xref: /openbmc/linux/drivers/usb/gadget/function/f_fs.c (revision cfbb9be8)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * f_fs.c -- user mode file system API for USB composite function controllers
4  *
5  * Copyright (C) 2010 Samsung Electronics
6  * Author: Michal Nazarewicz <mina86@mina86.com>
7  *
8  * Based on inode.c (GadgetFS) which was:
9  * Copyright (C) 2003-2004 David Brownell
10  * Copyright (C) 2003 Agilent Technologies
11  */
12 
13 
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16 
17 #include <linux/blkdev.h>
18 #include <linux/pagemap.h>
19 #include <linux/export.h>
20 #include <linux/hid.h>
21 #include <linux/module.h>
22 #include <linux/sched/signal.h>
23 #include <linux/uio.h>
24 #include <asm/unaligned.h>
25 
26 #include <linux/usb/composite.h>
27 #include <linux/usb/functionfs.h>
28 
29 #include <linux/aio.h>
30 #include <linux/mmu_context.h>
31 #include <linux/poll.h>
32 #include <linux/eventfd.h>
33 
34 #include "u_fs.h"
35 #include "u_f.h"
36 #include "u_os_desc.h"
37 #include "configfs.h"
38 
39 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
40 
41 /* Reference counter handling */
42 static void ffs_data_get(struct ffs_data *ffs);
43 static void ffs_data_put(struct ffs_data *ffs);
44 /* Creates new ffs_data object. */
45 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
46 	__attribute__((malloc));
47 
48 /* Opened counter handling. */
49 static void ffs_data_opened(struct ffs_data *ffs);
50 static void ffs_data_closed(struct ffs_data *ffs);
51 
52 /* Called with ffs->mutex held; take over ownership of data. */
53 static int __must_check
54 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
55 static int __must_check
56 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
57 
58 
59 /* The function structure ***************************************************/
60 
61 struct ffs_ep;
62 
63 struct ffs_function {
64 	struct usb_configuration	*conf;
65 	struct usb_gadget		*gadget;
66 	struct ffs_data			*ffs;
67 
68 	struct ffs_ep			*eps;
69 	u8				eps_revmap[16];
70 	short				*interfaces_nums;
71 
72 	struct usb_function		function;
73 };
74 
75 
76 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
77 {
78 	return container_of(f, struct ffs_function, function);
79 }
80 
81 
82 static inline enum ffs_setup_state
83 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
84 {
85 	return (enum ffs_setup_state)
86 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
87 }
88 
89 
90 static void ffs_func_eps_disable(struct ffs_function *func);
91 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
92 
93 static int ffs_func_bind(struct usb_configuration *,
94 			 struct usb_function *);
95 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
96 static void ffs_func_disable(struct usb_function *);
97 static int ffs_func_setup(struct usb_function *,
98 			  const struct usb_ctrlrequest *);
99 static bool ffs_func_req_match(struct usb_function *,
100 			       const struct usb_ctrlrequest *,
101 			       bool config0);
102 static void ffs_func_suspend(struct usb_function *);
103 static void ffs_func_resume(struct usb_function *);
104 
105 
106 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
107 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
108 
109 
110 /* The endpoints structures *************************************************/
111 
112 struct ffs_ep {
113 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
114 	struct usb_request		*req;	/* P: epfile->mutex */
115 
116 	/* [0]: full speed, [1]: high speed, [2]: super speed */
117 	struct usb_endpoint_descriptor	*descs[3];
118 
119 	u8				num;
120 
121 	int				status;	/* P: epfile->mutex */
122 };
123 
124 struct ffs_epfile {
125 	/* Protects ep->ep and ep->req. */
126 	struct mutex			mutex;
127 
128 	struct ffs_data			*ffs;
129 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
130 
131 	struct dentry			*dentry;
132 
133 	/*
134 	 * Buffer for holding data from partial reads which may happen since
135 	 * we’re rounding user read requests to a multiple of a max packet size.
136 	 *
137 	 * The pointer is initialised with NULL value and may be set by
138 	 * __ffs_epfile_read_data function to point to a temporary buffer.
139 	 *
140 	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
141 	 * data from said buffer and eventually free it.  Importantly, while the
142 	 * function is using the buffer, it sets the pointer to NULL.  This is
143 	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
144 	 * can never run concurrently (they are synchronised by epfile->mutex)
145 	 * so the latter will not assign a new value to the pointer.
146 	 *
147 	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
148 	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
149 	 * value is crux of the synchronisation between ffs_func_eps_disable and
150 	 * __ffs_epfile_read_data.
151 	 *
152 	 * Once __ffs_epfile_read_data is about to finish it will try to set the
153 	 * pointer back to its old value (as described above), but seeing as the
154 	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
155 	 * the buffer.
156 	 *
157 	 * == State transitions ==
158 	 *
159 	 * • ptr == NULL:  (initial state)
160 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
161 	 *   ◦ __ffs_epfile_read_buffered:    nop
162 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
163 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
164 	 * • ptr == DROP:
165 	 *   ◦ __ffs_epfile_read_buffer_free: nop
166 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
167 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
168 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
169 	 * • ptr == buf:
170 	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
171 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
172 	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
173 	 *                                    is always called first
174 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
175 	 * • ptr == NULL and reading:
176 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
177 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
178 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
179 	 *   ◦ reading finishes and …
180 	 *     … all data read:               free buf, go to ptr == NULL
181 	 *     … otherwise:                   go to ptr == buf and reading
182 	 * • ptr == DROP and reading:
183 	 *   ◦ __ffs_epfile_read_buffer_free: nop
184 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
185 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
186 	 *   ◦ reading finishes:              free buf, go to ptr == DROP
187 	 */
188 	struct ffs_buffer		*read_buffer;
189 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
190 
191 	char				name[5];
192 
193 	unsigned char			in;	/* P: ffs->eps_lock */
194 	unsigned char			isoc;	/* P: ffs->eps_lock */
195 
196 	unsigned char			_pad;
197 };
198 
199 struct ffs_buffer {
200 	size_t length;
201 	char *data;
202 	char storage[];
203 };
204 
205 /*  ffs_io_data structure ***************************************************/
206 
207 struct ffs_io_data {
208 	bool aio;
209 	bool read;
210 
211 	struct kiocb *kiocb;
212 	struct iov_iter data;
213 	const void *to_free;
214 	char *buf;
215 
216 	struct mm_struct *mm;
217 	struct work_struct work;
218 
219 	struct usb_ep *ep;
220 	struct usb_request *req;
221 
222 	struct ffs_data *ffs;
223 };
224 
225 struct ffs_desc_helper {
226 	struct ffs_data *ffs;
227 	unsigned interfaces_count;
228 	unsigned eps_count;
229 };
230 
231 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
232 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
233 
234 static struct dentry *
235 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
236 		   const struct file_operations *fops);
237 
238 /* Devices management *******************************************************/
239 
240 DEFINE_MUTEX(ffs_lock);
241 EXPORT_SYMBOL_GPL(ffs_lock);
242 
243 static struct ffs_dev *_ffs_find_dev(const char *name);
244 static struct ffs_dev *_ffs_alloc_dev(void);
245 static void _ffs_free_dev(struct ffs_dev *dev);
246 static void *ffs_acquire_dev(const char *dev_name);
247 static void ffs_release_dev(struct ffs_data *ffs_data);
248 static int ffs_ready(struct ffs_data *ffs);
249 static void ffs_closed(struct ffs_data *ffs);
250 
251 /* Misc helper functions ****************************************************/
252 
253 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
254 	__attribute__((warn_unused_result, nonnull));
255 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
256 	__attribute__((warn_unused_result, nonnull));
257 
258 
259 /* Control file aka ep0 *****************************************************/
260 
261 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
262 {
263 	struct ffs_data *ffs = req->context;
264 
265 	complete(&ffs->ep0req_completion);
266 }
267 
268 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
269 	__releases(&ffs->ev.waitq.lock)
270 {
271 	struct usb_request *req = ffs->ep0req;
272 	int ret;
273 
274 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
275 
276 	spin_unlock_irq(&ffs->ev.waitq.lock);
277 
278 	req->buf      = data;
279 	req->length   = len;
280 
281 	/*
282 	 * UDC layer requires to provide a buffer even for ZLP, but should
283 	 * not use it at all. Let's provide some poisoned pointer to catch
284 	 * possible bug in the driver.
285 	 */
286 	if (req->buf == NULL)
287 		req->buf = (void *)0xDEADBABE;
288 
289 	reinit_completion(&ffs->ep0req_completion);
290 
291 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
292 	if (unlikely(ret < 0))
293 		return ret;
294 
295 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
296 	if (unlikely(ret)) {
297 		usb_ep_dequeue(ffs->gadget->ep0, req);
298 		return -EINTR;
299 	}
300 
301 	ffs->setup_state = FFS_NO_SETUP;
302 	return req->status ? req->status : req->actual;
303 }
304 
305 static int __ffs_ep0_stall(struct ffs_data *ffs)
306 {
307 	if (ffs->ev.can_stall) {
308 		pr_vdebug("ep0 stall\n");
309 		usb_ep_set_halt(ffs->gadget->ep0);
310 		ffs->setup_state = FFS_NO_SETUP;
311 		return -EL2HLT;
312 	} else {
313 		pr_debug("bogus ep0 stall!\n");
314 		return -ESRCH;
315 	}
316 }
317 
318 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
319 			     size_t len, loff_t *ptr)
320 {
321 	struct ffs_data *ffs = file->private_data;
322 	ssize_t ret;
323 	char *data;
324 
325 	ENTER();
326 
327 	/* Fast check if setup was canceled */
328 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
329 		return -EIDRM;
330 
331 	/* Acquire mutex */
332 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
333 	if (unlikely(ret < 0))
334 		return ret;
335 
336 	/* Check state */
337 	switch (ffs->state) {
338 	case FFS_READ_DESCRIPTORS:
339 	case FFS_READ_STRINGS:
340 		/* Copy data */
341 		if (unlikely(len < 16)) {
342 			ret = -EINVAL;
343 			break;
344 		}
345 
346 		data = ffs_prepare_buffer(buf, len);
347 		if (IS_ERR(data)) {
348 			ret = PTR_ERR(data);
349 			break;
350 		}
351 
352 		/* Handle data */
353 		if (ffs->state == FFS_READ_DESCRIPTORS) {
354 			pr_info("read descriptors\n");
355 			ret = __ffs_data_got_descs(ffs, data, len);
356 			if (unlikely(ret < 0))
357 				break;
358 
359 			ffs->state = FFS_READ_STRINGS;
360 			ret = len;
361 		} else {
362 			pr_info("read strings\n");
363 			ret = __ffs_data_got_strings(ffs, data, len);
364 			if (unlikely(ret < 0))
365 				break;
366 
367 			ret = ffs_epfiles_create(ffs);
368 			if (unlikely(ret)) {
369 				ffs->state = FFS_CLOSING;
370 				break;
371 			}
372 
373 			ffs->state = FFS_ACTIVE;
374 			mutex_unlock(&ffs->mutex);
375 
376 			ret = ffs_ready(ffs);
377 			if (unlikely(ret < 0)) {
378 				ffs->state = FFS_CLOSING;
379 				return ret;
380 			}
381 
382 			return len;
383 		}
384 		break;
385 
386 	case FFS_ACTIVE:
387 		data = NULL;
388 		/*
389 		 * We're called from user space, we can use _irq
390 		 * rather then _irqsave
391 		 */
392 		spin_lock_irq(&ffs->ev.waitq.lock);
393 		switch (ffs_setup_state_clear_cancelled(ffs)) {
394 		case FFS_SETUP_CANCELLED:
395 			ret = -EIDRM;
396 			goto done_spin;
397 
398 		case FFS_NO_SETUP:
399 			ret = -ESRCH;
400 			goto done_spin;
401 
402 		case FFS_SETUP_PENDING:
403 			break;
404 		}
405 
406 		/* FFS_SETUP_PENDING */
407 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
408 			spin_unlock_irq(&ffs->ev.waitq.lock);
409 			ret = __ffs_ep0_stall(ffs);
410 			break;
411 		}
412 
413 		/* FFS_SETUP_PENDING and not stall */
414 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
415 
416 		spin_unlock_irq(&ffs->ev.waitq.lock);
417 
418 		data = ffs_prepare_buffer(buf, len);
419 		if (IS_ERR(data)) {
420 			ret = PTR_ERR(data);
421 			break;
422 		}
423 
424 		spin_lock_irq(&ffs->ev.waitq.lock);
425 
426 		/*
427 		 * We are guaranteed to be still in FFS_ACTIVE state
428 		 * but the state of setup could have changed from
429 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
430 		 * to check for that.  If that happened we copied data
431 		 * from user space in vain but it's unlikely.
432 		 *
433 		 * For sure we are not in FFS_NO_SETUP since this is
434 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
435 		 * transition can be performed and it's protected by
436 		 * mutex.
437 		 */
438 		if (ffs_setup_state_clear_cancelled(ffs) ==
439 		    FFS_SETUP_CANCELLED) {
440 			ret = -EIDRM;
441 done_spin:
442 			spin_unlock_irq(&ffs->ev.waitq.lock);
443 		} else {
444 			/* unlocks spinlock */
445 			ret = __ffs_ep0_queue_wait(ffs, data, len);
446 		}
447 		kfree(data);
448 		break;
449 
450 	default:
451 		ret = -EBADFD;
452 		break;
453 	}
454 
455 	mutex_unlock(&ffs->mutex);
456 	return ret;
457 }
458 
459 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
460 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
461 				     size_t n)
462 	__releases(&ffs->ev.waitq.lock)
463 {
464 	/*
465 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
466 	 * size of ffs->ev.types array (which is four) so that's how much space
467 	 * we reserve.
