xref: /openbmc/linux/drivers/usb/gadget/function/f_fs.c (revision e1f7c9ee)
1 /*
2  * f_fs.c -- user mode file system API for USB composite function controllers
3  *
4  * Copyright (C) 2010 Samsung Electronics
5  * Author: Michal Nazarewicz <mina86@mina86.com>
6  *
7  * Based on inode.c (GadgetFS) which was:
8  * Copyright (C) 2003-2004 David Brownell
9  * Copyright (C) 2003 Agilent Technologies
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  */
16 
17 
18 /* #define DEBUG */
19 /* #define VERBOSE_DEBUG */
20 
21 #include <linux/blkdev.h>
22 #include <linux/pagemap.h>
23 #include <linux/export.h>
24 #include <linux/hid.h>
25 #include <linux/module.h>
26 #include <asm/unaligned.h>
27 
28 #include <linux/usb/composite.h>
29 #include <linux/usb/functionfs.h>
30 
31 #include <linux/aio.h>
32 #include <linux/mmu_context.h>
33 #include <linux/poll.h>
34 
35 #include "u_fs.h"
36 #include "u_f.h"
37 #include "u_os_desc.h"
38 #include "configfs.h"
39 
40 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
41 
42 /* Reference counter handling */
43 static void ffs_data_get(struct ffs_data *ffs);
44 static void ffs_data_put(struct ffs_data *ffs);
45 /* Creates new ffs_data object. */
46 static struct ffs_data *__must_check ffs_data_new(void) __attribute__((malloc));
47 
48 /* Opened counter handling. */
49 static void ffs_data_opened(struct ffs_data *ffs);
50 static void ffs_data_closed(struct ffs_data *ffs);
51 
52 /* Called with ffs->mutex held; take over ownership of data. */
53 static int __must_check
54 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
55 static int __must_check
56 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
57 
58 
59 /* The function structure ***************************************************/
60 
61 struct ffs_ep;
62 
63 struct ffs_function {
64 	struct usb_configuration	*conf;
65 	struct usb_gadget		*gadget;
66 	struct ffs_data			*ffs;
67 
68 	struct ffs_ep			*eps;
69 	u8				eps_revmap[16];
70 	short				*interfaces_nums;
71 
72 	struct usb_function		function;
73 };
74 
75 
76 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
77 {
78 	return container_of(f, struct ffs_function, function);
79 }
80 
81 
82 static inline enum ffs_setup_state
83 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
84 {
85 	return (enum ffs_setup_state)
86 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
87 }
88 
89 
90 static void ffs_func_eps_disable(struct ffs_function *func);
91 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
92 
93 static int ffs_func_bind(struct usb_configuration *,
94 			 struct usb_function *);
95 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
96 static void ffs_func_disable(struct usb_function *);
97 static int ffs_func_setup(struct usb_function *,
98 			  const struct usb_ctrlrequest *);
99 static void ffs_func_suspend(struct usb_function *);
100 static void ffs_func_resume(struct usb_function *);
101 
102 
103 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
104 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
105 
106 
107 /* The endpoints structures *************************************************/
108 
109 struct ffs_ep {
110 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
111 	struct usb_request		*req;	/* P: epfile->mutex */
112 
113 	/* [0]: full speed, [1]: high speed, [2]: super speed */
114 	struct usb_endpoint_descriptor	*descs[3];
115 
116 	u8				num;
117 
118 	int				status;	/* P: epfile->mutex */
119 };
120 
121 struct ffs_epfile {
122 	/* Protects ep->ep and ep->req. */
123 	struct mutex			mutex;
124 	wait_queue_head_t		wait;
125 
126 	struct ffs_data			*ffs;
127 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
128 
129 	struct dentry			*dentry;
130 
131 	char				name[5];
132 
133 	unsigned char			in;	/* P: ffs->eps_lock */
134 	unsigned char			isoc;	/* P: ffs->eps_lock */
135 
136 	unsigned char			_pad;
137 };
138 
139 /*  ffs_io_data structure ***************************************************/
140 
141 struct ffs_io_data {
142 	bool aio;
143 	bool read;
144 
145 	struct kiocb *kiocb;
146 	const struct iovec *iovec;
147 	unsigned long nr_segs;
148 	char __user *buf;
149 	size_t len;
150 
151 	struct mm_struct *mm;
152 	struct work_struct work;
153 
154 	struct usb_ep *ep;
155 	struct usb_request *req;
156 };
157 
158 struct ffs_desc_helper {
159 	struct ffs_data *ffs;
160 	unsigned interfaces_count;
161 	unsigned eps_count;
162 };
163 
164 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
165 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
166 
167 static struct dentry *
168 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
169 		   const struct file_operations *fops);
170 
171 /* Devices management *******************************************************/
172 
173 DEFINE_MUTEX(ffs_lock);
174 EXPORT_SYMBOL_GPL(ffs_lock);
175 
176 static struct ffs_dev *_ffs_find_dev(const char *name);
177 static struct ffs_dev *_ffs_alloc_dev(void);
178 static int _ffs_name_dev(struct ffs_dev *dev, const char *name);
179 static void _ffs_free_dev(struct ffs_dev *dev);
180 static void *ffs_acquire_dev(const char *dev_name);
181 static void ffs_release_dev(struct ffs_data *ffs_data);
182 static int ffs_ready(struct ffs_data *ffs);
183 static void ffs_closed(struct ffs_data *ffs);
184 
185 /* Misc helper functions ****************************************************/
186 
187 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
188 	__attribute__((warn_unused_result, nonnull));
189 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
190 	__attribute__((warn_unused_result, nonnull));
191 
192 
193 /* Control file aka ep0 *****************************************************/
194 
195 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
196 {
197 	struct ffs_data *ffs = req->context;
198 
199 	complete_all(&ffs->ep0req_completion);
200 }
201 
202 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
203 {
204 	struct usb_request *req = ffs->ep0req;
205 	int ret;
206 
207 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
208 
209 	spin_unlock_irq(&ffs->ev.waitq.lock);
210 
211 	req->buf      = data;
212 	req->length   = len;
213 
214 	/*
215 	 * UDC layer requires to provide a buffer even for ZLP, but should
216 	 * not use it at all. Let's provide some poisoned pointer to catch
217 	 * possible bug in the driver.
218 	 */
219 	if (req->buf == NULL)
220 		req->buf = (void *)0xDEADBABE;
221 
222 	reinit_completion(&ffs->ep0req_completion);
223 
224 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
225 	if (unlikely(ret < 0))
226 		return ret;
227 
228 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
229 	if (unlikely(ret)) {
230 		usb_ep_dequeue(ffs->gadget->ep0, req);
231 		return -EINTR;
232 	}
233 
234 	ffs->setup_state = FFS_NO_SETUP;
235 	return req->status ? req->status : req->actual;
236 }
237 
238 static int __ffs_ep0_stall(struct ffs_data *ffs)
239 {
240 	if (ffs->ev.can_stall) {
241 		pr_vdebug("ep0 stall\n");
242 		usb_ep_set_halt(ffs->gadget->ep0);
243 		ffs->setup_state = FFS_NO_SETUP;
244 		return -EL2HLT;
245 	} else {
246 		pr_debug("bogus ep0 stall!\n");
247 		return -ESRCH;
248 	}
249 }
250 
251 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
252 			     size_t len, loff_t *ptr)
253 {
254 	struct ffs_data *ffs = file->private_data;
255 	ssize_t ret;
256 	char *data;
257 
258 	ENTER();
259 
260 	/* Fast check if setup was canceled */
261 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
262 		return -EIDRM;
263 
264 	/* Acquire mutex */
265 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
266 	if (unlikely(ret < 0))
267 		return ret;
268 
269 	/* Check state */
270 	switch (ffs->state) {
271 	case FFS_READ_DESCRIPTORS:
272 	case FFS_READ_STRINGS:
273 		/* Copy data */
274 		if (unlikely(len < 16)) {
275 			ret = -EINVAL;
276 			break;
277 		}
278 
279 		data = ffs_prepare_buffer(buf, len);
280 		if (IS_ERR(data)) {
281 			ret = PTR_ERR(data);
282 			break;
283 		}
284 
285 		/* Handle data */
286 		if (ffs->state == FFS_READ_DESCRIPTORS) {
287 			pr_info("read descriptors\n");
288 			ret = __ffs_data_got_descs(ffs, data, len);
289 			if (unlikely(ret < 0))
290 				break;
291 
292 			ffs->state = FFS_READ_STRINGS;
293 			ret = len;
294 		} else {
295 			pr_info("read strings\n");
296 			ret = __ffs_data_got_strings(ffs, data, len);
297 			if (unlikely(ret < 0))
298 				break;
299 
300 			ret = ffs_epfiles_create(ffs);
301 			if (unlikely(ret)) {
302 				ffs->state = FFS_CLOSING;
303 				break;
304 			}
305 
306 			ffs->state = FFS_ACTIVE;
307 			mutex_unlock(&ffs->mutex);
308 
309 			ret = ffs_ready(ffs);
310 			if (unlikely(ret < 0)) {
311 				ffs->state = FFS_CLOSING;
312 				return ret;
313 			}
314 
315 			set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
316 			return len;
317 		}
318 		break;
319 
320 	case FFS_ACTIVE:
321 		data = NULL;
322 		/*
323 		 * We're called from user space, we can use _irq
324 		 * rather then _irqsave
325 		 */
326 		spin_lock_irq(&ffs->ev.waitq.lock);
327 		switch (ffs_setup_state_clear_cancelled(ffs)) {
328 		case FFS_SETUP_CANCELLED:
329 			ret = -EIDRM;
330 			goto done_spin;
331 
332 		case FFS_NO_SETUP:
333 			ret = -ESRCH;
334 			goto done_spin;
335 
336 		case FFS_SETUP_PENDING:
337 			break;
338 		}
339 
340 		/* FFS_SETUP_PENDING */
341 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
342 			spin_unlock_irq(&ffs->ev.waitq.lock);
343 			ret = __ffs_ep0_stall(ffs);
344 			break;
345 		}
346 
347 		/* FFS_SETUP_PENDING and not stall */
348 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
349 
350 		spin_unlock_irq(&ffs->ev.waitq.lock);
351 
352 		data = ffs_prepare_buffer(buf, len);
353 		if (IS_ERR(data)) {
354 			ret = PTR_ERR(data);
355 			break;
356 		}
357 
358 		spin_lock_irq(&ffs->ev.waitq.lock);
359 
360 		/*
361 		 * We are guaranteed to be still in FFS_ACTIVE state
362 		 * but the state of setup could have changed from
363 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
364 		 * to check for that.  If that happened we copied data
365 		 * from user space in vain but it's unlikely.
366 		 *
367 		 * For sure we are not in FFS_NO_SETUP since this is
368 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
369 		 * transition can be performed and it's protected by
370 		 * mutex.
371 		 */
372 		if (ffs_setup_state_clear_cancelled(ffs) ==
373 		    FFS_SETUP_CANCELLED) {
374 			ret = -EIDRM;
375 done_spin:
376 			spin_unlock_irq(&ffs->ev.waitq.lock);
377 		} else {
378 			/* unlocks spinlock */
379 			ret = __ffs_ep0_queue_wait(ffs, data, len);
380 		}
381 		kfree(data);
382 		break;
383 
384 	default:
385 		ret = -EBADFD;
386 		break;
387 	}
388 
389 	mutex_unlock(&ffs->mutex);
390 	return ret;
391 }
392 
393 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
394 				     size_t n)
395 {
396 	/*
397 	 * We are holding ffs->ev.waitq.lock and ffs->mutex and we need
398 	 * to release them.
