1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * f_fs.c -- user mode file system API for USB composite function controllers 4 * 5 * Copyright (C) 2010 Samsung Electronics 6 * Author: Michal Nazarewicz <mina86@mina86.com> 7 * 8 * Based on inode.c (GadgetFS) which was: 9 * Copyright (C) 2003-2004 David Brownell 10 * Copyright (C) 2003 Agilent Technologies 11 */ 12 13 14 /* #define DEBUG */ 15 /* #define VERBOSE_DEBUG */ 16 17 #include <linux/blkdev.h> 18 #include <linux/pagemap.h> 19 #include <linux/export.h> 20 #include <linux/fs_parser.h> 21 #include <linux/hid.h> 22 #include <linux/mm.h> 23 #include <linux/module.h> 24 #include <linux/scatterlist.h> 25 #include <linux/sched/signal.h> 26 #include <linux/uio.h> 27 #include <linux/vmalloc.h> 28 #include <asm/unaligned.h> 29 30 #include <linux/usb/ccid.h> 31 #include <linux/usb/composite.h> 32 #include <linux/usb/functionfs.h> 33 34 #include <linux/aio.h> 35 #include <linux/mmu_context.h> 36 #include <linux/poll.h> 37 #include <linux/eventfd.h> 38 39 #include "u_fs.h" 40 #include "u_f.h" 41 #include "u_os_desc.h" 42 #include "configfs.h" 43 44 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ 45 46 /* Reference counter handling */ 47 static void ffs_data_get(struct ffs_data *ffs); 48 static void ffs_data_put(struct ffs_data *ffs); 49 /* Creates new ffs_data object. */ 50 static struct ffs_data *__must_check ffs_data_new(const char *dev_name) 51 __attribute__((malloc)); 52 53 /* Opened counter handling. */ 54 static void ffs_data_opened(struct ffs_data *ffs); 55 static void ffs_data_closed(struct ffs_data *ffs); 56 57 /* Called with ffs->mutex held; take over ownership of data. */ 58 static int __must_check 59 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); 60 static int __must_check 61 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); 62 63 64 /* The function structure ***************************************************/ 65 66 struct ffs_ep; 67 68 struct ffs_function { 69 struct usb_configuration *conf; 70 struct usb_gadget *gadget; 71 struct ffs_data *ffs; 72 73 struct ffs_ep *eps; 74 u8 eps_revmap[16]; 75 short *interfaces_nums; 76 77 struct usb_function function; 78 }; 79 80 81 static struct ffs_function *ffs_func_from_usb(struct usb_function *f) 82 { 83 return container_of(f, struct ffs_function, function); 84 } 85 86 87 static inline enum ffs_setup_state 88 ffs_setup_state_clear_cancelled(struct ffs_data *ffs) 89 { 90 return (enum ffs_setup_state) 91 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); 92 } 93 94 95 static void ffs_func_eps_disable(struct ffs_function *func); 96 static int __must_check ffs_func_eps_enable(struct ffs_function *func); 97 98 static int ffs_func_bind(struct usb_configuration *, 99 struct usb_function *); 100 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); 101 static void ffs_func_disable(struct usb_function *); 102 static int ffs_func_setup(struct usb_function *, 103 const struct usb_ctrlrequest *); 104 static bool ffs_func_req_match(struct usb_function *, 105 const struct usb_ctrlrequest *, 106 bool config0); 107 static void ffs_func_suspend(struct usb_function *); 108 static void ffs_func_resume(struct usb_function *); 109 110 111 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); 112 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); 113 114 115 /* The endpoints structures *************************************************/ 116 117 struct ffs_ep { 118 struct usb_ep *ep; /* P: ffs->eps_lock */ 119 struct usb_request *req; /* P: epfile->mutex */ 120 121 /* [0]: full speed, [1]: high speed, [2]: super speed */ 122 struct usb_endpoint_descriptor *descs[3]; 123 124 u8 num; 125 126 int status; /* P: epfile->mutex */ 127 }; 128 129 struct ffs_epfile { 130 /* Protects ep->ep and ep->req. */ 131 struct mutex mutex; 132 133 struct ffs_data *ffs; 134 struct ffs_ep *ep; /* P: ffs->eps_lock */ 135 136 struct dentry *dentry; 137 138 /* 139 * Buffer for holding data from partial reads which may happen since 140 * we’re rounding user read requests to a multiple of a max packet size. 141 * 142 * The pointer is initialised with NULL value and may be set by 143 * __ffs_epfile_read_data function to point to a temporary buffer. 144 * 145 * In normal operation, calls to __ffs_epfile_read_buffered will consume 146 * data from said buffer and eventually free it. Importantly, while the 147 * function is using the buffer, it sets the pointer to NULL. This is 148 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered 149 * can never run concurrently (they are synchronised by epfile->mutex) 150 * so the latter will not assign a new value to the pointer. 151 * 152 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is 153 * valid) and sets the pointer to READ_BUFFER_DROP value. This special 154 * value is crux of the synchronisation between ffs_func_eps_disable and 155 * __ffs_epfile_read_data. 156 * 157 * Once __ffs_epfile_read_data is about to finish it will try to set the 158 * pointer back to its old value (as described above), but seeing as the 159 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free 160 * the buffer. 161 * 162 * == State transitions == 163 * 164 * • ptr == NULL: (initial state) 165 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP 166 * ◦ __ffs_epfile_read_buffered: nop 167 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf 168 * ◦ reading finishes: n/a, not in ‘and reading’ state 169 * • ptr == DROP: 170 * ◦ __ffs_epfile_read_buffer_free: nop 171 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL 172 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop 173 * ◦ reading finishes: n/a, not in ‘and reading’ state 174 * • ptr == buf: 175 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP 176 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading 177 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered 178 * is always called first 179 * ◦ reading finishes: n/a, not in ‘and reading’ state 180 * • ptr == NULL and reading: 181 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading 182 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 183 * ◦ __ffs_epfile_read_data: n/a, mutex is held 184 * ◦ reading finishes and … 185 * … all data read: free buf, go to ptr == NULL 186 * … otherwise: go to ptr == buf and reading 187 * • ptr == DROP and reading: 188 * ◦ __ffs_epfile_read_buffer_free: nop 189 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 190 * ◦ __ffs_epfile_read_data: n/a, mutex is held 191 * ◦ reading finishes: free buf, go to ptr == DROP 192 */ 193 struct ffs_buffer *read_buffer; 194 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN)) 195 196 char name[5]; 197 198 unsigned char in; /* P: ffs->eps_lock */ 199 unsigned char isoc; /* P: ffs->eps_lock */ 200 201 unsigned char _pad; 202 }; 203 204 struct ffs_buffer { 205 size_t length; 206 char *data; 207 char storage[]; 208 }; 209 210 /* ffs_io_data structure ***************************************************/ 211 212 struct ffs_io_data { 213 bool aio; 214 bool read; 215 216 struct kiocb *kiocb; 217 struct iov_iter data; 218 const void *to_free; 219 char *buf; 220 221 struct mm_struct *mm; 222 struct work_struct work; 223 224 struct usb_ep *ep; 225 struct usb_request *req; 226 struct sg_table sgt; 227 bool use_sg; 228 229 struct ffs_data *ffs; 230 }; 231 232 struct ffs_desc_helper { 233 struct ffs_data *ffs; 234 unsigned interfaces_count; 235 unsigned eps_count; 236 }; 237 238 static int __must_check ffs_epfiles_create(struct ffs_data *ffs); 239 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count); 240 241 static struct dentry * 242 ffs_sb_create_file(struct super_block *sb, const char *name, void *data, 243 const struct file_operations *fops); 244 245 /* Devices management *******************************************************/ 246 247 DEFINE_MUTEX(ffs_lock); 248 EXPORT_SYMBOL_GPL(ffs_lock); 249 250 static struct ffs_dev *_ffs_find_dev(const char *name); 251 static struct ffs_dev *_ffs_alloc_dev(void); 252 static void _ffs_free_dev(struct ffs_dev *dev); 253 static void *ffs_acquire_dev(const char *dev_name); 254 static void ffs_release_dev(struct ffs_data *ffs_data); 255 static int ffs_ready(struct ffs_data *ffs); 256 static void ffs_closed(struct ffs_data *ffs); 257 258 /* Misc helper functions ****************************************************/ 259 260 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 261 __attribute__((warn_unused_result, nonnull)); 262 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 263 __attribute__((warn_unused_result, nonnull)); 264 265 266 /* Control file aka ep0 *****************************************************/ 267 268 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) 269 { 270 struct ffs_data *ffs = req->context; 271 272 complete(&ffs->ep0req_completion); 273 } 274 275 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) 276 __releases(&ffs->ev.waitq.lock) 277 { 278 struct usb_request *req = ffs->ep0req; 279 int ret; 280 281 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); 282 283 spin_unlock_irq(&ffs->ev.waitq.lock); 284 285 req->buf = data; 286 req->length = len; 287 288 /* 289 * UDC layer requires to provide a buffer even for ZLP, but should 290 * not use it at all. Let's provide some poisoned pointer to catch 291 * possible bug in the driver. 292 */ 293 if (req->buf == NULL) 294 req->buf = (void *)0xDEADBABE; 295 296 reinit_completion(&ffs->ep0req_completion); 297 298 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); 299 if (unlikely(ret < 0)) 300 return ret; 301 302 ret = wait_for_completion_interruptible(&ffs->ep0req_completion); 303 if (unlikely(ret)) { 304 usb_ep_dequeue(ffs->gadget->ep0, req); 305 return -EINTR; 306 } 307 308 ffs->setup_state = FFS_NO_SETUP; 309 return req->status ? req->status : req->actual; 310 } 311 312 static int __ffs_ep0_stall(struct ffs_data *ffs) 313 { 314 if (ffs->ev.can_stall) { 315 pr_vdebug("ep0 stall\n"); 316 usb_ep_set_halt(ffs->gadget->ep0); 317 ffs->setup_state = FFS_NO_SETUP; 318 return -EL2HLT; 319 } else { 320 pr_debug("bogus ep0 stall!\n"); 321 return -ESRCH; 322 } 323 } 324 325 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, 326 size_t len, loff_t *ptr) 327 { 328 struct ffs_data *ffs = file->private_data; 329 ssize_t ret; 330 char *data; 331 332 ENTER(); 333 334 /* Fast check if setup was canceled */ 335 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 336 return -EIDRM; 337 338 /* Acquire mutex */ 339 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 340 if (unlikely(ret < 0)) 341 return ret; 342 343 /* Check state */ 344 switch (ffs->state) { 345 case FFS_READ_DESCRIPTORS: 346 case FFS_READ_STRINGS: 347 /* Copy data */ 348 if (unlikely(len < 16)) { 349 ret = -EINVAL; 350 break; 351 } 352 353 data = ffs_prepare_buffer(buf, len); 354 if (IS_ERR(data)) { 355 ret = PTR_ERR(data); 356 break; 357 } 358 359 /* Handle data */ 360 if (ffs->state == FFS_READ_DESCRIPTORS) { 361 pr_info("read descriptors\n"); 362 ret = __ffs_data_got_descs(ffs, data, len); 363 if (unlikely(ret < 0)) 364 break; 365 366 ffs->state = FFS_READ_STRINGS; 367 ret = len; 368 } else { 369 pr_info("read strings\n"); 370 ret = __ffs_data_got_strings(ffs, data, len); 371 if (unlikely(ret < 0)) 372 break; 373 374 ret = ffs_epfiles_create(ffs); 375 if (unlikely(ret)) { 376 ffs->state = FFS_CLOSING; 377 break; 378 } 379 380 ffs->state = FFS_ACTIVE; 381 mutex_unlock(&ffs->mutex); 382 383 ret = ffs_ready(ffs); 384 if (unlikely(ret < 0)) { 385 ffs->state = FFS_CLOSING; 386 return ret; 387 } 388 389 return len; 390 } 391 break; 392 393 case FFS_ACTIVE: 394 data = NULL; 395 /* 396 * We're called from user space, we can use _irq 397 * rather then _irqsave 398 */ 399 spin_lock_irq(&ffs->ev.waitq.lock); 400 switch (ffs_setup_state_clear_cancelled(ffs)) { 401 case FFS_SETUP_CANCELLED: 402 ret = -EIDRM; 403 goto done_spin; 404 405 case FFS_NO_SETUP: 406 ret = -ESRCH; 407 goto done_spin; 408 409 case FFS_SETUP_PENDING: 410 break; 411 } 412 413 /* FFS_SETUP_PENDING */ 414 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { 415 spin_unlock_irq(&ffs->ev.waitq.lock); 416 ret = __ffs_ep0_stall(ffs); 417 break; 418 } 419 420 /* FFS_SETUP_PENDING and not stall */ 421 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 422 423 spin_unlock_irq(&ffs->ev.waitq.lock); 424 425 data = ffs_prepare_buffer(buf, len); 426 if (IS_ERR(data)) { 427 ret = PTR_ERR(data); 428 break; 429 } 430 431 spin_lock_irq(&ffs->ev.waitq.lock); 432 433 /* 434 * We are guaranteed to be still in FFS_ACTIVE state 435 * but the state of setup could have changed from 436 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need 437 * to check for that. If that happened we copied data 438 * from user space in vain but it's unlikely. 439 * 440 * For sure we are not in FFS_NO_SETUP since this is 441 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP 442 * transition can be performed and it's protected by 443 * mutex. 