468 	 */
469 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
470 	const size_t size = n * sizeof *events;
471 	unsigned i = 0;
472 
473 	memset(events, 0, size);
474 
475 	do {
476 		events[i].type = ffs->ev.types[i];
477 		if (events[i].type == FUNCTIONFS_SETUP) {
478 			events[i].u.setup = ffs->ev.setup;
479 			ffs->setup_state = FFS_SETUP_PENDING;
480 		}
481 	} while (++i < n);
482 
483 	ffs->ev.count -= n;
484 	if (ffs->ev.count)
485 		memmove(ffs->ev.types, ffs->ev.types + n,
486 			ffs->ev.count * sizeof *ffs->ev.types);
487 
488 	spin_unlock_irq(&ffs->ev.waitq.lock);
489 	mutex_unlock(&ffs->mutex);
490 
491 	return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
492 }
493 
494 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
495 			    size_t len, loff_t *ptr)
496 {
497 	struct ffs_data *ffs = file->private_data;
498 	char *data = NULL;
499 	size_t n;
500 	int ret;
501 
502 	ENTER();
503 
504 	/* Fast check if setup was canceled */
505 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
506 		return -EIDRM;
507 
508 	/* Acquire mutex */
509 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
510 	if (unlikely(ret < 0))
511 		return ret;
512 
513 	/* Check state */
514 	if (ffs->state != FFS_ACTIVE) {
515 		ret = -EBADFD;
516 		goto done_mutex;
517 	}
518 
519 	/*
520 	 * We're called from user space, we can use _irq rather then
521 	 * _irqsave
522 	 */
523 	spin_lock_irq(&ffs->ev.waitq.lock);
524 
525 	switch (ffs_setup_state_clear_cancelled(ffs)) {
526 	case FFS_SETUP_CANCELLED:
527 		ret = -EIDRM;
528 		break;
529 
530 	case FFS_NO_SETUP:
531 		n = len / sizeof(struct usb_functionfs_event);
532 		if (unlikely(!n)) {
533 			ret = -EINVAL;
534 			break;
535 		}
536 
537 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
538 			ret = -EAGAIN;
539 			break;
540 		}
541 
542 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
543 							ffs->ev.count)) {
544 			ret = -EINTR;
545 			break;
546 		}
547 
548 		/* unlocks spinlock */
549 		return __ffs_ep0_read_events(ffs, buf,
550 					     min(n, (size_t)ffs->ev.count));
551 
552 	case FFS_SETUP_PENDING:
553 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
554 			spin_unlock_irq(&ffs->ev.waitq.lock);
555 			ret = __ffs_ep0_stall(ffs);
556 			goto done_mutex;
557 		}
558 
559 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
560 
561 		spin_unlock_irq(&ffs->ev.waitq.lock);
562 
563 		if (likely(len)) {
564 			data = kmalloc(len, GFP_KERNEL);
565 			if (unlikely(!data)) {
566 				ret = -ENOMEM;
567 				goto done_mutex;
568 			}
569 		}
570 
571 		spin_lock_irq(&ffs->ev.waitq.lock);
572 
573 		/* See ffs_ep0_write() */
574 		if (ffs_setup_state_clear_cancelled(ffs) ==
575 		    FFS_SETUP_CANCELLED) {
576 			ret = -EIDRM;
577 			break;
578 		}
579 
580 		/* unlocks spinlock */
581 		ret = __ffs_ep0_queue_wait(ffs, data, len);
582 		if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
583 			ret = -EFAULT;
584 		goto done_mutex;
585 
586 	default:
587 		ret = -EBADFD;
588 		break;
589 	}
590 
591 	spin_unlock_irq(&ffs->ev.waitq.lock);
592 done_mutex:
593 	mutex_unlock(&ffs->mutex);
594 	kfree(data);
595 	return ret;
596 }
597 
598 static int ffs_ep0_open(struct inode *inode, struct file *file)
599 {
600 	struct ffs_data *ffs = inode->i_private;
601 
602 	ENTER();
603 
604 	if (unlikely(ffs->state == FFS_CLOSING))
605 		return -EBUSY;
606 
607 	file->private_data = ffs;
608 	ffs_data_opened(ffs);
609 
610 	return 0;
611 }
612 
613 static int ffs_ep0_release(struct inode *inode, struct file *file)
614 {
615 	struct ffs_data *ffs = file->private_data;
616 
617 	ENTER();
618 
619 	ffs_data_closed(ffs);
620 
621 	return 0;
622 }
623 
624 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
625 {
626 	struct ffs_data *ffs = file->private_data;
627 	struct usb_gadget *gadget = ffs->gadget;
628 	long ret;
629 
630 	ENTER();
631 
632 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
633 		struct ffs_function *func = ffs->func;
634 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
635 	} else if (gadget && gadget->ops->ioctl) {
636 		ret = gadget->ops->ioctl(gadget, code, value);
637 	} else {
638 		ret = -ENOTTY;
639 	}
640 
641 	return ret;
642 }
643 
644 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
645 {
646 	struct ffs_data *ffs = file->private_data;
647 	__poll_t mask = EPOLLWRNORM;
648 	int ret;
649 
650 	poll_wait(file, &ffs->ev.waitq, wait);
651 
652 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
653 	if (unlikely(ret < 0))
654 		return mask;
655 
656 	switch (ffs->state) {
657 	case FFS_READ_DESCRIPTORS:
658 	case FFS_READ_STRINGS:
659 		mask |= EPOLLOUT;
660 		break;
661 
662 	case FFS_ACTIVE:
663 		switch (ffs->setup_state) {
664 		case FFS_NO_SETUP:
665 			if (ffs->ev.count)
666 				mask |= EPOLLIN;
667 			break;
668 
669 		case FFS_SETUP_PENDING:
670 		case FFS_SETUP_CANCELLED:
671 			mask |= (EPOLLIN | EPOLLOUT);
672 			break;
673 		}
674 	case FFS_CLOSING:
675 		break;
676 	case FFS_DEACTIVATED:
677 		break;
678 	}
679 
680 	mutex_unlock(&ffs->mutex);
681 
682 	return mask;
683 }
684 
685 static const struct file_operations ffs_ep0_operations = {
686 	.llseek =	no_llseek,
687 
688 	.open =		ffs_ep0_open,
689 	.write =	ffs_ep0_write,
690 	.read =		ffs_ep0_read,
691 	.release =	ffs_ep0_release,
692 	.unlocked_ioctl =	ffs_ep0_ioctl,
693 	.poll =		ffs_ep0_poll,
694 };
695 
696 
697 /* "Normal" endpoints operations ********************************************/
698 
699 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
700 {
701 	ENTER();
702 	if (likely(req->context)) {
703 		struct ffs_ep *ep = _ep->driver_data;
704 		ep->status = req->status ? req->status : req->actual;
705 		complete(req->context);
706 	}
707 }
708 
709 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
710 {
711 	ssize_t ret = copy_to_iter(data, data_len, iter);
712 	if (likely(ret == data_len))
713 		return ret;
714 
715 	if (unlikely(iov_iter_count(iter)))
716 		return -EFAULT;
717 
718 	/*
719 	 * Dear user space developer!
720 	 *
721 	 * TL;DR: To stop getting below error message in your kernel log, change
722 	 * user space code using functionfs to align read buffers to a max
723 	 * packet size.
724 	 *
725 	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
726 	 * packet size.  When unaligned buffer is passed to functionfs, it
727 	 * internally uses a larger, aligned buffer so that such UDCs are happy.
728 	 *
729 	 * Unfortunately, this means that host may send more data than was
730 	 * requested in read(2) system call.  f_fs doesn’t know what to do with
731 	 * that excess data so it simply drops it.
732 	 *
733 	 * Was the buffer aligned in the first place, no such problem would
734 	 * happen.
735 	 *
736 	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
737 	 * by splitting a request into multiple parts.  This splitting may still
738 	 * be a problem though so it’s likely best to align the buffer
739 	 * regardless of it being AIO or not..
740 	 *
741 	 * This only affects OUT endpoints, i.e. reading data with a read(2),
742 	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
743 	 * affected.
744 	 */
745 	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
746 	       "Align read buffer size to max packet size to avoid the problem.\n",
747 	       data_len, ret);
748 
749 	return ret;
750 }
751 
752 static void ffs_user_copy_worker(struct work_struct *work)
753 {
754 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
755 						   work);
756 	int ret = io_data->req->status ? io_data->req->status :
757 					 io_data->req->actual;
758 	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
759 
760 	if (io_data->read && ret > 0) {
761 		use_mm(io_data->mm);
762 		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
763 		unuse_mm(io_data->mm);
764 	}
765 
766 	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
767 
768 	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
769 		eventfd_signal(io_data->ffs->ffs_eventfd, 1);
770 
771 	usb_ep_free_request(io_data->ep, io_data->req);
772 
773 	if (io_data->read)
774 		kfree(io_data->to_free);
775 	kfree(io_data->buf);
776 	kfree(io_data);
777 }
778 
779 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
780 					 struct usb_request *req)
781 {
782 	struct ffs_io_data *io_data = req->context;
783 	struct ffs_data *ffs = io_data->ffs;
784 
785 	ENTER();
786 
787 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
788 	queue_work(ffs->io_completion_wq, &io_data->work);
789 }
790 
791 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
792 {
793 	/*
794 	 * See comment in struct ffs_epfile for full read_buffer pointer
795 	 * synchronisation story.
796 	 */
797 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
798 	if (buf && buf != READ_BUFFER_DROP)
799 		kfree(buf);
800 }
801 
802 /* Assumes epfile->mutex is held. */
803 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
804 					  struct iov_iter *iter)
805 {
806 	/*
807 	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
808 	 * the buffer while we are using it.  See comment in struct ffs_epfile
809 	 * for full read_buffer pointer synchronisation story.
810 	 */
811 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
812 	ssize_t ret;
813 	if (!buf || buf == READ_BUFFER_DROP)
814 		return 0;
815 
816 	ret = copy_to_iter(buf->data, buf->length, iter);
817 	if (buf->length == ret) {
818 		kfree(buf);
819 		return ret;
820 	}
821 
822 	if (unlikely(iov_iter_count(iter))) {
823 		ret = -EFAULT;
824 	} else {
825 		buf->length -= ret;
826 		buf->data += ret;
827 	}
828 
829 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
830 		kfree(buf);
831 
832 	return ret;
833 }
834 
835 /* Assumes epfile->mutex is held. */
836 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
837 				      void *data, int data_len,
838 				      struct iov_iter *iter)
839 {
840 	struct ffs_buffer *buf;
841 
842 	ssize_t ret = copy_to_iter(data, data_len, iter);
843 	if (likely(data_len == ret))
844 		return ret;
845 
846 	if (unlikely(iov_iter_count(iter)))
847 		return -EFAULT;
848 
849 	/* See ffs_copy_to_iter for more context. */
850 	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
851 		data_len, ret);
852 
853 	data_len -= ret;
854 	buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
855 	if (!buf)
856 		return -ENOMEM;
857 	buf->length = data_len;
858 	buf->data = buf->storage;
859 	memcpy(buf->storage, data + ret, data_len);
860 
861 	/*
862 	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
863 	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
864 	 * in struct ffs_epfile for full read_buffer pointer synchronisation
865 	 * story.
866 	 */
867 	if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
868 		kfree(buf);
869 
870 	return ret;
871 }
872 
873 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
874 {
875 	struct ffs_epfile *epfile = file->private_data;
876 	struct usb_request *req;
877 	struct ffs_ep *ep;
878 	char *data = NULL;
879 	ssize_t ret, data_len = -EINVAL;
880 	int halt;
881 
882 	/* Are we still active? */
883 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
884 		return -ENODEV;
885 
886 	/* Wait for endpoint to be enabled */
887 	ep = epfile->ep;
888 	if (!ep) {
889 		if (file->f_flags & O_NONBLOCK)
890 			return -EAGAIN;
891 
892 		ret = wait_event_interruptible(
893 				epfile->ffs->wait, (ep = epfile->ep));
894 		if (ret)
895 			return -EINTR;
896 	}
897 
898 	/* Do we halt? */
899 	halt = (!io_data->read == !epfile->in);
900 	if (halt && epfile->isoc)
901 		return -EINVAL;
902 
903 	/* We will be using request and read_buffer */
904 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
905 	if (unlikely(ret))
906 		goto error;
907 
908 	/* Allocate & copy */
909 	if (!halt) {
910 		struct usb_gadget *gadget;
911 
912 		/*
913 		 * Do we have buffered data from previous partial read?  Check
914 		 * that for synchronous case only because we do not have
915 		 * facility to ‘wake up’ a pending asynchronous read and push
916 		 * buffered data to it which we would need to make things behave
917 		 * consistently.
918 		 */
919 		if (!io_data->aio && io_data->read) {
920 			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
921 			if (ret)
922 				goto error_mutex;
923 		}
924 
925 		/*
926 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
927 		 * before the waiting completes, so do not assign to 'gadget'
928 		 * earlier
929 		 */
930 		gadget = epfile->ffs->gadget;
931 
932 		spin_lock_irq(&epfile->ffs->eps_lock);
933 		/* In the meantime, endpoint got disabled or changed. */
934 		if (epfile->ep != ep) {
935 			ret = -ESHUTDOWN;
936 			goto error_lock;
937 		}
938 		data_len = iov_iter_count(&io_data->data);
939 		/*
940 		 * Controller may require buffer size to be aligned to
941 		 * maxpacketsize of an out endpoint.
942 		 */
943 		if (io_data->read)
944 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
945 		spin_unlock_irq(&epfile->ffs->eps_lock);
946 
947 		data = kmalloc(data_len, GFP_KERNEL);
948 		if (unlikely(!data)) {
949 			ret = -ENOMEM;
950 			goto error_mutex;
951 		}
952 		if (!io_data->read &&
953 		    !copy_from_iter_full(data, data_len, &io_data->data)) {
954 			ret = -EFAULT;
955 			goto error_mutex;
956 		}
957 	}
958 
959 	spin_lock_irq(&epfile->ffs->eps_lock);
960 
961 	if (epfile->ep != ep) {
962 		/* In the meantime, endpoint got disabled or changed. */
963 		ret = -ESHUTDOWN;
964 	} else if (halt) {
965 		ret = usb_ep_set_halt(ep->ep);
966 		if (!ret)
967 			ret = -EBADMSG;
968 	} else if (unlikely(data_len == -EINVAL)) {
969 		/*
970 		 * Sanity Check: even though data_len can't be used
971 		 * uninitialized at the time I write this comment, some
972 		 * compilers complain about this situation.
973 		 * In order to keep the code clean from warnings, data_len is
974 		 * being initialized to -EINVAL during its declaration, which
975 		 * means we can't rely on compiler anymore to warn no future
976 		 * changes won't result in data_len being used uninitialized.
977 		 * For such reason, we're adding this redundant sanity check
978 		 * here.
