1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * f_fs.c -- user mode file system API for USB composite function controllers 4 * 5 * Copyright (C) 2010 Samsung Electronics 6 * Author: Michal Nazarewicz <mina86@mina86.com> 7 * 8 * Based on inode.c (GadgetFS) which was: 9 * Copyright (C) 2003-2004 David Brownell 10 * Copyright (C) 2003 Agilent Technologies 11 */ 12 13 14 /* #define DEBUG */ 15 /* #define VERBOSE_DEBUG */ 16 17 #include <linux/blkdev.h> 18 #include <linux/pagemap.h> 19 #include <linux/export.h> 20 #include <linux/fs_parser.h> 21 #include <linux/hid.h> 22 #include <linux/mm.h> 23 #include <linux/module.h> 24 #include <linux/scatterlist.h> 25 #include <linux/sched/signal.h> 26 #include <linux/uio.h> 27 #include <linux/vmalloc.h> 28 #include <asm/unaligned.h> 29 30 #include <linux/usb/ccid.h> 31 #include <linux/usb/composite.h> 32 #include <linux/usb/functionfs.h> 33 34 #include <linux/aio.h> 35 #include <linux/mmu_context.h> 36 #include <linux/poll.h> 37 #include <linux/eventfd.h> 38 39 #include "u_fs.h" 40 #include "u_f.h" 41 #include "u_os_desc.h" 42 #include "configfs.h" 43 44 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ 45 46 /* Reference counter handling */ 47 static void ffs_data_get(struct ffs_data *ffs); 48 static void ffs_data_put(struct ffs_data *ffs); 49 /* Creates new ffs_data object. */ 50 static struct ffs_data *__must_check ffs_data_new(const char *dev_name) 51 __attribute__((malloc)); 52 53 /* Opened counter handling. */ 54 static void ffs_data_opened(struct ffs_data *ffs); 55 static void ffs_data_closed(struct ffs_data *ffs); 56 57 /* Called with ffs->mutex held; take over ownership of data. */ 58 static int __must_check 59 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); 60 static int __must_check 61 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); 62 63 64 /* The function structure ***************************************************/ 65 66 struct ffs_ep; 67 68 struct ffs_function { 69 struct usb_configuration *conf; 70 struct usb_gadget *gadget; 71 struct ffs_data *ffs; 72 73 struct ffs_ep *eps; 74 u8 eps_revmap[16]; 75 short *interfaces_nums; 76 77 struct usb_function function; 78 }; 79 80 81 static struct ffs_function *ffs_func_from_usb(struct usb_function *f) 82 { 83 return container_of(f, struct ffs_function, function); 84 } 85 86 87 static inline enum ffs_setup_state 88 ffs_setup_state_clear_cancelled(struct ffs_data *ffs) 89 { 90 return (enum ffs_setup_state) 91 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); 92 } 93 94 95 static void ffs_func_eps_disable(struct ffs_function *func); 96 static int __must_check ffs_func_eps_enable(struct ffs_function *func); 97 98 static int ffs_func_bind(struct usb_configuration *, 99 struct usb_function *); 100 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); 101 static void ffs_func_disable(struct usb_function *); 102 static int ffs_func_setup(struct usb_function *, 103 const struct usb_ctrlrequest *); 104 static bool ffs_func_req_match(struct usb_function *, 105 const struct usb_ctrlrequest *, 106 bool config0); 107 static void ffs_func_suspend(struct usb_function *); 108 static void ffs_func_resume(struct usb_function *); 109 110 111 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); 112 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); 113 114 115 /* The endpoints structures *************************************************/ 116 117 struct ffs_ep { 118 struct usb_ep *ep; /* P: ffs->eps_lock */ 119 struct usb_request *req; /* P: epfile->mutex */ 120 121 /* [0]: full speed, [1]: high speed, [2]: super speed */ 122 struct usb_endpoint_descriptor *descs[3]; 123 124 u8 num; 125 126 int status; /* P: epfile->mutex */ 127 }; 128 129 struct ffs_epfile { 130 /* Protects ep->ep and ep->req. */ 131 struct mutex mutex; 132 133 struct ffs_data *ffs; 134 struct ffs_ep *ep; /* P: ffs->eps_lock */ 135 136 struct dentry *dentry; 137 138 /* 139 * Buffer for holding data from partial reads which may happen since 140 * we’re rounding user read requests to a multiple of a max packet size. 141 * 142 * The pointer is initialised with NULL value and may be set by 143 * __ffs_epfile_read_data function to point to a temporary buffer. 144 * 145 * In normal operation, calls to __ffs_epfile_read_buffered will consume 146 * data from said buffer and eventually free it. Importantly, while the 147 * function is using the buffer, it sets the pointer to NULL. This is 148 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered 149 * can never run concurrently (they are synchronised by epfile->mutex) 150 * so the latter will not assign a new value to the pointer. 151 * 152 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is 153 * valid) and sets the pointer to READ_BUFFER_DROP value. This special 154 * value is crux of the synchronisation between ffs_func_eps_disable and 155 * __ffs_epfile_read_data. 156 * 157 * Once __ffs_epfile_read_data is about to finish it will try to set the 158 * pointer back to its old value (as described above), but seeing as the 159 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free 160 * the buffer. 161 * 162 * == State transitions == 163 * 164 * • ptr == NULL: (initial state) 165 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP 166 * ◦ __ffs_epfile_read_buffered: nop 167 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf 168 * ◦ reading finishes: n/a, not in ‘and reading’ state 169 * • ptr == DROP: 170 * ◦ __ffs_epfile_read_buffer_free: nop 171 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL 172 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop 173 * ◦ reading finishes: n/a, not in ‘and reading’ state 174 * • ptr == buf: 175 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP 176 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading 177 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered 178 * is always called first 179 * ◦ reading finishes: n/a, not in ‘and reading’ state 180 * • ptr == NULL and reading: 181 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading 182 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 183 * ◦ __ffs_epfile_read_data: n/a, mutex is held 184 * ◦ reading finishes and … 185 * … all data read: free buf, go to ptr == NULL 186 * … otherwise: go to ptr == buf and reading 187 * • ptr == DROP and reading: 188 * ◦ __ffs_epfile_read_buffer_free: nop 189 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 190 * ◦ __ffs_epfile_read_data: n/a, mutex is held 191 * ◦ reading finishes: free buf, go to ptr == DROP 192 */ 193 struct ffs_buffer *read_buffer; 194 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN)) 195 196 char name[5]; 197 198 unsigned char in; /* P: ffs->eps_lock */ 199 unsigned char isoc; /* P: ffs->eps_lock */ 200 201 unsigned char _pad; 202 }; 203 204 struct ffs_buffer { 205 size_t length; 206 char *data; 207 char storage[]; 208 }; 209 210 /* ffs_io_data structure ***************************************************/ 211 212 struct ffs_io_data { 213 bool aio; 214 bool read; 215 216 struct kiocb *kiocb; 217 struct iov_iter data; 218 const void *to_free; 219 char *buf; 220 221 struct mm_struct *mm; 222 struct work_struct work; 223 224 struct usb_ep *ep; 225 struct usb_request *req; 226 struct sg_table sgt; 227 bool use_sg; 228 229 struct ffs_data *ffs; 230 }; 231 232 struct ffs_desc_helper { 233 struct ffs_data *ffs; 234 unsigned interfaces_count; 235 unsigned eps_count; 236 }; 237 238 static int __must_check ffs_epfiles_create(struct ffs_data *ffs); 239 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count); 240 241 static struct dentry * 242 ffs_sb_create_file(struct super_block *sb, const char *name, void *data, 243 const struct file_operations *fops); 244 245 /* Devices management *******************************************************/ 246 247 DEFINE_MUTEX(ffs_lock); 248 EXPORT_SYMBOL_GPL(ffs_lock); 249 250 static struct ffs_dev *_ffs_find_dev(const char *name); 251 static struct ffs_dev *_ffs_alloc_dev(void); 252 static void _ffs_free_dev(struct ffs_dev *dev); 253 static void *ffs_acquire_dev(const char *dev_name); 254 static void ffs_release_dev(struct ffs_data *ffs_data); 255 static int ffs_ready(struct ffs_data *ffs); 256 static void ffs_closed(struct ffs_data *ffs); 257 258 /* Misc helper functions ****************************************************/ 259 260 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 261 __attribute__((warn_unused_result, nonnull)); 262 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 263 __attribute__((warn_unused_result, nonnull)); 264 265 266 /* Control file aka ep0 *****************************************************/ 267 268 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) 269 { 270 struct ffs_data *ffs = req->context; 271 272 complete(&ffs->ep0req_completion); 273 } 274 275 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) 276 __releases(&ffs->ev.waitq.lock) 277 { 278 struct usb_request *req = ffs->ep0req; 279 int ret; 280 281 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); 282 283 spin_unlock_irq(&ffs->ev.waitq.lock); 284 285 req->buf = data; 286 req->length = len; 287 288 /* 289 * UDC layer requires to provide a buffer even for ZLP, but should 290 * not use it at all. Let's provide some poisoned pointer to catch 291 * possible bug in the driver. 292 */ 293 if (req->buf == NULL) 294 req->buf = (void *)0xDEADBABE; 295 296 reinit_completion(&ffs->ep0req_completion); 297 298 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); 299 if (unlikely(ret < 0)) 300 return ret; 301 302 ret = wait_for_completion_interruptible(&ffs->ep0req_completion); 303 if (unlikely(ret)) { 304 usb_ep_dequeue(ffs->gadget->ep0, req); 305 return -EINTR; 306 } 307 308 ffs->setup_state = FFS_NO_SETUP; 309 return req->status ? req->status : req->actual; 310 } 311 312 static int __ffs_ep0_stall(struct ffs_data *ffs) 313 { 314 if (ffs->ev.can_stall) { 315 pr_vdebug("ep0 stall\n"); 316 usb_ep_set_halt(ffs->gadget->ep0); 317 ffs->setup_state = FFS_NO_SETUP; 318 return -EL2HLT; 319 } else { 320 pr_debug("bogus ep0 stall!\n"); 321 return -ESRCH; 322 } 323 } 324 325 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, 326 size_t len, loff_t *ptr) 327 { 328 struct ffs_data *ffs = file->private_data; 329 ssize_t ret; 330 char *data; 331 332 ENTER(); 333 334 /* Fast check if setup was canceled */ 335 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 336 return -EIDRM; 337 338 /* Acquire mutex */ 339 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 340 if (unlikely(ret < 0)) 341 return ret; 342 343 /* Check state */ 344 switch (ffs->state) { 345 case FFS_READ_DESCRIPTORS: 346 case FFS_READ_STRINGS: 347 /* Copy data */ 348 if (unlikely(len < 16)) { 349 ret = -EINVAL; 350 break; 351 } 352 353 data = ffs_prepare_buffer(buf, len); 354 if (IS_ERR(data)) { 355 ret = PTR_ERR(data); 356 break; 357 } 358 359 /* Handle data */ 360 if (ffs->state == FFS_READ_DESCRIPTORS) { 361 pr_info("read descriptors\n"); 362 ret = __ffs_data_got_descs(ffs, data, len); 363 if (unlikely(ret < 0)) 364 break; 365 366 ffs->state = FFS_READ_STRINGS; 367 ret = len; 368 } else { 369 pr_info("read strings\n"); 370 ret = __ffs_data_got_strings(ffs, data, len); 371 if (unlikely(ret < 0)) 372 break; 373 374 ret = ffs_epfiles_create(ffs); 375 if (unlikely(ret)) { 376 ffs->state = FFS_CLOSING; 377 break; 378 } 379 380 ffs->state = FFS_ACTIVE; 381 mutex_unlock(&ffs->mutex); 382 383 ret = ffs_ready(ffs); 384 if (unlikely(ret < 0)) { 385 ffs->state = FFS_CLOSING; 386 return ret; 387 } 388 389 return len; 390 } 391 break; 392 393 case FFS_ACTIVE: 394 data = NULL; 395 /* 396 * We're called from user space, we can use _irq 397 * rather then _irqsave 398 */ 399 spin_lock_irq(&ffs->ev.waitq.lock); 400 switch (ffs_setup_state_clear_cancelled(ffs)) { 401 case FFS_SETUP_CANCELLED: 402 ret = -EIDRM; 403 goto done_spin; 404 405 case FFS_NO_SETUP: 406 ret = -ESRCH; 407 goto done_spin; 408 409 case FFS_SETUP_PENDING: 410 break; 411 } 412 413 /* FFS_SETUP_PENDING */ 414 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { 415 spin_unlock_irq(&ffs->ev.waitq.lock); 416 ret = __ffs_ep0_stall(ffs); 417 break; 418 } 419 420 /* FFS_SETUP_PENDING and not stall */ 421 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 422 423 spin_unlock_irq(&ffs->ev.waitq.lock); 424 425 data = ffs_prepare_buffer(buf, len); 426 if (IS_ERR(data)) { 427 ret = PTR_ERR(data); 428 break; 429 } 430 431 spin_lock_irq(&ffs->ev.waitq.lock); 432 433 /* 434 * We are guaranteed to be still in FFS_ACTIVE state 435 * but the state of setup could have changed from 436 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need 437 * to check for that. If that happened we copied data 438 * from user space in vain but it's unlikely. 