444 */ 445 if (ffs_setup_state_clear_cancelled(ffs) == 446 FFS_SETUP_CANCELLED) { 447 ret = -EIDRM; 448 done_spin: 449 spin_unlock_irq(&ffs->ev.waitq.lock); 450 } else { 451 /* unlocks spinlock */ 452 ret = __ffs_ep0_queue_wait(ffs, data, len); 453 } 454 kfree(data); 455 break; 456 457 default: 458 ret = -EBADFD; 459 break; 460 } 461 462 mutex_unlock(&ffs->mutex); 463 return ret; 464 } 465 466 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */ 467 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, 468 size_t n) 469 __releases(&ffs->ev.waitq.lock) 470 { 471 /* 472 * n cannot be bigger than ffs->ev.count, which cannot be bigger than 473 * size of ffs->ev.types array (which is four) so that's how much space 474 * we reserve. 475 */ 476 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)]; 477 const size_t size = n * sizeof *events; 478 unsigned i = 0; 479 480 memset(events, 0, size); 481 482 do { 483 events[i].type = ffs->ev.types[i]; 484 if (events[i].type == FUNCTIONFS_SETUP) { 485 events[i].u.setup = ffs->ev.setup; 486 ffs->setup_state = FFS_SETUP_PENDING; 487 } 488 } while (++i < n); 489 490 ffs->ev.count -= n; 491 if (ffs->ev.count) 492 memmove(ffs->ev.types, ffs->ev.types + n, 493 ffs->ev.count * sizeof *ffs->ev.types); 494 495 spin_unlock_irq(&ffs->ev.waitq.lock); 496 mutex_unlock(&ffs->mutex); 497 498 return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size; 499 } 500 501 static ssize_t ffs_ep0_read(struct file *file, char __user *buf, 502 size_t len, loff_t *ptr) 503 { 504 struct ffs_data *ffs = file->private_data; 505 char *data = NULL; 506 size_t n; 507 int ret; 508 509 ENTER(); 510 511 /* Fast check if setup was canceled */ 512 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 513 return -EIDRM; 514 515 /* Acquire mutex */ 516 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 517 if (unlikely(ret < 0)) 518 return ret; 519 520 /* Check state */ 521 if (ffs->state != FFS_ACTIVE) { 522 ret = -EBADFD; 523 goto done_mutex; 524 } 525 526 /* 527 * We're called from user space, we can use _irq rather then 528 * _irqsave 529 */ 530 spin_lock_irq(&ffs->ev.waitq.lock); 531 532 switch (ffs_setup_state_clear_cancelled(ffs)) { 533 case FFS_SETUP_CANCELLED: 534 ret = -EIDRM; 535 break; 536 537 case FFS_NO_SETUP: 538 n = len / sizeof(struct usb_functionfs_event); 539 if (unlikely(!n)) { 540 ret = -EINVAL; 541 break; 542 } 543 544 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { 545 ret = -EAGAIN; 546 break; 547 } 548 549 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, 550 ffs->ev.count)) { 551 ret = -EINTR; 552 break; 553 } 554 555 /* unlocks spinlock */ 556 return __ffs_ep0_read_events(ffs, buf, 557 min(n, (size_t)ffs->ev.count)); 558 559 case FFS_SETUP_PENDING: 560 if (ffs->ev.setup.bRequestType & USB_DIR_IN) { 561 spin_unlock_irq(&ffs->ev.waitq.lock); 562 ret = __ffs_ep0_stall(ffs); 563 goto done_mutex; 564 } 565 566 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 567 568 spin_unlock_irq(&ffs->ev.waitq.lock); 569 570 if (likely(len)) { 571 data = kmalloc(len, GFP_KERNEL); 572 if (unlikely(!data)) { 573 ret = -ENOMEM; 574 goto done_mutex; 575 } 576 } 577 578 spin_lock_irq(&ffs->ev.waitq.lock); 579 580 /* See ffs_ep0_write() */ 581 if (ffs_setup_state_clear_cancelled(ffs) == 582 FFS_SETUP_CANCELLED) { 583 ret = -EIDRM; 584 break; 585 } 586 587 /* unlocks spinlock */ 588 ret = __ffs_ep0_queue_wait(ffs, data, len); 589 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len))) 590 ret = -EFAULT; 591 goto done_mutex; 592 593 default: 594 ret = -EBADFD; 595 break; 596 } 597 598 spin_unlock_irq(&ffs->ev.waitq.lock); 599 done_mutex: 600 mutex_unlock(&ffs->mutex); 601 kfree(data); 602 return ret; 603 } 604 605 static int ffs_ep0_open(struct inode *inode, struct file *file) 606 { 607 struct ffs_data *ffs = inode->i_private; 608 609 ENTER(); 610 611 if (unlikely(ffs->state == FFS_CLOSING)) 612 return -EBUSY; 613 614 file->private_data = ffs; 615 ffs_data_opened(ffs); 616 617 return 0; 618 } 619 620 static int ffs_ep0_release(struct inode *inode, struct file *file) 621 { 622 struct ffs_data *ffs = file->private_data; 623 624 ENTER(); 625 626 ffs_data_closed(ffs); 627 628 return 0; 629 } 630 631 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) 632 { 633 struct ffs_data *ffs = file->private_data; 634 struct usb_gadget *gadget = ffs->gadget; 635 long ret; 636 637 ENTER(); 638 639 if (code == FUNCTIONFS_INTERFACE_REVMAP) { 640 struct ffs_function *func = ffs->func; 641 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; 642 } else if (gadget && gadget->ops->ioctl) { 643 ret = gadget->ops->ioctl(gadget, code, value); 644 } else { 645 ret = -ENOTTY; 646 } 647 648 return ret; 649 } 650 651 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait) 652 { 653 struct ffs_data *ffs = file->private_data; 654 __poll_t mask = EPOLLWRNORM; 655 int ret; 656 657 poll_wait(file, &ffs->ev.waitq, wait); 658 659 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 660 if (unlikely(ret < 0)) 661 return mask; 662 663 switch (ffs->state) { 664 case FFS_READ_DESCRIPTORS: 665 case FFS_READ_STRINGS: 666 mask |= EPOLLOUT; 667 break; 668 669 case FFS_ACTIVE: 670 switch (ffs->setup_state) { 671 case FFS_NO_SETUP: 672 if (ffs->ev.count) 673 mask |= EPOLLIN; 674 break; 675 676 case FFS_SETUP_PENDING: 677 case FFS_SETUP_CANCELLED: 678 mask |= (EPOLLIN | EPOLLOUT); 679 break; 680 } 681 case FFS_CLOSING: 682 break; 683 case FFS_DEACTIVATED: 684 break; 685 } 686 687 mutex_unlock(&ffs->mutex); 688 689 return mask; 690 } 691 692 static const struct file_operations ffs_ep0_operations = { 693 .llseek = no_llseek, 694 695 .open = ffs_ep0_open, 696 .write = ffs_ep0_write, 697 .read = ffs_ep0_read, 698 .release = ffs_ep0_release, 699 .unlocked_ioctl = ffs_ep0_ioctl, 700 .poll = ffs_ep0_poll, 701 }; 702 703 704 /* "Normal" endpoints operations ********************************************/ 705 706 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) 707 { 708 ENTER(); 709 if (likely(req->context)) { 710 struct ffs_ep *ep = _ep->driver_data; 711 ep->status = req->status ? req->status : req->actual; 712 complete(req->context); 713 } 714 } 715 716 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter) 717 { 718 ssize_t ret = copy_to_iter(data, data_len, iter); 719 if (likely(ret == data_len)) 720 return ret; 721 722 if (unlikely(iov_iter_count(iter))) 723 return -EFAULT; 724 725 /* 726 * Dear user space developer! 727 * 728 * TL;DR: To stop getting below error message in your kernel log, change 729 * user space code using functionfs to align read buffers to a max 730 * packet size. 731 * 732 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max 733 * packet size. When unaligned buffer is passed to functionfs, it 734 * internally uses a larger, aligned buffer so that such UDCs are happy. 735 * 736 * Unfortunately, this means that host may send more data than was 737 * requested in read(2) system call. f_fs doesn’t know what to do with 738 * that excess data so it simply drops it. 739 * 740 * Was the buffer aligned in the first place, no such problem would 741 * happen. 742 * 743 * Data may be dropped only in AIO reads. Synchronous reads are handled 744 * by splitting a request into multiple parts. This splitting may still 745 * be a problem though so it’s likely best to align the buffer 746 * regardless of it being AIO or not.. 747 * 748 * This only affects OUT endpoints, i.e. reading data with a read(2), 749 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not 750 * affected. 751 */ 752 pr_err("functionfs read size %d > requested size %zd, dropping excess data. " 753 "Align read buffer size to max packet size to avoid the problem.\n", 754 data_len, ret); 755 756 return ret; 757 } 758 759 /* 760 * allocate a virtually contiguous buffer and create a scatterlist describing it 761 * @sg_table - pointer to a place to be filled with sg_table contents 762 * @size - required buffer size 763 */ 764 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz) 765 { 766 struct page **pages; 767 void *vaddr, *ptr; 768 unsigned int n_pages; 769 int i; 770 771 vaddr = vmalloc(sz); 772 if (!vaddr) 773 return NULL; 774 775 n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT; 776 pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL); 777 if (!pages) { 778 vfree(vaddr); 779 780 return NULL; 781 } 782 for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE) 783 pages[i] = vmalloc_to_page(ptr); 784 785 if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) { 786 kvfree(pages); 787 vfree(vaddr); 788 789 return NULL; 790 } 791 kvfree(pages); 792 793 return vaddr; 794 } 795 796 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data, 797 size_t data_len) 798 { 799 if (io_data->use_sg) 800 return ffs_build_sg_list(&io_data->sgt, data_len); 801 802 return kmalloc(data_len, GFP_KERNEL); 803 } 804 805 static inline void ffs_free_buffer(struct ffs_io_data *io_data) 806 { 807 if (!io_data->buf) 808 return; 809 810 if (io_data->use_sg) { 811 sg_free_table(&io_data->sgt); 812 vfree(io_data->buf); 813 } else { 814 kfree(io_data->buf); 815 } 816 } 817 818 static void ffs_user_copy_worker(struct work_struct *work) 819 { 820 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 821 work); 822 int ret = io_data->req->status ? io_data->req->status : 823 io_data->req->actual; 824 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD; 825 826 if (io_data->read && ret > 0) { 827 mm_segment_t oldfs = get_fs(); 828 829 set_fs(USER_DS); 830 use_mm(io_data->mm); 831 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data); 832 unuse_mm(io_data->mm); 833 set_fs(oldfs); 834 } 835 836 io_data->kiocb->ki_complete(io_data->kiocb, ret, ret); 837 838 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd) 839 eventfd_signal(io_data->ffs->ffs_eventfd, 1); 840 841 usb_ep_free_request(io_data->ep, io_data->req); 842 843 if (io_data->read) 844 kfree(io_data->to_free); 845 ffs_free_buffer(io_data); 846 kfree(io_data); 847 } 848 849 static void ffs_epfile_async_io_complete(struct usb_ep *_ep, 850 struct usb_request *req) 851 { 852 struct ffs_io_data *io_data = req->context; 853 struct ffs_data *ffs = io_data->ffs; 854 855 ENTER(); 856 857 INIT_WORK(&io_data->work, ffs_user_copy_worker); 858 queue_work(ffs->io_completion_wq, &io_data->work); 859 } 860 861 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile) 862 { 863 /* 864 * See comment in struct ffs_epfile for full read_buffer pointer 865 * synchronisation story. 866 */ 867 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP); 868 if (buf && buf != READ_BUFFER_DROP) 869 kfree(buf); 870 } 871 872 /* Assumes epfile->mutex is held. */ 873 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile, 874 struct iov_iter *iter) 875 { 876 /* 877 * Null out epfile->read_buffer so ffs_func_eps_disable does not free 878 * the buffer while we are using it. See comment in struct ffs_epfile 879 * for full read_buffer pointer synchronisation story. 880 */ 881 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL); 882 ssize_t ret; 883 if (!buf || buf == READ_BUFFER_DROP) 884 return 0; 885 886 ret = copy_to_iter(buf->data, buf->length, iter); 887 if (buf->length == ret) { 888 kfree(buf); 889 return ret; 890 } 891 892 if (unlikely(iov_iter_count(iter))) { 893 ret = -EFAULT; 894 } else { 895 buf->length -= ret; 896 buf->data += ret; 897 } 898 899 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 900 kfree(buf); 901 902 return ret; 903 } 904 905 /* Assumes epfile->mutex is held. */ 906 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile, 907 void *data, int data_len, 908 struct iov_iter *iter) 909 { 910 struct ffs_buffer *buf; 911 912 ssize_t ret = copy_to_iter(data, data_len, iter); 913 if (likely(data_len == ret)) 914 return ret; 915 916 if (unlikely(iov_iter_count(iter))) 917 return -EFAULT; 918 919 /* See ffs_copy_to_iter for more context. */ 920 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.", 921 data_len, ret); 922 923 data_len -= ret; 924 buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL); 925 if (!buf) 926 return -ENOMEM; 927 buf->length = data_len; 928 buf->data = buf->storage; 929 memcpy(buf->storage, data + ret, data_len); 930 931 /* 932 * At this point read_buffer is NULL or READ_BUFFER_DROP (if 933 * ffs_func_eps_disable has been called in the meanwhile). See comment 934 * in struct ffs_epfile for full read_buffer pointer synchronisation 935 * story. 