979 		 */
980 		WARN(1, "%s: data_len == -EINVAL\n", __func__);
981 		ret = -EINVAL;
982 	} else if (!io_data->aio) {
983 		DECLARE_COMPLETION_ONSTACK(done);
984 		bool interrupted = false;
985 
986 		req = ep->req;
987 		req->buf      = data;
988 		req->length   = data_len;
989 
990 		req->context  = &done;
991 		req->complete = ffs_epfile_io_complete;
992 
993 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
994 		if (unlikely(ret < 0))
995 			goto error_lock;
996 
997 		spin_unlock_irq(&epfile->ffs->eps_lock);
998 
999 		if (unlikely(wait_for_completion_interruptible(&done))) {
1000 			/*
1001 			 * To avoid race condition with ffs_epfile_io_complete,
1002 			 * dequeue the request first then check
1003 			 * status. usb_ep_dequeue API should guarantee no race
1004 			 * condition with req->complete callback.
1005 			 */
1006 			usb_ep_dequeue(ep->ep, req);
1007 			interrupted = ep->status < 0;
1008 		}
1009 
1010 		if (interrupted)
1011 			ret = -EINTR;
1012 		else if (io_data->read && ep->status > 0)
1013 			ret = __ffs_epfile_read_data(epfile, data, ep->status,
1014 						     &io_data->data);
1015 		else
1016 			ret = ep->status;
1017 		goto error_mutex;
1018 	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1019 		ret = -ENOMEM;
1020 	} else {
1021 		req->buf      = data;
1022 		req->length   = data_len;
1023 
1024 		io_data->buf = data;
1025 		io_data->ep = ep->ep;
1026 		io_data->req = req;
1027 		io_data->ffs = epfile->ffs;
1028 
1029 		req->context  = io_data;
1030 		req->complete = ffs_epfile_async_io_complete;
1031 
1032 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1033 		if (unlikely(ret)) {
1034 			usb_ep_free_request(ep->ep, req);
1035 			goto error_lock;
1036 		}
1037 
1038 		ret = -EIOCBQUEUED;
1039 		/*
1040 		 * Do not kfree the buffer in this function.  It will be freed
1041 		 * by ffs_user_copy_worker.
1042 		 */
1043 		data = NULL;
1044 	}
1045 
1046 error_lock:
1047 	spin_unlock_irq(&epfile->ffs->eps_lock);
1048 error_mutex:
1049 	mutex_unlock(&epfile->mutex);
1050 error:
1051 	kfree(data);
1052 	return ret;
1053 }
1054 
1055 static int
1056 ffs_epfile_open(struct inode *inode, struct file *file)
1057 {
1058 	struct ffs_epfile *epfile = inode->i_private;
1059 
1060 	ENTER();
1061 
1062 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1063 		return -ENODEV;
1064 
1065 	file->private_data = epfile;
1066 	ffs_data_opened(epfile->ffs);
1067 
1068 	return 0;
1069 }
1070 
1071 static int ffs_aio_cancel(struct kiocb *kiocb)
1072 {
1073 	struct ffs_io_data *io_data = kiocb->private;
1074 	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1075 	int value;
1076 
1077 	ENTER();
1078 
1079 	spin_lock_irq(&epfile->ffs->eps_lock);
1080 
1081 	if (likely(io_data && io_data->ep && io_data->req))
1082 		value = usb_ep_dequeue(io_data->ep, io_data->req);
1083 	else
1084 		value = -EINVAL;
1085 
1086 	spin_unlock_irq(&epfile->ffs->eps_lock);
1087 
1088 	return value;
1089 }
1090 
1091 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1092 {
1093 	struct ffs_io_data io_data, *p = &io_data;
1094 	ssize_t res;
1095 
1096 	ENTER();
1097 
1098 	if (!is_sync_kiocb(kiocb)) {
1099 		p = kmalloc(sizeof(io_data), GFP_KERNEL);
1100 		if (unlikely(!p))
1101 			return -ENOMEM;
1102 		p->aio = true;
1103 	} else {
1104 		p->aio = false;
1105 	}
1106 
1107 	p->read = false;
1108 	p->kiocb = kiocb;
1109 	p->data = *from;
1110 	p->mm = current->mm;
1111 
1112 	kiocb->private = p;
1113 
1114 	if (p->aio)
1115 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1116 
1117 	res = ffs_epfile_io(kiocb->ki_filp, p);
1118 	if (res == -EIOCBQUEUED)
1119 		return res;
1120 	if (p->aio)
1121 		kfree(p);
1122 	else
1123 		*from = p->data;
1124 	return res;
1125 }
1126 
1127 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1128 {
1129 	struct ffs_io_data io_data, *p = &io_data;
1130 	ssize_t res;
1131 
1132 	ENTER();
1133 
1134 	if (!is_sync_kiocb(kiocb)) {
1135 		p = kmalloc(sizeof(io_data), GFP_KERNEL);
1136 		if (unlikely(!p))
1137 			return -ENOMEM;
1138 		p->aio = true;
1139 	} else {
1140 		p->aio = false;
1141 	}
1142 
1143 	p->read = true;
1144 	p->kiocb = kiocb;
1145 	if (p->aio) {
1146 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1147 		if (!p->to_free) {
1148 			kfree(p);
1149 			return -ENOMEM;
1150 		}
1151 	} else {
1152 		p->data = *to;
1153 		p->to_free = NULL;
1154 	}
1155 	p->mm = current->mm;
1156 
1157 	kiocb->private = p;
1158 
1159 	if (p->aio)
1160 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1161 
1162 	res = ffs_epfile_io(kiocb->ki_filp, p);
1163 	if (res == -EIOCBQUEUED)
1164 		return res;
1165 
1166 	if (p->aio) {
1167 		kfree(p->to_free);
1168 		kfree(p);
1169 	} else {
1170 		*to = p->data;
1171 	}
1172 	return res;
1173 }
1174 
1175 static int
1176 ffs_epfile_release(struct inode *inode, struct file *file)
1177 {
1178 	struct ffs_epfile *epfile = inode->i_private;
1179 
1180 	ENTER();
1181 
1182 	__ffs_epfile_read_buffer_free(epfile);
1183 	ffs_data_closed(epfile->ffs);
1184 
1185 	return 0;
1186 }
1187 
1188 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1189 			     unsigned long value)
1190 {
1191 	struct ffs_epfile *epfile = file->private_data;
1192 	struct ffs_ep *ep;
1193 	int ret;
1194 
1195 	ENTER();
1196 
1197 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1198 		return -ENODEV;
1199 
1200 	/* Wait for endpoint to be enabled */
1201 	ep = epfile->ep;
1202 	if (!ep) {
1203 		if (file->f_flags & O_NONBLOCK)
1204 			return -EAGAIN;
1205 
1206 		ret = wait_event_interruptible(
1207 				epfile->ffs->wait, (ep = epfile->ep));
1208 		if (ret)
1209 			return -EINTR;
1210 	}
1211 
1212 	spin_lock_irq(&epfile->ffs->eps_lock);
1213 
1214 	/* In the meantime, endpoint got disabled or changed. */
1215 	if (epfile->ep != ep) {
1216 		spin_unlock_irq(&epfile->ffs->eps_lock);
1217 		return -ESHUTDOWN;
1218 	}
1219 
1220 	switch (code) {
1221 	case FUNCTIONFS_FIFO_STATUS:
1222 		ret = usb_ep_fifo_status(epfile->ep->ep);
1223 		break;
1224 	case FUNCTIONFS_FIFO_FLUSH:
1225 		usb_ep_fifo_flush(epfile->ep->ep);
1226 		ret = 0;
1227 		break;
1228 	case FUNCTIONFS_CLEAR_HALT:
1229 		ret = usb_ep_clear_halt(epfile->ep->ep);
1230 		break;
1231 	case FUNCTIONFS_ENDPOINT_REVMAP:
1232 		ret = epfile->ep->num;
1233 		break;
1234 	case FUNCTIONFS_ENDPOINT_DESC:
1235 	{
1236 		int desc_idx;
1237 		struct usb_endpoint_descriptor *desc;
1238 
1239 		switch (epfile->ffs->gadget->speed) {
1240 		case USB_SPEED_SUPER:
1241 			desc_idx = 2;
1242 			break;
1243 		case USB_SPEED_HIGH:
1244 			desc_idx = 1;
1245 			break;
1246 		default:
1247 			desc_idx = 0;
1248 		}
1249 		desc = epfile->ep->descs[desc_idx];
1250 
1251 		spin_unlock_irq(&epfile->ffs->eps_lock);
1252 		ret = copy_to_user((void __user *)value, desc, desc->bLength);
1253 		if (ret)
1254 			ret = -EFAULT;
1255 		return ret;
1256 	}
1257 	default:
1258 		ret = -ENOTTY;
1259 	}
1260 	spin_unlock_irq(&epfile->ffs->eps_lock);
1261 
1262 	return ret;
1263 }
1264 
1265 static const struct file_operations ffs_epfile_operations = {
1266 	.llseek =	no_llseek,
1267 
1268 	.open =		ffs_epfile_open,
1269 	.write_iter =	ffs_epfile_write_iter,
1270 	.read_iter =	ffs_epfile_read_iter,
1271 	.release =	ffs_epfile_release,
1272 	.unlocked_ioctl =	ffs_epfile_ioctl,
1273 };
1274 
1275 
1276 /* File system and super block operations ***********************************/
1277 
1278 /*
1279  * Mounting the file system creates a controller file, used first for
1280  * function configuration then later for event monitoring.
1281  */
1282 
1283 static struct inode *__must_check
1284 ffs_sb_make_inode(struct super_block *sb, void *data,
1285 		  const struct file_operations *fops,
1286 		  const struct inode_operations *iops,
1287 		  struct ffs_file_perms *perms)
1288 {
1289 	struct inode *inode;
1290 
1291 	ENTER();
1292 
1293 	inode = new_inode(sb);
1294 
1295 	if (likely(inode)) {
1296 		struct timespec ts = current_time(inode);
1297 
1298 		inode->i_ino	 = get_next_ino();
1299 		inode->i_mode    = perms->mode;
1300 		inode->i_uid     = perms->uid;
1301 		inode->i_gid     = perms->gid;
1302 		inode->i_atime   = ts;
1303 		inode->i_mtime   = ts;
1304 		inode->i_ctime   = ts;
1305 		inode->i_private = data;
1306 		if (fops)
1307 			inode->i_fop = fops;
1308 		if (iops)
1309 			inode->i_op  = iops;
1310 	}
1311 
1312 	return inode;
1313 }
1314 
1315 /* Create "regular" file */
1316 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1317 					const char *name, void *data,
1318 					const struct file_operations *fops)
1319 {
1320 	struct ffs_data	*ffs = sb->s_fs_info;
1321 	struct dentry	*dentry;
1322 	struct inode	*inode;
1323 
1324 	ENTER();
1325 
1326 	dentry = d_alloc_name(sb->s_root, name);
1327 	if (unlikely(!dentry))
1328 		return NULL;
1329 
1330 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1331 	if (unlikely(!inode)) {
1332 		dput(dentry);
1333 		return NULL;
1334 	}
1335 
1336 	d_add(dentry, inode);
1337 	return dentry;
1338 }
1339 
1340 /* Super block */
1341 static const struct super_operations ffs_sb_operations = {
1342 	.statfs =	simple_statfs,
1343 	.drop_inode =	generic_delete_inode,
1344 };
1345 
1346 struct ffs_sb_fill_data {
1347 	struct ffs_file_perms perms;
1348 	umode_t root_mode;
1349 	const char *dev_name;
1350 	bool no_disconnect;
1351 	struct ffs_data *ffs_data;
1352 };
1353 
1354 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1355 {
1356 	struct ffs_sb_fill_data *data = _data;
1357 	struct inode	*inode;
1358 	struct ffs_data	*ffs = data->ffs_data;
1359 
1360 	ENTER();
1361 
1362 	ffs->sb              = sb;
1363 	data->ffs_data       = NULL;
1364 	sb->s_fs_info        = ffs;
1365 	sb->s_blocksize      = PAGE_SIZE;
1366 	sb->s_blocksize_bits = PAGE_SHIFT;
1367 	sb->s_magic          = FUNCTIONFS_MAGIC;
1368 	sb->s_op             = &ffs_sb_operations;
1369 	sb->s_time_gran      = 1;
1370 
1371 	/* Root inode */
1372 	data->perms.mode = data->root_mode;
1373 	inode = ffs_sb_make_inode(sb, NULL,
1374 				  &simple_dir_operations,
1375 				  &simple_dir_inode_operations,
1376 				  &data->perms);
1377 	sb->s_root = d_make_root(inode);
1378 	if (unlikely(!sb->s_root))
1379 		return -ENOMEM;
1380 
1381 	/* EP0 file */
1382 	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1383 					 &ffs_ep0_operations)))
1384 		return -ENOMEM;
1385 
1386 	return 0;
1387 }
1388 
1389 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1390 {
1391 	ENTER();
1392 
1393 	if (!opts || !*opts)
1394 		return 0;
1395 
1396 	for (;;) {
1397 		unsigned long value;
1398 		char *eq, *comma;
1399 
1400 		/* Option limit */
1401 		comma = strchr(opts, ',');
1402 		if (comma)
1403 			*comma = 0;
1404 
1405 		/* Value limit */
1406 		eq = strchr(opts, '=');
1407 		if (unlikely(!eq)) {
1408 			pr_err("'=' missing in %s\n", opts);
1409 			return -EINVAL;
1410 		}
1411 		*eq = 0;
1412 
1413 		/* Parse value */
1414 		if (kstrtoul(eq + 1, 0, &value)) {
1415 			pr_err("%s: invalid value: %s\n", opts, eq + 1);
1416 			return -EINVAL;
1417 		}
1418 
1419 		/* Interpret option */
1420 		switch (eq - opts) {
1421 		case 13:
1422 			if (!memcmp(opts, "no_disconnect", 13))
1423 				data->no_disconnect = !!value;
1424 			else
1425 				goto invalid;
1426 			break;
1427 		case 5:
1428 			if (!memcmp(opts, "rmode", 5))
1429 				data->root_mode  = (value & 0555) | S_IFDIR;
1430 			else if (!memcmp(opts, "fmode", 5))
1431 				data->perms.mode = (value & 0666) | S_IFREG;
1432 			else
1433 				goto invalid;
1434 			break;
1435 
1436 		case 4:
1437 			if (!memcmp(opts, "mode", 4)) {
1438 				data->root_mode  = (value & 0555) | S_IFDIR;
1439 				data->perms.mode = (value & 0666) | S_IFREG;
1440 			} else {