439 * 440 * For sure we are not in FFS_NO_SETUP since this is 441 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP 442 * transition can be performed and it's protected by 443 * mutex. 444 */ 445 if (ffs_setup_state_clear_cancelled(ffs) == 446 FFS_SETUP_CANCELLED) { 447 ret = -EIDRM; 448 done_spin: 449 spin_unlock_irq(&ffs->ev.waitq.lock); 450 } else { 451 /* unlocks spinlock */ 452 ret = __ffs_ep0_queue_wait(ffs, data, len); 453 } 454 kfree(data); 455 break; 456 457 default: 458 ret = -EBADFD; 459 break; 460 } 461 462 mutex_unlock(&ffs->mutex); 463 return ret; 464 } 465 466 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */ 467 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, 468 size_t n) 469 __releases(&ffs->ev.waitq.lock) 470 { 471 /* 472 * n cannot be bigger than ffs->ev.count, which cannot be bigger than 473 * size of ffs->ev.types array (which is four) so that's how much space 474 * we reserve. 475 */ 476 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)]; 477 const size_t size = n * sizeof *events; 478 unsigned i = 0; 479 480 memset(events, 0, size); 481 482 do { 483 events[i].type = ffs->ev.types[i]; 484 if (events[i].type == FUNCTIONFS_SETUP) { 485 events[i].u.setup = ffs->ev.setup; 486 ffs->setup_state = FFS_SETUP_PENDING; 487 } 488 } while (++i < n); 489 490 ffs->ev.count -= n; 491 if (ffs->ev.count) 492 memmove(ffs->ev.types, ffs->ev.types + n, 493 ffs->ev.count * sizeof *ffs->ev.types); 494 495 spin_unlock_irq(&ffs->ev.waitq.lock); 496 mutex_unlock(&ffs->mutex); 497 498 return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size; 499 } 500 501 static ssize_t ffs_ep0_read(struct file *file, char __user *buf, 502 size_t len, loff_t *ptr) 503 { 504 struct ffs_data *ffs = file->private_data; 505 char *data = NULL; 506 size_t n; 507 int ret; 508 509 ENTER(); 510 511 /* Fast check if setup was canceled */ 512 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 513 return -EIDRM; 514 515 /* Acquire mutex */ 516 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 517 if (unlikely(ret < 0)) 518 return ret; 519 520 /* Check state */ 521 if (ffs->state != FFS_ACTIVE) { 522 ret = -EBADFD; 523 goto done_mutex; 524 } 525 526 /* 527 * We're called from user space, we can use _irq rather then 528 * _irqsave 529 */ 530 spin_lock_irq(&ffs->ev.waitq.lock); 531 532 switch (ffs_setup_state_clear_cancelled(ffs)) { 533 case FFS_SETUP_CANCELLED: 534 ret = -EIDRM; 535 break; 536 537 case FFS_NO_SETUP: 538 n = len / sizeof(struct usb_functionfs_event); 539 if (unlikely(!n)) { 540 ret = -EINVAL; 541 break; 542 } 543 544 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { 545 ret = -EAGAIN; 546 break; 547 } 548 549 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, 550 ffs->ev.count)) { 551 ret = -EINTR; 552 break; 553 } 554 555 /* unlocks spinlock */ 556 return __ffs_ep0_read_events(ffs, buf, 557 min(n, (size_t)ffs->ev.count)); 558 559 case FFS_SETUP_PENDING: 560 if (ffs->ev.setup.bRequestType & USB_DIR_IN) { 561 spin_unlock_irq(&ffs->ev.waitq.lock); 562 ret = __ffs_ep0_stall(ffs); 563 goto done_mutex; 564 } 565 566 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 567 568 spin_unlock_irq(&ffs->ev.waitq.lock); 569 570 if (likely(len)) { 571 data = kmalloc(len, GFP_KERNEL); 572 if (unlikely(!data)) { 573 ret = -ENOMEM; 574 goto done_mutex; 575 } 576 } 577 578 spin_lock_irq(&ffs->ev.waitq.lock); 579 580 /* See ffs_ep0_write() */ 581 if (ffs_setup_state_clear_cancelled(ffs) == 582 FFS_SETUP_CANCELLED) { 583 ret = -EIDRM; 584 break; 585 } 586 587 /* unlocks spinlock */ 588 ret = __ffs_ep0_queue_wait(ffs, data, len); 589 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len))) 590 ret = -EFAULT; 591 goto done_mutex; 592 593 default: 594 ret = -EBADFD; 595 break; 596 } 597 598 spin_unlock_irq(&ffs->ev.waitq.lock); 599 done_mutex: 600 mutex_unlock(&ffs->mutex); 601 kfree(data); 602 return ret; 603 } 604 605 static int ffs_ep0_open(struct inode *inode, struct file *file) 606 { 607 struct ffs_data *ffs = inode->i_private; 608 609 ENTER(); 610 611 if (unlikely(ffs->state == FFS_CLOSING)) 612 return -EBUSY; 613 614 file->private_data = ffs; 615 ffs_data_opened(ffs); 616 617 return 0; 618 } 619 620 static int ffs_ep0_release(struct inode *inode, struct file *file) 621 { 622 struct ffs_data *ffs = file->private_data; 623 624 ENTER(); 625 626 ffs_data_closed(ffs); 627 628 return 0; 629 } 630 631 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) 632 { 633 struct ffs_data *ffs = file->private_data; 634 struct usb_gadget *gadget = ffs->gadget; 635 long ret; 636 637 ENTER(); 638 639 if (code == FUNCTIONFS_INTERFACE_REVMAP) { 640 struct ffs_function *func = ffs->func; 641 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; 642 } else if (gadget && gadget->ops->ioctl) { 643 ret = gadget->ops->ioctl(gadget, code, value); 644 } else { 645 ret = -ENOTTY; 646 } 647 648 return ret; 649 } 650 651 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait) 652 { 653 struct ffs_data *ffs = file->private_data; 654 __poll_t mask = EPOLLWRNORM; 655 int ret; 656 657 poll_wait(file, &ffs->ev.waitq, wait); 658 659 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 660 if (unlikely(ret < 0)) 661 return mask; 662 663 switch (ffs->state) { 664 case FFS_READ_DESCRIPTORS: 665 case FFS_READ_STRINGS: 666 mask |= EPOLLOUT; 667 break; 668 669 case FFS_ACTIVE: 670 switch (ffs->setup_state) { 671 case FFS_NO_SETUP: 672 if (ffs->ev.count) 673 mask |= EPOLLIN; 674 break; 675 676 case FFS_SETUP_PENDING: 677 case FFS_SETUP_CANCELLED: 678 mask |= (EPOLLIN | EPOLLOUT); 679 break; 680 } 681 case FFS_CLOSING: 682 break; 683 case FFS_DEACTIVATED: 684 break; 685 } 686 687 mutex_unlock(&ffs->mutex); 688 689 return mask; 690 } 691 692 static const struct file_operations ffs_ep0_operations = { 693 .llseek = no_llseek, 694 695 .open = ffs_ep0_open, 696 .write = ffs_ep0_write, 697 .read = ffs_ep0_read, 698 .release = ffs_ep0_release, 699 .unlocked_ioctl = ffs_ep0_ioctl, 700 .poll = ffs_ep0_poll, 701 }; 702 703 704 /* "Normal" endpoints operations ********************************************/ 705 706 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) 707 { 708 ENTER(); 709 if (likely(req->context)) { 710 struct ffs_ep *ep = _ep->driver_data; 711 ep->status = req->status ? req->status : req->actual; 712 complete(req->context); 713 } 714 } 715 716 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter) 717 { 718 ssize_t ret = copy_to_iter(data, data_len, iter); 719 if (likely(ret == data_len)) 720 return ret; 721 722 if (unlikely(iov_iter_count(iter))) 723 return -EFAULT; 724 725 /* 726 * Dear user space developer! 727 * 728 * TL;DR: To stop getting below error message in your kernel log, change 729 * user space code using functionfs to align read buffers to a max 730 * packet size. 731 * 732 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max 733 * packet size. When unaligned buffer is passed to functionfs, it 734 * internally uses a larger, aligned buffer so that such UDCs are happy. 735 * 736 * Unfortunately, this means that host may send more data than was 737 * requested in read(2) system call. f_fs doesn’t know what to do with 738 * that excess data so it simply drops it. 739 * 740 * Was the buffer aligned in the first place, no such problem would 741 * happen. 742 * 743 * Data may be dropped only in AIO reads. Synchronous reads are handled 744 * by splitting a request into multiple parts. This splitting may still 745 * be a problem though so it’s likely best to align the buffer 746 * regardless of it being AIO or not.. 747 * 748 * This only affects OUT endpoints, i.e. reading data with a read(2), 749 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not 750 * affected. 751 */ 752 pr_err("functionfs read size %d > requested size %zd, dropping excess data. " 753 "Align read buffer size to max packet size to avoid the problem.\n", 754 data_len, ret); 755 756 return ret; 757 } 758 759 /* 760 * allocate a virtually contiguous buffer and create a scatterlist describing it 761 * @sg_table - pointer to a place to be filled with sg_table contents 762 * @size - required buffer size 763 */ 764 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz) 765 { 766 struct page **pages; 767 void *vaddr, *ptr; 768 unsigned int n_pages; 769 int i; 770 771 vaddr = vmalloc(sz); 772 if (!vaddr) 773 return NULL; 774 775 n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT; 776 pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL); 777 if (!pages) { 778 vfree(vaddr); 779 780 return NULL; 781 } 782 for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE) 783 pages[i] = vmalloc_to_page(ptr); 784 785 if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) { 786 kvfree(pages); 787 vfree(vaddr); 788 789 return NULL; 790 } 791 kvfree(pages); 792 793 return vaddr; 794 } 795 796 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data, 797 size_t data_len) 798 { 799 if (io_data->use_sg) 800 return ffs_build_sg_list(&io_data->sgt, data_len); 801 802 return kmalloc(data_len, GFP_KERNEL); 803 } 804 805 static inline void ffs_free_buffer(struct ffs_io_data *io_data) 806 { 807 if (!io_data->buf) 808 return; 809 810 if (io_data->use_sg) { 811 sg_free_table(&io_data->sgt); 812 vfree(io_data->buf); 813 } else { 814 kfree(io_data->buf); 815 } 816 } 817 818 static void ffs_user_copy_worker(struct work_struct *work) 819 { 820 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 821 work); 822 int ret = io_data->req->status ? io_data->req->status : 823 io_data->req->actual; 824 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD; 825 826 if (io_data->read && ret > 0) { 827 mm_segment_t oldfs = get_fs(); 828 829 set_fs(USER_DS); 830 use_mm(io_data->mm); 831 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data); 832 unuse_mm(io_data->mm); 833 set_fs(oldfs); 834 } 835 836 io_data->kiocb->ki_complete(io_data->kiocb, ret, ret); 837 838 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd) 839 eventfd_signal(io_data->ffs->ffs_eventfd, 1); 840 841 usb_ep_free_request(io_data->ep, io_data->req); 842 843 if (io_data->read) 844 kfree(io_data->to_free); 845 ffs_free_buffer(io_data); 846 kfree(io_data); 847 } 848 849 static void ffs_epfile_async_io_complete(struct usb_ep *_ep, 850 struct usb_request *req) 851 { 852 struct ffs_io_data *io_data = req->context; 853 struct ffs_data *ffs = io_data->ffs; 854 855 ENTER(); 856 857 INIT_WORK(&io_data->work, ffs_user_copy_worker); 858 queue_work(ffs->io_completion_wq, &io_data->work); 859 } 860 861 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile) 862 { 863 /* 864 * See comment in struct ffs_epfile for full read_buffer pointer 865 * synchronisation story. 866 */ 867 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP); 868 if (buf && buf != READ_BUFFER_DROP) 869 kfree(buf); 870 } 871 872 /* Assumes epfile->mutex is held. */ 873 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile, 874 struct iov_iter *iter) 875 { 876 /* 877 * Null out epfile->read_buffer so ffs_func_eps_disable does not free 878 * the buffer while we are using it. See comment in struct ffs_epfile 879 * for full read_buffer pointer synchronisation story. 880 */ 881 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL); 882 ssize_t ret; 883 if (!buf || buf == READ_BUFFER_DROP) 884 return 0; 885 886 ret = copy_to_iter(buf->data, buf->length, iter); 887 if (buf->length == ret) { 888 kfree(buf); 889 return ret; 890 } 891 892 if (unlikely(iov_iter_count(iter))) { 893 ret = -EFAULT; 894 } else { 895 buf->length -= ret; 896 buf->data += ret; 897 } 898 899 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 900 kfree(buf); 901 902 return ret; 903 } 904 905 /* Assumes epfile->mutex is held. */ 906 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile, 907 void *data, int data_len, 908 struct iov_iter *iter) 909 { 910 struct ffs_buffer *buf; 911 912 ssize_t ret = copy_to_iter(data, data_len, iter); 913 if (likely(data_len == ret)) 914 return ret; 915 916 if (unlikely(iov_iter_count(iter))) 917 return -EFAULT; 918 919 /* See ffs_copy_to_iter for more context. */ 920 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.", 921 data_len, ret); 922 923 data_len -= ret; 924 buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL); 925 if (!buf) 926 return -ENOMEM; 927 buf->length = data_len; 928 buf->data = buf->storage; 929 memcpy(buf->storage, data + ret, data_len); 930 931 /* 932 * At this point read_buffer is NULL or READ_BUFFER_DROP (if 933 * ffs_func_eps_disable has been called in the meanwhile). See comment 934 * in struct ffs_epfile for full read_buffer pointer synchronisation 935 * story. 