936 */ 937 if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf))) 938 kfree(buf); 939 940 return ret; 941 } 942 943 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) 944 { 945 struct ffs_epfile *epfile = file->private_data; 946 struct usb_request *req; 947 struct ffs_ep *ep; 948 char *data = NULL; 949 ssize_t ret, data_len = -EINVAL; 950 int halt; 951 952 /* Are we still active? */ 953 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 954 return -ENODEV; 955 956 /* Wait for endpoint to be enabled */ 957 ep = epfile->ep; 958 if (!ep) { 959 if (file->f_flags & O_NONBLOCK) 960 return -EAGAIN; 961 962 ret = wait_event_interruptible( 963 epfile->ffs->wait, (ep = epfile->ep)); 964 if (ret) 965 return -EINTR; 966 } 967 968 /* Do we halt? */ 969 halt = (!io_data->read == !epfile->in); 970 if (halt && epfile->isoc) 971 return -EINVAL; 972 973 /* We will be using request and read_buffer */ 974 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); 975 if (unlikely(ret)) 976 goto error; 977 978 /* Allocate & copy */ 979 if (!halt) { 980 struct usb_gadget *gadget; 981 982 /* 983 * Do we have buffered data from previous partial read? Check 984 * that for synchronous case only because we do not have 985 * facility to ‘wake up’ a pending asynchronous read and push 986 * buffered data to it which we would need to make things behave 987 * consistently. 988 */ 989 if (!io_data->aio && io_data->read) { 990 ret = __ffs_epfile_read_buffered(epfile, &io_data->data); 991 if (ret) 992 goto error_mutex; 993 } 994 995 /* 996 * if we _do_ wait above, the epfile->ffs->gadget might be NULL 997 * before the waiting completes, so do not assign to 'gadget' 998 * earlier 999 */ 1000 gadget = epfile->ffs->gadget; 1001 1002 spin_lock_irq(&epfile->ffs->eps_lock); 1003 /* In the meantime, endpoint got disabled or changed. */ 1004 if (epfile->ep != ep) { 1005 ret = -ESHUTDOWN; 1006 goto error_lock; 1007 } 1008 data_len = iov_iter_count(&io_data->data); 1009 /* 1010 * Controller may require buffer size to be aligned to 1011 * maxpacketsize of an out endpoint. 1012 */ 1013 if (io_data->read) 1014 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len); 1015 1016 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE; 1017 spin_unlock_irq(&epfile->ffs->eps_lock); 1018 1019 data = ffs_alloc_buffer(io_data, data_len); 1020 if (unlikely(!data)) { 1021 ret = -ENOMEM; 1022 goto error_mutex; 1023 } 1024 if (!io_data->read && 1025 !copy_from_iter_full(data, data_len, &io_data->data)) { 1026 ret = -EFAULT; 1027 goto error_mutex; 1028 } 1029 } 1030 1031 spin_lock_irq(&epfile->ffs->eps_lock); 1032 1033 if (epfile->ep != ep) { 1034 /* In the meantime, endpoint got disabled or changed. */ 1035 ret = -ESHUTDOWN; 1036 } else if (halt) { 1037 ret = usb_ep_set_halt(ep->ep); 1038 if (!ret) 1039 ret = -EBADMSG; 1040 } else if (unlikely(data_len == -EINVAL)) { 1041 /* 1042 * Sanity Check: even though data_len can't be used 1043 * uninitialized at the time I write this comment, some 1044 * compilers complain about this situation. 1045 * In order to keep the code clean from warnings, data_len is 1046 * being initialized to -EINVAL during its declaration, which 1047 * means we can't rely on compiler anymore to warn no future 1048 * changes won't result in data_len being used uninitialized. 1049 * For such reason, we're adding this redundant sanity check 1050 * here. 1051 */ 1052 WARN(1, "%s: data_len == -EINVAL\n", __func__); 1053 ret = -EINVAL; 1054 } else if (!io_data->aio) { 1055 DECLARE_COMPLETION_ONSTACK(done); 1056 bool interrupted = false; 1057 1058 req = ep->req; 1059 if (io_data->use_sg) { 1060 req->buf = NULL; 1061 req->sg = io_data->sgt.sgl; 1062 req->num_sgs = io_data->sgt.nents; 1063 } else { 1064 req->buf = data; 1065 } 1066 req->length = data_len; 1067 1068 io_data->buf = data; 1069 1070 req->context = &done; 1071 req->complete = ffs_epfile_io_complete; 1072 1073 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1074 if (unlikely(ret < 0)) 1075 goto error_lock; 1076 1077 spin_unlock_irq(&epfile->ffs->eps_lock); 1078 1079 if (unlikely(wait_for_completion_interruptible(&done))) { 1080 /* 1081 * To avoid race condition with ffs_epfile_io_complete, 1082 * dequeue the request first then check 1083 * status. usb_ep_dequeue API should guarantee no race 1084 * condition with req->complete callback. 1085 */ 1086 usb_ep_dequeue(ep->ep, req); 1087 wait_for_completion(&done); 1088 interrupted = ep->status < 0; 1089 } 1090 1091 if (interrupted) 1092 ret = -EINTR; 1093 else if (io_data->read && ep->status > 0) 1094 ret = __ffs_epfile_read_data(epfile, data, ep->status, 1095 &io_data->data); 1096 else 1097 ret = ep->status; 1098 goto error_mutex; 1099 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) { 1100 ret = -ENOMEM; 1101 } else { 1102 if (io_data->use_sg) { 1103 req->buf = NULL; 1104 req->sg = io_data->sgt.sgl; 1105 req->num_sgs = io_data->sgt.nents; 1106 } else { 1107 req->buf = data; 1108 } 1109 req->length = data_len; 1110 1111 io_data->buf = data; 1112 io_data->ep = ep->ep; 1113 io_data->req = req; 1114 io_data->ffs = epfile->ffs; 1115 1116 req->context = io_data; 1117 req->complete = ffs_epfile_async_io_complete; 1118 1119 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1120 if (unlikely(ret)) { 1121 usb_ep_free_request(ep->ep, req); 1122 goto error_lock; 1123 } 1124 1125 ret = -EIOCBQUEUED; 1126 /* 1127 * Do not kfree the buffer in this function. It will be freed 1128 * by ffs_user_copy_worker. 1129 */ 1130 data = NULL; 1131 } 1132 1133 error_lock: 1134 spin_unlock_irq(&epfile->ffs->eps_lock); 1135 error_mutex: 1136 mutex_unlock(&epfile->mutex); 1137 error: 1138 if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */ 1139 ffs_free_buffer(io_data); 1140 return ret; 1141 } 1142 1143 static int 1144 ffs_epfile_open(struct inode *inode, struct file *file) 1145 { 1146 struct ffs_epfile *epfile = inode->i_private; 1147 1148 ENTER(); 1149 1150 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1151 return -ENODEV; 1152 1153 file->private_data = epfile; 1154 ffs_data_opened(epfile->ffs); 1155 1156 return 0; 1157 } 1158 1159 static int ffs_aio_cancel(struct kiocb *kiocb) 1160 { 1161 struct ffs_io_data *io_data = kiocb->private; 1162 struct ffs_epfile *epfile = kiocb->ki_filp->private_data; 1163 int value; 1164 1165 ENTER(); 1166 1167 spin_lock_irq(&epfile->ffs->eps_lock); 1168 1169 if (likely(io_data && io_data->ep && io_data->req)) 1170 value = usb_ep_dequeue(io_data->ep, io_data->req); 1171 else 1172 value = -EINVAL; 1173 1174 spin_unlock_irq(&epfile->ffs->eps_lock); 1175 1176 return value; 1177 } 1178 1179 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from) 1180 { 1181 struct ffs_io_data io_data, *p = &io_data; 1182 ssize_t res; 1183 1184 ENTER(); 1185 1186 if (!is_sync_kiocb(kiocb)) { 1187 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1188 if (unlikely(!p)) 1189 return -ENOMEM; 1190 p->aio = true; 1191 } else { 1192 memset(p, 0, sizeof(*p)); 1193 p->aio = false; 1194 } 1195 1196 p->read = false; 1197 p->kiocb = kiocb; 1198 p->data = *from; 1199 p->mm = current->mm; 1200 1201 kiocb->private = p; 1202 1203 if (p->aio) 1204 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1205 1206 res = ffs_epfile_io(kiocb->ki_filp, p); 1207 if (res == -EIOCBQUEUED) 1208 return res; 1209 if (p->aio) 1210 kfree(p); 1211 else 1212 *from = p->data; 1213 return res; 1214 } 1215 1216 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to) 1217 { 1218 struct ffs_io_data io_data, *p = &io_data; 1219 ssize_t res; 1220 1221 ENTER(); 1222 1223 if (!is_sync_kiocb(kiocb)) { 1224 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1225 if (unlikely(!p)) 1226 return -ENOMEM; 1227 p->aio = true; 1228 } else { 1229 memset(p, 0, sizeof(*p)); 1230 p->aio = false; 1231 } 1232 1233 p->read = true; 1234 p->kiocb = kiocb; 1235 if (p->aio) { 1236 p->to_free = dup_iter(&p->data, to, GFP_KERNEL); 1237 if (!p->to_free) { 1238 kfree(p); 1239 return -ENOMEM; 1240 } 1241 } else { 1242 p->data = *to; 1243 p->to_free = NULL; 1244 } 1245 p->mm = current->mm; 1246 1247 kiocb->private = p; 1248 1249 if (p->aio) 1250 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1251 1252 res = ffs_epfile_io(kiocb->ki_filp, p); 1253 if (res == -EIOCBQUEUED) 1254 return res; 1255 1256 if (p->aio) { 1257 kfree(p->to_free); 1258 kfree(p); 1259 } else { 1260 *to = p->data; 1261 } 1262 return res; 1263 } 1264 1265 static int 1266 ffs_epfile_release(struct inode *inode, struct file *file) 1267 { 1268 struct ffs_epfile *epfile = inode->i_private; 1269 1270 ENTER(); 1271 1272 __ffs_epfile_read_buffer_free(epfile); 1273 ffs_data_closed(epfile->ffs); 1274 1275 return 0; 1276 } 1277 1278 static long ffs_epfile_ioctl(struct file *file, unsigned code, 1279 unsigned long value) 1280 { 1281 struct ffs_epfile *epfile = file->private_data; 1282 struct ffs_ep *ep; 1283 int ret; 1284 1285 ENTER(); 1286 1287 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1288 return -ENODEV; 1289 1290 /* Wait for endpoint to be enabled */ 1291 ep = epfile->ep; 1292 if (!ep) { 1293 if (file->f_flags & O_NONBLOCK) 1294 return -EAGAIN; 1295 1296 ret = wait_event_interruptible( 1297 epfile->ffs->wait, (ep = epfile->ep)); 1298 if (ret) 1299 return -EINTR; 1300 } 1301 1302 spin_lock_irq(&epfile->ffs->eps_lock); 1303 1304 /* In the meantime, endpoint got disabled or changed. */ 1305 if (epfile->ep != ep) { 1306 spin_unlock_irq(&epfile->ffs->eps_lock); 1307 return -ESHUTDOWN; 1308 } 1309 1310 switch (code) { 1311 case FUNCTIONFS_FIFO_STATUS: 1312 ret = usb_ep_fifo_status(epfile->ep->ep); 1313 break; 1314 case FUNCTIONFS_FIFO_FLUSH: 1315 usb_ep_fifo_flush(epfile->ep->ep); 1316 ret = 0; 1317 break; 1318 case FUNCTIONFS_CLEAR_HALT: 1319 ret = usb_ep_clear_halt(epfile->ep->ep); 1320 break; 1321 case FUNCTIONFS_ENDPOINT_REVMAP: 1322 ret = epfile->ep->num; 1323 break; 1324 case FUNCTIONFS_ENDPOINT_DESC: 1325 { 1326 int desc_idx; 1327 struct usb_endpoint_descriptor *desc; 1328 1329 switch (epfile->ffs->gadget->speed) { 1330 case USB_SPEED_SUPER: 1331 desc_idx = 2; 1332 break; 1333 case USB_SPEED_HIGH: 1334 desc_idx = 1; 1335 break; 1336 default: 1337 desc_idx = 0; 1338 } 1339 desc = epfile->ep->descs[desc_idx]; 1340 1341 spin_unlock_irq(&epfile->ffs->eps_lock); 1342 ret = copy_to_user((void __user *)value, desc, desc->bLength); 1343 if (ret) 1344 ret = -EFAULT; 1345 return ret; 1346 } 1347 default: 1348 ret = -ENOTTY; 1349 } 1350 spin_unlock_irq(&epfile->ffs->eps_lock); 1351 1352 return ret; 1353 } 1354 1355 #ifdef CONFIG_COMPAT 1356 static long ffs_epfile_compat_ioctl(struct file *file, unsigned code, 1357 unsigned long value) 1358 { 1359 return ffs_epfile_ioctl(file, code, value); 1360 } 1361 #endif 1362 1363 static const struct file_operations ffs_epfile_operations = { 1364 .llseek = no_llseek, 1365 1366 .open = ffs_epfile_open, 1367 .write_iter = ffs_epfile_write_iter, 1368 .read_iter = ffs_epfile_read_iter, 1369 .release = ffs_epfile_release, 1370 .unlocked_ioctl = ffs_epfile_ioctl, 1371 #ifdef CONFIG_COMPAT 1372 .compat_ioctl = ffs_epfile_compat_ioctl, 1373 #endif 1374 }; 1375 1376 1377 /* File system and super block operations ***********************************/ 1378 1379 /* 1380 * Mounting the file system creates a controller file, used first for 1381 * function configuration then later for event monitoring. 