1441 				goto invalid;
1442 			}
1443 			break;
1444 
1445 		case 3:
1446 			if (!memcmp(opts, "uid", 3)) {
1447 				data->perms.uid = make_kuid(current_user_ns(), value);
1448 				if (!uid_valid(data->perms.uid)) {
1449 					pr_err("%s: unmapped value: %lu\n", opts, value);
1450 					return -EINVAL;
1451 				}
1452 			} else if (!memcmp(opts, "gid", 3)) {
1453 				data->perms.gid = make_kgid(current_user_ns(), value);
1454 				if (!gid_valid(data->perms.gid)) {
1455 					pr_err("%s: unmapped value: %lu\n", opts, value);
1456 					return -EINVAL;
1457 				}
1458 			} else {
1459 				goto invalid;
1460 			}
1461 			break;
1462 
1463 		default:
1464 invalid:
1465 			pr_err("%s: invalid option\n", opts);
1466 			return -EINVAL;
1467 		}
1468 
1469 		/* Next iteration */
1470 		if (!comma)
1471 			break;
1472 		opts = comma + 1;
1473 	}
1474 
1475 	return 0;
1476 }
1477 
1478 /* "mount -t functionfs dev_name /dev/function" ends up here */
1479 
1480 static struct dentry *
1481 ffs_fs_mount(struct file_system_type *t, int flags,
1482 	      const char *dev_name, void *opts)
1483 {
1484 	struct ffs_sb_fill_data data = {
1485 		.perms = {
1486 			.mode = S_IFREG | 0600,
1487 			.uid = GLOBAL_ROOT_UID,
1488 			.gid = GLOBAL_ROOT_GID,
1489 		},
1490 		.root_mode = S_IFDIR | 0500,
1491 		.no_disconnect = false,
1492 	};
1493 	struct dentry *rv;
1494 	int ret;
1495 	void *ffs_dev;
1496 	struct ffs_data	*ffs;
1497 
1498 	ENTER();
1499 
1500 	ret = ffs_fs_parse_opts(&data, opts);
1501 	if (unlikely(ret < 0))
1502 		return ERR_PTR(ret);
1503 
1504 	ffs = ffs_data_new(dev_name);
1505 	if (unlikely(!ffs))
1506 		return ERR_PTR(-ENOMEM);
1507 	ffs->file_perms = data.perms;
1508 	ffs->no_disconnect = data.no_disconnect;
1509 
1510 	ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1511 	if (unlikely(!ffs->dev_name)) {
1512 		ffs_data_put(ffs);
1513 		return ERR_PTR(-ENOMEM);
1514 	}
1515 
1516 	ffs_dev = ffs_acquire_dev(dev_name);
1517 	if (IS_ERR(ffs_dev)) {
1518 		ffs_data_put(ffs);
1519 		return ERR_CAST(ffs_dev);
1520 	}
1521 	ffs->private_data = ffs_dev;
1522 	data.ffs_data = ffs;
1523 
1524 	rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1525 	if (IS_ERR(rv) && data.ffs_data) {
1526 		ffs_release_dev(data.ffs_data);
1527 		ffs_data_put(data.ffs_data);
1528 	}
1529 	return rv;
1530 }
1531 
1532 static void
1533 ffs_fs_kill_sb(struct super_block *sb)
1534 {
1535 	ENTER();
1536 
1537 	kill_litter_super(sb);
1538 	if (sb->s_fs_info) {
1539 		ffs_release_dev(sb->s_fs_info);
1540 		ffs_data_closed(sb->s_fs_info);
1541 	}
1542 }
1543 
1544 static struct file_system_type ffs_fs_type = {
1545 	.owner		= THIS_MODULE,
1546 	.name		= "functionfs",
1547 	.mount		= ffs_fs_mount,
1548 	.kill_sb	= ffs_fs_kill_sb,
1549 };
1550 MODULE_ALIAS_FS("functionfs");
1551 
1552 
1553 /* Driver's main init/cleanup functions *************************************/
1554 
1555 static int functionfs_init(void)
1556 {
1557 	int ret;
1558 
1559 	ENTER();
1560 
1561 	ret = register_filesystem(&ffs_fs_type);
1562 	if (likely(!ret))
1563 		pr_info("file system registered\n");
1564 	else
1565 		pr_err("failed registering file system (%d)\n", ret);
1566 
1567 	return ret;
1568 }
1569 
1570 static void functionfs_cleanup(void)
1571 {
1572 	ENTER();
1573 
1574 	pr_info("unloading\n");
1575 	unregister_filesystem(&ffs_fs_type);
1576 }
1577 
1578 
1579 /* ffs_data and ffs_function construction and destruction code **************/
1580 
1581 static void ffs_data_clear(struct ffs_data *ffs);
1582 static void ffs_data_reset(struct ffs_data *ffs);
1583 
1584 static void ffs_data_get(struct ffs_data *ffs)
1585 {
1586 	ENTER();
1587 
1588 	refcount_inc(&ffs->ref);
1589 }
1590 
1591 static void ffs_data_opened(struct ffs_data *ffs)
1592 {
1593 	ENTER();
1594 
1595 	refcount_inc(&ffs->ref);
1596 	if (atomic_add_return(1, &ffs->opened) == 1 &&
1597 			ffs->state == FFS_DEACTIVATED) {
1598 		ffs->state = FFS_CLOSING;
1599 		ffs_data_reset(ffs);
1600 	}
1601 }
1602 
1603 static void ffs_data_put(struct ffs_data *ffs)
1604 {
1605 	ENTER();
1606 
1607 	if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1608 		pr_info("%s(): freeing\n", __func__);
1609 		ffs_data_clear(ffs);
1610 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1611 		       waitqueue_active(&ffs->ep0req_completion.wait) ||
1612 		       waitqueue_active(&ffs->wait));
1613 		destroy_workqueue(ffs->io_completion_wq);
1614 		kfree(ffs->dev_name);
1615 		kfree(ffs);
1616 	}
1617 }
1618 
1619 static void ffs_data_closed(struct ffs_data *ffs)
1620 {
1621 	ENTER();
1622 
1623 	if (atomic_dec_and_test(&ffs->opened)) {
1624 		if (ffs->no_disconnect) {
1625 			ffs->state = FFS_DEACTIVATED;
1626 			if (ffs->epfiles) {
1627 				ffs_epfiles_destroy(ffs->epfiles,
1628 						   ffs->eps_count);
1629 				ffs->epfiles = NULL;
1630 			}
1631 			if (ffs->setup_state == FFS_SETUP_PENDING)
1632 				__ffs_ep0_stall(ffs);
1633 		} else {
1634 			ffs->state = FFS_CLOSING;
1635 			ffs_data_reset(ffs);
1636 		}
1637 	}
1638 	if (atomic_read(&ffs->opened) < 0) {
1639 		ffs->state = FFS_CLOSING;
1640 		ffs_data_reset(ffs);
1641 	}
1642 
1643 	ffs_data_put(ffs);
1644 }
1645 
1646 static struct ffs_data *ffs_data_new(const char *dev_name)
1647 {
1648 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1649 	if (unlikely(!ffs))
1650 		return NULL;
1651 
1652 	ENTER();
1653 
1654 	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1655 	if (!ffs->io_completion_wq) {
1656 		kfree(ffs);
1657 		return NULL;
1658 	}
1659 
1660 	refcount_set(&ffs->ref, 1);
1661 	atomic_set(&ffs->opened, 0);
1662 	ffs->state = FFS_READ_DESCRIPTORS;
1663 	mutex_init(&ffs->mutex);
1664 	spin_lock_init(&ffs->eps_lock);
1665 	init_waitqueue_head(&ffs->ev.waitq);
1666 	init_waitqueue_head(&ffs->wait);
1667 	init_completion(&ffs->ep0req_completion);
1668 
1669 	/* XXX REVISIT need to update it in some places, or do we? */
1670 	ffs->ev.can_stall = 1;
1671 
1672 	return ffs;
1673 }
1674 
1675 static void ffs_data_clear(struct ffs_data *ffs)
1676 {
1677 	ENTER();
1678 
1679 	ffs_closed(ffs);
1680 
1681 	BUG_ON(ffs->gadget);
1682 
1683 	if (ffs->epfiles)
1684 		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1685 
1686 	if (ffs->ffs_eventfd)
1687 		eventfd_ctx_put(ffs->ffs_eventfd);
1688 
1689 	kfree(ffs->raw_descs_data);
1690 	kfree(ffs->raw_strings);
1691 	kfree(ffs->stringtabs);
1692 }
1693 
1694 static void ffs_data_reset(struct ffs_data *ffs)
1695 {
1696 	ENTER();
1697 
1698 	ffs_data_clear(ffs);
1699 
1700 	ffs->epfiles = NULL;
1701 	ffs->raw_descs_data = NULL;
1702 	ffs->raw_descs = NULL;
1703 	ffs->raw_strings = NULL;
1704 	ffs->stringtabs = NULL;
1705 
1706 	ffs->raw_descs_length = 0;
1707 	ffs->fs_descs_count = 0;
1708 	ffs->hs_descs_count = 0;
1709 	ffs->ss_descs_count = 0;
1710 
1711 	ffs->strings_count = 0;
1712 	ffs->interfaces_count = 0;
1713 	ffs->eps_count = 0;
1714 
1715 	ffs->ev.count = 0;
1716 
1717 	ffs->state = FFS_READ_DESCRIPTORS;
1718 	ffs->setup_state = FFS_NO_SETUP;
1719 	ffs->flags = 0;
1720 }
1721 
1722 
1723 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1724 {
1725 	struct usb_gadget_strings **lang;
1726 	int first_id;
1727 
1728 	ENTER();
1729 
1730 	if (WARN_ON(ffs->state != FFS_ACTIVE
1731 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1732 		return -EBADFD;
1733 
1734 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1735 	if (unlikely(first_id < 0))
1736 		return first_id;
1737 
1738 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1739 	if (unlikely(!ffs->ep0req))
1740 		return -ENOMEM;
1741 	ffs->ep0req->complete = ffs_ep0_complete;
1742 	ffs->ep0req->context = ffs;
1743 
1744 	lang = ffs->stringtabs;
1745 	if (lang) {
1746 		for (; *lang; ++lang) {
1747 			struct usb_string *str = (*lang)->strings;
1748 			int id = first_id;
1749 			for (; str->s; ++id, ++str)
1750 				str->id = id;
1751 		}
1752 	}
1753 
1754 	ffs->gadget = cdev->gadget;
1755 	ffs_data_get(ffs);
1756 	return 0;
1757 }
1758 
1759 static void functionfs_unbind(struct ffs_data *ffs)
1760 {
1761 	ENTER();
1762 
1763 	if (!WARN_ON(!ffs->gadget)) {
1764 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1765 		ffs->ep0req = NULL;
1766 		ffs->gadget = NULL;
1767 		clear_bit(FFS_FL_BOUND, &ffs->flags);
1768 		ffs_data_put(ffs);
1769 	}
1770 }
1771 
1772 static int ffs_epfiles_create(struct ffs_data *ffs)
1773 {
1774 	struct ffs_epfile *epfile, *epfiles;
1775 	unsigned i, count;
1776 
1777 	ENTER();
1778 
1779 	count = ffs->eps_count;
1780 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1781 	if (!epfiles)
1782 		return -ENOMEM;
1783 
1784 	epfile = epfiles;
1785 	for (i = 1; i <= count; ++i, ++epfile) {
1786 		epfile->ffs = ffs;
1787 		mutex_init(&epfile->mutex);
1788 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1789 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1790 		else
1791 			sprintf(epfile->name, "ep%u", i);
1792 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1793 						 epfile,
1794 						 &ffs_epfile_operations);
1795 		if (unlikely(!epfile->dentry)) {
1796 			ffs_epfiles_destroy(epfiles, i - 1);
1797 			return -ENOMEM;
1798 		}
1799 	}
1800 
1801 	ffs->epfiles = epfiles;
1802 	return 0;
1803 }
1804 
1805 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1806 {
1807 	struct ffs_epfile *epfile = epfiles;
1808 
1809 	ENTER();
1810 
1811 	for (; count; --count, ++epfile) {
1812 		BUG_ON(mutex_is_locked(&epfile->mutex));
1813 		if (epfile->dentry) {
1814 			d_delete(epfile->dentry);
1815 			dput(epfile->dentry);
1816 			epfile->dentry = NULL;
1817 		}
1818 	}
1819 
1820 	kfree(epfiles);
1821 }
1822 
1823 static void ffs_func_eps_disable(struct ffs_function *func)
1824 {
1825 	struct ffs_ep *ep         = func->eps;
1826 	struct ffs_epfile *epfile = func->ffs->epfiles;
1827 	unsigned count            = func->ffs->eps_count;
1828 	unsigned long flags;
1829 
1830 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1831 	while (count--) {
1832 		/* pending requests get nuked */
1833 		if (likely(ep->ep))
1834 			usb_ep_disable(ep->ep);
1835 		++ep;
1836 
1837 		if (epfile) {
1838 			epfile->ep = NULL;
1839 			__ffs_epfile_read_buffer_free(epfile);
1840 			++epfile;
1841 		}
1842 	}
1843 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1844 }
1845 
1846 static int ffs_func_eps_enable(struct ffs_function *func)
1847 {
1848 	struct ffs_data *ffs      = func->ffs;
1849 	struct ffs_ep *ep         = func->eps;
1850 	struct ffs_epfile *epfile = ffs->epfiles;
1851 	unsigned count            = ffs->eps_count;
1852 	unsigned long flags;
1853 	int ret = 0;
1854 
1855 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1856 	while(count--) {
1857 		ep->ep->driver_data = ep;
1858 
1859 		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
1860 		if (ret) {
1861 			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
1862 					__func__, ep->ep->name, ret);
1863 			break;
1864 		}
1865 
1866 		ret = usb_ep_enable(ep->ep);
1867 		if (likely(!ret)) {
1868 			epfile->ep = ep;
1869 			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
1870 			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1871 		} else {
1872 			break;
1873 		}
1874 
1875 		++ep;
1876 		++epfile;
1877 	}
1878 
1879 	wake_up_interruptible(&ffs->wait);
1880 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1881 
1882 	return ret;
1883 }
1884 
1885 
1886 /* Parsing and building descriptors and strings *****************************/
1887 
1888 /*
1889  * This validates if data pointed by data is a valid USB descriptor as
1890  * well as record how many interfaces, endpoints and strings are
1891  * required by given configuration.  Returns address after the
1892  * descriptor or NULL if data is invalid.
