1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * f_fs.c -- user mode file system API for USB composite function controllers 4 * 5 * Copyright (C) 2010 Samsung Electronics 6 * Author: Michal Nazarewicz <mina86@mina86.com> 7 * 8 * Based on inode.c (GadgetFS) which was: 9 * Copyright (C) 2003-2004 David Brownell 10 * Copyright (C) 2003 Agilent Technologies 11 */ 12 13 14 /* #define DEBUG */ 15 /* #define VERBOSE_DEBUG */ 16 17 #include <linux/blkdev.h> 18 #include <linux/pagemap.h> 19 #include <linux/export.h> 20 #include <linux/hid.h> 21 #include <linux/module.h> 22 #include <linux/sched/signal.h> 23 #include <linux/uio.h> 24 #include <asm/unaligned.h> 25 26 #include <linux/usb/composite.h> 27 #include <linux/usb/functionfs.h> 28 29 #include <linux/aio.h> 30 #include <linux/mmu_context.h> 31 #include <linux/poll.h> 32 #include <linux/eventfd.h> 33 34 #include "u_fs.h" 35 #include "u_f.h" 36 #include "u_os_desc.h" 37 #include "configfs.h" 38 39 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ 40 41 /* Reference counter handling */ 42 static void ffs_data_get(struct ffs_data *ffs); 43 static void ffs_data_put(struct ffs_data *ffs); 44 /* Creates new ffs_data object. */ 45 static struct ffs_data *__must_check ffs_data_new(const char *dev_name) 46 __attribute__((malloc)); 47 48 /* Opened counter handling. */ 49 static void ffs_data_opened(struct ffs_data *ffs); 50 static void ffs_data_closed(struct ffs_data *ffs); 51 52 /* Called with ffs->mutex held; take over ownership of data. */ 53 static int __must_check 54 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); 55 static int __must_check 56 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); 57 58 59 /* The function structure ***************************************************/ 60 61 struct ffs_ep; 62 63 struct ffs_function { 64 struct usb_configuration *conf; 65 struct usb_gadget *gadget; 66 struct ffs_data *ffs; 67 68 struct ffs_ep *eps; 69 u8 eps_revmap[16]; 70 short *interfaces_nums; 71 72 struct usb_function function; 73 }; 74 75 76 static struct ffs_function *ffs_func_from_usb(struct usb_function *f) 77 { 78 return container_of(f, struct ffs_function, function); 79 } 80 81 82 static inline enum ffs_setup_state 83 ffs_setup_state_clear_cancelled(struct ffs_data *ffs) 84 { 85 return (enum ffs_setup_state) 86 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); 87 } 88 89 90 static void ffs_func_eps_disable(struct ffs_function *func); 91 static int __must_check ffs_func_eps_enable(struct ffs_function *func); 92 93 static int ffs_func_bind(struct usb_configuration *, 94 struct usb_function *); 95 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); 96 static void ffs_func_disable(struct usb_function *); 97 static int ffs_func_setup(struct usb_function *, 98 const struct usb_ctrlrequest *); 99 static bool ffs_func_req_match(struct usb_function *, 100 const struct usb_ctrlrequest *, 101 bool config0); 102 static void ffs_func_suspend(struct usb_function *); 103 static void ffs_func_resume(struct usb_function *); 104 105 106 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); 107 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); 108 109 110 /* The endpoints structures *************************************************/ 111 112 struct ffs_ep { 113 struct usb_ep *ep; /* P: ffs->eps_lock */ 114 struct usb_request *req; /* P: epfile->mutex */ 115 116 /* [0]: full speed, [1]: high speed, [2]: super speed */ 117 struct usb_endpoint_descriptor *descs[3]; 118 119 u8 num; 120 121 int status; /* P: epfile->mutex */ 122 }; 123 124 struct ffs_epfile { 125 /* Protects ep->ep and ep->req. */ 126 struct mutex mutex; 127 128 struct ffs_data *ffs; 129 struct ffs_ep *ep; /* P: ffs->eps_lock */ 130 131 struct dentry *dentry; 132 133 /* 134 * Buffer for holding data from partial reads which may happen since 135 * we’re rounding user read requests to a multiple of a max packet size. 136 * 137 * The pointer is initialised with NULL value and may be set by 138 * __ffs_epfile_read_data function to point to a temporary buffer. 139 * 140 * In normal operation, calls to __ffs_epfile_read_buffered will consume 141 * data from said buffer and eventually free it. Importantly, while the 142 * function is using the buffer, it sets the pointer to NULL. This is 143 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered 144 * can never run concurrently (they are synchronised by epfile->mutex) 145 * so the latter will not assign a new value to the pointer. 146 * 147 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is 148 * valid) and sets the pointer to READ_BUFFER_DROP value. This special 149 * value is crux of the synchronisation between ffs_func_eps_disable and 150 * __ffs_epfile_read_data. 151 * 152 * Once __ffs_epfile_read_data is about to finish it will try to set the 153 * pointer back to its old value (as described above), but seeing as the 154 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free 155 * the buffer. 156 * 157 * == State transitions == 158 * 159 * • ptr == NULL: (initial state) 160 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP 161 * ◦ __ffs_epfile_read_buffered: nop 162 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf 163 * ◦ reading finishes: n/a, not in ‘and reading’ state 164 * • ptr == DROP: 165 * ◦ __ffs_epfile_read_buffer_free: nop 166 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL 167 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop 168 * ◦ reading finishes: n/a, not in ‘and reading’ state 169 * • ptr == buf: 170 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP 171 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading 172 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered 173 * is always called first 174 * ◦ reading finishes: n/a, not in ‘and reading’ state 175 * • ptr == NULL and reading: 176 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading 177 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 178 * ◦ __ffs_epfile_read_data: n/a, mutex is held 179 * ◦ reading finishes and … 180 * … all data read: free buf, go to ptr == NULL 181 * … otherwise: go to ptr == buf and reading 182 * • ptr == DROP and reading: 183 * ◦ __ffs_epfile_read_buffer_free: nop 184 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 185 * ◦ __ffs_epfile_read_data: n/a, mutex is held 186 * ◦ reading finishes: free buf, go to ptr == DROP 187 */ 188 struct ffs_buffer *read_buffer; 189 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN)) 190 191 char name[5]; 192 193 unsigned char in; /* P: ffs->eps_lock */ 194 unsigned char isoc; /* P: ffs->eps_lock */ 195 196 unsigned char _pad; 197 }; 198 199 struct ffs_buffer { 200 size_t length; 201 char *data; 202 char storage[]; 203 }; 204 205 /* ffs_io_data structure ***************************************************/ 206 207 struct ffs_io_data { 208 bool aio; 209 bool read; 210 211 struct kiocb *kiocb; 212 struct iov_iter data; 213 const void *to_free; 214 char *buf; 215 216 struct mm_struct *mm; 217 struct work_struct work; 218 219 struct usb_ep *ep; 220 struct usb_request *req; 221 222 struct ffs_data *ffs; 223 }; 224 225 struct ffs_desc_helper { 226 struct ffs_data *ffs; 227 unsigned interfaces_count; 228 unsigned eps_count; 229 }; 230 231 static int __must_check ffs_epfiles_create(struct ffs_data *ffs); 232 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count); 233 234 static struct dentry * 235 ffs_sb_create_file(struct super_block *sb, const char *name, void *data, 236 const struct file_operations *fops); 237 238 /* Devices management *******************************************************/ 239 240 DEFINE_MUTEX(ffs_lock); 241 EXPORT_SYMBOL_GPL(ffs_lock); 242 243 static struct ffs_dev *_ffs_find_dev(const char *name); 244 static struct ffs_dev *_ffs_alloc_dev(void); 245 static void _ffs_free_dev(struct ffs_dev *dev); 246 static void *ffs_acquire_dev(const char *dev_name); 247 static void ffs_release_dev(struct ffs_data *ffs_data); 248 static int ffs_ready(struct ffs_data *ffs); 249 static void ffs_closed(struct ffs_data *ffs); 250 251 /* Misc helper functions ****************************************************/ 252 253 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 254 __attribute__((warn_unused_result, nonnull)); 255 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 256 __attribute__((warn_unused_result, nonnull)); 257 258 259 /* Control file aka ep0 *****************************************************/ 260 261 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) 262 { 263 struct ffs_data *ffs = req->context; 264 265 complete(&ffs->ep0req_completion); 266 } 267 268 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) 269 __releases(&ffs->ev.waitq.lock) 270 { 271 struct usb_request *req = ffs->ep0req; 272 int ret; 273 274 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); 275 276 spin_unlock_irq(&ffs->ev.waitq.lock); 277 278 req->buf = data; 279 req->length = len; 280 281 /* 282 * UDC layer requires to provide a buffer even for ZLP, but should 283 * not use it at all. Let's provide some poisoned pointer to catch 284 * possible bug in the driver. 285 */ 286 if (req->buf == NULL) 287 req->buf = (void *)0xDEADBABE; 288 289 reinit_completion(&ffs->ep0req_completion); 290 291 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); 292 if (unlikely(ret < 0)) 293 return ret; 294 295 ret = wait_for_completion_interruptible(&ffs->ep0req_completion); 296 if (unlikely(ret)) { 297 usb_ep_dequeue(ffs->gadget->ep0, req); 298 return -EINTR; 299 } 300 301 ffs->setup_state = FFS_NO_SETUP; 302 return req->status ? req->status : req->actual; 303 } 304 305 static int __ffs_ep0_stall(struct ffs_data *ffs) 306 { 307 if (ffs->ev.can_stall) { 308 pr_vdebug("ep0 stall\n"); 309 usb_ep_set_halt(ffs->gadget->ep0); 310 ffs->setup_state = FFS_NO_SETUP; 311 return -EL2HLT; 312 } else { 313 pr_debug("bogus ep0 stall!\n"); 314 return -ESRCH; 315 } 316 } 317 318 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, 319 size_t len, loff_t *ptr) 320 { 321 struct ffs_data *ffs = file->private_data; 322 ssize_t ret; 323 char *data; 324 325 ENTER(); 326 327 /* Fast check if setup was canceled */ 328 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 329 return -EIDRM; 330 331 /* Acquire mutex */ 332 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 333 if (unlikely(ret < 0)) 334 return ret; 335 336 /* Check state */ 337 switch (ffs->state) { 338 case FFS_READ_DESCRIPTORS: 339 case FFS_READ_STRINGS: 340 /* Copy data */ 341 if (unlikely(len < 16)) { 342 ret = -EINVAL; 343 break; 344 } 345 346 data = ffs_prepare_buffer(buf, len); 347 if (IS_ERR(data)) { 348 ret = PTR_ERR(data); 349 break; 350 } 351 352 /* Handle data */ 353 if (ffs->state == FFS_READ_DESCRIPTORS) { 354 pr_info("read descriptors\n"); 355 ret = __ffs_data_got_descs(ffs, data, len); 356 if (unlikely(ret < 0)) 357 break; 358 359 ffs->state = FFS_READ_STRINGS; 360 ret = len; 361 } else { 362 pr_info("read strings\n"); 363 ret = __ffs_data_got_strings(ffs, data, len); 364 if (unlikely(ret < 0)) 365 break; 366 367 ret = ffs_epfiles_create(ffs); 368 if (unlikely(ret)) { 369 ffs->state = FFS_CLOSING; 370 break; 371 } 372 373 ffs->state = FFS_ACTIVE; 374 mutex_unlock(&ffs->mutex); 375 376 ret = ffs_ready(ffs); 377 if (unlikely(ret < 0)) { 378 ffs->state = FFS_CLOSING; 379 return ret; 380 } 381 382 return len; 383 } 384 break; 385 386 case FFS_ACTIVE: 387 data = NULL; 388 /* 389 * We're called from user space, we can use _irq 390 * rather then _irqsave 391 */ 392 spin_lock_irq(&ffs->ev.waitq.lock); 393 switch (ffs_setup_state_clear_cancelled(ffs)) { 394 case FFS_SETUP_CANCELLED: 395 ret = -EIDRM; 396 goto done_spin; 397 398 case FFS_NO_SETUP: 399 ret = -ESRCH; 400 goto done_spin; 401 402 case FFS_SETUP_PENDING: 403 break; 404 } 405 406 /* FFS_SETUP_PENDING */ 407 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { 408 spin_unlock_irq(&ffs->ev.waitq.lock); 409 ret = __ffs_ep0_stall(ffs); 410 break; 411 } 412 413 /* FFS_SETUP_PENDING and not stall */ 414 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 415 416 spin_unlock_irq(&ffs->ev.waitq.lock); 417 418 data = ffs_prepare_buffer(buf, len); 419 if (IS_ERR(data)) { 420 ret = PTR_ERR(data); 421 break; 422 } 423 424 spin_lock_irq(&ffs->ev.waitq.lock); 425 426 /* 427 * We are guaranteed to be still in FFS_ACTIVE state 428 * but the state of setup could have changed from 429 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need 430 * to check for that. If that happened we copied data 431 * from user space in vain but it's unlikely. 