1382 */ 1383 1384 static struct inode *__must_check 1385 ffs_sb_make_inode(struct super_block *sb, void *data, 1386 const struct file_operations *fops, 1387 const struct inode_operations *iops, 1388 struct ffs_file_perms *perms) 1389 { 1390 struct inode *inode; 1391 1392 ENTER(); 1393 1394 inode = new_inode(sb); 1395 1396 if (likely(inode)) { 1397 struct timespec64 ts = current_time(inode); 1398 1399 inode->i_ino = get_next_ino(); 1400 inode->i_mode = perms->mode; 1401 inode->i_uid = perms->uid; 1402 inode->i_gid = perms->gid; 1403 inode->i_atime = ts; 1404 inode->i_mtime = ts; 1405 inode->i_ctime = ts; 1406 inode->i_private = data; 1407 if (fops) 1408 inode->i_fop = fops; 1409 if (iops) 1410 inode->i_op = iops; 1411 } 1412 1413 return inode; 1414 } 1415 1416 /* Create "regular" file */ 1417 static struct dentry *ffs_sb_create_file(struct super_block *sb, 1418 const char *name, void *data, 1419 const struct file_operations *fops) 1420 { 1421 struct ffs_data *ffs = sb->s_fs_info; 1422 struct dentry *dentry; 1423 struct inode *inode; 1424 1425 ENTER(); 1426 1427 dentry = d_alloc_name(sb->s_root, name); 1428 if (unlikely(!dentry)) 1429 return NULL; 1430 1431 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); 1432 if (unlikely(!inode)) { 1433 dput(dentry); 1434 return NULL; 1435 } 1436 1437 d_add(dentry, inode); 1438 return dentry; 1439 } 1440 1441 /* Super block */ 1442 static const struct super_operations ffs_sb_operations = { 1443 .statfs = simple_statfs, 1444 .drop_inode = generic_delete_inode, 1445 }; 1446 1447 struct ffs_sb_fill_data { 1448 struct ffs_file_perms perms; 1449 umode_t root_mode; 1450 const char *dev_name; 1451 bool no_disconnect; 1452 struct ffs_data *ffs_data; 1453 }; 1454 1455 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc) 1456 { 1457 struct ffs_sb_fill_data *data = fc->fs_private; 1458 struct inode *inode; 1459 struct ffs_data *ffs = data->ffs_data; 1460 1461 ENTER(); 1462 1463 ffs->sb = sb; 1464 data->ffs_data = NULL; 1465 sb->s_fs_info = ffs; 1466 sb->s_blocksize = PAGE_SIZE; 1467 sb->s_blocksize_bits = PAGE_SHIFT; 1468 sb->s_magic = FUNCTIONFS_MAGIC; 1469 sb->s_op = &ffs_sb_operations; 1470 sb->s_time_gran = 1; 1471 1472 /* Root inode */ 1473 data->perms.mode = data->root_mode; 1474 inode = ffs_sb_make_inode(sb, NULL, 1475 &simple_dir_operations, 1476 &simple_dir_inode_operations, 1477 &data->perms); 1478 sb->s_root = d_make_root(inode); 1479 if (unlikely(!sb->s_root)) 1480 return -ENOMEM; 1481 1482 /* EP0 file */ 1483 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs, 1484 &ffs_ep0_operations))) 1485 return -ENOMEM; 1486 1487 return 0; 1488 } 1489 1490 enum { 1491 Opt_no_disconnect, 1492 Opt_rmode, 1493 Opt_fmode, 1494 Opt_mode, 1495 Opt_uid, 1496 Opt_gid, 1497 }; 1498 1499 static const struct fs_parameter_spec ffs_fs_param_specs[] = { 1500 fsparam_bool ("no_disconnect", Opt_no_disconnect), 1501 fsparam_u32 ("rmode", Opt_rmode), 1502 fsparam_u32 ("fmode", Opt_fmode), 1503 fsparam_u32 ("mode", Opt_mode), 1504 fsparam_u32 ("uid", Opt_uid), 1505 fsparam_u32 ("gid", Opt_gid), 1506 {} 1507 }; 1508 1509 static const struct fs_parameter_description ffs_fs_fs_parameters = { 1510 .name = "kAFS", 1511 .specs = ffs_fs_param_specs, 1512 }; 1513 1514 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1515 { 1516 struct ffs_sb_fill_data *data = fc->fs_private; 1517 struct fs_parse_result result; 1518 int opt; 1519 1520 ENTER(); 1521 1522 opt = fs_parse(fc, &ffs_fs_fs_parameters, param, &result); 1523 if (opt < 0) 1524 return opt; 1525 1526 switch (opt) { 1527 case Opt_no_disconnect: 1528 data->no_disconnect = result.boolean; 1529 break; 1530 case Opt_rmode: 1531 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1532 break; 1533 case Opt_fmode: 1534 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 1535 break; 1536 case Opt_mode: 1537 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1538 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 1539 break; 1540 1541 case Opt_uid: 1542 data->perms.uid = make_kuid(current_user_ns(), result.uint_32); 1543 if (!uid_valid(data->perms.uid)) 1544 goto unmapped_value; 1545 break; 1546 case Opt_gid: 1547 data->perms.gid = make_kgid(current_user_ns(), result.uint_32); 1548 if (!gid_valid(data->perms.gid)) 1549 goto unmapped_value; 1550 break; 1551 1552 default: 1553 return -ENOPARAM; 1554 } 1555 1556 return 0; 1557 1558 unmapped_value: 1559 return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32); 1560 } 1561 1562 /* 1563 * Set up the superblock for a mount. 1564 */ 1565 static int ffs_fs_get_tree(struct fs_context *fc) 1566 { 1567 struct ffs_sb_fill_data *ctx = fc->fs_private; 1568 void *ffs_dev; 1569 struct ffs_data *ffs; 1570 1571 ENTER(); 1572 1573 if (!fc->source) 1574 return invalf(fc, "No source specified"); 1575 1576 ffs = ffs_data_new(fc->source); 1577 if (unlikely(!ffs)) 1578 return -ENOMEM; 1579 ffs->file_perms = ctx->perms; 1580 ffs->no_disconnect = ctx->no_disconnect; 1581 1582 ffs->dev_name = kstrdup(fc->source, GFP_KERNEL); 1583 if (unlikely(!ffs->dev_name)) { 1584 ffs_data_put(ffs); 1585 return -ENOMEM; 1586 } 1587 1588 ffs_dev = ffs_acquire_dev(ffs->dev_name); 1589 if (IS_ERR(ffs_dev)) { 1590 ffs_data_put(ffs); 1591 return PTR_ERR(ffs_dev); 1592 } 1593 1594 ffs->private_data = ffs_dev; 1595 ctx->ffs_data = ffs; 1596 return get_tree_nodev(fc, ffs_sb_fill); 1597 } 1598 1599 static void ffs_fs_free_fc(struct fs_context *fc) 1600 { 1601 struct ffs_sb_fill_data *ctx = fc->fs_private; 1602 1603 if (ctx) { 1604 if (ctx->ffs_data) { 1605 ffs_release_dev(ctx->ffs_data); 1606 ffs_data_put(ctx->ffs_data); 1607 } 1608 1609 kfree(ctx); 1610 } 1611 } 1612 1613 static const struct fs_context_operations ffs_fs_context_ops = { 1614 .free = ffs_fs_free_fc, 1615 .parse_param = ffs_fs_parse_param, 1616 .get_tree = ffs_fs_get_tree, 1617 }; 1618 1619 static int ffs_fs_init_fs_context(struct fs_context *fc) 1620 { 1621 struct ffs_sb_fill_data *ctx; 1622 1623 ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL); 1624 if (!ctx) 1625 return -ENOMEM; 1626 1627 ctx->perms.mode = S_IFREG | 0600; 1628 ctx->perms.uid = GLOBAL_ROOT_UID; 1629 ctx->perms.gid = GLOBAL_ROOT_GID; 1630 ctx->root_mode = S_IFDIR | 0500; 1631 ctx->no_disconnect = false; 1632 1633 fc->fs_private = ctx; 1634 fc->ops = &ffs_fs_context_ops; 1635 return 0; 1636 } 1637 1638 static void 1639 ffs_fs_kill_sb(struct super_block *sb) 1640 { 1641 ENTER(); 1642 1643 kill_litter_super(sb); 1644 if (sb->s_fs_info) { 1645 ffs_release_dev(sb->s_fs_info); 1646 ffs_data_closed(sb->s_fs_info); 1647 } 1648 } 1649 1650 static struct file_system_type ffs_fs_type = { 1651 .owner = THIS_MODULE, 1652 .name = "functionfs", 1653 .init_fs_context = ffs_fs_init_fs_context, 1654 .parameters = &ffs_fs_fs_parameters, 1655 .kill_sb = ffs_fs_kill_sb, 1656 }; 1657 MODULE_ALIAS_FS("functionfs"); 1658 1659 1660 /* Driver's main init/cleanup functions *************************************/ 1661 1662 static int functionfs_init(void) 1663 { 1664 int ret; 1665 1666 ENTER(); 1667 1668 ret = register_filesystem(&ffs_fs_type); 1669 if (likely(!ret)) 1670 pr_info("file system registered\n"); 1671 else 1672 pr_err("failed registering file system (%d)\n", ret); 1673 1674 return ret; 1675 } 1676 1677 static void functionfs_cleanup(void) 1678 { 1679 ENTER(); 1680 1681 pr_info("unloading\n"); 1682 unregister_filesystem(&ffs_fs_type); 1683 } 1684 1685 1686 /* ffs_data and ffs_function construction and destruction code **************/ 1687 1688 static void ffs_data_clear(struct ffs_data *ffs); 1689 static void ffs_data_reset(struct ffs_data *ffs); 1690 1691 static void ffs_data_get(struct ffs_data *ffs) 1692 { 1693 ENTER(); 1694 1695 refcount_inc(&ffs->ref); 1696 } 1697 1698 static void ffs_data_opened(struct ffs_data *ffs) 1699 { 1700 ENTER(); 1701 1702 refcount_inc(&ffs->ref); 1703 if (atomic_add_return(1, &ffs->opened) == 1 && 1704 ffs->state == FFS_DEACTIVATED) { 1705 ffs->state = FFS_CLOSING; 1706 ffs_data_reset(ffs); 1707 } 1708 } 1709 1710 static void ffs_data_put(struct ffs_data *ffs) 1711 { 1712 ENTER(); 1713 1714 if (unlikely(refcount_dec_and_test(&ffs->ref))) { 1715 pr_info("%s(): freeing\n", __func__); 1716 ffs_data_clear(ffs); 1717 BUG_ON(waitqueue_active(&ffs->ev.waitq) || 1718 waitqueue_active(&ffs->ep0req_completion.wait) || 1719 waitqueue_active(&ffs->wait)); 1720 destroy_workqueue(ffs->io_completion_wq); 1721 kfree(ffs->dev_name); 1722 kfree(ffs); 1723 } 1724 } 1725 1726 static void ffs_data_closed(struct ffs_data *ffs) 1727 { 1728 ENTER(); 1729 1730 if (atomic_dec_and_test(&ffs->opened)) { 1731 if (ffs->no_disconnect) { 1732 ffs->state = FFS_DEACTIVATED; 1733 if (ffs->epfiles) { 1734 ffs_epfiles_destroy(ffs->epfiles, 1735 ffs->eps_count); 1736 ffs->epfiles = NULL; 1737 } 1738 if (ffs->setup_state == FFS_SETUP_PENDING) 1739 __ffs_ep0_stall(ffs); 1740 } else { 1741 ffs->state = FFS_CLOSING; 1742 ffs_data_reset(ffs); 1743 } 1744 } 1745 if (atomic_read(&ffs->opened) < 0) { 1746 ffs->state = FFS_CLOSING; 1747 ffs_data_reset(ffs); 1748 } 1749 1750 ffs_data_put(ffs); 1751 } 1752 1753 static struct ffs_data *ffs_data_new(const char *dev_name) 1754 { 1755 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); 1756 if (unlikely(!ffs)) 1757 return NULL; 1758 1759 ENTER(); 1760 1761 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name); 1762 if (!ffs->io_completion_wq) { 1763 kfree(ffs); 1764 return NULL; 1765 } 1766 1767 refcount_set(&ffs->ref, 1); 1768 atomic_set(&ffs->opened, 0); 1769 ffs->state = FFS_READ_DESCRIPTORS; 1770 mutex_init(&ffs->mutex); 1771 spin_lock_init(&ffs->eps_lock); 1772 init_waitqueue_head(&ffs->ev.waitq); 1773 init_waitqueue_head(&ffs->wait); 1774 init_completion(&ffs->ep0req_completion); 1775 1776 /* XXX REVISIT need to update it in some places, or do we? */ 1777 ffs->ev.can_stall = 1; 1778 1779 return ffs; 1780 } 1781 1782 static void ffs_data_clear(struct ffs_data *ffs) 1783 { 1784 ENTER(); 1785 1786 ffs_closed(ffs); 1787 1788 BUG_ON(ffs->gadget); 1789 1790 if (ffs->epfiles) 1791 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count); 1792 1793 if (ffs->ffs_eventfd) 1794 eventfd_ctx_put(ffs->ffs_eventfd); 1795 1796 kfree(ffs->raw_descs_data); 1797 kfree(ffs->raw_strings); 1798 kfree(ffs->stringtabs); 1799 } 1800 1801 static void ffs_data_reset(struct ffs_data *ffs) 1802 { 1803 ENTER(); 1804 1805 ffs_data_clear(ffs); 1806 1807 ffs->epfiles = NULL; 1808 ffs->raw_descs_data = NULL; 1809 ffs->raw_descs = NULL; 1810 ffs->raw_strings = NULL; 1811 ffs->stringtabs = NULL; 1812 1813 ffs->raw_descs_length = 0; 1814 ffs->fs_descs_count = 0; 1815 ffs->hs_descs_count = 0; 1816 ffs->ss_descs_count = 0; 1817 1818 ffs->strings_count = 0; 1819 ffs->interfaces_count = 0; 1820 ffs->eps_count = 0; 1821 1822 ffs->ev.count = 0; 1823 1824 ffs->state = FFS_READ_DESCRIPTORS; 1825 ffs->setup_state = FFS_NO_SETUP; 1826 ffs->flags = 0; 1827 } 1828 1829 1830 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) 1831 { 1832 struct usb_gadget_strings **lang; 1833 int first_id; 1834 1835 ENTER(); 1836 1837 if (WARN_ON(ffs->state != FFS_ACTIVE 1838 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) 1839 return -EBADFD; 1840 1841 first_id = usb_string_ids_n(cdev, ffs->strings_count); 1842 if (unlikely(first_id < 0)) 1843 return first_id; 1844 1845 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); 1846 if (unlikely(!ffs->ep0req)) 1847 return -ENOMEM; 1848 ffs->ep0req->complete = ffs_ep0_complete; 1849 ffs->ep0req->context = ffs; 1850 1851 lang = ffs->stringtabs; 1852 if (lang) { 1853 for (; *lang; ++lang) { 1854 struct usb_string *str = (*lang)->strings; 1855 int id = first_id; 1856 for (; str->s; ++id, ++str) 1857 str->id = id; 1858 } 1859 } 1860 1861 ffs->gadget = cdev->gadget; 1862 ffs_data_get(ffs); 1863 return 0; 1864 } 1865 1866 static void functionfs_unbind(struct ffs_data *ffs) 1867 { 1868 ENTER(); 1869 1870 if (!WARN_ON(!ffs->gadget)) { 1871 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); 1872 ffs->ep0req = NULL; 1873 ffs->gadget = NULL; 1874 clear_bit(FFS_FL_BOUND, &ffs->flags); 1875 ffs_data_put(ffs); 1876 } 1877 } 1878 1879 static int ffs_epfiles_create(struct ffs_data *ffs) 1880 { 1881 struct ffs_epfile *epfile, *epfiles; 1882 unsigned i, count; 1883 1884 ENTER(); 1885 1886 count = ffs->eps_count; 1887 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); 1888 if (!epfiles) 1889 return -ENOMEM; 1890 1891 epfile = epfiles; 1892 for (i = 1; i <= count; ++i, ++epfile) { 1893 epfile->ffs = ffs; 1894 mutex_init(&epfile->mutex); 1895 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 1896 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]); 1897 else 1898 sprintf(epfile->name, "ep%u", i); 1899 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name, 1900 epfile, 1901 &ffs_epfile_operations); 1902 if (unlikely(!epfile->dentry)) { 1903 ffs_epfiles_destroy(epfiles, i - 1); 1904 return -ENOMEM; 1905 } 1906 } 1907 1908 ffs->epfiles = epfiles; 1909 return 0; 1910 } 1911 1912 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count) 1913 { 1914 struct ffs_epfile *epfile = epfiles; 1915 1916 ENTER(); 1917 1918 for (; count; --count, ++epfile) { 1919 BUG_ON(mutex_is_locked(&epfile->mutex)); 1920 if (epfile->dentry) { 1921 d_delete(epfile->dentry); 1922 dput(epfile->dentry); 1923 epfile->dentry = NULL; 1924 } 1925 } 1926 1927 kfree(epfiles); 1928 } 1929 1930 static void ffs_func_eps_disable(struct ffs_function *func) 1931 { 1932 struct ffs_ep *ep = func->eps; 1933 struct ffs_epfile *epfile = func->ffs->epfiles; 1934 unsigned count = func->ffs->eps_count; 1935 unsigned long flags; 1936 1937 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1938 while (count--) { 1939 /* pending requests get nuked */ 1940 if (likely(ep->ep)) 1941 usb_ep_disable(ep->ep); 1942 ++ep; 1943 1944 if (epfile) { 1945 epfile->ep = NULL; 1946 __ffs_epfile_read_buffer_free(epfile); 1947 ++epfile; 1948 } 1949 } 1950 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1951 } 1952 1953 static int ffs_func_eps_enable(struct ffs_function *func) 1954 { 1955 struct ffs_data *ffs = func->ffs; 1956 struct ffs_ep *ep = func->eps; 1957 struct ffs_epfile *epfile = ffs->epfiles; 1958 unsigned count = ffs->eps_count; 1959 unsigned long flags; 1960 int ret = 0; 1961 1962 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1963 while(count--) { 1964 ep->ep->driver_data = ep; 1965 1966 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep); 1967 if (ret) { 1968 pr_err("%s: config_ep_by_speed(%s) returned %d\n", 1969 __func__, ep->ep->name, ret); 1970 break; 1971 } 1972 1973 ret = usb_ep_enable(ep->ep); 1974 if (likely(!ret)) { 1975 epfile->ep = ep; 1976 epfile->in = usb_endpoint_dir_in(ep->ep->desc); 1977 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc); 1978 } else { 1979 break; 1980 } 1981 1982 ++ep; 1983 ++epfile; 1984 } 1985 1986 wake_up_interruptible(&ffs->wait); 1987 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1988 1989 return ret; 1990 } 1991 1992 1993 /* Parsing and building descriptors and strings *****************************/ 1994 1995 /* 1996 * This validates if data pointed by data is a valid USB descriptor as 1997 * well as record how many interfaces, endpoints and strings are 1998 * required by given configuration. Returns address after the 1999 * descriptor or NULL if data is invalid. 