399 	 */
400 	struct usb_functionfs_event events[n];
401 	unsigned i = 0;
402 
403 	memset(events, 0, sizeof events);
404 
405 	do {
406 		events[i].type = ffs->ev.types[i];
407 		if (events[i].type == FUNCTIONFS_SETUP) {
408 			events[i].u.setup = ffs->ev.setup;
409 			ffs->setup_state = FFS_SETUP_PENDING;
410 		}
411 	} while (++i < n);
412 
413 	if (n < ffs->ev.count) {
414 		ffs->ev.count -= n;
415 		memmove(ffs->ev.types, ffs->ev.types + n,
416 			ffs->ev.count * sizeof *ffs->ev.types);
417 	} else {
418 		ffs->ev.count = 0;
419 	}
420 
421 	spin_unlock_irq(&ffs->ev.waitq.lock);
422 	mutex_unlock(&ffs->mutex);
423 
424 	return unlikely(__copy_to_user(buf, events, sizeof events))
425 		? -EFAULT : sizeof events;
426 }
427 
428 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
429 			    size_t len, loff_t *ptr)
430 {
431 	struct ffs_data *ffs = file->private_data;
432 	char *data = NULL;
433 	size_t n;
434 	int ret;
435 
436 	ENTER();
437 
438 	/* Fast check if setup was canceled */
439 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
440 		return -EIDRM;
441 
442 	/* Acquire mutex */
443 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
444 	if (unlikely(ret < 0))
445 		return ret;
446 
447 	/* Check state */
448 	if (ffs->state != FFS_ACTIVE) {
449 		ret = -EBADFD;
450 		goto done_mutex;
451 	}
452 
453 	/*
454 	 * We're called from user space, we can use _irq rather then
455 	 * _irqsave
456 	 */
457 	spin_lock_irq(&ffs->ev.waitq.lock);
458 
459 	switch (ffs_setup_state_clear_cancelled(ffs)) {
460 	case FFS_SETUP_CANCELLED:
461 		ret = -EIDRM;
462 		break;
463 
464 	case FFS_NO_SETUP:
465 		n = len / sizeof(struct usb_functionfs_event);
466 		if (unlikely(!n)) {
467 			ret = -EINVAL;
468 			break;
469 		}
470 
471 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
472 			ret = -EAGAIN;
473 			break;
474 		}
475 
476 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
477 							ffs->ev.count)) {
478 			ret = -EINTR;
479 			break;
480 		}
481 
482 		return __ffs_ep0_read_events(ffs, buf,
483 					     min(n, (size_t)ffs->ev.count));
484 
485 	case FFS_SETUP_PENDING:
486 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
487 			spin_unlock_irq(&ffs->ev.waitq.lock);
488 			ret = __ffs_ep0_stall(ffs);
489 			goto done_mutex;
490 		}
491 
492 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
493 
494 		spin_unlock_irq(&ffs->ev.waitq.lock);
495 
496 		if (likely(len)) {
497 			data = kmalloc(len, GFP_KERNEL);
498 			if (unlikely(!data)) {
499 				ret = -ENOMEM;
500 				goto done_mutex;
501 			}
502 		}
503 
504 		spin_lock_irq(&ffs->ev.waitq.lock);
505 
506 		/* See ffs_ep0_write() */
507 		if (ffs_setup_state_clear_cancelled(ffs) ==
508 		    FFS_SETUP_CANCELLED) {
509 			ret = -EIDRM;
510 			break;
511 		}
512 
513 		/* unlocks spinlock */
514 		ret = __ffs_ep0_queue_wait(ffs, data, len);
515 		if (likely(ret > 0) && unlikely(__copy_to_user(buf, data, len)))
516 			ret = -EFAULT;
517 		goto done_mutex;
518 
519 	default:
520 		ret = -EBADFD;
521 		break;
522 	}
523 
524 	spin_unlock_irq(&ffs->ev.waitq.lock);
525 done_mutex:
526 	mutex_unlock(&ffs->mutex);
527 	kfree(data);
528 	return ret;
529 }
530 
531 static int ffs_ep0_open(struct inode *inode, struct file *file)
532 {
533 	struct ffs_data *ffs = inode->i_private;
534 
535 	ENTER();
536 
537 	if (unlikely(ffs->state == FFS_CLOSING))
538 		return -EBUSY;
539 
540 	file->private_data = ffs;
541 	ffs_data_opened(ffs);
542 
543 	return 0;
544 }
545 
546 static int ffs_ep0_release(struct inode *inode, struct file *file)
547 {
548 	struct ffs_data *ffs = file->private_data;
549 
550 	ENTER();
551 
552 	ffs_data_closed(ffs);
553 
554 	return 0;
555 }
556 
557 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
558 {
559 	struct ffs_data *ffs = file->private_data;
560 	struct usb_gadget *gadget = ffs->gadget;
561 	long ret;
562 
563 	ENTER();
564 
565 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
566 		struct ffs_function *func = ffs->func;
567 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
568 	} else if (gadget && gadget->ops->ioctl) {
569 		ret = gadget->ops->ioctl(gadget, code, value);
570 	} else {
571 		ret = -ENOTTY;
572 	}
573 
574 	return ret;
575 }
576 
577 static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait)
578 {
579 	struct ffs_data *ffs = file->private_data;
580 	unsigned int mask = POLLWRNORM;
581 	int ret;
582 
583 	poll_wait(file, &ffs->ev.waitq, wait);
584 
585 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
586 	if (unlikely(ret < 0))
587 		return mask;
588 
589 	switch (ffs->state) {
590 	case FFS_READ_DESCRIPTORS:
591 	case FFS_READ_STRINGS:
592 		mask |= POLLOUT;
593 		break;
594 
595 	case FFS_ACTIVE:
596 		switch (ffs->setup_state) {
597 		case FFS_NO_SETUP:
598 			if (ffs->ev.count)
599 				mask |= POLLIN;
600 			break;
601 
602 		case FFS_SETUP_PENDING:
603 		case FFS_SETUP_CANCELLED:
604 			mask |= (POLLIN | POLLOUT);
605 			break;
606 		}
607 	case FFS_CLOSING:
608 		break;
609 	}
610 
611 	mutex_unlock(&ffs->mutex);
612 
613 	return mask;
614 }
615 
616 static const struct file_operations ffs_ep0_operations = {
617 	.llseek =	no_llseek,
618 
619 	.open =		ffs_ep0_open,
620 	.write =	ffs_ep0_write,
621 	.read =		ffs_ep0_read,
622 	.release =	ffs_ep0_release,
623 	.unlocked_ioctl =	ffs_ep0_ioctl,
624 	.poll =		ffs_ep0_poll,
625 };
626 
627 
628 /* "Normal" endpoints operations ********************************************/
629 
630 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
631 {
632 	ENTER();
633 	if (likely(req->context)) {
634 		struct ffs_ep *ep = _ep->driver_data;
635 		ep->status = req->status ? req->status : req->actual;
636 		complete(req->context);
637 	}
638 }
639 
640 static void ffs_user_copy_worker(struct work_struct *work)
641 {
642 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
643 						   work);
644 	int ret = io_data->req->status ? io_data->req->status :
645 					 io_data->req->actual;
646 
647 	if (io_data->read && ret > 0) {
648 		int i;
649 		size_t pos = 0;
650 
651 		/*
652 		 * Since req->length may be bigger than io_data->len (after
653 		 * being rounded up to maxpacketsize), we may end up with more
654 		 * data then user space has space for.
655 		 */
656 		ret = min_t(int, ret, io_data->len);
657 
658 		use_mm(io_data->mm);
659 		for (i = 0; i < io_data->nr_segs; i++) {
660 			size_t len = min_t(size_t, ret - pos,
661 					io_data->iovec[i].iov_len);
662 			if (!len)
663 				break;
664 			if (unlikely(copy_to_user(io_data->iovec[i].iov_base,
665 						 &io_data->buf[pos], len))) {
666 				ret = -EFAULT;
667 				break;
668 			}
669 			pos += len;
670 		}
671 		unuse_mm(io_data->mm);
672 	}
673 
674 	aio_complete(io_data->kiocb, ret, ret);
675 
676 	usb_ep_free_request(io_data->ep, io_data->req);
677 
678 	io_data->kiocb->private = NULL;
679 	if (io_data->read)
680 		kfree(io_data->iovec);
681 	kfree(io_data->buf);
682 	kfree(io_data);
683 }
684 
685 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
686 					 struct usb_request *req)
687 {
688 	struct ffs_io_data *io_data = req->context;
689 
690 	ENTER();
691 
692 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
693 	schedule_work(&io_data->work);
694 }
695 
696 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
697 {
698 	struct ffs_epfile *epfile = file->private_data;
699 	struct ffs_ep *ep;
700 	char *data = NULL;
701 	ssize_t ret, data_len = -EINVAL;
702 	int halt;
703 
704 	/* Are we still active? */
705 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) {
706 		ret = -ENODEV;
707 		goto error;
708 	}
709 
710 	/* Wait for endpoint to be enabled */
711 	ep = epfile->ep;
712 	if (!ep) {
713 		if (file->f_flags & O_NONBLOCK) {
714 			ret = -EAGAIN;
715 			goto error;
716 		}
717 
718 		ret = wait_event_interruptible(epfile->wait, (ep = epfile->ep));
719 		if (ret) {
720 			ret = -EINTR;
721 			goto error;
722 		}
723 	}
724 
725 	/* Do we halt? */
726 	halt = (!io_data->read == !epfile->in);
727 	if (halt && epfile->isoc) {
728 		ret = -EINVAL;
729 		goto error;
730 	}
731 
732 	/* Allocate & copy */
733 	if (!halt) {
734 		/*
735 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
736 		 * before the waiting completes, so do not assign to 'gadget' earlier
737 		 */
738 		struct usb_gadget *gadget = epfile->ffs->gadget;
739 
740 		spin_lock_irq(&epfile->ffs->eps_lock);
741 		/* In the meantime, endpoint got disabled or changed. */
742 		if (epfile->ep != ep) {
743 			spin_unlock_irq(&epfile->ffs->eps_lock);
744 			return -ESHUTDOWN;
745 		}
746 		/*
747 		 * Controller may require buffer size to be aligned to
748 		 * maxpacketsize of an out endpoint.
749 		 */
750 		data_len = io_data->read ?
751 			   usb_ep_align_maybe(gadget, ep->ep, io_data->len) :
752 			   io_data->len;
753 		spin_unlock_irq(&epfile->ffs->eps_lock);
754 
755 		data = kmalloc(data_len, GFP_KERNEL);
756 		if (unlikely(!data))
757 			return -ENOMEM;
758 		if (io_data->aio && !io_data->read) {
759 			int i;
760 			size_t pos = 0;
761 			for (i = 0; i < io_data->nr_segs; i++) {
762 				if (unlikely(copy_from_user(&data[pos],
763 					     io_data->iovec[i].iov_base,
764 					     io_data->iovec[i].iov_len))) {
765 					ret = -EFAULT;
766 					goto error;
767 				}
768 				pos += io_data->iovec[i].iov_len;
769 			}
770 		} else {
771 			if (!io_data->read &&
772 			    unlikely(__copy_from_user(data, io_data->buf,
773 						      io_data->len))) {
774 				ret = -EFAULT;
775 				goto error;
776 			}
777 		}
778 	}
779 
780 	/* We will be using request */
781 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
782 	if (unlikely(ret))
783 		goto error;
784 
785 	spin_lock_irq(&epfile->ffs->eps_lock);
786 
787 	if (epfile->ep != ep) {
788 		/* In the meantime, endpoint got disabled or changed. */
789 		ret = -ESHUTDOWN;
790 		spin_unlock_irq(&epfile->ffs->eps_lock);
791 	} else if (halt) {
792 		/* Halt */
793 		if (likely(epfile->ep == ep) && !WARN_ON(!ep->ep))
794 			usb_ep_set_halt(ep->ep);
795 		spin_unlock_irq(&epfile->ffs->eps_lock);
796 		ret = -EBADMSG;
797 	} else {
798 		/* Fire the request */
799 		struct usb_request *req;
800 
801 		/*
802 		 * Sanity Check: even though data_len can't be used
803 		 * uninitialized at the time I write this comment, some
804 		 * compilers complain about this situation.
805 		 * In order to keep the code clean from warnings, data_len is
806 		 * being initialized to -EINVAL during its declaration, which
807 		 * means we can't rely on compiler anymore to warn no future
808 		 * changes won't result in data_len being used uninitialized.
809 		 * For such reason, we're adding this redundant sanity check
810 		 * here.
811 		 */
812 		if (unlikely(data_len == -EINVAL)) {
813 			WARN(1, "%s: data_len == -EINVAL\n", __func__);
814 			ret = -EINVAL;
815 			goto error_lock;
816 		}
817 
818 		if (io_data->aio) {
819 			req = usb_ep_alloc_request(ep->ep, GFP_KERNEL);
820 			if (unlikely(!req))
821 				goto error_lock;
822 
823 			req->buf      = data;
824 			req->length   = data_len;
825 
826 			io_data->buf = data;
827 			io_data->ep = ep->ep;
828 			io_data->req = req;
829 
830 			req->context  = io_data;
831 			req->complete = ffs_epfile_async_io_complete;
832 
833 			ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
834 			if (unlikely(ret)) {
835 				usb_ep_free_request(ep->ep, req);
836 				goto error_lock;
837 			}
838 			ret = -EIOCBQUEUED;
839 
840 			spin_unlock_irq(&epfile->ffs->eps_lock);
841 		} else {
842 			DECLARE_COMPLETION_ONSTACK(done);
843 
844 			req = ep->req;
845 			req->buf      = data;
846 			req->length   = data_len;
847 
848 			req->context  = &done;
849 			req->complete = ffs_epfile_io_complete;
850 
851 			ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
852 
853 			spin_unlock_irq(&epfile->ffs->eps_lock);
854 
855 			if (unlikely(ret < 0)) {
856 				/* nop */
857 			} else if (unlikely(
858 				   wait_for_completion_interruptible(&done))) {
859 				ret = -EINTR;
860 				usb_ep_dequeue(ep->ep, req);
861 			} else {
862 				/*
863 				 * XXX We may end up silently droping data
864 				 * here.  Since data_len (i.e. req->length) may
865 				 * be bigger than len (after being rounded up
866 				 * to maxpacketsize), we may end up with more
867 				 * data then user space has space for.