1893  */
1894 
1895 enum ffs_entity_type {
1896 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1897 };
1898 
1899 enum ffs_os_desc_type {
1900 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1901 };
1902 
1903 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1904 				   u8 *valuep,
1905 				   struct usb_descriptor_header *desc,
1906 				   void *priv);
1907 
1908 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1909 				    struct usb_os_desc_header *h, void *data,
1910 				    unsigned len, void *priv);
1911 
1912 static int __must_check ffs_do_single_desc(char *data, unsigned len,
1913 					   ffs_entity_callback entity,
1914 					   void *priv)
1915 {
1916 	struct usb_descriptor_header *_ds = (void *)data;
1917 	u8 length;
1918 	int ret;
1919 
1920 	ENTER();
1921 
1922 	/* At least two bytes are required: length and type */
1923 	if (len < 2) {
1924 		pr_vdebug("descriptor too short\n");
1925 		return -EINVAL;
1926 	}
1927 
1928 	/* If we have at least as many bytes as the descriptor takes? */
1929 	length = _ds->bLength;
1930 	if (len < length) {
1931 		pr_vdebug("descriptor longer then available data\n");
1932 		return -EINVAL;
1933 	}
1934 
1935 #define __entity_check_INTERFACE(val)  1
1936 #define __entity_check_STRING(val)     (val)
1937 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
1938 #define __entity(type, val) do {					\
1939 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
1940 		if (unlikely(!__entity_check_ ##type(val))) {		\
1941 			pr_vdebug("invalid entity's value\n");		\
1942 			return -EINVAL;					\
1943 		}							\
1944 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
1945 		if (unlikely(ret < 0)) {				\
1946 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
1947 				 (val), ret);				\
1948 			return ret;					\
1949 		}							\
1950 	} while (0)
1951 
1952 	/* Parse descriptor depending on type. */
1953 	switch (_ds->bDescriptorType) {
1954 	case USB_DT_DEVICE:
1955 	case USB_DT_CONFIG:
1956 	case USB_DT_STRING:
1957 	case USB_DT_DEVICE_QUALIFIER:
1958 		/* function can't have any of those */
1959 		pr_vdebug("descriptor reserved for gadget: %d\n",
1960 		      _ds->bDescriptorType);
1961 		return -EINVAL;
1962 
1963 	case USB_DT_INTERFACE: {
1964 		struct usb_interface_descriptor *ds = (void *)_ds;
1965 		pr_vdebug("interface descriptor\n");
1966 		if (length != sizeof *ds)
1967 			goto inv_length;
1968 
1969 		__entity(INTERFACE, ds->bInterfaceNumber);
1970 		if (ds->iInterface)
1971 			__entity(STRING, ds->iInterface);
1972 	}
1973 		break;
1974 
1975 	case USB_DT_ENDPOINT: {
1976 		struct usb_endpoint_descriptor *ds = (void *)_ds;
1977 		pr_vdebug("endpoint descriptor\n");
1978 		if (length != USB_DT_ENDPOINT_SIZE &&
1979 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
1980 			goto inv_length;
1981 		__entity(ENDPOINT, ds->bEndpointAddress);
1982 	}
1983 		break;
1984 
1985 	case HID_DT_HID:
1986 		pr_vdebug("hid descriptor\n");
1987 		if (length != sizeof(struct hid_descriptor))
1988 			goto inv_length;
1989 		break;
1990 
1991 	case USB_DT_OTG:
1992 		if (length != sizeof(struct usb_otg_descriptor))
1993 			goto inv_length;
1994 		break;
1995 
1996 	case USB_DT_INTERFACE_ASSOCIATION: {
1997 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
1998 		pr_vdebug("interface association descriptor\n");
1999 		if (length != sizeof *ds)
2000 			goto inv_length;
2001 		if (ds->iFunction)
2002 			__entity(STRING, ds->iFunction);
2003 	}
2004 		break;
2005 
2006 	case USB_DT_SS_ENDPOINT_COMP:
2007 		pr_vdebug("EP SS companion descriptor\n");
2008 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2009 			goto inv_length;
2010 		break;
2011 
2012 	case USB_DT_OTHER_SPEED_CONFIG:
2013 	case USB_DT_INTERFACE_POWER:
2014 	case USB_DT_DEBUG:
2015 	case USB_DT_SECURITY:
2016 	case USB_DT_CS_RADIO_CONTROL:
2017 		/* TODO */
2018 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2019 		return -EINVAL;
2020 
2021 	default:
2022 		/* We should never be here */
2023 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2024 		return -EINVAL;
2025 
2026 inv_length:
2027 		pr_vdebug("invalid length: %d (descriptor %d)\n",
2028 			  _ds->bLength, _ds->bDescriptorType);
2029 		return -EINVAL;
2030 	}
2031 
2032 #undef __entity
2033 #undef __entity_check_DESCRIPTOR
2034 #undef __entity_check_INTERFACE
2035 #undef __entity_check_STRING
2036 #undef __entity_check_ENDPOINT
2037 
2038 	return length;
2039 }
2040 
2041 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2042 				     ffs_entity_callback entity, void *priv)
2043 {
2044 	const unsigned _len = len;
2045 	unsigned long num = 0;
2046 
2047 	ENTER();
2048 
2049 	for (;;) {
2050 		int ret;
2051 
2052 		if (num == count)
2053 			data = NULL;
2054 
2055 		/* Record "descriptor" entity */
2056 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2057 		if (unlikely(ret < 0)) {
2058 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2059 				 num, ret);
2060 			return ret;
2061 		}
2062 
2063 		if (!data)
2064 			return _len - len;
2065 
2066 		ret = ffs_do_single_desc(data, len, entity, priv);
2067 		if (unlikely(ret < 0)) {
2068 			pr_debug("%s returns %d\n", __func__, ret);
2069 			return ret;
2070 		}
2071 
2072 		len -= ret;
2073 		data += ret;
2074 		++num;
2075 	}
2076 }
2077 
2078 static int __ffs_data_do_entity(enum ffs_entity_type type,
2079 				u8 *valuep, struct usb_descriptor_header *desc,
2080 				void *priv)
2081 {
2082 	struct ffs_desc_helper *helper = priv;
2083 	struct usb_endpoint_descriptor *d;
2084 
2085 	ENTER();
2086 
2087 	switch (type) {
2088 	case FFS_DESCRIPTOR:
2089 		break;
2090 
2091 	case FFS_INTERFACE:
2092 		/*
2093 		 * Interfaces are indexed from zero so if we
2094 		 * encountered interface "n" then there are at least
2095 		 * "n+1" interfaces.
2096 		 */
2097 		if (*valuep >= helper->interfaces_count)
2098 			helper->interfaces_count = *valuep + 1;
2099 		break;
2100 
2101 	case FFS_STRING:
2102 		/*
2103 		 * Strings are indexed from 1 (0 is reserved
2104 		 * for languages list)
2105 		 */
2106 		if (*valuep > helper->ffs->strings_count)
2107 			helper->ffs->strings_count = *valuep;
2108 		break;
2109 
2110 	case FFS_ENDPOINT:
2111 		d = (void *)desc;
2112 		helper->eps_count++;
2113 		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2114 			return -EINVAL;
2115 		/* Check if descriptors for any speed were already parsed */
2116 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2117 			helper->ffs->eps_addrmap[helper->eps_count] =
2118 				d->bEndpointAddress;
2119 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2120 				d->bEndpointAddress)
2121 			return -EINVAL;
2122 		break;
2123 	}
2124 
2125 	return 0;
2126 }
2127 
2128 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2129 				   struct usb_os_desc_header *desc)
2130 {
2131 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2132 	u16 w_index = le16_to_cpu(desc->wIndex);
2133 
2134 	if (bcd_version != 1) {
2135 		pr_vdebug("unsupported os descriptors version: %d",
2136 			  bcd_version);
2137 		return -EINVAL;
2138 	}
2139 	switch (w_index) {
2140 	case 0x4:
2141 		*next_type = FFS_OS_DESC_EXT_COMPAT;
2142 		break;
2143 	case 0x5:
2144 		*next_type = FFS_OS_DESC_EXT_PROP;
2145 		break;
2146 	default:
2147 		pr_vdebug("unsupported os descriptor type: %d", w_index);
2148 		return -EINVAL;
2149 	}
2150 
2151 	return sizeof(*desc);
2152 }
2153 
2154 /*
2155  * Process all extended compatibility/extended property descriptors
2156  * of a feature descriptor
2157  */
2158 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2159 					      enum ffs_os_desc_type type,
2160 					      u16 feature_count,
2161 					      ffs_os_desc_callback entity,
2162 					      void *priv,
2163 					      struct usb_os_desc_header *h)
2164 {
2165 	int ret;
2166 	const unsigned _len = len;
2167 
2168 	ENTER();
2169 
2170 	/* loop over all ext compat/ext prop descriptors */
2171 	while (feature_count--) {
2172 		ret = entity(type, h, data, len, priv);
2173 		if (unlikely(ret < 0)) {
2174 			pr_debug("bad OS descriptor, type: %d\n", type);
2175 			return ret;
2176 		}
2177 		data += ret;
2178 		len -= ret;
2179 	}
2180 	return _len - len;
2181 }
2182 
2183 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2184 static int __must_check ffs_do_os_descs(unsigned count,
2185 					char *data, unsigned len,
2186 					ffs_os_desc_callback entity, void *priv)
2187 {
2188 	const unsigned _len = len;
2189 	unsigned long num = 0;
2190 
2191 	ENTER();
2192 
2193 	for (num = 0; num < count; ++num) {
2194 		int ret;
2195 		enum ffs_os_desc_type type;
2196 		u16 feature_count;
2197 		struct usb_os_desc_header *desc = (void *)data;
2198 
2199 		if (len < sizeof(*desc))
2200 			return -EINVAL;
2201 
2202 		/*
2203 		 * Record "descriptor" entity.
2204 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2205 		 * Move the data pointer to the beginning of extended
2206 		 * compatibilities proper or extended properties proper
2207 		 * portions of the data
2208 		 */
2209 		if (le32_to_cpu(desc->dwLength) > len)
2210 			return -EINVAL;
2211 
2212 		ret = __ffs_do_os_desc_header(&type, desc);
2213 		if (unlikely(ret < 0)) {
2214 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2215 				 num, ret);
2216 			return ret;
2217 		}
2218 		/*
2219 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2220 		 */
2221 		feature_count = le16_to_cpu(desc->wCount);
2222 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2223 		    (feature_count > 255 || desc->Reserved))
2224 				return -EINVAL;
2225 		len -= ret;
2226 		data += ret;
2227 
2228 		/*
2229 		 * Process all function/property descriptors
2230 		 * of this Feature Descriptor
2231 		 */
2232 		ret = ffs_do_single_os_desc(data, len, type,
2233 					    feature_count, entity, priv, desc);
2234 		if (unlikely(ret < 0)) {
2235 			pr_debug("%s returns %d\n", __func__, ret);
2236 			return ret;
2237 		}
2238 
2239 		len -= ret;
2240 		data += ret;
2241 	}
2242 	return _len - len;
2243 }
2244 
2245 /**
2246  * Validate contents of the buffer from userspace related to OS descriptors.
2247  */
2248 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2249 				 struct usb_os_desc_header *h, void *data,
2250 				 unsigned len, void *priv)
2251 {
2252 	struct ffs_data *ffs = priv;
2253 	u8 length;
2254 
2255 	ENTER();
2256 
2257 	switch (type) {
2258 	case FFS_OS_DESC_EXT_COMPAT: {
2259 		struct usb_ext_compat_desc *d = data;
2260 		int i;
2261 
2262 		if (len < sizeof(*d) ||
2263 		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2264 			return -EINVAL;
2265 		if (d->Reserved1 != 1) {
2266 			/*
2267 			 * According to the spec, Reserved1 must be set to 1
2268 			 * but older kernels incorrectly rejected non-zero
2269 			 * values.  We fix it here to avoid returning EINVAL
2270 			 * in response to values we used to accept.