2000 */ 2001 2002 enum ffs_entity_type { 2003 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT 2004 }; 2005 2006 enum ffs_os_desc_type { 2007 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP 2008 }; 2009 2010 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, 2011 u8 *valuep, 2012 struct usb_descriptor_header *desc, 2013 void *priv); 2014 2015 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, 2016 struct usb_os_desc_header *h, void *data, 2017 unsigned len, void *priv); 2018 2019 static int __must_check ffs_do_single_desc(char *data, unsigned len, 2020 ffs_entity_callback entity, 2021 void *priv, int *current_class) 2022 { 2023 struct usb_descriptor_header *_ds = (void *)data; 2024 u8 length; 2025 int ret; 2026 2027 ENTER(); 2028 2029 /* At least two bytes are required: length and type */ 2030 if (len < 2) { 2031 pr_vdebug("descriptor too short\n"); 2032 return -EINVAL; 2033 } 2034 2035 /* If we have at least as many bytes as the descriptor takes? */ 2036 length = _ds->bLength; 2037 if (len < length) { 2038 pr_vdebug("descriptor longer then available data\n"); 2039 return -EINVAL; 2040 } 2041 2042 #define __entity_check_INTERFACE(val) 1 2043 #define __entity_check_STRING(val) (val) 2044 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) 2045 #define __entity(type, val) do { \ 2046 pr_vdebug("entity " #type "(%02x)\n", (val)); \ 2047 if (unlikely(!__entity_check_ ##type(val))) { \ 2048 pr_vdebug("invalid entity's value\n"); \ 2049 return -EINVAL; \ 2050 } \ 2051 ret = entity(FFS_ ##type, &val, _ds, priv); \ 2052 if (unlikely(ret < 0)) { \ 2053 pr_debug("entity " #type "(%02x); ret = %d\n", \ 2054 (val), ret); \ 2055 return ret; \ 2056 } \ 2057 } while (0) 2058 2059 /* Parse descriptor depending on type. */ 2060 switch (_ds->bDescriptorType) { 2061 case USB_DT_DEVICE: 2062 case USB_DT_CONFIG: 2063 case USB_DT_STRING: 2064 case USB_DT_DEVICE_QUALIFIER: 2065 /* function can't have any of those */ 2066 pr_vdebug("descriptor reserved for gadget: %d\n", 2067 _ds->bDescriptorType); 2068 return -EINVAL; 2069 2070 case USB_DT_INTERFACE: { 2071 struct usb_interface_descriptor *ds = (void *)_ds; 2072 pr_vdebug("interface descriptor\n"); 2073 if (length != sizeof *ds) 2074 goto inv_length; 2075 2076 __entity(INTERFACE, ds->bInterfaceNumber); 2077 if (ds->iInterface) 2078 __entity(STRING, ds->iInterface); 2079 *current_class = ds->bInterfaceClass; 2080 } 2081 break; 2082 2083 case USB_DT_ENDPOINT: { 2084 struct usb_endpoint_descriptor *ds = (void *)_ds; 2085 pr_vdebug("endpoint descriptor\n"); 2086 if (length != USB_DT_ENDPOINT_SIZE && 2087 length != USB_DT_ENDPOINT_AUDIO_SIZE) 2088 goto inv_length; 2089 __entity(ENDPOINT, ds->bEndpointAddress); 2090 } 2091 break; 2092 2093 case USB_TYPE_CLASS | 0x01: 2094 if (*current_class == USB_INTERFACE_CLASS_HID) { 2095 pr_vdebug("hid descriptor\n"); 2096 if (length != sizeof(struct hid_descriptor)) 2097 goto inv_length; 2098 break; 2099 } else if (*current_class == USB_INTERFACE_CLASS_CCID) { 2100 pr_vdebug("ccid descriptor\n"); 2101 if (length != sizeof(struct ccid_descriptor)) 2102 goto inv_length; 2103 break; 2104 } else { 2105 pr_vdebug("unknown descriptor: %d for class %d\n", 2106 _ds->bDescriptorType, *current_class); 2107 return -EINVAL; 2108 } 2109 2110 case USB_DT_OTG: 2111 if (length != sizeof(struct usb_otg_descriptor)) 2112 goto inv_length; 2113 break; 2114 2115 case USB_DT_INTERFACE_ASSOCIATION: { 2116 struct usb_interface_assoc_descriptor *ds = (void *)_ds; 2117 pr_vdebug("interface association descriptor\n"); 2118 if (length != sizeof *ds) 2119 goto inv_length; 2120 if (ds->iFunction) 2121 __entity(STRING, ds->iFunction); 2122 } 2123 break; 2124 2125 case USB_DT_SS_ENDPOINT_COMP: 2126 pr_vdebug("EP SS companion descriptor\n"); 2127 if (length != sizeof(struct usb_ss_ep_comp_descriptor)) 2128 goto inv_length; 2129 break; 2130 2131 case USB_DT_OTHER_SPEED_CONFIG: 2132 case USB_DT_INTERFACE_POWER: 2133 case USB_DT_DEBUG: 2134 case USB_DT_SECURITY: 2135 case USB_DT_CS_RADIO_CONTROL: 2136 /* TODO */ 2137 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); 2138 return -EINVAL; 2139 2140 default: 2141 /* We should never be here */ 2142 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); 2143 return -EINVAL; 2144 2145 inv_length: 2146 pr_vdebug("invalid length: %d (descriptor %d)\n", 2147 _ds->bLength, _ds->bDescriptorType); 2148 return -EINVAL; 2149 } 2150 2151 #undef __entity 2152 #undef __entity_check_DESCRIPTOR 2153 #undef __entity_check_INTERFACE 2154 #undef __entity_check_STRING 2155 #undef __entity_check_ENDPOINT 2156 2157 return length; 2158 } 2159 2160 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, 2161 ffs_entity_callback entity, void *priv) 2162 { 2163 const unsigned _len = len; 2164 unsigned long num = 0; 2165 int current_class = -1; 2166 2167 ENTER(); 2168 2169 for (;;) { 2170 int ret; 2171 2172 if (num == count) 2173 data = NULL; 2174 2175 /* Record "descriptor" entity */ 2176 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); 2177 if (unlikely(ret < 0)) { 2178 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", 2179 num, ret); 2180 return ret; 2181 } 2182 2183 if (!data) 2184 return _len - len; 2185 2186 ret = ffs_do_single_desc(data, len, entity, priv, 2187 ¤t_class); 2188 if (unlikely(ret < 0)) { 2189 pr_debug("%s returns %d\n", __func__, ret); 2190 return ret; 2191 } 2192 2193 len -= ret; 2194 data += ret; 2195 ++num; 2196 } 2197 } 2198 2199 static int __ffs_data_do_entity(enum ffs_entity_type type, 2200 u8 *valuep, struct usb_descriptor_header *desc, 2201 void *priv) 2202 { 2203 struct ffs_desc_helper *helper = priv; 2204 struct usb_endpoint_descriptor *d; 2205 2206 ENTER(); 2207 2208 switch (type) { 2209 case FFS_DESCRIPTOR: 2210 break; 2211 2212 case FFS_INTERFACE: 2213 /* 2214 * Interfaces are indexed from zero so if we 2215 * encountered interface "n" then there are at least 2216 * "n+1" interfaces. 2217 */ 2218 if (*valuep >= helper->interfaces_count) 2219 helper->interfaces_count = *valuep + 1; 2220 break; 2221 2222 case FFS_STRING: 2223 /* 2224 * Strings are indexed from 1 (0 is reserved 2225 * for languages list) 2226 */ 2227 if (*valuep > helper->ffs->strings_count) 2228 helper->ffs->strings_count = *valuep; 2229 break; 2230 2231 case FFS_ENDPOINT: 2232 d = (void *)desc; 2233 helper->eps_count++; 2234 if (helper->eps_count >= FFS_MAX_EPS_COUNT) 2235 return -EINVAL; 2236 /* Check if descriptors for any speed were already parsed */ 2237 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count) 2238 helper->ffs->eps_addrmap[helper->eps_count] = 2239 d->bEndpointAddress; 2240 else if (helper->ffs->eps_addrmap[helper->eps_count] != 2241 d->bEndpointAddress) 2242 return -EINVAL; 2243 break; 2244 } 2245 2246 return 0; 2247 } 2248 2249 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, 2250 struct usb_os_desc_header *desc) 2251 { 2252 u16 bcd_version = le16_to_cpu(desc->bcdVersion); 2253 u16 w_index = le16_to_cpu(desc->wIndex); 2254 2255 if (bcd_version != 1) { 2256 pr_vdebug("unsupported os descriptors version: %d", 2257 bcd_version); 2258 return -EINVAL; 2259 } 2260 switch (w_index) { 2261 case 0x4: 2262 *next_type = FFS_OS_DESC_EXT_COMPAT; 2263 break; 2264 case 0x5: 2265 *next_type = FFS_OS_DESC_EXT_PROP; 2266 break; 2267 default: 2268 pr_vdebug("unsupported os descriptor type: %d", w_index); 2269 return -EINVAL; 2270 } 2271 2272 return sizeof(*desc); 2273 } 2274 2275 /* 2276 * Process all extended compatibility/extended property descriptors 2277 * of a feature descriptor 2278 */ 2279 static int __must_check ffs_do_single_os_desc(char *data, unsigned len, 2280 enum ffs_os_desc_type type, 2281 u16 feature_count, 2282 ffs_os_desc_callback entity, 2283 void *priv, 2284 struct usb_os_desc_header *h) 2285 { 2286 int ret; 2287 const unsigned _len = len; 2288 2289 ENTER(); 2290 2291 /* loop over all ext compat/ext prop descriptors */ 2292 while (feature_count--) { 2293 ret = entity(type, h, data, len, priv); 2294 if (unlikely(ret < 0)) { 2295 pr_debug("bad OS descriptor, type: %d\n", type); 2296 return ret; 2297 } 2298 data += ret; 2299 len -= ret; 2300 } 2301 return _len - len; 2302 } 2303 2304 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ 2305 static int __must_check ffs_do_os_descs(unsigned count, 2306 char *data, unsigned len, 2307 ffs_os_desc_callback entity, void *priv) 2308 { 2309 const unsigned _len = len; 2310 unsigned long num = 0; 2311 2312 ENTER(); 2313 2314 for (num = 0; num < count; ++num) { 2315 int ret; 2316 enum ffs_os_desc_type type; 2317 u16 feature_count; 2318 struct usb_os_desc_header *desc = (void *)data; 2319 2320 if (len < sizeof(*desc)) 2321 return -EINVAL; 2322 2323 /* 2324 * Record "descriptor" entity. 2325 * Process dwLength, bcdVersion, wIndex, get b/wCount. 2326 * Move the data pointer to the beginning of extended 2327 * compatibilities proper or extended properties proper 2328 * portions of the data 2329 */ 2330 if (le32_to_cpu(desc->dwLength) > len) 2331 return -EINVAL; 2332 2333 ret = __ffs_do_os_desc_header(&type, desc); 2334 if (unlikely(ret < 0)) { 2335 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", 2336 num, ret); 2337 return ret; 2338 } 2339 /* 2340 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" 2341 */ 2342 feature_count = le16_to_cpu(desc->wCount); 2343 if (type == FFS_OS_DESC_EXT_COMPAT && 2344 (feature_count > 255 || desc->Reserved)) 2345 return -EINVAL; 2346 len -= ret; 2347 data += ret; 2348 2349 /* 2350 * Process all function/property descriptors 2351 * of this Feature Descriptor 2352 */ 2353 ret = ffs_do_single_os_desc(data, len, type, 2354 feature_count, entity, priv, desc); 2355 if (unlikely(ret < 0)) { 2356 pr_debug("%s returns %d\n", __func__, ret); 2357 return ret; 2358 } 2359 2360 len -= ret; 2361 data += ret; 2362 } 2363 return _len - len; 2364 } 2365 2366 /** 2367 * Validate contents of the buffer from userspace related to OS descriptors. 2368 */ 2369 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, 2370 struct usb_os_desc_header *h, void *data, 2371 unsigned len, void *priv) 2372 { 2373 struct ffs_data *ffs = priv; 2374 u8 length; 2375 2376 ENTER(); 2377 2378 switch (type) { 2379 case FFS_OS_DESC_EXT_COMPAT: { 2380 struct usb_ext_compat_desc *d = data; 2381 int i; 2382 2383 if (len < sizeof(*d) || 2384 d->bFirstInterfaceNumber >= ffs->interfaces_count) 2385 return -EINVAL; 2386 if (d->Reserved1 != 1) { 2387 /* 2388 * According to the spec, Reserved1 must be set to 1 2389 * but older kernels incorrectly rejected non-zero 2390 * values. We fix it here to avoid returning EINVAL 2391 * in response to values we used to accept. 2392 */ 2393 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n"); 2394 d->Reserved1 = 1; 2395 } 2396 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) 2397 if (d->Reserved2[i]) 2398 return -EINVAL; 2399 2400 length = sizeof(struct usb_ext_compat_desc); 2401 } 2402 break; 2403 case FFS_OS_DESC_EXT_PROP: { 2404 struct usb_ext_prop_desc *d = data; 2405 u32 type, pdl; 2406 u16 pnl; 2407 2408 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) 2409 return -EINVAL; 2410 length = le32_to_cpu(d->dwSize); 2411 if (len < length) 2412 return -EINVAL; 2413 type = le32_to_cpu(d->dwPropertyDataType); 2414 if (type < USB_EXT_PROP_UNICODE || 2415 type > USB_EXT_PROP_UNICODE_MULTI) { 2416 pr_vdebug("unsupported os descriptor property type: %d", 2417 type); 2418 return -EINVAL; 2419 } 2420 pnl = le16_to_cpu(d->wPropertyNameLength); 2421 if (length < 14 + pnl) { 2422 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n", 2423 length, pnl, type); 2424 return -EINVAL; 2425 } 2426 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl)); 2427 if (length != 14 + pnl + pdl) { 2428 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", 2429 length, pnl, pdl, type); 2430 return -EINVAL; 2431 } 2432 ++ffs->ms_os_descs_ext_prop_count; 2433 /* property name reported to the host as "WCHAR"s */ 2434 ffs->ms_os_descs_ext_prop_name_len += pnl * 2; 2435 ffs->ms_os_descs_ext_prop_data_len += pdl; 2436 } 2437 break; 2438 default: 2439 pr_vdebug("unknown descriptor: %d\n", type); 2440 return -EINVAL; 2441 } 2442 return length; 2443 } 2444 2445 static int __ffs_data_got_descs(struct ffs_data *ffs, 2446 char *const _data, size_t len) 2447 { 2448 char *data = _data, *raw_descs; 2449 unsigned os_descs_count = 0, counts[3], flags; 2450 int ret = -EINVAL, i; 2451 struct ffs_desc_helper helper; 2452 2453 ENTER(); 2454 2455 if (get_unaligned_le32(data + 4) != len) 2456 goto error; 2457 2458 switch (get_unaligned_le32(data)) { 2459 case FUNCTIONFS_DESCRIPTORS_MAGIC: 2460 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; 2461 data += 8; 2462 len -= 8; 2463 break; 2464 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: 2465 flags = get_unaligned_le32(data + 8); 2466 ffs->user_flags = flags; 2467 if (flags & ~(FUNCTIONFS_HAS_FS_DESC | 2468 FUNCTIONFS_HAS_HS_DESC | 2469 FUNCTIONFS_HAS_SS_DESC | 2470 FUNCTIONFS_HAS_MS_OS_DESC | 2471 FUNCTIONFS_VIRTUAL_ADDR | 2472 FUNCTIONFS_EVENTFD | 2473 FUNCTIONFS_ALL_CTRL_RECIP | 2474 FUNCTIONFS_CONFIG0_SETUP)) { 2475 ret = -ENOSYS; 2476 goto error; 2477 } 2478 data += 12; 2479 len -= 12; 2480 break; 2481 default: 2482 goto error; 2483 } 2484 2485 if (flags & FUNCTIONFS_EVENTFD) { 2486 if (len < 4) 2487 goto error; 2488 ffs->ffs_eventfd = 2489 eventfd_ctx_fdget((int)get_unaligned_le32(data)); 2490 if (IS_ERR(ffs->ffs_eventfd)) { 2491 ret = PTR_ERR(ffs->ffs_eventfd); 2492 ffs->ffs_eventfd = NULL; 2493 goto error; 2494 } 2495 data += 4; 2496 len -= 4; 2497 } 2498 2499 /* Read fs_count, hs_count and ss_count (if present) */ 2500 for (i = 0; i < 3; ++i) { 2501 if (!