xref: /openbmc/linux/drivers/usb/gadget/function/f_fs.c (revision c6fddb28)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * f_fs.c -- user mode file system API for USB composite function controllers
4  *
5  * Copyright (C) 2010 Samsung Electronics
6  * Author: Michal Nazarewicz <mina86@mina86.com>
7  *
8  * Based on inode.c (GadgetFS) which was:
9  * Copyright (C) 2003-2004 David Brownell
10  * Copyright (C) 2003 Agilent Technologies
11  */
12 
13 
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16 
17 #include <linux/blkdev.h>
18 #include <linux/pagemap.h>
19 #include <linux/export.h>
20 #include <linux/fs_parser.h>
21 #include <linux/hid.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/scatterlist.h>
25 #include <linux/sched/signal.h>
26 #include <linux/uio.h>
27 #include <linux/vmalloc.h>
28 #include <asm/unaligned.h>
29 
30 #include <linux/usb/ccid.h>
31 #include <linux/usb/composite.h>
32 #include <linux/usb/functionfs.h>
33 
34 #include <linux/aio.h>
35 #include <linux/mmu_context.h>
36 #include <linux/poll.h>
37 #include <linux/eventfd.h>
38 
39 #include "u_fs.h"
40 #include "u_f.h"
41 #include "u_os_desc.h"
42 #include "configfs.h"
43 
44 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
45 
46 /* Reference counter handling */
47 static void ffs_data_get(struct ffs_data *ffs);
48 static void ffs_data_put(struct ffs_data *ffs);
49 /* Creates new ffs_data object. */
50 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
51 	__attribute__((malloc));
52 
53 /* Opened counter handling. */
54 static void ffs_data_opened(struct ffs_data *ffs);
55 static void ffs_data_closed(struct ffs_data *ffs);
56 
57 /* Called with ffs->mutex held; take over ownership of data. */
58 static int __must_check
59 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
60 static int __must_check
61 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
62 
63 
64 /* The function structure ***************************************************/
65 
66 struct ffs_ep;
67 
68 struct ffs_function {
69 	struct usb_configuration	*conf;
70 	struct usb_gadget		*gadget;
71 	struct ffs_data			*ffs;
72 
73 	struct ffs_ep			*eps;
74 	u8				eps_revmap[16];
75 	short				*interfaces_nums;
76 
77 	struct usb_function		function;
78 };
79 
80 
81 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
82 {
83 	return container_of(f, struct ffs_function, function);
84 }
85 
86 
87 static inline enum ffs_setup_state
88 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
89 {
90 	return (enum ffs_setup_state)
91 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
92 }
93 
94 
95 static void ffs_func_eps_disable(struct ffs_function *func);
96 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
97 
98 static int ffs_func_bind(struct usb_configuration *,
99 			 struct usb_function *);
100 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
101 static void ffs_func_disable(struct usb_function *);
102 static int ffs_func_setup(struct usb_function *,
103 			  const struct usb_ctrlrequest *);
104 static bool ffs_func_req_match(struct usb_function *,
105 			       const struct usb_ctrlrequest *,
106 			       bool config0);
107 static void ffs_func_suspend(struct usb_function *);
108 static void ffs_func_resume(struct usb_function *);
109 
110 
111 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
112 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
113 
114 
115 /* The endpoints structures *************************************************/
116 
117 struct ffs_ep {
118 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
119 	struct usb_request		*req;	/* P: epfile->mutex */
120 
121 	/* [0]: full speed, [1]: high speed, [2]: super speed */
122 	struct usb_endpoint_descriptor	*descs[3];
123 
124 	u8				num;
125 
126 	int				status;	/* P: epfile->mutex */
127 };
128 
129 struct ffs_epfile {
130 	/* Protects ep->ep and ep->req. */
131 	struct mutex			mutex;
132 
133 	struct ffs_data			*ffs;
134 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
135 
136 	struct dentry			*dentry;
137 
138 	/*
139 	 * Buffer for holding data from partial reads which may happen since
140 	 * we’re rounding user read requests to a multiple of a max packet size.
141 	 *
142 	 * The pointer is initialised with NULL value and may be set by
143 	 * __ffs_epfile_read_data function to point to a temporary buffer.
144 	 *
145 	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
146 	 * data from said buffer and eventually free it.  Importantly, while the
147 	 * function is using the buffer, it sets the pointer to NULL.  This is
148 	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
149 	 * can never run concurrently (they are synchronised by epfile->mutex)
150 	 * so the latter will not assign a new value to the pointer.
151 	 *
152 	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
153 	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
154 	 * value is crux of the synchronisation between ffs_func_eps_disable and
155 	 * __ffs_epfile_read_data.
156 	 *
157 	 * Once __ffs_epfile_read_data is about to finish it will try to set the
158 	 * pointer back to its old value (as described above), but seeing as the
159 	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
160 	 * the buffer.
