1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * f_fs.c -- user mode file system API for USB composite function controllers 4 * 5 * Copyright (C) 2010 Samsung Electronics 6 * Author: Michal Nazarewicz <mina86@mina86.com> 7 * 8 * Based on inode.c (GadgetFS) which was: 9 * Copyright (C) 2003-2004 David Brownell 10 * Copyright (C) 2003 Agilent Technologies 11 */ 12 13 14 /* #define DEBUG */ 15 /* #define VERBOSE_DEBUG */ 16 17 #include <linux/blkdev.h> 18 #include <linux/pagemap.h> 19 #include <linux/export.h> 20 #include <linux/fs_parser.h> 21 #include <linux/hid.h> 22 #include <linux/mm.h> 23 #include <linux/module.h> 24 #include <linux/scatterlist.h> 25 #include <linux/sched/signal.h> 26 #include <linux/uio.h> 27 #include <linux/vmalloc.h> 28 #include <asm/unaligned.h> 29 30 #include <linux/usb/ccid.h> 31 #include <linux/usb/composite.h> 32 #include <linux/usb/functionfs.h> 33 34 #include <linux/aio.h> 35 #include <linux/kthread.h> 36 #include <linux/poll.h> 37 #include <linux/eventfd.h> 38 39 #include "u_fs.h" 40 #include "u_f.h" 41 #include "u_os_desc.h" 42 #include "configfs.h" 43 44 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ 45 46 /* Reference counter handling */ 47 static void ffs_data_get(struct ffs_data *ffs); 48 static void ffs_data_put(struct ffs_data *ffs); 49 /* Creates new ffs_data object. */ 50 static struct ffs_data *__must_check ffs_data_new(const char *dev_name) 51 __attribute__((malloc)); 52 53 /* Opened counter handling. */ 54 static void ffs_data_opened(struct ffs_data *ffs); 55 static void ffs_data_closed(struct ffs_data *ffs); 56 57 /* Called with ffs->mutex held; take over ownership of data. */ 58 static int __must_check 59 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); 60 static int __must_check 61 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); 62 63 64 /* The function structure ***************************************************/ 65 66 struct ffs_ep; 67 68 struct ffs_function { 69 struct usb_configuration *conf; 70 struct usb_gadget *gadget; 71 struct ffs_data *ffs; 72 73 struct ffs_ep *eps; 74 u8 eps_revmap[16]; 75 short *interfaces_nums; 76 77 struct usb_function function; 78 }; 79 80 81 static struct ffs_function *ffs_func_from_usb(struct usb_function *f) 82 { 83 return container_of(f, struct ffs_function, function); 84 } 85 86 87 static inline enum ffs_setup_state 88 ffs_setup_state_clear_cancelled(struct ffs_data *ffs) 89 { 90 return (enum ffs_setup_state) 91 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); 92 } 93 94 95 static void ffs_func_eps_disable(struct ffs_function *func); 96 static int __must_check ffs_func_eps_enable(struct ffs_function *func); 97 98 static int ffs_func_bind(struct usb_configuration *, 99 struct usb_function *); 100 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); 101 static void ffs_func_disable(struct usb_function *); 102 static int ffs_func_setup(struct usb_function *, 103 const struct usb_ctrlrequest *); 104 static bool ffs_func_req_match(struct usb_function *, 105 const struct usb_ctrlrequest *, 106 bool config0); 107 static void ffs_func_suspend(struct usb_function *); 108 static void ffs_func_resume(struct usb_function *); 109 110 111 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); 112 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); 113 114 115 /* The endpoints structures *************************************************/ 116 117 struct ffs_ep { 118 struct usb_ep *ep; /* P: ffs->eps_lock */ 119 struct usb_request *req; /* P: epfile->mutex */ 120 121 /* [0]: full speed, [1]: high speed, [2]: super speed */ 122 struct usb_endpoint_descriptor *descs[3]; 123 124 u8 num; 125 }; 126 127 struct ffs_epfile { 128 /* Protects ep->ep and ep->req. */ 129 struct mutex mutex; 130 131 struct ffs_data *ffs; 132 struct ffs_ep *ep; /* P: ffs->eps_lock */ 133 134 struct dentry *dentry; 135 136 /* 137 * Buffer for holding data from partial reads which may happen since 138 * we’re rounding user read requests to a multiple of a max packet size. 139 * 140 * The pointer is initialised with NULL value and may be set by 141 * __ffs_epfile_read_data function to point to a temporary buffer. 142 * 143 * In normal operation, calls to __ffs_epfile_read_buffered will consume 144 * data from said buffer and eventually free it. Importantly, while the 145 * function is using the buffer, it sets the pointer to NULL. This is 146 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered 147 * can never run concurrently (they are synchronised by epfile->mutex) 148 * so the latter will not assign a new value to the pointer. 149 * 150 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is 151 * valid) and sets the pointer to READ_BUFFER_DROP value. This special 152 * value is crux of the synchronisation between ffs_func_eps_disable and 153 * __ffs_epfile_read_data. 154 * 155 * Once __ffs_epfile_read_data is about to finish it will try to set the 156 * pointer back to its old value (as described above), but seeing as the 157 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free 158 * the buffer. 159 * 160 * == State transitions == 161 * 162 * • ptr == NULL: (initial state) 163 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP 164 * ◦ __ffs_epfile_read_buffered: nop 165 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf 166 * ◦ reading finishes: n/a, not in ‘and reading’ state 167 * • ptr == DROP: 168 * ◦ __ffs_epfile_read_buffer_free: nop 169 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL 170 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop 171 * ◦ reading finishes: n/a, not in ‘and reading’ state 172 * • ptr == buf: 173 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP 174 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading 175 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered 176 * is always called first 177 * ◦ reading finishes: n/a, not in ‘and reading’ state 178 * • ptr == NULL and reading: 179 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading 180 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 181 * ◦ __ffs_epfile_read_data: n/a, mutex is held 182 * ◦ reading finishes and … 183 * … all data read: free buf, go to ptr == NULL 184 * … otherwise: go to ptr == buf and reading 185 * • ptr == DROP and reading: 186 * ◦ __ffs_epfile_read_buffer_free: nop 187 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 188 * ◦ __ffs_epfile_read_data: n/a, mutex is held 189 * ◦ reading finishes: free buf, go to ptr == DROP 190 */ 191 struct ffs_buffer *read_buffer; 192 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN)) 193 194 char name[5]; 195 196 unsigned char in; /* P: ffs->eps_lock */ 197 unsigned char isoc; /* P: ffs->eps_lock */ 198 199 unsigned char _pad; 200 }; 201 202 struct ffs_buffer { 203 size_t length; 204 char *data; 205 char storage[]; 206 }; 207 208 /* ffs_io_data structure ***************************************************/ 209 210 struct ffs_io_data { 211 bool aio; 212 bool read; 213 214 struct kiocb *kiocb; 215 struct iov_iter data; 216 const void *to_free; 217 char *buf; 218 219 struct mm_struct *mm; 220 struct work_struct work; 221 222 struct usb_ep *ep; 223 struct usb_request *req; 224 struct sg_table sgt; 225 bool use_sg; 226 227 struct ffs_data *ffs; 228 229 int status; 230 struct completion done; 231 }; 232 233 struct ffs_desc_helper { 234 struct ffs_data *ffs; 235 unsigned interfaces_count; 236 unsigned eps_count; 237 }; 238 239 static int __must_check ffs_epfiles_create(struct ffs_data *ffs); 240 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count); 241 242 static struct dentry * 243 ffs_sb_create_file(struct super_block *sb, const char *name, void *data, 244 const struct file_operations *fops); 245 246 /* Devices management *******************************************************/ 247 248 DEFINE_MUTEX(ffs_lock); 249 EXPORT_SYMBOL_GPL(ffs_lock); 250 251 static struct ffs_dev *_ffs_find_dev(const char *name); 252 static struct ffs_dev *_ffs_alloc_dev(void); 253 static void _ffs_free_dev(struct ffs_dev *dev); 254 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data); 255 static void ffs_release_dev(struct ffs_dev *ffs_dev); 256 static int ffs_ready(struct ffs_data *ffs); 257 static void ffs_closed(struct ffs_data *ffs); 258 259 /* Misc helper functions ****************************************************/ 260 261 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 262 __attribute__((warn_unused_result, nonnull)); 263 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 264 __attribute__((warn_unused_result, nonnull)); 265 266 267 /* Control file aka ep0 *****************************************************/ 268 269 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) 270 { 271 struct ffs_data *ffs = req->context; 272 273 complete(&ffs->ep0req_completion); 274 } 275 276 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) 277 __releases(&ffs->ev.waitq.lock) 278 { 279 struct usb_request *req = ffs->ep0req; 280 int ret; 281 282 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); 283 284 spin_unlock_irq(&ffs->ev.waitq.lock); 285 286 req->buf = data; 287 req->length = len; 288 289 /* 290 * UDC layer requires to provide a buffer even for ZLP, but should 291 * not use it at all. Let's provide some poisoned pointer to catch 292 * possible bug in the driver. 293 */ 294 if (req->buf == NULL) 295 req->buf = (void *)0xDEADBABE; 296 297 reinit_completion(&ffs->ep0req_completion); 298 299 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); 300 if (ret < 0) 301 return ret; 302 303 ret = wait_for_completion_interruptible(&ffs->ep0req_completion); 304 if (ret) { 305 usb_ep_dequeue(ffs->gadget->ep0, req); 306 return -EINTR; 307 } 308 309 ffs->setup_state = FFS_NO_SETUP; 310 return req->status ? req->status : req->actual; 311 } 312 313 static int __ffs_ep0_stall(struct ffs_data *ffs) 314 { 315 if (ffs->ev.can_stall) { 316 pr_vdebug("ep0 stall\n"); 317 usb_ep_set_halt(ffs->gadget->ep0); 318 ffs->setup_state = FFS_NO_SETUP; 319 return -EL2HLT; 320 } else { 321 pr_debug("bogus ep0 stall!\n"); 322 return -ESRCH; 323 } 324 } 325 326 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, 327 size_t len, loff_t *ptr) 328 { 329 struct ffs_data *ffs = file->private_data; 330 ssize_t ret; 331 char *data; 332 333 ENTER(); 334 335 /* Fast check if setup was canceled */ 336 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 337 return -EIDRM; 338 339 /* Acquire mutex */ 340 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 341 if (ret < 0) 342 return ret; 343 344 /* Check state */ 345 switch (ffs->state) { 346 case FFS_READ_DESCRIPTORS: 347 case FFS_READ_STRINGS: 348 /* Copy data */ 349 if (len < 16) { 350 ret = -EINVAL; 351 break; 352 } 353 354 data = ffs_prepare_buffer(buf, len); 355 if (IS_ERR(data)) { 356 ret = PTR_ERR(data); 357 break; 358 } 359 360 /* Handle data */ 361 if (ffs->state == FFS_READ_DESCRIPTORS) { 362 pr_info("read descriptors\n"); 363 ret = __ffs_data_got_descs(ffs, data, len); 364 if (ret < 0) 365 break; 366 367 ffs->state = FFS_READ_STRINGS; 368 ret = len; 369 } else { 370 pr_info("read strings\n"); 371 ret = __ffs_data_got_strings(ffs, data, len); 372 if (ret < 0) 373 break; 374 375 ret = ffs_epfiles_create(ffs); 376 if (ret) { 377 ffs->state = FFS_CLOSING; 378 break; 379 } 380 381 ffs->state = FFS_ACTIVE; 382 mutex_unlock(&ffs->mutex); 383 384 ret = ffs_ready(ffs); 385 if (ret < 0) { 386 ffs->state = FFS_CLOSING; 387 return ret; 388 } 389 390 return len; 391 } 392 break; 393 394 case FFS_ACTIVE: 395 data = NULL; 396 /* 397 * We're called from user space, we can use _irq 398 * rather then _irqsave 399 */ 400 spin_lock_irq(&ffs->ev.waitq.lock); 401 switch (ffs_setup_state_clear_cancelled(ffs)) { 402 case FFS_SETUP_CANCELLED: 403 ret = -EIDRM; 404 goto done_spin; 405 406 case FFS_NO_SETUP: 407 ret = -ESRCH; 408 goto done_spin; 409 410 case FFS_SETUP_PENDING: 411 break; 412 } 413 414 /* FFS_SETUP_PENDING */ 415 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { 416 spin_unlock_irq(&ffs->ev.waitq.lock); 417 ret = __ffs_ep0_stall(ffs); 418 break; 419 } 420 421 /* FFS_SETUP_PENDING and not stall */ 422 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 423 424 spin_unlock_irq(&ffs->ev.waitq.lock); 425 426 data = ffs_prepare_buffer(buf, len); 427 if (IS_ERR(data)) { 428 ret = PTR_ERR(data); 429 break; 430 } 431 432 spin_lock_irq(&ffs->ev.waitq.lock); 433 434 /* 435 * We are guaranteed to be still in FFS_ACTIVE state 436 * but the state of setup could have changed from 437 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need 438 * to check for that. If that happened we copied data 439 * from user space in vain but it's unlikely. 440 * 441 * For sure we are not in FFS_NO_SETUP since this is 442 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP 443 * transition can be performed and it's protected by 444 * mutex. 