2271 			 */
2272 			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2273 			d->Reserved1 = 1;
2274 		}
2275 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2276 			if (d->Reserved2[i])
2277 				return -EINVAL;
2278 
2279 		length = sizeof(struct usb_ext_compat_desc);
2280 	}
2281 		break;
2282 	case FFS_OS_DESC_EXT_PROP: {
2283 		struct usb_ext_prop_desc *d = data;
2284 		u32 type, pdl;
2285 		u16 pnl;
2286 
2287 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2288 			return -EINVAL;
2289 		length = le32_to_cpu(d->dwSize);
2290 		if (len < length)
2291 			return -EINVAL;
2292 		type = le32_to_cpu(d->dwPropertyDataType);
2293 		if (type < USB_EXT_PROP_UNICODE ||
2294 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2295 			pr_vdebug("unsupported os descriptor property type: %d",
2296 				  type);
2297 			return -EINVAL;
2298 		}
2299 		pnl = le16_to_cpu(d->wPropertyNameLength);
2300 		if (length < 14 + pnl) {
2301 			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2302 				  length, pnl, type);
2303 			return -EINVAL;
2304 		}
2305 		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2306 		if (length != 14 + pnl + pdl) {
2307 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2308 				  length, pnl, pdl, type);
2309 			return -EINVAL;
2310 		}
2311 		++ffs->ms_os_descs_ext_prop_count;
2312 		/* property name reported to the host as "WCHAR"s */
2313 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2314 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2315 	}
2316 		break;
2317 	default:
2318 		pr_vdebug("unknown descriptor: %d\n", type);
2319 		return -EINVAL;
2320 	}
2321 	return length;
2322 }
2323 
2324 static int __ffs_data_got_descs(struct ffs_data *ffs,
2325 				char *const _data, size_t len)
2326 {
2327 	char *data = _data, *raw_descs;
2328 	unsigned os_descs_count = 0, counts[3], flags;
2329 	int ret = -EINVAL, i;
2330 	struct ffs_desc_helper helper;
2331 
2332 	ENTER();
2333 
2334 	if (get_unaligned_le32(data + 4) != len)
2335 		goto error;
2336 
2337 	switch (get_unaligned_le32(data)) {
2338 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2339 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2340 		data += 8;
2341 		len  -= 8;
2342 		break;
2343 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2344 		flags = get_unaligned_le32(data + 8);
2345 		ffs->user_flags = flags;
2346 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2347 			      FUNCTIONFS_HAS_HS_DESC |
2348 			      FUNCTIONFS_HAS_SS_DESC |
2349 			      FUNCTIONFS_HAS_MS_OS_DESC |
2350 			      FUNCTIONFS_VIRTUAL_ADDR |
2351 			      FUNCTIONFS_EVENTFD |
2352 			      FUNCTIONFS_ALL_CTRL_RECIP |
2353 			      FUNCTIONFS_CONFIG0_SETUP)) {
2354 			ret = -ENOSYS;
2355 			goto error;
2356 		}
2357 		data += 12;
2358 		len  -= 12;
2359 		break;
2360 	default:
2361 		goto error;
2362 	}
2363 
2364 	if (flags & FUNCTIONFS_EVENTFD) {
2365 		if (len < 4)
2366 			goto error;
2367 		ffs->ffs_eventfd =
2368 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2369 		if (IS_ERR(ffs->ffs_eventfd)) {
2370 			ret = PTR_ERR(ffs->ffs_eventfd);
2371 			ffs->ffs_eventfd = NULL;
2372 			goto error;
2373 		}
2374 		data += 4;
2375 		len  -= 4;
2376 	}
2377 
2378 	/* Read fs_count, hs_count and ss_count (if present) */
2379 	for (i = 0; i < 3; ++i) {
2380 		if (!(flags & (1 << i))) {
2381 			counts[i] = 0;
2382 		} else if (len < 4) {
2383 			goto error;
2384 		} else {
2385 			counts[i] = get_unaligned_le32(data);
2386 			data += 4;
2387 			len  -= 4;
2388 		}
2389 	}
2390 	if (flags & (1 << i)) {
2391 		if (len < 4) {
2392 			goto error;
2393 		}
2394 		os_descs_count = get_unaligned_le32(data);
2395 		data += 4;
2396 		len -= 4;
2397 	};
2398 
2399 	/* Read descriptors */
2400 	raw_descs = data;
2401 	helper.ffs = ffs;
2402 	for (i = 0; i < 3; ++i) {
2403 		if (!counts[i])
2404 			continue;
2405 		helper.interfaces_count = 0;
2406 		helper.eps_count = 0;
2407 		ret = ffs_do_descs(counts[i], data, len,
2408 				   __ffs_data_do_entity, &helper);
2409 		if (ret < 0)
2410 			goto error;
2411 		if (!ffs->eps_count && !ffs->interfaces_count) {
2412 			ffs->eps_count = helper.eps_count;
2413 			ffs->interfaces_count = helper.interfaces_count;
2414 		} else {
2415 			if (ffs->eps_count != helper.eps_count) {
2416 				ret = -EINVAL;
2417 				goto error;
2418 			}
2419 			if (ffs->interfaces_count != helper.interfaces_count) {
2420 				ret = -EINVAL;
2421 				goto error;
2422 			}
2423 		}
2424 		data += ret;
2425 		len  -= ret;
2426 	}
2427 	if (os_descs_count) {
2428 		ret = ffs_do_os_descs(os_descs_count, data, len,
2429 				      __ffs_data_do_os_desc, ffs);
2430 		if (ret < 0)
2431 			goto error;
2432 		data += ret;
2433 		len -= ret;
2434 	}
2435 
2436 	if (raw_descs == data || len) {
2437 		ret = -EINVAL;
2438 		goto error;
2439 	}
2440 
2441 	ffs->raw_descs_data	= _data;
2442 	ffs->raw_descs		= raw_descs;
2443 	ffs->raw_descs_length	= data - raw_descs;
2444 	ffs->fs_descs_count	= counts[0];
2445 	ffs->hs_descs_count	= counts[1];
2446 	ffs->ss_descs_count	= counts[2];
2447 	ffs->ms_os_descs_count	= os_descs_count;
2448 
2449 	return 0;
2450 
2451 error:
2452 	kfree(_data);
2453 	return ret;
2454 }
2455 
2456 static int __ffs_data_got_strings(struct ffs_data *ffs,
2457 				  char *const _data, size_t len)
2458 {
2459 	u32 str_count, needed_count, lang_count;
2460 	struct usb_gadget_strings **stringtabs, *t;
2461 	const char *data = _data;
2462 	struct usb_string *s;
2463 
2464 	ENTER();
2465 
2466 	if (unlikely(len < 16 ||
2467 		     get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2468 		     get_unaligned_le32(data + 4) != len))
2469 		goto error;
2470 	str_count  = get_unaligned_le32(data + 8);
2471 	lang_count = get_unaligned_le32(data + 12);
2472 
2473 	/* if one is zero the other must be zero */
2474 	if (unlikely(!str_count != !lang_count))
2475 		goto error;
2476 
2477 	/* Do we have at least as many strings as descriptors need? */
2478 	needed_count = ffs->strings_count;
2479 	if (unlikely(str_count < needed_count))
2480 		goto error;
2481 
2482 	/*
2483 	 * If we don't need any strings just return and free all
2484 	 * memory.
2485 	 */
2486 	if (!needed_count) {
2487 		kfree(_data);
2488 		return 0;
2489 	}
2490 
2491 	/* Allocate everything in one chunk so there's less maintenance. */
2492 	{
2493 		unsigned i = 0;
2494 		vla_group(d);
2495 		vla_item(d, struct usb_gadget_strings *, stringtabs,
2496 			lang_count + 1);
2497 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2498 		vla_item(d, struct usb_string, strings,
2499 			lang_count*(needed_count+1));
2500 
2501 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2502 
2503 		if (unlikely(!vlabuf)) {
2504 			kfree(_data);
2505 			return -ENOMEM;
2506 		}
2507 
2508 		/* Initialize the VLA pointers */
2509 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2510 		t = vla_ptr(vlabuf, d, stringtab);
2511 		i = lang_count;
2512 		do {
2513 			*stringtabs++ = t++;
2514 		} while (--i);
2515 		*stringtabs = NULL;
2516 
2517 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2518 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2519 		t = vla_ptr(vlabuf, d, stringtab);
2520 		s = vla_ptr(vlabuf, d, strings);
2521 	}
2522 
2523 	/* For each language */
2524 	data += 16;
2525 	len -= 16;
2526 
2527 	do { /* lang_count > 0 so we can use do-while */
2528 		unsigned needed = needed_count;
2529 
2530 		if (unlikely(len < 3))
2531 			goto error_free;
2532 		t->language = get_unaligned_le16(data);
2533 		t->strings  = s;
2534 		++t;
2535 
2536 		data += 2;
2537 		len -= 2;
2538 
2539 		/* For each string */
2540 		do { /* str_count > 0 so we can use do-while */
2541 			size_t length = strnlen(data, len);
2542 
2543 			if (unlikely(length == len))
2544 				goto error_free;
2545 
2546 			/*
2547 			 * User may provide more strings then we need,
2548 			 * if that's the case we simply ignore the
2549 			 * rest
2550 			 */
2551 			if (likely(needed)) {
2552 				/*
2553 				 * s->id will be set while adding
2554 				 * function to configuration so for
2555 				 * now just leave garbage here.
2556 				 */
2557 				s->s = data;
2558 				--needed;
2559 				++s;
2560 			}
2561 
2562 			data += length + 1;
2563 			len -= length + 1;
2564 		} while (--str_count);
2565 
2566 		s->id = 0;   /* terminator */
2567 		s->s = NULL;
2568 		++s;
2569 
2570 	} while (--lang_count);
2571 
2572 	/* Some garbage left? */
2573 	if (unlikely(len))
2574 		goto error_free;
2575 
2576 	/* Done! */
2577 	ffs->stringtabs = stringtabs;
2578 	ffs->raw_strings = _data;
2579 
2580 	return 0;
2581 
2582 error_free:
2583 	kfree(stringtabs);
2584 error:
2585 	kfree(_data);
2586 	return -EINVAL;
2587 }
2588 
2589 
2590 /* Events handling and management *******************************************/
2591 
2592 static void __ffs_event_add(struct ffs_data *ffs,
2593 			    enum usb_functionfs_event_type type)
2594 {
2595 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2596 	int neg = 0;
2597 
2598 	/*
2599 	 * Abort any unhandled setup
2600 	 *
2601 	 * We do not need to worry about some cmpxchg() changing value
2602 	 * of ffs->setup_state without holding the lock because when
2603 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2604 	 * the source does nothing.
2605 	 */
2606 	if (ffs->setup_state == FFS_SETUP_PENDING)
2607 		ffs->setup_state = FFS_SETUP_CANCELLED;
2608 
2609 	/*
2610 	 * Logic of this function guarantees that there are at most four pending
2611 	 * evens on ffs->ev.types queue.  This is important because the queue
2612 	 * has space for four elements only and __ffs_ep0_read_events function
2613 	 * depends on that limit as well.  If more event types are added, those
2614 	 * limits have to be revisited or guaranteed to still hold.
2615 	 */
2616 	switch (type) {
2617 	case FUNCTIONFS_RESUME:
2618 		rem_type2 = FUNCTIONFS_SUSPEND;
2619 		/* FALL THROUGH */
2620 	case FUNCTIONFS_SUSPEND:
2621 	case FUNCTIONFS_SETUP:
2622 		rem_type1 = type;
2623 		/* Discard all similar events */
2624 		break;
2625 
2626 	case FUNCTIONFS_BIND:
2627 	case FUNCTIONFS_UNBIND:
2628 	case FUNCTIONFS_DISABLE:
2629 	case FUNCTIONFS_ENABLE:
2630 		/* Discard everything other then power management. */
2631 		rem_type1 = FUNCTIONFS_SUSPEND;
2632 		rem_type2 = FUNCTIONFS_RESUME;
2633 		neg = 1;
2634 		break;
2635 
2636 	default:
2637 		WARN(1, "%d: unknown event, this should not happen\n", type);
2638 		return;
2639 	}
2640 
2641 	{
2642 		u8 *ev  = ffs->ev.types, *out = ev;
2643 		unsigned n = ffs->ev.count;
2644 		for (; n; --n, ++ev)
2645 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2646 				*out++ = *ev;
2647 			else
2648 				pr_vdebug("purging event %d\n", *ev);
2649 		ffs->ev.count = out - ffs->ev.types;
2650 	}
2651 
2652 	pr_vdebug("adding event %d\n", type);
2653 	ffs->ev.types[ffs->ev.count++] = type;
2654 	wake_up_locked(&ffs->ev.waitq);
2655 	if (ffs->ffs_eventfd)
2656 		eventfd_signal(ffs->ffs_eventfd, 1);
2657 }
2658 
2659 static void ffs_event_add(struct ffs_data *ffs,
2660 			  enum usb_functionfs_event_type type)
2661 {
2662 	unsigned long flags;
2663 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2664 	__ffs_event_add(ffs, type);
2665 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2666 }
2667 
2668 /* Bind/unbind USB function hooks *******************************************/
2669 
2670 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2671 {
2672 	int i;
2673 
2674 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2675 		if (ffs->eps_addrmap[i] == endpoint_address)
2676 			return i;
2677 	return -ENOENT;
2678 }
2679 
2680 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2681 				    struct usb_descriptor_header *desc,
2682 				    void *priv)
2683 {
2684 	struct usb_endpoint_descriptor *ds = (void *)desc;
2685 	struct ffs_function *func = priv;
2686 	struct ffs_ep *ffs_ep;
2687 	unsigned ep_desc_id;
2688 	int idx;
2689 	static const char *speed_names[] = { "full", "high", "super" };
2690 
2691 	if (type != FFS_DESCRIPTOR)
2692 		return 0;
2693 
2694 	/*
2695 	 * If ss_descriptors is not NULL, we are reading super speed
2696 	 * descriptors; if hs_descriptors is not NULL, we are reading high
2697 	 * speed descriptors; otherwise, we are reading full speed
2698 	 * descriptors.
2699 	 */
2700 	if (func->function.ss_descriptors) {
2701 		ep_desc_id = 2;
2702 		func->function.ss_descriptors[(long)valuep] = desc;
2703 	} else if (func->function.hs_descriptors) {
2704 		ep_desc_id = 1;
2705 		func->function.hs_descriptors[(long)valuep] = desc;
2706 	} else {
2707 		ep_desc_id = 0;
2708 		func->function.fs_descriptors[(long)valuep]    = desc;
2709 	}
2710 
2711 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2712 		return 0;
2713 
2714 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2715 	if (idx < 0)
2716 		return idx;
2717 
2718 	ffs_ep = func->eps + idx;
2719 
2720 	if (unlikely(ffs_ep->descs[ep_desc_id])) {
2721 		pr_err("two %sspeed descriptors for EP %d\n",
2722 			  speed_names[ep_desc_id],
2723 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2724 		return -EINVAL;
2725 	}
2726 	ffs_ep->descs[ep_desc_id] = ds;
2727 
2728 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2729 	if (ffs_ep->ep) {
2730 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2731 		if (!ds->wMaxPacketSize)
2732 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2733 	} else {
2734 		struct usb_request *req;
2735 		struct usb_ep *ep;
2736 		u8 bEndpointAddress;
2737 
2738 		/*
2739 		 * We back up bEndpointAddress because autoconfig overwrites
2740 		 * it with physical endpoint address.
2741 		 */
2742 		bEndpointAddress = ds->bEndpointAddress;
2743 		pr_vdebug("autoconfig\n");
2744 		ep = usb_ep_autoconfig(func->gadget, ds);
2745 		if (unlikely(!ep))
2746 			return -ENOTSUPP;
2747 		ep->driver_data = func->eps + idx;
2748 
2749 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2750 		if (unlikely(!req))
2751 			return -ENOMEM;
2752 
2753 		ffs_ep->ep  = ep;
2754 		ffs_ep->req = req;
2755 		func->eps_revmap[ds->bEndpointAddress &
2756 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2757 		/*
2758 		 * If we use virtual address mapping, we restore
2759 		 * original bEndpointAddress value.
2760 		 */
2761 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2762 			ds->bEndpointAddress = bEndpointAddress;
2763 	}
2764 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2765 
2766 	return 0;
2767 }
2768 
2769 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2770 				   struct usb_descriptor_header *desc,
2771 				   void *priv)
2772 {
2773 	struct ffs_function *func = priv;
2774 	unsigned idx;
2775 	u8 newValue;
2776 
2777 	switch (type) {
2778 	default:
2779 	case FFS_DESCRIPTOR:
2780 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2781 		return 0;
2782 
2783 	case FFS_INTERFACE:
2784 		idx = *valuep;
2785 		if (func->interfaces_nums[idx] < 0) {
2786 			int id = usb_interface_id(func->conf, &func->function);
2787 			if (unlikely(id < 0))
2788 				return id;
2789 			func->interfaces_nums[idx] = id;
2790 		}
2791 		newValue = func->interfaces_nums[idx];
2792 		break;
2793 
2794 	case FFS_STRING:
2795 		/* String' IDs are allocated when fsf_data is bound to cdev */
2796 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2797 		break;
2798 
2799 	case FFS_ENDPOINT:
2800 		/*
2801 		 * USB_DT_ENDPOINT are handled in
2802 		 * __ffs_func_bind_do_descs().