161 	 *
162 	 * == State transitions ==
163 	 *
164 	 * • ptr == NULL:  (initial state)
165 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
166 	 *   ◦ __ffs_epfile_read_buffered:    nop
167 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
168 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
169 	 * • ptr == DROP:
170 	 *   ◦ __ffs_epfile_read_buffer_free: nop
171 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
172 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
173 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
174 	 * • ptr == buf:
175 	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
176 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
177 	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
178 	 *                                    is always called first
179 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
180 	 * • ptr == NULL and reading:
181 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
182 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
183 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
184 	 *   ◦ reading finishes and …
185 	 *     … all data read:               free buf, go to ptr == NULL
186 	 *     … otherwise:                   go to ptr == buf and reading
187 	 * • ptr == DROP and reading:
188 	 *   ◦ __ffs_epfile_read_buffer_free: nop
189 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
190 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
191 	 *   ◦ reading finishes:              free buf, go to ptr == DROP
192 	 */
193 	struct ffs_buffer		*read_buffer;
194 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
195 
196 	char				name[5];
197 
198 	unsigned char			in;	/* P: ffs->eps_lock */
199 	unsigned char			isoc;	/* P: ffs->eps_lock */
200 
201 	unsigned char			_pad;
202 };
203 
204 struct ffs_buffer {
205 	size_t length;
206 	char *data;
207 	char storage[];
208 };
209 
210 /*  ffs_io_data structure ***************************************************/
211 
212 struct ffs_io_data {
213 	bool aio;
214 	bool read;
215 
216 	struct kiocb *kiocb;
217 	struct iov_iter data;
218 	const void *to_free;
219 	char *buf;
220 
221 	struct mm_struct *mm;
222 	struct work_struct work;
223 
224 	struct usb_ep *ep;
225 	struct usb_request *req;
226 	struct sg_table sgt;
227 	bool use_sg;
228 
229 	struct ffs_data *ffs;
230 };
231 
232 struct ffs_desc_helper {
233 	struct ffs_data *ffs;
234 	unsigned interfaces_count;
235 	unsigned eps_count;
236 };
237 
238 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
239 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
240 
241 static struct dentry *
242 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
243 		   const struct file_operations *fops);
244 
245 /* Devices management *******************************************************/
246 
247 DEFINE_MUTEX(ffs_lock);
248 EXPORT_SYMBOL_GPL(ffs_lock);
249 
250 static struct ffs_dev *_ffs_find_dev(const char *name);
251 static struct ffs_dev *_ffs_alloc_dev(void);
252 static void _ffs_free_dev(struct ffs_dev *dev);
253 static void *ffs_acquire_dev(const char *dev_name);
254 static void ffs_release_dev(struct ffs_data *ffs_data);
255 static int ffs_ready(struct ffs_data *ffs);
256 static void ffs_closed(struct ffs_data *ffs);
257 
258 /* Misc helper functions ****************************************************/
259 
260 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
261 	__attribute__((warn_unused_result, nonnull));
262 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
263 	__attribute__((warn_unused_result, nonnull));
264 
265 
266 /* Control file aka ep0 *****************************************************/
267 
268 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
269 {
270 	struct ffs_data *ffs = req->context;
271 
272 	complete(&ffs->ep0req_completion);
273 }
274 
275 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
276 	__releases(&ffs->ev.waitq.lock)
277 {
278 	struct usb_request *req = ffs->ep0req;
279 	int ret;
280 
281 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
282 
283 	spin_unlock_irq(&ffs->ev.waitq.lock);
284 
285 	req->buf      = data;
286 	req->length   = len;
287 
288 	/*
289 	 * UDC layer requires to provide a buffer even for ZLP, but should
290 	 * not use it at all. Let's provide some poisoned pointer to catch
291 	 * possible bug in the driver.
292 	 */
293 	if (req->buf == NULL)
294 		req->buf = (void *)0xDEADBABE;
295 
296 	reinit_completion(&ffs->ep0req_completion);
297 
298 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
299 	if (unlikely(ret < 0))
300 		return ret;
301 
302 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
303 	if (unlikely(ret)) {
304 		usb_ep_dequeue(ffs->gadget->ep0, req);
305 		return -EINTR;
306 	}
307 
308 	ffs->setup_state = FFS_NO_SETUP;
309 	return req->status ? req->status : req->actual;
310 }
311 
312 static int __ffs_ep0_stall(struct ffs_data *ffs)
313 {
314 	if (ffs->ev.can_stall) {
315 		pr_vdebug("ep0 stall\n");
316 		usb_ep_set_halt(ffs->gadget->ep0);
317 		ffs->setup_state = FFS_NO_SETUP;
318 		return -EL2HLT;
319 	} else {
320 		pr_debug("bogus ep0 stall!\n");
321 		return -ESRCH;
322 	}
323 }
324 
325 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
326 			     size_t len, loff_t *ptr)
327 {
328 	struct ffs_data *ffs = file->private_data;
329 	ssize_t ret;
330 	char *data;
331 
332 	ENTER();
333 
334 	/* Fast check if setup was canceled */
335 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
336 		return -EIDRM;
337 
338 	/* Acquire mutex */
339 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
340 	if (unlikely(ret < 0))
341 		return ret;
342 
343 	/* Check state */
344 	switch (ffs->state) {
345 	case FFS_READ_DESCRIPTORS:
346 	case FFS_READ_STRINGS:
347 		/* Copy data */
348 		if (unlikely(len < 16)) {
349 			ret = -EINVAL;
350 			break;
351 		}
352 
353 		data = ffs_prepare_buffer(buf, len);
354 		if (IS_ERR(data)) {
355 			ret = PTR_ERR(data);
356 			break;
357 		}
358 
359 		/* Handle data */
360 		if (ffs->state == FFS_READ_DESCRIPTORS) {
361 			pr_info("read descriptors\n");
362 			ret = __ffs_data_got_descs(ffs, data, len);
363 			if (unlikely(ret < 0))
364 				break;
365 
366 			ffs->state = FFS_READ_STRINGS;
367 			ret = len;
368 		} else {
369 			pr_info("read strings\n");
370 			ret = __ffs_data_got_strings(ffs, data, len);
371 			if (unlikely(ret < 0))
372 				break;
373 
374 			ret = ffs_epfiles_create(ffs);
375 			if (unlikely(ret)) {
376 				ffs->state = FFS_CLOSING;
377 				break;
378 			}
379 
380 			ffs->state = FFS_ACTIVE;
381 			mutex_unlock(&ffs->mutex);
382 
383 			ret = ffs_ready(ffs);
384 			if (unlikely(ret < 0)) {
385 				ffs->state = FFS_CLOSING;
386 				return ret;
387 			}
388 
389 			return len;
390 		}
391 		break;
392 
393 	case FFS_ACTIVE:
394 		data = NULL;
395 		/*
396 		 * We're called from user space, we can use _irq
397 		 * rather then _irqsave
398 		 */
399 		spin_lock_irq(&ffs->ev.waitq.lock);
400 		switch (ffs_setup_state_clear_cancelled(ffs)) {
401 		case FFS_SETUP_CANCELLED:
402 			ret = -EIDRM;
403 			goto done_spin;
404 
405 		case FFS_NO_SETUP:
406 			ret = -ESRCH;
407 			goto done_spin;
408 
409 		case FFS_SETUP_PENDING:
410 			break;
411 		}
412 
413 		/* FFS_SETUP_PENDING */
414 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
415 			spin_unlock_irq(&ffs->ev.waitq.lock);
416 			ret = __ffs_ep0_stall(ffs);
417 			break;
418 		}
419 
420 		/* FFS_SETUP_PENDING and not stall */
421 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
422 
423 		spin_unlock_irq(&ffs->ev.waitq.lock);
424 
425 		data = ffs_prepare_buffer(buf, len);
426 		if (IS_ERR(data)) {
427 			ret = PTR_ERR(data);
428 			break;
429 		}
430 
431 		spin_lock_irq(&ffs->ev.waitq.lock);
432 
433 		/*
434 		 * We are guaranteed to be still in FFS_ACTIVE state
435 		 * but the state of setup could have changed from
436 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
437 		 * to check for that.  If that happened we copied data
438 		 * from user space in vain but it's unlikely.