(flags & (1 << i))) { 2502 counts[i] = 0; 2503 } else if (len < 4) { 2504 goto error; 2505 } else { 2506 counts[i] = get_unaligned_le32(data); 2507 data += 4; 2508 len -= 4; 2509 } 2510 } 2511 if (flags & (1 << i)) { 2512 if (len < 4) { 2513 goto error; 2514 } 2515 os_descs_count = get_unaligned_le32(data); 2516 data += 4; 2517 len -= 4; 2518 }; 2519 2520 /* Read descriptors */ 2521 raw_descs = data; 2522 helper.ffs = ffs; 2523 for (i = 0; i < 3; ++i) { 2524 if (!counts[i]) 2525 continue; 2526 helper.interfaces_count = 0; 2527 helper.eps_count = 0; 2528 ret = ffs_do_descs(counts[i], data, len, 2529 __ffs_data_do_entity, &helper); 2530 if (ret < 0) 2531 goto error; 2532 if (!ffs->eps_count && !ffs->interfaces_count) { 2533 ffs->eps_count = helper.eps_count; 2534 ffs->interfaces_count = helper.interfaces_count; 2535 } else { 2536 if (ffs->eps_count != helper.eps_count) { 2537 ret = -EINVAL; 2538 goto error; 2539 } 2540 if (ffs->interfaces_count != helper.interfaces_count) { 2541 ret = -EINVAL; 2542 goto error; 2543 } 2544 } 2545 data += ret; 2546 len -= ret; 2547 } 2548 if (os_descs_count) { 2549 ret = ffs_do_os_descs(os_descs_count, data, len, 2550 __ffs_data_do_os_desc, ffs); 2551 if (ret < 0) 2552 goto error; 2553 data += ret; 2554 len -= ret; 2555 } 2556 2557 if (raw_descs == data || len) { 2558 ret = -EINVAL; 2559 goto error; 2560 } 2561 2562 ffs->raw_descs_data = _data; 2563 ffs->raw_descs = raw_descs; 2564 ffs->raw_descs_length = data - raw_descs; 2565 ffs->fs_descs_count = counts[0]; 2566 ffs->hs_descs_count = counts[1]; 2567 ffs->ss_descs_count = counts[2]; 2568 ffs->ms_os_descs_count = os_descs_count; 2569 2570 return 0; 2571 2572 error: 2573 kfree(_data); 2574 return ret; 2575 } 2576 2577 static int __ffs_data_got_strings(struct ffs_data *ffs, 2578 char *const _data, size_t len) 2579 { 2580 u32 str_count, needed_count, lang_count; 2581 struct usb_gadget_strings **stringtabs, *t; 2582 const char *data = _data; 2583 struct usb_string *s; 2584 2585 ENTER(); 2586 2587 if (unlikely(len < 16 || 2588 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || 2589 get_unaligned_le32(data + 4) != len)) 2590 goto error; 2591 str_count = get_unaligned_le32(data + 8); 2592 lang_count = get_unaligned_le32(data + 12); 2593 2594 /* if one is zero the other must be zero */ 2595 if (unlikely(!str_count != !lang_count)) 2596 goto error; 2597 2598 /* Do we have at least as many strings as descriptors need? */ 2599 needed_count = ffs->strings_count; 2600 if (unlikely(str_count < needed_count)) 2601 goto error; 2602 2603 /* 2604 * If we don't need any strings just return and free all 2605 * memory. 2606 */ 2607 if (!needed_count) { 2608 kfree(_data); 2609 return 0; 2610 } 2611 2612 /* Allocate everything in one chunk so there's less maintenance. */ 2613 { 2614 unsigned i = 0; 2615 vla_group(d); 2616 vla_item(d, struct usb_gadget_strings *, stringtabs, 2617 lang_count + 1); 2618 vla_item(d, struct usb_gadget_strings, stringtab, lang_count); 2619 vla_item(d, struct usb_string, strings, 2620 lang_count*(needed_count+1)); 2621 2622 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); 2623 2624 if (unlikely(!vlabuf)) { 2625 kfree(_data); 2626 return -ENOMEM; 2627 } 2628 2629 /* Initialize the VLA pointers */ 2630 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2631 t = vla_ptr(vlabuf, d, stringtab); 2632 i = lang_count; 2633 do { 2634 *stringtabs++ = t++; 2635 } while (--i); 2636 *stringtabs = NULL; 2637 2638 /* stringtabs = vlabuf = d_stringtabs for later kfree */ 2639 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2640 t = vla_ptr(vlabuf, d, stringtab); 2641 s = vla_ptr(vlabuf, d, strings); 2642 } 2643 2644 /* For each language */ 2645 data += 16; 2646 len -= 16; 2647 2648 do { /* lang_count > 0 so we can use do-while */ 2649 unsigned needed = needed_count; 2650 2651 if (unlikely(len < 3)) 2652 goto error_free; 2653 t->language = get_unaligned_le16(data); 2654 t->strings = s; 2655 ++t; 2656 2657 data += 2; 2658 len -= 2; 2659 2660 /* For each string */ 2661 do { /* str_count > 0 so we can use do-while */ 2662 size_t length = strnlen(data, len); 2663 2664 if (unlikely(length == len)) 2665 goto error_free; 2666 2667 /* 2668 * User may provide more strings then we need, 2669 * if that's the case we simply ignore the 2670 * rest 2671 */ 2672 if (likely(needed)) { 2673 /* 2674 * s->id will be set while adding 2675 * function to configuration so for 2676 * now just leave garbage here. 2677 */ 2678 s->s = data; 2679 --needed; 2680 ++s; 2681 } 2682 2683 data += length + 1; 2684 len -= length + 1; 2685 } while (--str_count); 2686 2687 s->id = 0; /* terminator */ 2688 s->s = NULL; 2689 ++s; 2690 2691 } while (--lang_count); 2692 2693 /* Some garbage left? */ 2694 if (unlikely(len)) 2695 goto error_free; 2696 2697 /* Done! */ 2698 ffs->stringtabs = stringtabs; 2699 ffs->raw_strings = _data; 2700 2701 return 0; 2702 2703 error_free: 2704 kfree(stringtabs); 2705 error: 2706 kfree(_data); 2707 return -EINVAL; 2708 } 2709 2710 2711 /* Events handling and management *******************************************/ 2712 2713 static void __ffs_event_add(struct ffs_data *ffs, 2714 enum usb_functionfs_event_type type) 2715 { 2716 enum usb_functionfs_event_type rem_type1, rem_type2 = type; 2717 int neg = 0; 2718 2719 /* 2720 * Abort any unhandled setup 2721 * 2722 * We do not need to worry about some cmpxchg() changing value 2723 * of ffs->setup_state without holding the lock because when 2724 * state is FFS_SETUP_PENDING cmpxchg() in several places in 2725 * the source does nothing. 2726 */ 2727 if (ffs->setup_state == FFS_SETUP_PENDING) 2728 ffs->setup_state = FFS_SETUP_CANCELLED; 2729 2730 /* 2731 * Logic of this function guarantees that there are at most four pending 2732 * evens on ffs->ev.types queue. This is important because the queue 2733 * has space for four elements only and __ffs_ep0_read_events function 2734 * depends on that limit as well. If more event types are added, those 2735 * limits have to be revisited or guaranteed to still hold. 2736 */ 2737 switch (type) { 2738 case FUNCTIONFS_RESUME: 2739 rem_type2 = FUNCTIONFS_SUSPEND; 2740 /* FALL THROUGH */ 2741 case FUNCTIONFS_SUSPEND: 2742 case FUNCTIONFS_SETUP: 2743 rem_type1 = type; 2744 /* Discard all similar events */ 2745 break; 2746 2747 case FUNCTIONFS_BIND: 2748 case FUNCTIONFS_UNBIND: 2749 case FUNCTIONFS_DISABLE: 2750 case FUNCTIONFS_ENABLE: 2751 /* Discard everything other then power management. */ 2752 rem_type1 = FUNCTIONFS_SUSPEND; 2753 rem_type2 = FUNCTIONFS_RESUME; 2754 neg = 1; 2755 break; 2756 2757 default: 2758 WARN(1, "%d: unknown event, this should not happen\n", type); 2759 return; 2760 } 2761 2762 { 2763 u8 *ev = ffs->ev.types, *out = ev; 2764 unsigned n = ffs->ev.count; 2765 for (; n; --n, ++ev) 2766 if ((*ev == rem_type1 || *ev == rem_type2) == neg) 2767 *out++ = *ev; 2768 else 2769 pr_vdebug("purging event %d\n", *ev); 2770 ffs->ev.count = out - ffs->ev.types; 2771 } 2772 2773 pr_vdebug("adding event %d\n", type); 2774 ffs->ev.types[ffs->ev.count++] = type; 2775 wake_up_locked(&ffs->ev.waitq); 2776 if (ffs->ffs_eventfd) 2777 eventfd_signal(ffs->ffs_eventfd, 1); 2778 } 2779 2780 static void ffs_event_add(struct ffs_data *ffs, 2781 enum usb_functionfs_event_type type) 2782 { 2783 unsigned long flags; 2784 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 2785 __ffs_event_add(ffs, type); 2786 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 2787 } 2788 2789 /* Bind/unbind USB function hooks *******************************************/ 2790 2791 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address) 2792 { 2793 int i; 2794 2795 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i) 2796 if (ffs->eps_addrmap[i] == endpoint_address) 2797 return i; 2798 return -ENOENT; 2799 } 2800 2801 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, 2802 struct usb_descriptor_header *desc, 2803 void *priv) 2804 { 2805 struct usb_endpoint_descriptor *ds = (void *)desc; 2806 struct ffs_function *func = priv; 2807 struct ffs_ep *ffs_ep; 2808 unsigned ep_desc_id; 2809 int idx; 2810 static const char *speed_names[] = { "full", "high", "super" }; 2811 2812 if (type != FFS_DESCRIPTOR) 2813 return 0; 2814 2815 /* 2816 * If ss_descriptors is not NULL, we are reading super speed 2817 * descriptors; if hs_descriptors is not NULL, we are reading high 2818 * speed descriptors; otherwise, we are reading full speed 2819 * descriptors. 2820 */ 2821 if (func->function.ss_descriptors) { 2822 ep_desc_id = 2; 2823 func->function.ss_descriptors[(long)valuep] = desc; 2824 } else if (func->function.hs_descriptors) { 2825 ep_desc_id = 1; 2826 func->function.hs_descriptors[(long)valuep] = desc; 2827 } else { 2828 ep_desc_id = 0; 2829 func->function.fs_descriptors[(long)valuep] = desc; 2830 } 2831 2832 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) 2833 return 0; 2834 2835 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1; 2836 if (idx < 0) 2837 return idx; 2838 2839 ffs_ep = func->eps + idx; 2840 2841 if (unlikely(ffs_ep->descs[ep_desc_id])) { 2842 pr_err("two %sspeed descriptors for EP %d\n", 2843 speed_names[ep_desc_id], 2844 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); 2845 return -EINVAL; 2846 } 2847 ffs_ep->descs[ep_desc_id] = ds; 2848 2849 ffs_dump_mem(": Original ep desc", ds, ds->bLength); 2850 if (ffs_ep->ep) { 2851 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; 2852 if (!ds->wMaxPacketSize) 2853 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; 2854 } else { 2855 struct usb_request *req; 2856 struct usb_ep *ep; 2857 u8 bEndpointAddress; 2858 u16 wMaxPacketSize; 2859 2860 /* 2861 * We back up bEndpointAddress because autoconfig overwrites 2862 * it with physical endpoint address. 2863 */ 2864 bEndpointAddress = ds->bEndpointAddress; 2865 /* 2866 * We back up wMaxPacketSize because autoconfig treats 2867 * endpoint descriptors as if they were full speed. 2868 */ 2869 wMaxPacketSize = ds->wMaxPacketSize; 2870 pr_vdebug("autoconfig\n"); 2871 ep = usb_ep_autoconfig(func->gadget, ds); 2872 if (unlikely(!ep)) 2873 return -ENOTSUPP; 2874 ep->driver_data = func->eps + idx; 2875 2876 req = usb_ep_alloc_request(ep, GFP_KERNEL); 2877 if (unlikely(!req)) 2878 return -ENOMEM; 2879 2880 ffs_ep->ep = ep; 2881 ffs_ep->req = req; 2882 func->eps_revmap[ds->bEndpointAddress & 2883 USB_ENDPOINT_NUMBER_MASK] = idx + 1; 2884 /* 2885 * If we use virtual address mapping, we restore 2886 * original bEndpointAddress value. 2887 */ 2888 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 2889 ds->bEndpointAddress = bEndpointAddress; 2890 /* 2891 * Restore wMaxPacketSize which was potentially 2892 * overwritten by autoconfig. 2893 */ 2894 ds->wMaxPacketSize = wMaxPacketSize; 2895 } 2896 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); 2897 2898 return 0; 2899 } 2900 2901 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, 2902 struct usb_descriptor_header *desc, 2903 void *priv) 2904 { 2905 struct ffs_function *func = priv; 2906 unsigned idx; 2907 u8 newValue; 2908 2909 switch (type) { 2910 default: 2911 case FFS_DESCRIPTOR: 2912 /* Handled in previous pass by __ffs_func_bind_do_descs() */ 2913 return 0; 2914 2915 case FFS_INTERFACE: 2916 idx = *valuep; 2917 if (func->interfaces_nums[idx] < 0) { 2918 int id = usb_interface_id(func->conf, &func->function); 2919 if (unlikely(id < 0)) 2920 return id; 2921 func->interfaces_nums[idx] = id; 2922 } 2923 newValue = func->interfaces_nums[idx]; 2924 break; 2925 2926 case FFS_STRING: 2927 /* String' IDs are allocated when fsf_data is bound to cdev */ 2928 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; 2929 break; 2930 2931 case FFS_ENDPOINT: 2932 /* 2933 * USB_DT_ENDPOINT are handled in 2934 * __ffs_func_bind_do_descs(). 