445 */ 446 if (ffs_setup_state_clear_cancelled(ffs) == 447 FFS_SETUP_CANCELLED) { 448 ret = -EIDRM; 449 done_spin: 450 spin_unlock_irq(&ffs->ev.waitq.lock); 451 } else { 452 /* unlocks spinlock */ 453 ret = __ffs_ep0_queue_wait(ffs, data, len); 454 } 455 kfree(data); 456 break; 457 458 default: 459 ret = -EBADFD; 460 break; 461 } 462 463 mutex_unlock(&ffs->mutex); 464 return ret; 465 } 466 467 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */ 468 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, 469 size_t n) 470 __releases(&ffs->ev.waitq.lock) 471 { 472 /* 473 * n cannot be bigger than ffs->ev.count, which cannot be bigger than 474 * size of ffs->ev.types array (which is four) so that's how much space 475 * we reserve. 476 */ 477 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)]; 478 const size_t size = n * sizeof *events; 479 unsigned i = 0; 480 481 memset(events, 0, size); 482 483 do { 484 events[i].type = ffs->ev.types[i]; 485 if (events[i].type == FUNCTIONFS_SETUP) { 486 events[i].u.setup = ffs->ev.setup; 487 ffs->setup_state = FFS_SETUP_PENDING; 488 } 489 } while (++i < n); 490 491 ffs->ev.count -= n; 492 if (ffs->ev.count) 493 memmove(ffs->ev.types, ffs->ev.types + n, 494 ffs->ev.count * sizeof *ffs->ev.types); 495 496 spin_unlock_irq(&ffs->ev.waitq.lock); 497 mutex_unlock(&ffs->mutex); 498 499 return copy_to_user(buf, events, size) ? -EFAULT : size; 500 } 501 502 static ssize_t ffs_ep0_read(struct file *file, char __user *buf, 503 size_t len, loff_t *ptr) 504 { 505 struct ffs_data *ffs = file->private_data; 506 char *data = NULL; 507 size_t n; 508 int ret; 509 510 ENTER(); 511 512 /* Fast check if setup was canceled */ 513 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 514 return -EIDRM; 515 516 /* Acquire mutex */ 517 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 518 if (ret < 0) 519 return ret; 520 521 /* Check state */ 522 if (ffs->state != FFS_ACTIVE) { 523 ret = -EBADFD; 524 goto done_mutex; 525 } 526 527 /* 528 * We're called from user space, we can use _irq rather then 529 * _irqsave 530 */ 531 spin_lock_irq(&ffs->ev.waitq.lock); 532 533 switch (ffs_setup_state_clear_cancelled(ffs)) { 534 case FFS_SETUP_CANCELLED: 535 ret = -EIDRM; 536 break; 537 538 case FFS_NO_SETUP: 539 n = len / sizeof(struct usb_functionfs_event); 540 if (!n) { 541 ret = -EINVAL; 542 break; 543 } 544 545 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { 546 ret = -EAGAIN; 547 break; 548 } 549 550 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, 551 ffs->ev.count)) { 552 ret = -EINTR; 553 break; 554 } 555 556 /* unlocks spinlock */ 557 return __ffs_ep0_read_events(ffs, buf, 558 min(n, (size_t)ffs->ev.count)); 559 560 case FFS_SETUP_PENDING: 561 if (ffs->ev.setup.bRequestType & USB_DIR_IN) { 562 spin_unlock_irq(&ffs->ev.waitq.lock); 563 ret = __ffs_ep0_stall(ffs); 564 goto done_mutex; 565 } 566 567 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 568 569 spin_unlock_irq(&ffs->ev.waitq.lock); 570 571 if (len) { 572 data = kmalloc(len, GFP_KERNEL); 573 if (!data) { 574 ret = -ENOMEM; 575 goto done_mutex; 576 } 577 } 578 579 spin_lock_irq(&ffs->ev.waitq.lock); 580 581 /* See ffs_ep0_write() */ 582 if (ffs_setup_state_clear_cancelled(ffs) == 583 FFS_SETUP_CANCELLED) { 584 ret = -EIDRM; 585 break; 586 } 587 588 /* unlocks spinlock */ 589 ret = __ffs_ep0_queue_wait(ffs, data, len); 590 if ((ret > 0) && (copy_to_user(buf, data, len))) 591 ret = -EFAULT; 592 goto done_mutex; 593 594 default: 595 ret = -EBADFD; 596 break; 597 } 598 599 spin_unlock_irq(&ffs->ev.waitq.lock); 600 done_mutex: 601 mutex_unlock(&ffs->mutex); 602 kfree(data); 603 return ret; 604 } 605 606 static int ffs_ep0_open(struct inode *inode, struct file *file) 607 { 608 struct ffs_data *ffs = inode->i_private; 609 610 ENTER(); 611 612 if (ffs->state == FFS_CLOSING) 613 return -EBUSY; 614 615 file->private_data = ffs; 616 ffs_data_opened(ffs); 617 618 return stream_open(inode, file); 619 } 620 621 static int ffs_ep0_release(struct inode *inode, struct file *file) 622 { 623 struct ffs_data *ffs = file->private_data; 624 625 ENTER(); 626 627 ffs_data_closed(ffs); 628 629 return 0; 630 } 631 632 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) 633 { 634 struct ffs_data *ffs = file->private_data; 635 struct usb_gadget *gadget = ffs->gadget; 636 long ret; 637 638 ENTER(); 639 640 if (code == FUNCTIONFS_INTERFACE_REVMAP) { 641 struct ffs_function *func = ffs->func; 642 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; 643 } else if (gadget && gadget->ops->ioctl) { 644 ret = gadget->ops->ioctl(gadget, code, value); 645 } else { 646 ret = -ENOTTY; 647 } 648 649 return ret; 650 } 651 652 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait) 653 { 654 struct ffs_data *ffs = file->private_data; 655 __poll_t mask = EPOLLWRNORM; 656 int ret; 657 658 poll_wait(file, &ffs->ev.waitq, wait); 659 660 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 661 if (ret < 0) 662 return mask; 663 664 switch (ffs->state) { 665 case FFS_READ_DESCRIPTORS: 666 case FFS_READ_STRINGS: 667 mask |= EPOLLOUT; 668 break; 669 670 case FFS_ACTIVE: 671 switch (ffs->setup_state) { 672 case FFS_NO_SETUP: 673 if (ffs->ev.count) 674 mask |= EPOLLIN; 675 break; 676 677 case FFS_SETUP_PENDING: 678 case FFS_SETUP_CANCELLED: 679 mask |= (EPOLLIN | EPOLLOUT); 680 break; 681 } 682 break; 683 684 case FFS_CLOSING: 685 break; 686 case FFS_DEACTIVATED: 687 break; 688 } 689 690 mutex_unlock(&ffs->mutex); 691 692 return mask; 693 } 694 695 static const struct file_operations ffs_ep0_operations = { 696 .llseek = no_llseek, 697 698 .open = ffs_ep0_open, 699 .write = ffs_ep0_write, 700 .read = ffs_ep0_read, 701 .release = ffs_ep0_release, 702 .unlocked_ioctl = ffs_ep0_ioctl, 703 .poll = ffs_ep0_poll, 704 }; 705 706 707 /* "Normal" endpoints operations ********************************************/ 708 709 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) 710 { 711 struct ffs_io_data *io_data = req->context; 712 713 ENTER(); 714 if (req->status) 715 io_data->status = req->status; 716 else 717 io_data->status = req->actual; 718 719 complete(&io_data->done); 720 } 721 722 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter) 723 { 724 ssize_t ret = copy_to_iter(data, data_len, iter); 725 if (ret == data_len) 726 return ret; 727 728 if (iov_iter_count(iter)) 729 return -EFAULT; 730 731 /* 732 * Dear user space developer! 733 * 734 * TL;DR: To stop getting below error message in your kernel log, change 735 * user space code using functionfs to align read buffers to a max 736 * packet size. 737 * 738 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max 739 * packet size. When unaligned buffer is passed to functionfs, it 740 * internally uses a larger, aligned buffer so that such UDCs are happy. 741 * 742 * Unfortunately, this means that host may send more data than was 743 * requested in read(2) system call. f_fs doesn’t know what to do with 744 * that excess data so it simply drops it. 745 * 746 * Was the buffer aligned in the first place, no such problem would 747 * happen. 748 * 749 * Data may be dropped only in AIO reads. Synchronous reads are handled 750 * by splitting a request into multiple parts. This splitting may still 751 * be a problem though so it’s likely best to align the buffer 752 * regardless of it being AIO or not.. 753 * 754 * This only affects OUT endpoints, i.e. reading data with a read(2), 755 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not 756 * affected. 757 */ 758 pr_err("functionfs read size %d > requested size %zd, dropping excess data. " 759 "Align read buffer size to max packet size to avoid the problem.\n", 760 data_len, ret); 761 762 return ret; 763 } 764 765 /* 766 * allocate a virtually contiguous buffer and create a scatterlist describing it 767 * @sg_table - pointer to a place to be filled with sg_table contents 768 * @size - required buffer size 769 */ 770 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz) 771 { 772 struct page **pages; 773 void *vaddr, *ptr; 774 unsigned int n_pages; 775 int i; 776 777 vaddr = vmalloc(sz); 778 if (!vaddr) 779 return NULL; 780 781 n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT; 782 pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL); 783 if (!pages) { 784 vfree(vaddr); 785 786 return NULL; 787 } 788 for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE) 789 pages[i] = vmalloc_to_page(ptr); 790 791 if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) { 792 kvfree(pages); 793 vfree(vaddr); 794 795 return NULL; 796 } 797 kvfree(pages); 798 799 return vaddr; 800 } 801 802 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data, 803 size_t data_len) 804 { 805 if (io_data->use_sg) 806 return ffs_build_sg_list(&io_data->sgt, data_len); 807 808 return kmalloc(data_len, GFP_KERNEL); 809 } 810 811 static inline void ffs_free_buffer(struct ffs_io_data *io_data) 812 { 813 if (!io_data->buf) 814 return; 815 816 if (io_data->use_sg) { 817 sg_free_table(&io_data->sgt); 818 vfree(io_data->buf); 819 } else { 820 kfree(io_data->buf); 821 } 822 } 823 824 static void ffs_user_copy_worker(struct work_struct *work) 825 { 826 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 827 work); 828 int ret = io_data->req->status ? io_data->req->status : 829 io_data->req->actual; 830 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD; 831 832 if (io_data->read && ret > 0) { 833 kthread_use_mm(io_data->mm); 834 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data); 835 kthread_unuse_mm(io_data->mm); 836 } 837 838 io_data->kiocb->ki_complete(io_data->kiocb, ret); 839 840 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd) 841 eventfd_signal(io_data->ffs->ffs_eventfd, 1); 842 843 usb_ep_free_request(io_data->ep, io_data->req); 844 845 if (io_data->read) 846 kfree(io_data->to_free); 847 ffs_free_buffer(io_data); 848 kfree(io_data); 849 } 850 851 static void ffs_epfile_async_io_complete(struct usb_ep *_ep, 852 struct usb_request *req) 853 { 854 struct ffs_io_data *io_data = req->context; 855 struct ffs_data *ffs = io_data->ffs; 856 857 ENTER(); 858 859 INIT_WORK(&io_data->work, ffs_user_copy_worker); 860 queue_work(ffs->io_completion_wq, &io_data->work); 861 } 862 863 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile) 864 { 865 /* 866 * See comment in struct ffs_epfile for full read_buffer pointer 867 * synchronisation story. 868 */ 869 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP); 870 if (buf && buf != READ_BUFFER_DROP) 871 kfree(buf); 872 } 873 874 /* Assumes epfile->mutex is held. */ 875 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile, 876 struct iov_iter *iter) 877 { 878 /* 879 * Null out epfile->read_buffer so ffs_func_eps_disable does not free 880 * the buffer while we are using it. See comment in struct ffs_epfile 881 * for full read_buffer pointer synchronisation story. 882 */ 883 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL); 884 ssize_t ret; 885 if (!buf || buf == READ_BUFFER_DROP) 886 return 0; 887 888 ret = copy_to_iter(buf->data, buf->length, iter); 889 if (buf->length == ret) { 890 kfree(buf); 891 return ret; 892 } 893 894 if (iov_iter_count(iter)) { 895 ret = -EFAULT; 896 } else { 897 buf->length -= ret; 898 buf->data += ret; 899 } 900 901 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 902 kfree(buf); 903 904 return ret; 905 } 906 907 /* Assumes epfile->mutex is held. */ 908 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile, 909 void *data, int data_len, 910 struct iov_iter *iter) 911 { 912 struct ffs_buffer *buf; 913 914 ssize_t ret = copy_to_iter(data, data_len, iter); 915 if (data_len == ret) 916 return ret; 917 918 if (iov_iter_count(iter)) 919 return -EFAULT; 920 921 /* See ffs_copy_to_iter for more context. */ 922 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.", 923 data_len, ret); 924 925 data_len -= ret; 926 buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL); 927 if (!buf) 928 return -ENOMEM; 929 buf->length = data_len; 930 buf->data = buf->storage; 931 memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len)); 932 933 /* 934 * At this point read_buffer is NULL or READ_BUFFER_DROP (if 935 * ffs_func_eps_disable has been called in the meanwhile). See comment 936 * in struct ffs_epfile for full read_buffer pointer synchronisation 937 * story. 