439 		 *
440 		 * For sure we are not in FFS_NO_SETUP since this is
441 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
442 		 * transition can be performed and it's protected by
443 		 * mutex.
444 		 */
445 		if (ffs_setup_state_clear_cancelled(ffs) ==
446 		    FFS_SETUP_CANCELLED) {
447 			ret = -EIDRM;
448 done_spin:
449 			spin_unlock_irq(&ffs->ev.waitq.lock);
450 		} else {
451 			/* unlocks spinlock */
452 			ret = __ffs_ep0_queue_wait(ffs, data, len);
453 		}
454 		kfree(data);
455 		break;
456 
457 	default:
458 		ret = -EBADFD;
459 		break;
460 	}
461 
462 	mutex_unlock(&ffs->mutex);
463 	return ret;
464 }
465 
466 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
467 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
468 				     size_t n)
469 	__releases(&ffs->ev.waitq.lock)
470 {
471 	/*
472 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
473 	 * size of ffs->ev.types array (which is four) so that's how much space
474 	 * we reserve.
475 	 */
476 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
477 	const size_t size = n * sizeof *events;
478 	unsigned i = 0;
479 
480 	memset(events, 0, size);
481 
482 	do {
483 		events[i].type = ffs->ev.types[i];
484 		if (events[i].type == FUNCTIONFS_SETUP) {
485 			events[i].u.setup = ffs->ev.setup;
486 			ffs->setup_state = FFS_SETUP_PENDING;
487 		}
488 	} while (++i < n);
489 
490 	ffs->ev.count -= n;
491 	if (ffs->ev.count)
492 		memmove(ffs->ev.types, ffs->ev.types + n,
493 			ffs->ev.count * sizeof *ffs->ev.types);
494 
495 	spin_unlock_irq(&ffs->ev.waitq.lock);
496 	mutex_unlock(&ffs->mutex);
497 
498 	return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
499 }
500 
501 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
502 			    size_t len, loff_t *ptr)
503 {
504 	struct ffs_data *ffs = file->private_data;
505 	char *data = NULL;
506 	size_t n;
507 	int ret;
508 
509 	ENTER();
510 
511 	/* Fast check if setup was canceled */
512 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
513 		return -EIDRM;
514 
515 	/* Acquire mutex */
516 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
517 	if (unlikely(ret < 0))
518 		return ret;
519 
520 	/* Check state */
521 	if (ffs->state != FFS_ACTIVE) {
522 		ret = -EBADFD;
523 		goto done_mutex;
524 	}
525 
526 	/*
527 	 * We're called from user space, we can use _irq rather then
528 	 * _irqsave
529 	 */
530 	spin_lock_irq(&ffs->ev.waitq.lock);
531 
532 	switch (ffs_setup_state_clear_cancelled(ffs)) {
533 	case FFS_SETUP_CANCELLED:
534 		ret = -EIDRM;
535 		break;
536 
537 	case FFS_NO_SETUP:
538 		n = len / sizeof(struct usb_functionfs_event);
539 		if (unlikely(!n)) {
540 			ret = -EINVAL;
541 			break;
542 		}
543 
544 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
545 			ret = -EAGAIN;
546 			break;
547 		}
548 
549 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
550 							ffs->ev.count)) {
551 			ret = -EINTR;
552 			break;
553 		}
554 
555 		/* unlocks spinlock */
556 		return __ffs_ep0_read_events(ffs, buf,
557 					     min(n, (size_t)ffs->ev.count));
558 
559 	case FFS_SETUP_PENDING:
560 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
561 			spin_unlock_irq(&ffs->ev.waitq.lock);
562 			ret = __ffs_ep0_stall(ffs);
563 			goto done_mutex;
564 		}
565 
566 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
567 
568 		spin_unlock_irq(&ffs->ev.waitq.lock);
569 
570 		if (likely(len)) {
571 			data = kmalloc(len, GFP_KERNEL);
572 			if (unlikely(!data)) {
573 				ret = -ENOMEM;
574 				goto done_mutex;
575 			}
576 		}
577 
578 		spin_lock_irq(&ffs->ev.waitq.lock);
579 
580 		/* See ffs_ep0_write() */
581 		if (ffs_setup_state_clear_cancelled(ffs) ==
582 		    FFS_SETUP_CANCELLED) {
583 			ret = -EIDRM;
584 			break;
585 		}
586 
587 		/* unlocks spinlock */
588 		ret = __ffs_ep0_queue_wait(ffs, data, len);
589 		if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
590 			ret = -EFAULT;
591 		goto done_mutex;
592 
593 	default:
594 		ret = -EBADFD;
595 		break;
596 	}
597 
598 	spin_unlock_irq(&ffs->ev.waitq.lock);
599 done_mutex:
600 	mutex_unlock(&ffs->mutex);
601 	kfree(data);
602 	return ret;
603 }
604 
605 static int ffs_ep0_open(struct inode *inode, struct file *file)
606 {
607 	struct ffs_data *ffs = inode->i_private;
608 
609 	ENTER();
610 
611 	if (unlikely(ffs->state == FFS_CLOSING))
612 		return -EBUSY;
613 
614 	file->private_data = ffs;
615 	ffs_data_opened(ffs);
616 
617 	return 0;
618 }
619 
620 static int ffs_ep0_release(struct inode *inode, struct file *file)
621 {
622 	struct ffs_data *ffs = file->private_data;
623 
624 	ENTER();
625 
626 	ffs_data_closed(ffs);
627 
628 	return 0;
629 }
630 
631 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
632 {
633 	struct ffs_data *ffs = file->private_data;
634 	struct usb_gadget *gadget = ffs->gadget;
635 	long ret;
636 
637 	ENTER();
638 
639 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
640 		struct ffs_function *func = ffs->func;
641 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
642 	} else if (gadget && gadget->ops->ioctl) {
643 		ret = gadget->ops->ioctl(gadget, code, value);
644 	} else {
645 		ret = -ENOTTY;
646 	}
647 
648 	return ret;
649 }
650 
651 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
652 {
653 	struct ffs_data *ffs = file->private_data;
654 	__poll_t mask = EPOLLWRNORM;
655 	int ret;
656 
657 	poll_wait(file, &ffs->ev.waitq, wait);
658 
659 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
660 	if (unlikely(ret < 0))
661 		return mask;
662 
663 	switch (ffs->state) {
664 	case FFS_READ_DESCRIPTORS:
665 	case FFS_READ_STRINGS:
666 		mask |= EPOLLOUT;
667 		break;
668 
669 	case FFS_ACTIVE:
670 		switch (ffs->setup_state) {
671 		case FFS_NO_SETUP:
672 			if (ffs->ev.count)
673 				mask |= EPOLLIN;
674 			break;
675 
676 		case FFS_SETUP_PENDING:
677 		case FFS_SETUP_CANCELLED:
678 			mask |= (EPOLLIN | EPOLLOUT);
679 			break;
680 		}
681 	case FFS_CLOSING:
682 		break;
683 	case FFS_DEACTIVATED:
684 		break;
685 	}
686 
687 	mutex_unlock(&ffs->mutex);
688 
689 	return mask;
690 }
691 
692 static const struct file_operations ffs_ep0_operations = {
693 	.llseek =	no_llseek,
694 
695 	.open =		ffs_ep0_open,
696 	.write =	ffs_ep0_write,
697 	.read =		ffs_ep0_read,
698 	.release =	ffs_ep0_release,
699 	.unlocked_ioctl =	ffs_ep0_ioctl,
700 	.poll =		ffs_ep0_poll,
701 };
702 
703 
704 /* "Normal" endpoints operations ********************************************/
705 
706 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
707 {
708 	ENTER();
709 	if (likely(req->context)) {
710 		struct ffs_ep *ep = _ep->driver_data;
711 		ep->status = req->status ? req->status : req->actual;
712 		complete(req->context);
713 	}
714 }
715 
716 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
717 {
718 	ssize_t ret = copy_to_iter(data, data_len, iter);
719 	if (likely(ret == data_len))
720 		return ret;
721 
722 	if (unlikely(iov_iter_count(iter)))
723 		return -EFAULT;
724 
725 	/*
726 	 * Dear user space developer!
727 	 *
728 	 * TL;DR: To stop getting below error message in your kernel log, change
729 	 * user space code using functionfs to align read buffers to a max
730 	 * packet size.
731 	 *
732 	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
733 	 * packet size.  When unaligned buffer is passed to functionfs, it
734 	 * internally uses a larger, aligned buffer so that such UDCs are happy.
735 	 *
736 	 * Unfortunately, this means that host may send more data than was
737 	 * requested in read(2) system call.  f_fs doesn’t know what to do with
738 	 * that excess data so it simply drops it.
739 	 *
740 	 * Was the buffer aligned in the first place, no such problem would
741 	 * happen.
742 	 *
743 	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
744 	 * by splitting a request into multiple parts.  This splitting may still
745 	 * be a problem though so it’s likely best to align the buffer
746 	 * regardless of it being AIO or not..
747 	 *
748 	 * This only affects OUT endpoints, i.e. reading data with a read(2),
749 	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
750 	 * affected.
751 	 */
752 	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
753 	       "Align read buffer size to max packet size to avoid the problem.\n",
754 	       data_len, ret);
755 
756 	return ret;
757 }
758 
759 /*
760  * allocate a virtually contiguous buffer and create a scatterlist describing it
761  * @sg_table	- pointer to a place to be filled with sg_table contents
762  * @size	- required buffer size
763  */
764 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
765 {
766 	struct page **pages;
767 	void *vaddr, *ptr;
768 	unsigned int n_pages;
769 	int i;
770 
771 	vaddr = vmalloc(sz);
772 	if (!vaddr)
773 		return NULL;
774 
775 	n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
776 	pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
777 	if (!pages) {
778 		vfree(vaddr);
779 
780 		return NULL;
781 	}
782 	for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
783 		pages[i] = vmalloc_to_page(ptr);
784 
785 	if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
786 		kvfree(pages);
787 		vfree(vaddr);
788 
789 		return NULL;
790 	}
791 	kvfree(pages);
792 
793 	return vaddr;
794 }
795 
796 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
797 	size_t data_len)
798 {
799 	if (io_data->use_sg)
800 		return ffs_build_sg_list(&io_data->sgt, data_len);
801 
802 	return kmalloc(data_len, GFP_KERNEL);
803 }
804 
805 static inline void ffs_free_buffer(struct ffs_io_data *io_data)
806 {
807 	if (!io_data->buf)
808 		return;
809 
810 	if (io_data->use_sg) {
811 		sg_free_table(&io_data->sgt);
812 		vfree(io_data->buf);
813 	} else {
814 		kfree(io_data->buf);
815 	}
816 }
817 
818 static void ffs_user_copy_worker(struct work_struct *work)
819 {
820 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
821 						   work);
822 	int ret = io_data->req->status ? io_data->req->status :
823 					 io_data->req->actual;
824 	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
825 
826 	if (io_data->read && ret > 0) {
827 		mm_segment_t oldfs = get_fs();
828 
829 		set_fs(USER_DS);
830 		use_mm(io_data->mm);
831 		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
832 		unuse_mm(io_data->mm);
833 		set_fs(oldfs);
834 	}
835 
836 	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
837 
838 	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
839 		eventfd_signal(io_data->ffs->ffs_eventfd, 1);
840 
841 	usb_ep_free_request(io_data->ep, io_data->req);
842 
843 	if (io_data->read)
844 		kfree(io_data->to_free);
845 	ffs_free_buffer(io_data);
846 	kfree(io_data);
847 }
848 
849 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
850 					 struct usb_request *req)
851 {
852 	struct ffs_io_data *io_data = req->context;
853 	struct ffs_data *ffs = io_data->ffs;
854 
855 	ENTER();
856 
857 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
858 	queue_work(ffs->io_completion_wq, &io_data->work);
859 }
860 
861 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
862 {
863 	/*
864 	 * See comment in struct ffs_epfile for full read_buffer pointer
865 	 * synchronisation story.