868 				 */
869 				ret = ep->status;
870 				if (io_data->read && ret > 0) {
871 					ret = min_t(size_t, ret, io_data->len);
872 
873 					if (unlikely(copy_to_user(io_data->buf,
874 						data, ret)))
875 						ret = -EFAULT;
876 				}
877 			}
878 			kfree(data);
879 		}
880 	}
881 
882 	mutex_unlock(&epfile->mutex);
883 	return ret;
884 
885 error_lock:
886 	spin_unlock_irq(&epfile->ffs->eps_lock);
887 	mutex_unlock(&epfile->mutex);
888 error:
889 	kfree(data);
890 	return ret;
891 }
892 
893 static ssize_t
894 ffs_epfile_write(struct file *file, const char __user *buf, size_t len,
895 		 loff_t *ptr)
896 {
897 	struct ffs_io_data io_data;
898 
899 	ENTER();
900 
901 	io_data.aio = false;
902 	io_data.read = false;
903 	io_data.buf = (char * __user)buf;
904 	io_data.len = len;
905 
906 	return ffs_epfile_io(file, &io_data);
907 }
908 
909 static ssize_t
910 ffs_epfile_read(struct file *file, char __user *buf, size_t len, loff_t *ptr)
911 {
912 	struct ffs_io_data io_data;
913 
914 	ENTER();
915 
916 	io_data.aio = false;
917 	io_data.read = true;
918 	io_data.buf = buf;
919 	io_data.len = len;
920 
921 	return ffs_epfile_io(file, &io_data);
922 }
923 
924 static int
925 ffs_epfile_open(struct inode *inode, struct file *file)
926 {
927 	struct ffs_epfile *epfile = inode->i_private;
928 
929 	ENTER();
930 
931 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
932 		return -ENODEV;
933 
934 	file->private_data = epfile;
935 	ffs_data_opened(epfile->ffs);
936 
937 	return 0;
938 }
939 
940 static int ffs_aio_cancel(struct kiocb *kiocb)
941 {
942 	struct ffs_io_data *io_data = kiocb->private;
943 	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
944 	int value;
945 
946 	ENTER();
947 
948 	spin_lock_irq(&epfile->ffs->eps_lock);
949 
950 	if (likely(io_data && io_data->ep && io_data->req))
951 		value = usb_ep_dequeue(io_data->ep, io_data->req);
952 	else
953 		value = -EINVAL;
954 
955 	spin_unlock_irq(&epfile->ffs->eps_lock);
956 
957 	return value;
958 }
959 
960 static ssize_t ffs_epfile_aio_write(struct kiocb *kiocb,
961 				    const struct iovec *iovec,
962 				    unsigned long nr_segs, loff_t loff)
963 {
964 	struct ffs_io_data *io_data;
965 
966 	ENTER();
967 
968 	io_data = kmalloc(sizeof(*io_data), GFP_KERNEL);
969 	if (unlikely(!io_data))
970 		return -ENOMEM;
971 
972 	io_data->aio = true;
973 	io_data->read = false;
974 	io_data->kiocb = kiocb;
975 	io_data->iovec = iovec;
976 	io_data->nr_segs = nr_segs;
977 	io_data->len = kiocb->ki_nbytes;
978 	io_data->mm = current->mm;
979 
980 	kiocb->private = io_data;
981 
982 	kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
983 
984 	return ffs_epfile_io(kiocb->ki_filp, io_data);
985 }
986 
987 static ssize_t ffs_epfile_aio_read(struct kiocb *kiocb,
988 				   const struct iovec *iovec,
989 				   unsigned long nr_segs, loff_t loff)
990 {
991 	struct ffs_io_data *io_data;
992 	struct iovec *iovec_copy;
993 
994 	ENTER();
995 
996 	iovec_copy = kmalloc_array(nr_segs, sizeof(*iovec_copy), GFP_KERNEL);
997 	if (unlikely(!iovec_copy))
998 		return -ENOMEM;
999 
1000 	memcpy(iovec_copy, iovec, sizeof(struct iovec)*nr_segs);
1001 
1002 	io_data = kmalloc(sizeof(*io_data), GFP_KERNEL);
1003 	if (unlikely(!io_data)) {
1004 		kfree(iovec_copy);
1005 		return -ENOMEM;
1006 	}
1007 
1008 	io_data->aio = true;
1009 	io_data->read = true;
1010 	io_data->kiocb = kiocb;
1011 	io_data->iovec = iovec_copy;
1012 	io_data->nr_segs = nr_segs;
1013 	io_data->len = kiocb->ki_nbytes;
1014 	io_data->mm = current->mm;
1015 
1016 	kiocb->private = io_data;
1017 
1018 	kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1019 
1020 	return ffs_epfile_io(kiocb->ki_filp, io_data);
1021 }
1022 
1023 static int
1024 ffs_epfile_release(struct inode *inode, struct file *file)
1025 {
1026 	struct ffs_epfile *epfile = inode->i_private;
1027 
1028 	ENTER();
1029 
1030 	ffs_data_closed(epfile->ffs);
1031 
1032 	return 0;
1033 }
1034 
1035 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1036 			     unsigned long value)
1037 {
1038 	struct ffs_epfile *epfile = file->private_data;
1039 	int ret;
1040 
1041 	ENTER();
1042 
1043 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1044 		return -ENODEV;
1045 
1046 	spin_lock_irq(&epfile->ffs->eps_lock);
1047 	if (likely(epfile->ep)) {
1048 		switch (code) {
1049 		case FUNCTIONFS_FIFO_STATUS:
1050 			ret = usb_ep_fifo_status(epfile->ep->ep);
1051 			break;
1052 		case FUNCTIONFS_FIFO_FLUSH:
1053 			usb_ep_fifo_flush(epfile->ep->ep);
1054 			ret = 0;
1055 			break;
1056 		case FUNCTIONFS_CLEAR_HALT:
1057 			ret = usb_ep_clear_halt(epfile->ep->ep);
1058 			break;
1059 		case FUNCTIONFS_ENDPOINT_REVMAP:
1060 			ret = epfile->ep->num;
1061 			break;
1062 		case FUNCTIONFS_ENDPOINT_DESC:
1063 		{
1064 			int desc_idx;
1065 			struct usb_endpoint_descriptor *desc;
1066 
1067 			switch (epfile->ffs->gadget->speed) {
1068 			case USB_SPEED_SUPER:
1069 				desc_idx = 2;
1070 				break;
1071 			case USB_SPEED_HIGH:
1072 				desc_idx = 1;
1073 				break;
1074 			default:
1075 				desc_idx = 0;
1076 			}
1077 			desc = epfile->ep->descs[desc_idx];
1078 
1079 			spin_unlock_irq(&epfile->ffs->eps_lock);
1080 			ret = copy_to_user((void *)value, desc, sizeof(*desc));
1081 			if (ret)
1082 				ret = -EFAULT;
1083 			return ret;
1084 		}
1085 		default:
1086 			ret = -ENOTTY;
1087 		}
1088 	} else {
1089 		ret = -ENODEV;
1090 	}
1091 	spin_unlock_irq(&epfile->ffs->eps_lock);
1092 
1093 	return ret;
1094 }
1095 
1096 static const struct file_operations ffs_epfile_operations = {
1097 	.llseek =	no_llseek,
1098 
1099 	.open =		ffs_epfile_open,
1100 	.write =	ffs_epfile_write,
1101 	.read =		ffs_epfile_read,
1102 	.aio_write =	ffs_epfile_aio_write,
1103 	.aio_read =	ffs_epfile_aio_read,
1104 	.release =	ffs_epfile_release,
1105 	.unlocked_ioctl =	ffs_epfile_ioctl,
1106 };
1107 
1108 
1109 /* File system and super block operations ***********************************/
1110 
1111 /*
1112  * Mounting the file system creates a controller file, used first for
1113  * function configuration then later for event monitoring.
1114  */
1115 
1116 static struct inode *__must_check
1117 ffs_sb_make_inode(struct super_block *sb, void *data,
1118 		  const struct file_operations *fops,
1119 		  const struct inode_operations *iops,
1120 		  struct ffs_file_perms *perms)
1121 {
1122 	struct inode *inode;
1123 
1124 	ENTER();
1125 
1126 	inode = new_inode(sb);
1127 
1128 	if (likely(inode)) {
1129 		struct timespec current_time = CURRENT_TIME;
1130 
1131 		inode->i_ino	 = get_next_ino();
1132 		inode->i_mode    = perms->mode;
1133 		inode->i_uid     = perms->uid;
1134 		inode->i_gid     = perms->gid;
1135 		inode->i_atime   = current_time;
1136 		inode->i_mtime   = current_time;
1137 		inode->i_ctime   = current_time;
1138 		inode->i_private = data;
1139 		if (fops)
1140 			inode->i_fop = fops;
1141 		if (iops)
1142 			inode->i_op  = iops;
1143 	}
1144 
1145 	return inode;
1146 }
1147 
1148 /* Create "regular" file */
1149 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1150 					const char *name, void *data,
1151 					const struct file_operations *fops)
1152 {
1153 	struct ffs_data	*ffs = sb->s_fs_info;
1154 	struct dentry	*dentry;
1155 	struct inode	*inode;
1156 
1157 	ENTER();
1158 
1159 	dentry = d_alloc_name(sb->s_root, name);
1160 	if (unlikely(!dentry))
1161 		return NULL;
1162 
1163 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1164 	if (unlikely(!inode)) {
1165 		dput(dentry);
1166 		return NULL;
1167 	}
1168 
1169 	d_add(dentry, inode);
1170 	return dentry;
1171 }
1172 
1173 /* Super block */
1174 static const struct super_operations ffs_sb_operations = {
1175 	.statfs =	simple_statfs,
1176 	.drop_inode =	generic_delete_inode,
1177 };
1178 
1179 struct ffs_sb_fill_data {
1180 	struct ffs_file_perms perms;
1181 	umode_t root_mode;
1182 	const char *dev_name;
1183 	struct ffs_data *ffs_data;
1184 };
1185 
1186 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1187 {
1188 	struct ffs_sb_fill_data *data = _data;
1189 	struct inode	*inode;
1190 	struct ffs_data	*ffs = data->ffs_data;
1191 
1192 	ENTER();
1193 
1194 	ffs->sb              = sb;
1195 	data->ffs_data       = NULL;
1196 	sb->s_fs_info        = ffs;
1197 	sb->s_blocksize      = PAGE_CACHE_SIZE;
1198 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1199 	sb->s_magic          = FUNCTIONFS_MAGIC;
1200 	sb->s_op             = &ffs_sb_operations;
1201 	sb->s_time_gran      = 1;
1202 
1203 	/* Root inode */
1204 	data->perms.mode = data->root_mode;
1205 	inode = ffs_sb_make_inode(sb, NULL,
1206 				  &simple_dir_operations,
1207 				  &simple_dir_inode_operations,
1208 				  &data->perms);
1209 	sb->s_root = d_make_root(inode);
1210 	if (unlikely(!sb->s_root))
1211 		return -ENOMEM;
1212 
1213 	/* EP0 file */
1214 	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1215 					 &ffs_ep0_operations)))
1216 		return -ENOMEM;
1217 
1218 	return 0;
1219 }
1220 
1221 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1222 {
1223 	ENTER();
1224 
1225 	if (!opts || !*opts)
1226 		return 0;
1227 
1228 	for (;;) {
1229 		unsigned long value;
1230 		char *eq, *comma;
1231 
1232 		/* Option limit */
1233 		comma = strchr(opts, ',');
1234 		if (comma)
1235 			*comma = 0;
1236 
1237 		/* Value limit */
1238 		eq = strchr(opts, '=');
1239 		if (unlikely(!eq)) {
1240 			pr_err("'=' missing in %s\n", opts);
1241 			return -EINVAL;
1242 		}
1243 		*eq = 0;
1244 
1245 		/* Parse value */
1246 		if (kstrtoul(eq + 1, 0, &value)) {
1247 			pr_err("%s: invalid value: %s\n", opts, eq + 1);
1248 			return -EINVAL;
1249 		}
1250 
1251 		/* Interpret option */
1252 		switch (eq - opts) {
1253 		case 5:
1254 			if (!memcmp(opts, "rmode", 5))
1255 				data->root_mode  = (value & 0555) | S_IFDIR;
1256 			else if (!memcmp(opts, "fmode", 5))
1257 				data->perms.mode = (value & 0666) | S_IFREG;
1258 			else
1259 				goto invalid;
1260 			break;
1261 
1262 		case 4:
1263 			if (!memcmp(opts, "mode", 4)) {
1264 				data->root_mode  = (value & 0555) | S_IFDIR;
1265 				data->perms.mode = (value & 0666) | S_IFREG;
1266 			} else {
1267 				goto invalid;
1268 			}
1269 			break;
1270 
1271 		case 3:
1272 			if (!memcmp(opts, "uid", 3)) {
1273 				data->perms.uid = make_kuid(current_user_ns(), value);
1274 				if (!uid_valid(data->perms.uid)) {
1275 					pr_err("%s: unmapped value: %lu\n", opts, value);
1276 					return -EINVAL;
1277 				}
1278 			} else if (!memcmp(opts, "gid", 3)) {
1279 				data->perms.gid = make_kgid(current_user_ns(), value);
1280 				if (!gid_valid(data->perms.gid)) {