432 * 433 * For sure we are not in FFS_NO_SETUP since this is 434 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP 435 * transition can be performed and it's protected by 436 * mutex. 437 */ 438 if (ffs_setup_state_clear_cancelled(ffs) == 439 FFS_SETUP_CANCELLED) { 440 ret = -EIDRM; 441 done_spin: 442 spin_unlock_irq(&ffs->ev.waitq.lock); 443 } else { 444 /* unlocks spinlock */ 445 ret = __ffs_ep0_queue_wait(ffs, data, len); 446 } 447 kfree(data); 448 break; 449 450 default: 451 ret = -EBADFD; 452 break; 453 } 454 455 mutex_unlock(&ffs->mutex); 456 return ret; 457 } 458 459 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */ 460 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, 461 size_t n) 462 __releases(&ffs->ev.waitq.lock) 463 { 464 /* 465 * n cannot be bigger than ffs->ev.count, which cannot be bigger than 466 * size of ffs->ev.types array (which is four) so that's how much space 467 * we reserve. 468 */ 469 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)]; 470 const size_t size = n * sizeof *events; 471 unsigned i = 0; 472 473 memset(events, 0, size); 474 475 do { 476 events[i].type = ffs->ev.types[i]; 477 if (events[i].type == FUNCTIONFS_SETUP) { 478 events[i].u.setup = ffs->ev.setup; 479 ffs->setup_state = FFS_SETUP_PENDING; 480 } 481 } while (++i < n); 482 483 ffs->ev.count -= n; 484 if (ffs->ev.count) 485 memmove(ffs->ev.types, ffs->ev.types + n, 486 ffs->ev.count * sizeof *ffs->ev.types); 487 488 spin_unlock_irq(&ffs->ev.waitq.lock); 489 mutex_unlock(&ffs->mutex); 490 491 return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size; 492 } 493 494 static ssize_t ffs_ep0_read(struct file *file, char __user *buf, 495 size_t len, loff_t *ptr) 496 { 497 struct ffs_data *ffs = file->private_data; 498 char *data = NULL; 499 size_t n; 500 int ret; 501 502 ENTER(); 503 504 /* Fast check if setup was canceled */ 505 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 506 return -EIDRM; 507 508 /* Acquire mutex */ 509 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 510 if (unlikely(ret < 0)) 511 return ret; 512 513 /* Check state */ 514 if (ffs->state != FFS_ACTIVE) { 515 ret = -EBADFD; 516 goto done_mutex; 517 } 518 519 /* 520 * We're called from user space, we can use _irq rather then 521 * _irqsave 522 */ 523 spin_lock_irq(&ffs->ev.waitq.lock); 524 525 switch (ffs_setup_state_clear_cancelled(ffs)) { 526 case FFS_SETUP_CANCELLED: 527 ret = -EIDRM; 528 break; 529 530 case FFS_NO_SETUP: 531 n = len / sizeof(struct usb_functionfs_event); 532 if (unlikely(!n)) { 533 ret = -EINVAL; 534 break; 535 } 536 537 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { 538 ret = -EAGAIN; 539 break; 540 } 541 542 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, 543 ffs->ev.count)) { 544 ret = -EINTR; 545 break; 546 } 547 548 /* unlocks spinlock */ 549 return __ffs_ep0_read_events(ffs, buf, 550 min(n, (size_t)ffs->ev.count)); 551 552 case FFS_SETUP_PENDING: 553 if (ffs->ev.setup.bRequestType & USB_DIR_IN) { 554 spin_unlock_irq(&ffs->ev.waitq.lock); 555 ret = __ffs_ep0_stall(ffs); 556 goto done_mutex; 557 } 558 559 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 560 561 spin_unlock_irq(&ffs->ev.waitq.lock); 562 563 if (likely(len)) { 564 data = kmalloc(len, GFP_KERNEL); 565 if (unlikely(!data)) { 566 ret = -ENOMEM; 567 goto done_mutex; 568 } 569 } 570 571 spin_lock_irq(&ffs->ev.waitq.lock); 572 573 /* See ffs_ep0_write() */ 574 if (ffs_setup_state_clear_cancelled(ffs) == 575 FFS_SETUP_CANCELLED) { 576 ret = -EIDRM; 577 break; 578 } 579 580 /* unlocks spinlock */ 581 ret = __ffs_ep0_queue_wait(ffs, data, len); 582 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len))) 583 ret = -EFAULT; 584 goto done_mutex; 585 586 default: 587 ret = -EBADFD; 588 break; 589 } 590 591 spin_unlock_irq(&ffs->ev.waitq.lock); 592 done_mutex: 593 mutex_unlock(&ffs->mutex); 594 kfree(data); 595 return ret; 596 } 597 598 static int ffs_ep0_open(struct inode *inode, struct file *file) 599 { 600 struct ffs_data *ffs = inode->i_private; 601 602 ENTER(); 603 604 if (unlikely(ffs->state == FFS_CLOSING)) 605 return -EBUSY; 606 607 file->private_data = ffs; 608 ffs_data_opened(ffs); 609 610 return 0; 611 } 612 613 static int ffs_ep0_release(struct inode *inode, struct file *file) 614 { 615 struct ffs_data *ffs = file->private_data; 616 617 ENTER(); 618 619 ffs_data_closed(ffs); 620 621 return 0; 622 } 623 624 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) 625 { 626 struct ffs_data *ffs = file->private_data; 627 struct usb_gadget *gadget = ffs->gadget; 628 long ret; 629 630 ENTER(); 631 632 if (code == FUNCTIONFS_INTERFACE_REVMAP) { 633 struct ffs_function *func = ffs->func; 634 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; 635 } else if (gadget && gadget->ops->ioctl) { 636 ret = gadget->ops->ioctl(gadget, code, value); 637 } else { 638 ret = -ENOTTY; 639 } 640 641 return ret; 642 } 643 644 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait) 645 { 646 struct ffs_data *ffs = file->private_data; 647 __poll_t mask = EPOLLWRNORM; 648 int ret; 649 650 poll_wait(file, &ffs->ev.waitq, wait); 651 652 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 653 if (unlikely(ret < 0)) 654 return mask; 655 656 switch (ffs->state) { 657 case FFS_READ_DESCRIPTORS: 658 case FFS_READ_STRINGS: 659 mask |= EPOLLOUT; 660 break; 661 662 case FFS_ACTIVE: 663 switch (ffs->setup_state) { 664 case FFS_NO_SETUP: 665 if (ffs->ev.count) 666 mask |= EPOLLIN; 667 break; 668 669 case FFS_SETUP_PENDING: 670 case FFS_SETUP_CANCELLED: 671 mask |= (EPOLLIN | EPOLLOUT); 672 break; 673 } 674 case FFS_CLOSING: 675 break; 676 case FFS_DEACTIVATED: 677 break; 678 } 679 680 mutex_unlock(&ffs->mutex); 681 682 return mask; 683 } 684 685 static const struct file_operations ffs_ep0_operations = { 686 .llseek = no_llseek, 687 688 .open = ffs_ep0_open, 689 .write = ffs_ep0_write, 690 .read = ffs_ep0_read, 691 .release = ffs_ep0_release, 692 .unlocked_ioctl = ffs_ep0_ioctl, 693 .poll = ffs_ep0_poll, 694 }; 695 696 697 /* "Normal" endpoints operations ********************************************/ 698 699 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) 700 { 701 ENTER(); 702 if (likely(req->context)) { 703 struct ffs_ep *ep = _ep->driver_data; 704 ep->status = req->status ? req->status : req->actual; 705 complete(req->context); 706 } 707 } 708 709 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter) 710 { 711 ssize_t ret = copy_to_iter(data, data_len, iter); 712 if (likely(ret == data_len)) 713 return ret; 714 715 if (unlikely(iov_iter_count(iter))) 716 return -EFAULT; 717 718 /* 719 * Dear user space developer! 720 * 721 * TL;DR: To stop getting below error message in your kernel log, change 722 * user space code using functionfs to align read buffers to a max 723 * packet size. 724 * 725 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max 726 * packet size. When unaligned buffer is passed to functionfs, it 727 * internally uses a larger, aligned buffer so that such UDCs are happy. 728 * 729 * Unfortunately, this means that host may send more data than was 730 * requested in read(2) system call. f_fs doesn’t know what to do with 731 * that excess data so it simply drops it. 732 * 733 * Was the buffer aligned in the first place, no such problem would 734 * happen. 735 * 736 * Data may be dropped only in AIO reads. Synchronous reads are handled 737 * by splitting a request into multiple parts. This splitting may still 738 * be a problem though so it’s likely best to align the buffer 739 * regardless of it being AIO or not.. 740 * 741 * This only affects OUT endpoints, i.e. reading data with a read(2), 742 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not 743 * affected. 744 */ 745 pr_err("functionfs read size %d > requested size %zd, dropping excess data. " 746 "Align read buffer size to max packet size to avoid the problem.\n", 747 data_len, ret); 748 749 return ret; 750 } 751 752 static void ffs_user_copy_worker(struct work_struct *work) 753 { 754 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 755 work); 756 int ret = io_data->req->status ? io_data->req->status : 757 io_data->req->actual; 758 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD; 759 760 if (io_data->read && ret > 0) { 761 use_mm(io_data->mm); 762 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data); 763 unuse_mm(io_data->mm); 764 } 765 766 io_data->kiocb->ki_complete(io_data->kiocb, ret, ret); 767 768 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd) 769 eventfd_signal(io_data->ffs->ffs_eventfd, 1); 770 771 usb_ep_free_request(io_data->ep, io_data->req); 772 773 if (io_data->read) 774 kfree(io_data->to_free); 775 kfree(io_data->buf); 776 kfree(io_data); 777 } 778 779 static void ffs_epfile_async_io_complete(struct usb_ep *_ep, 780 struct usb_request *req) 781 { 782 struct ffs_io_data *io_data = req->context; 783 struct ffs_data *ffs = io_data->ffs; 784 785 ENTER(); 786 787 INIT_WORK(&io_data->work, ffs_user_copy_worker); 788 queue_work(ffs->io_completion_wq, &io_data->work); 789 } 790 791 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile) 792 { 793 /* 794 * See comment in struct ffs_epfile for full read_buffer pointer 795 * synchronisation story. 796 */ 797 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP); 798 if (buf && buf != READ_BUFFER_DROP) 799 kfree(buf); 800 } 801 802 /* Assumes epfile->mutex is held. */ 803 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile, 804 struct iov_iter *iter) 805 { 806 /* 807 * Null out epfile->read_buffer so ffs_func_eps_disable does not free 808 * the buffer while we are using it. See comment in struct ffs_epfile 809 * for full read_buffer pointer synchronisation story. 810 */ 811 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL); 812 ssize_t ret; 813 if (!buf || buf == READ_BUFFER_DROP) 814 return 0; 815 816 ret = copy_to_iter(buf->data, buf->length, iter); 817 if (buf->length == ret) { 818 kfree(buf); 819 return ret; 820 } 821 822 if (unlikely(iov_iter_count(iter))) { 823 ret = -EFAULT; 824 } else { 825 buf->length -= ret; 826 buf->data += ret; 827 } 828 829 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 830 kfree(buf); 831 832 return ret; 833 } 834 835 /* Assumes epfile->mutex is held. */ 836 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile, 837 void *data, int data_len, 838 struct iov_iter *iter) 839 { 840 struct ffs_buffer *buf; 841 842 ssize_t ret = copy_to_iter(data, data_len, iter); 843 if (likely(data_len == ret)) 844 return ret; 845 846 if (unlikely(iov_iter_count(iter))) 847 return -EFAULT; 848 849 /* See ffs_copy_to_iter for more context. */ 850 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.", 851 data_len, ret); 852 853 data_len -= ret; 854 buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL); 855 if (!buf) 856 return -ENOMEM; 857 buf->length = data_len; 858 buf->data = buf->storage; 859 memcpy(buf->storage, data + ret, data_len); 860 861 /* 862 * At this point read_buffer is NULL or READ_BUFFER_DROP (if 863 * ffs_func_eps_disable has been called in the meanwhile). See comment 864 * in struct ffs_epfile for full read_buffer pointer synchronisation 865 * story. 866 */ 867 if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf))) 868 kfree(buf); 869 870 return ret; 871 } 872 873 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) 874 { 875 struct ffs_epfile *epfile = file->private_data; 876 struct usb_request *req; 877 struct ffs_ep *ep; 878 char *data = NULL; 879 ssize_t ret, data_len = -EINVAL; 880 int halt; 881 882 /* Are we still active? */ 883 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 884 return -ENODEV; 885 886 /* Wait for endpoint to be enabled */ 887 ep = epfile->ep; 888 if (!ep) { 889 if (file->f_flags & O_NONBLOCK) 890 return -EAGAIN; 891 892 ret = wait_event_interruptible( 893 epfile->ffs->wait, (ep = epfile->ep)); 894 if (ret) 895 return -EINTR; 896 } 897 898 /* Do we halt? */ 899 halt = (!io_data->read == !epfile->in); 900 if (halt && epfile->isoc) 901 return -EINVAL; 902 903 /* We will be using request and read_buffer */ 904 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); 905 if (unlikely(ret)) 906 goto error; 907 908 /* Allocate & copy */ 909 if (!halt) { 910 struct usb_gadget *gadget; 911 912 /* 913 * Do we have buffered data from previous partial read? Check 914 * that for synchronous case only because we do not have 915 * facility to ‘wake up’ a pending asynchronous read and push 916 * buffered data to it which we would need to make things behave 917 * consistently. 