938 */ 939 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 940 kfree(buf); 941 942 return ret; 943 } 944 945 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) 946 { 947 struct ffs_epfile *epfile = file->private_data; 948 struct usb_request *req; 949 struct ffs_ep *ep; 950 char *data = NULL; 951 ssize_t ret, data_len = -EINVAL; 952 int halt; 953 954 /* Are we still active? */ 955 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 956 return -ENODEV; 957 958 /* Wait for endpoint to be enabled */ 959 ep = epfile->ep; 960 if (!ep) { 961 if (file->f_flags & O_NONBLOCK) 962 return -EAGAIN; 963 964 ret = wait_event_interruptible( 965 epfile->ffs->wait, (ep = epfile->ep)); 966 if (ret) 967 return -EINTR; 968 } 969 970 /* Do we halt? */ 971 halt = (!io_data->read == !epfile->in); 972 if (halt && epfile->isoc) 973 return -EINVAL; 974 975 /* We will be using request and read_buffer */ 976 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); 977 if (ret) 978 goto error; 979 980 /* Allocate & copy */ 981 if (!halt) { 982 struct usb_gadget *gadget; 983 984 /* 985 * Do we have buffered data from previous partial read? Check 986 * that for synchronous case only because we do not have 987 * facility to ‘wake up’ a pending asynchronous read and push 988 * buffered data to it which we would need to make things behave 989 * consistently. 990 */ 991 if (!io_data->aio && io_data->read) { 992 ret = __ffs_epfile_read_buffered(epfile, &io_data->data); 993 if (ret) 994 goto error_mutex; 995 } 996 997 /* 998 * if we _do_ wait above, the epfile->ffs->gadget might be NULL 999 * before the waiting completes, so do not assign to 'gadget' 1000 * earlier 1001 */ 1002 gadget = epfile->ffs->gadget; 1003 1004 spin_lock_irq(&epfile->ffs->eps_lock); 1005 /* In the meantime, endpoint got disabled or changed. */ 1006 if (epfile->ep != ep) { 1007 ret = -ESHUTDOWN; 1008 goto error_lock; 1009 } 1010 data_len = iov_iter_count(&io_data->data); 1011 /* 1012 * Controller may require buffer size to be aligned to 1013 * maxpacketsize of an out endpoint. 1014 */ 1015 if (io_data->read) 1016 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len); 1017 1018 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE; 1019 spin_unlock_irq(&epfile->ffs->eps_lock); 1020 1021 data = ffs_alloc_buffer(io_data, data_len); 1022 if (!data) { 1023 ret = -ENOMEM; 1024 goto error_mutex; 1025 } 1026 if (!io_data->read && 1027 !copy_from_iter_full(data, data_len, &io_data->data)) { 1028 ret = -EFAULT; 1029 goto error_mutex; 1030 } 1031 } 1032 1033 spin_lock_irq(&epfile->ffs->eps_lock); 1034 1035 if (epfile->ep != ep) { 1036 /* In the meantime, endpoint got disabled or changed. */ 1037 ret = -ESHUTDOWN; 1038 } else if (halt) { 1039 ret = usb_ep_set_halt(ep->ep); 1040 if (!ret) 1041 ret = -EBADMSG; 1042 } else if (data_len == -EINVAL) { 1043 /* 1044 * Sanity Check: even though data_len can't be used 1045 * uninitialized at the time I write this comment, some 1046 * compilers complain about this situation. 1047 * In order to keep the code clean from warnings, data_len is 1048 * being initialized to -EINVAL during its declaration, which 1049 * means we can't rely on compiler anymore to warn no future 1050 * changes won't result in data_len being used uninitialized. 1051 * For such reason, we're adding this redundant sanity check 1052 * here. 1053 */ 1054 WARN(1, "%s: data_len == -EINVAL\n", __func__); 1055 ret = -EINVAL; 1056 } else if (!io_data->aio) { 1057 bool interrupted = false; 1058 1059 req = ep->req; 1060 if (io_data->use_sg) { 1061 req->buf = NULL; 1062 req->sg = io_data->sgt.sgl; 1063 req->num_sgs = io_data->sgt.nents; 1064 } else { 1065 req->buf = data; 1066 req->num_sgs = 0; 1067 } 1068 req->length = data_len; 1069 1070 io_data->buf = data; 1071 1072 init_completion(&io_data->done); 1073 req->context = io_data; 1074 req->complete = ffs_epfile_io_complete; 1075 1076 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1077 if (ret < 0) 1078 goto error_lock; 1079 1080 spin_unlock_irq(&epfile->ffs->eps_lock); 1081 1082 if (wait_for_completion_interruptible(&io_data->done)) { 1083 spin_lock_irq(&epfile->ffs->eps_lock); 1084 if (epfile->ep != ep) { 1085 ret = -ESHUTDOWN; 1086 goto error_lock; 1087 } 1088 /* 1089 * To avoid race condition with ffs_epfile_io_complete, 1090 * dequeue the request first then check 1091 * status. usb_ep_dequeue API should guarantee no race 1092 * condition with req->complete callback. 1093 */ 1094 usb_ep_dequeue(ep->ep, req); 1095 spin_unlock_irq(&epfile->ffs->eps_lock); 1096 wait_for_completion(&io_data->done); 1097 interrupted = io_data->status < 0; 1098 } 1099 1100 if (interrupted) 1101 ret = -EINTR; 1102 else if (io_data->read && io_data->status > 0) 1103 ret = __ffs_epfile_read_data(epfile, data, io_data->status, 1104 &io_data->data); 1105 else 1106 ret = io_data->status; 1107 goto error_mutex; 1108 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) { 1109 ret = -ENOMEM; 1110 } else { 1111 if (io_data->use_sg) { 1112 req->buf = NULL; 1113 req->sg = io_data->sgt.sgl; 1114 req->num_sgs = io_data->sgt.nents; 1115 } else { 1116 req->buf = data; 1117 req->num_sgs = 0; 1118 } 1119 req->length = data_len; 1120 1121 io_data->buf = data; 1122 io_data->ep = ep->ep; 1123 io_data->req = req; 1124 io_data->ffs = epfile->ffs; 1125 1126 req->context = io_data; 1127 req->complete = ffs_epfile_async_io_complete; 1128 1129 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1130 if (ret) { 1131 io_data->req = NULL; 1132 usb_ep_free_request(ep->ep, req); 1133 goto error_lock; 1134 } 1135 1136 ret = -EIOCBQUEUED; 1137 /* 1138 * Do not kfree the buffer in this function. It will be freed 1139 * by ffs_user_copy_worker. 1140 */ 1141 data = NULL; 1142 } 1143 1144 error_lock: 1145 spin_unlock_irq(&epfile->ffs->eps_lock); 1146 error_mutex: 1147 mutex_unlock(&epfile->mutex); 1148 error: 1149 if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */ 1150 ffs_free_buffer(io_data); 1151 return ret; 1152 } 1153 1154 static int 1155 ffs_epfile_open(struct inode *inode, struct file *file) 1156 { 1157 struct ffs_epfile *epfile = inode->i_private; 1158 1159 ENTER(); 1160 1161 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1162 return -ENODEV; 1163 1164 file->private_data = epfile; 1165 ffs_data_opened(epfile->ffs); 1166 1167 return stream_open(inode, file); 1168 } 1169 1170 static int ffs_aio_cancel(struct kiocb *kiocb) 1171 { 1172 struct ffs_io_data *io_data = kiocb->private; 1173 struct ffs_epfile *epfile = kiocb->ki_filp->private_data; 1174 unsigned long flags; 1175 int value; 1176 1177 ENTER(); 1178 1179 spin_lock_irqsave(&epfile->ffs->eps_lock, flags); 1180 1181 if (io_data && io_data->ep && io_data->req) 1182 value = usb_ep_dequeue(io_data->ep, io_data->req); 1183 else 1184 value = -EINVAL; 1185 1186 spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags); 1187 1188 return value; 1189 } 1190 1191 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from) 1192 { 1193 struct ffs_io_data io_data, *p = &io_data; 1194 ssize_t res; 1195 1196 ENTER(); 1197 1198 if (!is_sync_kiocb(kiocb)) { 1199 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1200 if (!p) 1201 return -ENOMEM; 1202 p->aio = true; 1203 } else { 1204 memset(p, 0, sizeof(*p)); 1205 p->aio = false; 1206 } 1207 1208 p->read = false; 1209 p->kiocb = kiocb; 1210 p->data = *from; 1211 p->mm = current->mm; 1212 1213 kiocb->private = p; 1214 1215 if (p->aio) 1216 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1217 1218 res = ffs_epfile_io(kiocb->ki_filp, p); 1219 if (res == -EIOCBQUEUED) 1220 return res; 1221 if (p->aio) 1222 kfree(p); 1223 else 1224 *from = p->data; 1225 return res; 1226 } 1227 1228 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to) 1229 { 1230 struct ffs_io_data io_data, *p = &io_data; 1231 ssize_t res; 1232 1233 ENTER(); 1234 1235 if (!is_sync_kiocb(kiocb)) { 1236 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1237 if (!p) 1238 return -ENOMEM; 1239 p->aio = true; 1240 } else { 1241 memset(p, 0, sizeof(*p)); 1242 p->aio = false; 1243 } 1244 1245 p->read = true; 1246 p->kiocb = kiocb; 1247 if (p->aio) { 1248 p->to_free = dup_iter(&p->data, to, GFP_KERNEL); 1249 if (!p->to_free) { 1250 kfree(p); 1251 return -ENOMEM; 1252 } 1253 } else { 1254 p->data = *to; 1255 p->to_free = NULL; 1256 } 1257 p->mm = current->mm; 1258 1259 kiocb->private = p; 1260 1261 if (p->aio) 1262 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1263 1264 res = ffs_epfile_io(kiocb->ki_filp, p); 1265 if (res == -EIOCBQUEUED) 1266 return res; 1267 1268 if (p->aio) { 1269 kfree(p->to_free); 1270 kfree(p); 1271 } else { 1272 *to = p->data; 1273 } 1274 return res; 1275 } 1276 1277 static int 1278 ffs_epfile_release(struct inode *inode, struct file *file) 1279 { 1280 struct ffs_epfile *epfile = inode->i_private; 1281 1282 ENTER(); 1283 1284 __ffs_epfile_read_buffer_free(epfile); 1285 ffs_data_closed(epfile->ffs); 1286 1287 return 0; 1288 } 1289 1290 static long ffs_epfile_ioctl(struct file *file, unsigned code, 1291 unsigned long value) 1292 { 1293 struct ffs_epfile *epfile = file->private_data; 1294 struct ffs_ep *ep; 1295 int ret; 1296 1297 ENTER(); 1298 1299 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1300 return -ENODEV; 1301 1302 /* Wait for endpoint to be enabled */ 1303 ep = epfile->ep; 1304 if (!ep) { 1305 if (file->f_flags & O_NONBLOCK) 1306 return -EAGAIN; 1307 1308 ret = wait_event_interruptible( 1309 epfile->ffs->wait, (ep = epfile->ep)); 1310 if (ret) 1311 return -EINTR; 1312 } 1313 1314 spin_lock_irq(&epfile->ffs->eps_lock); 1315 1316 /* In the meantime, endpoint got disabled or changed. */ 1317 if (epfile->ep != ep) { 1318 spin_unlock_irq(&epfile->ffs->eps_lock); 1319 return -ESHUTDOWN; 1320 } 1321 1322 switch (code) { 1323 case FUNCTIONFS_FIFO_STATUS: 1324 ret = usb_ep_fifo_status(epfile->ep->ep); 1325 break; 1326 case FUNCTIONFS_FIFO_FLUSH: 1327 usb_ep_fifo_flush(epfile->ep->ep); 1328 ret = 0; 1329 break; 1330 case FUNCTIONFS_CLEAR_HALT: 1331 ret = usb_ep_clear_halt(epfile->ep->ep); 1332 break; 1333 case FUNCTIONFS_ENDPOINT_REVMAP: 1334 ret = epfile->ep->num; 1335 break; 1336 case FUNCTIONFS_ENDPOINT_DESC: 1337 { 1338 int desc_idx; 1339 struct usb_endpoint_descriptor desc1, *desc; 1340 1341 switch (epfile->ffs->gadget->speed) { 1342 case USB_SPEED_SUPER: 1343 case USB_SPEED_SUPER_PLUS: 1344 desc_idx = 2; 1345 break; 1346 case USB_SPEED_HIGH: 1347 desc_idx = 1; 1348 break; 1349 default: 1350 desc_idx = 0; 1351 } 1352 1353 desc = epfile->ep->descs[desc_idx]; 1354 memcpy(&desc1, desc, desc->bLength); 1355 1356 spin_unlock_irq(&epfile->ffs->eps_lock); 1357 ret = copy_to_user((void __user *)value, &desc1, desc1.bLength); 1358 if (ret) 1359 ret = -EFAULT; 1360 return ret; 1361 } 1362 default: 1363 ret = -ENOTTY; 1364 } 1365 spin_unlock_irq(&epfile->ffs->eps_lock); 1366 1367 return ret; 1368 } 1369 1370 static const struct file_operations ffs_epfile_operations = { 1371 .llseek = no_llseek, 1372 1373 .open = ffs_epfile_open, 1374 .write_iter = ffs_epfile_write_iter, 1375 .read_iter = ffs_epfile_read_iter, 1376 .release = ffs_epfile_release, 1377 .unlocked_ioctl = ffs_epfile_ioctl, 1378 .compat_ioctl = compat_ptr_ioctl, 1379 }; 1380 1381 1382 /* File system and super block operations ***********************************/ 1383 1384 /* 1385 * Mounting the file system creates a controller file, used first for 1386 * function configuration then later for event monitoring. 1387 */ 1388 1389 static struct inode *__must_check 1390 ffs_sb_make_inode(struct super_block *sb, void *data, 1391 const struct file_operations *fops, 1392 const struct inode_operations *iops, 1393 struct ffs_file_perms *perms) 1394 { 1395 struct inode *inode; 1396 1397 ENTER(); 1398 1399 inode = new_inode(sb); 1400 1401 if (inode) { 1402 struct timespec64 ts = current_time(inode); 1403 1404 inode->i_ino = get_next_ino(); 1405 inode->i_mode = perms->mode; 1406 inode->i_uid = perms->uid; 1407 inode->i_gid = perms->gid; 1408 inode->i_atime = ts; 1409 inode->i_mtime = ts; 1410 inode->i_ctime = ts; 1411 inode->i_private = data; 1412 if (fops) 1413 inode->i_fop = fops; 1414 if (iops) 1415 inode->i_op = iops; 1416 } 1417 1418 return inode; 1419 } 1420 1421 /* Create "regular" file */ 1422 static struct dentry *ffs_sb_create_file(struct super_block *sb, 1423 const char *name, void *data, 1424 const struct file_operations *fops) 1425 { 1426 struct ffs_data *ffs = sb->s_fs_info; 1427 struct dentry *dentry; 1428 struct inode *inode; 1429 1430 ENTER(); 1431 1432 dentry = d_alloc_name(sb->s_root, name); 1433 if (!dentry) 1434 return NULL; 1435 1436 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); 1437 if (!inode) { 1438 dput(dentry); 1439 return NULL; 1440 } 1441 1442 d_add(dentry, inode); 1443 return dentry; 1444 } 1445 1446 /* Super block */ 1447 static const struct super_operations ffs_sb_operations = { 1448 .statfs = simple_statfs, 1449 .drop_inode = generic_delete_inode, 1450 }; 1451 1452 struct ffs_sb_fill_data { 1453 struct ffs_file_perms perms; 1454 umode_t root_mode; 1455 const char *dev_name; 1456 bool no_disconnect; 1457 struct ffs_data *ffs_data; 1458 }; 1459 1460 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc) 1461 { 1462 struct ffs_sb_fill_data *data = fc->fs_private; 1463 struct inode *inode; 1464 struct ffs_data *ffs = data->ffs_data; 1465 1466 ENTER(); 1467 1468 ffs->sb = sb; 1469 data->ffs_data = NULL; 1470 sb->s_fs_info = ffs; 1471 sb->s_blocksize = PAGE_SIZE; 1472 sb->s_blocksize_bits = PAGE_SHIFT; 1473 sb->s_magic = FUNCTIONFS_MAGIC; 1474 sb->s_op = &ffs_sb_operations; 1475 sb->s_time_gran = 1; 1476 1477 /* Root inode */ 1478 data->perms.mode = data->root_mode; 1479 inode = ffs_sb_make_inode(sb, NULL, 1480 &simple_dir_operations, 1481 &simple_dir_inode_operations, 1482 &data->perms); 1483 sb->s_root = d_make_root(inode); 1484 if (!sb->s_root) 1485 return -ENOMEM; 1486 1487 /* EP0 file */ 1488 if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations)) 1489 return -ENOMEM; 1490 1491 return 0; 1492 } 1493 1494 enum { 1495 Opt_no_disconnect, 1496 Opt_rmode, 1497 Opt_fmode, 1498 Opt_mode, 1499 Opt_uid, 1500 Opt_gid, 1501 }; 1502 1503 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = { 1504 fsparam_bool ("no_disconnect", Opt_no_disconnect), 1505 fsparam_u32 ("rmode", Opt_rmode), 1506 fsparam_u32 ("fmode", Opt_fmode), 1507 fsparam_u32 ("mode", Opt_mode), 1508 fsparam_u32 ("uid", Opt_uid), 1509 fsparam_u32 ("gid", Opt_gid), 1510 {} 1511 }; 1512 1513 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1514 { 1515 struct ffs_sb_fill_data *data = fc->fs_private; 1516 struct fs_parse_result result; 1517 int opt; 1518 1519 ENTER(); 1520 1521 opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result); 1522 if (opt < 0) 1523 return opt; 1524 1525 switch (opt) { 1526 case Opt_no_disconnect: 1527 data->no_disconnect = result.boolean; 1528 break; 1529 case Opt_rmode: 1530 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1531 break; 1532 case Opt_fmode: 1533 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 1534 break; 1535 case Opt_mode: 1536 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1537 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 1538 break; 1539 1540 case Opt_uid: 1541 data->perms.uid = make_kuid(current_user_ns(), result.uint_32); 1542 if (!uid_valid(data->perms.uid)) 1543 goto unmapped_value; 1544 break; 1545 case Opt_gid: 1546 data->perms.gid = make_kgid(current_user_ns(), result.uint_32); 1547 if (!gid_valid(data->perms.gid)) 1548 goto unmapped_value; 1549 break; 1550 1551 default: 1552 return -ENOPARAM; 1553 } 1554 1555 return 0; 1556 1557 unmapped_value: 1558 return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32); 1559 } 1560 1561 /* 1562 * Set up the superblock for a mount. 1563 */ 1564 static int ffs_fs_get_tree(struct fs_context *fc) 1565 { 1566 struct ffs_sb_fill_data *ctx = fc->fs_private; 1567 struct ffs_data *ffs; 1568 int ret; 1569 1570 ENTER(); 1571 1572 if (!fc->source) 1573 return invalf(fc, "No source specified"); 1574 1575 ffs = ffs_data_new(fc->source); 1576 if (!ffs) 1577 return -ENOMEM; 1578 ffs->file_perms = ctx->perms; 1579 ffs->no_disconnect = ctx->no_disconnect; 1580 1581 ffs->dev_name = kstrdup(fc->source, GFP_KERNEL); 1582 if (!ffs->dev_name) { 1583 ffs_data_put(ffs); 1584 return -ENOMEM; 1585 } 1586 1587 ret = ffs_acquire_dev(ffs->dev_name, ffs); 1588 if (ret) { 1589 ffs_data_put(ffs); 1590 return ret; 1591 } 1592 1593 ctx->ffs_data = ffs; 1594 return get_tree_nodev(fc, ffs_sb_fill); 1595 } 1596 1597 static void ffs_fs_free_fc(struct fs_context *fc) 1598 { 1599 struct ffs_sb_fill_data *ctx = fc->fs_private; 1600 1601 if (ctx) { 1602 if (ctx->ffs_data) { 1603 ffs_data_put(ctx->ffs_data); 1604 } 1605 1606 kfree(ctx); 1607 } 1608 } 1609 1610 static const struct fs_context_operations ffs_fs_context_ops = { 1611 .free = ffs_fs_free_fc, 1612 .parse_param = ffs_fs_parse_param, 1613 .get_tree = ffs_fs_get_tree, 1614 }; 1615 1616 static int ffs_fs_init_fs_context(struct fs_context *fc) 1617 { 1618 struct ffs_sb_fill_data *ctx; 1619 1620 ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL); 1621 if (!ctx) 1622 return -ENOMEM; 1623 1624 ctx->perms.mode = S_IFREG | 0600; 1625 ctx->perms.uid = GLOBAL_ROOT_UID; 1626 ctx->perms.gid = GLOBAL_ROOT_GID; 1627 ctx->root_mode = S_IFDIR | 0500; 1628 ctx->no_disconnect = false; 1629 1630 fc->fs_private = ctx; 1631 fc->ops = &ffs_fs_context_ops; 1632 return 0; 1633 } 1634 1635 static void 1636 ffs_fs_kill_sb(struct super_block *sb) 1637 { 1638 ENTER(); 1639 1640 kill_litter_super(sb); 1641 if (sb->s_fs_info) 1642 ffs_data_closed(sb->s_fs_info); 1643 } 1644 1645 static struct file_system_type ffs_fs_type = { 1646 .owner = THIS_MODULE, 1647 .name = "functionfs", 1648 .init_fs_context = ffs_fs_init_fs_context, 1649 .parameters = ffs_fs_fs_parameters, 1650 .kill_sb = ffs_fs_kill_sb, 1651 }; 1652 MODULE_ALIAS_FS("functionfs"); 1653 1654 1655 /* Driver's main init/cleanup functions *************************************/ 1656 1657 static int functionfs_init(void) 1658 { 1659 int ret; 1660 1661 ENTER(); 1662 1663 ret = register_filesystem(&ffs_fs_type); 1664 if (!ret) 1665 pr_info("file system registered\n"); 1666 else 1667 pr_err("failed registering file system (%d)\n", ret); 1668 1669 return ret; 1670 } 1671 1672 static void functionfs_cleanup(void) 1673 { 1674 ENTER(); 1675 1676 pr_info("unloading\n"); 1677 unregister_filesystem(&ffs_fs_type); 1678 } 1679 1680 1681 /* ffs_data and ffs_function construction and destruction code **************/ 1682 1683 static void ffs_data_clear(struct ffs_data *ffs); 1684 static void ffs_data_reset(struct ffs_data *ffs); 1685 1686 static void ffs_data_get(struct ffs_data *ffs) 1687 { 1688 ENTER(); 1689 1690 refcount_inc(&ffs->ref); 1691 } 1692 1693 static void ffs_data_opened(struct ffs_data *ffs) 1694 { 1695 ENTER(); 1696 1697 refcount_inc(&ffs->ref); 1698 if (atomic_add_return(1, &ffs->opened) == 1 && 1699 ffs->state == FFS_DEACTIVATED) { 1700 ffs->state = FFS_CLOSING; 1701 ffs_data_reset(ffs); 1702 } 1703 } 1704 1705 static void ffs_data_put(struct ffs_data *ffs) 1706 { 1707 ENTER(); 1708 1709 if (refcount_dec_and_test(&ffs->ref)) { 1710 pr_info("%s(): freeing\n", __func__); 1711 ffs_data_clear(ffs); 1712 ffs_release_dev(ffs->private_data); 1713 BUG_ON(waitqueue_active(&ffs->ev.waitq) || 1714 swait_active(&ffs->ep0req_completion.wait) || 1715 waitqueue_active(&ffs->wait)); 1716 destroy_workqueue(ffs->io_completion_wq); 1717 kfree(ffs->dev_name); 1718 kfree(ffs); 1719 } 1720 } 1721 1722 static void ffs_data_closed(struct ffs_data *ffs) 1723 { 1724 struct ffs_epfile *epfiles; 1725 unsigned long flags; 1726 1727 ENTER(); 1728 1729 if (atomic_dec_and_test(&ffs->opened)) { 1730 if (ffs->no_disconnect) { 1731 ffs->state = FFS_DEACTIVATED; 1732 spin_lock_irqsave(&ffs->eps_lock, flags); 1733 epfiles = ffs->epfiles; 1734 ffs->epfiles = NULL; 1735 spin_unlock_irqrestore(&ffs->eps_lock, 1736 flags); 1737 1738 if (epfiles) 1739 ffs_epfiles_destroy(epfiles, 1740 ffs->eps_count); 1741 1742 if (ffs->setup_state == FFS_SETUP_PENDING) 1743 __ffs_ep0_stall(ffs); 1744 } else { 1745 ffs->state = FFS_CLOSING; 1746 ffs_data_reset(ffs); 1747 } 1748 } 1749 if (atomic_read(&ffs->opened) < 0) { 1750 ffs->state = FFS_CLOSING; 1751 ffs_data_reset(ffs); 1752 } 1753 1754 ffs_data_put(ffs); 1755 } 1756 1757 static struct ffs_data *ffs_data_new(const char *dev_name) 1758 { 1759 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); 1760 if (!ffs) 1761 return NULL; 1762 1763 ENTER(); 1764 1765 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name); 1766 if (!ffs->io_completion_wq) { 1767 kfree(ffs); 1768 return NULL; 1769 } 1770 1771 refcount_set(&ffs->ref, 1); 1772 atomic_set(&ffs->opened, 0); 1773 ffs->state = FFS_READ_DESCRIPTORS; 1774 mutex_init(&ffs->mutex); 1775 spin_lock_init(&ffs->eps_lock); 1776 init_waitqueue_head(&ffs->ev.waitq); 1777 init_waitqueue_head(&ffs->wait); 1778 init_completion(&ffs->ep0req_completion); 1779 1780 /* XXX REVISIT need to update it in some places, or do we? */ 1781 ffs->ev.can_stall = 1; 1782 1783 return ffs; 1784 } 1785 1786 static void ffs_data_clear(struct ffs_data *ffs) 1787 { 1788 struct ffs_epfile *epfiles; 1789 unsigned long flags; 1790 1791 ENTER(); 1792 1793 ffs_closed(ffs); 1794 1795 BUG_ON(ffs->gadget); 1796 1797 spin_lock_irqsave(&ffs->eps_lock, flags); 1798 epfiles = ffs->epfiles; 1799 ffs->epfiles = NULL; 1800 spin_unlock_irqrestore(&ffs->eps_lock, flags); 1801 1802 /* 1803 * potential race possible between ffs_func_eps_disable 1804 * & ffs_epfile_release therefore maintaining a local 1805 * copy of epfile will save us from use-after-free. 1806 */ 1807 if (epfiles) { 1808 ffs_epfiles_destroy(epfiles, ffs->eps_count); 1809 ffs->epfiles = NULL; 1810 } 1811 1812 if (ffs->ffs_eventfd) { 1813 eventfd_ctx_put(ffs->ffs_eventfd); 1814 ffs->ffs_eventfd = NULL; 1815 } 1816 1817 kfree(ffs->raw_descs_data); 1818 kfree(ffs->raw_strings); 1819 kfree(ffs->stringtabs); 1820 } 1821 1822 static void ffs_data_reset(struct ffs_data *ffs) 1823 { 1824 ENTER(); 1825 1826 ffs_data_clear(ffs); 1827 1828 ffs->raw_descs_data = NULL; 1829 ffs->raw_descs = NULL; 1830 ffs->raw_strings = NULL; 1831 ffs->stringtabs = NULL; 1832 1833 ffs->raw_descs_length = 0; 1834 ffs->fs_descs_count = 0; 1835 ffs->hs_descs_count = 0; 1836 ffs->ss_descs_count = 0; 1837 1838 ffs->strings_count = 0; 1839 ffs->interfaces_count = 0; 1840 ffs->eps_count = 0; 1841 1842 ffs->ev.count = 0; 1843 1844 ffs->state = FFS_READ_DESCRIPTORS; 1845 ffs->setup_state = FFS_NO_SETUP; 1846 ffs->flags = 0; 1847 1848 ffs->ms_os_descs_ext_prop_count = 0; 1849 ffs->ms_os_descs_ext_prop_name_len = 0; 1850 ffs->ms_os_descs_ext_prop_data_len = 0; 1851 } 1852 1853 1854 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) 1855 { 1856 struct usb_gadget_strings **lang; 1857 int first_id; 1858 1859 ENTER(); 1860 1861 if (WARN_ON(ffs->state != FFS_ACTIVE 1862 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) 1863 return -EBADFD; 1864 1865 first_id = usb_string_ids_n(cdev, ffs->strings_count); 1866 if (first_id < 0) 1867 return first_id; 1868 1869 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); 1870 if (!ffs->ep0req) 1871 return -ENOMEM; 1872 ffs->ep0req->complete = ffs_ep0_complete; 1873 ffs->ep0req->context = ffs; 1874 1875 lang = ffs->stringtabs; 1876 if (lang) { 1877 for (; *lang; ++lang) { 1878 struct usb_string *str = (*lang)->strings; 1879 int id = first_id; 1880 for (; str->s; ++id, ++str) 1881 str->id = id; 1882 } 1883 } 1884 1885 ffs->gadget = cdev->gadget; 1886 ffs_data_get(ffs); 1887 return 0; 1888 } 1889 1890 static void functionfs_unbind(struct ffs_data *ffs) 1891 { 1892 ENTER(); 1893 1894 if (!WARN_ON(!ffs->gadget)) { 1895 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); 1896 ffs->ep0req = NULL; 1897 ffs->gadget = NULL; 1898 clear_bit(FFS_FL_BOUND, &ffs->flags); 1899 ffs_data_put(ffs); 1900 } 1901 } 1902 1903 static int ffs_epfiles_create(struct ffs_data *ffs) 1904 { 1905 struct ffs_epfile *epfile, *epfiles; 1906 unsigned i, count; 1907 1908 ENTER(); 1909 1910 count = ffs->eps_count; 1911 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); 1912 if (!epfiles) 1913 return -ENOMEM; 1914 1915 epfile = epfiles; 1916 for (i = 1; i <= count; ++i, ++epfile) { 1917 epfile->ffs = ffs; 1918 mutex_init(&epfile->mutex); 1919 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 1920 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]); 1921 else 1922 sprintf(epfile->name, "ep%u", i); 1923 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name, 1924 epfile, 1925 &ffs_epfile_operations); 1926 if (!epfile->dentry) { 1927 ffs_epfiles_destroy(epfiles, i - 1); 1928 return -ENOMEM; 1929 } 1930 } 1931 1932 ffs->epfiles = epfiles; 1933 return 0; 1934 } 1935 1936 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count) 1937 { 1938 struct ffs_epfile *epfile = epfiles; 1939 1940 ENTER(); 1941 1942 for (; count; --count, ++epfile) { 1943 BUG_ON(mutex_is_locked(&epfile->mutex)); 1944 if (epfile->dentry) { 1945 d_delete(epfile->dentry); 1946 dput(epfile->dentry); 1947 epfile->dentry = NULL; 1948 } 1949 } 1950 1951 kfree(epfiles); 1952 } 1953 1954 static void ffs_func_eps_disable(struct ffs_function *func) 1955 { 1956 struct ffs_ep *ep; 1957 struct ffs_epfile *epfile; 1958 unsigned short count; 1959 unsigned long flags; 1960 1961 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1962 count = func->ffs->eps_count; 1963 epfile = func->ffs->epfiles; 1964 ep = func->eps; 1965 while (count--) { 1966 /* pending requests get nuked */ 1967 if (ep->ep) 1968 usb_ep_disable(ep->ep); 1969 ++ep; 1970 1971 if (epfile) { 1972 epfile->ep = NULL; 1973 __ffs_epfile_read_buffer_free(epfile); 1974 ++epfile; 1975 } 1976 } 1977 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1978 } 1979 1980 static int ffs_func_eps_enable(struct ffs_function *func) 1981 { 1982 struct ffs_data *ffs; 1983 struct ffs_ep *ep; 1984 struct ffs_epfile *epfile; 1985 unsigned short count; 1986 unsigned long flags; 1987 int ret = 0; 1988 1989 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1990 ffs = func->ffs; 1991 ep = func->eps; 1992 epfile = ffs->epfiles; 1993 count = ffs->eps_count; 1994 while(count--) { 1995 ep->ep->driver_data = ep; 1996 1997 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep); 1998 if (ret) { 1999 pr_err("%s: config_ep_by_speed(%s) returned %d\n", 2000 __func__, ep->ep->name, ret); 2001 break; 2002 } 2003 2004 ret = usb_ep_enable(ep->ep); 2005 if (!ret) { 2006 epfile->ep = ep; 2007 epfile->in = usb_endpoint_dir_in(ep->ep->desc); 2008 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc); 2009 } else { 2010 break; 2011 } 2012 2013 ++ep; 2014 ++epfile; 2015 } 2016 2017 wake_up_interruptible(&ffs->wait); 2018 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 2019 2020 return ret; 2021 } 2022 2023 2024 /* Parsing and building descriptors and strings *****************************/ 2025 2026 /* 2027 * This validates if data pointed by data is a valid USB descriptor as 2028 * well as record how many interfaces, endpoints and strings are 2029 * required by given configuration. Returns address after the 2030 * descriptor or NULL if data is invalid. 