1281 					pr_err("%s: unmapped value: %lu\n", opts, value);
1282 					return -EINVAL;
1283 				}
1284 			} else {
1285 				goto invalid;
1286 			}
1287 			break;
1288 
1289 		default:
1290 invalid:
1291 			pr_err("%s: invalid option\n", opts);
1292 			return -EINVAL;
1293 		}
1294 
1295 		/* Next iteration */
1296 		if (!comma)
1297 			break;
1298 		opts = comma + 1;
1299 	}
1300 
1301 	return 0;
1302 }
1303 
1304 /* "mount -t functionfs dev_name /dev/function" ends up here */
1305 
1306 static struct dentry *
1307 ffs_fs_mount(struct file_system_type *t, int flags,
1308 	      const char *dev_name, void *opts)
1309 {
1310 	struct ffs_sb_fill_data data = {
1311 		.perms = {
1312 			.mode = S_IFREG | 0600,
1313 			.uid = GLOBAL_ROOT_UID,
1314 			.gid = GLOBAL_ROOT_GID,
1315 		},
1316 		.root_mode = S_IFDIR | 0500,
1317 	};
1318 	struct dentry *rv;
1319 	int ret;
1320 	void *ffs_dev;
1321 	struct ffs_data	*ffs;
1322 
1323 	ENTER();
1324 
1325 	ret = ffs_fs_parse_opts(&data, opts);
1326 	if (unlikely(ret < 0))
1327 		return ERR_PTR(ret);
1328 
1329 	ffs = ffs_data_new();
1330 	if (unlikely(!ffs))
1331 		return ERR_PTR(-ENOMEM);
1332 	ffs->file_perms = data.perms;
1333 
1334 	ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1335 	if (unlikely(!ffs->dev_name)) {
1336 		ffs_data_put(ffs);
1337 		return ERR_PTR(-ENOMEM);
1338 	}
1339 
1340 	ffs_dev = ffs_acquire_dev(dev_name);
1341 	if (IS_ERR(ffs_dev)) {
1342 		ffs_data_put(ffs);
1343 		return ERR_CAST(ffs_dev);
1344 	}
1345 	ffs->private_data = ffs_dev;
1346 	data.ffs_data = ffs;
1347 
1348 	rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1349 	if (IS_ERR(rv) && data.ffs_data) {
1350 		ffs_release_dev(data.ffs_data);
1351 		ffs_data_put(data.ffs_data);
1352 	}
1353 	return rv;
1354 }
1355 
1356 static void
1357 ffs_fs_kill_sb(struct super_block *sb)
1358 {
1359 	ENTER();
1360 
1361 	kill_litter_super(sb);
1362 	if (sb->s_fs_info) {
1363 		ffs_release_dev(sb->s_fs_info);
1364 		ffs_data_put(sb->s_fs_info);
1365 	}
1366 }
1367 
1368 static struct file_system_type ffs_fs_type = {
1369 	.owner		= THIS_MODULE,
1370 	.name		= "functionfs",
1371 	.mount		= ffs_fs_mount,
1372 	.kill_sb	= ffs_fs_kill_sb,
1373 };
1374 MODULE_ALIAS_FS("functionfs");
1375 
1376 
1377 /* Driver's main init/cleanup functions *************************************/
1378 
1379 static int functionfs_init(void)
1380 {
1381 	int ret;
1382 
1383 	ENTER();
1384 
1385 	ret = register_filesystem(&ffs_fs_type);
1386 	if (likely(!ret))
1387 		pr_info("file system registered\n");
1388 	else
1389 		pr_err("failed registering file system (%d)\n", ret);
1390 
1391 	return ret;
1392 }
1393 
1394 static void functionfs_cleanup(void)
1395 {
1396 	ENTER();
1397 
1398 	pr_info("unloading\n");
1399 	unregister_filesystem(&ffs_fs_type);
1400 }
1401 
1402 
1403 /* ffs_data and ffs_function construction and destruction code **************/
1404 
1405 static void ffs_data_clear(struct ffs_data *ffs);
1406 static void ffs_data_reset(struct ffs_data *ffs);
1407 
1408 static void ffs_data_get(struct ffs_data *ffs)
1409 {
1410 	ENTER();
1411 
1412 	atomic_inc(&ffs->ref);
1413 }
1414 
1415 static void ffs_data_opened(struct ffs_data *ffs)
1416 {
1417 	ENTER();
1418 
1419 	atomic_inc(&ffs->ref);
1420 	atomic_inc(&ffs->opened);
1421 }
1422 
1423 static void ffs_data_put(struct ffs_data *ffs)
1424 {
1425 	ENTER();
1426 
1427 	if (unlikely(atomic_dec_and_test(&ffs->ref))) {
1428 		pr_info("%s(): freeing\n", __func__);
1429 		ffs_data_clear(ffs);
1430 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1431 		       waitqueue_active(&ffs->ep0req_completion.wait));
1432 		kfree(ffs->dev_name);
1433 		kfree(ffs);
1434 	}
1435 }
1436 
1437 static void ffs_data_closed(struct ffs_data *ffs)
1438 {
1439 	ENTER();
1440 
1441 	if (atomic_dec_and_test(&ffs->opened)) {
1442 		ffs->state = FFS_CLOSING;
1443 		ffs_data_reset(ffs);
1444 	}
1445 
1446 	ffs_data_put(ffs);
1447 }
1448 
1449 static struct ffs_data *ffs_data_new(void)
1450 {
1451 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1452 	if (unlikely(!ffs))
1453 		return NULL;
1454 
1455 	ENTER();
1456 
1457 	atomic_set(&ffs->ref, 1);
1458 	atomic_set(&ffs->opened, 0);
1459 	ffs->state = FFS_READ_DESCRIPTORS;
1460 	mutex_init(&ffs->mutex);
1461 	spin_lock_init(&ffs->eps_lock);
1462 	init_waitqueue_head(&ffs->ev.waitq);
1463 	init_completion(&ffs->ep0req_completion);
1464 
1465 	/* XXX REVISIT need to update it in some places, or do we? */
1466 	ffs->ev.can_stall = 1;
1467 
1468 	return ffs;
1469 }
1470 
1471 static void ffs_data_clear(struct ffs_data *ffs)
1472 {
1473 	ENTER();
1474 
1475 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags))
1476 		ffs_closed(ffs);
1477 
1478 	BUG_ON(ffs->gadget);
1479 
1480 	if (ffs->epfiles)
1481 		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1482 
1483 	kfree(ffs->raw_descs_data);
1484 	kfree(ffs->raw_strings);
1485 	kfree(ffs->stringtabs);
1486 }
1487 
1488 static void ffs_data_reset(struct ffs_data *ffs)
1489 {
1490 	ENTER();
1491 
1492 	ffs_data_clear(ffs);
1493 
1494 	ffs->epfiles = NULL;
1495 	ffs->raw_descs_data = NULL;
1496 	ffs->raw_descs = NULL;
1497 	ffs->raw_strings = NULL;
1498 	ffs->stringtabs = NULL;
1499 
1500 	ffs->raw_descs_length = 0;
1501 	ffs->fs_descs_count = 0;
1502 	ffs->hs_descs_count = 0;
1503 	ffs->ss_descs_count = 0;
1504 
1505 	ffs->strings_count = 0;
1506 	ffs->interfaces_count = 0;
1507 	ffs->eps_count = 0;
1508 
1509 	ffs->ev.count = 0;
1510 
1511 	ffs->state = FFS_READ_DESCRIPTORS;
1512 	ffs->setup_state = FFS_NO_SETUP;
1513 	ffs->flags = 0;
1514 }
1515 
1516 
1517 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1518 {
1519 	struct usb_gadget_strings **lang;
1520 	int first_id;
1521 
1522 	ENTER();
1523 
1524 	if (WARN_ON(ffs->state != FFS_ACTIVE
1525 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1526 		return -EBADFD;
1527 
1528 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1529 	if (unlikely(first_id < 0))
1530 		return first_id;
1531 
1532 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1533 	if (unlikely(!ffs->ep0req))
1534 		return -ENOMEM;
1535 	ffs->ep0req->complete = ffs_ep0_complete;
1536 	ffs->ep0req->context = ffs;
1537 
1538 	lang = ffs->stringtabs;
1539 	if (lang) {
1540 		for (; *lang; ++lang) {
1541 			struct usb_string *str = (*lang)->strings;
1542 			int id = first_id;
1543 			for (; str->s; ++id, ++str)
1544 				str->id = id;
1545 		}
1546 	}
1547 
1548 	ffs->gadget = cdev->gadget;
1549 	ffs_data_get(ffs);
1550 	return 0;
1551 }
1552 
1553 static void functionfs_unbind(struct ffs_data *ffs)
1554 {
1555 	ENTER();
1556 
1557 	if (!WARN_ON(!ffs->gadget)) {
1558 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1559 		ffs->ep0req = NULL;
1560 		ffs->gadget = NULL;
1561 		clear_bit(FFS_FL_BOUND, &ffs->flags);
1562 		ffs_data_put(ffs);
1563 	}
1564 }
1565 
1566 static int ffs_epfiles_create(struct ffs_data *ffs)
1567 {
1568 	struct ffs_epfile *epfile, *epfiles;
1569 	unsigned i, count;
1570 
1571 	ENTER();
1572 
1573 	count = ffs->eps_count;
1574 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1575 	if (!epfiles)
1576 		return -ENOMEM;
1577 
1578 	epfile = epfiles;
1579 	for (i = 1; i <= count; ++i, ++epfile) {
1580 		epfile->ffs = ffs;
1581 		mutex_init(&epfile->mutex);
1582 		init_waitqueue_head(&epfile->wait);
1583 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1584 			sprintf(epfiles->name, "ep%02x", ffs->eps_addrmap[i]);
1585 		else
1586 			sprintf(epfiles->name, "ep%u", i);
1587 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfiles->name,
1588 						 epfile,
1589 						 &ffs_epfile_operations);
1590 		if (unlikely(!epfile->dentry)) {
1591 			ffs_epfiles_destroy(epfiles, i - 1);
1592 			return -ENOMEM;
1593 		}
1594 	}
1595 
1596 	ffs->epfiles = epfiles;
1597 	return 0;
1598 }
1599 
1600 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1601 {
1602 	struct ffs_epfile *epfile = epfiles;
1603 
1604 	ENTER();
1605 
1606 	for (; count; --count, ++epfile) {
1607 		BUG_ON(mutex_is_locked(&epfile->mutex) ||
1608 		       waitqueue_active(&epfile->wait));
1609 		if (epfile->dentry) {
1610 			d_delete(epfile->dentry);
1611 			dput(epfile->dentry);
1612 			epfile->dentry = NULL;
1613 		}
1614 	}
1615 
1616 	kfree(epfiles);
1617 }
1618 
1619 
1620 static void ffs_func_eps_disable(struct ffs_function *func)
1621 {
1622 	struct ffs_ep *ep         = func->eps;
1623 	struct ffs_epfile *epfile = func->ffs->epfiles;
1624 	unsigned count            = func->ffs->eps_count;
1625 	unsigned long flags;
1626 
1627 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1628 	do {
1629 		/* pending requests get nuked */
1630 		if (likely(ep->ep))
1631 			usb_ep_disable(ep->ep);
1632 		epfile->ep = NULL;
1633 
1634 		++ep;
1635 		++epfile;
1636 	} while (--count);
1637 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1638 }
1639 
1640 static int ffs_func_eps_enable(struct ffs_function *func)
1641 {
1642 	struct ffs_data *ffs      = func->ffs;
1643 	struct ffs_ep *ep         = func->eps;
1644 	struct ffs_epfile *epfile = ffs->epfiles;
1645 	unsigned count            = ffs->eps_count;
1646 	unsigned long flags;
1647 	int ret = 0;
1648 
1649 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1650 	do {
1651 		struct usb_endpoint_descriptor *ds;
1652 		int desc_idx;
1653 
1654 		if (ffs->gadget->speed == USB_SPEED_SUPER)
1655 			desc_idx = 2;
1656 		else if (ffs->gadget->speed == USB_SPEED_HIGH)
1657 			desc_idx = 1;
1658 		else
1659 			desc_idx = 0;
1660 
1661 		/* fall-back to lower speed if desc missing for current speed */
1662 		do {
1663 			ds = ep->descs[desc_idx];
1664 		} while (!ds && --desc_idx >= 0);
1665 
1666 		if (!ds) {
1667 			ret = -EINVAL;
1668 			break;
1669 		}
1670 
1671 		ep->ep->driver_data = ep;
1672 		ep->ep->desc = ds;
1673 		ret = usb_ep_enable(ep->ep);
1674 		if (likely(!ret)) {
1675 			epfile->ep = ep;
1676 			epfile->in = usb_endpoint_dir_in(ds);
1677 			epfile->isoc = usb_endpoint_xfer_isoc(ds);
1678 		} else {
1679 			break;
1680 		}
1681 
1682 		wake_up(&epfile->wait);
1683 
1684 		++ep;
1685 		++epfile;
1686 	} while (--count);
1687 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1688 
1689 	return ret;
1690 }
1691 
1692 
1693 /* Parsing and building descriptors and strings *****************************/
1694 
1695 /*
1696  * This validates if data pointed by data is a valid USB descriptor as
1697  * well as record how many interfaces, endpoints and strings are
1698  * required by given configuration.  Returns address after the
1699  * descriptor or NULL if data is invalid.