918 */ 919 if (!io_data->aio && io_data->read) { 920 ret = __ffs_epfile_read_buffered(epfile, &io_data->data); 921 if (ret) 922 goto error_mutex; 923 } 924 925 /* 926 * if we _do_ wait above, the epfile->ffs->gadget might be NULL 927 * before the waiting completes, so do not assign to 'gadget' 928 * earlier 929 */ 930 gadget = epfile->ffs->gadget; 931 932 spin_lock_irq(&epfile->ffs->eps_lock); 933 /* In the meantime, endpoint got disabled or changed. */ 934 if (epfile->ep != ep) { 935 ret = -ESHUTDOWN; 936 goto error_lock; 937 } 938 data_len = iov_iter_count(&io_data->data); 939 /* 940 * Controller may require buffer size to be aligned to 941 * maxpacketsize of an out endpoint. 942 */ 943 if (io_data->read) 944 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len); 945 spin_unlock_irq(&epfile->ffs->eps_lock); 946 947 data = kmalloc(data_len, GFP_KERNEL); 948 if (unlikely(!data)) { 949 ret = -ENOMEM; 950 goto error_mutex; 951 } 952 if (!io_data->read && 953 !copy_from_iter_full(data, data_len, &io_data->data)) { 954 ret = -EFAULT; 955 goto error_mutex; 956 } 957 } 958 959 spin_lock_irq(&epfile->ffs->eps_lock); 960 961 if (epfile->ep != ep) { 962 /* In the meantime, endpoint got disabled or changed. */ 963 ret = -ESHUTDOWN; 964 } else if (halt) { 965 ret = usb_ep_set_halt(ep->ep); 966 if (!ret) 967 ret = -EBADMSG; 968 } else if (unlikely(data_len == -EINVAL)) { 969 /* 970 * Sanity Check: even though data_len can't be used 971 * uninitialized at the time I write this comment, some 972 * compilers complain about this situation. 973 * In order to keep the code clean from warnings, data_len is 974 * being initialized to -EINVAL during its declaration, which 975 * means we can't rely on compiler anymore to warn no future 976 * changes won't result in data_len being used uninitialized. 977 * For such reason, we're adding this redundant sanity check 978 * here. 979 */ 980 WARN(1, "%s: data_len == -EINVAL\n", __func__); 981 ret = -EINVAL; 982 } else if (!io_data->aio) { 983 DECLARE_COMPLETION_ONSTACK(done); 984 bool interrupted = false; 985 986 req = ep->req; 987 req->buf = data; 988 req->length = data_len; 989 990 req->context = &done; 991 req->complete = ffs_epfile_io_complete; 992 993 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 994 if (unlikely(ret < 0)) 995 goto error_lock; 996 997 spin_unlock_irq(&epfile->ffs->eps_lock); 998 999 if (unlikely(wait_for_completion_interruptible(&done))) { 1000 /* 1001 * To avoid race condition with ffs_epfile_io_complete, 1002 * dequeue the request first then check 1003 * status. usb_ep_dequeue API should guarantee no race 1004 * condition with req->complete callback. 1005 */ 1006 usb_ep_dequeue(ep->ep, req); 1007 interrupted = ep->status < 0; 1008 } 1009 1010 if (interrupted) 1011 ret = -EINTR; 1012 else if (io_data->read && ep->status > 0) 1013 ret = __ffs_epfile_read_data(epfile, data, ep->status, 1014 &io_data->data); 1015 else 1016 ret = ep->status; 1017 goto error_mutex; 1018 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) { 1019 ret = -ENOMEM; 1020 } else { 1021 req->buf = data; 1022 req->length = data_len; 1023 1024 io_data->buf = data; 1025 io_data->ep = ep->ep; 1026 io_data->req = req; 1027 io_data->ffs = epfile->ffs; 1028 1029 req->context = io_data; 1030 req->complete = ffs_epfile_async_io_complete; 1031 1032 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1033 if (unlikely(ret)) { 1034 usb_ep_free_request(ep->ep, req); 1035 goto error_lock; 1036 } 1037 1038 ret = -EIOCBQUEUED; 1039 /* 1040 * Do not kfree the buffer in this function. It will be freed 1041 * by ffs_user_copy_worker. 1042 */ 1043 data = NULL; 1044 } 1045 1046 error_lock: 1047 spin_unlock_irq(&epfile->ffs->eps_lock); 1048 error_mutex: 1049 mutex_unlock(&epfile->mutex); 1050 error: 1051 kfree(data); 1052 return ret; 1053 } 1054 1055 static int 1056 ffs_epfile_open(struct inode *inode, struct file *file) 1057 { 1058 struct ffs_epfile *epfile = inode->i_private; 1059 1060 ENTER(); 1061 1062 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1063 return -ENODEV; 1064 1065 file->private_data = epfile; 1066 ffs_data_opened(epfile->ffs); 1067 1068 return 0; 1069 } 1070 1071 static int ffs_aio_cancel(struct kiocb *kiocb) 1072 { 1073 struct ffs_io_data *io_data = kiocb->private; 1074 struct ffs_epfile *epfile = kiocb->ki_filp->private_data; 1075 int value; 1076 1077 ENTER(); 1078 1079 spin_lock_irq(&epfile->ffs->eps_lock); 1080 1081 if (likely(io_data && io_data->ep && io_data->req)) 1082 value = usb_ep_dequeue(io_data->ep, io_data->req); 1083 else 1084 value = -EINVAL; 1085 1086 spin_unlock_irq(&epfile->ffs->eps_lock); 1087 1088 return value; 1089 } 1090 1091 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from) 1092 { 1093 struct ffs_io_data io_data, *p = &io_data; 1094 ssize_t res; 1095 1096 ENTER(); 1097 1098 if (!is_sync_kiocb(kiocb)) { 1099 p = kmalloc(sizeof(io_data), GFP_KERNEL); 1100 if (unlikely(!p)) 1101 return -ENOMEM; 1102 p->aio = true; 1103 } else { 1104 p->aio = false; 1105 } 1106 1107 p->read = false; 1108 p->kiocb = kiocb; 1109 p->data = *from; 1110 p->mm = current->mm; 1111 1112 kiocb->private = p; 1113 1114 if (p->aio) 1115 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1116 1117 res = ffs_epfile_io(kiocb->ki_filp, p); 1118 if (res == -EIOCBQUEUED) 1119 return res; 1120 if (p->aio) 1121 kfree(p); 1122 else 1123 *from = p->data; 1124 return res; 1125 } 1126 1127 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to) 1128 { 1129 struct ffs_io_data io_data, *p = &io_data; 1130 ssize_t res; 1131 1132 ENTER(); 1133 1134 if (!is_sync_kiocb(kiocb)) { 1135 p = kmalloc(sizeof(io_data), GFP_KERNEL); 1136 if (unlikely(!p)) 1137 return -ENOMEM; 1138 p->aio = true; 1139 } else { 1140 p->aio = false; 1141 } 1142 1143 p->read = true; 1144 p->kiocb = kiocb; 1145 if (p->aio) { 1146 p->to_free = dup_iter(&p->data, to, GFP_KERNEL); 1147 if (!p->to_free) { 1148 kfree(p); 1149 return -ENOMEM; 1150 } 1151 } else { 1152 p->data = *to; 1153 p->to_free = NULL; 1154 } 1155 p->mm = current->mm; 1156 1157 kiocb->private = p; 1158 1159 if (p->aio) 1160 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1161 1162 res = ffs_epfile_io(kiocb->ki_filp, p); 1163 if (res == -EIOCBQUEUED) 1164 return res; 1165 1166 if (p->aio) { 1167 kfree(p->to_free); 1168 kfree(p); 1169 } else { 1170 *to = p->data; 1171 } 1172 return res; 1173 } 1174 1175 static int 1176 ffs_epfile_release(struct inode *inode, struct file *file) 1177 { 1178 struct ffs_epfile *epfile = inode->i_private; 1179 1180 ENTER(); 1181 1182 __ffs_epfile_read_buffer_free(epfile); 1183 ffs_data_closed(epfile->ffs); 1184 1185 return 0; 1186 } 1187 1188 static long ffs_epfile_ioctl(struct file *file, unsigned code, 1189 unsigned long value) 1190 { 1191 struct ffs_epfile *epfile = file->private_data; 1192 struct ffs_ep *ep; 1193 int ret; 1194 1195 ENTER(); 1196 1197 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1198 return -ENODEV; 1199 1200 /* Wait for endpoint to be enabled */ 1201 ep = epfile->ep; 1202 if (!ep) { 1203 if (file->f_flags & O_NONBLOCK) 1204 return -EAGAIN; 1205 1206 ret = wait_event_interruptible( 1207 epfile->ffs->wait, (ep = epfile->ep)); 1208 if (ret) 1209 return -EINTR; 1210 } 1211 1212 spin_lock_irq(&epfile->ffs->eps_lock); 1213 1214 /* In the meantime, endpoint got disabled or changed. */ 1215 if (epfile->ep != ep) { 1216 spin_unlock_irq(&epfile->ffs->eps_lock); 1217 return -ESHUTDOWN; 1218 } 1219 1220 switch (code) { 1221 case FUNCTIONFS_FIFO_STATUS: 1222 ret = usb_ep_fifo_status(epfile->ep->ep); 1223 break; 1224 case FUNCTIONFS_FIFO_FLUSH: 1225 usb_ep_fifo_flush(epfile->ep->ep); 1226 ret = 0; 1227 break; 1228 case FUNCTIONFS_CLEAR_HALT: 1229 ret = usb_ep_clear_halt(epfile->ep->ep); 1230 break; 1231 case FUNCTIONFS_ENDPOINT_REVMAP: 1232 ret = epfile->ep->num; 1233 break; 1234 case FUNCTIONFS_ENDPOINT_DESC: 1235 { 1236 int desc_idx; 1237 struct usb_endpoint_descriptor *desc; 1238 1239 switch (epfile->ffs->gadget->speed) { 1240 case USB_SPEED_SUPER: 1241 desc_idx = 2; 1242 break; 1243 case USB_SPEED_HIGH: 1244 desc_idx = 1; 1245 break; 1246 default: 1247 desc_idx = 0; 1248 } 1249 desc = epfile->ep->descs[desc_idx]; 1250 1251 spin_unlock_irq(&epfile->ffs->eps_lock); 1252 ret = copy_to_user((void __user *)value, desc, desc->bLength); 1253 if (ret) 1254 ret = -EFAULT; 1255 return ret; 1256 } 1257 default: 1258 ret = -ENOTTY; 1259 } 1260 spin_unlock_irq(&epfile->ffs->eps_lock); 1261 1262 return ret; 1263 } 1264 1265 static const struct file_operations ffs_epfile_operations = { 1266 .llseek = no_llseek, 1267 1268 .open = ffs_epfile_open, 1269 .write_iter = ffs_epfile_write_iter, 1270 .read_iter = ffs_epfile_read_iter, 1271 .release = ffs_epfile_release, 1272 .unlocked_ioctl = ffs_epfile_ioctl, 1273 }; 1274 1275 1276 /* File system and super block operations ***********************************/ 1277 1278 /* 1279 * Mounting the file system creates a controller file, used first for 1280 * function configuration then later for event monitoring. 1281 */ 1282 1283 static struct inode *__must_check 1284 ffs_sb_make_inode(struct super_block *sb, void *data, 1285 const struct file_operations *fops, 1286 const struct inode_operations *iops, 1287 struct ffs_file_perms *perms) 1288 { 1289 struct inode *inode; 1290 1291 ENTER(); 1292 1293 inode = new_inode(sb); 1294 1295 if (likely(inode)) { 1296 struct timespec ts = current_time(inode); 1297 1298 inode->i_ino = get_next_ino(); 1299 inode->i_mode = perms->mode; 1300 inode->i_uid = perms->uid; 1301 inode->i_gid = perms->gid; 1302 inode->i_atime = ts; 1303 inode->i_mtime = ts; 1304 inode->i_ctime = ts; 1305 inode->i_private = data; 1306 if (fops) 1307 inode->i_fop = fops; 1308 if (iops) 1309 inode->i_op = iops; 1310 } 1311 1312 return inode; 1313 } 1314 1315 /* Create "regular" file */ 1316 static struct dentry *ffs_sb_create_file(struct super_block *sb, 1317 const char *name, void *data, 1318 const struct file_operations *fops) 1319 { 1320 struct ffs_data *ffs = sb->s_fs_info; 1321 struct dentry *dentry; 1322 struct inode *inode; 1323 1324 ENTER(); 1325 1326 dentry = d_alloc_name(sb->s_root, name); 1327 if (unlikely(!dentry)) 1328 return NULL; 1329 1330 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); 1331 if (unlikely(!inode)) { 1332 dput(dentry); 1333 return NULL; 1334 } 1335 1336 d_add(dentry, inode); 1337 return dentry; 1338 } 1339 1340 /* Super block */ 1341 static const struct super_operations ffs_sb_operations = { 1342 .statfs = simple_statfs, 1343 .drop_inode = generic_delete_inode, 1344 }; 1345 1346 struct ffs_sb_fill_data { 1347 struct ffs_file_perms perms; 1348 umode_t root_mode; 1349 const char *dev_name; 1350 bool no_disconnect; 1351 struct ffs_data *ffs_data; 1352 }; 1353 1354 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent) 1355 { 1356 struct ffs_sb_fill_data *data = _data; 1357 struct inode *inode; 1358 struct ffs_data *ffs = data->ffs_data; 1359 1360 ENTER(); 1361 1362 ffs->sb = sb; 1363 data->ffs_data = NULL; 1364 sb->s_fs_info = ffs; 1365 sb->s_blocksize = PAGE_SIZE; 1366 sb->s_blocksize_bits = PAGE_SHIFT; 1367 sb->s_magic = FUNCTIONFS_MAGIC; 1368 sb->s_op = &ffs_sb_operations; 1369 sb->s_time_gran = 1; 1370 1371 /* Root inode */ 1372 data->perms.mode = data->root_mode; 1373 inode = ffs_sb_make_inode(sb, NULL, 1374 &simple_dir_operations, 1375 &simple_dir_inode_operations, 1376 &data->perms); 1377 sb->s_root = d_make_root(inode); 1378 if (unlikely(!sb->s_root)) 1379 return -ENOMEM; 1380 1381 /* EP0 file */ 1382 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs, 1383 &ffs_ep0_operations))) 1384 return -ENOMEM; 1385 1386 return 0; 1387 } 1388 1389 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts) 1390 { 1391 ENTER(); 1392 1393 if (!opts || !