2031 */ 2032 2033 enum ffs_entity_type { 2034 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT 2035 }; 2036 2037 enum ffs_os_desc_type { 2038 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP 2039 }; 2040 2041 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, 2042 u8 *valuep, 2043 struct usb_descriptor_header *desc, 2044 void *priv); 2045 2046 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, 2047 struct usb_os_desc_header *h, void *data, 2048 unsigned len, void *priv); 2049 2050 static int __must_check ffs_do_single_desc(char *data, unsigned len, 2051 ffs_entity_callback entity, 2052 void *priv, int *current_class) 2053 { 2054 struct usb_descriptor_header *_ds = (void *)data; 2055 u8 length; 2056 int ret; 2057 2058 ENTER(); 2059 2060 /* At least two bytes are required: length and type */ 2061 if (len < 2) { 2062 pr_vdebug("descriptor too short\n"); 2063 return -EINVAL; 2064 } 2065 2066 /* If we have at least as many bytes as the descriptor takes? */ 2067 length = _ds->bLength; 2068 if (len < length) { 2069 pr_vdebug("descriptor longer then available data\n"); 2070 return -EINVAL; 2071 } 2072 2073 #define __entity_check_INTERFACE(val) 1 2074 #define __entity_check_STRING(val) (val) 2075 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) 2076 #define __entity(type, val) do { \ 2077 pr_vdebug("entity " #type "(%02x)\n", (val)); \ 2078 if (!__entity_check_ ##type(val)) { \ 2079 pr_vdebug("invalid entity's value\n"); \ 2080 return -EINVAL; \ 2081 } \ 2082 ret = entity(FFS_ ##type, &val, _ds, priv); \ 2083 if (ret < 0) { \ 2084 pr_debug("entity " #type "(%02x); ret = %d\n", \ 2085 (val), ret); \ 2086 return ret; \ 2087 } \ 2088 } while (0) 2089 2090 /* Parse descriptor depending on type. */ 2091 switch (_ds->bDescriptorType) { 2092 case USB_DT_DEVICE: 2093 case USB_DT_CONFIG: 2094 case USB_DT_STRING: 2095 case USB_DT_DEVICE_QUALIFIER: 2096 /* function can't have any of those */ 2097 pr_vdebug("descriptor reserved for gadget: %d\n", 2098 _ds->bDescriptorType); 2099 return -EINVAL; 2100 2101 case USB_DT_INTERFACE: { 2102 struct usb_interface_descriptor *ds = (void *)_ds; 2103 pr_vdebug("interface descriptor\n"); 2104 if (length != sizeof *ds) 2105 goto inv_length; 2106 2107 __entity(INTERFACE, ds->bInterfaceNumber); 2108 if (ds->iInterface) 2109 __entity(STRING, ds->iInterface); 2110 *current_class = ds->bInterfaceClass; 2111 } 2112 break; 2113 2114 case USB_DT_ENDPOINT: { 2115 struct usb_endpoint_descriptor *ds = (void *)_ds; 2116 pr_vdebug("endpoint descriptor\n"); 2117 if (length != USB_DT_ENDPOINT_SIZE && 2118 length != USB_DT_ENDPOINT_AUDIO_SIZE) 2119 goto inv_length; 2120 __entity(ENDPOINT, ds->bEndpointAddress); 2121 } 2122 break; 2123 2124 case USB_TYPE_CLASS | 0x01: 2125 if (*current_class == USB_INTERFACE_CLASS_HID) { 2126 pr_vdebug("hid descriptor\n"); 2127 if (length != sizeof(struct hid_descriptor)) 2128 goto inv_length; 2129 break; 2130 } else if (*current_class == USB_INTERFACE_CLASS_CCID) { 2131 pr_vdebug("ccid descriptor\n"); 2132 if (length != sizeof(struct ccid_descriptor)) 2133 goto inv_length; 2134 break; 2135 } else { 2136 pr_vdebug("unknown descriptor: %d for class %d\n", 2137 _ds->bDescriptorType, *current_class); 2138 return -EINVAL; 2139 } 2140 2141 case USB_DT_OTG: 2142 if (length != sizeof(struct usb_otg_descriptor)) 2143 goto inv_length; 2144 break; 2145 2146 case USB_DT_INTERFACE_ASSOCIATION: { 2147 struct usb_interface_assoc_descriptor *ds = (void *)_ds; 2148 pr_vdebug("interface association descriptor\n"); 2149 if (length != sizeof *ds) 2150 goto inv_length; 2151 if (ds->iFunction) 2152 __entity(STRING, ds->iFunction); 2153 } 2154 break; 2155 2156 case USB_DT_SS_ENDPOINT_COMP: 2157 pr_vdebug("EP SS companion descriptor\n"); 2158 if (length != sizeof(struct usb_ss_ep_comp_descriptor)) 2159 goto inv_length; 2160 break; 2161 2162 case USB_DT_OTHER_SPEED_CONFIG: 2163 case USB_DT_INTERFACE_POWER: 2164 case USB_DT_DEBUG: 2165 case USB_DT_SECURITY: 2166 case USB_DT_CS_RADIO_CONTROL: 2167 /* TODO */ 2168 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); 2169 return -EINVAL; 2170 2171 default: 2172 /* We should never be here */ 2173 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); 2174 return -EINVAL; 2175 2176 inv_length: 2177 pr_vdebug("invalid length: %d (descriptor %d)\n", 2178 _ds->bLength, _ds->bDescriptorType); 2179 return -EINVAL; 2180 } 2181 2182 #undef __entity 2183 #undef __entity_check_DESCRIPTOR 2184 #undef __entity_check_INTERFACE 2185 #undef __entity_check_STRING 2186 #undef __entity_check_ENDPOINT 2187 2188 return length; 2189 } 2190 2191 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, 2192 ffs_entity_callback entity, void *priv) 2193 { 2194 const unsigned _len = len; 2195 unsigned long num = 0; 2196 int current_class = -1; 2197 2198 ENTER(); 2199 2200 for (;;) { 2201 int ret; 2202 2203 if (num == count) 2204 data = NULL; 2205 2206 /* Record "descriptor" entity */ 2207 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); 2208 if (ret < 0) { 2209 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", 2210 num, ret); 2211 return ret; 2212 } 2213 2214 if (!data) 2215 return _len - len; 2216 2217 ret = ffs_do_single_desc(data, len, entity, priv, 2218 ¤t_class); 2219 if (ret < 0) { 2220 pr_debug("%s returns %d\n", __func__, ret); 2221 return ret; 2222 } 2223 2224 len -= ret; 2225 data += ret; 2226 ++num; 2227 } 2228 } 2229 2230 static int __ffs_data_do_entity(enum ffs_entity_type type, 2231 u8 *valuep, struct usb_descriptor_header *desc, 2232 void *priv) 2233 { 2234 struct ffs_desc_helper *helper = priv; 2235 struct usb_endpoint_descriptor *d; 2236 2237 ENTER(); 2238 2239 switch (type) { 2240 case FFS_DESCRIPTOR: 2241 break; 2242 2243 case FFS_INTERFACE: 2244 /* 2245 * Interfaces are indexed from zero so if we 2246 * encountered interface "n" then there are at least 2247 * "n+1" interfaces. 2248 */ 2249 if (*valuep >= helper->interfaces_count) 2250 helper->interfaces_count = *valuep + 1; 2251 break; 2252 2253 case FFS_STRING: 2254 /* 2255 * Strings are indexed from 1 (0 is reserved 2256 * for languages list) 2257 */ 2258 if (*valuep > helper->ffs->strings_count) 2259 helper->ffs->strings_count = *valuep; 2260 break; 2261 2262 case FFS_ENDPOINT: 2263 d = (void *)desc; 2264 helper->eps_count++; 2265 if (helper->eps_count >= FFS_MAX_EPS_COUNT) 2266 return -EINVAL; 2267 /* Check if descriptors for any speed were already parsed */ 2268 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count) 2269 helper->ffs->eps_addrmap[helper->eps_count] = 2270 d->bEndpointAddress; 2271 else if (helper->ffs->eps_addrmap[helper->eps_count] != 2272 d->bEndpointAddress) 2273 return -EINVAL; 2274 break; 2275 } 2276 2277 return 0; 2278 } 2279 2280 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, 2281 struct usb_os_desc_header *desc) 2282 { 2283 u16 bcd_version = le16_to_cpu(desc->bcdVersion); 2284 u16 w_index = le16_to_cpu(desc->wIndex); 2285 2286 if (bcd_version != 1) { 2287 pr_vdebug("unsupported os descriptors version: %d", 2288 bcd_version); 2289 return -EINVAL; 2290 } 2291 switch (w_index) { 2292 case 0x4: 2293 *next_type = FFS_OS_DESC_EXT_COMPAT; 2294 break; 2295 case 0x5: 2296 *next_type = FFS_OS_DESC_EXT_PROP; 2297 break; 2298 default: 2299 pr_vdebug("unsupported os descriptor type: %d", w_index); 2300 return -EINVAL; 2301 } 2302 2303 return sizeof(*desc); 2304 } 2305 2306 /* 2307 * Process all extended compatibility/extended property descriptors 2308 * of a feature descriptor 2309 */ 2310 static int __must_check ffs_do_single_os_desc(char *data, unsigned len, 2311 enum ffs_os_desc_type type, 2312 u16 feature_count, 2313 ffs_os_desc_callback entity, 2314 void *priv, 2315 struct usb_os_desc_header *h) 2316 { 2317 int ret; 2318 const unsigned _len = len; 2319 2320 ENTER(); 2321 2322 /* loop over all ext compat/ext prop descriptors */ 2323 while (feature_count--) { 2324 ret = entity(type, h, data, len, priv); 2325 if (ret < 0) { 2326 pr_debug("bad OS descriptor, type: %d\n", type); 2327 return ret; 2328 } 2329 data += ret; 2330 len -= ret; 2331 } 2332 return _len - len; 2333 } 2334 2335 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ 2336 static int __must_check ffs_do_os_descs(unsigned count, 2337 char *data, unsigned len, 2338 ffs_os_desc_callback entity, void *priv) 2339 { 2340 const unsigned _len = len; 2341 unsigned long num = 0; 2342 2343 ENTER(); 2344 2345 for (num = 0; num < count; ++num) { 2346 int ret; 2347 enum ffs_os_desc_type type; 2348 u16 feature_count; 2349 struct usb_os_desc_header *desc = (void *)data; 2350 2351 if (len < sizeof(*desc)) 2352 return -EINVAL; 2353 2354 /* 2355 * Record "descriptor" entity. 2356 * Process dwLength, bcdVersion, wIndex, get b/wCount. 2357 * Move the data pointer to the beginning of extended 2358 * compatibilities proper or extended properties proper 2359 * portions of the data 2360 */ 2361 if (le32_to_cpu(desc->dwLength) > len) 2362 return -EINVAL; 2363 2364 ret = __ffs_do_os_desc_header(&type, desc); 2365 if (ret < 0) { 2366 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", 2367 num, ret); 2368 return ret; 2369 } 2370 /* 2371 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" 2372 */ 2373 feature_count = le16_to_cpu(desc->wCount); 2374 if (type == FFS_OS_DESC_EXT_COMPAT && 2375 (feature_count > 255 || desc->Reserved)) 2376 return -EINVAL; 2377 len -= ret; 2378 data += ret; 2379 2380 /* 2381 * Process all function/property descriptors 2382 * of this Feature Descriptor 2383 */ 2384 ret = ffs_do_single_os_desc(data, len, type, 2385 feature_count, entity, priv, desc); 2386 if (ret < 0) { 2387 pr_debug("%s returns %d\n", __func__, ret); 2388 return ret; 2389 } 2390 2391 len -= ret; 2392 data += ret; 2393 } 2394 return _len - len; 2395 } 2396 2397 /* 2398 * Validate contents of the buffer from userspace related to OS descriptors. 2399 */ 2400 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, 2401 struct usb_os_desc_header *h, void *data, 2402 unsigned len, void *priv) 2403 { 2404 struct ffs_data *ffs = priv; 2405 u8 length; 2406 2407 ENTER(); 2408 2409 switch (type) { 2410 case FFS_OS_DESC_EXT_COMPAT: { 2411 struct usb_ext_compat_desc *d = data; 2412 int i; 2413 2414 if (len < sizeof(*d) || 2415 d->bFirstInterfaceNumber >= ffs->interfaces_count) 2416 return -EINVAL; 2417 if (d->Reserved1 != 1) { 2418 /* 2419 * According to the spec, Reserved1 must be set to 1 2420 * but older kernels incorrectly rejected non-zero 2421 * values. We fix it here to avoid returning EINVAL 2422 * in response to values we used to accept. 