936 */ 937 if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf))) 938 kfree(buf); 939 940 return ret; 941 } 942 943 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) 944 { 945 struct ffs_epfile *epfile = file->private_data; 946 struct usb_request *req; 947 struct ffs_ep *ep; 948 char *data = NULL; 949 ssize_t ret, data_len = -EINVAL; 950 int halt; 951 952 /* Are we still active? */ 953 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 954 return -ENODEV; 955 956 /* Wait for endpoint to be enabled */ 957 ep = epfile->ep; 958 if (!ep) { 959 if (file->f_flags & O_NONBLOCK) 960 return -EAGAIN; 961 962 ret = wait_event_interruptible( 963 epfile->ffs->wait, (ep = epfile->ep)); 964 if (ret) 965 return -EINTR; 966 } 967 968 /* Do we halt? */ 969 halt = (!io_data->read == !epfile->in); 970 if (halt && epfile->isoc) 971 return -EINVAL; 972 973 /* We will be using request and read_buffer */ 974 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); 975 if (unlikely(ret)) 976 goto error; 977 978 /* Allocate & copy */ 979 if (!halt) { 980 struct usb_gadget *gadget; 981 982 /* 983 * Do we have buffered data from previous partial read? Check 984 * that for synchronous case only because we do not have 985 * facility to ‘wake up’ a pending asynchronous read and push 986 * buffered data to it which we would need to make things behave 987 * consistently. 988 */ 989 if (!io_data->aio && io_data->read) { 990 ret = __ffs_epfile_read_buffered(epfile, &io_data->data); 991 if (ret) 992 goto error_mutex; 993 } 994 995 /* 996 * if we _do_ wait above, the epfile->ffs->gadget might be NULL 997 * before the waiting completes, so do not assign to 'gadget' 998 * earlier 999 */ 1000 gadget = epfile->ffs->gadget; 1001 1002 spin_lock_irq(&epfile->ffs->eps_lock); 1003 /* In the meantime, endpoint got disabled or changed. */ 1004 if (epfile->ep != ep) { 1005 ret = -ESHUTDOWN; 1006 goto error_lock; 1007 } 1008 data_len = iov_iter_count(&io_data->data); 1009 /* 1010 * Controller may require buffer size to be aligned to 1011 * maxpacketsize of an out endpoint. 1012 */ 1013 if (io_data->read) 1014 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len); 1015 1016 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE; 1017 spin_unlock_irq(&epfile->ffs->eps_lock); 1018 1019 data = ffs_alloc_buffer(io_data, data_len); 1020 if (unlikely(!data)) { 1021 ret = -ENOMEM; 1022 goto error_mutex; 1023 } 1024 if (!io_data->read && 1025 !copy_from_iter_full(data, data_len, &io_data->data)) { 1026 ret = -EFAULT; 1027 goto error_mutex; 1028 } 1029 } 1030 1031 spin_lock_irq(&epfile->ffs->eps_lock); 1032 1033 if (epfile->ep != ep) { 1034 /* In the meantime, endpoint got disabled or changed. */ 1035 ret = -ESHUTDOWN; 1036 } else if (halt) { 1037 ret = usb_ep_set_halt(ep->ep); 1038 if (!ret) 1039 ret = -EBADMSG; 1040 } else if (unlikely(data_len == -EINVAL)) { 1041 /* 1042 * Sanity Check: even though data_len can't be used 1043 * uninitialized at the time I write this comment, some 1044 * compilers complain about this situation. 1045 * In order to keep the code clean from warnings, data_len is 1046 * being initialized to -EINVAL during its declaration, which 1047 * means we can't rely on compiler anymore to warn no future 1048 * changes won't result in data_len being used uninitialized. 1049 * For such reason, we're adding this redundant sanity check 1050 * here. 1051 */ 1052 WARN(1, "%s: data_len == -EINVAL\n", __func__); 1053 ret = -EINVAL; 1054 } else if (!io_data->aio) { 1055 DECLARE_COMPLETION_ONSTACK(done); 1056 bool interrupted = false; 1057 1058 req = ep->req; 1059 if (io_data->use_sg) { 1060 req->buf = NULL; 1061 req->sg = io_data->sgt.sgl; 1062 req->num_sgs = io_data->sgt.nents; 1063 } else { 1064 req->buf = data; 1065 req->num_sgs = 0; 1066 } 1067 req->length = data_len; 1068 1069 io_data->buf = data; 1070 1071 req->context = &done; 1072 req->complete = ffs_epfile_io_complete; 1073 1074 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1075 if (unlikely(ret < 0)) 1076 goto error_lock; 1077 1078 spin_unlock_irq(&epfile->ffs->eps_lock); 1079 1080 if (unlikely(wait_for_completion_interruptible(&done))) { 1081 /* 1082 * To avoid race condition with ffs_epfile_io_complete, 1083 * dequeue the request first then check 1084 * status. usb_ep_dequeue API should guarantee no race 1085 * condition with req->complete callback. 1086 */ 1087 usb_ep_dequeue(ep->ep, req); 1088 wait_for_completion(&done); 1089 interrupted = ep->status < 0; 1090 } 1091 1092 if (interrupted) 1093 ret = -EINTR; 1094 else if (io_data->read && ep->status > 0) 1095 ret = __ffs_epfile_read_data(epfile, data, ep->status, 1096 &io_data->data); 1097 else 1098 ret = ep->status; 1099 goto error_mutex; 1100 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) { 1101 ret = -ENOMEM; 1102 } else { 1103 if (io_data->use_sg) { 1104 req->buf = NULL; 1105 req->sg = io_data->sgt.sgl; 1106 req->num_sgs = io_data->sgt.nents; 1107 } else { 1108 req->buf = data; 1109 req->num_sgs = 0; 1110 } 1111 req->length = data_len; 1112 1113 io_data->buf = data; 1114 io_data->ep = ep->ep; 1115 io_data->req = req; 1116 io_data->ffs = epfile->ffs; 1117 1118 req->context = io_data; 1119 req->complete = ffs_epfile_async_io_complete; 1120 1121 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1122 if (unlikely(ret)) { 1123 usb_ep_free_request(ep->ep, req); 1124 goto error_lock; 1125 } 1126 1127 ret = -EIOCBQUEUED; 1128 /* 1129 * Do not kfree the buffer in this function. It will be freed 1130 * by ffs_user_copy_worker. 1131 */ 1132 data = NULL; 1133 } 1134 1135 error_lock: 1136 spin_unlock_irq(&epfile->ffs->eps_lock); 1137 error_mutex: 1138 mutex_unlock(&epfile->mutex); 1139 error: 1140 if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */ 1141 ffs_free_buffer(io_data); 1142 return ret; 1143 } 1144 1145 static int 1146 ffs_epfile_open(struct inode *inode, struct file *file) 1147 { 1148 struct ffs_epfile *epfile = inode->i_private; 1149 1150 ENTER(); 1151 1152 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1153 return -ENODEV; 1154 1155 file->private_data = epfile; 1156 ffs_data_opened(epfile->ffs); 1157 1158 return 0; 1159 } 1160 1161 static int ffs_aio_cancel(struct kiocb *kiocb) 1162 { 1163 struct ffs_io_data *io_data = kiocb->private; 1164 struct ffs_epfile *epfile = kiocb->ki_filp->private_data; 1165 int value; 1166 1167 ENTER(); 1168 1169 spin_lock_irq(&epfile->ffs->eps_lock); 1170 1171 if (likely(io_data && io_data->ep && io_data->req)) 1172 value = usb_ep_dequeue(io_data->ep, io_data->req); 1173 else 1174 value = -EINVAL; 1175 1176 spin_unlock_irq(&epfile->ffs->eps_lock); 1177 1178 return value; 1179 } 1180 1181 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from) 1182 { 1183 struct ffs_io_data io_data, *p = &io_data; 1184 ssize_t res; 1185 1186 ENTER(); 1187 1188 if (!is_sync_kiocb(kiocb)) { 1189 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1190 if (unlikely(!p)) 1191 return -ENOMEM; 1192 p->aio = true; 1193 } else { 1194 memset(p, 0, sizeof(*p)); 1195 p->aio = false; 1196 } 1197 1198 p->read = false; 1199 p->kiocb = kiocb; 1200 p->data = *from; 1201 p->mm = current->mm; 1202 1203 kiocb->private = p; 1204 1205 if (p->aio) 1206 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1207 1208 res = ffs_epfile_io(kiocb->ki_filp, p); 1209 if (res == -EIOCBQUEUED) 1210 return res; 1211 if (p->aio) 1212 kfree(p); 1213 else 1214 *from = p->data; 1215 return res; 1216 } 1217 1218 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to) 1219 { 1220 struct ffs_io_data io_data, *p = &io_data; 1221 ssize_t res; 1222 1223 ENTER(); 1224 1225 if (!is_sync_kiocb(kiocb)) { 1226 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1227 if (unlikely(!p)) 1228 return -ENOMEM; 1229 p->aio = true; 1230 } else { 1231 memset(p, 0, sizeof(*p)); 1232 p->aio = false; 1233 } 1234 1235 p->read = true; 1236 p->kiocb = kiocb; 1237 if (p->aio) { 1238 p->to_free = dup_iter(&p->data, to, GFP_KERNEL); 1239 if (!p->to_free) { 1240 kfree(p); 1241 return -ENOMEM; 1242 } 1243 } else { 1244 p->data = *to; 1245 p->to_free = NULL; 1246 } 1247 p->mm = current->mm; 1248 1249 kiocb->private = p; 1250 1251 if (p->aio) 1252 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1253 1254 res = ffs_epfile_io(kiocb->ki_filp, p); 1255 if (res == -EIOCBQUEUED) 1256 return res; 1257 1258 if (p->aio) { 1259 kfree(p->to_free); 1260 kfree(p); 1261 } else { 1262 *to = p->data; 1263 } 1264 return res; 1265 } 1266 1267 static int 1268 ffs_epfile_release(struct inode *inode, struct file *file) 1269 { 1270 struct ffs_epfile *epfile = inode->i_private; 1271 1272 ENTER(); 1273 1274 __ffs_epfile_read_buffer_free(epfile); 1275 ffs_data_closed(epfile->ffs); 1276 1277 return 0; 1278 } 1279 1280 static long ffs_epfile_ioctl(struct file *file, unsigned code, 1281 unsigned long value) 1282 { 1283 struct ffs_epfile *epfile = file->private_data; 1284 struct ffs_ep *ep; 1285 int ret; 1286 1287 ENTER(); 1288 1289 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1290 return -ENODEV; 1291 1292 /* Wait for endpoint to be enabled */ 1293 ep = epfile->ep; 1294 if (!ep) { 1295 if (file->f_flags & O_NONBLOCK) 1296 return -EAGAIN; 1297 1298 ret = wait_event_interruptible( 1299 epfile->ffs->wait, (ep = epfile->ep)); 1300 if (ret) 1301 return -EINTR; 1302 } 1303 1304 spin_lock_irq(&epfile->ffs->eps_lock); 1305 1306 /* In the meantime, endpoint got disabled or changed. */ 1307 if (epfile->ep != ep) { 1308 spin_unlock_irq(&epfile->ffs->eps_lock); 1309 return -ESHUTDOWN; 1310 } 1311 1312 switch (code) { 1313 case FUNCTIONFS_FIFO_STATUS: 1314 ret = usb_ep_fifo_status(epfile->ep->ep); 1315 break; 1316 case FUNCTIONFS_FIFO_FLUSH: 1317 usb_ep_fifo_flush(epfile->ep->ep); 1318 ret = 0; 1319 break; 1320 case FUNCTIONFS_CLEAR_HALT: 1321 ret = usb_ep_clear_halt(epfile->ep->ep); 1322 break; 1323 case FUNCTIONFS_ENDPOINT_REVMAP: 1324 ret = epfile->ep->num; 1325 break; 1326 case FUNCTIONFS_ENDPOINT_DESC: 1327 { 1328 int desc_idx; 1329 struct usb_endpoint_descriptor *desc; 1330 1331 switch (epfile->ffs->gadget->speed) { 1332 case USB_SPEED_SUPER: 1333 desc_idx = 2; 1334 break; 1335 case USB_SPEED_HIGH: 1336 desc_idx = 1; 1337 break; 1338 default: 1339 desc_idx = 0; 1340 } 1341 desc = epfile->ep->descs[desc_idx]; 1342 1343 spin_unlock_irq(&epfile->ffs->eps_lock); 1344 ret = copy_to_user((void __user *)value, desc, desc->bLength); 1345 if (ret) 1346 ret = -EFAULT; 1347 return ret; 1348 } 1349 default: 1350 ret = -ENOTTY; 1351 } 1352 spin_unlock_irq(&epfile->ffs->eps_lock); 1353 1354 return ret; 1355 } 1356 1357 static const struct file_operations ffs_epfile_operations = { 1358 .llseek = no_llseek, 1359 1360 .open = ffs_epfile_open, 1361 .write_iter = ffs_epfile_write_iter, 1362 .read_iter = ffs_epfile_read_iter, 1363 .release = ffs_epfile_release, 1364 .unlocked_ioctl = ffs_epfile_ioctl, 1365 .compat_ioctl = compat_ptr_ioctl, 1366 }; 1367 1368 1369 /* File system and super block operations ***********************************/ 1370 1371 /* 1372 * Mounting the file system creates a controller file, used first for 1373 * function configuration then later for event monitoring. 1374 */ 1375 1376 static struct inode *__must_check 1377 ffs_sb_make_inode(struct super_block *sb, void *data, 1378 const struct file_operations *fops, 1379 const struct inode_operations *iops, 1380 struct ffs_file_perms *perms) 1381 { 1382 struct inode *inode; 1383 1384 ENTER(); 1385 1386 inode = new_inode(sb); 1387 1388 if (likely(inode)) { 1389 struct timespec64 ts = current_time(inode); 1390 1391 inode->i_ino = get_next_ino(); 1392 inode->i_mode = perms->mode; 1393 inode->i_uid = perms->uid; 1394 inode->i_gid = perms->gid; 1395 inode->i_atime = ts; 1396 inode->i_mtime = ts; 1397 inode->i_ctime = ts; 1398 inode->i_private = data; 1399 if (fops) 1400 inode->i_fop = fops; 1401 if (iops) 1402 inode->i_op = iops; 1403 } 1404 1405 return inode; 1406 } 1407 1408 /* Create "regular" file */ 1409 static struct dentry *ffs_sb_create_file(struct super_block *sb, 1410 const char *name, void *data, 1411 const struct file_operations *fops) 1412 { 1413 struct ffs_data *ffs = sb->s_fs_info; 1414 struct dentry *dentry; 1415 struct inode *inode; 1416 1417 ENTER(); 1418 1419 dentry = d_alloc_name(sb->s_root, name); 1420 if (unlikely(!dentry)) 1421 return NULL; 1422 1423 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); 1424 if (unlikely(!inode)) { 1425 dput(dentry); 1426 return NULL; 1427 } 1428 1429 d_add(dentry, inode); 1430 return dentry; 1431 } 1432 1433 /* Super block */ 1434 static const struct super_operations ffs_sb_operations = { 1435 .statfs = simple_statfs, 1436 .drop_inode = generic_delete_inode, 1437 }; 1438 1439 struct ffs_sb_fill_data { 1440 struct ffs_file_perms perms; 1441 umode_t root_mode; 1442 const char *dev_name; 1443 bool no_disconnect; 1444 struct ffs_data *ffs_data; 1445 }; 1446 1447 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc) 1448 { 1449 struct ffs_sb_fill_data *data = fc->fs_private; 1450 struct inode *inode; 1451 struct ffs_data *ffs = data->ffs_data; 1452 1453 ENTER(); 1454 1455 ffs->sb = sb; 1456 data->ffs_data = NULL; 