*opts) 1394 return 0; 1395 1396 for (;;) { 1397 unsigned long value; 1398 char *eq, *comma; 1399 1400 /* Option limit */ 1401 comma = strchr(opts, ','); 1402 if (comma) 1403 *comma = 0; 1404 1405 /* Value limit */ 1406 eq = strchr(opts, '='); 1407 if (unlikely(!eq)) { 1408 pr_err("'=' missing in %s\n", opts); 1409 return -EINVAL; 1410 } 1411 *eq = 0; 1412 1413 /* Parse value */ 1414 if (kstrtoul(eq + 1, 0, &value)) { 1415 pr_err("%s: invalid value: %s\n", opts, eq + 1); 1416 return -EINVAL; 1417 } 1418 1419 /* Interpret option */ 1420 switch (eq - opts) { 1421 case 13: 1422 if (!memcmp(opts, "no_disconnect", 13)) 1423 data->no_disconnect = !!value; 1424 else 1425 goto invalid; 1426 break; 1427 case 5: 1428 if (!memcmp(opts, "rmode", 5)) 1429 data->root_mode = (value & 0555) | S_IFDIR; 1430 else if (!memcmp(opts, "fmode", 5)) 1431 data->perms.mode = (value & 0666) | S_IFREG; 1432 else 1433 goto invalid; 1434 break; 1435 1436 case 4: 1437 if (!memcmp(opts, "mode", 4)) { 1438 data->root_mode = (value & 0555) | S_IFDIR; 1439 data->perms.mode = (value & 0666) | S_IFREG; 1440 } else { 1441 goto invalid; 1442 } 1443 break; 1444 1445 case 3: 1446 if (!memcmp(opts, "uid", 3)) { 1447 data->perms.uid = make_kuid(current_user_ns(), value); 1448 if (!uid_valid(data->perms.uid)) { 1449 pr_err("%s: unmapped value: %lu\n", opts, value); 1450 return -EINVAL; 1451 } 1452 } else if (!memcmp(opts, "gid", 3)) { 1453 data->perms.gid = make_kgid(current_user_ns(), value); 1454 if (!gid_valid(data->perms.gid)) { 1455 pr_err("%s: unmapped value: %lu\n", opts, value); 1456 return -EINVAL; 1457 } 1458 } else { 1459 goto invalid; 1460 } 1461 break; 1462 1463 default: 1464 invalid: 1465 pr_err("%s: invalid option\n", opts); 1466 return -EINVAL; 1467 } 1468 1469 /* Next iteration */ 1470 if (!comma) 1471 break; 1472 opts = comma + 1; 1473 } 1474 1475 return 0; 1476 } 1477 1478 /* "mount -t functionfs dev_name /dev/function" ends up here */ 1479 1480 static struct dentry * 1481 ffs_fs_mount(struct file_system_type *t, int flags, 1482 const char *dev_name, void *opts) 1483 { 1484 struct ffs_sb_fill_data data = { 1485 .perms = { 1486 .mode = S_IFREG | 0600, 1487 .uid = GLOBAL_ROOT_UID, 1488 .gid = GLOBAL_ROOT_GID, 1489 }, 1490 .root_mode = S_IFDIR | 0500, 1491 .no_disconnect = false, 1492 }; 1493 struct dentry *rv; 1494 int ret; 1495 void *ffs_dev; 1496 struct ffs_data *ffs; 1497 1498 ENTER(); 1499 1500 ret = ffs_fs_parse_opts(&data, opts); 1501 if (unlikely(ret < 0)) 1502 return ERR_PTR(ret); 1503 1504 ffs = ffs_data_new(dev_name); 1505 if (unlikely(!ffs)) 1506 return ERR_PTR(-ENOMEM); 1507 ffs->file_perms = data.perms; 1508 ffs->no_disconnect = data.no_disconnect; 1509 1510 ffs->dev_name = kstrdup(dev_name, GFP_KERNEL); 1511 if (unlikely(!ffs->dev_name)) { 1512 ffs_data_put(ffs); 1513 return ERR_PTR(-ENOMEM); 1514 } 1515 1516 ffs_dev = ffs_acquire_dev(dev_name); 1517 if (IS_ERR(ffs_dev)) { 1518 ffs_data_put(ffs); 1519 return ERR_CAST(ffs_dev); 1520 } 1521 ffs->private_data = ffs_dev; 1522 data.ffs_data = ffs; 1523 1524 rv = mount_nodev(t, flags, &data, ffs_sb_fill); 1525 if (IS_ERR(rv) && data.ffs_data) { 1526 ffs_release_dev(data.ffs_data); 1527 ffs_data_put(data.ffs_data); 1528 } 1529 return rv; 1530 } 1531 1532 static void 1533 ffs_fs_kill_sb(struct super_block *sb) 1534 { 1535 ENTER(); 1536 1537 kill_litter_super(sb); 1538 if (sb->s_fs_info) { 1539 ffs_release_dev(sb->s_fs_info); 1540 ffs_data_closed(sb->s_fs_info); 1541 ffs_data_put(sb->s_fs_info); 1542 } 1543 } 1544 1545 static struct file_system_type ffs_fs_type = { 1546 .owner = THIS_MODULE, 1547 .name = "functionfs", 1548 .mount = ffs_fs_mount, 1549 .kill_sb = ffs_fs_kill_sb, 1550 }; 1551 MODULE_ALIAS_FS("functionfs"); 1552 1553 1554 /* Driver's main init/cleanup functions *************************************/ 1555 1556 static int functionfs_init(void) 1557 { 1558 int ret; 1559 1560 ENTER(); 1561 1562 ret = register_filesystem(&ffs_fs_type); 1563 if (likely(!ret)) 1564 pr_info("file system registered\n"); 1565 else 1566 pr_err("failed registering file system (%d)\n", ret); 1567 1568 return ret; 1569 } 1570 1571 static void functionfs_cleanup(void) 1572 { 1573 ENTER(); 1574 1575 pr_info("unloading\n"); 1576 unregister_filesystem(&ffs_fs_type); 1577 } 1578 1579 1580 /* ffs_data and ffs_function construction and destruction code **************/ 1581 1582 static void ffs_data_clear(struct ffs_data *ffs); 1583 static void ffs_data_reset(struct ffs_data *ffs); 1584 1585 static void ffs_data_get(struct ffs_data *ffs) 1586 { 1587 ENTER(); 1588 1589 refcount_inc(&ffs->ref); 1590 } 1591 1592 static void ffs_data_opened(struct ffs_data *ffs) 1593 { 1594 ENTER(); 1595 1596 refcount_inc(&ffs->ref); 1597 if (atomic_add_return(1, &ffs->opened) == 1 && 1598 ffs->state == FFS_DEACTIVATED) { 1599 ffs->state = FFS_CLOSING; 1600 ffs_data_reset(ffs); 1601 } 1602 } 1603 1604 static void ffs_data_put(struct ffs_data *ffs) 1605 { 1606 ENTER(); 1607 1608 if (unlikely(refcount_dec_and_test(&ffs->ref))) { 1609 pr_info("%s(): freeing\n", __func__); 1610 ffs_data_clear(ffs); 1611 BUG_ON(waitqueue_active(&ffs->ev.waitq) || 1612 waitqueue_active(&ffs->ep0req_completion.wait) || 1613 waitqueue_active(&ffs->wait)); 1614 destroy_workqueue(ffs->io_completion_wq); 1615 kfree(ffs->dev_name); 1616 kfree(ffs); 1617 } 1618 } 1619 1620 static void ffs_data_closed(struct ffs_data *ffs) 1621 { 1622 ENTER(); 1623 1624 if (atomic_dec_and_test(&ffs->opened)) { 1625 if (ffs->no_disconnect) { 1626 ffs->state = FFS_DEACTIVATED; 1627 if (ffs->epfiles) { 1628 ffs_epfiles_destroy(ffs->epfiles, 1629 ffs->eps_count); 1630 ffs->epfiles = NULL; 1631 } 1632 if (ffs->setup_state == FFS_SETUP_PENDING) 1633 __ffs_ep0_stall(ffs); 1634 } else { 1635 ffs->state = FFS_CLOSING; 1636 ffs_data_reset(ffs); 1637 } 1638 } 1639 if (atomic_read(&ffs->opened) < 0) { 1640 ffs->state = FFS_CLOSING; 1641 ffs_data_reset(ffs); 1642 } 1643 1644 ffs_data_put(ffs); 1645 } 1646 1647 static struct ffs_data *ffs_data_new(const char *dev_name) 1648 { 1649 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); 1650 if (unlikely(!ffs)) 1651 return NULL; 1652 1653 ENTER(); 1654 1655 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name); 1656 if (!ffs->io_completion_wq) { 1657 kfree(ffs); 1658 return NULL; 1659 } 1660 1661 refcount_set(&ffs->ref, 1); 1662 atomic_set(&ffs->opened, 0); 1663 ffs->state = FFS_READ_DESCRIPTORS; 1664 mutex_init(&ffs->mutex); 1665 spin_lock_init(&ffs->eps_lock); 1666 init_waitqueue_head(&ffs->ev.waitq); 1667 init_waitqueue_head(&ffs->wait); 1668 init_completion(&ffs->ep0req_completion); 1669 1670 /* XXX REVISIT need to update it in some places, or do we? */ 1671 ffs->ev.can_stall = 1; 1672 1673 return ffs; 1674 } 1675 1676 static void ffs_data_clear(struct ffs_data *ffs) 1677 { 1678 ENTER(); 1679 1680 ffs_closed(ffs); 1681 1682 BUG_ON(ffs->gadget); 1683 1684 if (ffs->epfiles) 1685 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count); 1686 1687 if (ffs->ffs_eventfd) 1688 eventfd_ctx_put(ffs->ffs_eventfd); 1689 1690 kfree(ffs->raw_descs_data); 1691 kfree(ffs->raw_strings); 1692 kfree(ffs->stringtabs); 1693 } 1694 1695 static void ffs_data_reset(struct ffs_data *ffs) 1696 { 1697 ENTER(); 1698 1699 ffs_data_clear(ffs); 1700 1701 ffs->epfiles = NULL; 1702 ffs->raw_descs_data = NULL; 1703 ffs->raw_descs = NULL; 1704 ffs->raw_strings = NULL; 1705 ffs->stringtabs = NULL; 1706 1707 ffs->raw_descs_length = 0; 1708 ffs->fs_descs_count = 0; 1709 ffs->hs_descs_count = 0; 1710 ffs->ss_descs_count = 0; 1711 1712 ffs->strings_count = 0; 1713 ffs->interfaces_count = 0; 1714 ffs->eps_count = 0; 1715 1716 ffs->ev.count = 0; 1717 1718 ffs->state = FFS_READ_DESCRIPTORS; 1719 ffs->setup_state = FFS_NO_SETUP; 1720 ffs->flags = 0; 1721 } 1722 1723 1724 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) 1725 { 1726 struct usb_gadget_strings **lang; 1727 int first_id; 1728 1729 ENTER(); 1730 1731 if (WARN_ON(ffs->state != FFS_ACTIVE 1732 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) 1733 return -EBADFD; 1734 1735 first_id = usb_string_ids_n(cdev, ffs->strings_count); 1736 if (unlikely(first_id < 0)) 1737 return first_id; 1738 1739 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); 1740 if (unlikely(!ffs->ep0req)) 1741 return -ENOMEM; 1742 ffs->ep0req->complete = ffs_ep0_complete; 1743 ffs->ep0req->context = ffs; 1744 1745 lang = ffs->stringtabs; 1746 if (lang) { 1747 for (; *lang; ++lang) { 1748 struct usb_string *str = (*lang)->strings; 1749 int id = first_id; 1750 for (; str->s; ++id, ++str) 1751 str->id = id; 1752 } 1753 } 1754 1755 ffs->gadget = cdev->gadget; 1756 ffs_data_get(ffs); 1757 return 0; 1758 } 1759 1760 static void functionfs_unbind(struct ffs_data *ffs) 1761 { 1762 ENTER(); 1763 1764 if (!WARN_ON(!ffs->gadget)) { 1765 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); 1766 ffs->ep0req = NULL; 1767 ffs->gadget = NULL; 1768 clear_bit(FFS_FL_BOUND, &ffs->flags); 1769 ffs_data_put(ffs); 1770 } 1771 } 1772 1773 static int ffs_epfiles_create(struct ffs_data *ffs) 1774 { 1775 struct ffs_epfile *epfile, *epfiles; 1776 unsigned i, count; 1777 1778 ENTER(); 1779 1780 count = ffs->eps_count; 1781 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); 1782 if (!epfiles) 1783 return -ENOMEM; 1784 1785 epfile = epfiles; 1786 for (i = 1; i <= count; ++i, ++epfile) { 1787 epfile->ffs = ffs; 1788 mutex_init(&epfile->mutex); 1789 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 1790 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]); 1791 else 1792 sprintf(epfile->name, "ep%u", i); 1793 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name, 1794 epfile, 1795 &ffs_epfile_operations); 1796 if (unlikely(!epfile->dentry)) { 1797 ffs_epfiles_destroy(epfiles, i - 1); 1798 return -ENOMEM; 1799 } 1800 } 1801 1802 ffs->epfiles = epfiles; 1803 return 0; 1804 } 1805 1806 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count) 1807 { 1808 struct ffs_epfile *epfile = epfiles; 1809 1810 ENTER(); 1811 1812 for (; count; --count, ++epfile) { 1813 BUG_ON(mutex_is_locked(&epfile->mutex)); 1814 if (epfile->dentry) { 1815 d_delete(epfile->dentry); 1816 dput(epfile->dentry); 1817 epfile->dentry = NULL; 1818 } 1819 } 1820 1821 kfree(epfiles); 1822 } 1823 1824 static void ffs_func_eps_disable(struct ffs_function *func) 1825 { 1826 struct ffs_ep *ep = func->eps; 1827 struct ffs_epfile *epfile = func->ffs->epfiles; 1828 unsigned count = func->ffs->eps_count; 1829 unsigned long flags; 1830 1831 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1832 while (count--) { 1833 /* pending requests get nuked */ 1834 if (likely(ep->ep)) 1835 usb_ep_disable(ep->ep); 1836 ++ep; 1837 1838 if (epfile) { 1839 epfile->ep = NULL; 1840 __ffs_epfile_read_buffer_free(epfile); 1841 ++epfile; 1842 } 1843 } 1844 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1845 } 1846 1847 static int ffs_func_eps_enable(struct ffs_function *func) 1848 { 1849 struct ffs_data *ffs = func->ffs; 1850 struct ffs_ep *ep = func->eps; 1851 struct ffs_epfile *epfile = ffs->epfiles; 1852 unsigned count = ffs->eps_count; 1853 unsigned long flags; 1854 int ret = 0; 1855 1856 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1857 while(count--) { 1858 ep->ep->driver_data = ep; 1859 1860 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep); 1861 if (ret) { 1862 pr_err("%s: config_ep_by_speed(%s) returned %d\n", 1863 __func__, ep->ep->name, ret); 1864 break; 1865 } 1866 1867 ret = usb_ep_enable(ep->ep); 1868 if (likely(!ret)) { 1869 epfile->ep = ep; 1870 epfile->in = usb_endpoint_dir_in(ep->ep->desc); 1871 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc); 1872 } else { 1873 break; 1874 } 1875 1876 ++ep; 1877 ++epfile; 1878 } 1879 1880 wake_up_interruptible(&ffs->wait); 1881 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1882 1883 return ret; 1884 } 1885 1886 1887 /* Parsing and building descriptors and strings *****************************/ 1888 1889 /* 1890 * This validates if data pointed by data is a valid USB descriptor as 1891 * well as record how many interfaces, endpoints and strings are 1892 * required by given configuration. Returns address after the 1893 * descriptor or NULL if data is invalid. 