2803 		 */
2804 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2805 			return 0;
2806 
2807 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2808 		if (unlikely(!func->eps[idx].ep))
2809 			return -EINVAL;
2810 
2811 		{
2812 			struct usb_endpoint_descriptor **descs;
2813 			descs = func->eps[idx].descs;
2814 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2815 		}
2816 		break;
2817 	}
2818 
2819 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2820 	*valuep = newValue;
2821 	return 0;
2822 }
2823 
2824 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2825 				      struct usb_os_desc_header *h, void *data,
2826 				      unsigned len, void *priv)
2827 {
2828 	struct ffs_function *func = priv;
2829 	u8 length = 0;
2830 
2831 	switch (type) {
2832 	case FFS_OS_DESC_EXT_COMPAT: {
2833 		struct usb_ext_compat_desc *desc = data;
2834 		struct usb_os_desc_table *t;
2835 
2836 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2837 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2838 		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2839 		       ARRAY_SIZE(desc->CompatibleID) +
2840 		       ARRAY_SIZE(desc->SubCompatibleID));
2841 		length = sizeof(*desc);
2842 	}
2843 		break;
2844 	case FFS_OS_DESC_EXT_PROP: {
2845 		struct usb_ext_prop_desc *desc = data;
2846 		struct usb_os_desc_table *t;
2847 		struct usb_os_desc_ext_prop *ext_prop;
2848 		char *ext_prop_name;
2849 		char *ext_prop_data;
2850 
2851 		t = &func->function.os_desc_table[h->interface];
2852 		t->if_id = func->interfaces_nums[h->interface];
2853 
2854 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2855 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2856 
2857 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2858 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2859 		ext_prop->data_len = le32_to_cpu(*(__le32 *)
2860 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2861 		length = ext_prop->name_len + ext_prop->data_len + 14;
2862 
2863 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2864 		func->ffs->ms_os_descs_ext_prop_name_avail +=
2865 			ext_prop->name_len;
2866 
2867 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2868 		func->ffs->ms_os_descs_ext_prop_data_avail +=
2869 			ext_prop->data_len;
2870 		memcpy(ext_prop_data,
2871 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2872 		       ext_prop->data_len);
2873 		/* unicode data reported to the host as "WCHAR"s */
2874 		switch (ext_prop->type) {
2875 		case USB_EXT_PROP_UNICODE:
2876 		case USB_EXT_PROP_UNICODE_ENV:
2877 		case USB_EXT_PROP_UNICODE_LINK:
2878 		case USB_EXT_PROP_UNICODE_MULTI:
2879 			ext_prop->data_len *= 2;
2880 			break;
2881 		}
2882 		ext_prop->data = ext_prop_data;
2883 
2884 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2885 		       ext_prop->name_len);
2886 		/* property name reported to the host as "WCHAR"s */
2887 		ext_prop->name_len *= 2;
2888 		ext_prop->name = ext_prop_name;
2889 
2890 		t->os_desc->ext_prop_len +=
2891 			ext_prop->name_len + ext_prop->data_len + 14;
2892 		++t->os_desc->ext_prop_count;
2893 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2894 	}
2895 		break;
2896 	default:
2897 		pr_vdebug("unknown descriptor: %d\n", type);
2898 	}
2899 
2900 	return length;
2901 }
2902 
2903 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2904 						struct usb_configuration *c)
2905 {
2906 	struct ffs_function *func = ffs_func_from_usb(f);
2907 	struct f_fs_opts *ffs_opts =
2908 		container_of(f->fi, struct f_fs_opts, func_inst);
2909 	int ret;
2910 
2911 	ENTER();
2912 
2913 	/*
2914 	 * Legacy gadget triggers binding in functionfs_ready_callback,
2915 	 * which already uses locking; taking the same lock here would
2916 	 * cause a deadlock.
2917 	 *
2918 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
2919 	 */
2920 	if (!ffs_opts->no_configfs)
2921 		ffs_dev_lock();
2922 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2923 	func->ffs = ffs_opts->dev->ffs_data;
2924 	if (!ffs_opts->no_configfs)
2925 		ffs_dev_unlock();
2926 	if (ret)
2927 		return ERR_PTR(ret);
2928 
2929 	func->conf = c;
2930 	func->gadget = c->cdev->gadget;
2931 
2932 	/*
2933 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2934 	 * configurations are bound in sequence with list_for_each_entry,
2935 	 * in each configuration its functions are bound in sequence
2936 	 * with list_for_each_entry, so we assume no race condition
2937 	 * with regard to ffs_opts->bound access
2938 	 */
2939 	if (!ffs_opts->refcnt) {
2940 		ret = functionfs_bind(func->ffs, c->cdev);
2941 		if (ret)
2942 			return ERR_PTR(ret);
2943 	}
2944 	ffs_opts->refcnt++;
2945 	func->function.strings = func->ffs->stringtabs;
2946 
2947 	return ffs_opts;
2948 }
2949 
2950 static int _ffs_func_bind(struct usb_configuration *c,
2951 			  struct usb_function *f)
2952 {
2953 	struct ffs_function *func = ffs_func_from_usb(f);
2954 	struct ffs_data *ffs = func->ffs;
2955 
2956 	const int full = !!func->ffs->fs_descs_count;
2957 	const int high = !!func->ffs->hs_descs_count;
2958 	const int super = !!func->ffs->ss_descs_count;
2959 
2960 	int fs_len, hs_len, ss_len, ret, i;
2961 	struct ffs_ep *eps_ptr;
2962 
2963 	/* Make it a single chunk, less management later on */
2964 	vla_group(d);
2965 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2966 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2967 		full ? ffs->fs_descs_count + 1 : 0);
2968 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2969 		high ? ffs->hs_descs_count + 1 : 0);
2970 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2971 		super ? ffs->ss_descs_count + 1 : 0);
2972 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2973 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2974 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2975 	vla_item_with_sz(d, char[16], ext_compat,
2976 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2977 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
2978 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2979 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
2980 			 ffs->ms_os_descs_ext_prop_count);
2981 	vla_item_with_sz(d, char, ext_prop_name,
2982 			 ffs->ms_os_descs_ext_prop_name_len);
2983 	vla_item_with_sz(d, char, ext_prop_data,
2984 			 ffs->ms_os_descs_ext_prop_data_len);
2985 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
2986 	char *vlabuf;
2987 
2988 	ENTER();
2989 
2990 	/* Has descriptors only for speeds gadget does not support */
2991 	if (unlikely(!(full | high | super)))
2992 		return -ENOTSUPP;
2993 
2994 	/* Allocate a single chunk, less management later on */
2995 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
2996 	if (unlikely(!vlabuf))
2997 		return -ENOMEM;
2998 
2999 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3000 	ffs->ms_os_descs_ext_prop_name_avail =
3001 		vla_ptr(vlabuf, d, ext_prop_name);
3002 	ffs->ms_os_descs_ext_prop_data_avail =
3003 		vla_ptr(vlabuf, d, ext_prop_data);
3004 
3005 	/* Copy descriptors  */
3006 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3007 	       ffs->raw_descs_length);
3008 
3009 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3010 	eps_ptr = vla_ptr(vlabuf, d, eps);
3011 	for (i = 0; i < ffs->eps_count; i++)
3012 		eps_ptr[i].num = -1;
3013 
3014 	/* Save pointers
3015 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3016 	*/
3017 	func->eps             = vla_ptr(vlabuf, d, eps);
3018 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3019 
3020 	/*
3021 	 * Go through all the endpoint descriptors and allocate
3022 	 * endpoints first, so that later we can rewrite the endpoint
3023 	 * numbers without worrying that it may be described later on.
3024 	 */
3025 	if (likely(full)) {
3026 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3027 		fs_len = ffs_do_descs(ffs->fs_descs_count,
3028 				      vla_ptr(vlabuf, d, raw_descs),
3029 				      d_raw_descs__sz,
3030 				      __ffs_func_bind_do_descs, func);
3031 		if (unlikely(fs_len < 0)) {
3032 			ret = fs_len;
3033 			goto error;
3034 		}
3035 	} else {
3036 		fs_len = 0;
3037 	}
3038 
3039 	if (likely(high)) {
3040 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3041 		hs_len = ffs_do_descs(ffs->hs_descs_count,
3042 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3043 				      d_raw_descs__sz - fs_len,
3044 				      __ffs_func_bind_do_descs, func);
3045 		if (unlikely(hs_len < 0)) {
3046 			ret = hs_len;
3047 			goto error;
3048 		}
3049 	} else {
3050 		hs_len = 0;
3051 	}
3052 
3053 	if (likely(super)) {
3054 		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3055 		ss_len = ffs_do_descs(ffs->ss_descs_count,
3056 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3057 				d_raw_descs__sz - fs_len - hs_len,
3058 				__ffs_func_bind_do_descs, func);
3059 		if (unlikely(ss_len < 0)) {
3060 			ret = ss_len;
3061 			goto error;
3062 		}
3063 	} else {
3064 		ss_len = 0;
3065 	}
3066 
3067 	/*
3068 	 * Now handle interface numbers allocation and interface and
3069 	 * endpoint numbers rewriting.  We can do that in one go
3070 	 * now.
3071 	 */
3072 	ret = ffs_do_descs(ffs->fs_descs_count +
3073 			   (high ? ffs->hs_descs_count : 0) +
3074 			   (super ? ffs->ss_descs_count : 0),
3075 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3076 			   __ffs_func_bind_do_nums, func);
3077 	if (unlikely(ret < 0))
3078 		goto error;
3079 
3080 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3081 	if (c->cdev->use_os_string) {
3082 		for (i = 0; i < ffs->interfaces_count; ++i) {
3083 			struct usb_os_desc *desc;
3084 
3085 			desc = func->function.os_desc_table[i].os_desc =
3086 				vla_ptr(vlabuf, d, os_desc) +
3087 				i * sizeof(struct usb_os_desc);
3088 			desc->ext_compat_id =
3089 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3090 			INIT_LIST_HEAD(&desc->ext_prop);
3091 		}
3092 		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3093 				      vla_ptr(vlabuf, d, raw_descs) +
3094 				      fs_len + hs_len + ss_len,
3095 				      d_raw_descs__sz - fs_len - hs_len -
3096 				      ss_len,
3097 				      __ffs_func_bind_do_os_desc, func);
3098 		if (unlikely(ret < 0))
3099 			goto error;
3100 	}
3101 	func->function.os_desc_n =
3102 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3103 
3104 	/* And we're done */
3105 	ffs_event_add(ffs, FUNCTIONFS_BIND);
3106 	return 0;
3107 
3108 error:
3109 	/* XXX Do we need to release all claimed endpoints here? */
3110 	return ret;
3111 }
3112 
3113 static int ffs_func_bind(struct usb_configuration *c,
3114 			 struct usb_function *f)
3115 {
3116 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3117 	struct ffs_function *func = ffs_func_from_usb(f);
3118 	int ret;
3119 
3120 	if (IS_ERR(ffs_opts))
3121 		return PTR_ERR(ffs_opts);
3122 
3123 	ret = _ffs_func_bind(c, f);
3124 	if (ret && !--ffs_opts->refcnt)
3125 		functionfs_unbind(func->ffs);
3126 
3127 	return ret;
3128 }
3129 
3130 
3131 /* Other USB function hooks *************************************************/
3132 
3133 static void ffs_reset_work(struct work_struct *work)
3134 {
3135 	struct ffs_data *ffs = container_of(work,
3136 		struct ffs_data, reset_work);
3137 	ffs_data_reset(ffs);
3138 }
3139 
3140 static int ffs_func_set_alt(struct usb_function *f,
3141 			    unsigned interface, unsigned alt)
3142 {
3143 	struct ffs_function *func = ffs_func_from_usb(f);
3144 	struct ffs_data *ffs = func->ffs;
3145 	int ret = 0, intf;
3146 
3147 	if (alt != (unsigned)-1) {
3148 		intf = ffs_func_revmap_intf(func, interface);
3149 		if (unlikely(intf < 0))
3150 			return intf;
3151 	}
3152 
3153 	if (ffs->func)
3154 		ffs_func_eps_disable(ffs->func);
3155 
3156 	if (ffs->state == FFS_DEACTIVATED) {
3157 		ffs->state = FFS_CLOSING;
3158 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3159 		schedule_work(&ffs->reset_work);
3160 		return -ENODEV;
3161 	}
3162 
3163 	if (ffs->state != FFS_ACTIVE)
3164 		return -ENODEV;
3165 
3166 	if (alt == (unsigned)-1) {
3167 		ffs->func = NULL;
3168 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3169 		return 0;
3170 	}
3171 
3172 	ffs->func = func;
3173 	ret = ffs_func_eps_enable(func);
3174 	if (likely(ret >= 0))
3175 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3176 	return ret;
3177 }
3178 
3179 static void ffs_func_disable(struct usb_function *f)
3180 {
3181 	ffs_func_set_alt(f, 0, (unsigned)-1);
3182 }
3183 
3184 static int ffs_func_setup(struct usb_function *f,
3185 			  const struct usb_ctrlrequest *creq)
3186 {
3187 	struct ffs_function *func = ffs_func_from_usb(f);
3188 	struct ffs_data *ffs = func->ffs;
3189 	unsigned long flags;
3190 	int ret;
3191 
3192 	ENTER();
3193 
3194 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3195 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3196 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3197 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3198 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3199 
3200 	/*
3201 	 * Most requests directed to interface go through here
3202 	 * (notable exceptions are set/get interface) so we need to
3203 	 * handle them.  All other either handled by composite or
3204 	 * passed to usb_configuration->setup() (if one is set).  No
3205 	 * matter, we will handle requests directed to endpoint here
3206 	 * as well (as it's straightforward).  Other request recipient
3207 	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3208 	 * is being used.