1700  */
1701 
1702 enum ffs_entity_type {
1703 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1704 };
1705 
1706 enum ffs_os_desc_type {
1707 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1708 };
1709 
1710 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1711 				   u8 *valuep,
1712 				   struct usb_descriptor_header *desc,
1713 				   void *priv);
1714 
1715 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1716 				    struct usb_os_desc_header *h, void *data,
1717 				    unsigned len, void *priv);
1718 
1719 static int __must_check ffs_do_single_desc(char *data, unsigned len,
1720 					   ffs_entity_callback entity,
1721 					   void *priv)
1722 {
1723 	struct usb_descriptor_header *_ds = (void *)data;
1724 	u8 length;
1725 	int ret;
1726 
1727 	ENTER();
1728 
1729 	/* At least two bytes are required: length and type */
1730 	if (len < 2) {
1731 		pr_vdebug("descriptor too short\n");
1732 		return -EINVAL;
1733 	}
1734 
1735 	/* If we have at least as many bytes as the descriptor takes? */
1736 	length = _ds->bLength;
1737 	if (len < length) {
1738 		pr_vdebug("descriptor longer then available data\n");
1739 		return -EINVAL;
1740 	}
1741 
1742 #define __entity_check_INTERFACE(val)  1
1743 #define __entity_check_STRING(val)     (val)
1744 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
1745 #define __entity(type, val) do {					\
1746 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
1747 		if (unlikely(!__entity_check_ ##type(val))) {		\
1748 			pr_vdebug("invalid entity's value\n");		\
1749 			return -EINVAL;					\
1750 		}							\
1751 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
1752 		if (unlikely(ret < 0)) {				\
1753 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
1754 				 (val), ret);				\
1755 			return ret;					\
1756 		}							\
1757 	} while (0)
1758 
1759 	/* Parse descriptor depending on type. */
1760 	switch (_ds->bDescriptorType) {
1761 	case USB_DT_DEVICE:
1762 	case USB_DT_CONFIG:
1763 	case USB_DT_STRING:
1764 	case USB_DT_DEVICE_QUALIFIER:
1765 		/* function can't have any of those */
1766 		pr_vdebug("descriptor reserved for gadget: %d\n",
1767 		      _ds->bDescriptorType);
1768 		return -EINVAL;
1769 
1770 	case USB_DT_INTERFACE: {
1771 		struct usb_interface_descriptor *ds = (void *)_ds;
1772 		pr_vdebug("interface descriptor\n");
1773 		if (length != sizeof *ds)
1774 			goto inv_length;
1775 
1776 		__entity(INTERFACE, ds->bInterfaceNumber);
1777 		if (ds->iInterface)
1778 			__entity(STRING, ds->iInterface);
1779 	}
1780 		break;
1781 
1782 	case USB_DT_ENDPOINT: {
1783 		struct usb_endpoint_descriptor *ds = (void *)_ds;
1784 		pr_vdebug("endpoint descriptor\n");
1785 		if (length != USB_DT_ENDPOINT_SIZE &&
1786 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
1787 			goto inv_length;
1788 		__entity(ENDPOINT, ds->bEndpointAddress);
1789 	}
1790 		break;
1791 
1792 	case HID_DT_HID:
1793 		pr_vdebug("hid descriptor\n");
1794 		if (length != sizeof(struct hid_descriptor))
1795 			goto inv_length;
1796 		break;
1797 
1798 	case USB_DT_OTG:
1799 		if (length != sizeof(struct usb_otg_descriptor))
1800 			goto inv_length;
1801 		break;
1802 
1803 	case USB_DT_INTERFACE_ASSOCIATION: {
1804 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
1805 		pr_vdebug("interface association descriptor\n");
1806 		if (length != sizeof *ds)
1807 			goto inv_length;
1808 		if (ds->iFunction)
1809 			__entity(STRING, ds->iFunction);
1810 	}
1811 		break;
1812 
1813 	case USB_DT_SS_ENDPOINT_COMP:
1814 		pr_vdebug("EP SS companion descriptor\n");
1815 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
1816 			goto inv_length;
1817 		break;
1818 
1819 	case USB_DT_OTHER_SPEED_CONFIG:
1820 	case USB_DT_INTERFACE_POWER:
1821 	case USB_DT_DEBUG:
1822 	case USB_DT_SECURITY:
1823 	case USB_DT_CS_RADIO_CONTROL:
1824 		/* TODO */
1825 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
1826 		return -EINVAL;
1827 
1828 	default:
1829 		/* We should never be here */
1830 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
1831 		return -EINVAL;
1832 
1833 inv_length:
1834 		pr_vdebug("invalid length: %d (descriptor %d)\n",
1835 			  _ds->bLength, _ds->bDescriptorType);
1836 		return -EINVAL;
1837 	}
1838 
1839 #undef __entity
1840 #undef __entity_check_DESCRIPTOR
1841 #undef __entity_check_INTERFACE
1842 #undef __entity_check_STRING
1843 #undef __entity_check_ENDPOINT
1844 
1845 	return length;
1846 }
1847 
1848 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
1849 				     ffs_entity_callback entity, void *priv)
1850 {
1851 	const unsigned _len = len;
1852 	unsigned long num = 0;
1853 
1854 	ENTER();
1855 
1856 	for (;;) {
1857 		int ret;
1858 
1859 		if (num == count)
1860 			data = NULL;
1861 
1862 		/* Record "descriptor" entity */
1863 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
1864 		if (unlikely(ret < 0)) {
1865 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
1866 				 num, ret);
1867 			return ret;
1868 		}
1869 
1870 		if (!data)
1871 			return _len - len;
1872 
1873 		ret = ffs_do_single_desc(data, len, entity, priv);
1874 		if (unlikely(ret < 0)) {
1875 			pr_debug("%s returns %d\n", __func__, ret);
1876 			return ret;
1877 		}
1878 
1879 		len -= ret;
1880 		data += ret;
1881 		++num;
1882 	}
1883 }
1884 
1885 static int __ffs_data_do_entity(enum ffs_entity_type type,
1886 				u8 *valuep, struct usb_descriptor_header *desc,
1887 				void *priv)
1888 {
1889 	struct ffs_desc_helper *helper = priv;
1890 	struct usb_endpoint_descriptor *d;
1891 
1892 	ENTER();
1893 
1894 	switch (type) {
1895 	case FFS_DESCRIPTOR:
1896 		break;
1897 
1898 	case FFS_INTERFACE:
1899 		/*
1900 		 * Interfaces are indexed from zero so if we
1901 		 * encountered interface "n" then there are at least
1902 		 * "n+1" interfaces.
1903 		 */
1904 		if (*valuep >= helper->interfaces_count)
1905 			helper->interfaces_count = *valuep + 1;
1906 		break;
1907 
1908 	case FFS_STRING:
1909 		/*
1910 		 * Strings are indexed from 1 (0 is magic ;) reserved
1911 		 * for languages list or some such)
1912 		 */
1913 		if (*valuep > helper->ffs->strings_count)
1914 			helper->ffs->strings_count = *valuep;
1915 		break;
1916 
1917 	case FFS_ENDPOINT:
1918 		d = (void *)desc;
1919 		helper->eps_count++;
1920 		if (helper->eps_count >= 15)
1921 			return -EINVAL;
1922 		/* Check if descriptors for any speed were already parsed */
1923 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
1924 			helper->ffs->eps_addrmap[helper->eps_count] =
1925 				d->bEndpointAddress;
1926 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
1927 				d->bEndpointAddress)
1928 			return -EINVAL;
1929 		break;
1930 	}
1931 
1932 	return 0;
1933 }
1934 
1935 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
1936 				   struct usb_os_desc_header *desc)
1937 {
1938 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
1939 	u16 w_index = le16_to_cpu(desc->wIndex);
1940 
1941 	if (bcd_version != 1) {
1942 		pr_vdebug("unsupported os descriptors version: %d",
1943 			  bcd_version);
1944 		return -EINVAL;
1945 	}
1946 	switch (w_index) {
1947 	case 0x4:
1948 		*next_type = FFS_OS_DESC_EXT_COMPAT;
1949 		break;
1950 	case 0x5:
1951 		*next_type = FFS_OS_DESC_EXT_PROP;
1952 		break;
1953 	default:
1954 		pr_vdebug("unsupported os descriptor type: %d", w_index);
1955 		return -EINVAL;
1956 	}
1957 
1958 	return sizeof(*desc);
1959 }
1960 
1961 /*
1962  * Process all extended compatibility/extended property descriptors
1963  * of a feature descriptor
1964  */
1965 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
1966 					      enum ffs_os_desc_type type,
1967 					      u16 feature_count,
1968 					      ffs_os_desc_callback entity,
1969 					      void *priv,
1970 					      struct usb_os_desc_header *h)
1971 {
1972 	int ret;
1973 	const unsigned _len = len;
1974 
1975 	ENTER();
1976 
1977 	/* loop over all ext compat/ext prop descriptors */
1978 	while (feature_count--) {
1979 		ret = entity(type, h, data, len, priv);
1980 		if (unlikely(ret < 0)) {
1981 			pr_debug("bad OS descriptor, type: %d\n", type);
1982 			return ret;
1983 		}
1984 		data += ret;
1985 		len -= ret;
1986 	}
1987 	return _len - len;
1988 }
1989 
1990 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
1991 static int __must_check ffs_do_os_descs(unsigned count,
1992 					char *data, unsigned len,
1993 					ffs_os_desc_callback entity, void *priv)
1994 {
1995 	const unsigned _len = len;
1996 	unsigned long num = 0;
1997 
1998 	ENTER();
1999 
2000 	for (num = 0; num < count; ++num) {
2001 		int ret;
2002 		enum ffs_os_desc_type type;
2003 		u16 feature_count;
2004 		struct usb_os_desc_header *desc = (void *)data;
2005 
2006 		if (len < sizeof(*desc))
2007 			return -EINVAL;
2008 
2009 		/*
2010 		 * Record "descriptor" entity.
2011 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2012 		 * Move the data pointer to the beginning of extended
2013 		 * compatibilities proper or extended properties proper
2014 		 * portions of the data
2015 		 */
2016 		if (le32_to_cpu(desc->dwLength) > len)
2017 			return -EINVAL;
2018 
2019 		ret = __ffs_do_os_desc_header(&type, desc);
2020 		if (unlikely(ret < 0)) {
2021 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2022 				 num, ret);
2023 			return ret;
2024 		}
2025 		/*
2026 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2027 		 */
2028 		feature_count = le16_to_cpu(desc->wCount);
2029 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2030 		    (feature_count > 255 || desc->Reserved))
2031 				return -EINVAL;
2032 		len -= ret;
2033 		data += ret;
2034 
2035 		/*
2036 		 * Process all function/property descriptors
2037 		 * of this Feature Descriptor
2038 		 */
2039 		ret = ffs_do_single_os_desc(data, len, type,
2040 					    feature_count, entity, priv, desc);
2041 		if (unlikely(ret < 0)) {
2042 			pr_debug("%s returns %d\n", __func__, ret);
2043 			return ret;
2044 		}
2045 
2046 		len -= ret;
2047 		data += ret;
2048 	}
2049 	return _len - len;
2050 }
2051 
2052 /**
2053  * Validate contents of the buffer from userspace related to OS descriptors.
2054  */
2055 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2056 				 struct usb_os_desc_header *h, void *data,
2057 				 unsigned len, void *priv)
2058 {
2059 	struct ffs_data *ffs = priv;
2060 	u8 length;
2061 
2062 	ENTER();
2063 
2064 	switch (type) {
2065 	case FFS_OS_DESC_EXT_COMPAT: {
2066 		struct usb_ext_compat_desc *d = data;
2067 		int i;
2068 
2069 		if (len < sizeof(*d) ||
2070 		    d->bFirstInterfaceNumber >= ffs->interfaces_count ||
2071 		    d->Reserved1)
2072 			return -EINVAL;
2073 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2074 			if (d->Reserved2[i])
2075 				return -EINVAL;
2076 
2077 		length = sizeof(struct usb_ext_compat_desc);
2078 	}
2079 		break;
2080 	case FFS_OS_DESC_EXT_PROP: {
2081 		struct usb_ext_prop_desc *d = data;
2082 		u32 type, pdl;
2083 		u16 pnl;
2084 
2085 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2086 			return -EINVAL;
2087 		length = le32_to_cpu(d->dwSize);
2088 		type = le32_to_cpu(d->dwPropertyDataType);
2089 		if (type < USB_EXT_PROP_UNICODE ||
2090 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2091 			pr_vdebug("unsupported os descriptor property type: %d",
2092 				  type);
2093 			return -EINVAL;
2094 		}
2095 		pnl = le16_to_cpu(d->wPropertyNameLength);
2096 		pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl));
2097 		if (length != 14 + pnl + pdl) {
2098 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2099 				  length, pnl, pdl, type);
2100 			return -EINVAL;
2101 		}
2102 		++ffs->ms_os_descs_ext_prop_count;
2103 		/* property name reported to the host as "WCHAR"s */
2104 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2105 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2106 	}
2107 		break;
2108 	default:
2109 		pr_vdebug("unknown descriptor: %d\n", type);
2110 		return -EINVAL;
2111 	}
2112 	return length;
2113 }
2114 
2115 static int __ffs_data_got_descs(struct ffs_data *ffs,
2116 				char *const _data, size_t len)
2117 {
2118 	char *data = _data, *raw_descs;
2119 	unsigned os_descs_count = 0, counts[3], flags;
2120 	int ret = -EINVAL, i;
2121 	struct ffs_desc_helper helper;
2122 
2123 	ENTER();
2124 
2125 	if (get_unaligned_le32(data + 4) != len)
2126 		goto error;
2127 
2128 	switch (get_unaligned_le32(data)) {
2129 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2130 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2131 		data += 8;
2132 		len  -= 8;
2133 		break;
2134 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2135 		flags = get_unaligned_le32(data + 8);
2136 		ffs->user_flags = flags;
2137 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2138 			      FUNCTIONFS_HAS_HS_DESC |
2139 			      FUNCTIONFS_HAS_SS_DESC |
2140 			      FUNCTIONFS_HAS_MS_OS_DESC |
2141 			      FUNCTIONFS_VIRTUAL_ADDR)) {
2142 			ret = -ENOSYS;
2143 			goto error;
2144 		}
2145 		data += 12;
2146 		len  -= 12;
2147 		break;
2148 	default:
2149 		goto error;
2150 	}
2151 
2152 	/* Read fs_count, hs_count and ss_count (if present) */
2153 	for (i = 0; i < 3; ++i) {
2154 		if (!(flags & (1 << i))) {
2155 			counts[i] = 0;
2156 		} else if (len < 4) {
2157 			goto error;
2158 		} else {
2159 			counts[i] = get_unaligned_le32(data);
2160 			data += 4;
2161 			len  -= 4;
2162 		}
2163 	}
2164 	if (flags & (1 << i)) {
2165 		os_descs_count = get_unaligned_le32(data);
2166 		data += 4;
2167 		len -= 4;
2168 	};
2169 
2170 	/* Read descriptors */
2171 	raw_descs = data;
2172 	helper.ffs = ffs;
2173 	for (i = 0; i < 3; ++i) {
2174 		if (!counts[i])
2175 			continue;
2176 		helper.interfaces_count = 0;
2177 		helper.eps_count = 0;
2178 		ret = ffs_do_descs(counts[i], data, len,
2179 				   __ffs_data_do_entity, &helper);
2180 		if (ret < 0)
2181 			goto error;
2182 		if (!ffs->eps_count && !ffs->interfaces_count) {
2183 			ffs->eps_count = helper.eps_count;
2184 			ffs->interfaces_count = helper.interfaces_count;
2185 		} else {
2186 			if (ffs->eps_count != helper.eps_count) {
2187 				ret = -EINVAL;
2188 				goto error;
2189 			}
2190 			if (ffs->interfaces_count != helper.interfaces_count) {
2191 				ret = -EINVAL;
2192 				goto error;
2193 			}
2194 		}
2195 		data += ret;
2196 		len  -= ret;
2197 	}
2198 	if (os_descs_count) {
2199 		ret = ffs_do_os_descs(os_descs_count, data, len,
2200 				      __ffs_data_do_os_desc, ffs);
2201 		if (ret < 0)
2202 			goto error;
2203 		data += ret;
2204 		len -= ret;
2205 	}
2206 
2207 	if (raw_descs == data || len) {
2208 		ret = -EINVAL;
2209 		goto error;
2210 	}
2211 
2212 	ffs->raw_descs_data	= _data;
2213 	ffs->raw_descs		= raw_descs;
2214 	ffs->raw_descs_length	= data - raw_descs;
2215 	ffs->fs_descs_count	= counts[0];
2216 	ffs->hs_descs_count	= counts[1];
2217 	ffs->ss_descs_count	= counts[2];
2218 	ffs->ms_os_descs_count	= os_descs_count;
2219 
2220 	return 0;
2221 
2222 error:
2223 	kfree(_data);
2224 	return ret;
2225 }
2226 
2227 static int __ffs_data_got_strings(struct ffs_data *ffs,
2228 				  char *const _data, size_t len)
2229 {
2230 	u32 str_count, needed_count, lang_count;
2231 	struct usb_gadget_strings **stringtabs, *t;
2232 	struct usb_string *strings, *s;
2233 	const char *data = _data;
2234 
2235 	ENTER();
2236 
2237 	if (unlikely(get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2238 		     get_unaligned_le32(data + 4) != len))
2239 		goto error;
2240 	str_count  = get_unaligned_le32(data + 8);
2241 	lang_count = get_unaligned_le32(data + 12);
2242 
2243 	/* if one is zero the other must be zero */
2244 	if (unlikely(!str_count != !lang_count))
2245 		goto error;
2246 
2247 	/* Do we have at least as many strings as descriptors need? */
2248 	needed_count = ffs->strings_count;
2249 	if (unlikely(str_count < needed_count))
2250 		goto error;
2251 
2252 	/*
2253 	 * If we don't need any strings just return and free all
2254 	 * memory.