1894 */ 1895 1896 enum ffs_entity_type { 1897 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT 1898 }; 1899 1900 enum ffs_os_desc_type { 1901 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP 1902 }; 1903 1904 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, 1905 u8 *valuep, 1906 struct usb_descriptor_header *desc, 1907 void *priv); 1908 1909 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, 1910 struct usb_os_desc_header *h, void *data, 1911 unsigned len, void *priv); 1912 1913 static int __must_check ffs_do_single_desc(char *data, unsigned len, 1914 ffs_entity_callback entity, 1915 void *priv) 1916 { 1917 struct usb_descriptor_header *_ds = (void *)data; 1918 u8 length; 1919 int ret; 1920 1921 ENTER(); 1922 1923 /* At least two bytes are required: length and type */ 1924 if (len < 2) { 1925 pr_vdebug("descriptor too short\n"); 1926 return -EINVAL; 1927 } 1928 1929 /* If we have at least as many bytes as the descriptor takes? */ 1930 length = _ds->bLength; 1931 if (len < length) { 1932 pr_vdebug("descriptor longer then available data\n"); 1933 return -EINVAL; 1934 } 1935 1936 #define __entity_check_INTERFACE(val) 1 1937 #define __entity_check_STRING(val) (val) 1938 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) 1939 #define __entity(type, val) do { \ 1940 pr_vdebug("entity " #type "(%02x)\n", (val)); \ 1941 if (unlikely(!__entity_check_ ##type(val))) { \ 1942 pr_vdebug("invalid entity's value\n"); \ 1943 return -EINVAL; \ 1944 } \ 1945 ret = entity(FFS_ ##type, &val, _ds, priv); \ 1946 if (unlikely(ret < 0)) { \ 1947 pr_debug("entity " #type "(%02x); ret = %d\n", \ 1948 (val), ret); \ 1949 return ret; \ 1950 } \ 1951 } while (0) 1952 1953 /* Parse descriptor depending on type. */ 1954 switch (_ds->bDescriptorType) { 1955 case USB_DT_DEVICE: 1956 case USB_DT_CONFIG: 1957 case USB_DT_STRING: 1958 case USB_DT_DEVICE_QUALIFIER: 1959 /* function can't have any of those */ 1960 pr_vdebug("descriptor reserved for gadget: %d\n", 1961 _ds->bDescriptorType); 1962 return -EINVAL; 1963 1964 case USB_DT_INTERFACE: { 1965 struct usb_interface_descriptor *ds = (void *)_ds; 1966 pr_vdebug("interface descriptor\n"); 1967 if (length != sizeof *ds) 1968 goto inv_length; 1969 1970 __entity(INTERFACE, ds->bInterfaceNumber); 1971 if (ds->iInterface) 1972 __entity(STRING, ds->iInterface); 1973 } 1974 break; 1975 1976 case USB_DT_ENDPOINT: { 1977 struct usb_endpoint_descriptor *ds = (void *)_ds; 1978 pr_vdebug("endpoint descriptor\n"); 1979 if (length != USB_DT_ENDPOINT_SIZE && 1980 length != USB_DT_ENDPOINT_AUDIO_SIZE) 1981 goto inv_length; 1982 __entity(ENDPOINT, ds->bEndpointAddress); 1983 } 1984 break; 1985 1986 case HID_DT_HID: 1987 pr_vdebug("hid descriptor\n"); 1988 if (length != sizeof(struct hid_descriptor)) 1989 goto inv_length; 1990 break; 1991 1992 case USB_DT_OTG: 1993 if (length != sizeof(struct usb_otg_descriptor)) 1994 goto inv_length; 1995 break; 1996 1997 case USB_DT_INTERFACE_ASSOCIATION: { 1998 struct usb_interface_assoc_descriptor *ds = (void *)_ds; 1999 pr_vdebug("interface association descriptor\n"); 2000 if (length != sizeof *ds) 2001 goto inv_length; 2002 if (ds->iFunction) 2003 __entity(STRING, ds->iFunction); 2004 } 2005 break; 2006 2007 case USB_DT_SS_ENDPOINT_COMP: 2008 pr_vdebug("EP SS companion descriptor\n"); 2009 if (length != sizeof(struct usb_ss_ep_comp_descriptor)) 2010 goto inv_length; 2011 break; 2012 2013 case USB_DT_OTHER_SPEED_CONFIG: 2014 case USB_DT_INTERFACE_POWER: 2015 case USB_DT_DEBUG: 2016 case USB_DT_SECURITY: 2017 case USB_DT_CS_RADIO_CONTROL: 2018 /* TODO */ 2019 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); 2020 return -EINVAL; 2021 2022 default: 2023 /* We should never be here */ 2024 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); 2025 return -EINVAL; 2026 2027 inv_length: 2028 pr_vdebug("invalid length: %d (descriptor %d)\n", 2029 _ds->bLength, _ds->bDescriptorType); 2030 return -EINVAL; 2031 } 2032 2033 #undef __entity 2034 #undef __entity_check_DESCRIPTOR 2035 #undef __entity_check_INTERFACE 2036 #undef __entity_check_STRING 2037 #undef __entity_check_ENDPOINT 2038 2039 return length; 2040 } 2041 2042 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, 2043 ffs_entity_callback entity, void *priv) 2044 { 2045 const unsigned _len = len; 2046 unsigned long num = 0; 2047 2048 ENTER(); 2049 2050 for (;;) { 2051 int ret; 2052 2053 if (num == count) 2054 data = NULL; 2055 2056 /* Record "descriptor" entity */ 2057 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); 2058 if (unlikely(ret < 0)) { 2059 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", 2060 num, ret); 2061 return ret; 2062 } 2063 2064 if (!data) 2065 return _len - len; 2066 2067 ret = ffs_do_single_desc(data, len, entity, priv); 2068 if (unlikely(ret < 0)) { 2069 pr_debug("%s returns %d\n", __func__, ret); 2070 return ret; 2071 } 2072 2073 len -= ret; 2074 data += ret; 2075 ++num; 2076 } 2077 } 2078 2079 static int __ffs_data_do_entity(enum ffs_entity_type type, 2080 u8 *valuep, struct usb_descriptor_header *desc, 2081 void *priv) 2082 { 2083 struct ffs_desc_helper *helper = priv; 2084 struct usb_endpoint_descriptor *d; 2085 2086 ENTER(); 2087 2088 switch (type) { 2089 case FFS_DESCRIPTOR: 2090 break; 2091 2092 case FFS_INTERFACE: 2093 /* 2094 * Interfaces are indexed from zero so if we 2095 * encountered interface "n" then there are at least 2096 * "n+1" interfaces. 2097 */ 2098 if (*valuep >= helper->interfaces_count) 2099 helper->interfaces_count = *valuep + 1; 2100 break; 2101 2102 case FFS_STRING: 2103 /* 2104 * Strings are indexed from 1 (0 is reserved 2105 * for languages list) 2106 */ 2107 if (*valuep > helper->ffs->strings_count) 2108 helper->ffs->strings_count = *valuep; 2109 break; 2110 2111 case FFS_ENDPOINT: 2112 d = (void *)desc; 2113 helper->eps_count++; 2114 if (helper->eps_count >= FFS_MAX_EPS_COUNT) 2115 return -EINVAL; 2116 /* Check if descriptors for any speed were already parsed */ 2117 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count) 2118 helper->ffs->eps_addrmap[helper->eps_count] = 2119 d->bEndpointAddress; 2120 else if (helper->ffs->eps_addrmap[helper->eps_count] != 2121 d->bEndpointAddress) 2122 return -EINVAL; 2123 break; 2124 } 2125 2126 return 0; 2127 } 2128 2129 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, 2130 struct usb_os_desc_header *desc) 2131 { 2132 u16 bcd_version = le16_to_cpu(desc->bcdVersion); 2133 u16 w_index = le16_to_cpu(desc->wIndex); 2134 2135 if (bcd_version != 1) { 2136 pr_vdebug("unsupported os descriptors version: %d", 2137 bcd_version); 2138 return -EINVAL; 2139 } 2140 switch (w_index) { 2141 case 0x4: 2142 *next_type = FFS_OS_DESC_EXT_COMPAT; 2143 break; 2144 case 0x5: 2145 *next_type = FFS_OS_DESC_EXT_PROP; 2146 break; 2147 default: 2148 pr_vdebug("unsupported os descriptor type: %d", w_index); 2149 return -EINVAL; 2150 } 2151 2152 return sizeof(*desc); 2153 } 2154 2155 /* 2156 * Process all extended compatibility/extended property descriptors 2157 * of a feature descriptor 2158 */ 2159 static int __must_check ffs_do_single_os_desc(char *data, unsigned len, 2160 enum ffs_os_desc_type type, 2161 u16 feature_count, 2162 ffs_os_desc_callback entity, 2163 void *priv, 2164 struct usb_os_desc_header *h) 2165 { 2166 int ret; 2167 const unsigned _len = len; 2168 2169 ENTER(); 2170 2171 /* loop over all ext compat/ext prop descriptors */ 2172 while (feature_count--) { 2173 ret = entity(type, h, data, len, priv); 2174 if (unlikely(ret < 0)) { 2175 pr_debug("bad OS descriptor, type: %d\n", type); 2176 return ret; 2177 } 2178 data += ret; 2179 len -= ret; 2180 } 2181 return _len - len; 2182 } 2183 2184 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ 2185 static int __must_check ffs_do_os_descs(unsigned count, 2186 char *data, unsigned len, 2187 ffs_os_desc_callback entity, void *priv) 2188 { 2189 const unsigned _len = len; 2190 unsigned long num = 0; 2191 2192 ENTER(); 2193 2194 for (num = 0; num < count; ++num) { 2195 int ret; 2196 enum ffs_os_desc_type type; 2197 u16 feature_count; 2198 struct usb_os_desc_header *desc = (void *)data; 2199 2200 if (len < sizeof(*desc)) 2201 return -EINVAL; 2202 2203 /* 2204 * Record "descriptor" entity. 2205 * Process dwLength, bcdVersion, wIndex, get b/wCount. 2206 * Move the data pointer to the beginning of extended 2207 * compatibilities proper or extended properties proper 2208 * portions of the data 2209 */ 2210 if (le32_to_cpu(desc->dwLength) > len) 2211 return -EINVAL; 2212 2213 ret = __ffs_do_os_desc_header(&type, desc); 2214 if (unlikely(ret < 0)) { 2215 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", 2216 num, ret); 2217 return ret; 2218 } 2219 /* 2220 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" 2221 */ 2222 feature_count = le16_to_cpu(desc->wCount); 2223 if (type == FFS_OS_DESC_EXT_COMPAT && 2224 (feature_count > 255 || desc->Reserved)) 2225 return -EINVAL; 2226 len -= ret; 2227 data += ret; 2228 2229 /* 2230 * Process all function/property descriptors 2231 * of this Feature Descriptor 2232 */ 2233 ret = ffs_do_single_os_desc(data, len, type, 2234 feature_count, entity, priv, desc); 2235 if (unlikely(ret < 0)) { 2236 pr_debug("%s returns %d\n", __func__, ret); 2237 return ret; 2238 } 2239 2240 len -= ret; 2241 data += ret; 2242 } 2243 return _len - len; 2244 } 2245 2246 /** 2247 * Validate contents of the buffer from userspace related to OS descriptors. 2248 */ 2249 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, 2250 struct usb_os_desc_header *h, void *data, 2251 unsigned len, void *priv) 2252 { 2253 struct ffs_data *ffs = priv; 2254 u8 length; 2255 2256 ENTER(); 2257 2258 switch (type) { 2259 case FFS_OS_DESC_EXT_COMPAT: { 2260 struct usb_ext_compat_desc *d = data; 2261 int i; 2262 2263 if (len < sizeof(*d) || 2264 d->bFirstInterfaceNumber >= ffs->interfaces_count) 2265 return -EINVAL; 2266 if (d->Reserved1 != 1) { 2267 /* 2268 * According to the spec, Reserved1 must be set to 1 2269 * but older kernels incorrectly rejected non-zero 2270 * values. We fix it here to avoid returning EINVAL 2271 * in response to values we used to accept. 2272 */ 2273 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n"); 2274 d->Reserved1 = 1; 2275 } 2276 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) 2277 if (d->Reserved2[i]) 2278 return -EINVAL; 2279 2280 length = sizeof(struct usb_ext_compat_desc); 2281 } 2282 break; 2283 case FFS_OS_DESC_EXT_PROP: { 2284 struct usb_ext_prop_desc *d = data; 2285 u32 type, pdl; 2286 u16 pnl; 2287 2288 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) 2289 return -EINVAL; 2290 length = le32_to_cpu(d->dwSize); 2291 if (len < length) 2292 return -EINVAL; 2293 type = le32_to_cpu(d->dwPropertyDataType); 2294 if (type < USB_EXT_PROP_UNICODE || 2295 type > USB_EXT_PROP_UNICODE_MULTI) { 2296 pr_vdebug("unsupported os descriptor property type: %d", 2297 type); 2298 return -EINVAL; 2299 } 2300 pnl = le16_to_cpu(d->wPropertyNameLength); 2301 if (length < 14 + pnl) { 2302 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n", 2303 length, pnl, type); 2304 return -EINVAL; 2305 } 2306 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl)); 2307 if (length != 14 + pnl + pdl) { 2308 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", 2309 length, pnl, pdl, type); 2310 return -EINVAL; 2311 } 2312 ++ffs->ms_os_descs_ext_prop_count; 2313 /* property name reported to the host as "WCHAR"s */ 2314 ffs->ms_os_descs_ext_prop_name_len += pnl * 2; 2315 ffs->ms_os_descs_ext_prop_data_len += pdl; 2316 } 2317 break; 2318 default: 2319 pr_vdebug("unknown descriptor: %d\n", type); 2320 return -EINVAL; 2321 } 2322 return length; 2323 } 2324 2325 static int __ffs_data_got_descs(struct ffs_data *ffs, 2326 char *const _data, size_t len) 2327 { 2328 char *data = _data, *raw_descs; 2329 unsigned os_descs_count = 0, counts[3], flags; 2330 int ret = -EINVAL, i; 2331 struct ffs_desc_helper helper; 2332 2333 ENTER(); 2334 2335 if (get_unaligned_le32(data + 4) != len) 2336 goto error; 2337 2338 switch (get_unaligned_le32(data)) { 2339 case FUNCTIONFS_DESCRIPTORS_MAGIC: 2340 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; 2341 data += 8; 2342 len -= 8; 2343 break; 2344 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: 2345 flags = get_unaligned_le32(data + 8); 2346 ffs->user_flags = flags; 2347 if (flags & ~(FUNCTIONFS_HAS_FS_DESC | 2348 FUNCTIONFS_HAS_HS_DESC | 2349 FUNCTIONFS_HAS_SS_DESC | 2350 FUNCTIONFS_HAS_MS_OS_DESC | 2351 FUNCTIONFS_VIRTUAL_ADDR | 2352 FUNCTIONFS_EVENTFD | 2353 FUNCTIONFS_ALL_CTRL_RECIP | 2354 FUNCTIONFS_CONFIG0_SETUP)) { 2355 ret = -ENOSYS; 2356 goto error; 2357 } 2358 data += 12; 2359 len -= 12; 2360 break; 2361 default: 2362 goto error; 2363 } 2364 2365 if (flags & FUNCTIONFS_EVENTFD) { 2366 if (len < 4) 2367 goto error; 2368 ffs->ffs_eventfd = 2369 eventfd_ctx_fdget((int)get_unaligned_le32(data)); 2370 if (IS_ERR(ffs->ffs_eventfd)) { 2371 ret = PTR_ERR(ffs->ffs_eventfd); 2372 ffs->ffs_eventfd = NULL; 2373 goto error; 2374 } 2375 data += 4; 2376 len -= 4; 2377 } 2378 2379 /* Read fs_count, hs_count and ss_count (if present) */ 2380 for (i = 0; i < 3; ++i) { 2381 if (!