1457 sb->s_fs_info = ffs; 1458 sb->s_blocksize = PAGE_SIZE; 1459 sb->s_blocksize_bits = PAGE_SHIFT; 1460 sb->s_magic = FUNCTIONFS_MAGIC; 1461 sb->s_op = &ffs_sb_operations; 1462 sb->s_time_gran = 1; 1463 1464 /* Root inode */ 1465 data->perms.mode = data->root_mode; 1466 inode = ffs_sb_make_inode(sb, NULL, 1467 &simple_dir_operations, 1468 &simple_dir_inode_operations, 1469 &data->perms); 1470 sb->s_root = d_make_root(inode); 1471 if (unlikely(!sb->s_root)) 1472 return -ENOMEM; 1473 1474 /* EP0 file */ 1475 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs, 1476 &ffs_ep0_operations))) 1477 return -ENOMEM; 1478 1479 return 0; 1480 } 1481 1482 enum { 1483 Opt_no_disconnect, 1484 Opt_rmode, 1485 Opt_fmode, 1486 Opt_mode, 1487 Opt_uid, 1488 Opt_gid, 1489 }; 1490 1491 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = { 1492 fsparam_bool ("no_disconnect", Opt_no_disconnect), 1493 fsparam_u32 ("rmode", Opt_rmode), 1494 fsparam_u32 ("fmode", Opt_fmode), 1495 fsparam_u32 ("mode", Opt_mode), 1496 fsparam_u32 ("uid", Opt_uid), 1497 fsparam_u32 ("gid", Opt_gid), 1498 {} 1499 }; 1500 1501 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1502 { 1503 struct ffs_sb_fill_data *data = fc->fs_private; 1504 struct fs_parse_result result; 1505 int opt; 1506 1507 ENTER(); 1508 1509 opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result); 1510 if (opt < 0) 1511 return opt; 1512 1513 switch (opt) { 1514 case Opt_no_disconnect: 1515 data->no_disconnect = result.boolean; 1516 break; 1517 case Opt_rmode: 1518 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1519 break; 1520 case Opt_fmode: 1521 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 1522 break; 1523 case Opt_mode: 1524 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1525 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 1526 break; 1527 1528 case Opt_uid: 1529 data->perms.uid = make_kuid(current_user_ns(), result.uint_32); 1530 if (!uid_valid(data->perms.uid)) 1531 goto unmapped_value; 1532 break; 1533 case Opt_gid: 1534 data->perms.gid = make_kgid(current_user_ns(), result.uint_32); 1535 if (!gid_valid(data->perms.gid)) 1536 goto unmapped_value; 1537 break; 1538 1539 default: 1540 return -ENOPARAM; 1541 } 1542 1543 return 0; 1544 1545 unmapped_value: 1546 return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32); 1547 } 1548 1549 /* 1550 * Set up the superblock for a mount. 1551 */ 1552 static int ffs_fs_get_tree(struct fs_context *fc) 1553 { 1554 struct ffs_sb_fill_data *ctx = fc->fs_private; 1555 void *ffs_dev; 1556 struct ffs_data *ffs; 1557 1558 ENTER(); 1559 1560 if (!fc->source) 1561 return invalf(fc, "No source specified"); 1562 1563 ffs = ffs_data_new(fc->source); 1564 if (unlikely(!ffs)) 1565 return -ENOMEM; 1566 ffs->file_perms = ctx->perms; 1567 ffs->no_disconnect = ctx->no_disconnect; 1568 1569 ffs->dev_name = kstrdup(fc->source, GFP_KERNEL); 1570 if (unlikely(!ffs->dev_name)) { 1571 ffs_data_put(ffs); 1572 return -ENOMEM; 1573 } 1574 1575 ffs_dev = ffs_acquire_dev(ffs->dev_name); 1576 if (IS_ERR(ffs_dev)) { 1577 ffs_data_put(ffs); 1578 return PTR_ERR(ffs_dev); 1579 } 1580 1581 ffs->private_data = ffs_dev; 1582 ctx->ffs_data = ffs; 1583 return get_tree_nodev(fc, ffs_sb_fill); 1584 } 1585 1586 static void ffs_fs_free_fc(struct fs_context *fc) 1587 { 1588 struct ffs_sb_fill_data *ctx = fc->fs_private; 1589 1590 if (ctx) { 1591 if (ctx->ffs_data) { 1592 ffs_release_dev(ctx->ffs_data); 1593 ffs_data_put(ctx->ffs_data); 1594 } 1595 1596 kfree(ctx); 1597 } 1598 } 1599 1600 static const struct fs_context_operations ffs_fs_context_ops = { 1601 .free = ffs_fs_free_fc, 1602 .parse_param = ffs_fs_parse_param, 1603 .get_tree = ffs_fs_get_tree, 1604 }; 1605 1606 static int ffs_fs_init_fs_context(struct fs_context *fc) 1607 { 1608 struct ffs_sb_fill_data *ctx; 1609 1610 ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL); 1611 if (!ctx) 1612 return -ENOMEM; 1613 1614 ctx->perms.mode = S_IFREG | 0600; 1615 ctx->perms.uid = GLOBAL_ROOT_UID; 1616 ctx->perms.gid = GLOBAL_ROOT_GID; 1617 ctx->root_mode = S_IFDIR | 0500; 1618 ctx->no_disconnect = false; 1619 1620 fc->fs_private = ctx; 1621 fc->ops = &ffs_fs_context_ops; 1622 return 0; 1623 } 1624 1625 static void 1626 ffs_fs_kill_sb(struct super_block *sb) 1627 { 1628 ENTER(); 1629 1630 kill_litter_super(sb); 1631 if (sb->s_fs_info) { 1632 ffs_release_dev(sb->s_fs_info); 1633 ffs_data_closed(sb->s_fs_info); 1634 } 1635 } 1636 1637 static struct file_system_type ffs_fs_type = { 1638 .owner = THIS_MODULE, 1639 .name = "functionfs", 1640 .init_fs_context = ffs_fs_init_fs_context, 1641 .parameters = ffs_fs_fs_parameters, 1642 .kill_sb = ffs_fs_kill_sb, 1643 }; 1644 MODULE_ALIAS_FS("functionfs"); 1645 1646 1647 /* Driver's main init/cleanup functions *************************************/ 1648 1649 static int functionfs_init(void) 1650 { 1651 int ret; 1652 1653 ENTER(); 1654 1655 ret = register_filesystem(&ffs_fs_type); 1656 if (likely(!ret)) 1657 pr_info("file system registered\n"); 1658 else 1659 pr_err("failed registering file system (%d)\n", ret); 1660 1661 return ret; 1662 } 1663 1664 static void functionfs_cleanup(void) 1665 { 1666 ENTER(); 1667 1668 pr_info("unloading\n"); 1669 unregister_filesystem(&ffs_fs_type); 1670 } 1671 1672 1673 /* ffs_data and ffs_function construction and destruction code **************/ 1674 1675 static void ffs_data_clear(struct ffs_data *ffs); 1676 static void ffs_data_reset(struct ffs_data *ffs); 1677 1678 static void ffs_data_get(struct ffs_data *ffs) 1679 { 1680 ENTER(); 1681 1682 refcount_inc(&ffs->ref); 1683 } 1684 1685 static void ffs_data_opened(struct ffs_data *ffs) 1686 { 1687 ENTER(); 1688 1689 refcount_inc(&ffs->ref); 1690 if (atomic_add_return(1, &ffs->opened) == 1 && 1691 ffs->state == FFS_DEACTIVATED) { 1692 ffs->state = FFS_CLOSING; 1693 ffs_data_reset(ffs); 1694 } 1695 } 1696 1697 static void ffs_data_put(struct ffs_data *ffs) 1698 { 1699 ENTER(); 1700 1701 if (unlikely(refcount_dec_and_test(&ffs->ref))) { 1702 pr_info("%s(): freeing\n", __func__); 1703 ffs_data_clear(ffs); 1704 BUG_ON(waitqueue_active(&ffs->ev.waitq) || 1705 waitqueue_active(&ffs->ep0req_completion.wait) || 1706 waitqueue_active(&ffs->wait)); 1707 destroy_workqueue(ffs->io_completion_wq); 1708 kfree(ffs->dev_name); 1709 kfree(ffs); 1710 } 1711 } 1712 1713 static void ffs_data_closed(struct ffs_data *ffs) 1714 { 1715 ENTER(); 1716 1717 if (atomic_dec_and_test(&ffs->opened)) { 1718 if (ffs->no_disconnect) { 1719 ffs->state = FFS_DEACTIVATED; 1720 if (ffs->epfiles) { 1721 ffs_epfiles_destroy(ffs->epfiles, 1722 ffs->eps_count); 1723 ffs->epfiles = NULL; 1724 } 1725 if (ffs->setup_state == FFS_SETUP_PENDING) 1726 __ffs_ep0_stall(ffs); 1727 } else { 1728 ffs->state = FFS_CLOSING; 1729 ffs_data_reset(ffs); 1730 } 1731 } 1732 if (atomic_read(&ffs->opened) < 0) { 1733 ffs->state = FFS_CLOSING; 1734 ffs_data_reset(ffs); 1735 } 1736 1737 ffs_data_put(ffs); 1738 } 1739 1740 static struct ffs_data *ffs_data_new(const char *dev_name) 1741 { 1742 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); 1743 if (unlikely(!ffs)) 1744 return NULL; 1745 1746 ENTER(); 1747 1748 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name); 1749 if (!ffs->io_completion_wq) { 1750 kfree(ffs); 1751 return NULL; 1752 } 1753 1754 refcount_set(&ffs->ref, 1); 1755 atomic_set(&ffs->opened, 0); 1756 ffs->state = FFS_READ_DESCRIPTORS; 1757 mutex_init(&ffs->mutex); 1758 spin_lock_init(&ffs->eps_lock); 1759 init_waitqueue_head(&ffs->ev.waitq); 1760 init_waitqueue_head(&ffs->wait); 1761 init_completion(&ffs->ep0req_completion); 1762 1763 /* XXX REVISIT need to update it in some places, or do we? */ 1764 ffs->ev.can_stall = 1; 1765 1766 return ffs; 1767 } 1768 1769 static void ffs_data_clear(struct ffs_data *ffs) 1770 { 1771 ENTER(); 1772 1773 ffs_closed(ffs); 1774 1775 BUG_ON(ffs->gadget); 1776 1777 if (ffs->epfiles) 1778 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count); 1779 1780 if (ffs->ffs_eventfd) 1781 eventfd_ctx_put(ffs->ffs_eventfd); 1782 1783 kfree(ffs->raw_descs_data); 1784 kfree(ffs->raw_strings); 1785 kfree(ffs->stringtabs); 1786 } 1787 1788 static void ffs_data_reset(struct ffs_data *ffs) 1789 { 1790 ENTER(); 1791 1792 ffs_data_clear(ffs); 1793 1794 ffs->epfiles = NULL; 1795 ffs->raw_descs_data = NULL; 1796 ffs->raw_descs = NULL; 1797 ffs->raw_strings = NULL; 1798 ffs->stringtabs = NULL; 1799 1800 ffs->raw_descs_length = 0; 1801 ffs->fs_descs_count = 0; 1802 ffs->hs_descs_count = 0; 1803 ffs->ss_descs_count = 0; 1804 1805 ffs->strings_count = 0; 1806 ffs->interfaces_count = 0; 1807 ffs->eps_count = 0; 1808 1809 ffs->ev.count = 0; 1810 1811 ffs->state = FFS_READ_DESCRIPTORS; 1812 ffs->setup_state = FFS_NO_SETUP; 1813 ffs->flags = 0; 1814 } 1815 1816 1817 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) 1818 { 1819 struct usb_gadget_strings **lang; 1820 int first_id; 1821 1822 ENTER(); 1823 1824 if (WARN_ON(ffs->state != FFS_ACTIVE 1825 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) 1826 return -EBADFD; 1827 1828 first_id = usb_string_ids_n(cdev, ffs->strings_count); 1829 if (unlikely(first_id < 0)) 1830 return first_id; 1831 1832 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); 1833 if (unlikely(!ffs->ep0req)) 1834 return -ENOMEM; 1835 ffs->ep0req->complete = ffs_ep0_complete; 1836 ffs->ep0req->context = ffs; 1837 1838 lang = ffs->stringtabs; 1839 if (lang) { 1840 for (; *lang; ++lang) { 1841 struct usb_string *str = (*lang)->strings; 1842 int id = first_id; 1843 for (; str->s; ++id, ++str) 1844 str->id = id; 1845 } 1846 } 1847 1848 ffs->gadget = cdev->gadget; 1849 ffs_data_get(ffs); 1850 return 0; 1851 } 1852 1853 static void functionfs_unbind(struct ffs_data *ffs) 1854 { 1855 ENTER(); 1856 1857 if (!WARN_ON(!ffs->gadget)) { 1858 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); 1859 ffs->ep0req = NULL; 1860 ffs->gadget = NULL; 1861 clear_bit(FFS_FL_BOUND, &ffs->flags); 1862 ffs_data_put(ffs); 1863 } 1864 } 1865 1866 static int ffs_epfiles_create(struct ffs_data *ffs) 1867 { 1868 struct ffs_epfile *epfile, *epfiles; 1869 unsigned i, count; 1870 1871 ENTER(); 1872 1873 count = ffs->eps_count; 1874 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); 1875 if (!epfiles) 1876 return -ENOMEM; 1877 1878 epfile = epfiles; 1879 for (i = 1; i <= count; ++i, ++epfile) { 1880 epfile->ffs = ffs; 1881 mutex_init(&epfile->mutex); 1882 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 1883 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]); 1884 else 1885 sprintf(epfile->name, "ep%u", i); 1886 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name, 1887 epfile, 1888 &ffs_epfile_operations); 1889 if (unlikely(!epfile->dentry)) { 1890 ffs_epfiles_destroy(epfiles, i - 1); 1891 return -ENOMEM; 1892 } 1893 } 1894 1895 ffs->epfiles = epfiles; 1896 return 0; 1897 } 1898 1899 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count) 1900 { 1901 struct ffs_epfile *epfile = epfiles; 1902 1903 ENTER(); 1904 1905 for (; count; --count, ++epfile) { 1906 BUG_ON(mutex_is_locked(&epfile->mutex)); 1907 if (epfile->dentry) { 1908 d_delete(epfile->dentry); 1909 dput(epfile->dentry); 1910 epfile->dentry = NULL; 1911 } 1912 } 1913 1914 kfree(epfiles); 1915 } 1916 1917 static void ffs_func_eps_disable(struct ffs_function *func) 1918 { 1919 struct ffs_ep *ep = func->eps; 1920 struct ffs_epfile *epfile = func->ffs->epfiles; 1921 unsigned count = func->ffs->eps_count; 1922 unsigned long flags; 1923 1924 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1925 while (count--) { 1926 /* pending requests get nuked */ 1927 if (likely(ep->ep)) 1928 usb_ep_disable(ep->ep); 1929 ++ep; 1930 1931 if (epfile) { 1932 epfile->ep = NULL; 1933 __ffs_epfile_read_buffer_free(epfile); 1934 ++epfile; 1935 } 1936 } 1937 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1938 } 1939 1940 static int ffs_func_eps_enable(struct ffs_function *func) 1941 { 1942 struct ffs_data *ffs = func->ffs; 1943 struct ffs_ep *ep = func->eps; 1944 struct ffs_epfile *epfile = ffs->epfiles; 1945 unsigned count = ffs->eps_count; 1946 unsigned long flags; 1947 int ret = 0; 1948 1949 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1950 while(count--) { 1951 ep->ep->driver_data = ep; 1952 1953 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep); 1954 if (ret) { 1955 pr_err("%s: config_ep_by_speed(%s) returned %d\n", 1956 __func__, ep->ep->name, ret); 1957 break; 1958 } 1959 1960 ret = usb_ep_enable(ep->ep); 1961 if (likely(!ret)) { 1962 epfile->ep = ep; 1963 epfile->in = usb_endpoint_dir_in(ep->ep->desc); 1964 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc); 1965 } else { 1966 break; 1967 } 1968 1969 ++ep; 1970 ++epfile; 1971 } 1972 1973 wake_up_interruptible(&ffs->wait); 1974 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1975 1976 return ret; 1977 } 1978 1979 1980 /* Parsing and building descriptors and strings *****************************/ 1981 1982 /* 1983 * This validates if data pointed by data is a valid USB descriptor as 1984 * well as record how many interfaces, endpoints and strings are 1985 * required by given configuration. Returns address after the 1986 * descriptor or NULL if data is invalid. 