2255 	 */
2256 	if (!needed_count) {
2257 		kfree(_data);
2258 		return 0;
2259 	}
2260 
2261 	/* Allocate everything in one chunk so there's less maintenance. */
2262 	{
2263 		unsigned i = 0;
2264 		vla_group(d);
2265 		vla_item(d, struct usb_gadget_strings *, stringtabs,
2266 			lang_count + 1);
2267 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2268 		vla_item(d, struct usb_string, strings,
2269 			lang_count*(needed_count+1));
2270 
2271 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2272 
2273 		if (unlikely(!vlabuf)) {
2274 			kfree(_data);
2275 			return -ENOMEM;
2276 		}
2277 
2278 		/* Initialize the VLA pointers */
2279 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2280 		t = vla_ptr(vlabuf, d, stringtab);
2281 		i = lang_count;
2282 		do {
2283 			*stringtabs++ = t++;
2284 		} while (--i);
2285 		*stringtabs = NULL;
2286 
2287 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2288 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2289 		t = vla_ptr(vlabuf, d, stringtab);
2290 		s = vla_ptr(vlabuf, d, strings);
2291 		strings = s;
2292 	}
2293 
2294 	/* For each language */
2295 	data += 16;
2296 	len -= 16;
2297 
2298 	do { /* lang_count > 0 so we can use do-while */
2299 		unsigned needed = needed_count;
2300 
2301 		if (unlikely(len < 3))
2302 			goto error_free;
2303 		t->language = get_unaligned_le16(data);
2304 		t->strings  = s;
2305 		++t;
2306 
2307 		data += 2;
2308 		len -= 2;
2309 
2310 		/* For each string */
2311 		do { /* str_count > 0 so we can use do-while */
2312 			size_t length = strnlen(data, len);
2313 
2314 			if (unlikely(length == len))
2315 				goto error_free;
2316 
2317 			/*
2318 			 * User may provide more strings then we need,
2319 			 * if that's the case we simply ignore the
2320 			 * rest
2321 			 */
2322 			if (likely(needed)) {
2323 				/*
2324 				 * s->id will be set while adding
2325 				 * function to configuration so for
2326 				 * now just leave garbage here.
2327 				 */
2328 				s->s = data;
2329 				--needed;
2330 				++s;
2331 			}
2332 
2333 			data += length + 1;
2334 			len -= length + 1;
2335 		} while (--str_count);
2336 
2337 		s->id = 0;   /* terminator */
2338 		s->s = NULL;
2339 		++s;
2340 
2341 	} while (--lang_count);
2342 
2343 	/* Some garbage left? */
2344 	if (unlikely(len))
2345 		goto error_free;
2346 
2347 	/* Done! */
2348 	ffs->stringtabs = stringtabs;
2349 	ffs->raw_strings = _data;
2350 
2351 	return 0;
2352 
2353 error_free:
2354 	kfree(stringtabs);
2355 error:
2356 	kfree(_data);
2357 	return -EINVAL;
2358 }
2359 
2360 
2361 /* Events handling and management *******************************************/
2362 
2363 static void __ffs_event_add(struct ffs_data *ffs,
2364 			    enum usb_functionfs_event_type type)
2365 {
2366 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2367 	int neg = 0;
2368 
2369 	/*
2370 	 * Abort any unhandled setup
2371 	 *
2372 	 * We do not need to worry about some cmpxchg() changing value
2373 	 * of ffs->setup_state without holding the lock because when
2374 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2375 	 * the source does nothing.
2376 	 */
2377 	if (ffs->setup_state == FFS_SETUP_PENDING)
2378 		ffs->setup_state = FFS_SETUP_CANCELLED;
2379 
2380 	switch (type) {
2381 	case FUNCTIONFS_RESUME:
2382 		rem_type2 = FUNCTIONFS_SUSPEND;
2383 		/* FALL THROUGH */
2384 	case FUNCTIONFS_SUSPEND:
2385 	case FUNCTIONFS_SETUP:
2386 		rem_type1 = type;
2387 		/* Discard all similar events */
2388 		break;
2389 
2390 	case FUNCTIONFS_BIND:
2391 	case FUNCTIONFS_UNBIND:
2392 	case FUNCTIONFS_DISABLE:
2393 	case FUNCTIONFS_ENABLE:
2394 		/* Discard everything other then power management. */
2395 		rem_type1 = FUNCTIONFS_SUSPEND;
2396 		rem_type2 = FUNCTIONFS_RESUME;
2397 		neg = 1;
2398 		break;
2399 
2400 	default:
2401 		WARN(1, "%d: unknown event, this should not happen\n", type);
2402 		return;
2403 	}
2404 
2405 	{
2406 		u8 *ev  = ffs->ev.types, *out = ev;
2407 		unsigned n = ffs->ev.count;
2408 		for (; n; --n, ++ev)
2409 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2410 				*out++ = *ev;
2411 			else
2412 				pr_vdebug("purging event %d\n", *ev);
2413 		ffs->ev.count = out - ffs->ev.types;
2414 	}
2415 
2416 	pr_vdebug("adding event %d\n", type);
2417 	ffs->ev.types[ffs->ev.count++] = type;
2418 	wake_up_locked(&ffs->ev.waitq);
2419 }
2420 
2421 static void ffs_event_add(struct ffs_data *ffs,
2422 			  enum usb_functionfs_event_type type)
2423 {
2424 	unsigned long flags;
2425 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2426 	__ffs_event_add(ffs, type);
2427 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2428 }
2429 
2430 /* Bind/unbind USB function hooks *******************************************/
2431 
2432 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2433 {
2434 	int i;
2435 
2436 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2437 		if (ffs->eps_addrmap[i] == endpoint_address)
2438 			return i;
2439 	return -ENOENT;
2440 }
2441 
2442 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2443 				    struct usb_descriptor_header *desc,
2444 				    void *priv)
2445 {
2446 	struct usb_endpoint_descriptor *ds = (void *)desc;
2447 	struct ffs_function *func = priv;
2448 	struct ffs_ep *ffs_ep;
2449 	unsigned ep_desc_id;
2450 	int idx;
2451 	static const char *speed_names[] = { "full", "high", "super" };
2452 
2453 	if (type != FFS_DESCRIPTOR)
2454 		return 0;
2455 
2456 	/*
2457 	 * If ss_descriptors is not NULL, we are reading super speed
2458 	 * descriptors; if hs_descriptors is not NULL, we are reading high
2459 	 * speed descriptors; otherwise, we are reading full speed
2460 	 * descriptors.
2461 	 */
2462 	if (func->function.ss_descriptors) {
2463 		ep_desc_id = 2;
2464 		func->function.ss_descriptors[(long)valuep] = desc;
2465 	} else if (func->function.hs_descriptors) {
2466 		ep_desc_id = 1;
2467 		func->function.hs_descriptors[(long)valuep] = desc;
2468 	} else {
2469 		ep_desc_id = 0;
2470 		func->function.fs_descriptors[(long)valuep]    = desc;
2471 	}
2472 
2473 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2474 		return 0;
2475 
2476 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2477 	if (idx < 0)
2478 		return idx;
2479 
2480 	ffs_ep = func->eps + idx;
2481 
2482 	if (unlikely(ffs_ep->descs[ep_desc_id])) {
2483 		pr_err("two %sspeed descriptors for EP %d\n",
2484 			  speed_names[ep_desc_id],
2485 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2486 		return -EINVAL;
2487 	}
2488 	ffs_ep->descs[ep_desc_id] = ds;
2489 
2490 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2491 	if (ffs_ep->ep) {
2492 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2493 		if (!ds->wMaxPacketSize)
2494 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2495 	} else {
2496 		struct usb_request *req;
2497 		struct usb_ep *ep;
2498 		u8 bEndpointAddress;
2499 
2500 		/*
2501 		 * We back up bEndpointAddress because autoconfig overwrites
2502 		 * it with physical endpoint address.
2503 		 */
2504 		bEndpointAddress = ds->bEndpointAddress;
2505 		pr_vdebug("autoconfig\n");
2506 		ep = usb_ep_autoconfig(func->gadget, ds);
2507 		if (unlikely(!ep))
2508 			return -ENOTSUPP;
2509 		ep->driver_data = func->eps + idx;
2510 
2511 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2512 		if (unlikely(!req))
2513 			return -ENOMEM;
2514 
2515 		ffs_ep->ep  = ep;
2516 		ffs_ep->req = req;
2517 		func->eps_revmap[ds->bEndpointAddress &
2518 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2519 		/*
2520 		 * If we use virtual address mapping, we restore
2521 		 * original bEndpointAddress value.
2522 		 */
2523 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2524 			ds->bEndpointAddress = bEndpointAddress;
2525 	}
2526 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2527 
2528 	return 0;
2529 }
2530 
2531 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2532 				   struct usb_descriptor_header *desc,
2533 				   void *priv)
2534 {
2535 	struct ffs_function *func = priv;
2536 	unsigned idx;
2537 	u8 newValue;
2538 
2539 	switch (type) {
2540 	default:
2541 	case FFS_DESCRIPTOR:
2542 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2543 		return 0;
2544 
2545 	case FFS_INTERFACE:
2546 		idx = *valuep;
2547 		if (func->interfaces_nums[idx] < 0) {
2548 			int id = usb_interface_id(func->conf, &func->function);
2549 			if (unlikely(id < 0))
2550 				return id;
2551 			func->interfaces_nums[idx] = id;
2552 		}
2553 		newValue = func->interfaces_nums[idx];
2554 		break;
2555 
2556 	case FFS_STRING:
2557 		/* String' IDs are allocated when fsf_data is bound to cdev */
2558 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2559 		break;
2560 
2561 	case FFS_ENDPOINT:
2562 		/*
2563 		 * USB_DT_ENDPOINT are handled in
2564 		 * __ffs_func_bind_do_descs().