(flags & (1 << i))) { 2382 counts[i] = 0; 2383 } else if (len < 4) { 2384 goto error; 2385 } else { 2386 counts[i] = get_unaligned_le32(data); 2387 data += 4; 2388 len -= 4; 2389 } 2390 } 2391 if (flags & (1 << i)) { 2392 if (len < 4) { 2393 goto error; 2394 } 2395 os_descs_count = get_unaligned_le32(data); 2396 data += 4; 2397 len -= 4; 2398 }; 2399 2400 /* Read descriptors */ 2401 raw_descs = data; 2402 helper.ffs = ffs; 2403 for (i = 0; i < 3; ++i) { 2404 if (!counts[i]) 2405 continue; 2406 helper.interfaces_count = 0; 2407 helper.eps_count = 0; 2408 ret = ffs_do_descs(counts[i], data, len, 2409 __ffs_data_do_entity, &helper); 2410 if (ret < 0) 2411 goto error; 2412 if (!ffs->eps_count && !ffs->interfaces_count) { 2413 ffs->eps_count = helper.eps_count; 2414 ffs->interfaces_count = helper.interfaces_count; 2415 } else { 2416 if (ffs->eps_count != helper.eps_count) { 2417 ret = -EINVAL; 2418 goto error; 2419 } 2420 if (ffs->interfaces_count != helper.interfaces_count) { 2421 ret = -EINVAL; 2422 goto error; 2423 } 2424 } 2425 data += ret; 2426 len -= ret; 2427 } 2428 if (os_descs_count) { 2429 ret = ffs_do_os_descs(os_descs_count, data, len, 2430 __ffs_data_do_os_desc, ffs); 2431 if (ret < 0) 2432 goto error; 2433 data += ret; 2434 len -= ret; 2435 } 2436 2437 if (raw_descs == data || len) { 2438 ret = -EINVAL; 2439 goto error; 2440 } 2441 2442 ffs->raw_descs_data = _data; 2443 ffs->raw_descs = raw_descs; 2444 ffs->raw_descs_length = data - raw_descs; 2445 ffs->fs_descs_count = counts[0]; 2446 ffs->hs_descs_count = counts[1]; 2447 ffs->ss_descs_count = counts[2]; 2448 ffs->ms_os_descs_count = os_descs_count; 2449 2450 return 0; 2451 2452 error: 2453 kfree(_data); 2454 return ret; 2455 } 2456 2457 static int __ffs_data_got_strings(struct ffs_data *ffs, 2458 char *const _data, size_t len) 2459 { 2460 u32 str_count, needed_count, lang_count; 2461 struct usb_gadget_strings **stringtabs, *t; 2462 const char *data = _data; 2463 struct usb_string *s; 2464 2465 ENTER(); 2466 2467 if (unlikely(len < 16 || 2468 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || 2469 get_unaligned_le32(data + 4) != len)) 2470 goto error; 2471 str_count = get_unaligned_le32(data + 8); 2472 lang_count = get_unaligned_le32(data + 12); 2473 2474 /* if one is zero the other must be zero */ 2475 if (unlikely(!str_count != !lang_count)) 2476 goto error; 2477 2478 /* Do we have at least as many strings as descriptors need? */ 2479 needed_count = ffs->strings_count; 2480 if (unlikely(str_count < needed_count)) 2481 goto error; 2482 2483 /* 2484 * If we don't need any strings just return and free all 2485 * memory. 2486 */ 2487 if (!needed_count) { 2488 kfree(_data); 2489 return 0; 2490 } 2491 2492 /* Allocate everything in one chunk so there's less maintenance. */ 2493 { 2494 unsigned i = 0; 2495 vla_group(d); 2496 vla_item(d, struct usb_gadget_strings *, stringtabs, 2497 lang_count + 1); 2498 vla_item(d, struct usb_gadget_strings, stringtab, lang_count); 2499 vla_item(d, struct usb_string, strings, 2500 lang_count*(needed_count+1)); 2501 2502 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); 2503 2504 if (unlikely(!vlabuf)) { 2505 kfree(_data); 2506 return -ENOMEM; 2507 } 2508 2509 /* Initialize the VLA pointers */ 2510 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2511 t = vla_ptr(vlabuf, d, stringtab); 2512 i = lang_count; 2513 do { 2514 *stringtabs++ = t++; 2515 } while (--i); 2516 *stringtabs = NULL; 2517 2518 /* stringtabs = vlabuf = d_stringtabs for later kfree */ 2519 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2520 t = vla_ptr(vlabuf, d, stringtab); 2521 s = vla_ptr(vlabuf, d, strings); 2522 } 2523 2524 /* For each language */ 2525 data += 16; 2526 len -= 16; 2527 2528 do { /* lang_count > 0 so we can use do-while */ 2529 unsigned needed = needed_count; 2530 2531 if (unlikely(len < 3)) 2532 goto error_free; 2533 t->language = get_unaligned_le16(data); 2534 t->strings = s; 2535 ++t; 2536 2537 data += 2; 2538 len -= 2; 2539 2540 /* For each string */ 2541 do { /* str_count > 0 so we can use do-while */ 2542 size_t length = strnlen(data, len); 2543 2544 if (unlikely(length == len)) 2545 goto error_free; 2546 2547 /* 2548 * User may provide more strings then we need, 2549 * if that's the case we simply ignore the 2550 * rest 2551 */ 2552 if (likely(needed)) { 2553 /* 2554 * s->id will be set while adding 2555 * function to configuration so for 2556 * now just leave garbage here. 2557 */ 2558 s->s = data; 2559 --needed; 2560 ++s; 2561 } 2562 2563 data += length + 1; 2564 len -= length + 1; 2565 } while (--str_count); 2566 2567 s->id = 0; /* terminator */ 2568 s->s = NULL; 2569 ++s; 2570 2571 } while (--lang_count); 2572 2573 /* Some garbage left? */ 2574 if (unlikely(len)) 2575 goto error_free; 2576 2577 /* Done! */ 2578 ffs->stringtabs = stringtabs; 2579 ffs->raw_strings = _data; 2580 2581 return 0; 2582 2583 error_free: 2584 kfree(stringtabs); 2585 error: 2586 kfree(_data); 2587 return -EINVAL; 2588 } 2589 2590 2591 /* Events handling and management *******************************************/ 2592 2593 static void __ffs_event_add(struct ffs_data *ffs, 2594 enum usb_functionfs_event_type type) 2595 { 2596 enum usb_functionfs_event_type rem_type1, rem_type2 = type; 2597 int neg = 0; 2598 2599 /* 2600 * Abort any unhandled setup 2601 * 2602 * We do not need to worry about some cmpxchg() changing value 2603 * of ffs->setup_state without holding the lock because when 2604 * state is FFS_SETUP_PENDING cmpxchg() in several places in 2605 * the source does nothing. 2606 */ 2607 if (ffs->setup_state == FFS_SETUP_PENDING) 2608 ffs->setup_state = FFS_SETUP_CANCELLED; 2609 2610 /* 2611 * Logic of this function guarantees that there are at most four pending 2612 * evens on ffs->ev.types queue. This is important because the queue 2613 * has space for four elements only and __ffs_ep0_read_events function 2614 * depends on that limit as well. If more event types are added, those 2615 * limits have to be revisited or guaranteed to still hold. 2616 */ 2617 switch (type) { 2618 case FUNCTIONFS_RESUME: 2619 rem_type2 = FUNCTIONFS_SUSPEND; 2620 /* FALL THROUGH */ 2621 case FUNCTIONFS_SUSPEND: 2622 case FUNCTIONFS_SETUP: 2623 rem_type1 = type; 2624 /* Discard all similar events */ 2625 break; 2626 2627 case FUNCTIONFS_BIND: 2628 case FUNCTIONFS_UNBIND: 2629 case FUNCTIONFS_DISABLE: 2630 case FUNCTIONFS_ENABLE: 2631 /* Discard everything other then power management. */ 2632 rem_type1 = FUNCTIONFS_SUSPEND; 2633 rem_type2 = FUNCTIONFS_RESUME; 2634 neg = 1; 2635 break; 2636 2637 default: 2638 WARN(1, "%d: unknown event, this should not happen\n", type); 2639 return; 2640 } 2641 2642 { 2643 u8 *ev = ffs->ev.types, *out = ev; 2644 unsigned n = ffs->ev.count; 2645 for (; n; --n, ++ev) 2646 if ((*ev == rem_type1 || *ev == rem_type2) == neg) 2647 *out++ = *ev; 2648 else 2649 pr_vdebug("purging event %d\n", *ev); 2650 ffs->ev.count = out - ffs->ev.types; 2651 } 2652 2653 pr_vdebug("adding event %d\n", type); 2654 ffs->ev.types[ffs->ev.count++] = type; 2655 wake_up_locked(&ffs->ev.waitq); 2656 if (ffs->ffs_eventfd) 2657 eventfd_signal(ffs->ffs_eventfd, 1); 2658 } 2659 2660 static void ffs_event_add(struct ffs_data *ffs, 2661 enum usb_functionfs_event_type type) 2662 { 2663 unsigned long flags; 2664 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 2665 __ffs_event_add(ffs, type); 2666 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 2667 } 2668 2669 /* Bind/unbind USB function hooks *******************************************/ 2670 2671 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address) 2672 { 2673 int i; 2674 2675 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i) 2676 if (ffs->eps_addrmap[i] == endpoint_address) 2677 return i; 2678 return -ENOENT; 2679 } 2680 2681 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, 2682 struct usb_descriptor_header *desc, 2683 void *priv) 2684 { 2685 struct usb_endpoint_descriptor *ds = (void *)desc; 2686 struct ffs_function *func = priv; 2687 struct ffs_ep *ffs_ep; 2688 unsigned ep_desc_id; 2689 int idx; 2690 static const char *speed_names[] = { "full", "high", "super" }; 2691 2692 if (type != FFS_DESCRIPTOR) 2693 return 0; 2694 2695 /* 2696 * If ss_descriptors is not NULL, we are reading super speed 2697 * descriptors; if hs_descriptors is not NULL, we are reading high 2698 * speed descriptors; otherwise, we are reading full speed 2699 * descriptors. 2700 */ 2701 if (func->function.ss_descriptors) { 2702 ep_desc_id = 2; 2703 func->function.ss_descriptors[(long)valuep] = desc; 2704 } else if (func->function.hs_descriptors) { 2705 ep_desc_id = 1; 2706 func->function.hs_descriptors[(long)valuep] = desc; 2707 } else { 2708 ep_desc_id = 0; 2709 func->function.fs_descriptors[(long)valuep] = desc; 2710 } 2711 2712 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) 2713 return 0; 2714 2715 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1; 2716 if (idx < 0) 2717 return idx; 2718 2719 ffs_ep = func->eps + idx; 2720 2721 if (unlikely(ffs_ep->descs[ep_desc_id])) { 2722 pr_err("two %sspeed descriptors for EP %d\n", 2723 speed_names[ep_desc_id], 2724 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); 2725 return -EINVAL; 2726 } 2727 ffs_ep->descs[ep_desc_id] = ds; 2728 2729 ffs_dump_mem(": Original ep desc", ds, ds->bLength); 2730 if (ffs_ep->ep) { 2731 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; 2732 if (!ds->wMaxPacketSize) 2733 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; 2734 } else { 2735 struct usb_request *req; 2736 struct usb_ep *ep; 2737 u8 bEndpointAddress; 2738 2739 /* 2740 * We back up bEndpointAddress because autoconfig overwrites 2741 * it with physical endpoint address. 2742 */ 2743 bEndpointAddress = ds->bEndpointAddress; 2744 pr_vdebug("autoconfig\n"); 2745 ep = usb_ep_autoconfig(func->gadget, ds); 2746 if (unlikely(!ep)) 2747 return -ENOTSUPP; 2748 ep->driver_data = func->eps + idx; 2749 2750 req = usb_ep_alloc_request(ep, GFP_KERNEL); 2751 if (unlikely(!req)) 2752 return -ENOMEM; 2753 2754 ffs_ep->ep = ep; 2755 ffs_ep->req = req; 2756 func->eps_revmap[ds->bEndpointAddress & 2757 USB_ENDPOINT_NUMBER_MASK] = idx + 1; 2758 /* 2759 * If we use virtual address mapping, we restore 2760 * original bEndpointAddress value. 2761 */ 2762 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 2763 ds->bEndpointAddress = bEndpointAddress; 2764 } 2765 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); 2766 2767 return 0; 2768 } 2769 2770 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, 2771 struct usb_descriptor_header *desc, 2772 void *priv) 2773 { 2774 struct ffs_function *func = priv; 2775 unsigned idx; 2776 u8 newValue; 2777 2778 switch (type) { 2779 default: 2780 case FFS_DESCRIPTOR: 2781 /* Handled in previous pass by __ffs_func_bind_do_descs() */ 2782 return 0; 2783 2784 case FFS_INTERFACE: 2785 idx = *valuep; 2786 if (func->interfaces_nums[idx] < 0) { 2787 int id = usb_interface_id(func->conf, &func->function); 2788 if (unlikely(id < 0)) 2789 return id; 2790 func->interfaces_nums[idx] = id; 2791 } 2792 newValue = func->interfaces_nums[idx]; 2793 break; 2794 2795 case FFS_STRING: 2796 /* String' IDs are allocated when fsf_data is bound to cdev */ 2797 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; 2798 break; 2799 2800 case FFS_ENDPOINT: 2801 /* 2802 * USB_DT_ENDPOINT are handled in 2803 * __ffs_func_bind_do_descs(). 