1987 */ 1988 1989 enum ffs_entity_type { 1990 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT 1991 }; 1992 1993 enum ffs_os_desc_type { 1994 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP 1995 }; 1996 1997 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, 1998 u8 *valuep, 1999 struct usb_descriptor_header *desc, 2000 void *priv); 2001 2002 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, 2003 struct usb_os_desc_header *h, void *data, 2004 unsigned len, void *priv); 2005 2006 static int __must_check ffs_do_single_desc(char *data, unsigned len, 2007 ffs_entity_callback entity, 2008 void *priv, int *current_class) 2009 { 2010 struct usb_descriptor_header *_ds = (void *)data; 2011 u8 length; 2012 int ret; 2013 2014 ENTER(); 2015 2016 /* At least two bytes are required: length and type */ 2017 if (len < 2) { 2018 pr_vdebug("descriptor too short\n"); 2019 return -EINVAL; 2020 } 2021 2022 /* If we have at least as many bytes as the descriptor takes? */ 2023 length = _ds->bLength; 2024 if (len < length) { 2025 pr_vdebug("descriptor longer then available data\n"); 2026 return -EINVAL; 2027 } 2028 2029 #define __entity_check_INTERFACE(val) 1 2030 #define __entity_check_STRING(val) (val) 2031 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) 2032 #define __entity(type, val) do { \ 2033 pr_vdebug("entity " #type "(%02x)\n", (val)); \ 2034 if (unlikely(!__entity_check_ ##type(val))) { \ 2035 pr_vdebug("invalid entity's value\n"); \ 2036 return -EINVAL; \ 2037 } \ 2038 ret = entity(FFS_ ##type, &val, _ds, priv); \ 2039 if (unlikely(ret < 0)) { \ 2040 pr_debug("entity " #type "(%02x); ret = %d\n", \ 2041 (val), ret); \ 2042 return ret; \ 2043 } \ 2044 } while (0) 2045 2046 /* Parse descriptor depending on type. */ 2047 switch (_ds->bDescriptorType) { 2048 case USB_DT_DEVICE: 2049 case USB_DT_CONFIG: 2050 case USB_DT_STRING: 2051 case USB_DT_DEVICE_QUALIFIER: 2052 /* function can't have any of those */ 2053 pr_vdebug("descriptor reserved for gadget: %d\n", 2054 _ds->bDescriptorType); 2055 return -EINVAL; 2056 2057 case USB_DT_INTERFACE: { 2058 struct usb_interface_descriptor *ds = (void *)_ds; 2059 pr_vdebug("interface descriptor\n"); 2060 if (length != sizeof *ds) 2061 goto inv_length; 2062 2063 __entity(INTERFACE, ds->bInterfaceNumber); 2064 if (ds->iInterface) 2065 __entity(STRING, ds->iInterface); 2066 *current_class = ds->bInterfaceClass; 2067 } 2068 break; 2069 2070 case USB_DT_ENDPOINT: { 2071 struct usb_endpoint_descriptor *ds = (void *)_ds; 2072 pr_vdebug("endpoint descriptor\n"); 2073 if (length != USB_DT_ENDPOINT_SIZE && 2074 length != USB_DT_ENDPOINT_AUDIO_SIZE) 2075 goto inv_length; 2076 __entity(ENDPOINT, ds->bEndpointAddress); 2077 } 2078 break; 2079 2080 case USB_TYPE_CLASS | 0x01: 2081 if (*current_class == USB_INTERFACE_CLASS_HID) { 2082 pr_vdebug("hid descriptor\n"); 2083 if (length != sizeof(struct hid_descriptor)) 2084 goto inv_length; 2085 break; 2086 } else if (*current_class == USB_INTERFACE_CLASS_CCID) { 2087 pr_vdebug("ccid descriptor\n"); 2088 if (length != sizeof(struct ccid_descriptor)) 2089 goto inv_length; 2090 break; 2091 } else { 2092 pr_vdebug("unknown descriptor: %d for class %d\n", 2093 _ds->bDescriptorType, *current_class); 2094 return -EINVAL; 2095 } 2096 2097 case USB_DT_OTG: 2098 if (length != sizeof(struct usb_otg_descriptor)) 2099 goto inv_length; 2100 break; 2101 2102 case USB_DT_INTERFACE_ASSOCIATION: { 2103 struct usb_interface_assoc_descriptor *ds = (void *)_ds; 2104 pr_vdebug("interface association descriptor\n"); 2105 if (length != sizeof *ds) 2106 goto inv_length; 2107 if (ds->iFunction) 2108 __entity(STRING, ds->iFunction); 2109 } 2110 break; 2111 2112 case USB_DT_SS_ENDPOINT_COMP: 2113 pr_vdebug("EP SS companion descriptor\n"); 2114 if (length != sizeof(struct usb_ss_ep_comp_descriptor)) 2115 goto inv_length; 2116 break; 2117 2118 case USB_DT_OTHER_SPEED_CONFIG: 2119 case USB_DT_INTERFACE_POWER: 2120 case USB_DT_DEBUG: 2121 case USB_DT_SECURITY: 2122 case USB_DT_CS_RADIO_CONTROL: 2123 /* TODO */ 2124 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); 2125 return -EINVAL; 2126 2127 default: 2128 /* We should never be here */ 2129 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); 2130 return -EINVAL; 2131 2132 inv_length: 2133 pr_vdebug("invalid length: %d (descriptor %d)\n", 2134 _ds->bLength, _ds->bDescriptorType); 2135 return -EINVAL; 2136 } 2137 2138 #undef __entity 2139 #undef __entity_check_DESCRIPTOR 2140 #undef __entity_check_INTERFACE 2141 #undef __entity_check_STRING 2142 #undef __entity_check_ENDPOINT 2143 2144 return length; 2145 } 2146 2147 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, 2148 ffs_entity_callback entity, void *priv) 2149 { 2150 const unsigned _len = len; 2151 unsigned long num = 0; 2152 int current_class = -1; 2153 2154 ENTER(); 2155 2156 for (;;) { 2157 int ret; 2158 2159 if (num == count) 2160 data = NULL; 2161 2162 /* Record "descriptor" entity */ 2163 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); 2164 if (unlikely(ret < 0)) { 2165 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", 2166 num, ret); 2167 return ret; 2168 } 2169 2170 if (!data) 2171 return _len - len; 2172 2173 ret = ffs_do_single_desc(data, len, entity, priv, 2174 ¤t_class); 2175 if (unlikely(ret < 0)) { 2176 pr_debug("%s returns %d\n", __func__, ret); 2177 return ret; 2178 } 2179 2180 len -= ret; 2181 data += ret; 2182 ++num; 2183 } 2184 } 2185 2186 static int __ffs_data_do_entity(enum ffs_entity_type type, 2187 u8 *valuep, struct usb_descriptor_header *desc, 2188 void *priv) 2189 { 2190 struct ffs_desc_helper *helper = priv; 2191 struct usb_endpoint_descriptor *d; 2192 2193 ENTER(); 2194 2195 switch (type) { 2196 case FFS_DESCRIPTOR: 2197 break; 2198 2199 case FFS_INTERFACE: 2200 /* 2201 * Interfaces are indexed from zero so if we 2202 * encountered interface "n" then there are at least 2203 * "n+1" interfaces. 2204 */ 2205 if (*valuep >= helper->interfaces_count) 2206 helper->interfaces_count = *valuep + 1; 2207 break; 2208 2209 case FFS_STRING: 2210 /* 2211 * Strings are indexed from 1 (0 is reserved 2212 * for languages list) 2213 */ 2214 if (*valuep > helper->ffs->strings_count) 2215 helper->ffs->strings_count = *valuep; 2216 break; 2217 2218 case FFS_ENDPOINT: 2219 d = (void *)desc; 2220 helper->eps_count++; 2221 if (helper->eps_count >= FFS_MAX_EPS_COUNT) 2222 return -EINVAL; 2223 /* Check if descriptors for any speed were already parsed */ 2224 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count) 2225 helper->ffs->eps_addrmap[helper->eps_count] = 2226 d->bEndpointAddress; 2227 else if (helper->ffs->eps_addrmap[helper->eps_count] != 2228 d->bEndpointAddress) 2229 return -EINVAL; 2230 break; 2231 } 2232 2233 return 0; 2234 } 2235 2236 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, 2237 struct usb_os_desc_header *desc) 2238 { 2239 u16 bcd_version = le16_to_cpu(desc->bcdVersion); 2240 u16 w_index = le16_to_cpu(desc->wIndex); 2241 2242 if (bcd_version != 1) { 2243 pr_vdebug("unsupported os descriptors version: %d", 2244 bcd_version); 2245 return -EINVAL; 2246 } 2247 switch (w_index) { 2248 case 0x4: 2249 *next_type = FFS_OS_DESC_EXT_COMPAT; 2250 break; 2251 case 0x5: 2252 *next_type = FFS_OS_DESC_EXT_PROP; 2253 break; 2254 default: 2255 pr_vdebug("unsupported os descriptor type: %d", w_index); 2256 return -EINVAL; 2257 } 2258 2259 return sizeof(*desc); 2260 } 2261 2262 /* 2263 * Process all extended compatibility/extended property descriptors 2264 * of a feature descriptor 2265 */ 2266 static int __must_check ffs_do_single_os_desc(char *data, unsigned len, 2267 enum ffs_os_desc_type type, 2268 u16 feature_count, 2269 ffs_os_desc_callback entity, 2270 void *priv, 2271 struct usb_os_desc_header *h) 2272 { 2273 int ret; 2274 const unsigned _len = len; 2275 2276 ENTER(); 2277 2278 /* loop over all ext compat/ext prop descriptors */ 2279 while (feature_count--) { 2280 ret = entity(type, h, data, len, priv); 2281 if (unlikely(ret < 0)) { 2282 pr_debug("bad OS descriptor, type: %d\n", type); 2283 return ret; 2284 } 2285 data += ret; 2286 len -= ret; 2287 } 2288 return _len - len; 2289 } 2290 2291 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ 2292 static int __must_check ffs_do_os_descs(unsigned count, 2293 char *data, unsigned len, 2294 ffs_os_desc_callback entity, void *priv) 2295 { 2296 const unsigned _len = len; 2297 unsigned long num = 0; 2298 2299 ENTER(); 2300 2301 for (num = 0; num < count; ++num) { 2302 int ret; 2303 enum ffs_os_desc_type type; 2304 u16 feature_count; 2305 struct usb_os_desc_header *desc = (void *)data; 2306 2307 if (len < sizeof(*desc)) 2308 return -EINVAL; 2309 2310 /* 2311 * Record "descriptor" entity. 2312 * Process dwLength, bcdVersion, wIndex, get b/wCount. 2313 * Move the data pointer to the beginning of extended 2314 * compatibilities proper or extended properties proper 2315 * portions of the data 2316 */ 2317 if (le32_to_cpu(desc->dwLength) > len) 2318 return -EINVAL; 2319 2320 ret = __ffs_do_os_desc_header(&type, desc); 2321 if (unlikely(ret < 0)) { 2322 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", 2323 num, ret); 2324 return ret; 2325 } 2326 /* 2327 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" 2328 */ 2329 feature_count = le16_to_cpu(desc->wCount); 2330 if (type == FFS_OS_DESC_EXT_COMPAT && 2331 (feature_count > 255 || desc->Reserved)) 2332 return -EINVAL; 2333 len -= ret; 2334 data += ret; 2335 2336 /* 2337 * Process all function/property descriptors 2338 * of this Feature Descriptor 2339 */ 2340 ret = ffs_do_single_os_desc(data, len, type, 2341 feature_count, entity, priv, desc); 2342 if (unlikely(ret < 0)) { 2343 pr_debug("%s returns %d\n", __func__, ret); 2344 return ret; 2345 } 2346 2347 len -= ret; 2348 data += ret; 2349 } 2350 return _len - len; 2351 } 2352 2353 /** 2354 * Validate contents of the buffer from userspace related to OS descriptors. 2355 */ 2356 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, 2357 struct usb_os_desc_header *h, void *data, 2358 unsigned len, void *priv) 2359 { 2360 struct ffs_data *ffs = priv; 2361 u8 length; 2362 2363 ENTER(); 2364 2365 switch (type) { 2366 case FFS_OS_DESC_EXT_COMPAT: { 2367 struct usb_ext_compat_desc *d = data; 2368 int i; 2369 2370 if (len < sizeof(*d) || 2371 d->bFirstInterfaceNumber >= ffs->interfaces_count) 2372 return -EINVAL; 2373 if (d->Reserved1 != 1) { 2374 /* 2375 * According to the spec, Reserved1 must be set to 1 2376 * but older kernels incorrectly rejected non-zero 2377 * values. We fix it here to avoid returning EINVAL 2378 * in response to values we used to accept. 2379 */ 2380 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n"); 2381 d->Reserved1 = 1; 2382 } 2383 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) 2384 if (d->Reserved2[i]) 2385 return -EINVAL; 2386 2387 length = sizeof(struct usb_ext_compat_desc); 2388 } 2389 break; 2390 case FFS_OS_DESC_EXT_PROP: { 2391 struct usb_ext_prop_desc *d = data; 2392 u32 type, pdl; 2393 u16 pnl; 2394 2395 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) 2396 return -EINVAL; 2397 length = le32_to_cpu(d->dwSize); 2398 if (len < length) 2399 return -EINVAL; 2400 type = le32_to_cpu(d->dwPropertyDataType); 2401 if (type < USB_EXT_PROP_UNICODE || 2402 type > USB_EXT_PROP_UNICODE_MULTI) { 2403 pr_vdebug("unsupported os descriptor property type: %d", 2404 type); 2405 return -EINVAL; 2406 } 2407 pnl = le16_to_cpu(d->wPropertyNameLength); 2408 if (length < 14 + pnl) { 2409 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n", 2410 length, pnl, type); 2411 return -EINVAL; 2412 } 2413 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl)); 2414 if (length != 14 + pnl + pdl) { 2415 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", 2416 length, pnl, pdl, type); 2417 return -EINVAL; 2418 } 2419 ++ffs->ms_os_descs_ext_prop_count; 2420 /* property name reported to the host as "WCHAR"s */ 2421 ffs->ms_os_descs_ext_prop_name_len += pnl * 2; 2422 ffs->ms_os_descs_ext_prop_data_len += pdl; 2423 } 2424 break; 2425 default: 2426 pr_vdebug("unknown descriptor: %d\n", type); 2427 return -EINVAL; 2428 } 2429 return length; 2430 } 2431 2432 static int __ffs_data_got_descs(struct ffs_data *ffs, 2433 char *const _data, size_t len) 2434 { 2435 char *data = _data, *raw_descs; 2436 unsigned os_descs_count = 0, counts[3], flags; 2437 int ret = -EINVAL, i; 2438 struct ffs_desc_helper helper; 2439 2440 ENTER(); 2441 2442 if (get_unaligned_le32(data + 4) != len) 2443 goto error; 2444 2445 switch (get_unaligned_le32(data)) { 2446 case FUNCTIONFS_DESCRIPTORS_MAGIC: 2447 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; 2448 data += 8; 2449 len -= 8; 2450 break; 2451 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: 2452 flags = get_unaligned_le32(data + 8); 2453 ffs->user_flags = flags; 2454 if (flags & ~(FUNCTIONFS_HAS_FS_DESC | 2455 FUNCTIONFS_HAS_HS_DESC | 2456 FUNCTIONFS_HAS_SS_DESC | 2457 FUNCTIONFS_HAS_MS_OS_DESC | 2458 FUNCTIONFS_VIRTUAL_ADDR | 2459 FUNCTIONFS_EVENTFD | 2460 FUNCTIONFS_ALL_CTRL_RECIP | 2461 FUNCTIONFS_CONFIG0_SETUP)) { 2462 ret = -ENOSYS; 2463 goto error; 2464 } 2465 data += 12; 2466 len -= 12; 2467 break; 2468 default: 2469 goto error; 2470 } 2471 2472 if (flags & FUNCTIONFS_EVENTFD) { 2473 if (len < 4) 2474 goto error; 2475 ffs->ffs_eventfd = 2476 eventfd_ctx_fdget((int)get_unaligned_le32(data)); 2477 if (IS_ERR(ffs->ffs_eventfd)) { 2478 ret = PTR_ERR(ffs->ffs_eventfd); 2479 ffs->ffs_eventfd = NULL; 2480 goto error; 2481 } 2482 data += 4; 2483 len -= 4; 2484 } 2485 2486 /* Read fs_count, hs_count and ss_count (if present) */ 2487 for (i = 0; i < 3; ++i) { 2488 if (!