_func_unbind(struct usb_configuration *c,
3595 			    struct usb_function *f)
3596 {
3597 	struct ffs_function *func = ffs_func_from_usb(f);
3598 	struct ffs_data *ffs = func->ffs;
3599 	struct f_fs_opts *opts =
3600 		container_of(f->fi, struct f_fs_opts, func_inst);
3601 	struct ffs_ep *ep = func->eps;
3602 	unsigned count = ffs->eps_count;
3603 	unsigned long flags;
3604 
3605 	ENTER();
3606 	if (ffs->func == func) {
3607 		ffs_func_eps_disable(func);
3608 		ffs->func = NULL;
3609 	}
3610 
3611 	/* Drain any pending AIO completions */
3612 	drain_workqueue(ffs->io_completion_wq);
3613 
3614 	if (!--opts->refcnt)
3615 		functionfs_unbind(ffs);
3616 
3617 	/* cleanup after autoconfig */
3618 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3619 	while (count--) {
3620 		if (ep->ep && ep->req)
3621 			usb_ep_free_request(ep->ep, ep->req);
3622 		ep->req = NULL;
3623 		++ep;
3624 	}
3625 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3626 	kfree(func->eps);
3627 	func->eps = NULL;
3628 	/*
3629 	 * eps, descriptors and interfaces_nums are allocated in the
3630 	 * same chunk so only one free is required.
3631 	 */
3632 	func->function.fs_descriptors = NULL;
3633 	func->function.hs_descriptors = NULL;
3634 	func->function.ss_descriptors = NULL;
3635 	func->function.ssp_descriptors = NULL;
3636 	func->interfaces_nums = NULL;
3637 
3638 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3639 }
3640 
3641 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3642 {
3643 	struct ffs_function *func;
3644 
3645 	ENTER();
3646 
3647 	func = kzalloc(sizeof(*func), GFP_KERNEL);
3648 	if (!func)
3649 		return ERR_PTR(-ENOMEM);
3650 
3651 	func->function.name    = "Function FS Gadget";
3652 
3653 	func->function.bind    = ffs_func_bind;
3654 	func->function.unbind  = ffs_func_unbind;
3655 	func->function.set_alt = ffs_func_set_alt;
3656 	func->function.disable = ffs_func_disable;
3657 	func->function.setup   = ffs_func_setup;
3658 	func->function.req_match = ffs_func_req_match;
3659 	func->function.suspend = ffs_func_suspend;
3660 	func->function.resume  = ffs_func_resume;
3661 	func->function.free_func = ffs_free;
3662 
3663 	return &func->function;
3664 }
3665 
3666 /*
3667  * ffs_lock must be taken by the caller of this function
3668  */
3669 static struct ffs_dev *_ffs_alloc_dev(void)
3670 {
3671 	struct ffs_dev *dev;
3672 	int ret;
3673 
3674 	if (_ffs_get_single_dev())
3675 			return ERR_PTR(-EBUSY);
3676 
3677 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3678 	if (!dev)
3679 		return ERR_PTR(-ENOMEM);
3680 
3681 	if (list_empty(&ffs_devices)) {
3682 		ret = functionfs_init();
3683 		if (ret) {
3684 			kfree(dev);
3685 			return ERR_PTR(ret);
3686 		}
3687 	}
3688 
3689 	list_add(&dev->entry, &ffs_devices);
3690 
3691 	return dev;
3692 }
3693 
3694 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3695 {
3696 	struct ffs_dev *existing;
3697 	int ret = 0;
3698 
3699 	ffs_dev_lock();
3700 
3701 	existing = _ffs_do_find_dev(name);
3702 	if (!existing)
3703 		strscpy(dev->name, name, ARRAY_SIZE(dev->name));
3704 	else if (existing != dev)
3705 		ret = -EBUSY;
3706 
3707 	ffs_dev_unlock();
3708 
3709 	return ret;
3710 }
3711 EXPORT_SYMBOL_GPL(ffs_name_dev);
3712 
3713 int ffs_single_dev(struct ffs_dev *dev)
3714 {
3715 	int ret;
3716 
3717 	ret = 0;
3718 	ffs_dev_lock();
3719 
3720 	if (!list_is_singular(&ffs_devices))
3721 		ret = -EBUSY;
3722 	else
3723 		dev->single = true;
3724 
3725 	ffs_dev_unlock();
3726 	return ret;
3727 }
3728 EXPORT_SYMBOL_GPL(ffs_single_dev);
3729 
3730 /*
3731  * ffs_lock must be taken by the caller of this function