2804 */ 2805 if (desc->bDescriptorType == USB_DT_ENDPOINT) 2806 return 0; 2807 2808 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; 2809 if (unlikely(!func->eps[idx].ep)) 2810 return -EINVAL; 2811 2812 { 2813 struct usb_endpoint_descriptor **descs; 2814 descs = func->eps[idx].descs; 2815 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; 2816 } 2817 break; 2818 } 2819 2820 pr_vdebug("%02x -> %02x\n", *valuep, newValue); 2821 *valuep = newValue; 2822 return 0; 2823 } 2824 2825 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, 2826 struct usb_os_desc_header *h, void *data, 2827 unsigned len, void *priv) 2828 { 2829 struct ffs_function *func = priv; 2830 u8 length = 0; 2831 2832 switch (type) { 2833 case FFS_OS_DESC_EXT_COMPAT: { 2834 struct usb_ext_compat_desc *desc = data; 2835 struct usb_os_desc_table *t; 2836 2837 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; 2838 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; 2839 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID, 2840 ARRAY_SIZE(desc->CompatibleID) + 2841 ARRAY_SIZE(desc->SubCompatibleID)); 2842 length = sizeof(*desc); 2843 } 2844 break; 2845 case FFS_OS_DESC_EXT_PROP: { 2846 struct usb_ext_prop_desc *desc = data; 2847 struct usb_os_desc_table *t; 2848 struct usb_os_desc_ext_prop *ext_prop; 2849 char *ext_prop_name; 2850 char *ext_prop_data; 2851 2852 t = &func->function.os_desc_table[h->interface]; 2853 t->if_id = func->interfaces_nums[h->interface]; 2854 2855 ext_prop = func->ffs->ms_os_descs_ext_prop_avail; 2856 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); 2857 2858 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); 2859 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); 2860 ext_prop->data_len = le32_to_cpu(*(__le32 *) 2861 usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); 2862 length = ext_prop->name_len + ext_prop->data_len + 14; 2863 2864 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; 2865 func->ffs->ms_os_descs_ext_prop_name_avail += 2866 ext_prop->name_len; 2867 2868 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; 2869 func->ffs->ms_os_descs_ext_prop_data_avail += 2870 ext_prop->data_len; 2871 memcpy(ext_prop_data, 2872 usb_ext_prop_data_ptr(data, ext_prop->name_len), 2873 ext_prop->data_len); 2874 /* unicode data reported to the host as "WCHAR"s */ 2875 switch (ext_prop->type) { 2876 case USB_EXT_PROP_UNICODE: 2877 case USB_EXT_PROP_UNICODE_ENV: 2878 case USB_EXT_PROP_UNICODE_LINK: 2879 case USB_EXT_PROP_UNICODE_MULTI: 2880 ext_prop->data_len *= 2; 2881 break; 2882 } 2883 ext_prop->data = ext_prop_data; 2884 2885 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), 2886 ext_prop->name_len); 2887 /* property name reported to the host as "WCHAR"s */ 2888 ext_prop->name_len *= 2; 2889 ext_prop->name = ext_prop_name; 2890 2891 t->os_desc->ext_prop_len += 2892 ext_prop->name_len + ext_prop->data_len + 14; 2893 ++t->os_desc->ext_prop_count; 2894 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); 2895 } 2896 break; 2897 default: 2898 pr_vdebug("unknown descriptor: %d\n", type); 2899 } 2900 2901 return length; 2902 } 2903 2904 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, 2905 struct usb_configuration *c) 2906 { 2907 struct ffs_function *func = ffs_func_from_usb(f); 2908 struct f_fs_opts *ffs_opts = 2909 container_of(f->fi, struct f_fs_opts, func_inst); 2910 int ret; 2911 2912 ENTER(); 2913 2914 /* 2915 * Legacy gadget triggers binding in functionfs_ready_callback, 2916 * which already uses locking; taking the same lock here would 2917 * cause a deadlock. 2918 * 2919 * Configfs-enabled gadgets however do need ffs_dev_lock. 2920 */ 2921 if (!ffs_opts->no_configfs) 2922 ffs_dev_lock(); 2923 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; 2924 func->ffs = ffs_opts->dev->ffs_data; 2925 if (!ffs_opts->no_configfs) 2926 ffs_dev_unlock(); 2927 if (ret) 2928 return ERR_PTR(ret); 2929 2930 func->conf = c; 2931 func->gadget = c->cdev->gadget; 2932 2933 /* 2934 * in drivers/usb/gadget/configfs.c:configfs_composite_bind() 2935 * configurations are bound in sequence with list_for_each_entry, 2936 * in each configuration its functions are bound in sequence 2937 * with list_for_each_entry, so we assume no race condition 2938 * with regard to ffs_opts->bound access 2939 */ 2940 if (!ffs_opts->refcnt) { 2941 ret = functionfs_bind(func->ffs, c->cdev); 2942 if (ret) 2943 return ERR_PTR(ret); 2944 } 2945 ffs_opts->refcnt++; 2946 func->function.strings = func->ffs->stringtabs; 2947 2948 return ffs_opts; 2949 } 2950 2951 static int _ffs_func_bind(struct usb_configuration *c, 2952 struct usb_function *f) 2953 { 2954 struct ffs_function *func = ffs_func_from_usb(f); 2955 struct ffs_data *ffs = func->ffs; 2956 2957 const int full = !!func->ffs->fs_descs_count; 2958 const int high = !!func->ffs->hs_descs_count; 2959 const int super = !!func->ffs->ss_descs_count; 2960 2961 int fs_len, hs_len, ss_len, ret, i; 2962 struct ffs_ep *eps_ptr; 2963 2964 /* Make it a single chunk, less management later on */ 2965 vla_group(d); 2966 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); 2967 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, 2968 full ? ffs->fs_descs_count + 1 : 0); 2969 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, 2970 high ? ffs->hs_descs_count + 1 : 0); 2971 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, 2972 super ? ffs->ss_descs_count + 1 : 0); 2973 vla_item_with_sz(d, short, inums, ffs->interfaces_count); 2974 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, 2975 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2976 vla_item_with_sz(d, char[16], ext_compat, 2977 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2978 vla_item_with_sz(d, struct usb_os_desc, os_desc, 2979 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2980 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, 2981 ffs->ms_os_descs_ext_prop_count); 2982 vla_item_with_sz(d, char, ext_prop_name, 2983 ffs->ms_os_descs_ext_prop_name_len); 2984 vla_item_with_sz(d, char, ext_prop_data, 2985 ffs->ms_os_descs_ext_prop_data_len); 2986 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); 2987 char *vlabuf; 2988 2989 ENTER(); 2990 2991 /* Has descriptors only for speeds gadget does not support */ 2992 if (unlikely(!(full | high | super))) 2993 return -ENOTSUPP; 2994 2995 /* Allocate a single chunk, less management later on */ 2996 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); 2997 if (unlikely(!vlabuf)) 2998 return -ENOMEM; 2999 3000 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); 3001 ffs->ms_os_descs_ext_prop_name_avail = 3002 vla_ptr(vlabuf, d, ext_prop_name); 3003 ffs->ms_os_descs_ext_prop_data_avail = 3004 vla_ptr(vlabuf, d, ext_prop_data); 3005 3006 /* Copy descriptors */ 3007 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, 3008 ffs->raw_descs_length); 3009 3010 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); 3011 eps_ptr = vla_ptr(vlabuf, d, eps); 3012 for (i = 0; i < ffs->eps_count; i++) 3013 eps_ptr[i].num = -1; 3014 3015 /* Save pointers 3016 * d_eps == vlabuf, func->eps used to kfree vlabuf later 3017 */ 3018 func->eps = vla_ptr(vlabuf, d, eps); 3019 func->interfaces_nums = vla_ptr(vlabuf, d, inums); 3020 3021 /* 3022 * Go through all the endpoint descriptors and allocate 3023 * endpoints first, so that later we can rewrite the endpoint 3024 * numbers without worrying that it may be described later on. 3025 */ 3026 if (likely(full)) { 3027 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); 3028 fs_len = ffs_do_descs(ffs->fs_descs_count, 3029 vla_ptr(vlabuf, d, raw_descs), 3030 d_raw_descs__sz, 3031 __ffs_func_bind_do_descs, func); 3032 if (unlikely(fs_len < 0)) { 3033 ret = fs_len; 3034 goto error; 3035 } 3036 } else { 3037 fs_len = 0; 3038 } 3039 3040 if (likely(high)) { 3041 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); 3042 hs_len = ffs_do_descs(ffs->hs_descs_count, 3043 vla_ptr(vlabuf, d, raw_descs) + fs_len, 3044 d_raw_descs__sz - fs_len, 3045 __ffs_func_bind_do_descs, func); 3046 if (unlikely(hs_len < 0)) { 3047 ret = hs_len; 3048 goto error; 3049 } 3050 } else { 3051 hs_len = 0; 3052 } 3053 3054 if (likely(super)) { 3055 func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs); 3056 ss_len = ffs_do_descs(ffs->ss_descs_count, 3057 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, 3058 d_raw_descs__sz - fs_len - hs_len, 3059 __ffs_func_bind_do_descs, func); 3060 if (unlikely(ss_len < 0)) { 3061 ret = ss_len; 3062 goto error; 3063 } 3064 } else { 3065 ss_len = 0; 3066 } 3067 3068 /* 3069 * Now handle interface numbers allocation and interface and 3070 * endpoint numbers rewriting. We can do that in one go 3071 * now. 3072 */ 3073 ret = ffs_do_descs(ffs->fs_descs_count + 3074 (high ? ffs->hs_descs_count : 0) + 3075 (super ? ffs->ss_descs_count : 0), 3076 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, 3077 __ffs_func_bind_do_nums, func); 3078 if (unlikely(ret < 0)) 3079 goto error; 3080 3081 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); 3082 if (c->cdev->use_os_string) { 3083 for (i = 0; i < ffs->interfaces_count; ++i) { 3084 struct usb_os_desc *desc; 3085 3086 desc = func->function.os_desc_table[i].os_desc = 3087 vla_ptr(vlabuf, d, os_desc) + 3088 i * sizeof(struct usb_os_desc); 3089 desc->ext_compat_id = 3090 vla_ptr(vlabuf, d, ext_compat) + i * 16; 3091 INIT_LIST_HEAD(&desc->ext_prop); 3092 } 3093 ret = ffs_do_os_descs(ffs->ms_os_descs_count, 3094 vla_ptr(vlabuf, d, raw_descs) + 3095 fs_len + hs_len + ss_len, 3096 d_raw_descs__sz - fs_len - hs_len - 3097 ss_len, 3098 __ffs_func_bind_do_os_desc, func); 3099 if (unlikely(ret < 0)) 3100 goto error; 3101 } 3102 func->function.os_desc_n = 3103 c->cdev->use_os_string ? ffs->interfaces_count : 0; 3104 3105 /* And we're done */ 3106 ffs_event_add(ffs, FUNCTIONFS_BIND); 3107 return 0; 3108 3109 error: 3110 /* XXX Do we need to release all claimed endpoints here? */ 3111 return ret; 3112 } 3113 3114 static int ffs_func_bind(struct usb_configuration *c, 3115 struct usb_function *f) 3116 { 3117 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); 3118 struct ffs_function *func = ffs_func_from_usb(f); 3119 int ret; 3120 3121 if (IS_ERR(ffs_opts)) 3122 return PTR_ERR(ffs_opts); 3123 3124 ret = _ffs_func_bind(c, f); 3125 if (ret && !--ffs_opts->refcnt) 3126 functionfs_unbind(func->ffs); 3127 3128 return ret; 3129 } 3130 3131 3132 /* Other USB function hooks *************************************************/ 3133 3134 static void ffs_reset_work(struct work_struct *work) 3135 { 3136 struct ffs_data *ffs = container_of(work, 3137 struct ffs_data, reset_work); 3138 ffs_data_reset(ffs); 3139 } 3140 3141 static int ffs_func_set_alt(struct usb_function *f, 3142 unsigned interface, unsigned alt) 3143 { 3144 struct ffs_function *func = ffs_func_from_usb(f); 3145 struct ffs_data *ffs = func->ffs; 3146 int ret = 0, intf; 3147 3148 if (alt != (unsigned)-1) { 3149 intf = ffs_func_revmap_intf(func, interface); 3150 if (unlikely(intf < 0)) 3151 return intf; 3152 } 3153 3154 if (ffs->func) 3155 ffs_func_eps_disable(ffs->func); 3156 3157 if (ffs->state == FFS_DEACTIVATED) { 3158 ffs->state = FFS_CLOSING; 3159 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3160 schedule_work(&ffs->reset_work); 3161 return -ENODEV; 3162 } 3163 3164 if (ffs->state != FFS_ACTIVE) 3165 return -ENODEV; 3166 3167 if (alt == (unsigned)-1) { 3168 ffs->func = NULL; 3169 ffs_event_add(ffs, FUNCTIONFS_DISABLE); 3170 return 0; 3171 } 3172 3173 ffs->func = func; 3174 ret = ffs_func_eps_enable(func); 3175 if (likely(ret >= 0)) 3176 ffs_event_add(ffs, FUNCTIONFS_ENABLE); 3177 return ret; 3178 } 3179 3180 static void ffs_func_disable(struct usb_function *f) 3181 { 3182 ffs_func_set_alt(f, 0, (unsigned)-1); 3183 } 3184 3185 static int ffs_func_setup(struct usb_function *f, 3186 const struct usb_ctrlrequest *creq) 3187 { 3188 struct ffs_function *func = ffs_func_from_usb(f); 3189 struct ffs_data *ffs = func->ffs; 3190 unsigned long flags; 3191 int ret; 3192 3193 ENTER(); 3194 3195 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); 3196 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); 3197 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); 3198 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); 3199 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); 3200 3201 /* 3202 * Most requests directed to interface go through here 3203 * (notable exceptions are set/get interface) so we need to 3204 * handle them. All other either handled by composite or 3205 * passed to usb_configuration->setup() (if one is set). No 3206 * matter, we will handle requests directed to endpoint here 3207 * as well (as it's straightforward). Other request recipient 3208 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP 3209 * is being used. 3210 */ 3211 if (ffs->state != FFS_ACTIVE) 3212 return -ENODEV; 3213 3214 switch (creq->bRequestType & USB_RECIP_MASK) { 3215 case USB_RECIP_INTERFACE: 3216 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); 3217 if (unlikely(ret < 0)) 3218 return ret; 3219 break; 3220 3221 case