3209 	 */
3210 	if (ffs->state != FFS_ACTIVE)
3211 		return -ENODEV;
3212 
3213 	switch (creq->bRequestType & USB_RECIP_MASK) {
3214 	case USB_RECIP_INTERFACE:
3215 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3216 		if (unlikely(ret < 0))
3217 			return ret;
3218 		break;
3219 
3220 	case USB_RECIP_ENDPOINT:
3221 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3222 		if (unlikely(ret < 0))
3223 			return ret;
3224 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3225 			ret = func->ffs->eps_addrmap[ret];
3226 		break;
3227 
3228 	default:
3229 		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3230 			ret = le16_to_cpu(creq->wIndex);
3231 		else
3232 			return -EOPNOTSUPP;
3233 	}
3234 
3235 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3236 	ffs->ev.setup = *creq;
3237 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3238 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3239 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3240 
3241 	return 0;
3242 }
3243 
3244 static bool ffs_func_req_match(struct usb_function *f,
3245 			       const struct usb_ctrlrequest *creq,
3246 			       bool config0)
3247 {
3248 	struct ffs_function *func = ffs_func_from_usb(f);
3249 
3250 	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3251 		return false;
3252 
3253 	switch (creq->bRequestType & USB_RECIP_MASK) {
3254 	case USB_RECIP_INTERFACE:
3255 		return (ffs_func_revmap_intf(func,
3256 					     le16_to_cpu(creq->wIndex)) >= 0);
3257 	case USB_RECIP_ENDPOINT:
3258 		return (ffs_func_revmap_ep(func,
3259 					   le16_to_cpu(creq->wIndex)) >= 0);
3260 	default:
3261 		return (bool) (func->ffs->user_flags &
3262 			       FUNCTIONFS_ALL_CTRL_RECIP);
3263 	}
3264 }
3265 
3266 static void ffs_func_suspend(struct usb_function *f)
3267 {
3268 	ENTER();
3269 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3270 }
3271 
3272 static void ffs_func_resume(struct usb_function *f)
3273 {
3274 	ENTER();
3275 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3276 }
3277 
3278 
3279 /* Endpoint and interface numbers reverse mapping ***************************/
3280 
3281 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3282 {
3283 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3284 	return num ? num : -EDOM;
3285 }
3286 
3287 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3288 {
3289 	short *nums = func->interfaces_nums;
3290 	unsigned count = func->ffs->interfaces_count;
3291 
3292 	for (; count; --count, ++nums) {
3293 		if (*nums >= 0 && *nums == intf)
3294 			return nums - func->interfaces_nums;
3295 	}
3296 
3297 	return -EDOM;
3298 }
3299 
3300 
3301 /* Devices management *******************************************************/
3302 
3303 static LIST_HEAD(ffs_devices);
3304 
3305 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3306 {
3307 	struct ffs_dev *dev;
3308 
3309 	if (!name)
3310 		return NULL;
3311 
3312 	list_for_each_entry(dev, &ffs_devices, entry) {
3313 		if (strcmp(dev->name, name) == 0)
3314 			return dev;
3315 	}
3316 
3317 	return NULL;
3318 }
3319 
3320 /*
3321  * ffs_lock must be taken by the caller of this function
3322  */
3323 static struct ffs_dev *_ffs_get_single_dev(void)
3324 {
3325 	struct ffs_dev *dev;
3326 
3327 	if (list_is_singular(&ffs_devices)) {
3328 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3329 		if (dev->single)
3330 			return dev;
3331 	}
3332 
3333 	return NULL;
3334 }
3335 
3336 /*
3337  * ffs_lock must be taken by the caller of this function
3338  */
3339 static struct ffs_dev *_ffs_find_dev(const char *name)
3340 {
3341 	struct ffs_dev *dev;
3342 
3343 	dev = _ffs_get_single_dev();
3344 	if (dev)
3345 		return dev;
3346 
3347 	return _ffs_do_find_dev(name);
3348 }
3349 
3350 /* Configfs support *********************************************************/
3351 
3352 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3353 {
3354 	return container_of(to_config_group(item), struct f_fs_opts,
3355 			    func_inst.group);
3356 }
3357 
3358 static void ffs_attr_release(struct config_item *item)
3359 {
3360 	struct f_fs_opts *opts = to_ffs_opts(item);
3361 
3362 	usb_put_function_instance(&opts->func_inst);
3363 }
3364 
3365 static struct configfs_item_operations ffs_item_ops = {
3366 	.release	= ffs_attr_release,
3367 };
3368 
3369 static const struct config_item_type ffs_func_type = {
3370 	.ct_item_ops	= &ffs_item_ops,
3371 	.ct_owner	= THIS_MODULE,
3372 };
3373 
3374 
3375 /* Function registration interface ******************************************/
3376 
3377 static void ffs_free_inst(struct usb_function_instance *f)
3378 {
3379 	struct f_fs_opts *opts;
3380 
3381 	opts = to_f_fs_opts(f);
3382 	ffs_dev_lock();
3383 	_ffs_free_dev(opts->dev);
3384 	ffs_dev_unlock();
3385 	kfree(opts);
3386 }
3387 
3388 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3389 {
3390 	if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name))
3391 		return -ENAMETOOLONG;
3392 	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3393 }
3394 
3395 static struct usb_function_instance *ffs_alloc_inst(void)
3396 {
3397 	struct f_fs_opts *opts;
3398 	struct ffs_dev *dev;
3399 
3400 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3401 	if (!opts)
3402 		return ERR_PTR(-ENOMEM);
3403 
3404 	opts->func_inst.set_inst_name = ffs_set_inst_name;
3405 	opts->func_inst.free_func_inst = ffs_free_inst;
3406 	ffs_dev_lock();
3407 	dev = _ffs_alloc_dev();
3408 	ffs_dev_unlock();
3409 	if (IS_ERR(dev)) {
3410 		kfree(opts);
3411 		return ERR_CAST(dev);
3412 	}
3413 	opts->dev = dev;
3414 	dev->opts = opts;
3415 
3416 	config_group_init_type_name(&opts->func_inst.group, "",
3417 				    &ffs_func_type);
3418 	return &opts->func_inst;
3419 }
3420 
3421 static void ffs_free(struct usb_function *f)
3422 {
3423 	kfree(ffs_func_from_usb(f));
3424 }
3425 
3426 static void ffs_func_unbind(struct usb_configuration *c,
3427 			    struct usb_function *f)
3428 {
3429 	struct ffs_function *func = ffs_func_from_usb(f);
3430 	struct ffs_data *ffs = func->ffs;
3431 	struct f_fs_opts *opts =
3432 		container_of(f->fi, struct f_fs_opts, func_inst);
3433 	struct ffs_ep *ep = func->eps;
3434 	unsigned count = ffs->eps_count;
3435 	unsigned long flags;
3436 
3437 	ENTER();
3438 	if (ffs->func == func) {
3439 		ffs_func_eps_disable(func);
3440 		ffs->func = NULL;
3441 	}
3442 
3443 	if (!--opts->refcnt)
3444 		functionfs_unbind(ffs);
3445 
3446 	/* cleanup after autoconfig */
3447 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3448 	while (count--) {
3449 		if (ep->ep && ep->req)
3450 			usb_ep_free_request(ep->ep, ep->req);
3451 		ep->req = NULL;
3452 		++ep;
3453 	}
3454 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3455 	kfree(func->eps);
3456 	func->eps = NULL;
3457 	/*
3458 	 * eps, descriptors and interfaces_nums are allocated in the
3459 	 * same chunk so only one free is required.
3460 	 */
3461 	func->function.fs_descriptors = NULL;
3462 	func->function.hs_descriptors = NULL;
3463 	func->function.ss_descriptors = NULL;
3464 	func->interfaces_nums = NULL;
3465 
3466 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3467 }
3468 
3469 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3470 {
3471 	struct ffs_function *func;
3472 
3473 	ENTER();
3474 
3475 	func = kzalloc(sizeof(*func), GFP_KERNEL);
3476 	if (unlikely(!func))
3477 		return ERR_PTR(-ENOMEM);
3478 
3479 	func->function.name    = "Function FS Gadget";
3480 
3481 	func->function.bind    = ffs_func_bind;
3482 	func->function.unbind  = ffs_func_unbind;
3483 	func->function.set_alt = ffs_func_set_alt;
3484 	func->function.disable = ffs_func_disable;
3485 	func->function.setup   = ffs_func_setup;
3486 	func->function.req_match = ffs_func_req_match;
3487 	func->function.suspend = ffs_func_suspend;
3488 	func->function.resume  = ffs_func_resume;
3489 	func->function.free_func = ffs_free;
3490 
3491 	return &func->function;
3492 }
3493 
3494 /*
3495  * ffs_lock must be taken by the caller of this function
3496  */
3497 static struct ffs_dev *_ffs_alloc_dev(void)
3498 {
3499 	struct ffs_dev *dev;
3500 	int ret;
3501 
3502 	if (_ffs_get_single_dev())
3503 			return ERR_PTR(-EBUSY);
3504 
3505 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3506 	if (!dev)
3507 		return ERR_PTR(-ENOMEM);
3508 
3509 	if (list_empty(&ffs_devices)) {
3510 		ret = functionfs_init();
3511 		if (ret) {
3512 			kfree(dev);
3513 			return ERR_PTR(ret);
3514 		}
3515 	}
3516 
3517 	list_add(&dev->entry, &ffs_devices);
3518 
3519 	return dev;
3520 }
3521 
3522 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3523 {
3524 	struct ffs_dev *existing;
3525 	int ret = 0;
3526 
3527 	ffs_dev_lock();
3528 
3529 	existing = _ffs_do_find_dev(name);
3530 	if (!existing)
3531 		strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3532 	else if (existing != dev)
3533 		ret = -EBUSY;
3534 
3535 	ffs_dev_unlock();
3536 
3537 	return ret;
3538 }
3539 EXPORT_SYMBOL_GPL(ffs_name_dev);
3540 
3541 int ffs_single_dev(struct ffs_dev *dev)
3542 {
3543 	int ret;
3544 
3545 	ret = 0;
3546 	ffs_dev_lock();
3547 
3548 	if (!list_is_singular(&ffs_devices))
3549 		ret = -EBUSY;
3550 	else
3551 		dev->single = true;
3552 
3553 	ffs_dev_unlock();
3554 	return ret;
3555 }
3556 EXPORT_SYMBOL_GPL(ffs_single_dev);
3557 
3558 /*
3559  * ffs_lock must be taken by the caller of this function
3560  */
3561 static void _ffs_free_dev(struct ffs_dev *dev)
3562 {
3563 	list_del(&dev->entry);
3564 
3565 	/* Clear the private_data pointer to stop incorrect dev access */
3566 	if (dev->ffs_data)
3567 		dev->ffs_data->private_data = NULL;
3568 
3569 	kfree(dev);
3570 	if (list_empty(&ffs_devices))
3571 		functionfs_cleanup();
3572 }
3573 
3574 static void *ffs_acquire_dev(const char *dev_name)
3575 {
3576 	struct ffs_dev *ffs_dev;
3577 
3578 	ENTER();
3579 	ffs_dev_lock();
3580 
3581 	ffs_dev = _ffs_find_dev(dev_name);
3582 	if (!ffs_dev)
3583 		ffs_dev = ERR_PTR(-ENOENT);
3584 	else if (ffs_dev->mounted)
3585 		ffs_dev = ERR_PTR(-EBUSY);
3586 	else if (ffs_dev->ffs_acquire_dev_callback &&
3587 	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3588 		ffs_dev = ERR_PTR(-ENOENT);
3589 	else
3590 		ffs_dev->mounted = true;
3591 
3592 	ffs_dev_unlock();
3593 	return ffs_dev;
3594 }
3595 
3596 static void ffs_release_dev(struct ffs_data *ffs_data)
3597 {
3598 	struct ffs_dev *ffs_dev;
3599 
3600 	ENTER();
3601 	ffs_dev_lock();
3602 
3603 	ffs_dev = ffs_data->private_data;
3604 	if (ffs_dev) {
3605 		ffs_dev->mounted = false;
3606 
3607 		if (ffs_dev->ffs_release_dev_callback)
3608 			ffs_dev->ffs_release_dev_callback(ffs_dev);
3609 	}
3610 
3611 	ffs_dev_unlock();
3612 }
3613 
3614 static int ffs_ready(struct ffs_data *ffs)
3615 {
3616 	struct ffs_dev *ffs_obj;
3617 	int ret = 0;
3618 
3619 	ENTER();
3620 	ffs_dev_lock();
3621 
3622 	ffs_obj = ffs->private_data;
3623 	if (!ffs_obj) {
3624 		ret = -EINVAL;
3625 		goto done;
3626 	}
3627 	if (WARN_ON(ffs_obj->desc_ready)) {
3628 		ret = -EBUSY;
3629 		goto done;
3630 	}
3631 
3632 	ffs_obj->desc_ready = true;
3633 	ffs_obj->ffs_data = ffs;
3634 
3635 	if (ffs_obj->ffs_ready_callback) {
3636 		ret = ffs_obj->ffs_ready_callback(ffs);
3637 		if (ret)
3638 			goto done;
3639 	}
3640 
3641 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3642 done:
3643 	ffs_dev_unlock();
3644 	return ret;
3645 }
3646 
3647 static void ffs_closed(struct ffs_data *ffs)
3648 {
3649 	struct ffs_dev *ffs_obj;
3650 	struct f_fs_opts *opts;
3651 	struct config_item *ci;
3652 
3653 	ENTER();
3654 	ffs_dev_lock();
3655 
3656 	ffs_obj = ffs->private_data;
3657 	if (!ffs_obj)
3658 		goto done;
3659 
3660 	ffs_obj->desc_ready = false;
3661 	ffs_obj->ffs_data = NULL;
3662 
3663 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3664 	    ffs_obj->ffs_closed_callback)
3665 		ffs_obj->ffs_closed_callback(ffs);
3666 
3667 	if (ffs_obj->opts)
3668 		opts = ffs_obj->opts;
3669 	else
3670 		goto done;
3671 
3672 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3673 	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3674 		goto done;
3675 
3676 	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3677 	ffs_dev_unlock();
3678 
3679 	if (test_bit(FFS_FL_BOUND, &ffs->flags))
3680 		unregister_gadget_item(ci);
3681 	return;
3682 done:
3683 	ffs_dev_unlock();
3684 }
3685 
3686 /* Misc helper functions ****************************************************/
3687 
3688 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3689 {
3690 	return nonblock
3691 		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3692 		: mutex_lock_interruptible(mutex);
3693 }
3694 
3695 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3696 {
3697 	char *data;
3698 
3699 	if (unlikely(!len))
3700 		return NULL;
3701 
3702 	data = kmalloc(len, GFP_KERNEL);
3703 	if (unlikely(!data))
3704 		return ERR_PTR(-ENOMEM);
3705 
3706 	if (unlikely(copy_from_user(data, buf, len))) {
3707 		kfree(data);
3708 		return ERR_PTR(-EFAULT);
3709 	}
3710 
3711 	pr_vdebug("Buffer from user space:\n");
3712 	ffs_dump_mem("", data, len);
3713 
3714 	return data;
3715 }
3716 
3717 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3718 MODULE_LICENSE("GPL");
3719 MODULE_AUTHOR("Michal Nazarewicz");
3720