2935 */ 2936 if (desc->bDescriptorType == USB_DT_ENDPOINT) 2937 return 0; 2938 2939 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; 2940 if (unlikely(!func->eps[idx].ep)) 2941 return -EINVAL; 2942 2943 { 2944 struct usb_endpoint_descriptor **descs; 2945 descs = func->eps[idx].descs; 2946 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; 2947 } 2948 break; 2949 } 2950 2951 pr_vdebug("%02x -> %02x\n", *valuep, newValue); 2952 *valuep = newValue; 2953 return 0; 2954 } 2955 2956 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, 2957 struct usb_os_desc_header *h, void *data, 2958 unsigned len, void *priv) 2959 { 2960 struct ffs_function *func = priv; 2961 u8 length = 0; 2962 2963 switch (type) { 2964 case FFS_OS_DESC_EXT_COMPAT: { 2965 struct usb_ext_compat_desc *desc = data; 2966 struct usb_os_desc_table *t; 2967 2968 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; 2969 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; 2970 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID, 2971 ARRAY_SIZE(desc->CompatibleID) + 2972 ARRAY_SIZE(desc->SubCompatibleID)); 2973 length = sizeof(*desc); 2974 } 2975 break; 2976 case FFS_OS_DESC_EXT_PROP: { 2977 struct usb_ext_prop_desc *desc = data; 2978 struct usb_os_desc_table *t; 2979 struct usb_os_desc_ext_prop *ext_prop; 2980 char *ext_prop_name; 2981 char *ext_prop_data; 2982 2983 t = &func->function.os_desc_table[h->interface]; 2984 t->if_id = func->interfaces_nums[h->interface]; 2985 2986 ext_prop = func->ffs->ms_os_descs_ext_prop_avail; 2987 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); 2988 2989 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); 2990 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); 2991 ext_prop->data_len = le32_to_cpu(*(__le32 *) 2992 usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); 2993 length = ext_prop->name_len + ext_prop->data_len + 14; 2994 2995 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; 2996 func->ffs->ms_os_descs_ext_prop_name_avail += 2997 ext_prop->name_len; 2998 2999 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; 3000 func->ffs->ms_os_descs_ext_prop_data_avail += 3001 ext_prop->data_len; 3002 memcpy(ext_prop_data, 3003 usb_ext_prop_data_ptr(data, ext_prop->name_len), 3004 ext_prop->data_len); 3005 /* unicode data reported to the host as "WCHAR"s */ 3006 switch (ext_prop->type) { 3007 case USB_EXT_PROP_UNICODE: 3008 case USB_EXT_PROP_UNICODE_ENV: 3009 case USB_EXT_PROP_UNICODE_LINK: 3010 case USB_EXT_PROP_UNICODE_MULTI: 3011 ext_prop->data_len *= 2; 3012 break; 3013 } 3014 ext_prop->data = ext_prop_data; 3015 3016 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), 3017 ext_prop->name_len); 3018 /* property name reported to the host as "WCHAR"s */ 3019 ext_prop->name_len *= 2; 3020 ext_prop->name = ext_prop_name; 3021 3022 t->os_desc->ext_prop_len += 3023 ext_prop->name_len + ext_prop->data_len + 14; 3024 ++t->os_desc->ext_prop_count; 3025 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); 3026 } 3027 break; 3028 default: 3029 pr_vdebug("unknown descriptor: %d\n", type); 3030 } 3031 3032 return length; 3033 } 3034 3035 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, 3036 struct usb_configuration *c) 3037 { 3038 struct ffs_function *func = ffs_func_from_usb(f); 3039 struct f_fs_opts *ffs_opts = 3040 container_of(f->fi, struct f_fs_opts, func_inst); 3041 int ret; 3042 3043 ENTER(); 3044 3045 /* 3046 * Legacy gadget triggers binding in functionfs_ready_callback, 3047 * which already uses locking; taking the same lock here would 3048 * cause a deadlock. 3049 * 3050 * Configfs-enabled gadgets however do need ffs_dev_lock. 3051 */ 3052 if (!ffs_opts->no_configfs) 3053 ffs_dev_lock(); 3054 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; 3055 func->ffs = ffs_opts->dev->ffs_data; 3056 if (!ffs_opts->no_configfs) 3057 ffs_dev_unlock(); 3058 if (ret) 3059 return ERR_PTR(ret); 3060 3061 func->conf = c; 3062 func->gadget = c->cdev->gadget; 3063 3064 /* 3065 * in drivers/usb/gadget/configfs.c:configfs_composite_bind() 3066 * configurations are bound in sequence with list_for_each_entry, 3067 * in each configuration its functions are bound in sequence 3068 * with list_for_each_entry, so we assume no race condition 3069 * with regard to ffs_opts->bound access 3070 */ 3071 if (!ffs_opts->refcnt) { 3072 ret = functionfs_bind(func->ffs, c->cdev); 3073 if (ret) 3074 return ERR_PTR(ret); 3075 } 3076 ffs_opts->refcnt++; 3077 func->function.strings = func->ffs->stringtabs; 3078 3079 return ffs_opts; 3080 } 3081 3082 static int _ffs_func_bind(struct usb_configuration *c, 3083 struct usb_function *f) 3084 { 3085 struct ffs_function *func = ffs_func_from_usb(f); 3086 struct ffs_data *ffs = func->ffs; 3087 3088 const int full = !!func->ffs->fs_descs_count; 3089 const int high = !!func->ffs->hs_descs_count; 3090 const int super = !!func->ffs->ss_descs_count; 3091 3092 int fs_len, hs_len, ss_len, ret, i; 3093 struct ffs_ep *eps_ptr; 3094 3095 /* Make it a single chunk, less management later on */ 3096 vla_group(d); 3097 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); 3098 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, 3099 full ? ffs->fs_descs_count + 1 : 0); 3100 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, 3101 high ? ffs->hs_descs_count + 1 : 0); 3102 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, 3103 super ? ffs->ss_descs_count + 1 : 0); 3104 vla_item_with_sz(d, short, inums, ffs->interfaces_count); 3105 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, 3106 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3107 vla_item_with_sz(d, char[16], ext_compat, 3108 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3109 vla_item_with_sz(d, struct usb_os_desc, os_desc, 3110 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3111 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, 3112 ffs->ms_os_descs_ext_prop_count); 3113 vla_item_with_sz(d, char, ext_prop_name, 3114 ffs->ms_os_descs_ext_prop_name_len); 3115 vla_item_with_sz(d, char, ext_prop_data, 3116 ffs->ms_os_descs_ext_prop_data_len); 3117 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); 3118 char *vlabuf; 3119 3120 ENTER(); 3121 3122 /* Has descriptors only for speeds gadget does not support */ 3123 if (unlikely(!(full | high | super))) 3124 return -ENOTSUPP; 3125 3126 /* Allocate a single chunk, less management later on */ 3127 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); 3128 if (unlikely(!vlabuf)) 3129 return -ENOMEM; 3130 3131 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); 3132 ffs->ms_os_descs_ext_prop_name_avail = 3133 vla_ptr(vlabuf, d, ext_prop_name); 3134 ffs->ms_os_descs_ext_prop_data_avail = 3135 vla_ptr(vlabuf, d, ext_prop_data); 3136 3137 /* Copy descriptors */ 3138 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, 3139 ffs->raw_descs_length); 3140 3141 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); 3142 eps_ptr = vla_ptr(vlabuf, d, eps); 3143 for (i = 0; i < ffs->eps_count; i++) 3144 eps_ptr[i].num = -1; 3145 3146 /* Save pointers 3147 * d_eps == vlabuf, func->eps used to kfree vlabuf later 3148 */ 3149 func->eps = vla_ptr(vlabuf, d, eps); 3150 func->interfaces_nums = vla_ptr(vlabuf, d, inums); 3151 3152 /* 3153 * Go through all the endpoint descriptors and allocate 3154 * endpoints first, so that later we can rewrite the endpoint 3155 * numbers without worrying that it may be described later on. 3156 */ 3157 if (likely(full)) { 3158 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); 3159 fs_len = ffs_do_descs(ffs->fs_descs_count, 3160 vla_ptr(vlabuf, d, raw_descs), 3161 d_raw_descs__sz, 3162 __ffs_func_bind_do_descs, func); 3163 if (unlikely(fs_len < 0)) { 3164 ret = fs_len; 3165 goto error; 3166 } 3167 } else { 3168 fs_len = 0; 3169 } 3170 3171 if (likely(high)) { 3172 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); 3173 hs_len = ffs_do_descs(ffs->hs_descs_count, 3174 vla_ptr(vlabuf, d, raw_descs) + fs_len, 3175 d_raw_descs__sz - fs_len, 3176 __ffs_func_bind_do_descs, func); 3177 if (unlikely(hs_len < 0)) { 3178 ret = hs_len; 3179 goto error; 3180 } 3181 } else { 3182 hs_len = 0; 3183 } 3184 3185 if (likely(super)) { 3186 func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs); 3187 ss_len = ffs_do_descs(ffs->ss_descs_count, 3188 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, 3189 d_raw_descs__sz - fs_len - hs_len, 3190 __ffs_func_bind_do_descs, func); 3191 if (unlikely(ss_len < 0)) { 3192 ret = ss_len; 3193 goto error; 3194 } 3195 } else { 3196 ss_len = 0; 3197 } 3198 3199 /* 3200 * Now handle interface numbers allocation and interface and 3201 * endpoint numbers rewriting. We can do that in one go 3202 * now. 3203 */ 3204 ret = ffs_do_descs(ffs->fs_descs_count + 3205 (high ? ffs->hs_descs_count : 0) + 3206 (super ? ffs->ss_descs_count : 0), 3207 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, 3208 __ffs_func_bind_do_nums, func); 3209 if (unlikely(ret < 0)) 3210 goto error; 3211 3212 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); 3213 if (c->cdev->use_os_string) { 3214 for (i = 0; i < ffs->interfaces_count; ++i) { 3215 struct usb_os_desc *desc; 3216 3217 desc = func->function.os_desc_table[i].os_desc = 3218 vla_ptr(vlabuf, d, os_desc) + 3219 i * sizeof(struct usb_os_desc); 3220 desc->ext_compat_id = 3221 vla_ptr(vlabuf, d, ext_compat) + i * 16; 3222 INIT_LIST_HEAD(&desc->ext_prop); 3223 } 3224 ret = ffs_do_os_descs(ffs->ms_os_descs_count, 3225 vla_ptr(vlabuf, d, raw_descs) + 3226 fs_len + hs_len + ss_len, 3227 d_raw_descs__sz - fs_len - hs_len - 3228 ss_len, 3229 __ffs_func_bind_do_os_desc, func); 3230 if (unlikely(ret < 0)) 3231 goto error; 3232 } 3233 func->function.os_desc_n = 3234 c->cdev->use_os_string ? ffs->interfaces_count : 0; 3235 3236 /* And we're done */ 3237 ffs_event_add(ffs, FUNCTIONFS_BIND); 3238 return 0; 3239 3240 error: 3241 /* XXX Do we need to release all claimed endpoints here? */ 3242 return ret; 3243 } 3244 3245 static int ffs_func_bind(struct usb_configuration *c, 3246 struct usb_function *f) 3247 { 3248 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); 3249 struct ffs_function *func = ffs_func_from_usb(f); 3250 int ret; 3251 3252 if (IS_ERR(ffs_opts)) 3253 return PTR_ERR(ffs_opts); 3254 3255 ret = _ffs_func_bind(c, f); 3256 if (ret && !--ffs_opts->refcnt) 3257 functionfs_unbind(func->ffs); 3258 3259 return ret; 3260 } 3261 3262 3263 /* Other USB function hooks *************************************************/ 3264 3265 static void ffs_reset_work(struct work_struct *work) 3266 { 3267 struct ffs_data *ffs = container_of(work, 3268 struct ffs_data, reset_work); 3269 ffs_data_reset(ffs); 3270 } 3271 3272 static int ffs_func_set_alt(struct usb_function *f, 3273 unsigned interface, unsigned alt) 3274 { 3275 struct ffs_function *func = ffs_func_from_usb(f); 3276 struct ffs_data *ffs = func->ffs; 3277 int ret = 0, intf; 3278 3279 if (alt != (unsigned)-1) { 3280 intf = ffs_func_revmap_intf(func, interface); 3281 if (unlikely(intf < 0)) 3282 return intf; 3283 } 3284 3285 if (ffs->func) 3286 ffs_func_eps_disable(ffs->func); 3287 3288 if (ffs->state == FFS_DEACTIVATED) { 3289 ffs->state = FFS_CLOSING; 3290 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3291 schedule_work(&ffs->reset_work); 3292 return -ENODEV; 3293 } 3294 3295 if (ffs->state != FFS_ACTIVE) 3296 return -ENODEV; 3297 3298 if (alt == (unsigned)-1) { 3299 ffs->func = NULL; 3300 ffs_event_add(ffs, FUNCTIONFS_DISABLE); 3301 return 0; 3302 } 3303 3304 ffs->func = func; 3305 ret = ffs_func_eps_enable(func); 3306 if (likely(ret >= 0)) 3307 ffs_event_add(ffs, FUNCTIONFS_ENABLE); 3308 return ret; 3309 } 3310 3311 static void ffs_func_disable(struct usb_function *f) 3312 { 3313 ffs_func_set_alt(f, 0, (unsigned)-1); 3314 } 3315 3316 static int ffs_func_setup(struct usb_function *f, 3317 const struct usb_ctrlrequest *creq) 3318 { 3319 struct ffs_function *func = ffs_func_from_usb(f); 3320 struct ffs_data *ffs = func->ffs; 3321 unsigned long flags; 3322 int ret; 3323 3324 ENTER(); 3325 3326 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); 3327 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); 3328 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); 3329 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); 3330 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); 3331 3332 /* 3333 * Most requests directed to interface go through here 3334 * (notable exceptions are set/get interface) so we need to 3335 * handle them. All other either handled by composite or 3336 * passed to usb_configuration->setup() (if one is set). No 3337 * matter, we will handle requests directed to endpoint here 3338 * as well (as it's straightforward). Other request recipient 3339 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP 3340 * is being used. 3341 */ 3342 if (ffs->state != FFS_ACTIVE) 3343 return -ENODEV; 3344 3345 switch (creq->bRequestType & USB_RECIP_MASK) { 3346 case USB_RECIP_INTERFACE: 3347 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); 3348 if (unlikely(ret < 0)) 3349 return ret; 3350 break; 3351 3352 case USB_RECIP_ENDPOINT: 3353 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); 3354 if (unlikely(ret < 0)) 3355 return ret; 3356 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3357 ret = func->ffs->eps_addrmap[ret]; 3358 break; 3359 3360 default: 3361 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP) 3362 ret = le16_to_cpu(creq->wIndex); 3363 else 3364 return -EOPNOTSUPP; 3365 } 3366 3367 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3368 ffs->ev.setup = *creq; 3369 ffs->ev.setup.wIndex = cpu_to_le16(ret); 3370 __ffs_event_add(ffs, FUNCTIONFS_SETUP); 3371 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3372 3373 return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0; 3374 } 3375 3376 static bool ffs_func_req_match(struct usb_function *f, 3377 const struct usb_ctrlrequest *creq, 3378 bool config0) 3379 { 3380 struct ffs_function *func = ffs_func_from_usb(f); 3381 3382 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP)) 3383 return false; 3384 3385 switch (creq->bRequestType & USB_RECIP_MASK) { 3386 case USB_RECIP_INTERFACE: 3387 return (ffs_func_revmap_intf(func, 3388 le16_to_cpu(creq->wIndex)) >= 0); 3389 case USB_RECIP_ENDPOINT: 3390 return (ffs_func_revmap_ep(func, 3391 le16_to_cpu(creq->wIndex)) >= 0); 3392 default: 3393 return (bool) (func->ffs->user_flags & 3394 FUNCTIONFS_ALL_CTRL_RECIP); 3395 } 3396 } 3397 3398 static void ffs_func_suspend(struct usb_function *f) 3399 { 3400 ENTER(); 3401 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); 3402 } 3403 3404 static void ffs_func_resume(struct usb_function *f) 3405 { 3406 ENTER(); 3407 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); 3408 } 3409 3410 3411 /* Endpoint and interface numbers reverse mapping ***************************/ 3412 3413 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) 3414 { 3415 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; 3416 return num ? num : -EDOM; 3417 } 3418 3419 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) 3420 { 3421 short *nums = func->interfaces_nums; 3422 unsigned count = func->ffs->interfaces_count; 3423 3424 for (; count; --count, ++nums) { 3425 if (*nums >= 0 && *nums == intf) 3426 return nums - func->interfaces_nums; 3427 } 3428 3429 return -EDOM; 3430 } 3431 3432 3433 /* Devices management *******************************************************/ 3434 3435 static LIST_HEAD(ffs_devices); 3436 3437 static struct ffs_dev *_ffs_do_find_dev(const char *name) 3438 { 3439 struct ffs_dev *dev; 3440 3441 if (!name) 3442 return NULL; 3443 3444 list_for_each_entry(dev, &ffs_devices, entry) { 3445 if (strcmp(dev->name, name) == 0) 3446 return dev; 3447 } 3448 3449 return NULL; 3450 } 3451 3452 /* 3453 * ffs_lock must be taken by the caller of this function 3454 */ 3455 static struct ffs_dev *_ffs_get_single_dev(void) 3456 { 3457 struct ffs_dev *dev; 3458 3459 if (list_is_singular(&ffs_devices)) { 3460 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); 3461 if (dev->single) 3462 return dev; 3463 } 3464 3465 return NULL; 3466 } 3467 3468 /* 3469 * ffs_lock must be taken by the caller of this function 3470 */ 3471 static struct ffs_dev *_ffs_find_dev(const char *name) 3472 { 3473 struct ffs_dev *dev; 3474 3475 dev = _ffs_get_single_dev(); 3476 if (dev) 3477 return dev; 3478 3479 return _ffs_do_find_dev(name); 3480 } 3481 3482 /* Configfs support *********************************************************/ 3483 3484 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) 3485 { 3486 return container_of(to_config_group(item), struct f_fs_opts, 3487 func_inst.group); 3488 } 3489 3490 static void ffs_attr_release(struct config_item *item) 3491 { 3492 struct f_fs_opts *opts = to_ffs_opts(item); 3493 3494 usb_put_function_instance(&opts->func_inst); 3495 } 3496 3497 static struct configfs_item_operations ffs_item_ops = { 3498 .release = ffs_attr_release, 3499 }; 3500 3501 static const struct config_item_type ffs_func_type = { 3502 .ct_item_ops = &ffs_item_ops, 3503 .ct_owner = THIS_MODULE, 3504 }; 3505 3506 3507 /* Function registration interface ******************************************/ 3508 3509 static void ffs_free_inst(struct usb_function_instance *f) 3510 { 3511 struct f_fs_opts *opts; 3512 3513 opts = to_f_fs_opts(f); 3514 ffs_dev_lock(); 3515 _ffs_free_dev(opts->dev); 3516 ffs_dev_unlock(); 3517 kfree(opts); 3518 } 3519 3520 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) 3521 { 3522 if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name)) 3523 return -ENAMETOOLONG; 3524 return ffs_name_dev(to_f_fs_opts(fi)->dev, name); 3525 } 3526 3527 static struct usb_function_instance *ffs_alloc_inst(void) 3528 { 3529 struct f_fs_opts *opts; 3530 struct ffs_dev *dev; 3531 3532 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 3533 if (!opts) 3534 return ERR_PTR(-ENOMEM); 3535 3536 opts->func_inst.set_inst_name = ffs_set_inst_name; 3537 opts->func_inst.free_func_inst = ffs_free_inst; 3538 ffs_dev_lock(); 3539 dev = _ffs_alloc_dev(); 3540 ffs_dev_unlock(); 3541 if (IS_ERR(dev)) { 3542 kfree(opts); 3543 return ERR_CAST(dev); 3544 } 3545 opts->dev = dev; 3546 dev->opts = opts; 3547 3548 config_group_init_type_name(&opts->func_inst.group, "", 3549 &ffs_func_type); 3550 return &opts->func_inst; 3551 } 3552 3553 static void ffs_free(struct usb_function *f) 3554 { 3555 kfree(ffs_func_from_usb(f)); 3556 } 3557 3558 static void ffs_func_unbind(struct usb_configuration *c, 3559 struct usb_function *f) 3560 { 3561 struct ffs_function *func = ffs_func_from_usb(f); 3562 struct ffs_data *ffs = func->ffs; 3563 struct f_fs_opts *opts = 3564 container_of(f->fi, struct f_fs_opts, func_inst); 3565 struct ffs_ep *ep = func->eps; 3566 unsigned count = ffs->eps_count; 3567 unsigned long flags; 3568 3569 ENTER(); 3570 if (ffs->func == func) { 3571 ffs_func_eps_disable(func); 3572 ffs->func = NULL; 3573 } 3574 3575 if (!--opts->refcnt) 3576 functionfs_unbind(ffs); 3577 3578 /* cleanup after autoconfig */ 3579 spin_lock_irqsave(&func->ffs->eps_lock, flags); 3580 while (count--) { 3581 if (ep->ep && ep->req) 3582 usb_ep_free_request(ep->ep, ep->req); 3583 ep->req = NULL; 3584 ++ep; 3585 } 3586 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 3587 kfree(func->eps); 3588 func->eps = NULL; 3589 /* 3590 * eps, descriptors and interfaces_nums are allocated in the 3591 * same chunk so only one free is required. 3592 */ 3593 func->function.fs_descriptors = NULL; 3594 func->function.hs_descriptors = NULL; 3595 func->function.ss_descriptors = NULL; 3596 func->interfaces_nums = NULL; 3597 3598 ffs_event_add(ffs, FUNCTIONFS_UNBIND); 3599 } 3600 3601 static struct usb_function *ffs_alloc(struct usb_function_instance *fi) 3602 { 3603 struct ffs_function *func; 3604 3605 ENTER(); 3606 3607 func = kzalloc(sizeof(*func), GFP_KERNEL); 3608 if (unlikely(!func)) 3609 return ERR_PTR(-ENOMEM); 3610 3611 func->function.name = "Function FS Gadget"; 3612 3613 func->function.bind = ffs_func_bind; 3614 func->function.unbind = ffs_func_unbind; 3615 func->function.set_alt = ffs_func_set_alt; 3616 func->function.disable = ffs_func_disable; 3617 func->function.setup = ffs_func_setup; 3618 func->function.req_match = ffs_func_req_match; 3619 func->function.suspend = ffs_func_suspend; 3620 func->function.resume = ffs_func_resume; 3621 func->function.free_func = ffs_free; 3622 3623 return &func->function; 3624 } 3625 3626 /* 3627 * ffs_lock must be taken by the caller of this function 3628 */ 3629 static struct ffs_dev *_ffs_alloc_dev(void) 3630 { 3631 struct ffs_dev *dev; 3632 int ret; 3633 3634 if (_ffs_get_single_dev()) 3635 return ERR_PTR(-EBUSY); 3636 3637 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3638 if (!dev) 3639 return ERR_PTR(-ENOMEM); 3640 3641 if (list_empty(&ffs_devices)) { 3642 ret = functionfs_init(); 3643 if (ret) { 3644 kfree(dev); 3645 return ERR_PTR(ret); 3646 } 3647 } 3648 3649 list_add(&dev->entry, &ffs_devices); 3650 3651 return dev; 3652 } 3653 3654 int ffs_name_dev(struct ffs_dev *dev, const char *name) 3655 { 3656 struct ffs_dev *existing; 3657 int ret = 0; 3658 3659 ffs_dev_lock(); 3660 3661 existing = _ffs_do_find_dev(name); 3662 if (!existing) 3663 strlcpy(dev->name, name, ARRAY_SIZE(dev->name)); 3664 else if (existing != dev) 3665 ret = -EBUSY; 3666 3667 ffs_dev_unlock(); 3668 3669 return ret; 3670 } 3671 EXPORT_SYMBOL_GPL(ffs_name_dev); 3672 3673 int ffs_single_dev(struct ffs_dev *dev) 3674 { 3675 int ret; 3676 3677 ret = 0; 3678 ffs_dev_lock(); 3679 3680 if (!list_is_singular(&ffs_devices)) 3681 ret = -EBUSY; 3682 else 3683 dev->single = true; 3684 3685 ffs_dev_unlock(); 3686 return ret; 3687 } 3688 EXPORT_SYMBOL_GPL(ffs_single_dev); 3689 3690 /* 3691 * ffs_lock must be taken by the caller of this function 3692 */ 3693 static void _ffs_free_dev(struct ffs_dev *dev) 3694 { 3695 list_del(&dev->entry); 3696 3697 /* Clear the private_data pointer to stop incorrect dev access */ 3698 if (dev->ffs_data) 3699 dev->ffs_data->private_data = NULL; 3700 3701 kfree(dev); 3702 if (list_empty(&ffs_devices)) 3703 functionfs_cleanup(); 3704 } 3705 3706 static void *ffs_acquire_dev(const char *dev_name) 3707 { 3708 struct ffs_dev *ffs_dev; 3709 3710 ENTER(); 3711 ffs_dev_lock(); 3712 3713 ffs_dev = _ffs_find_dev(dev_name); 3714 if (!ffs_dev) 3715 ffs_dev = ERR_PTR(-ENOENT); 3716 else if (ffs_dev->mounted) 3717 ffs_dev = ERR_PTR(-EBUSY); 3718 else if (ffs_dev->ffs_acquire_dev_callback && 3719 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) 3720 ffs_dev = ERR_PTR(-ENOENT); 3721 else 3722 ffs_dev->mounted = true; 3723 3724 ffs_dev_unlock(); 3725 return ffs_dev; 3726 } 3727 3728 static void ffs_release_dev(struct ffs_data *ffs_data) 3729 { 3730 struct ffs_dev *ffs_dev; 3731 3732 ENTER(); 3733 ffs_dev_lock(); 3734 3735 ffs_dev = ffs_data->private_data; 3736 if (ffs_dev) { 3737 ffs_dev->mounted = false; 3738 3739 if (ffs_dev->ffs_release_dev_callback) 3740 ffs_dev->ffs_release_dev_callback(ffs_dev); 3741 } 3742 3743 ffs_dev_unlock(); 3744 } 3745 3746 static int ffs_ready(struct ffs_data *ffs) 3747 { 3748 struct ffs_dev *ffs_obj; 3749 int ret = 0; 3750 3751 ENTER(); 3752 ffs_dev_lock(); 3753 3754 ffs_obj = ffs->private_data; 3755 if (!ffs_obj) { 3756 ret = -EINVAL; 3757 goto done; 3758 } 3759 if (WARN_ON(ffs_obj->desc_ready)) { 3760 ret = -EBUSY; 3761 goto done; 3762 } 3763 3764 ffs_obj->desc_ready = true; 3765 ffs_obj->ffs_data = ffs; 3766 3767 if (ffs_obj->ffs_ready_callback) { 3768 ret = ffs_obj->ffs_ready_callback(ffs); 3769 if (ret) 3770 goto done; 3771 } 3772 3773 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); 3774 done: 3775 ffs_dev_unlock(); 3776 return ret; 3777 } 3778 3779 static void ffs_closed(struct ffs_data *ffs) 3780 { 3781 struct ffs_dev *ffs_obj; 3782 struct f_fs_opts *opts; 3783 struct config_item *ci; 3784 3785 ENTER(); 3786 ffs_dev_lock(); 3787 3788 ffs_obj = ffs->private_data; 3789 if (!ffs_obj) 3790 goto done; 3791 3792 ffs_obj->desc_ready = false; 3793 ffs_obj->ffs_data = NULL; 3794 3795 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) && 3796 ffs_obj->ffs_closed_callback) 3797 ffs_obj->ffs_closed_callback(ffs); 3798 3799 if (ffs_obj->opts) 3800 opts = ffs_obj->opts; 3801 else 3802 goto done; 3803 3804 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent 3805 || !kref_read(&opts->func_inst.group.cg_item.ci_kref)) 3806 goto done; 3807 3808 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent; 3809 ffs_dev_unlock(); 3810 3811 if (test_bit(FFS_FL_BOUND, &ffs->flags)) 3812 unregister_gadget_item(ci); 3813 return; 3814 done: 3815 ffs_dev_unlock(); 3816 } 3817 3818 /* Misc helper functions ****************************************************/ 3819 3820 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 3821 { 3822 return nonblock 3823 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN 3824 : mutex_lock_interruptible(mutex); 3825 } 3826 3827 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 3828 { 3829 char *data; 3830 3831 if (unlikely(!len)) 3832 return NULL; 3833 3834 data = kmalloc(len, GFP_KERNEL); 3835 if (unlikely(!data)) 3836 return ERR_PTR(-ENOMEM); 3837 3838 if (unlikely(copy_from_user(data, buf, len))) { 3839 kfree(data); 3840 return ERR_PTR(-EFAULT); 3841 } 3842 3843 pr_vdebug("Buffer from user space:\n"); 3844 ffs_dump_mem("", data, len); 3845 3846 return data; 3847 } 3848 3849 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); 3850 MODULE_LICENSE("GPL"); 3851 MODULE_AUTHOR("Michal Nazarewicz"); 3852