2423 */ 2424 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n"); 2425 d->Reserved1 = 1; 2426 } 2427 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) 2428 if (d->Reserved2[i]) 2429 return -EINVAL; 2430 2431 length = sizeof(struct usb_ext_compat_desc); 2432 } 2433 break; 2434 case FFS_OS_DESC_EXT_PROP: { 2435 struct usb_ext_prop_desc *d = data; 2436 u32 type, pdl; 2437 u16 pnl; 2438 2439 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) 2440 return -EINVAL; 2441 length = le32_to_cpu(d->dwSize); 2442 if (len < length) 2443 return -EINVAL; 2444 type = le32_to_cpu(d->dwPropertyDataType); 2445 if (type < USB_EXT_PROP_UNICODE || 2446 type > USB_EXT_PROP_UNICODE_MULTI) { 2447 pr_vdebug("unsupported os descriptor property type: %d", 2448 type); 2449 return -EINVAL; 2450 } 2451 pnl = le16_to_cpu(d->wPropertyNameLength); 2452 if (length < 14 + pnl) { 2453 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n", 2454 length, pnl, type); 2455 return -EINVAL; 2456 } 2457 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl)); 2458 if (length != 14 + pnl + pdl) { 2459 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", 2460 length, pnl, pdl, type); 2461 return -EINVAL; 2462 } 2463 ++ffs->ms_os_descs_ext_prop_count; 2464 /* property name reported to the host as "WCHAR"s */ 2465 ffs->ms_os_descs_ext_prop_name_len += pnl * 2; 2466 ffs->ms_os_descs_ext_prop_data_len += pdl; 2467 } 2468 break; 2469 default: 2470 pr_vdebug("unknown descriptor: %d\n", type); 2471 return -EINVAL; 2472 } 2473 return length; 2474 } 2475 2476 static int __ffs_data_got_descs(struct ffs_data *ffs, 2477 char *const _data, size_t len) 2478 { 2479 char *data = _data, *raw_descs; 2480 unsigned os_descs_count = 0, counts[3], flags; 2481 int ret = -EINVAL, i; 2482 struct ffs_desc_helper helper; 2483 2484 ENTER(); 2485 2486 if (get_unaligned_le32(data + 4) != len) 2487 goto error; 2488 2489 switch (get_unaligned_le32(data)) { 2490 case FUNCTIONFS_DESCRIPTORS_MAGIC: 2491 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; 2492 data += 8; 2493 len -= 8; 2494 break; 2495 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: 2496 flags = get_unaligned_le32(data + 8); 2497 ffs->user_flags = flags; 2498 if (flags & ~(FUNCTIONFS_HAS_FS_DESC | 2499 FUNCTIONFS_HAS_HS_DESC | 2500 FUNCTIONFS_HAS_SS_DESC | 2501 FUNCTIONFS_HAS_MS_OS_DESC | 2502 FUNCTIONFS_VIRTUAL_ADDR | 2503 FUNCTIONFS_EVENTFD | 2504 FUNCTIONFS_ALL_CTRL_RECIP | 2505 FUNCTIONFS_CONFIG0_SETUP)) { 2506 ret = -ENOSYS; 2507 goto error; 2508 } 2509 data += 12; 2510 len -= 12; 2511 break; 2512 default: 2513 goto error; 2514 } 2515 2516 if (flags & FUNCTIONFS_EVENTFD) { 2517 if (len < 4) 2518 goto error; 2519 ffs->ffs_eventfd = 2520 eventfd_ctx_fdget((int)get_unaligned_le32(data)); 2521 if (IS_ERR(ffs->ffs_eventfd)) { 2522 ret = PTR_ERR(ffs->ffs_eventfd); 2523 ffs->ffs_eventfd = NULL; 2524 goto error; 2525 } 2526 data += 4; 2527 len -= 4; 2528 } 2529 2530 /* Read fs_count, hs_count and ss_count (if present) */ 2531 for (i = 0; i < 3; ++i) { 2532 if (!(flags & (1 << i))) { 2533 counts[i] = 0; 2534 } else if (len < 4) { 2535 goto error; 2536 } else { 2537 counts[i] = get_unaligned_le32(data); 2538 data += 4; 2539 len -= 4; 2540 } 2541 } 2542 if (flags & (1 << i)) { 2543 if (len < 4) { 2544 goto error; 2545 } 2546 os_descs_count = get_unaligned_le32(data); 2547 data += 4; 2548 len -= 4; 2549 } 2550 2551 /* Read descriptors */ 2552 raw_descs = data; 2553 helper.ffs = ffs; 2554 for (i = 0; i < 3; ++i) { 2555 if (!counts[i]) 2556 continue; 2557 helper.interfaces_count = 0; 2558 helper.eps_count = 0; 2559 ret = ffs_do_descs(counts[i], data, len, 2560 __ffs_data_do_entity, &helper); 2561 if (ret < 0) 2562 goto error; 2563 if (!ffs->eps_count && !ffs->interfaces_count) { 2564 ffs->eps_count = helper.eps_count; 2565 ffs->interfaces_count = helper.interfaces_count; 2566 } else { 2567 if (ffs->eps_count != helper.eps_count) { 2568 ret = -EINVAL; 2569 goto error; 2570 } 2571 if (ffs->interfaces_count != helper.interfaces_count) { 2572 ret = -EINVAL; 2573 goto error; 2574 } 2575 } 2576 data += ret; 2577 len -= ret; 2578 } 2579 if (os_descs_count) { 2580 ret = ffs_do_os_descs(os_descs_count, data, len, 2581 __ffs_data_do_os_desc, ffs); 2582 if (ret < 0) 2583 goto error; 2584 data += ret; 2585 len -= ret; 2586 } 2587 2588 if (raw_descs == data || len) { 2589 ret = -EINVAL; 2590 goto error; 2591 } 2592 2593 ffs->raw_descs_data = _data; 2594 ffs->raw_descs = raw_descs; 2595 ffs->raw_descs_length = data - raw_descs; 2596 ffs->fs_descs_count = counts[0]; 2597 ffs->hs_descs_count = counts[1]; 2598 ffs->ss_descs_count = counts[2]; 2599 ffs->ms_os_descs_count = os_descs_count; 2600 2601 return 0; 2602 2603 error: 2604 kfree(_data); 2605 return ret; 2606 } 2607 2608 static int __ffs_data_got_strings(struct ffs_data *ffs, 2609 char *const _data, size_t len) 2610 { 2611 u32 str_count, needed_count, lang_count; 2612 struct usb_gadget_strings **stringtabs, *t; 2613 const char *data = _data; 2614 struct usb_string *s; 2615 2616 ENTER(); 2617 2618 if (len < 16 || 2619 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || 2620 get_unaligned_le32(data + 4) != len) 2621 goto error; 2622 str_count = get_unaligned_le32(data + 8); 2623 lang_count = get_unaligned_le32(data + 12); 2624 2625 /* if one is zero the other must be zero */ 2626 if (!str_count != !lang_count) 2627 goto error; 2628 2629 /* Do we have at least as many strings as descriptors need? */ 2630 needed_count = ffs->strings_count; 2631 if (str_count < needed_count) 2632 goto error; 2633 2634 /* 2635 * If we don't need any strings just return and free all 2636 * memory. 2637 */ 2638 if (!needed_count) { 2639 kfree(_data); 2640 return 0; 2641 } 2642 2643 /* Allocate everything in one chunk so there's less maintenance. */ 2644 { 2645 unsigned i = 0; 2646 vla_group(d); 2647 vla_item(d, struct usb_gadget_strings *, stringtabs, 2648 size_add(lang_count, 1)); 2649 vla_item(d, struct usb_gadget_strings, stringtab, lang_count); 2650 vla_item(d, struct usb_string, strings, 2651 size_mul(lang_count, (needed_count + 1))); 2652 2653 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); 2654 2655 if (!vlabuf) { 2656 kfree(_data); 2657 return -ENOMEM; 2658 } 2659 2660 /* Initialize the VLA pointers */ 2661 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2662 t = vla_ptr(vlabuf, d, stringtab); 2663 i = lang_count; 2664 do { 2665 *stringtabs++ = t++; 2666 } while (--i); 2667 *stringtabs = NULL; 2668 2669 /* stringtabs = vlabuf = d_stringtabs for later kfree */ 2670 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2671 t = vla_ptr(vlabuf, d, stringtab); 2672 s = vla_ptr(vlabuf, d, strings); 2673 } 2674 2675 /* For each language */ 2676 data += 16; 2677 len -= 16; 2678 2679 do { /* lang_count > 0 so we can use do-while */ 2680 unsigned needed = needed_count; 2681 u32 str_per_lang = str_count; 2682 2683 if (len < 3) 2684 goto error_free; 2685 t->language = get_unaligned_le16(data); 2686 t->strings = s; 2687 ++t; 2688 2689 data += 2; 2690 len -= 2; 2691 2692 /* For each string */ 2693 do { /* str_count > 0 so we can use do-while */ 2694 size_t length = strnlen(data, len); 2695 2696 if (length == len) 2697 goto error_free; 2698 2699 /* 2700 * User may provide more strings then we need, 2701 * if that's the case we simply ignore the 2702 * rest 2703 */ 2704 if (needed) { 2705 /* 2706 * s->id will be set while adding 2707 * function to configuration so for 2708 * now just leave garbage here. 2709 */ 2710 s->s = data; 2711 --needed; 2712 ++s; 2713 } 2714 2715 data += length + 1; 2716 len -= length + 1; 2717 } while (--str_per_lang); 2718 2719 s->id = 0; /* terminator */ 2720 s->s = NULL; 2721 ++s; 2722 2723 } while (--lang_count); 2724 2725 /* Some garbage left? */ 2726 if (len) 2727 goto error_free; 2728 2729 /* Done! */ 2730 ffs->stringtabs = stringtabs; 2731 ffs->raw_strings = _data; 2732 2733 return 0; 2734 2735 error_free: 2736 kfree(stringtabs); 2737 error: 2738 kfree(_data); 2739 return -EINVAL; 2740 } 2741 2742 2743 /* Events handling and management *******************************************/ 2744 2745 static void __ffs_event_add(struct ffs_data *ffs, 2746 enum usb_functionfs_event_type type) 2747 { 2748 enum usb_functionfs_event_type rem_type1, rem_type2 = type; 2749 int neg = 0; 2750 2751 /* 2752 * Abort any unhandled setup 2753 * 2754 * We do not need to worry about some cmpxchg() changing value 2755 * of ffs->setup_state without holding the lock because when 2756 * state is FFS_SETUP_PENDING cmpxchg() in several places in 2757 * the source does nothing. 2758 */ 2759 if (ffs->setup_state == FFS_SETUP_PENDING) 2760 ffs->setup_state = FFS_SETUP_CANCELLED; 2761 2762 /* 2763 * Logic of this function guarantees that there are at most four pending 2764 * evens on ffs->ev.types queue. This is important because the queue 2765 * has space for four elements only and __ffs_ep0_read_events function 2766 * depends on that limit as well. If more event types are added, those 2767 * limits have to be revisited or guaranteed to still hold. 2768 */ 2769 switch (type) { 2770 case FUNCTIONFS_RESUME: 2771 rem_type2 = FUNCTIONFS_SUSPEND; 2772 fallthrough; 2773 case FUNCTIONFS_SUSPEND: 2774 case FUNCTIONFS_SETUP: 2775 rem_type1 = type; 2776 /* Discard all similar events */ 2777 break; 2778 2779 case FUNCTIONFS_BIND: 2780 case FUNCTIONFS_UNBIND: 2781 case FUNCTIONFS_DISABLE: 2782 case FUNCTIONFS_ENABLE: 2783 /* Discard everything other then power management. */ 2784 rem_type1 = FUNCTIONFS_SUSPEND; 2785 rem_type2 = FUNCTIONFS_RESUME; 2786 neg = 1; 2787 break; 2788 2789 default: 2790 WARN(1, "%d: unknown event, this should not happen\n", type); 2791 return; 2792 } 2793 2794 { 2795 u8 *ev = ffs->ev.types, *out = ev; 2796 unsigned n = ffs->ev.count; 2797 for (; n; --n, ++ev) 2798 if ((*ev == rem_type1 || *ev == rem_type2) == neg) 2799 *out++ = *ev; 2800 else 2801 pr_vdebug("purging event %d\n", *ev); 2802 ffs->ev.count = out - ffs->ev.types; 2803 } 2804 2805 pr_vdebug("adding event %d\n", type); 2806 ffs->ev.types[ffs->ev.count++] = type; 2807 wake_up_locked(&ffs->ev.waitq); 2808 if (ffs->ffs_eventfd) 2809 eventfd_signal(ffs->ffs_eventfd, 1); 2810 } 2811 2812 static void ffs_event_add(struct ffs_data *ffs, 2813 enum usb_functionfs_event_type type) 2814 { 2815 unsigned long flags; 2816 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 2817 __ffs_event_add(ffs, type); 2818 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 2819 } 2820 2821 /* Bind/unbind USB function hooks *******************************************/ 2822 2823 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address) 2824 { 2825 int i; 2826 2827 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i) 2828 if (ffs->eps_addrmap[i] == endpoint_address) 2829 return i; 2830 return -ENOENT; 2831 } 2832 2833 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, 2834 struct usb_descriptor_header *desc, 2835 void *priv) 2836 { 2837 struct usb_endpoint_descriptor *ds = (void *)desc; 2838 struct ffs_function *func = priv; 2839 struct ffs_ep *ffs_ep; 2840 unsigned ep_desc_id; 2841 int idx; 2842 static const char *speed_names[] = { "full", "high", "super" }; 2843 2844 if (type != FFS_DESCRIPTOR) 2845 return 0; 2846 2847 /* 2848 * If ss_descriptors is not NULL, we are reading super speed 2849 * descriptors; if hs_descriptors is not NULL, we are reading high 2850 * speed descriptors; otherwise, we are reading full speed 2851 * descriptors. 2852 */ 2853 if (func->function.ss_descriptors) { 2854 ep_desc_id = 2; 2855 func->function.ss_descriptors[(long)valuep] = desc; 2856 } else if (func->function.hs_descriptors) { 2857 ep_desc_id = 1; 2858 func->function.hs_descriptors[(long)valuep] = desc; 2859 } else { 2860 ep_desc_id = 0; 2861 func->function.fs_descriptors[(long)valuep] = desc; 2862 } 2863 2864 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) 2865 return 0; 2866 2867 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1; 2868 if (idx < 0) 2869 return idx; 2870 2871 ffs_ep = func->eps + idx; 2872 2873 if (ffs_ep->descs[ep_desc_id]) { 2874 pr_err("two %sspeed descriptors for EP %d\n", 2875 speed_names[ep_desc_id], 2876 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); 2877 return -EINVAL; 2878 } 2879 ffs_ep->descs[ep_desc_id] = ds; 2880 2881 ffs_dump_mem(": Original ep desc", ds, ds->bLength); 2882 if (ffs_ep->ep) { 2883 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; 2884 if (!ds->wMaxPacketSize) 2885 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; 2886 } else { 2887 struct usb_request *req; 2888 struct usb_ep *ep; 2889 u8 bEndpointAddress; 2890 u16 wMaxPacketSize; 2891 2892 /* 2893 * We back up bEndpointAddress because autoconfig overwrites 2894 * it with physical endpoint address. 2895 */ 2896 bEndpointAddress = ds->bEndpointAddress; 2897 /* 2898 * We back up wMaxPacketSize because autoconfig treats 2899 * endpoint descriptors as if they were full speed. 2900 */ 2901 wMaxPacketSize = ds->wMaxPacketSize; 2902 pr_vdebug("autoconfig\n"); 2903 ep = usb_ep_autoconfig(func->gadget, ds); 2904 if (!ep) 2905 return -ENOTSUPP; 2906 ep->driver_data = func->eps + idx; 2907 2908 req = usb_ep_alloc_request(ep, GFP_KERNEL); 2909 if (!req) 2910 return -ENOMEM; 2911 2912 ffs_ep->ep = ep; 2913 ffs_ep->req = req; 2914 func->eps_revmap[ds->bEndpointAddress & 2915 USB_ENDPOINT_NUMBER_MASK] = idx + 1; 2916 /* 2917 * If we use virtual address mapping, we restore 2918 * original bEndpointAddress value. 2919 */ 2920 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 2921 ds->bEndpointAddress = bEndpointAddress; 2922 /* 2923 * Restore wMaxPacketSize which was potentially 2924 * overwritten by autoconfig. 2925 */ 2926 ds->wMaxPacketSize = wMaxPacketSize; 2927 } 2928 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); 2929 2930 return 0; 2931 } 2932 2933 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, 2934 struct usb_descriptor_header *desc, 2935 void *priv) 2936 { 2937 struct ffs_function *func = priv; 2938 unsigned idx; 2939 u8 newValue; 2940 2941 switch (type) { 2942 default: 2943 case FFS_DESCRIPTOR: 2944 /* Handled in previous pass by __ffs_func_bind_do_descs() */ 2945 return 0; 2946 2947 case FFS_INTERFACE: 2948 idx = *valuep; 2949 if (func->interfaces_nums[idx] < 0) { 2950 int id = usb_interface_id(func->conf, &func->function); 2951 if (id < 0) 2952 return id; 2953 func->interfaces_nums[idx] = id; 2954 } 2955 newValue = func->interfaces_nums[idx]; 2956 break; 2957 2958 case FFS_STRING: 2959 /* String' IDs are allocated when fsf_data is bound to cdev */ 2960 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; 2961 break; 2962 2963 case FFS_ENDPOINT: 2964 /* 2965 * USB_DT_ENDPOINT are handled in 2966 * __ffs_func_bind_do_descs(). 