(flags & (1 << i))) { 2489 counts[i] = 0; 2490 } else if (len < 4) { 2491 goto error; 2492 } else { 2493 counts[i] = get_unaligned_le32(data); 2494 data += 4; 2495 len -= 4; 2496 } 2497 } 2498 if (flags & (1 << i)) { 2499 if (len < 4) { 2500 goto error; 2501 } 2502 os_descs_count = get_unaligned_le32(data); 2503 data += 4; 2504 len -= 4; 2505 }; 2506 2507 /* Read descriptors */ 2508 raw_descs = data; 2509 helper.ffs = ffs; 2510 for (i = 0; i < 3; ++i) { 2511 if (!counts[i]) 2512 continue; 2513 helper.interfaces_count = 0; 2514 helper.eps_count = 0; 2515 ret = ffs_do_descs(counts[i], data, len, 2516 __ffs_data_do_entity, &helper); 2517 if (ret < 0) 2518 goto error; 2519 if (!ffs->eps_count && !ffs->interfaces_count) { 2520 ffs->eps_count = helper.eps_count; 2521 ffs->interfaces_count = helper.interfaces_count; 2522 } else { 2523 if (ffs->eps_count != helper.eps_count) { 2524 ret = -EINVAL; 2525 goto error; 2526 } 2527 if (ffs->interfaces_count != helper.interfaces_count) { 2528 ret = -EINVAL; 2529 goto error; 2530 } 2531 } 2532 data += ret; 2533 len -= ret; 2534 } 2535 if (os_descs_count) { 2536 ret = ffs_do_os_descs(os_descs_count, data, len, 2537 __ffs_data_do_os_desc, ffs); 2538 if (ret < 0) 2539 goto error; 2540 data += ret; 2541 len -= ret; 2542 } 2543 2544 if (raw_descs == data || len) { 2545 ret = -EINVAL; 2546 goto error; 2547 } 2548 2549 ffs->raw_descs_data = _data; 2550 ffs->raw_descs = raw_descs; 2551 ffs->raw_descs_length = data - raw_descs; 2552 ffs->fs_descs_count = counts[0]; 2553 ffs->hs_descs_count = counts[1]; 2554 ffs->ss_descs_count = counts[2]; 2555 ffs->ms_os_descs_count = os_descs_count; 2556 2557 return 0; 2558 2559 error: 2560 kfree(_data); 2561 return ret; 2562 } 2563 2564 static int __ffs_data_got_strings(struct ffs_data *ffs, 2565 char *const _data, size_t len) 2566 { 2567 u32 str_count, needed_count, lang_count; 2568 struct usb_gadget_strings **stringtabs, *t; 2569 const char *data = _data; 2570 struct usb_string *s; 2571 2572 ENTER(); 2573 2574 if (unlikely(len < 16 || 2575 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || 2576 get_unaligned_le32(data + 4) != len)) 2577 goto error; 2578 str_count = get_unaligned_le32(data + 8); 2579 lang_count = get_unaligned_le32(data + 12); 2580 2581 /* if one is zero the other must be zero */ 2582 if (unlikely(!str_count != !lang_count)) 2583 goto error; 2584 2585 /* Do we have at least as many strings as descriptors need? */ 2586 needed_count = ffs->strings_count; 2587 if (unlikely(str_count < needed_count)) 2588 goto error; 2589 2590 /* 2591 * If we don't need any strings just return and free all 2592 * memory. 2593 */ 2594 if (!needed_count) { 2595 kfree(_data); 2596 return 0; 2597 } 2598 2599 /* Allocate everything in one chunk so there's less maintenance. */ 2600 { 2601 unsigned i = 0; 2602 vla_group(d); 2603 vla_item(d, struct usb_gadget_strings *, stringtabs, 2604 lang_count + 1); 2605 vla_item(d, struct usb_gadget_strings, stringtab, lang_count); 2606 vla_item(d, struct usb_string, strings, 2607 lang_count*(needed_count+1)); 2608 2609 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); 2610 2611 if (unlikely(!vlabuf)) { 2612 kfree(_data); 2613 return -ENOMEM; 2614 } 2615 2616 /* Initialize the VLA pointers */ 2617 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2618 t = vla_ptr(vlabuf, d, stringtab); 2619 i = lang_count; 2620 do { 2621 *stringtabs++ = t++; 2622 } while (--i); 2623 *stringtabs = NULL; 2624 2625 /* stringtabs = vlabuf = d_stringtabs for later kfree */ 2626 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2627 t = vla_ptr(vlabuf, d, stringtab); 2628 s = vla_ptr(vlabuf, d, strings); 2629 } 2630 2631 /* For each language */ 2632 data += 16; 2633 len -= 16; 2634 2635 do { /* lang_count > 0 so we can use do-while */ 2636 unsigned needed = needed_count; 2637 2638 if (unlikely(len < 3)) 2639 goto error_free; 2640 t->language = get_unaligned_le16(data); 2641 t->strings = s; 2642 ++t; 2643 2644 data += 2; 2645 len -= 2; 2646 2647 /* For each string */ 2648 do { /* str_count > 0 so we can use do-while */ 2649 size_t length = strnlen(data, len); 2650 2651 if (unlikely(length == len)) 2652 goto error_free; 2653 2654 /* 2655 * User may provide more strings then we need, 2656 * if that's the case we simply ignore the 2657 * rest 2658 */ 2659 if (likely(needed)) { 2660 /* 2661 * s->id will be set while adding 2662 * function to configuration so for 2663 * now just leave garbage here. 2664 */ 2665 s->s = data; 2666 --needed; 2667 ++s; 2668 } 2669 2670 data += length + 1; 2671 len -= length + 1; 2672 } while (--str_count); 2673 2674 s->id = 0; /* terminator */ 2675 s->s = NULL; 2676 ++s; 2677 2678 } while (--lang_count); 2679 2680 /* Some garbage left? */ 2681 if (unlikely(len)) 2682 goto error_free; 2683 2684 /* Done! */ 2685 ffs->stringtabs = stringtabs; 2686 ffs->raw_strings = _data; 2687 2688 return 0; 2689 2690 error_free: 2691 kfree(stringtabs); 2692 error: 2693 kfree(_data); 2694 return -EINVAL; 2695 } 2696 2697 2698 /* Events handling and management *******************************************/ 2699 2700 static void __ffs_event_add(struct ffs_data *ffs, 2701 enum usb_functionfs_event_type type) 2702 { 2703 enum usb_functionfs_event_type rem_type1, rem_type2 = type; 2704 int neg = 0; 2705 2706 /* 2707 * Abort any unhandled setup 2708 * 2709 * We do not need to worry about some cmpxchg() changing value 2710 * of ffs->setup_state without holding the lock because when 2711 * state is FFS_SETUP_PENDING cmpxchg() in several places in 2712 * the source does nothing. 2713 */ 2714 if (ffs->setup_state == FFS_SETUP_PENDING) 2715 ffs->setup_state = FFS_SETUP_CANCELLED; 2716 2717 /* 2718 * Logic of this function guarantees that there are at most four pending 2719 * evens on ffs->ev.types queue. This is important because the queue 2720 * has space for four elements only and __ffs_ep0_read_events function 2721 * depends on that limit as well. If more event types are added, those 2722 * limits have to be revisited or guaranteed to still hold. 2723 */ 2724 switch (type) { 2725 case FUNCTIONFS_RESUME: 2726 rem_type2 = FUNCTIONFS_SUSPEND; 2727 /* FALL THROUGH */ 2728 case FUNCTIONFS_SUSPEND: 2729 case FUNCTIONFS_SETUP: 2730 rem_type1 = type; 2731 /* Discard all similar events */ 2732 break; 2733 2734 case FUNCTIONFS_BIND: 2735 case FUNCTIONFS_UNBIND: 2736 case FUNCTIONFS_DISABLE: 2737 case FUNCTIONFS_ENABLE: 2738 /* Discard everything other then power management. */ 2739 rem_type1 = FUNCTIONFS_SUSPEND; 2740 rem_type2 = FUNCTIONFS_RESUME; 2741 neg = 1; 2742 break; 2743 2744 default: 2745 WARN(1, "%d: unknown event, this should not happen\n", type); 2746 return; 2747 } 2748 2749 { 2750 u8 *ev = ffs->ev.types, *out = ev; 2751 unsigned n = ffs->ev.count; 2752 for (; n; --n, ++ev) 2753 if ((*ev == rem_type1 || *ev == rem_type2) == neg) 2754 *out++ = *ev; 2755 else 2756 pr_vdebug("purging event %d\n", *ev); 2757 ffs->ev.count = out - ffs->ev.types; 2758 } 2759 2760 pr_vdebug("adding event %d\n", type); 2761 ffs->ev.types[ffs->ev.count++] = type; 2762 wake_up_locked(&ffs->ev.waitq); 2763 if (ffs->ffs_eventfd) 2764 eventfd_signal(ffs->ffs_eventfd, 1); 2765 } 2766 2767 static void ffs_event_add(struct ffs_data *ffs, 2768 enum usb_functionfs_event_type type) 2769 { 2770 unsigned long flags; 2771 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 2772 __ffs_event_add(ffs, type); 2773 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 2774 } 2775 2776 /* Bind/unbind USB function hooks *******************************************/ 2777 2778 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address) 2779 { 2780 int i; 2781 2782 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i) 2783 if (ffs->eps_addrmap[i] == endpoint_address) 2784 return i; 2785 return -ENOENT; 2786 } 2787 2788 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, 2789 struct usb_descriptor_header *desc, 2790 void *priv) 2791 { 2792 struct usb_endpoint_descriptor *ds = (void *)desc; 2793 struct ffs_function *func = priv; 2794 struct ffs_ep *ffs_ep; 2795 unsigned ep_desc_id; 2796 int idx; 2797 static const char *speed_names[] = { "full", "high", "super" }; 2798 2799 if (type != FFS_DESCRIPTOR) 2800 return 0; 2801 2802 /* 2803 * If ss_descriptors is not NULL, we are reading super speed 2804 * descriptors; if hs_descriptors is not NULL, we are reading high 2805 * speed descriptors; otherwise, we are reading full speed 2806 * descriptors. 2807 */ 2808 if (func->function.ss_descriptors) { 2809 ep_desc_id = 2; 2810 func->function.ss_descriptors[(long)valuep] = desc; 2811 } else if (func->function.hs_descriptors) { 2812 ep_desc_id = 1; 2813 func->function.hs_descriptors[(long)valuep] = desc; 2814 } else { 2815 ep_desc_id = 0; 2816 func->function.fs_descriptors[(long)valuep] = desc; 2817 } 2818 2819 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) 2820 return 0; 2821 2822 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1; 2823 if (idx < 0) 2824 return idx; 2825 2826 ffs_ep = func->eps + idx; 2827 2828 if (unlikely(ffs_ep->descs[ep_desc_id])) { 2829 pr_err("two %sspeed descriptors for EP %d\n", 2830 speed_names[ep_desc_id], 2831 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); 2832 return -EINVAL; 2833 } 2834 ffs_ep->descs[ep_desc_id] = ds; 2835 2836 ffs_dump_mem(": Original ep desc", ds, ds->bLength); 2837 if (ffs_ep->ep) { 2838 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; 2839 if (!ds->wMaxPacketSize) 2840 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; 2841 } else { 2842 struct usb_request *req; 2843 struct usb_ep *ep; 2844 u8 bEndpointAddress; 2845 u16 wMaxPacketSize; 2846 2847 /* 2848 * We back up bEndpointAddress because autoconfig overwrites 2849 * it with physical endpoint address. 2850 */ 2851 bEndpointAddress = ds->bEndpointAddress; 2852 /* 2853 * We back up wMaxPacketSize because autoconfig treats 2854 * endpoint descriptors as if they were full speed. 2855 */ 2856 wMaxPacketSize = ds->wMaxPacketSize; 2857 pr_vdebug("autoconfig\n"); 2858 ep = usb_ep_autoconfig(func->gadget, ds); 2859 if (unlikely(!ep)) 2860 return -ENOTSUPP; 2861 ep->driver_data = func->eps + idx; 2862 2863 req = usb_ep_alloc_request(ep, GFP_KERNEL); 2864 if (unlikely(!req)) 2865 return -ENOMEM; 2866 2867 ffs_ep->ep = ep; 2868 ffs_ep->req = req; 2869 func->eps_revmap[ds->bEndpointAddress & 2870 USB_ENDPOINT_NUMBER_MASK] = idx + 1; 2871 /* 2872 * If we use virtual address mapping, we restore 2873 * original bEndpointAddress value. 2874 */ 2875 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 2876 ds->bEndpointAddress = bEndpointAddress; 2877 /* 2878 * Restore wMaxPacketSize which was potentially 2879 * overwritten by autoconfig. 2880 */ 2881 ds->wMaxPacketSize = wMaxPacketSize; 2882 } 2883 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); 2884 2885 return 0; 2886 } 2887 2888 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, 2889 struct usb_descriptor_header *desc, 2890 void *priv) 2891 { 2892 struct ffs_function *func = priv; 2893 unsigned idx; 2894 u8 newValue; 2895 2896 switch (type) { 2897 default: 2898 case FFS_DESCRIPTOR: 2899 /* Handled in previous pass by __ffs_func_bind_do_descs() */ 2900 return 0; 2901 2902 case FFS_INTERFACE: 2903 idx = *valuep; 2904 if (func->interfaces_nums[idx] < 0) { 2905 int id = usb_interface_id(func->conf, &func->function); 2906 if (unlikely(id < 0)) 2907 return id; 2908 func->interfaces_nums[idx] = id; 2909 } 2910 newValue = func->interfaces_nums[idx]; 2911 break; 2912 2913 case FFS_STRING: 2914 /* String' IDs are allocated when fsf_data is bound to cdev */ 2915 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; 2916 break; 2917 2918 case FFS_ENDPOINT: 2919 /* 2920 * USB_DT_ENDPOINT are handled in 2921 * __ffs_func_bind_do_descs(). 