866 	 */
867 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
868 	if (buf && buf != READ_BUFFER_DROP)
869 		kfree(buf);
870 }
871 
872 /* Assumes epfile->mutex is held. */
873 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
874 					  struct iov_iter *iter)
875 {
876 	/*
877 	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
878 	 * the buffer while we are using it.  See comment in struct ffs_epfile
879 	 * for full read_buffer pointer synchronisation story.
880 	 */
881 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
882 	ssize_t ret;
883 	if (!buf || buf == READ_BUFFER_DROP)
884 		return 0;
885 
886 	ret = copy_to_iter(buf->data, buf->length, iter);
887 	if (buf->length == ret) {
888 		kfree(buf);
889 		return ret;
890 	}
891 
892 	if (unlikely(iov_iter_count(iter))) {
893 		ret = -EFAULT;
894 	} else {
895 		buf->length -= ret;
896 		buf->data += ret;
897 	}
898 
899 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
900 		kfree(buf);
901 
902 	return ret;
903 }
904 
905 /* Assumes epfile->mutex is held. */
906 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
907 				      void *data, int data_len,
908 				      struct iov_iter *iter)
909 {
910 	struct ffs_buffer *buf;
911 
912 	ssize_t ret = copy_to_iter(data, data_len, iter);
913 	if (likely(data_len == ret))
914 		return ret;
915 
916 	if (unlikely(iov_iter_count(iter)))
917 		return -EFAULT;
918 
919 	/* See ffs_copy_to_iter for more context. */
920 	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
921 		data_len, ret);
922 
923 	data_len -= ret;
924 	buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
925 	if (!buf)
926 		return -ENOMEM;
927 	buf->length = data_len;
928 	buf->data = buf->storage;
929 	memcpy(buf->storage, data + ret, data_len);
930 
931 	/*
932 	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
933 	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
934 	 * in struct ffs_epfile for full read_buffer pointer synchronisation
935 	 * story.
936 	 */
937 	if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
938 		kfree(buf);
939 
940 	return ret;
941 }
942 
943 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
944 {
945 	struct ffs_epfile *epfile = file->private_data;
946 	struct usb_request *req;
947 	struct ffs_ep *ep;
948 	char *data = NULL;
949 	ssize_t ret, data_len = -EINVAL;
950 	int halt;
951 
952 	/* Are we still active? */
953 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
954 		return -ENODEV;
955 
956 	/* Wait for endpoint to be enabled */
957 	ep = epfile->ep;
958 	if (!ep) {
959 		if (file->f_flags & O_NONBLOCK)
960 			return -EAGAIN;
961 
962 		ret = wait_event_interruptible(
963 				epfile->ffs->wait, (ep = epfile->ep));
964 		if (ret)
965 			return -EINTR;
966 	}
967 
968 	/* Do we halt? */
969 	halt = (!io_data->read == !epfile->in);
970 	if (halt && epfile->isoc)
971 		return -EINVAL;
972 
973 	/* We will be using request and read_buffer */
974 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
975 	if (unlikely(ret))
976 		goto error;
977 
978 	/* Allocate & copy */
979 	if (!halt) {
980 		struct usb_gadget *gadget;
981 
982 		/*
983 		 * Do we have buffered data from previous partial read?  Check
984 		 * that for synchronous case only because we do not have
985 		 * facility to ‘wake up’ a pending asynchronous read and push
986 		 * buffered data to it which we would need to make things behave
987 		 * consistently.
988 		 */
989 		if (!io_data->aio && io_data->read) {
990 			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
991 			if (ret)
992 				goto error_mutex;
993 		}
994 
995 		/*
996 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
997 		 * before the waiting completes, so do not assign to 'gadget'
998 		 * earlier
999 		 */
1000 		gadget = epfile->ffs->gadget;
1001 
1002 		spin_lock_irq(&epfile->ffs->eps_lock);
1003 		/* In the meantime, endpoint got disabled or changed. */
1004 		if (epfile->ep != ep) {
1005 			ret = -ESHUTDOWN;
1006 			goto error_lock;
1007 		}
1008 		data_len = iov_iter_count(&io_data->data);
1009 		/*
1010 		 * Controller may require buffer size to be aligned to
1011 		 * maxpacketsize of an out endpoint.
1012 		 */
1013 		if (io_data->read)
1014 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1015 
1016 		io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1017 		spin_unlock_irq(&epfile->ffs->eps_lock);
1018 
1019 		data = ffs_alloc_buffer(io_data, data_len);
1020 		if (unlikely(!data)) {
1021 			ret = -ENOMEM;
1022 			goto error_mutex;
1023 		}
1024 		if (!io_data->read &&
1025 		    !copy_from_iter_full(data, data_len, &io_data->data)) {
1026 			ret = -EFAULT;
1027 			goto error_mutex;
1028 		}
1029 	}
1030 
1031 	spin_lock_irq(&epfile->ffs->eps_lock);
1032 
1033 	if (epfile->ep != ep) {
1034 		/* In the meantime, endpoint got disabled or changed. */
1035 		ret = -ESHUTDOWN;
1036 	} else if (halt) {
1037 		ret = usb_ep_set_halt(ep->ep);
1038 		if (!ret)
1039 			ret = -EBADMSG;
1040 	} else if (unlikely(data_len == -EINVAL)) {
1041 		/*
1042 		 * Sanity Check: even though data_len can't be used
1043 		 * uninitialized at the time I write this comment, some
1044 		 * compilers complain about this situation.
1045 		 * In order to keep the code clean from warnings, data_len is
1046 		 * being initialized to -EINVAL during its declaration, which
1047 		 * means we can't rely on compiler anymore to warn no future
1048 		 * changes won't result in data_len being used uninitialized.
1049 		 * For such reason, we're adding this redundant sanity check
1050 		 * here.