USB_RECIP_ENDPOINT: 3222 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); 3223 if (unlikely(ret < 0)) 3224 return ret; 3225 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3226 ret = func->ffs->eps_addrmap[ret]; 3227 break; 3228 3229 default: 3230 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP) 3231 ret = le16_to_cpu(creq->wIndex); 3232 else 3233 return -EOPNOTSUPP; 3234 } 3235 3236 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3237 ffs->ev.setup = *creq; 3238 ffs->ev.setup.wIndex = cpu_to_le16(ret); 3239 __ffs_event_add(ffs, FUNCTIONFS_SETUP); 3240 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3241 3242 return 0; 3243 } 3244 3245 static bool ffs_func_req_match(struct usb_function *f, 3246 const struct usb_ctrlrequest *creq, 3247 bool config0) 3248 { 3249 struct ffs_function *func = ffs_func_from_usb(f); 3250 3251 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP)) 3252 return false; 3253 3254 switch (creq->bRequestType & USB_RECIP_MASK) { 3255 case USB_RECIP_INTERFACE: 3256 return (ffs_func_revmap_intf(func, 3257 le16_to_cpu(creq->wIndex)) >= 0); 3258 case USB_RECIP_ENDPOINT: 3259 return (ffs_func_revmap_ep(func, 3260 le16_to_cpu(creq->wIndex)) >= 0); 3261 default: 3262 return (bool) (func->ffs->user_flags & 3263 FUNCTIONFS_ALL_CTRL_RECIP); 3264 } 3265 } 3266 3267 static void ffs_func_suspend(struct usb_function *f) 3268 { 3269 ENTER(); 3270 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); 3271 } 3272 3273 static void ffs_func_resume(struct usb_function *f) 3274 { 3275 ENTER(); 3276 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); 3277 } 3278 3279 3280 /* Endpoint and interface numbers reverse mapping ***************************/ 3281 3282 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) 3283 { 3284 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; 3285 return num ? num : -EDOM; 3286 } 3287 3288 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) 3289 { 3290 short *nums = func->interfaces_nums; 3291 unsigned count = func->ffs->interfaces_count; 3292 3293 for (; count; --count, ++nums) { 3294 if (*nums >= 0 && *nums == intf) 3295 return nums - func->interfaces_nums; 3296 } 3297 3298 return -EDOM; 3299 } 3300 3301 3302 /* Devices management *******************************************************/ 3303 3304 static LIST_HEAD(ffs_devices); 3305 3306 static struct ffs_dev *_ffs_do_find_dev(const char *name) 3307 { 3308 struct ffs_dev *dev; 3309 3310 if (!name) 3311 return NULL; 3312 3313 list_for_each_entry(dev, &ffs_devices, entry) { 3314 if (strcmp(dev->name, name) == 0) 3315 return dev; 3316 } 3317 3318 return NULL; 3319 } 3320 3321 /* 3322 * ffs_lock must be taken by the caller of this function 3323 */ 3324 static struct ffs_dev *_ffs_get_single_dev(void) 3325 { 3326 struct ffs_dev *dev; 3327 3328 if (list_is_singular(&ffs_devices)) { 3329 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); 3330 if (dev->single) 3331 return dev; 3332 } 3333 3334 return NULL; 3335 } 3336 3337 /* 3338 * ffs_lock must be taken by the caller of this function 3339 */ 3340 static struct ffs_dev *_ffs_find_dev(const char *name) 3341 { 3342 struct ffs_dev *dev; 3343 3344 dev = _ffs_get_single_dev(); 3345 if (dev) 3346 return dev; 3347 3348 return _ffs_do_find_dev(name); 3349 } 3350 3351 /* Configfs support *********************************************************/ 3352 3353 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) 3354 { 3355 return container_of(to_config_group(item), struct f_fs_opts, 3356 func_inst.group); 3357 } 3358 3359 static void ffs_attr_release(struct config_item *item) 3360 { 3361 struct f_fs_opts *opts = to_ffs_opts(item); 3362 3363 usb_put_function_instance(&opts->func_inst); 3364 } 3365 3366 static struct configfs_item_operations ffs_item_ops = { 3367 .release = ffs_attr_release, 3368 }; 3369 3370 static const struct config_item_type ffs_func_type = { 3371 .ct_item_ops = &ffs_item_ops, 3372 .ct_owner = THIS_MODULE, 3373 }; 3374 3375 3376 /* Function registration interface ******************************************/ 3377 3378 static void ffs_free_inst(struct usb_function_instance *f) 3379 { 3380 struct f_fs_opts *opts; 3381 3382 opts = to_f_fs_opts(f); 3383 ffs_dev_lock(); 3384 _ffs_free_dev(opts->dev); 3385 ffs_dev_unlock(); 3386 kfree(opts); 3387 } 3388 3389 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) 3390 { 3391 if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name)) 3392 return -ENAMETOOLONG; 3393 return ffs_name_dev(to_f_fs_opts(fi)->dev, name); 3394 } 3395 3396 static struct usb_function_instance *ffs_alloc_inst(void) 3397 { 3398 struct f_fs_opts *opts; 3399 struct ffs_dev *dev; 3400 3401 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 3402 if (!opts) 3403 return ERR_PTR(-ENOMEM); 3404 3405 opts->func_inst.set_inst_name = ffs_set_inst_name; 3406 opts->func_inst.free_func_inst = ffs_free_inst; 3407 ffs_dev_lock(); 3408 dev = _ffs_alloc_dev(); 3409 ffs_dev_unlock(); 3410 if (IS_ERR(dev)) { 3411 kfree(opts); 3412 return ERR_CAST(dev); 3413 } 3414 opts->dev = dev; 3415 dev->opts = opts; 3416 3417 config_group_init_type_name(&opts->func_inst.group, "", 3418 &ffs_func_type); 3419 return &opts->func_inst; 3420 } 3421 3422 static void ffs_free(struct usb_function *f) 3423 { 3424 kfree(ffs_func_from_usb(f)); 3425 } 3426 3427 static void ffs_func_unbind(struct usb_configuration *c, 3428 struct usb_function *f) 3429 { 3430 struct ffs_function *func = ffs_func_from_usb(f); 3431 struct ffs_data *ffs = func->ffs; 3432 struct f_fs_opts *opts = 3433 container_of(f->fi, struct f_fs_opts, func_inst); 3434 struct ffs_ep *ep = func->eps; 3435 unsigned count = ffs->eps_count; 3436 unsigned long flags; 3437 3438 ENTER(); 3439 if (ffs->func == func) { 3440 ffs_func_eps_disable(func); 3441 ffs->func = NULL; 3442 } 3443 3444 if (!--opts->refcnt) 3445 functionfs_unbind(ffs); 3446 3447 /* cleanup after autoconfig */ 3448 spin_lock_irqsave(&func->ffs->eps_lock, flags); 3449 while (count--) { 3450 if (ep->ep && ep->req) 3451 usb_ep_free_request(ep->ep, ep->req); 3452 ep->req = NULL; 3453 ++ep; 3454 } 3455 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 3456 kfree(func->eps); 3457 func->eps = NULL; 3458 /* 3459 * eps, descriptors and interfaces_nums are allocated in the 3460 * same chunk so only one free is required. 3461 */ 3462 func->function.fs_descriptors = NULL; 3463 func->function.hs_descriptors = NULL; 3464 func->function.ss_descriptors = NULL; 3465 func->interfaces_nums = NULL; 3466 3467 ffs_event_add(ffs, FUNCTIONFS_UNBIND); 3468 } 3469 3470 static struct usb_function *ffs_alloc(struct usb_function_instance *fi) 3471 { 3472 struct ffs_function *func; 3473 3474 ENTER(); 3475 3476 func = kzalloc(sizeof(*func), GFP_KERNEL); 3477 if (unlikely(!func)) 3478 return ERR_PTR(-ENOMEM); 3479 3480 func->function.name = "Function FS Gadget"; 3481 3482 func->function.bind = ffs_func_bind; 3483 func->function.unbind = ffs_func_unbind; 3484 func->function.set_alt = ffs_func_set_alt; 3485 func->function.disable = ffs_func_disable; 3486 func->function.setup = ffs_func_setup; 3487 func->function.req_match = ffs_func_req_match; 3488 func->function.suspend = ffs_func_suspend; 3489 func->function.resume = ffs_func_resume; 3490 func->function.free_func = ffs_free; 3491 3492 return &func->function; 3493 } 3494 3495 /* 3496 * ffs_lock must be taken by the caller of this function 3497 */ 3498 static struct ffs_dev *_ffs_alloc_dev(void) 3499 { 3500 struct ffs_dev *dev; 3501 int ret; 3502 3503 if (_ffs_get_single_dev()) 3504 return ERR_PTR(-EBUSY); 3505 3506 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3507 if (!dev) 3508 return ERR_PTR(-ENOMEM); 3509 3510 if (list_empty(&ffs_devices)) { 3511 ret = functionfs_init(); 3512 if (ret) { 3513 kfree(dev); 3514 return ERR_PTR(ret); 3515 } 3516 } 3517 3518 list_add(&dev->entry, &ffs_devices); 3519 3520 return dev; 3521 } 3522 3523 int ffs_name_dev(struct ffs_dev *dev, const char *name) 3524 { 3525 struct ffs_dev *existing; 3526 int ret = 0; 3527 3528 ffs_dev_lock(); 3529 3530 existing = _ffs_do_find_dev(name); 3531 if (!existing) 3532 strlcpy(dev->name, name, ARRAY_SIZE(dev->name)); 3533 else if (existing != dev) 3534 ret = -EBUSY; 3535 3536 ffs_dev_unlock(); 3537 3538 return ret; 3539 } 3540 EXPORT_SYMBOL_GPL(ffs_name_dev); 3541 3542 int ffs_single_dev(struct ffs_dev *dev) 3543 { 3544 int ret; 3545 3546 ret = 0; 3547 ffs_dev_lock(); 3548 3549 if (!list_is_singular(&ffs_devices)) 3550 ret = -EBUSY; 3551 else 3552 dev->single = true; 3553 3554 ffs_dev_unlock(); 3555 return ret; 3556 } 3557 EXPORT_SYMBOL_GPL(ffs_single_dev); 3558 3559 /* 3560 * ffs_lock must be taken by the caller of this function 3561 */ 3562 static void _ffs_free_dev(struct ffs_dev *dev) 3563 { 3564 list_del(&dev->entry); 3565 3566 /* Clear the private_data pointer to stop incorrect dev access */ 3567 if (dev->ffs_data) 3568 dev->ffs_data->private_data = NULL; 3569 3570 kfree(dev); 3571 if (list_empty(&ffs_devices)) 3572 functionfs_cleanup(); 3573 } 3574 3575 static void *ffs_acquire_dev(const char *dev_name) 3576 { 3577 struct ffs_dev *ffs_dev; 3578 3579 ENTER(); 3580 ffs_dev_lock(); 3581 3582 ffs_dev = _ffs_find_dev(dev_name); 3583 if (!ffs_dev) 3584 ffs_dev = ERR_PTR(-ENOENT); 3585 else if (ffs_dev->mounted) 3586 ffs_dev = ERR_PTR(-EBUSY); 3587 else if (ffs_dev->ffs_acquire_dev_callback && 3588 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) 3589 ffs_dev = ERR_PTR(-ENOENT); 3590 else 3591 ffs_dev->mounted = true; 3592 3593 ffs_dev_unlock(); 3594 return ffs_dev; 3595 } 3596 3597 static void ffs_release_dev(struct ffs_data *ffs_data) 3598 { 3599 struct ffs_dev *ffs_dev; 3600 3601 ENTER(); 3602 ffs_dev_lock(); 3603 3604 ffs_dev = ffs_data->private_data; 3605 if (ffs_dev) { 3606 ffs_dev->mounted = false; 3607 3608 if (ffs_dev->ffs_release_dev_callback) 3609 ffs_dev->ffs_release_dev_callback(ffs_dev); 3610 } 3611 3612 ffs_dev_unlock(); 3613 } 3614 3615 static int ffs_ready(struct ffs_data *ffs) 3616 { 3617 struct ffs_dev *ffs_obj; 3618 int ret = 0; 3619 3620 ENTER(); 3621 ffs_dev_lock(); 3622 3623 ffs_obj = ffs->private_data; 3624 if (!ffs_obj) { 3625 ret = -EINVAL; 3626 goto done; 3627 } 3628 if (WARN_ON(ffs_obj->desc_ready)) { 3629 ret = -EBUSY; 3630 goto done; 3631 } 3632 3633 ffs_obj->desc_ready = true; 3634 ffs_obj->ffs_data = ffs; 3635 3636 if (ffs_obj->ffs_ready_callback) { 3637 ret = ffs_obj->ffs_ready_callback(ffs); 3638 if (ret) 3639 goto done; 3640 } 3641 3642 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); 3643 done: 3644 ffs_dev_unlock(); 3645 return ret; 3646 } 3647 3648 static void ffs_closed(struct ffs_data *ffs) 3649 { 3650 struct ffs_dev *ffs_obj; 3651 struct f_fs_opts *opts; 3652 struct config_item *ci; 3653 3654 ENTER(); 3655 ffs_dev_lock(); 3656 3657 ffs_obj = ffs->private_data; 3658 if (!ffs_obj) 3659 goto done; 3660 3661 ffs_obj->desc_ready = false; 3662 ffs_obj->ffs_data = NULL; 3663 3664 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) && 3665 ffs_obj->ffs_closed_callback) 3666 ffs_obj->ffs_closed_callback(ffs); 3667 3668 if (ffs_obj->opts) 3669 opts = ffs_obj->opts; 3670 else 3671 goto done; 3672 3673 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent 3674 || !kref_read(&opts->func_inst.group.cg_item.ci_kref)) 3675 goto done; 3676 3677 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent; 3678 ffs_dev_unlock(); 3679 3680 if (test_bit(FFS_FL_BOUND, &ffs->flags)) 3681 unregister_gadget_item(ci); 3682 return; 3683 done: 3684 ffs_dev_unlock(); 3685 } 3686 3687 /* Misc helper functions ****************************************************/ 3688 3689 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 3690 { 3691 return nonblock 3692 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN 3693 : mutex_lock_interruptible(mutex); 3694 } 3695 3696 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 3697 { 3698 char *data; 3699 3700 if (unlikely(!len)) 3701 return NULL; 3702 3703 data = kmalloc(len, GFP_KERNEL); 3704 if (unlikely(!data)) 3705 return ERR_PTR(-ENOMEM); 3706 3707 if (unlikely(copy_from_user(data, buf, len))) { 3708 kfree(data); 3709 return ERR_PTR(-EFAULT); 3710 } 3711 3712 pr_vdebug("Buffer from user space:\n"); 3713 ffs_dump_mem("", data, len); 3714 3715 return data; 3716 } 3717 3718 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); 3719 MODULE_LICENSE("GPL"); 3720 MODULE_AUTHOR("Michal Nazarewicz"); 3721