2565 		 */
2566 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2567 			return 0;
2568 
2569 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2570 		if (unlikely(!func->eps[idx].ep))
2571 			return -EINVAL;
2572 
2573 		{
2574 			struct usb_endpoint_descriptor **descs;
2575 			descs = func->eps[idx].descs;
2576 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2577 		}
2578 		break;
2579 	}
2580 
2581 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2582 	*valuep = newValue;
2583 	return 0;
2584 }
2585 
2586 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2587 				      struct usb_os_desc_header *h, void *data,
2588 				      unsigned len, void *priv)
2589 {
2590 	struct ffs_function *func = priv;
2591 	u8 length = 0;
2592 
2593 	switch (type) {
2594 	case FFS_OS_DESC_EXT_COMPAT: {
2595 		struct usb_ext_compat_desc *desc = data;
2596 		struct usb_os_desc_table *t;
2597 
2598 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2599 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2600 		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2601 		       ARRAY_SIZE(desc->CompatibleID) +
2602 		       ARRAY_SIZE(desc->SubCompatibleID));
2603 		length = sizeof(*desc);
2604 	}
2605 		break;
2606 	case FFS_OS_DESC_EXT_PROP: {
2607 		struct usb_ext_prop_desc *desc = data;
2608 		struct usb_os_desc_table *t;
2609 		struct usb_os_desc_ext_prop *ext_prop;
2610 		char *ext_prop_name;
2611 		char *ext_prop_data;
2612 
2613 		t = &func->function.os_desc_table[h->interface];
2614 		t->if_id = func->interfaces_nums[h->interface];
2615 
2616 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2617 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2618 
2619 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2620 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2621 		ext_prop->data_len = le32_to_cpu(*(u32 *)
2622 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2623 		length = ext_prop->name_len + ext_prop->data_len + 14;
2624 
2625 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2626 		func->ffs->ms_os_descs_ext_prop_name_avail +=
2627 			ext_prop->name_len;
2628 
2629 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2630 		func->ffs->ms_os_descs_ext_prop_data_avail +=
2631 			ext_prop->data_len;
2632 		memcpy(ext_prop_data,
2633 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2634 		       ext_prop->data_len);
2635 		/* unicode data reported to the host as "WCHAR"s */
2636 		switch (ext_prop->type) {
2637 		case USB_EXT_PROP_UNICODE:
2638 		case USB_EXT_PROP_UNICODE_ENV:
2639 		case USB_EXT_PROP_UNICODE_LINK:
2640 		case USB_EXT_PROP_UNICODE_MULTI:
2641 			ext_prop->data_len *= 2;
2642 			break;
2643 		}
2644 		ext_prop->data = ext_prop_data;
2645 
2646 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2647 		       ext_prop->name_len);
2648 		/* property name reported to the host as "WCHAR"s */
2649 		ext_prop->name_len *= 2;
2650 		ext_prop->name = ext_prop_name;
2651 
2652 		t->os_desc->ext_prop_len +=
2653 			ext_prop->name_len + ext_prop->data_len + 14;
2654 		++t->os_desc->ext_prop_count;
2655 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2656 	}
2657 		break;
2658 	default:
2659 		pr_vdebug("unknown descriptor: %d\n", type);
2660 	}
2661 
2662 	return length;
2663 }
2664 
2665 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2666 						struct usb_configuration *c)
2667 {
2668 	struct ffs_function *func = ffs_func_from_usb(f);
2669 	struct f_fs_opts *ffs_opts =
2670 		container_of(f->fi, struct f_fs_opts, func_inst);
2671 	int ret;
2672 
2673 	ENTER();
2674 
2675 	/*
2676 	 * Legacy gadget triggers binding in functionfs_ready_callback,
2677 	 * which already uses locking; taking the same lock here would
2678 	 * cause a deadlock.
2679 	 *
2680 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
2681 	 */
2682 	if (!ffs_opts->no_configfs)
2683 		ffs_dev_lock();
2684 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2685 	func->ffs = ffs_opts->dev->ffs_data;
2686 	if (!ffs_opts->no_configfs)
2687 		ffs_dev_unlock();
2688 	if (ret)
2689 		return ERR_PTR(ret);
2690 
2691 	func->conf = c;
2692 	func->gadget = c->cdev->gadget;
2693 
2694 	/*
2695 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2696 	 * configurations are bound in sequence with list_for_each_entry,
2697 	 * in each configuration its functions are bound in sequence
2698 	 * with list_for_each_entry, so we assume no race condition
2699 	 * with regard to ffs_opts->bound access
2700 	 */
2701 	if (!ffs_opts->refcnt) {
2702 		ret = functionfs_bind(func->ffs, c->cdev);
2703 		if (ret)
2704 			return ERR_PTR(ret);
2705 	}
2706 	ffs_opts->refcnt++;
2707 	func->function.strings = func->ffs->stringtabs;
2708 
2709 	return ffs_opts;
2710 }
2711 
2712 static int _ffs_func_bind(struct usb_configuration *c,
2713 			  struct usb_function *f)
2714 {
2715 	struct ffs_function *func = ffs_func_from_usb(f);
2716 	struct ffs_data *ffs = func->ffs;
2717 
2718 	const int full = !!func->ffs->fs_descs_count;
2719 	const int high = gadget_is_dualspeed(func->gadget) &&
2720 		func->ffs->hs_descs_count;
2721 	const int super = gadget_is_superspeed(func->gadget) &&
2722 		func->ffs->ss_descs_count;
2723 
2724 	int fs_len, hs_len, ss_len, ret, i;
2725 
2726 	/* Make it a single chunk, less management later on */
2727 	vla_group(d);
2728 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2729 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2730 		full ? ffs->fs_descs_count + 1 : 0);
2731 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2732 		high ? ffs->hs_descs_count + 1 : 0);
2733 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2734 		super ? ffs->ss_descs_count + 1 : 0);
2735 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2736 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2737 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2738 	vla_item_with_sz(d, char[16], ext_compat,
2739 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2740 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
2741 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2742 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
2743 			 ffs->ms_os_descs_ext_prop_count);
2744 	vla_item_with_sz(d, char, ext_prop_name,
2745 			 ffs->ms_os_descs_ext_prop_name_len);
2746 	vla_item_with_sz(d, char, ext_prop_data,
2747 			 ffs->ms_os_descs_ext_prop_data_len);
2748 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
2749 	char *vlabuf;
2750 
2751 	ENTER();
2752 
2753 	/* Has descriptors only for speeds gadget does not support */
2754 	if (unlikely(!(full | high | super)))
2755 		return -ENOTSUPP;
2756 
2757 	/* Allocate a single chunk, less management later on */
2758 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
2759 	if (unlikely(!vlabuf))
2760 		return -ENOMEM;
2761 
2762 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
2763 	ffs->ms_os_descs_ext_prop_name_avail =
2764 		vla_ptr(vlabuf, d, ext_prop_name);
2765 	ffs->ms_os_descs_ext_prop_data_avail =
2766 		vla_ptr(vlabuf, d, ext_prop_data);
2767 
2768 	/* Copy descriptors  */
2769 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
2770 	       ffs->raw_descs_length);
2771 
2772 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
2773 	for (ret = ffs->eps_count; ret; --ret) {
2774 		struct ffs_ep *ptr;
2775 
2776 		ptr = vla_ptr(vlabuf, d, eps);
2777 		ptr[ret].num = -1;
2778 	}
2779 
2780 	/* Save pointers
2781 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
2782 	*/
2783 	func->eps             = vla_ptr(vlabuf, d, eps);
2784 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
2785 
2786 	/*
2787 	 * Go through all the endpoint descriptors and allocate
2788 	 * endpoints first, so that later we can rewrite the endpoint
2789 	 * numbers without worrying that it may be described later on.
2790 	 */
2791 	if (likely(full)) {
2792 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
2793 		fs_len = ffs_do_descs(ffs->fs_descs_count,
2794 				      vla_ptr(vlabuf, d, raw_descs),
2795 				      d_raw_descs__sz,
2796 				      __ffs_func_bind_do_descs, func);
2797 		if (unlikely(fs_len < 0)) {
2798 			ret = fs_len;
2799 			goto error;
2800 		}
2801 	} else {
2802 		fs_len = 0;
2803 	}
2804 
2805 	if (likely(high)) {
2806 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
2807 		hs_len = ffs_do_descs(ffs->hs_descs_count,
2808 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
2809 				      d_raw_descs__sz - fs_len,
2810 				      __ffs_func_bind_do_descs, func);
2811 		if (unlikely(hs_len < 0)) {
2812 			ret = hs_len;
2813 			goto error;
2814 		}
2815 	} else {
2816 		hs_len = 0;
2817 	}
2818 
2819 	if (likely(super)) {
2820 		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
2821 		ss_len = ffs_do_descs(ffs->ss_descs_count,
2822 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
2823 				d_raw_descs__sz - fs_len - hs_len,
2824 				__ffs_func_bind_do_descs, func);
2825 		if (unlikely(ss_len < 0)) {
2826 			ret = ss_len;
2827 			goto error;
2828 		}
2829 	} else {
2830 		ss_len = 0;
2831 	}
2832 
2833 	/*
2834 	 * Now handle interface numbers allocation and interface and
2835 	 * endpoint numbers rewriting.  We can do that in one go
2836 	 * now.
2837 	 */
2838 	ret = ffs_do_descs(ffs->fs_descs_count +
2839 			   (high ? ffs->hs_descs_count : 0) +
2840 			   (super ? ffs->ss_descs_count : 0),
2841 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
2842 			   __ffs_func_bind_do_nums, func);
2843 	if (unlikely(ret < 0))
2844 		goto error;
2845 
2846 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
2847 	if (c->cdev->use_os_string)
2848 		for (i = 0; i < ffs->interfaces_count; ++i) {
2849 			struct usb_os_desc *desc;
2850 
2851 			desc = func->function.os_desc_table[i].os_desc =
2852 				vla_ptr(vlabuf, d, os_desc) +
2853 				i * sizeof(struct usb_os_desc);
2854 			desc->ext_compat_id =
2855 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
2856 			INIT_LIST_HEAD(&desc->ext_prop);
2857 		}
2858 	ret = ffs_do_os_descs(ffs->ms_os_descs_count,
2859 			      vla_ptr(vlabuf, d, raw_descs) +
2860 			      fs_len + hs_len + ss_len,
2861 			      d_raw_descs__sz - fs_len - hs_len - ss_len,
2862 			      __ffs_func_bind_do_os_desc, func);
2863 	if (unlikely(ret < 0))
2864 		goto error;
2865 	func->function.os_desc_n =
2866 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
2867 
2868 	/* And we're done */
2869 	ffs_event_add(ffs, FUNCTIONFS_BIND);
2870 	return 0;
2871 
2872 error:
2873 	/* XXX Do we need to release all claimed endpoints here? */
2874 	return ret;
2875 }
2876 
2877 static int ffs_func_bind(struct usb_configuration *c,
2878 			 struct usb_function *f)
2879 {
2880 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
2881 
2882 	if (IS_ERR(ffs_opts))
2883 		return PTR_ERR(ffs_opts);
2884 
2885 	return _ffs_func_bind(c, f);
2886 }
2887 
2888 
2889 /* Other USB function hooks *************************************************/
2890 
2891 static int ffs_func_set_alt(struct usb_function *f,
2892 			    unsigned interface, unsigned alt)
2893 {
2894 	struct ffs_function *func = ffs_func_from_usb(f);
2895 	struct ffs_data *ffs = func->ffs;
2896 	int ret = 0, intf;
2897 
2898 	if (alt != (unsigned)-1) {
2899 		intf = ffs_func_revmap_intf(func, interface);
2900 		if (unlikely(intf < 0))
2901 			return intf;
2902 	}
2903 
2904 	if (ffs->func)
2905 		ffs_func_eps_disable(ffs->func);
2906 
2907 	if (ffs->state != FFS_ACTIVE)
2908 		return -ENODEV;
2909 
2910 	if (alt == (unsigned)-1) {
2911 		ffs->func = NULL;
2912 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
2913 		return 0;
2914 	}
2915 
2916 	ffs->func = func;
2917 	ret = ffs_func_eps_enable(func);
2918 	if (likely(ret >= 0))
2919 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
2920 	return ret;
2921 }
2922 
2923 static void ffs_func_disable(struct usb_function *f)
2924 {
2925 	ffs_func_set_alt(f, 0, (unsigned)-1);
2926 }
2927 
2928 static int ffs_func_setup(struct usb_function *f,
2929 			  const struct usb_ctrlrequest *creq)
2930 {
2931 	struct ffs_function *func = ffs_func_from_usb(f);
2932 	struct ffs_data *ffs = func->ffs;
2933 	unsigned long flags;
2934 	int ret;
2935 
2936 	ENTER();
2937 
2938 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
2939 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
2940 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
2941 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
2942 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
2943 
2944 	/*
2945 	 * Most requests directed to interface go through here
2946 	 * (notable exceptions are set/get interface) so we need to
2947 	 * handle them.  All other either handled by composite or
2948 	 * passed to usb_configuration->setup() (if one is set).  No
2949 	 * matter, we will handle requests directed to endpoint here
2950 	 * as well (as it's straightforward) but what to do with any
2951 	 * other request?