2967 */ 2968 if (desc->bDescriptorType == USB_DT_ENDPOINT) 2969 return 0; 2970 2971 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; 2972 if (!func->eps[idx].ep) 2973 return -EINVAL; 2974 2975 { 2976 struct usb_endpoint_descriptor **descs; 2977 descs = func->eps[idx].descs; 2978 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; 2979 } 2980 break; 2981 } 2982 2983 pr_vdebug("%02x -> %02x\n", *valuep, newValue); 2984 *valuep = newValue; 2985 return 0; 2986 } 2987 2988 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, 2989 struct usb_os_desc_header *h, void *data, 2990 unsigned len, void *priv) 2991 { 2992 struct ffs_function *func = priv; 2993 u8 length = 0; 2994 2995 switch (type) { 2996 case FFS_OS_DESC_EXT_COMPAT: { 2997 struct usb_ext_compat_desc *desc = data; 2998 struct usb_os_desc_table *t; 2999 3000 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; 3001 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; 3002 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID, 3003 ARRAY_SIZE(desc->CompatibleID) + 3004 ARRAY_SIZE(desc->SubCompatibleID)); 3005 length = sizeof(*desc); 3006 } 3007 break; 3008 case FFS_OS_DESC_EXT_PROP: { 3009 struct usb_ext_prop_desc *desc = data; 3010 struct usb_os_desc_table *t; 3011 struct usb_os_desc_ext_prop *ext_prop; 3012 char *ext_prop_name; 3013 char *ext_prop_data; 3014 3015 t = &func->function.os_desc_table[h->interface]; 3016 t->if_id = func->interfaces_nums[h->interface]; 3017 3018 ext_prop = func->ffs->ms_os_descs_ext_prop_avail; 3019 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); 3020 3021 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); 3022 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); 3023 ext_prop->data_len = le32_to_cpu(*(__le32 *) 3024 usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); 3025 length = ext_prop->name_len + ext_prop->data_len + 14; 3026 3027 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; 3028 func->ffs->ms_os_descs_ext_prop_name_avail += 3029 ext_prop->name_len; 3030 3031 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; 3032 func->ffs->ms_os_descs_ext_prop_data_avail += 3033 ext_prop->data_len; 3034 memcpy(ext_prop_data, 3035 usb_ext_prop_data_ptr(data, ext_prop->name_len), 3036 ext_prop->data_len); 3037 /* unicode data reported to the host as "WCHAR"s */ 3038 switch (ext_prop->type) { 3039 case USB_EXT_PROP_UNICODE: 3040 case USB_EXT_PROP_UNICODE_ENV: 3041 case USB_EXT_PROP_UNICODE_LINK: 3042 case USB_EXT_PROP_UNICODE_MULTI: 3043 ext_prop->data_len *= 2; 3044 break; 3045 } 3046 ext_prop->data = ext_prop_data; 3047 3048 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), 3049 ext_prop->name_len); 3050 /* property name reported to the host as "WCHAR"s */ 3051 ext_prop->name_len *= 2; 3052 ext_prop->name = ext_prop_name; 3053 3054 t->os_desc->ext_prop_len += 3055 ext_prop->name_len + ext_prop->data_len + 14; 3056 ++t->os_desc->ext_prop_count; 3057 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); 3058 } 3059 break; 3060 default: 3061 pr_vdebug("unknown descriptor: %d\n", type); 3062 } 3063 3064 return length; 3065 } 3066 3067 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, 3068 struct usb_configuration *c) 3069 { 3070 struct ffs_function *func = ffs_func_from_usb(f); 3071 struct f_fs_opts *ffs_opts = 3072 container_of(f->fi, struct f_fs_opts, func_inst); 3073 struct ffs_data *ffs_data; 3074 int ret; 3075 3076 ENTER(); 3077 3078 /* 3079 * Legacy gadget triggers binding in functionfs_ready_callback, 3080 * which already uses locking; taking the same lock here would 3081 * cause a deadlock. 3082 * 3083 * Configfs-enabled gadgets however do need ffs_dev_lock. 3084 */ 3085 if (!ffs_opts->no_configfs) 3086 ffs_dev_lock(); 3087 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; 3088 ffs_data = ffs_opts->dev->ffs_data; 3089 if (!ffs_opts->no_configfs) 3090 ffs_dev_unlock(); 3091 if (ret) 3092 return ERR_PTR(ret); 3093 3094 func->ffs = ffs_data; 3095 func->conf = c; 3096 func->gadget = c->cdev->gadget; 3097 3098 /* 3099 * in drivers/usb/gadget/configfs.c:configfs_composite_bind() 3100 * configurations are bound in sequence with list_for_each_entry, 3101 * in each configuration its functions are bound in sequence 3102 * with list_for_each_entry, so we assume no race condition 3103 * with regard to ffs_opts->bound access 3104 */ 3105 if (!ffs_opts->refcnt) { 3106 ret = functionfs_bind(func->ffs, c->cdev); 3107 if (ret) 3108 return ERR_PTR(ret); 3109 } 3110 ffs_opts->refcnt++; 3111 func->function.strings = func->ffs->stringtabs; 3112 3113 return ffs_opts; 3114 } 3115 3116 static int _ffs_func_bind(struct usb_configuration *c, 3117 struct usb_function *f) 3118 { 3119 struct ffs_function *func = ffs_func_from_usb(f); 3120 struct ffs_data *ffs = func->ffs; 3121 3122 const int full = !!func->ffs->fs_descs_count; 3123 const int high = !!func->ffs->hs_descs_count; 3124 const int super = !!func->ffs->ss_descs_count; 3125 3126 int fs_len, hs_len, ss_len, ret, i; 3127 struct ffs_ep *eps_ptr; 3128 3129 /* Make it a single chunk, less management later on */ 3130 vla_group(d); 3131 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); 3132 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, 3133 full ? ffs->fs_descs_count + 1 : 0); 3134 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, 3135 high ? ffs->hs_descs_count + 1 : 0); 3136 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, 3137 super ? ffs->ss_descs_count + 1 : 0); 3138 vla_item_with_sz(d, short, inums, ffs->interfaces_count); 3139 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, 3140 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3141 vla_item_with_sz(d, char[16], ext_compat, 3142 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3143 vla_item_with_sz(d, struct usb_os_desc, os_desc, 3144 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3145 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, 3146 ffs->ms_os_descs_ext_prop_count); 3147 vla_item_with_sz(d, char, ext_prop_name, 3148 ffs->ms_os_descs_ext_prop_name_len); 3149 vla_item_with_sz(d, char, ext_prop_data, 3150 ffs->ms_os_descs_ext_prop_data_len); 3151 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); 3152 char *vlabuf; 3153 3154 ENTER(); 3155 3156 /* Has descriptors only for speeds gadget does not support */ 3157 if (!(full | high | super)) 3158 return -ENOTSUPP; 3159 3160 /* Allocate a single chunk, less management later on */ 3161 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); 3162 if (!vlabuf) 3163 return -ENOMEM; 3164 3165 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); 3166 ffs->ms_os_descs_ext_prop_name_avail = 3167 vla_ptr(vlabuf, d, ext_prop_name); 3168 ffs->ms_os_descs_ext_prop_data_avail = 3169 vla_ptr(vlabuf, d, ext_prop_data); 3170 3171 /* Copy descriptors */ 3172 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, 3173 ffs->raw_descs_length); 3174 3175 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); 3176 eps_ptr = vla_ptr(vlabuf, d, eps); 3177 for (i = 0; i < ffs->eps_count; i++) 3178 eps_ptr[i].num = -1; 3179 3180 /* Save pointers 3181 * d_eps == vlabuf, func->eps used to kfree vlabuf later 3182 */ 3183 func->eps = vla_ptr(vlabuf, d, eps); 3184 func->interfaces_nums = vla_ptr(vlabuf, d, inums); 3185 3186 /* 3187 * Go through all the endpoint descriptors and allocate 3188 * endpoints first, so that later we can rewrite the endpoint 3189 * numbers without worrying that it may be described later on. 3190 */ 3191 if (full) { 3192 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); 3193 fs_len = ffs_do_descs(ffs->fs_descs_count, 3194 vla_ptr(vlabuf, d, raw_descs), 3195 d_raw_descs__sz, 3196 __ffs_func_bind_do_descs, func); 3197 if (fs_len < 0) { 3198 ret = fs_len; 3199 goto error; 3200 } 3201 } else { 3202 fs_len = 0; 3203 } 3204 3205 if (high) { 3206 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); 3207 hs_len = ffs_do_descs(ffs->hs_descs_count, 3208 vla_ptr(vlabuf, d, raw_descs) + fs_len, 3209 d_raw_descs__sz - fs_len, 3210 __ffs_func_bind_do_descs, func); 3211 if (hs_len < 0) { 3212 ret = hs_len; 3213 goto error; 3214 } 3215 } else { 3216 hs_len = 0; 3217 } 3218 3219 if (super) { 3220 func->function.ss_descriptors = func->function.ssp_descriptors = 3221 vla_ptr(vlabuf, d, ss_descs); 3222 ss_len = ffs_do_descs(ffs->ss_descs_count, 3223 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, 3224 d_raw_descs__sz - fs_len - hs_len, 3225 __ffs_func_bind_do_descs, func); 3226 if (ss_len < 0) { 3227 ret = ss_len; 3228 goto error; 3229 } 3230 } else { 3231 ss_len = 0; 3232 } 3233 3234 /* 3235 * Now handle interface numbers allocation and interface and 3236 * endpoint numbers rewriting. We can do that in one go 3237 * now. 3238 */ 3239 ret = ffs_do_descs(ffs->fs_descs_count + 3240 (high ? ffs->hs_descs_count : 0) + 3241 (super ? ffs->ss_descs_count : 0), 3242 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, 3243 __ffs_func_bind_do_nums, func); 3244 if (ret < 0) 3245 goto error; 3246 3247 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); 3248 if (c->cdev->use_os_string) { 3249 for (i = 0; i < ffs->interfaces_count; ++i) { 3250 struct usb_os_desc *desc; 3251 3252 desc = func->function.os_desc_table[i].os_desc = 3253 vla_ptr(vlabuf, d, os_desc) + 3254 i * sizeof(struct usb_os_desc); 3255 desc->ext_compat_id = 3256 vla_ptr(vlabuf, d, ext_compat) + i * 16; 3257 INIT_LIST_HEAD(&desc->ext_prop); 3258 } 3259 ret = ffs_do_os_descs(ffs->ms_os_descs_count, 3260 vla_ptr(vlabuf, d, raw_descs) + 3261 fs_len + hs_len + ss_len, 3262 d_raw_descs__sz - fs_len - hs_len - 3263 ss_len, 3264 __ffs_func_bind_do_os_desc, func); 3265 if (ret < 0) 3266 goto error; 3267 } 3268 func->function.os_desc_n = 3269 c->cdev->use_os_string ? ffs->interfaces_count : 0; 3270 3271 /* And we're done */ 3272 ffs_event_add(ffs, FUNCTIONFS_BIND); 3273 return 0; 3274 3275 error: 3276 /* XXX Do we need to release all claimed endpoints here? */ 3277 return ret; 3278 } 3279 3280 static int ffs_func_bind(struct usb_configuration *c, 3281 struct usb_function *f) 3282 { 3283 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); 3284 struct ffs_function *func = ffs_func_from_usb(f); 3285 int ret; 3286 3287 if (IS_ERR(ffs_opts)) 3288 return PTR_ERR(ffs_opts); 3289 3290 ret = _ffs_func_bind(c, f); 3291 if (ret && !--ffs_opts->refcnt) 3292 functionfs_unbind(func->ffs); 3293 3294 return ret; 3295 } 3296 3297 3298 /* Other USB function hooks *************************************************/ 3299 3300 static void ffs_reset_work(struct work_struct *work) 3301 { 3302 struct ffs_data *ffs = container_of(work, 3303 struct ffs_data, reset_work); 3304 ffs_data_reset(ffs); 3305 } 3306 3307 static int ffs_func_set_alt(struct usb_function *f, 3308 unsigned interface, unsigned alt) 3309 { 3310 struct ffs_function *func = ffs_func_from_usb(f); 3311 struct ffs_data *ffs = func->ffs; 3312 int ret = 0, intf; 3313 3314 if (alt != (unsigned)-1) { 3315 intf = ffs_func_revmap_intf(func, interface); 3316 if (intf < 0) 3317 return intf; 3318 } 3319 3320 if (ffs->func) 3321 ffs_func_eps_disable(ffs->func); 3322 3323 if (ffs->state == FFS_DEACTIVATED) { 3324 ffs->state = FFS_CLOSING; 3325 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3326 schedule_work(&ffs->reset_work); 3327 return -ENODEV; 3328 } 3329 3330 if (ffs->state != FFS_ACTIVE) 3331 return -ENODEV; 3332 3333 if (alt == (unsigned)-1) { 3334 ffs->func = NULL; 3335 ffs_event_add(ffs, FUNCTIONFS_DISABLE); 3336 return 0; 3337 } 3338 3339 ffs->func = func; 3340 ret = ffs_func_eps_enable(func); 3341 if (ret >= 0) 3342 ffs_event_add(ffs, FUNCTIONFS_ENABLE); 3343 return ret; 3344 } 3345 3346 static void ffs_func_disable(struct usb_function *f) 3347 { 3348 ffs_func_set_alt(f, 0, (unsigned)-1); 3349 } 3350 3351 static int ffs_func_setup(struct usb_function *f, 3352 const struct usb_ctrlrequest *creq) 3353 { 3354 struct ffs_function *func = ffs_func_from_usb(f); 3355 struct ffs_data *ffs = func->ffs; 3356 unsigned long flags; 3357 int ret; 3358 3359 ENTER(); 3360 3361 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); 3362 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); 3363 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); 3364 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); 3365 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); 3366 3367 /* 3368 * Most requests directed to interface go through here 3369 * (notable exceptions are set/get interface) so we need to 3370 * handle them. All other either handled by composite or 3371 * passed to