3732  */
3733 static void _ffs_free_dev(struct ffs_dev *dev)
3734 {
3735 	list_del(&dev->entry);
3736 
3737 	kfree(dev);
3738 	if (list_empty(&ffs_devices))
3739 		functionfs_cleanup();
3740 }
3741 
3742 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data)
3743 {
3744 	int ret = 0;
3745 	struct ffs_dev *ffs_dev;
3746 
3747 	ENTER();
3748 	ffs_dev_lock();
3749 
3750 	ffs_dev = _ffs_find_dev(dev_name);
3751 	if (!ffs_dev) {
3752 		ret = -ENOENT;
3753 	} else if (ffs_dev->mounted) {
3754 		ret = -EBUSY;
3755 	} else if (ffs_dev->ffs_acquire_dev_callback &&
3756 		   ffs_dev->ffs_acquire_dev_callback(ffs_dev)) {
3757 		ret = -ENOENT;
3758 	} else {
3759 		ffs_dev->mounted = true;
3760 		ffs_dev->ffs_data = ffs_data;
3761 		ffs_data->private_data = ffs_dev;
3762 	}
3763 
3764 	ffs_dev_unlock();
3765 	return ret;
3766 }
3767 
3768 static void ffs_release_dev(struct ffs_dev *ffs_dev)
3769 {
3770 	ENTER();
3771 	ffs_dev_lock();
3772 
3773 	if (ffs_dev && ffs_dev->mounted) {
3774 		ffs_dev->mounted = false;
3775 		if (ffs_dev->ffs_data) {
3776 			ffs_dev->ffs_data->private_data = NULL;
3777 			ffs_dev->ffs_data = NULL;
3778 		}
3779 
3780 		if (ffs_dev->ffs_release_dev_callback)
3781 			ffs_dev->ffs_release_dev_callback(ffs_dev);
3782 	}
3783 
3784 	ffs_dev_unlock();
3785 }
3786 
3787 static int ffs_ready(struct ffs_data *ffs)
3788 {
3789 	struct ffs_dev *ffs_obj;
3790 	int ret = 0;
3791 
3792 	ENTER();
3793 	ffs_dev_lock();
3794 
3795 	ffs_obj = ffs->private_data;
3796 	if (!ffs_obj) {
3797 		ret = -EINVAL;
3798 		goto done;
3799 	}
3800 	if (WARN_ON(ffs_obj->desc_ready)) {
3801 		ret = -EBUSY;
3802 		goto done;
3803 	}
3804 
3805 	ffs_obj->desc_ready = true;
3806 
3807 	if (ffs_obj->ffs_ready_callback) {
3808 		ret = ffs_obj->ffs_ready_callback(ffs);
3809 		if (ret)
3810 			goto done;
3811 	}
3812 
3813 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3814 done:
3815 	ffs_dev_unlock();
3816 	return ret;
3817 }
3818 
3819 static void ffs_closed(struct ffs_data *ffs)
3820 {
3821 	struct ffs_dev *ffs_obj;
3822 	struct f_fs_opts *opts;
3823 	struct config_item *ci;
3824 
3825 	ENTER();
3826 	ffs_dev_lock();
3827 
3828 	ffs_obj = ffs->private_data;
3829 	if (!ffs_obj)
3830 		goto done;
3831 
3832 	ffs_obj->desc_ready = false;
3833 
3834 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3835 	    ffs_obj->ffs_closed_callback)
3836 		ffs_obj->ffs_closed_callback(ffs);
3837 
3838 	if (ffs_obj->opts)
3839 		opts = ffs_obj->opts;
3840 	else
3841 		goto done;
3842 
3843 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3844 	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3845 		goto done;
3846 
3847 	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3848 	ffs_dev_unlock();
3849 
3850 	if (test_bit(FFS_FL_BOUND, &ffs->flags))
3851 		unregister_gadget_item(ci);
3852 	return;
3853 done:
3854 	ffs_dev_unlock();
3855 }
3856 
3857 /* Misc helper functions ****************************************************/
3858 
3859 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3860 {
3861 	return nonblock
3862 		? mutex_trylock(mutex) ? 0 : -EAGAIN
3863 		: mutex_lock_interruptible(mutex);
3864 }
3865 
3866 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3867 {
3868 	char *data;
3869 
3870 	if (!len)
3871 		return NULL;
3872 
3873 	data = memdup_user(buf, len);
3874 	if (IS_ERR(data))
3875 		return data;
3876 
3877 	pr_vdebug("Buffer from user space:\n");
3878 	ffs_dump_mem("", data, len);
3879 
3880 	return data;
3881 }
3882 
3883 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3884 MODULE_LICENSE("GPL");
3885 MODULE_AUTHOR("Michal Nazarewicz");
3886