2952 	 */
2953 	if (ffs->state != FFS_ACTIVE)
2954 		return -ENODEV;
2955 
2956 	switch (creq->bRequestType & USB_RECIP_MASK) {
2957 	case USB_RECIP_INTERFACE:
2958 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
2959 		if (unlikely(ret < 0))
2960 			return ret;
2961 		break;
2962 
2963 	case USB_RECIP_ENDPOINT:
2964 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
2965 		if (unlikely(ret < 0))
2966 			return ret;
2967 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2968 			ret = func->ffs->eps_addrmap[ret];
2969 		break;
2970 
2971 	default:
2972 		return -EOPNOTSUPP;
2973 	}
2974 
2975 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2976 	ffs->ev.setup = *creq;
2977 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
2978 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
2979 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2980 
2981 	return 0;
2982 }
2983 
2984 static void ffs_func_suspend(struct usb_function *f)
2985 {
2986 	ENTER();
2987 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
2988 }
2989 
2990 static void ffs_func_resume(struct usb_function *f)
2991 {
2992 	ENTER();
2993 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
2994 }
2995 
2996 
2997 /* Endpoint and interface numbers reverse mapping ***************************/
2998 
2999 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3000 {
3001 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3002 	return num ? num : -EDOM;
3003 }
3004 
3005 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3006 {
3007 	short *nums = func->interfaces_nums;
3008 	unsigned count = func->ffs->interfaces_count;
3009 
3010 	for (; count; --count, ++nums) {
3011 		if (*nums >= 0 && *nums == intf)
3012 			return nums - func->interfaces_nums;
3013 	}
3014 
3015 	return -EDOM;
3016 }
3017 
3018 
3019 /* Devices management *******************************************************/
3020 
3021 static LIST_HEAD(ffs_devices);
3022 
3023 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3024 {
3025 	struct ffs_dev *dev;
3026 
3027 	list_for_each_entry(dev, &ffs_devices, entry) {
3028 		if (!dev->name || !name)
3029 			continue;
3030 		if (strcmp(dev->name, name) == 0)
3031 			return dev;
3032 	}
3033 
3034 	return NULL;
3035 }
3036 
3037 /*
3038  * ffs_lock must be taken by the caller of this function
3039  */
3040 static struct ffs_dev *_ffs_get_single_dev(void)
3041 {
3042 	struct ffs_dev *dev;
3043 
3044 	if (list_is_singular(&ffs_devices)) {
3045 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3046 		if (dev->single)
3047 			return dev;
3048 	}
3049 
3050 	return NULL;
3051 }
3052 
3053 /*
3054  * ffs_lock must be taken by the caller of this function
3055  */
3056 static struct ffs_dev *_ffs_find_dev(const char *name)
3057 {
3058 	struct ffs_dev *dev;
3059 
3060 	dev = _ffs_get_single_dev();
3061 	if (dev)
3062 		return dev;
3063 
3064 	return _ffs_do_find_dev(name);
3065 }
3066 
3067 /* Configfs support *********************************************************/
3068 
3069 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3070 {
3071 	return container_of(to_config_group(item), struct f_fs_opts,
3072 			    func_inst.group);
3073 }
3074 
3075 static void ffs_attr_release(struct config_item *item)
3076 {
3077 	struct f_fs_opts *opts = to_ffs_opts(item);
3078 
3079 	usb_put_function_instance(&opts->func_inst);
3080 }
3081 
3082 static struct configfs_item_operations ffs_item_ops = {
3083 	.release	= ffs_attr_release,
3084 };
3085 
3086 static struct config_item_type ffs_func_type = {
3087 	.ct_item_ops	= &ffs_item_ops,
3088 	.ct_owner	= THIS_MODULE,
3089 };
3090 
3091 
3092 /* Function registration interface ******************************************/
3093 
3094 static void ffs_free_inst(struct usb_function_instance *f)
3095 {
3096 	struct f_fs_opts *opts;
3097 
3098 	opts = to_f_fs_opts(f);
3099 	ffs_dev_lock();
3100 	_ffs_free_dev(opts->dev);
3101 	ffs_dev_unlock();
3102 	kfree(opts);
3103 }
3104 
3105 #define MAX_INST_NAME_LEN	40
3106 
3107 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3108 {
3109 	struct f_fs_opts *opts;
3110 	char *ptr;
3111 	const char *tmp;
3112 	int name_len, ret;
3113 
3114 	name_len = strlen(name) + 1;
3115 	if (name_len > MAX_INST_NAME_LEN)
3116 		return -ENAMETOOLONG;
3117 
3118 	ptr = kstrndup(name, name_len, GFP_KERNEL);
3119 	if (!ptr)
3120 		return -ENOMEM;
3121 
3122 	opts = to_f_fs_opts(fi);
3123 	tmp = NULL;
3124 
3125 	ffs_dev_lock();
3126 
3127 	tmp = opts->dev->name_allocated ? opts->dev->name : NULL;
3128 	ret = _ffs_name_dev(opts->dev, ptr);
3129 	if (ret) {
3130 		kfree(ptr);
3131 		ffs_dev_unlock();
3132 		return ret;
3133 	}
3134 	opts->dev->name_allocated = true;
3135 
3136 	ffs_dev_unlock();
3137 
3138 	kfree(tmp);
3139 
3140 	return 0;
3141 }
3142 
3143 static struct usb_function_instance *ffs_alloc_inst(void)
3144 {
3145 	struct f_fs_opts *opts;
3146 	struct ffs_dev *dev;
3147 
3148 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3149 	if (!opts)
3150 		return ERR_PTR(-ENOMEM);
3151 
3152 	opts->func_inst.set_inst_name = ffs_set_inst_name;
3153 	opts->func_inst.free_func_inst = ffs_free_inst;
3154 	ffs_dev_lock();
3155 	dev = _ffs_alloc_dev();
3156 	ffs_dev_unlock();
3157 	if (IS_ERR(dev)) {
3158 		kfree(opts);
3159 		return ERR_CAST(dev);
3160 	}
3161 	opts->dev = dev;
3162 	dev->opts = opts;
3163 
3164 	config_group_init_type_name(&opts->func_inst.group, "",
3165 				    &ffs_func_type);
3166 	return &opts->func_inst;
3167 }
3168 
3169 static void ffs_free(struct usb_function *f)
3170 {
3171 	kfree(ffs_func_from_usb(f));
3172 }
3173 
3174 static void ffs_func_unbind(struct usb_configuration *c,
3175 			    struct usb_function *f)
3176 {
3177 	struct ffs_function *func = ffs_func_from_usb(f);
3178 	struct ffs_data *ffs = func->ffs;
3179 	struct f_fs_opts *opts =
3180 		container_of(f->fi, struct f_fs_opts, func_inst);
3181 	struct ffs_ep *ep = func->eps;
3182 	unsigned count = ffs->eps_count;
3183 	unsigned long flags;
3184 
3185 	ENTER();
3186 	if (ffs->func == func) {
3187 		ffs_func_eps_disable(func);
3188 		ffs->func = NULL;
3189 	}
3190 
3191 	if (!--opts->refcnt)
3192 		functionfs_unbind(ffs);
3193 
3194 	/* cleanup after autoconfig */
3195 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3196 	do {
3197 		if (ep->ep && ep->req)
3198 			usb_ep_free_request(ep->ep, ep->req);
3199 		ep->req = NULL;
3200 		++ep;
3201 	} while (--count);
3202 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3203 	kfree(func->eps);
3204 	func->eps = NULL;
3205 	/*
3206 	 * eps, descriptors and interfaces_nums are allocated in the
3207 	 * same chunk so only one free is required.
3208 	 */
3209 	func->function.fs_descriptors = NULL;
3210 	func->function.hs_descriptors = NULL;
3211 	func->function.ss_descriptors = NULL;
3212 	func->interfaces_nums = NULL;
3213 
3214 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3215 }
3216 
3217 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3218 {
3219 	struct ffs_function *func;
3220 
3221 	ENTER();
3222 
3223 	func = kzalloc(sizeof(*func), GFP_KERNEL);
3224 	if (unlikely(!func))
3225 		return ERR_PTR(-ENOMEM);
3226 
3227 	func->function.name    = "Function FS Gadget";
3228 
3229 	func->function.bind    = ffs_func_bind;
3230 	func->function.unbind  = ffs_func_unbind;
3231 	func->function.set_alt = ffs_func_set_alt;
3232 	func->function.disable = ffs_func_disable;
3233 	func->function.setup   = ffs_func_setup;
3234 	func->function.suspend = ffs_func_suspend;
3235 	func->function.resume  = ffs_func_resume;
3236 	func->function.free_func = ffs_free;
3237 
3238 	return &func->function;
3239 }
3240 
3241 /*
3242  * ffs_lock must be taken by the caller of this function
3243  */
3244 static struct ffs_dev *_ffs_alloc_dev(void)
3245 {
3246 	struct ffs_dev *dev;
3247 	int ret;
3248 
3249 	if (_ffs_get_single_dev())
3250 			return ERR_PTR(-EBUSY);
3251 
3252 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3253 	if (!dev)
3254 		return ERR_PTR(-ENOMEM);
3255 
3256 	if (list_empty(&ffs_devices)) {
3257 		ret = functionfs_init();
3258 		if (ret) {
3259 			kfree(dev);
3260 			return ERR_PTR(ret);
3261 		}
3262 	}
3263 
3264 	list_add(&dev->entry, &ffs_devices);
3265 
3266 	return dev;
3267 }
3268 
3269 /*
3270  * ffs_lock must be taken by the caller of this function
3271  * The caller is responsible for "name" being available whenever f_fs needs it
3272  */
3273 static int _ffs_name_dev(struct ffs_dev *dev, const char *name)
3274 {
3275 	struct ffs_dev *existing;
3276 
3277 	existing = _ffs_do_find_dev(name);
3278 	if (existing)
3279 		return -EBUSY;
3280 
3281 	dev->name = name;
3282 
3283 	return 0;
3284 }
3285 
3286 /*
3287  * The caller is responsible for "name" being available whenever f_fs needs it
3288  */
3289 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3290 {
3291 	int ret;
3292 
3293 	ffs_dev_lock();
3294 	ret = _ffs_name_dev(dev, name);
3295 	ffs_dev_unlock();
3296 
3297 	return ret;
3298 }
3299 EXPORT_SYMBOL_GPL(ffs_name_dev);
3300 
3301 int ffs_single_dev(struct ffs_dev *dev)
3302 {
3303 	int ret;
3304 
3305 	ret = 0;
3306 	ffs_dev_lock();
3307 
3308 	if (!list_is_singular(&ffs_devices))
3309 		ret = -EBUSY;
3310 	else
3311 		dev->single = true;
3312 
3313 	ffs_dev_unlock();
3314 	return ret;
3315 }
3316 EXPORT_SYMBOL_GPL(ffs_single_dev);
3317 
3318 /*
3319  * ffs_lock must be taken by the caller of this function
3320  */
3321 static void _ffs_free_dev(struct ffs_dev *dev)
3322 {
3323 	list_del(&dev->entry);
3324 	if (dev->name_allocated)
3325 		kfree(dev->name);
3326 	kfree(dev);
3327 	if (list_empty(&ffs_devices))
3328 		functionfs_cleanup();
3329 }
3330 
3331 static void *ffs_acquire_dev(const char *dev_name)
3332 {
3333 	struct ffs_dev *ffs_dev;
3334 
3335 	ENTER();
3336 	ffs_dev_lock();
3337 
3338 	ffs_dev = _ffs_find_dev(dev_name);
3339 	if (!ffs_dev)
3340 		ffs_dev = ERR_PTR(-ENOENT);
3341 	else if (ffs_dev->mounted)
3342 		ffs_dev = ERR_PTR(-EBUSY);
3343 	else if (ffs_dev->ffs_acquire_dev_callback &&
3344 	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3345 		ffs_dev = ERR_PTR(-ENOENT);
3346 	else
3347 		ffs_dev->mounted = true;
3348 
3349 	ffs_dev_unlock();
3350 	return ffs_dev;
3351 }
3352 
3353 static void ffs_release_dev(struct ffs_data *ffs_data)
3354 {
3355 	struct ffs_dev *ffs_dev;
3356 
3357 	ENTER();
3358 	ffs_dev_lock();
3359 
3360 	ffs_dev = ffs_data->private_data;
3361 	if (ffs_dev) {
3362 		ffs_dev->mounted = false;
3363 
3364 		if (ffs_dev->ffs_release_dev_callback)
3365 			ffs_dev->ffs_release_dev_callback(ffs_dev);
3366 	}
3367 
3368 	ffs_dev_unlock();
3369 }
3370 
3371 static int ffs_ready(struct ffs_data *ffs)
3372 {
3373 	struct ffs_dev *ffs_obj;
3374 	int ret = 0;
3375 
3376 	ENTER();
3377 	ffs_dev_lock();
3378 
3379 	ffs_obj = ffs->private_data;
3380 	if (!ffs_obj) {
3381 		ret = -EINVAL;
3382 		goto done;
3383 	}
3384 	if (WARN_ON(ffs_obj->desc_ready)) {
3385 		ret = -EBUSY;
3386 		goto done;
3387 	}
3388 
3389 	ffs_obj->desc_ready = true;
3390 	ffs_obj->ffs_data = ffs;
3391 
3392 	if (ffs_obj->ffs_ready_callback)
3393 		ret = ffs_obj->ffs_ready_callback(ffs);
3394 
3395 done:
3396 	ffs_dev_unlock();
3397 	return ret;
3398 }
3399 
3400 static void ffs_closed(struct ffs_data *ffs)
3401 {
3402 	struct ffs_dev *ffs_obj;
3403 
3404 	ENTER();
3405 	ffs_dev_lock();
3406 
3407 	ffs_obj = ffs->private_data;
3408 	if (!ffs_obj)
3409 		goto done;
3410 
3411 	ffs_obj->desc_ready = false;
3412 
3413 	if (ffs_obj->ffs_closed_callback)
3414 		ffs_obj->ffs_closed_callback(ffs);
3415 
3416 	if (!ffs_obj->opts || ffs_obj->opts->no_configfs
3417 	    || !ffs_obj->opts->func_inst.group.cg_item.ci_parent)
3418 		goto done;
3419 
3420 	unregister_gadget_item(ffs_obj->opts->
3421 			       func_inst.group.cg_item.ci_parent->ci_parent);
3422 done:
3423 	ffs_dev_unlock();
3424 }
3425 
3426 /* Misc helper functions ****************************************************/
3427 
3428 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3429 {
3430 	return nonblock
3431 		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3432 		: mutex_lock_interruptible(mutex);
3433 }
3434 
3435 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3436 {
3437 	char *data;
3438 
3439 	if (unlikely(!len))
3440 		return NULL;
3441 
3442 	data = kmalloc(len, GFP_KERNEL);
3443 	if (unlikely(!data))
3444 		return ERR_PTR(-ENOMEM);
3445 
3446 	if (unlikely(__copy_from_user(data, buf, len))) {
3447 		kfree(data);
3448 		return ERR_PTR(-EFAULT);
3449 	}
3450 
3451 	pr_vdebug("Buffer from user space:\n");
3452 	ffs_dump_mem("", data, len);
3453 
3454 	return data;
3455 }
3456 
3457 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3458 MODULE_LICENSE("GPL");
3459 MODULE_AUTHOR("Michal Nazarewicz");
3460