usb_configuration->setup() (if one is set). No 3372 * matter, we will handle requests directed to endpoint here 3373 * as well (as it's straightforward). Other request recipient 3374 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP 3375 * is being used. 3376 */ 3377 if (ffs->state != FFS_ACTIVE) 3378 return -ENODEV; 3379 3380 switch (creq->bRequestType & USB_RECIP_MASK) { 3381 case USB_RECIP_INTERFACE: 3382 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); 3383 if (ret < 0) 3384 return ret; 3385 break; 3386 3387 case USB_RECIP_ENDPOINT: 3388 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); 3389 if (ret < 0) 3390 return ret; 3391 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3392 ret = func->ffs->eps_addrmap[ret]; 3393 break; 3394 3395 default: 3396 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP) 3397 ret = le16_to_cpu(creq->wIndex); 3398 else 3399 return -EOPNOTSUPP; 3400 } 3401 3402 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3403 ffs->ev.setup = *creq; 3404 ffs->ev.setup.wIndex = cpu_to_le16(ret); 3405 __ffs_event_add(ffs, FUNCTIONFS_SETUP); 3406 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3407 3408 return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0; 3409 } 3410 3411 static bool ffs_func_req_match(struct usb_function *f, 3412 const struct usb_ctrlrequest *creq, 3413 bool config0) 3414 { 3415 struct ffs_function *func = ffs_func_from_usb(f); 3416 3417 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP)) 3418 return false; 3419 3420 switch (creq->bRequestType & USB_RECIP_MASK) { 3421 case USB_RECIP_INTERFACE: 3422 return (ffs_func_revmap_intf(func, 3423 le16_to_cpu(creq->wIndex)) >= 0); 3424 case USB_RECIP_ENDPOINT: 3425 return (ffs_func_revmap_ep(func, 3426 le16_to_cpu(creq->wIndex)) >= 0); 3427 default: 3428 return (bool) (func->ffs->user_flags & 3429 FUNCTIONFS_ALL_CTRL_RECIP); 3430 } 3431 } 3432 3433 static void ffs_func_suspend(struct usb_function *f) 3434 { 3435 ENTER(); 3436 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); 3437 } 3438 3439 static void ffs_func_resume(struct usb_function *f) 3440 { 3441 ENTER(); 3442 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); 3443 } 3444 3445 3446 /* Endpoint and interface numbers reverse mapping ***************************/ 3447 3448 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) 3449 { 3450 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; 3451 return num ? num : -EDOM; 3452 } 3453 3454 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) 3455 { 3456 short *nums = func->interfaces_nums; 3457 unsigned count = func->ffs->interfaces_count; 3458 3459 for (; count; --count, ++nums) { 3460 if (*nums >= 0 && *nums == intf) 3461 return nums - func->interfaces_nums; 3462 } 3463 3464 return -EDOM; 3465 } 3466 3467 3468 /* Devices management *******************************************************/ 3469 3470 static LIST_HEAD(ffs_devices); 3471 3472 static struct ffs_dev *_ffs_do_find_dev(const char *name) 3473 { 3474 struct ffs_dev *dev; 3475 3476 if (!name) 3477 return NULL; 3478 3479 list_for_each_entry(dev, &ffs_devices, entry) { 3480 if (strcmp(dev->name, name) == 0) 3481 return dev; 3482 } 3483 3484 return NULL; 3485 } 3486 3487 /* 3488 * ffs_lock must be taken by the caller of this function 3489 */ 3490 static struct ffs_dev *_ffs_get_single_dev(void) 3491 { 3492 struct ffs_dev *dev; 3493 3494 if (list_is_singular(&ffs_devices)) { 3495 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); 3496 if (dev->single) 3497 return dev; 3498 } 3499 3500 return NULL; 3501 } 3502 3503 /* 3504 * ffs_lock must be taken by the caller of this function 3505 */ 3506 static struct ffs_dev *_ffs_find_dev(const char *name) 3507 { 3508 struct ffs_dev *dev; 3509 3510 dev = _ffs_get_single_dev(); 3511 if (dev) 3512 return dev; 3513 3514 return _ffs_do_find_dev(name); 3515 } 3516 3517 /* Configfs support *********************************************************/ 3518 3519 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) 3520 { 3521 return container_of(to_config_group(item), struct f_fs_opts, 3522 func_inst.group); 3523 } 3524 3525 static void ffs_attr_release(struct config_item *item) 3526 { 3527 struct f_fs_opts *opts = to_ffs_opts(item); 3528 3529 usb_put_function_instance(&opts->func_inst); 3530 } 3531 3532 static struct configfs_item_operations ffs_item_ops = { 3533 .release = ffs_attr_release, 3534 }; 3535 3536 static const struct config_item_type ffs_func_type = { 3537 .ct_item_ops = &ffs_item_ops, 3538 .ct_owner = THIS_MODULE, 3539 }; 3540 3541 3542 /* Function registration interface ******************************************/ 3543 3544 static void ffs_free_inst(struct usb_function_instance *f) 3545 { 3546 struct f_fs_opts *opts; 3547 3548 opts = to_f_fs_opts(f); 3549 ffs_release_dev(opts->dev); 3550 ffs_dev_lock(); 3551 _ffs_free_dev(opts->dev); 3552 ffs_dev_unlock(); 3553 kfree(opts); 3554 } 3555 3556 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) 3557 { 3558 if (strlen(name) >= sizeof_field(struct ffs_dev, name)) 3559 return -ENAMETOOLONG; 3560 return ffs_name_dev(to_f_fs_opts(fi)->dev, name); 3561 } 3562 3563 static struct usb_function_instance *ffs_alloc_inst(void) 3564 { 3565 struct f_fs_opts *opts; 3566 struct ffs_dev *dev; 3567 3568 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 3569 if (!opts) 3570 return ERR_PTR(-ENOMEM); 3571 3572 opts->func_inst.set_inst_name = ffs_set_inst_name; 3573 opts->func_inst.free_func_inst = ffs_free_inst; 3574 ffs_dev_lock(); 3575 dev = _ffs_alloc_dev(); 3576 ffs_dev_unlock(); 3577 if (IS_ERR(dev)) { 3578 kfree(opts); 3579 return ERR_CAST(dev); 3580 } 3581 opts->dev = dev; 3582 dev->opts = opts; 3583 3584 config_group_init_type_name(&opts->func_inst.group, "", 3585 &ffs_func_type); 3586 return &opts->func_inst; 3587 } 3588 3589 static void ffs_free(struct usb_function *f) 3590 { 3591 kfree(ffs_func_from_usb(f)); 3592 } 3593 3594 static void ffs_func_unbind(struct usb_configuration *c, 3595 struct usb_function *f) 3596 { 3597 struct ffs_function *func = ffs_func_from_usb(f); 3598 struct ffs_data *ffs = func->ffs; 3599 struct f_fs_opts *opts = 3600 container_of(f->fi, struct f_fs_opts, func_inst); 3601 struct ffs_ep *ep = func->eps; 3602 unsigned count = ffs->eps_count; 3603 unsigned long flags; 3604 3605 ENTER(); 3606 if (ffs->func == func) { 3607 ffs_func_eps_disable(func); 3608 ffs->func = NULL; 3609 } 3610 3611 /* Drain any pending AIO completions */ 3612 drain_workqueue(ffs->io_completion_wq); 3613 3614 if (!--opts->refcnt) 3615 functionfs_unbind(ffs); 3616 3617 /* cleanup after autoconfig */ 3618 spin_lock_irqsave(&func->ffs->eps_lock, flags); 3619 while (count--) { 3620 if (ep->ep && ep->req) 3621 usb_ep_free_request(ep->ep, ep->req); 3622 ep->req = NULL; 3623 ++ep; 3624 } 3625 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 3626 kfree(func->eps); 3627 func->eps = NULL; 3628 /* 3629 * eps, descriptors and interfaces_nums are allocated in the 3630 * same chunk so only one free is required. 3631 */ 3632 func->function.fs_descriptors = NULL; 3633 func->function.hs_descriptors = NULL; 3634 func->function.ss_descriptors = NULL; 3635 func->function.ssp_descriptors = NULL; 3636 func->interfaces_nums = NULL; 3637 3638 ffs_event_add(ffs, FUNCTIONFS_UNBIND); 3639 } 3640 3641 static struct usb_function *ffs_alloc(struct usb_function_instance *fi) 3642 { 3643 struct ffs_function *func; 3644 3645 ENTER(); 3646 3647 func = kzalloc(sizeof(*func), GFP_KERNEL); 3648 if (!func) 3649 return ERR_PTR(-ENOMEM); 3650 3651 func->function.name = "Function FS Gadget"; 3652 3653 func->function.bind = ffs_func_bind; 3654 func->function.unbind = ffs_func_unbind; 3655 func->function.set_alt = ffs_func_set_alt; 3656 func->function.disable = ffs_func_disable; 3657 func->function.setup = ffs_func_setup; 3658 func->function.req_match = ffs_func_req_match; 3659 func->function.suspend = ffs_func_suspend; 3660 func->function.resume = ffs_func_resume; 3661 func->function.free_func = ffs_free; 3662 3663 return &func->function; 3664 } 3665 3666 /* 3667 * ffs_lock must be taken by the caller of this function 3668 */ 3669 static struct ffs_dev *_ffs_alloc_dev(void) 3670 { 3671 struct ffs_dev *dev; 3672 int ret; 3673 3674 if (_ffs_get_single_dev()) 3675 return ERR_PTR(-EBUSY); 3676 3677 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3678 if (!dev) 3679 return ERR_PTR(-ENOMEM); 3680 3681 if (list_empty(&ffs_devices)) { 3682 ret = functionfs_init(); 3683 if (ret) { 3684 kfree(dev); 3685 return ERR_PTR(ret); 3686 } 3687 } 3688 3689 list_add(&dev->entry, &ffs_devices); 3690 3691 return dev; 3692 } 3693 3694 int ffs_name_dev(struct ffs_dev *dev, const char *name) 3695 { 3696 struct ffs_dev *existing; 3697 int ret = 0; 3698 3699 ffs_dev_lock(); 3700 3701 existing = _ffs_do_find_dev(name); 3702 if (!existing) 3703 strscpy(dev->name, name, ARRAY_SIZE(dev->name)); 3704 else if (existing != dev) 3705 ret = -EBUSY; 3706 3707 ffs_dev_unlock(); 3708 3709 return ret; 3710 } 3711 EXPORT_SYMBOL_GPL(ffs_name_dev); 3712 3713 int ffs_single_dev(struct ffs_dev *dev) 3714 { 3715 int ret; 3716 3717 ret = 0; 3718 ffs_dev_lock(); 3719 3720 if (!list_is_singular(&ffs_devices)) 3721 ret = -EBUSY; 3722 else 3723 dev->single = true; 3724 3725 ffs_dev_unlock(); 3726 return ret; 3727 } 3728 EXPORT_SYMBOL_GPL(ffs_single_dev); 3729 3730 /* 3731 * ffs_lock must be taken by the caller of this function 3732 */ 3733 static void _ffs_free_dev(struct ffs_dev *dev) 3734 { 3735 list_del(&dev->entry); 3736 3737 kfree(dev); 3738 if (list_empty(&ffs_devices)) 3739 functionfs_cleanup(); 3740 } 3741 3742 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data) 3743 { 3744 int ret = 0; 3745 struct ffs_dev *ffs_dev; 3746 3747 ENTER(); 3748 ffs_dev_lock(); 3749 3750 ffs_dev = _ffs_find_dev(dev_name); 3751 if (!ffs_dev) { 3752 ret = -ENOENT; 3753 } else if (ffs_dev->mounted) { 3754 ret = -EBUSY; 3755 } else if (ffs_dev->ffs_acquire_dev_callback && 3756 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) { 3757 ret = -ENOENT; 3758 } else { 3759 ffs_dev->mounted = true; 3760 ffs_dev->ffs_data = ffs_data; 3761 ffs_data->private_data = ffs_dev; 3762 } 3763 3764 ffs_dev_unlock(); 3765 return ret; 3766 } 3767 3768 static void ffs_release_dev(struct ffs_dev *ffs_dev) 3769 { 3770 ENTER(); 3771 ffs_dev_lock(); 3772 3773 if (ffs_dev && ffs_dev->mounted) { 3774 ffs_dev->mounted = false; 3775 if (ffs_dev->ffs_data) { 3776 ffs_dev->ffs_data->private_data = NULL; 3777 ffs_dev->ffs_data = NULL; 3778 } 3779 3780 if (ffs_dev->ffs_release_dev_callback) 3781 ffs_dev->ffs_release_dev_callback(ffs_dev); 3782 } 3783 3784 ffs_dev_unlock(); 3785 } 3786 3787 static int ffs_ready(struct ffs_data *ffs) 3788 { 3789 struct ffs_dev *ffs_obj; 3790 int ret = 0; 3791 3792 ENTER(); 3793 ffs_dev_lock(); 3794 3795 ffs_obj = ffs->private_data; 3796 if (!ffs_obj) { 3797 ret = -EINVAL; 3798 goto done; 3799 } 3800 if (WARN_ON(ffs_obj->desc_ready)) { 3801 ret = -EBUSY; 3802 goto done; 3803 } 3804 3805 ffs_obj->desc_ready = true; 3806 3807 if (ffs_obj->ffs_ready_callback) { 3808 ret = ffs_obj->ffs_ready_callback(ffs); 3809 if (ret) 3810 goto done; 3811 } 3812 3813 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); 3814 done: 3815 ffs_dev_unlock(); 3816 return ret; 3817 } 3818 3819 static void ffs_closed(struct ffs_data *ffs) 3820 { 3821 struct ffs_dev *ffs_obj; 3822 struct f_fs_opts *opts; 3823 struct config_item *ci; 3824 3825 ENTER(); 3826 ffs_dev_lock(); 3827 3828 ffs_obj = ffs->private_data; 3829 if (!ffs_obj) 3830 goto done; 3831 3832 ffs_obj->desc_ready = false; 3833 3834 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) && 3835 ffs_obj->ffs_closed_callback) 3836 ffs_obj->ffs_closed_callback(ffs); 3837 3838 if (ffs_obj->opts) 3839 opts = ffs_obj->opts; 3840 else 3841 goto done; 3842 3843 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent 3844 || !kref_read(&opts->func_inst.group.cg_item.ci_kref)) 3845 goto done; 3846 3847 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent; 3848 ffs_dev_unlock(); 3849 3850 if (test_bit(FFS_FL_BOUND, &ffs->flags)) 3851 unregister_gadget_item(ci); 3852 return; 3853 done: 3854 ffs_dev_unlock(); 3855 } 3856 3857 /* Misc helper functions ****************************************************/ 3858 3859 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 3860 { 3861 return nonblock 3862 ? mutex_trylock(mutex) ? 0 : -EAGAIN 3863 : mutex_lock_interruptible(mutex); 3864 } 3865 3866 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 3867 { 3868 char *data; 3869 3870 if (!len) 3871 return NULL; 3872 3873 data = memdup_user(buf, len); 3874 if (IS_ERR(data)) 3875 return data; 3876 3877 pr_vdebug("Buffer from user space:\n"); 3878 ffs_dump_mem("", data, len); 3879 3880 return data; 3881 } 3882 3883 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); 3884 MODULE_LICENSE("GPL"); 3885 MODULE_AUTHOR("Michal Nazarewicz"); 3886