2922 */ 2923 if (desc->bDescriptorType == USB_DT_ENDPOINT) 2924 return 0; 2925 2926 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; 2927 if (unlikely(!func->eps[idx].ep)) 2928 return -EINVAL; 2929 2930 { 2931 struct usb_endpoint_descriptor **descs; 2932 descs = func->eps[idx].descs; 2933 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; 2934 } 2935 break; 2936 } 2937 2938 pr_vdebug("%02x -> %02x\n", *valuep, newValue); 2939 *valuep = newValue; 2940 return 0; 2941 } 2942 2943 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, 2944 struct usb_os_desc_header *h, void *data, 2945 unsigned len, void *priv) 2946 { 2947 struct ffs_function *func = priv; 2948 u8 length = 0; 2949 2950 switch (type) { 2951 case FFS_OS_DESC_EXT_COMPAT: { 2952 struct usb_ext_compat_desc *desc = data; 2953 struct usb_os_desc_table *t; 2954 2955 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; 2956 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; 2957 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID, 2958 ARRAY_SIZE(desc->CompatibleID) + 2959 ARRAY_SIZE(desc->SubCompatibleID)); 2960 length = sizeof(*desc); 2961 } 2962 break; 2963 case FFS_OS_DESC_EXT_PROP: { 2964 struct usb_ext_prop_desc *desc = data; 2965 struct usb_os_desc_table *t; 2966 struct usb_os_desc_ext_prop *ext_prop; 2967 char *ext_prop_name; 2968 char *ext_prop_data; 2969 2970 t = &func->function.os_desc_table[h->interface]; 2971 t->if_id = func->interfaces_nums[h->interface]; 2972 2973 ext_prop = func->ffs->ms_os_descs_ext_prop_avail; 2974 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); 2975 2976 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); 2977 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); 2978 ext_prop->data_len = le32_to_cpu(*(__le32 *) 2979 usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); 2980 length = ext_prop->name_len + ext_prop->data_len + 14; 2981 2982 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; 2983 func->ffs->ms_os_descs_ext_prop_name_avail += 2984 ext_prop->name_len; 2985 2986 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; 2987 func->ffs->ms_os_descs_ext_prop_data_avail += 2988 ext_prop->data_len; 2989 memcpy(ext_prop_data, 2990 usb_ext_prop_data_ptr(data, ext_prop->name_len), 2991 ext_prop->data_len); 2992 /* unicode data reported to the host as "WCHAR"s */ 2993 switch (ext_prop->type) { 2994 case USB_EXT_PROP_UNICODE: 2995 case USB_EXT_PROP_UNICODE_ENV: 2996 case USB_EXT_PROP_UNICODE_LINK: 2997 case USB_EXT_PROP_UNICODE_MULTI: 2998 ext_prop->data_len *= 2; 2999 break; 3000 } 3001 ext_prop->data = ext_prop_data; 3002 3003 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), 3004 ext_prop->name_len); 3005 /* property name reported to the host as "WCHAR"s */ 3006 ext_prop->name_len *= 2; 3007 ext_prop->name = ext_prop_name; 3008 3009 t->os_desc->ext_prop_len += 3010 ext_prop->name_len + ext_prop->data_len + 14; 3011 ++t->os_desc->ext_prop_count; 3012 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); 3013 } 3014 break; 3015 default: 3016 pr_vdebug("unknown descriptor: %d\n", type); 3017 } 3018 3019 return length; 3020 } 3021 3022 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, 3023 struct usb_configuration *c) 3024 { 3025 struct ffs_function *func = ffs_func_from_usb(f); 3026 struct f_fs_opts *ffs_opts = 3027 container_of(f->fi, struct f_fs_opts, func_inst); 3028 int ret; 3029 3030 ENTER(); 3031 3032 /* 3033 * Legacy gadget triggers binding in functionfs_ready_callback, 3034 * which already uses locking; taking the same lock here would 3035 * cause a deadlock. 3036 * 3037 * Configfs-enabled gadgets however do need ffs_dev_lock. 3038 */ 3039 if (!ffs_opts->no_configfs) 3040 ffs_dev_lock(); 3041 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; 3042 func->ffs = ffs_opts->dev->ffs_data; 3043 if (!ffs_opts->no_configfs) 3044 ffs_dev_unlock(); 3045 if (ret) 3046 return ERR_PTR(ret); 3047 3048 func->conf = c; 3049 func->gadget = c->cdev->gadget; 3050 3051 /* 3052 * in drivers/usb/gadget/configfs.c:configfs_composite_bind() 3053 * configurations are bound in sequence with list_for_each_entry, 3054 * in each configuration its functions are bound in sequence 3055 * with list_for_each_entry, so we assume no race condition 3056 * with regard to ffs_opts->bound access 3057 */ 3058 if (!ffs_opts->refcnt) { 3059 ret = functionfs_bind(func->ffs, c->cdev); 3060 if (ret) 3061 return ERR_PTR(ret); 3062 } 3063 ffs_opts->refcnt++; 3064 func->function.strings = func->ffs->stringtabs; 3065 3066 return ffs_opts; 3067 } 3068 3069 static int _ffs_func_bind(struct usb_configuration *c, 3070 struct usb_function *f) 3071 { 3072 struct ffs_function *func = ffs_func_from_usb(f); 3073 struct ffs_data *ffs = func->ffs; 3074 3075 const int full = !!func->ffs->fs_descs_count; 3076 const int high = !!func->ffs->hs_descs_count; 3077 const int super = !!func->ffs->ss_descs_count; 3078 3079 int fs_len, hs_len, ss_len, ret, i; 3080 struct ffs_ep *eps_ptr; 3081 3082 /* Make it a single chunk, less management later on */ 3083 vla_group(d); 3084 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); 3085 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, 3086 full ? ffs->fs_descs_count + 1 : 0); 3087 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, 3088 high ? ffs->hs_descs_count + 1 : 0); 3089 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, 3090 super ? ffs->ss_descs_count + 1 : 0); 3091 vla_item_with_sz(d, short, inums, ffs->interfaces_count); 3092 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, 3093 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3094 vla_item_with_sz(d, char[16], ext_compat, 3095 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3096 vla_item_with_sz(d, struct usb_os_desc, os_desc, 3097 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3098 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, 3099 ffs->ms_os_descs_ext_prop_count); 3100 vla_item_with_sz(d, char, ext_prop_name, 3101 ffs->ms_os_descs_ext_prop_name_len); 3102 vla_item_with_sz(d, char, ext_prop_data, 3103 ffs->ms_os_descs_ext_prop_data_len); 3104 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); 3105 char *vlabuf; 3106 3107 ENTER(); 3108 3109 /* Has descriptors only for speeds gadget does not support */ 3110 if (unlikely(!(full | high | super))) 3111 return -ENOTSUPP; 3112 3113 /* Allocate a single chunk, less management later on */ 3114 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); 3115 if (unlikely(!vlabuf)) 3116 return -ENOMEM; 3117 3118 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); 3119 ffs->ms_os_descs_ext_prop_name_avail = 3120 vla_ptr(vlabuf, d, ext_prop_name); 3121 ffs->ms_os_descs_ext_prop_data_avail = 3122 vla_ptr(vlabuf, d, ext_prop_data); 3123 3124 /* Copy descriptors */ 3125 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, 3126 ffs->raw_descs_length); 3127 3128 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); 3129 eps_ptr = vla_ptr(vlabuf, d, eps); 3130 for (i = 0; i < ffs->eps_count; i++) 3131 eps_ptr[i].num = -1; 3132 3133 /* Save pointers 3134 * d_eps == vlabuf, func->eps used to kfree vlabuf later 3135 */ 3136 func->eps = vla_ptr(vlabuf, d, eps); 3137 func->interfaces_nums = vla_ptr(vlabuf, d, inums); 3138 3139 /* 3140 * Go through all the endpoint descriptors and allocate 3141 * endpoints first, so that later we can rewrite the endpoint 3142 * numbers without worrying that it may be described later on. 3143 */ 3144 if (likely(full)) { 3145 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); 3146 fs_len = ffs_do_descs(ffs->fs_descs_count, 3147 vla_ptr(vlabuf, d, raw_descs), 3148 d_raw_descs__sz, 3149 __ffs_func_bind_do_descs, func); 3150 if (unlikely(fs_len < 0)) { 3151 ret = fs_len; 3152 goto error; 3153 } 3154 } else { 3155 fs_len = 0; 3156 } 3157 3158 if (likely(high)) { 3159 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); 3160 hs_len = ffs_do_descs(ffs->hs_descs_count, 3161 vla_ptr(vlabuf, d, raw_descs) + fs_len, 3162 d_raw_descs__sz - fs_len, 3163 __ffs_func_bind_do_descs, func); 3164 if (unlikely(hs_len < 0)) { 3165 ret = hs_len; 3166 goto error; 3167 } 3168 } else { 3169 hs_len = 0; 3170 } 3171 3172 if (likely(super)) { 3173 func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs); 3174 ss_len = ffs_do_descs(ffs->ss_descs_count, 3175 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, 3176 d_raw_descs__sz - fs_len - hs_len, 3177 __ffs_func_bind_do_descs, func); 3178 if (unlikely(ss_len < 0)) { 3179 ret = ss_len; 3180 goto error; 3181 } 3182 } else { 3183 ss_len = 0; 3184 } 3185 3186 /* 3187 * Now handle interface numbers allocation and interface and 3188 * endpoint numbers rewriting. We can do that in one go 3189 * now. 3190 */ 3191 ret = ffs_do_descs(ffs->fs_descs_count + 3192 (high ? ffs->hs_descs_count : 0) + 3193 (super ? ffs->ss_descs_count : 0), 3194 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, 3195 __ffs_func_bind_do_nums, func); 3196 if (unlikely(ret < 0)) 3197 goto error; 3198 3199 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); 3200 if (c->cdev->use_os_string) { 3201 for (i = 0; i < ffs->interfaces_count; ++i) { 3202 struct usb_os_desc *desc; 3203 3204 desc = func->function.os_desc_table[i].os_desc = 3205 vla_ptr(vlabuf, d, os_desc) + 3206 i * sizeof(struct usb_os_desc); 3207 desc->ext_compat_id = 3208 vla_ptr(vlabuf, d, ext_compat) + i * 16; 3209 INIT_LIST_HEAD(&desc->ext_prop); 3210 } 3211 ret = ffs_do_os_descs(ffs->ms_os_descs_count, 3212 vla_ptr(vlabuf, d, raw_descs) + 3213 fs_len + hs_len + ss_len, 3214 d_raw_descs__sz - fs_len - hs_len - 3215 ss_len, 3216 __ffs_func_bind_do_os_desc, func); 3217 if (unlikely(ret < 0)) 3218 goto error; 3219 } 3220 func->function.os_desc_n = 3221 c->cdev->use_os_string ? ffs->interfaces_count : 0; 3222 3223 /* And we're done */ 3224 ffs_event_add(ffs, FUNCTIONFS_BIND); 3225 return 0; 3226 3227 error: 3228 /* XXX Do we need to release all claimed endpoints here? */ 3229 return ret; 3230 } 3231 3232 static int ffs_func_bind(struct usb_configuration *c, 3233 struct usb_function *f) 3234 { 3235 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); 3236 struct ffs_function *func = ffs_func_from_usb(f); 3237 int ret; 3238 3239 if (IS_ERR(ffs_opts)) 3240 return PTR_ERR(ffs_opts); 3241 3242 ret = _ffs_func_bind(c, f); 3243 if (ret && !--ffs_opts->refcnt) 3244 functionfs_unbind(func->ffs); 3245 3246 return ret; 3247 } 3248 3249 3250 /* Other USB function hooks *************************************************/ 3251 3252 static void ffs_reset_work(struct work_struct *work) 3253 { 3254 struct ffs_data *ffs = container_of(work, 3255 struct ffs_data, reset_work); 3256 ffs_data_reset(ffs); 3257 } 3258 3259 static int ffs_func_set_alt(struct usb_function *f, 3260 unsigned interface, unsigned alt) 3261 { 3262 struct ffs_function *func = ffs_func_from_usb(f); 3263 struct ffs_data *ffs = func->ffs; 3264 int ret = 0, intf; 3265 3266 if (alt != (unsigned)-1) { 3267 intf = ffs_func_revmap_intf(func, interface); 3268 if (unlikely(intf < 0)) 3269 return intf; 3270 } 3271 3272 if (ffs->func) 3273 ffs_func_eps_disable(ffs->func); 3274 3275 if (ffs->state == FFS_DEACTIVATED) { 3276 ffs->state = FFS_CLOSING; 3277 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3278 schedule_work(&ffs->reset_work); 3279 return -ENODEV; 3280 } 3281 3282 if (ffs->state != FFS_ACTIVE) 3283 return -ENODEV; 3284 3285 if (alt == (unsigned)-1) { 3286 ffs->func = NULL; 3287 ffs_event_add(ffs, FUNCTIONFS_DISABLE); 3288 return 0; 3289 } 3290 3291 ffs->func = func; 3292 ret = ffs_func_eps_enable(func); 3293 if (likely(ret >= 0)) 3294 ffs_event_add(ffs, FUNCTIONFS_ENABLE); 3295 return ret; 3296 } 3297 3298 static void ffs_func_disable(struct usb_function *f) 3299 { 3300 ffs_func_set_alt(f, 0, (unsigned)-1); 3301 } 3302 3303 static int ffs_func_setup(struct usb_function *f, 3304 const struct usb_ctrlrequest *creq) 3305 { 3306 struct ffs_function *func = ffs_func_from_usb(f); 3307 struct ffs_data *ffs = func->ffs; 3308 unsigned long flags; 3309 int ret; 3310 3311 ENTER(); 3312 3313 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); 3314 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); 3315 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); 3316 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); 3317 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); 3318 3319 /* 3320 * Most requests directed to interface go through here 3321 * (notable exceptions are set/get interface) so we need to 3322 * handle them. All other either handled by composite or 3323 * passed to usb_configuration->setup() (if one is set). No 3324 * matter, we will handle requests directed to endpoint here 3325 * as well (as it's straightforward). Other