1051 		 */
1052 		WARN(1, "%s: data_len == -EINVAL\n", __func__);
1053 		ret = -EINVAL;
1054 	} else if (!io_data->aio) {
1055 		DECLARE_COMPLETION_ONSTACK(done);
1056 		bool interrupted = false;
1057 
1058 		req = ep->req;
1059 		if (io_data->use_sg) {
1060 			req->buf = NULL;
1061 			req->sg	= io_data->sgt.sgl;
1062 			req->num_sgs = io_data->sgt.nents;
1063 		} else {
1064 			req->buf = data;
1065 			req->num_sgs = 0;
1066 		}
1067 		req->length = data_len;
1068 
1069 		io_data->buf = data;
1070 
1071 		req->context  = &done;
1072 		req->complete = ffs_epfile_io_complete;
1073 
1074 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1075 		if (unlikely(ret < 0))
1076 			goto error_lock;
1077 
1078 		spin_unlock_irq(&epfile->ffs->eps_lock);
1079 
1080 		if (unlikely(wait_for_completion_interruptible(&done))) {
1081 			/*
1082 			 * To avoid race condition with ffs_epfile_io_complete,
1083 			 * dequeue the request first then check
1084 			 * status. usb_ep_dequeue API should guarantee no race
1085 			 * condition with req->complete callback.
1086 			 */
1087 			usb_ep_dequeue(ep->ep, req);
1088 			wait_for_completion(&done);
1089 			interrupted = ep->status < 0;
1090 		}
1091 
1092 		if (interrupted)
1093 			ret = -EINTR;
1094 		else if (io_data->read && ep->status > 0)
1095 			ret = __ffs_epfile_read_data(epfile, data, ep->status,
1096 						     &io_data->data);
1097 		else
1098 			ret = ep->status;
1099 		goto error_mutex;
1100 	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1101 		ret = -ENOMEM;
1102 	} else {
1103 		if (io_data->use_sg) {
1104 			req->buf = NULL;
1105 			req->sg	= io_data->sgt.sgl;
1106 			req->num_sgs = io_data->sgt.nents;
1107 		} else {
1108 			req->buf = data;
1109 			req->num_sgs = 0;
1110 		}
1111 		req->length = data_len;
1112 
1113 		io_data->buf = data;
1114 		io_data->ep = ep->ep;
1115 		io_data->req = req;
1116 		io_data->ffs = epfile->ffs;
1117 
1118 		req->context  = io_data;
1119 		req->complete = ffs_epfile_async_io_complete;
1120 
1121 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1122 		if (unlikely(ret)) {
1123 			io_data->req = NULL;
1124 			usb_ep_free_request(ep->ep, req);
1125 			goto error_lock;
1126 		}
1127 
1128 		ret = -EIOCBQUEUED;
1129 		/*
1130 		 * Do not kfree the buffer in this function.  It will be freed
1131 		 * by ffs_user_copy_worker.
1132 		 */
1133 		data = NULL;
1134 	}
1135 
1136 error_lock:
1137 	spin_unlock_irq(&epfile->ffs->eps_lock);
1138 error_mutex:
1139 	mutex_unlock(&epfile->mutex);
1140 error:
1141 	if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1142 		ffs_free_buffer(io_data);
1143 	return ret;
1144 }
1145 
1146 static int
1147 ffs_epfile_open(struct inode *inode, struct file *file)
1148 {
1149 	struct ffs_epfile *epfile = inode->i_private;
1150 
1151 	ENTER();
1152 
1153 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1154 		return -ENODEV;
1155 
1156 	file->private_data = epfile;
1157 	ffs_data_opened(epfile->ffs);
1158 
1159 	return 0;
1160 }
1161 
1162 static int ffs_aio_cancel(struct kiocb *kiocb)
1163 {
1164 	struct ffs_io_data *io_data = kiocb->private;
1165 	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1166 	unsigned long flags;
1167 	int value;
1168 
1169 	ENTER();
1170 
1171 	spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1172 
1173 	if (likely(io_data && io_data->ep && io_data->req))
1174 		value = usb_ep_dequeue(io_data->ep, io_data->req);
1175 	else
1176 		value = -EINVAL;
1177 
1178 	spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1179 
1180 	return value;
1181 }
1182 
1183 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1184 {
1185 	struct ffs_io_data io_data, *p = &io_data;
1186 	ssize_t res;
1187 
1188 	ENTER();
1189 
1190 	if (!is_sync_kiocb(kiocb)) {
1191 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1192 		if (unlikely(!p))
1193 			return -ENOMEM;
1194 		p->aio = true;
1195 	} else {
1196 		memset(p, 0, sizeof(*p));
1197 		p->aio = false;
1198 	}
1199 
1200 	p->read = false;
1201 	p->kiocb = kiocb;
1202 	p->data = *from;
1203 	p->mm = current->mm;
1204 
1205 	kiocb->private = p;
1206 
1207 	if (p->aio)
1208 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1209 
1210 	res = ffs_epfile_io(kiocb->ki_filp, p);
1211 	if (res == -EIOCBQUEUED)
1212 		return res;
1213 	if (p->aio)
1214 		kfree(p);
1215 	else
1216 		*from = p->data;
1217 	return res;
1218 }
1219 
1220 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1221 {
1222 	struct ffs_io_data io_data, *p = &io_data;
1223 	ssize_t res;
1224 
1225 	ENTER();
1226 
1227 	if (!is_sync_kiocb(kiocb)) {
1228 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1229 		if (unlikely(!p))
1230 			return -ENOMEM;
1231 		p->aio = true;
1232 	} else {
1233 		memset(p, 0, sizeof(*p));
1234 		p->aio = false;
1235 	}
1236 
1237 	p->read = true;
1238 	p->kiocb = kiocb;
1239 	if (p->aio) {
1240 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1241 		if (!p->to_free) {
1242 			kfree(p);
1243 			return -ENOMEM;
1244 		}
1245 	} else {
1246 		p->data = *to;