request recipient 3326 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP 3327 * is being used. 3328 */ 3329 if (ffs->state != FFS_ACTIVE) 3330 return -ENODEV; 3331 3332 switch (creq->bRequestType & USB_RECIP_MASK) { 3333 case USB_RECIP_INTERFACE: 3334 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); 3335 if (unlikely(ret < 0)) 3336 return ret; 3337 break; 3338 3339 case USB_RECIP_ENDPOINT: 3340 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); 3341 if (unlikely(ret < 0)) 3342 return ret; 3343 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3344 ret = func->ffs->eps_addrmap[ret]; 3345 break; 3346 3347 default: 3348 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP) 3349 ret = le16_to_cpu(creq->wIndex); 3350 else 3351 return -EOPNOTSUPP; 3352 } 3353 3354 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3355 ffs->ev.setup = *creq; 3356 ffs->ev.setup.wIndex = cpu_to_le16(ret); 3357 __ffs_event_add(ffs, FUNCTIONFS_SETUP); 3358 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3359 3360 return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0; 3361 } 3362 3363 static bool ffs_func_req_match(struct usb_function *f, 3364 const struct usb_ctrlrequest *creq, 3365 bool config0) 3366 { 3367 struct ffs_function *func = ffs_func_from_usb(f); 3368 3369 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP)) 3370 return false; 3371 3372 switch (creq->bRequestType & USB_RECIP_MASK) { 3373 case USB_RECIP_INTERFACE: 3374 return (ffs_func_revmap_intf(func, 3375 le16_to_cpu(creq->wIndex)) >= 0); 3376 case USB_RECIP_ENDPOINT: 3377 return (ffs_func_revmap_ep(func, 3378 le16_to_cpu(creq->wIndex)) >= 0); 3379 default: 3380 return (bool) (func->ffs->user_flags & 3381 FUNCTIONFS_ALL_CTRL_RECIP); 3382 } 3383 } 3384 3385 static void ffs_func_suspend(struct usb_function *f) 3386 { 3387 ENTER(); 3388 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); 3389 } 3390 3391 static void ffs_func_resume(struct usb_function *f) 3392 { 3393 ENTER(); 3394 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); 3395 } 3396 3397 3398 /* Endpoint and interface numbers reverse mapping ***************************/ 3399 3400 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) 3401 { 3402 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; 3403 return num ? num : -EDOM; 3404 } 3405 3406 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) 3407 { 3408 short *nums = func->interfaces_nums; 3409 unsigned count = func->ffs->interfaces_count; 3410 3411 for (; count; --count, ++nums) { 3412 if (*nums >= 0 && *nums == intf) 3413 return nums - func->interfaces_nums; 3414 } 3415 3416 return -EDOM; 3417 } 3418 3419 3420 /* Devices management *******************************************************/ 3421 3422 static LIST_HEAD(ffs_devices); 3423 3424 static struct ffs_dev *_ffs_do_find_dev(const char *name) 3425 { 3426 struct ffs_dev *dev; 3427 3428 if (!name) 3429 return NULL; 3430 3431 list_for_each_entry(dev, &ffs_devices, entry) { 3432 if (strcmp(dev->name, name) == 0) 3433 return dev; 3434 } 3435 3436 return NULL; 3437 } 3438 3439 /* 3440 * ffs_lock must be taken by the caller of this function 3441 */ 3442 static struct ffs_dev *_ffs_get_single_dev(void) 3443 { 3444 struct ffs_dev *dev; 3445 3446 if (list_is_singular(&ffs_devices)) { 3447 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); 3448 if (dev->single) 3449 return dev; 3450 } 3451 3452 return NULL; 3453 } 3454 3455 /* 3456 * ffs_lock must be taken by the caller of this function 3457 */ 3458 static struct ffs_dev *_ffs_find_dev(const char *name) 3459 { 3460 struct ffs_dev *dev; 3461 3462 dev = _ffs_get_single_dev(); 3463 if (dev) 3464 return dev; 3465 3466 return _ffs_do_find_dev(name); 3467 } 3468 3469 /* Configfs support *********************************************************/ 3470 3471 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) 3472 { 3473 return container_of(to_config_group(item), struct f_fs_opts, 3474 func_inst.group); 3475 } 3476 3477 static void ffs_attr_release(struct config_item *item) 3478 { 3479 struct f_fs_opts *opts = to_ffs_opts(item); 3480 3481 usb_put_function_instance(&opts->func_inst); 3482 } 3483 3484 static struct configfs_item_operations ffs_item_ops = { 3485 .release = ffs_attr_release, 3486 }; 3487 3488 static const struct config_item_type ffs_func_type = { 3489 .ct_item_ops = &ffs_item_ops, 3490 .ct_owner = THIS_MODULE, 3491 }; 3492 3493 3494 /* Function registration interface ******************************************/ 3495 3496 static void ffs_free_inst(struct usb_function_instance *f) 3497 { 3498 struct f_fs_opts *opts; 3499 3500 opts = to_f_fs_opts(f); 3501 ffs_dev_lock(); 3502 _ffs_free_dev(opts->dev); 3503 ffs_dev_unlock(); 3504 kfree(opts); 3505 } 3506 3507 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) 3508 { 3509 if (strlen(name) >= sizeof_field(struct ffs_dev, name)) 3510 return -ENAMETOOLONG; 3511 return ffs_name_dev(to_f_fs_opts(fi)->dev, name); 3512 } 3513 3514 static struct usb_function_instance *ffs_alloc_inst(void) 3515 { 3516 struct f_fs_opts *opts; 3517 struct ffs_dev *dev; 3518 3519 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 3520 if (!opts) 3521 return ERR_PTR(-ENOMEM); 3522 3523 opts->func_inst.set_inst_name = ffs_set_inst_name; 3524 opts->func_inst.free_func_inst = ffs_free_inst; 3525 ffs_dev_lock(); 3526 dev = _ffs_alloc_dev(); 3527 ffs_dev_unlock(); 3528 if (IS_ERR(dev)) { 3529 kfree(opts); 3530 return ERR_CAST(dev); 3531 } 3532 opts->dev = dev; 3533 dev->opts = opts; 3534 3535 config_group_init_type_name(&opts->func_inst.group, "", 3536 &ffs_func_type); 3537 return &opts->func_inst; 3538 } 3539 3540 static void ffs_free(struct usb_function *f) 3541 { 3542 kfree(ffs_func_from_usb(f)); 3543 } 3544 3545 static void ffs_func_unbind(struct usb_configuration *c, 3546 struct usb_function *f) 3547 { 3548 struct ffs_function *func = ffs_func_from_usb(f); 3549 struct ffs_data *ffs = func->ffs; 3550 struct f_fs_opts *opts = 3551 container_of(f->fi, struct f_fs_opts, func_inst); 3552 struct ffs_ep *ep = func->eps; 3553 unsigned count = ffs->eps_count; 3554 unsigned long flags; 3555 3556 ENTER(); 3557 if (ffs->func == func) { 3558 ffs_func_eps_disable(func); 3559 ffs->func = NULL; 3560 } 3561 3562 if (!--opts->refcnt) 3563 functionfs_unbind(ffs); 3564 3565 /* cleanup after autoconfig */ 3566 spin_lock_irqsave(&func->ffs->eps_lock, flags); 3567 while (count--) { 3568 if (ep->ep && ep->req) 3569 usb_ep_free_request(ep->ep, ep->req); 3570 ep->req = NULL; 3571 ++ep; 3572 } 3573 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 3574 kfree(func->eps); 3575 func->eps = NULL; 3576 /* 3577 * eps, descriptors and interfaces_nums are allocated in the 3578 * same chunk so only one free is required. 3579 */ 3580 func->function.fs_descriptors = NULL; 3581 func->function.hs_descriptors = NULL; 3582 func->function.ss_descriptors = NULL; 3583 func->interfaces_nums = NULL; 3584 3585 ffs_event_add(ffs, FUNCTIONFS_UNBIND); 3586 } 3587 3588 static struct usb_function *ffs_alloc(struct usb_function_instance *fi) 3589 { 3590 struct ffs_function *func; 3591 3592 ENTER(); 3593 3594 func = kzalloc(sizeof(*func), GFP_KERNEL); 3595 if (unlikely(!func)) 3596 return ERR_PTR(-ENOMEM); 3597 3598 func->function.name = "Function FS Gadget"; 3599 3600 func->function.bind = ffs_func_bind; 3601 func->function.unbind = ffs_func_unbind; 3602 func->function.set_alt = ffs_func_set_alt; 3603 func->function.disable = ffs_func_disable; 3604 func->function.setup = ffs_func_setup; 3605 func->function.req_match = ffs_func_req_match; 3606 func->function.suspend = ffs_func_suspend; 3607 func->function.resume = ffs_func_resume; 3608 func->function.free_func = ffs_free; 3609 3610 return &func->function; 3611 } 3612 3613 /* 3614 * ffs_lock must be taken by the caller of this function 3615 */ 3616 static struct ffs_dev *_ffs_alloc_dev(void) 3617 { 3618 struct ffs_dev *dev; 3619 int ret; 3620 3621 if (_ffs_get_single_dev()) 3622 return ERR_PTR(-EBUSY); 3623 3624 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3625 if (!dev) 3626 return ERR_PTR(-ENOMEM); 3627 3628 if (list_empty(&ffs_devices)) { 3629 ret = functionfs_init(); 3630 if (ret) { 3631 kfree(dev); 3632 return ERR_PTR(ret); 3633 } 3634 } 3635 3636 list_add(&dev->entry, &ffs_devices); 3637 3638 return dev; 3639 } 3640 3641 int ffs_name_dev(struct ffs_dev *dev, const char *name) 3642 { 3643 struct ffs_dev *existing; 3644 int ret = 0; 3645 3646 ffs_dev_lock(); 3647 3648 existing = _ffs_do_find_dev(name); 3649 if (!existing) 3650 strlcpy(dev->name, name, ARRAY_SIZE(dev->name)); 3651 else if (existing != dev) 3652 ret = -EBUSY; 3653 3654 ffs_dev_unlock(); 3655 3656 return ret; 3657 } 3658 EXPORT_SYMBOL_GPL(ffs_name_dev); 3659 3660 int ffs_single_dev(struct ffs_dev *dev) 3661 { 3662 int ret; 3663 3664 ret = 0; 3665 ffs_dev_lock(); 3666 3667 if (!list_is_singular(&ffs_devices)) 3668 ret = -EBUSY; 3669 else 3670 dev->single = true; 3671 3672 ffs_dev_unlock(); 3673 return ret; 3674 } 3675 EXPORT_SYMBOL_GPL(ffs_single_dev); 3676 3677 /* 3678 * ffs_lock must be taken by the caller of this function 3679 */ 3680 static void _ffs_free_dev(struct ffs_dev *dev) 3681 { 3682 list_del(&dev->entry); 3683 3684 /* Clear the private_data pointer to stop incorrect dev access */ 3685 if (dev->ffs_data) 3686 dev->ffs_data->private_data = NULL; 3687 3688 kfree(dev); 3689 if (list_empty(&ffs_devices)) 3690 functionfs_cleanup(); 3691 } 3692 3693 static void *ffs_acquire_dev(const char *dev_name) 3694 { 3695 struct ffs_dev *ffs_dev; 3696 3697 ENTER(); 3698 ffs_dev_lock(); 3699 3700 ffs_dev = _ffs_find_dev(dev_name); 3701 if (!ffs_dev) 3702 ffs_dev = ERR_PTR(-ENOENT); 3703 else if (ffs_dev->mounted) 3704 ffs_dev = ERR_PTR(-EBUSY); 3705 else if (ffs_dev->ffs_acquire_dev_callback && 3706 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) 3707 ffs_dev = ERR_PTR(-ENOENT); 3708 else 3709 ffs_dev->mounted = true; 3710 3711 ffs_dev_unlock(); 3712 return ffs_dev; 3713 } 3714 3715 static void ffs_release_dev(struct ffs_data *ffs_data) 3716 { 3717 struct ffs_dev *ffs_dev; 3718 3719 ENTER(); 3720 ffs_dev_lock(); 3721 3722 ffs_dev = ffs_data->private_data; 3723 if (ffs_dev) { 3724 ffs_dev->mounted = false; 3725 3726 if (ffs_dev->ffs_release_dev_callback) 3727 ffs_dev->ffs_release_dev_callback(ffs_dev); 3728 } 3729 3730 ffs_dev_unlock(); 3731 } 3732 3733 static int ffs_ready(struct ffs_data *ffs) 3734 { 3735 struct ffs_dev *ffs_obj; 3736 int ret = 0; 3737 3738 ENTER(); 3739 ffs_dev_lock(); 3740 3741 ffs_obj = ffs->private_data; 3742 if (!ffs_obj) { 3743 ret = -EINVAL; 3744 goto done; 3745 } 3746 if (WARN_ON(ffs_obj->desc_ready)) { 3747 ret = -EBUSY; 3748 goto done; 3749 } 3750 3751 ffs_obj->desc_ready = true; 3752 ffs_obj->ffs_data = ffs; 3753 3754 if (ffs_obj->ffs_ready_callback) { 3755 ret = ffs_obj->ffs_ready_callback(ffs); 3756 if (ret) 3757 goto done; 3758 } 3759 3760 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); 3761 done: 3762 ffs_dev_unlock(); 3763 return ret; 3764 } 3765 3766 static void ffs_closed(struct ffs_data *ffs) 3767 { 3768 struct ffs_dev *ffs_obj; 3769 struct f_fs_opts *opts; 3770 struct config_item *ci; 3771 3772 ENTER(); 3773 ffs_dev_lock(); 3774 3775 ffs_obj = ffs->private_data; 3776 if (!ffs_obj) 3777 goto done; 3778 3779 ffs_obj->desc_ready = false; 3780 ffs_obj->ffs_data = NULL; 3781 3782 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) && 3783 ffs_obj->ffs_closed_callback) 3784 ffs_obj->ffs_closed_callback(ffs); 3785 3786 if (ffs_obj->opts) 3787 opts = ffs_obj->opts; 3788 else 3789 goto done; 3790 3791 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent 3792 || !kref_read(&opts->func_inst.group.cg_item.ci_kref)) 3793 goto done; 3794 3795 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent; 3796 ffs_dev_unlock(); 3797 3798 if (test_bit(FFS_FL_BOUND, &ffs->flags)) 3799 unregister_gadget_item(ci); 3800 return; 3801 done: 3802 ffs_dev_unlock(); 3803 } 3804 3805 /* Misc helper functions ****************************************************/ 3806 3807 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 3808 { 3809 return nonblock 3810 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN 3811 : mutex_lock_interruptible(mutex); 3812 } 3813 3814 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 3815 { 3816 char *data; 3817 3818 if (unlikely(!len)) 3819 return NULL; 3820 3821 data = kmalloc(len, GFP_KERNEL); 3822 if (unlikely(!data)) 3823 return ERR_PTR(-ENOMEM); 3824 3825 if (unlikely(copy_from_user(data, buf, len))) { 3826 kfree(data); 3827 return ERR_PTR(-EFAULT); 3828 } 3829 3830 pr_vdebug("Buffer from user space:\n"); 3831 ffs_dump_mem("", data, len); 3832 3833 return data; 3834 } 3835 3836 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); 3837 MODULE_LICENSE("GPL"); 3838 MODULE_AUTHOR("Michal Nazarewicz"); 3839