1247 		p->to_free = NULL;
1248 	}
1249 	p->mm = current->mm;
1250 
1251 	kiocb->private = p;
1252 
1253 	if (p->aio)
1254 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1255 
1256 	res = ffs_epfile_io(kiocb->ki_filp, p);
1257 	if (res == -EIOCBQUEUED)
1258 		return res;
1259 
1260 	if (p->aio) {
1261 		kfree(p->to_free);
1262 		kfree(p);
1263 	} else {
1264 		*to = p->data;
1265 	}
1266 	return res;
1267 }
1268 
1269 static int
1270 ffs_epfile_release(struct inode *inode, struct file *file)
1271 {
1272 	struct ffs_epfile *epfile = inode->i_private;
1273 
1274 	ENTER();
1275 
1276 	__ffs_epfile_read_buffer_free(epfile);
1277 	ffs_data_closed(epfile->ffs);
1278 
1279 	return 0;
1280 }
1281 
1282 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1283 			     unsigned long value)
1284 {
1285 	struct ffs_epfile *epfile = file->private_data;
1286 	struct ffs_ep *ep;
1287 	int ret;
1288 
1289 	ENTER();
1290 
1291 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1292 		return -ENODEV;
1293 
1294 	/* Wait for endpoint to be enabled */
1295 	ep = epfile->ep;
1296 	if (!ep) {
1297 		if (file->f_flags & O_NONBLOCK)
1298 			return -EAGAIN;
1299 
1300 		ret = wait_event_interruptible(
1301 				epfile->ffs->wait, (ep = epfile->ep));
1302 		if (ret)
1303 			return -EINTR;
1304 	}
1305 
1306 	spin_lock_irq(&epfile->ffs->eps_lock);
1307 
1308 	/* In the meantime, endpoint got disabled or changed. */
1309 	if (epfile->ep != ep) {
1310 		spin_unlock_irq(&epfile->ffs->eps_lock);
1311 		return -ESHUTDOWN;
1312 	}
1313 
1314 	switch (code) {
1315 	case FUNCTIONFS_FIFO_STATUS:
1316 		ret = usb_ep_fifo_status(epfile->ep->ep);
1317 		break;
1318 	case FUNCTIONFS_FIFO_FLUSH:
1319 		usb_ep_fifo_flush(epfile->ep->ep);
1320 		ret = 0;
1321 		break;
1322 	case FUNCTIONFS_CLEAR_HALT:
1323 		ret = usb_ep_clear_halt(epfile->ep->ep);
1324 		break;
1325 	case FUNCTIONFS_ENDPOINT_REVMAP:
1326 		ret = epfile->ep->num;
1327 		break;
1328 	case FUNCTIONFS_ENDPOINT_DESC:
1329 	{
1330 		int desc_idx;
1331 		struct usb_endpoint_descriptor *desc;
1332 
1333 		switch (epfile->ffs->gadget->speed) {
1334 		case USB_SPEED_SUPER:
1335 			desc_idx = 2;
1336 			break;
1337 		case USB_SPEED_HIGH:
1338 			desc_idx = 1;
1339 			break;
1340 		default:
1341 			desc_idx = 0;
1342 		}
1343 		desc = epfile->ep->descs[desc_idx];
1344 
1345 		spin_unlock_irq(&epfile->ffs->eps_lock);
1346 		ret = copy_to_user((void __user *)value, desc, desc->bLength);
1347 		if (ret)
1348 			ret = -EFAULT;
1349 		return ret;
1350 	}
1351 	default:
1352 		ret = -ENOTTY;
1353 	}
1354 	spin_unlock_irq(&epfile->ffs->eps_lock);
1355 
1356 	return ret;
1357 }
1358 
1359 static const struct file_operations ffs_epfile_operations = {
1360 	.llseek =	no_llseek,
1361 
1362 	.open =		ffs_epfile_open,
1363 	.write_iter =	ffs_epfile_write_iter,
1364 	.read_iter =	ffs_epfile_read_iter,
1365 	.release =	ffs_epfile_release,
1366 	.unlocked_ioctl =	ffs_epfile_ioctl,
1367 	.compat_ioctl = compat_ptr_ioctl,
1368 };
1369 
1370 
1371 /* File system and super block operations ***********************************/
1372 
1373 /*
1374  * Mounting the file system creates a controller file, used first for
1375  * function configuration then later for event monitoring.
1376  */
1377 
1378 static struct inode *__must_check
1379 ffs_sb_make_inode(struct super_block *sb, void *data,
1380 		  const struct file_operations *fops,
1381 		  const struct inode_operations *iops,
1382 		  struct ffs_file_perms *perms)
1383 {
1384 	struct inode *inode;
1385 
1386 	ENTER();
1387 
1388 	inode = new_inode(sb);
1389 
1390 	if (likely(inode)) {
1391 		struct timespec64 ts = current_time(inode);
1392 
1393 		inode->i_ino	 = get_next_ino();
1394 		inode->i_mode    = perms->mode;
1395 		inode->i_uid     = perms->uid;
1396 		inode->i_gid     = perms->gid;
1397 		inode->i_atime   = ts;
1398 		inode->i_mtime   = ts;
1399 		inode->i_ctime   = ts;
1400 		inode->i_private = data;
1401 		if (fops)
1402 			inode->i_fop = fops;
1403 		if (iops)
1404 			inode->i_op  = iops;
1405 	}
1406 
1407 	return inode;
1408 }
1409 
1410 /* Create "regular" file */
1411 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1412 					const char *name, void *data,
1413 					const struct file_operations *fops)
1414 {
1415 	struct ffs_data	*ffs = sb->s_fs_info;
1416 	struct dentry	*dentry;
1417 	struct inode	*inode;
1418 
1419 	ENTER();
1420 
1421 	dentry = d_alloc_name(sb->s_root, name);
1422 	if (unlikely(!dentry))
1423 		return NULL;
1424 
1425 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1426 	if (unlikely(!inode)) {
1427 		dput(dentry);
1428 		return NULL;
1429 	}
1430 
1431 	d_add(dentry, inode);
1432 	return dentry;
1433 }
1434 
1435 /* Super block */
1436 static const struct super_operations ffs_sb_operations = {
1437 	.statfs =	simple_statfs,
1438 	.drop_inode =	generic_delete_inode,
1439 };
1440 
1441 struct ffs_sb_fill_data {
1442 	struct ffs_file_perms perms;
1443 	umode_t root_mode;
1444 	const char *dev_name;
1445 	bool no_disconnect;
1446 	struct ffs_data *ffs_data;
1447 };
1448 
1449 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1450 {
1451 	struct ffs_sb_fill_data *data = fc->fs_private;
1452 	struct inode	*inode;
1453 	struct ffs_data	*ffs = data->ffs_data;
1454 
1455 	ENTER();
1456 
1457 	ffs->sb              = sb;
1458 	data->ffs_data       = NULL;
1459 	sb->s_fs_info        = ffs;
1460 	sb->s_blocksize      = PAGE_SIZE;
1461 	sb->s_blocksize_bits = PAGE_SHIFT;
1462 	sb->s_magic          = FUNCTIONFS_MAGIC;
1463 	sb->s_op             = &ffs_sb_operations;
1464 	sb->s_time_gran      = 1;
1465 
1466 	/* Root inode */
1467 	data->perms.mode = data->root_mode;
1468 	inode = ffs_sb_make_inode(sb, NULL,
1469 				  &simple_dir_operations,
1470 				  &simple_dir_inode_operations,
1471 				  &data->perms);
1472 	sb->s_root = d_make_root(inode);
1473 	if (unlikely(!sb->s_root))
1474 		return -ENOMEM;
1475 
1476 	/* EP0 file */
1477 	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1478 					 &ffs_ep0_operations)))
1479 		return -ENOMEM;
1480 
1481 	return 0;
1482 }
1483 
1484 enum {
1485 	Opt_no_disconnect,
1486 	Opt_rmode,
1487 	Opt_fmode,
1488 	Opt_mode,
1489 	Opt_uid,
1490 	Opt_gid,
1491 };
1492 
1493 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1494 	fsparam_bool	("no_disconnect",	Opt_no_disconnect),
1495 	fsparam_u32	("rmode",		Opt_rmode),
1496 	fsparam_u32	("fmode",		Opt_fmode),
1497 	fsparam_u32	("mode",		Opt_mode),
1498 	fsparam_u32	("uid",			Opt_uid),
1499 	fsparam_u32	("gid",			Opt_gid),
1500 	{}
1501 };
1502 
1503 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1504 {
1505 	struct ffs_sb_fill_data *data = fc->fs_private;
1506 	struct fs_parse_result result;
1507 	int opt;
1508 
1509 	ENTER();
1510 
1511 	opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1512 	if (opt < 0)
1513 		return opt;
1514 
1515 	switch (opt) {
1516 	case Opt_no_disconnect:
1517 		data->no_disconnect = result.boolean;
1518 		break;
1519 	case Opt_rmode:
1520 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1521 		break;
1522 	case Opt_fmode:
1523 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1524 		break;
1525 	case Opt_mode:
1526 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1527 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1528 		break;
1529 
1530 	case Opt_uid:
1531 		data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1532 		if (!uid_valid(data->perms.uid))
1533 			goto unmapped_value;
1534 		break;
1535 	case Opt_gid:
1536 		data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1537 		if (!gid_valid(data->perms.gid))
1538 			goto unmapped_value;
1539 		break;
1540 
1541 	default:
1542 		return -ENOPARAM;
1543 	}
1544 
1545 	return 0;
1546 
1547 unmapped_value:
1548 	return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
1549 }
1550 
1551 /*
1552  * Set up the superblock for a mount.
1553  */
1554 static int ffs_fs_get_tree(struct fs_context *fc)
1555 {
1556 	struct ffs_sb_fill_data *ctx = fc->fs_private;
1557 	void *ffs_dev;
1558 	struct ffs_data	*ffs;
1559 
1560 	ENTER();
1561 
1562 	if (!fc->source)
1563 		return invalf(fc, "No source specified");
1564 
1565 	ffs = ffs_data_new(fc->source);
1566 	if (unlikely(!ffs))
1567 		return -ENOMEM;
1568 	ffs->file_perms = ctx->perms;
1569 	ffs->no_disconnect = ctx->no_disconnect;
1570 
1571 	ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
1572 	if (unlikely(!ffs->dev_name)) {
1573 		ffs_data_put(ffs);
1574 		return -ENOMEM;
1575 	}
1576 
1577 	ffs_dev = ffs_acquire_dev(ffs->dev_name);
1578 	if (IS_ERR(ffs_dev)) {
1579 		ffs_data_put(ffs);
1580 		return PTR_ERR(ffs_dev);
1581 	}
1582 
1583 	ffs->private_data = ffs_dev;
1584 	ctx->ffs_data = ffs;
1585 	return get_tree_nodev(fc, ffs_sb_fill);
1586 }
1587 
1588 static void ffs_fs_free_fc(struct fs_context *fc)
1589 {
1590 	struct ffs_sb_fill_data *ctx = fc->fs_private;
1591 
1592 	if (ctx) {
1593 		if (ctx->ffs_data) {
1594 			ffs_release_dev(ctx->ffs_data);
1595 			ffs_data_put(ctx->ffs_data);
1596 		}
1597 
1598 		kfree(ctx);
1599 	}
1600 }
1601 
1602 static const struct fs_context_operations ffs_fs_context_ops = {
1603 	.free		= ffs_fs_free_fc,
1604 	.parse_param	= ffs_fs_parse_param,
1605 	.get_tree	= ffs_fs_get_tree,
1606 };
1607 
1608 static int ffs_fs_init_fs_context(struct fs_context *fc)
1609 {
1610 	struct ffs_sb_fill_data *ctx;
1611 
1612 	ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
1613 	if (!ctx)
1614 		return -ENOMEM;
1615 
1616 	ctx->perms.mode = S_IFREG | 0600;
1617 	ctx->perms.uid = GLOBAL_ROOT_UID;
1618 	ctx->perms.gid = GLOBAL_ROOT_GID;
1619 	ctx->root_mode = S_IFDIR | 0500;
1620 	ctx->no_disconnect = false;
1621 
1622 	fc->fs_private = ctx;
1623 	fc->ops = &ffs_fs_context_ops;
1624 	return 0;
1625 }
1626 
1627 static void
1628 ffs_fs_kill_sb(struct super_block *sb)
1629 {
1630 	ENTER();
1631 
1632 	kill_litter_super(sb);
1633 	if (sb->s_fs_info) {
1634 		ffs_release_dev(sb->s_fs_info);
1635 		ffs_data_closed(sb->s_fs_info);
1636 	}
1637 }
1638 
1639 static struct file_system_type ffs_fs_type = {
1640 	.owner		= THIS_MODULE,
1641 	.name		= "functionfs",
1642 	.init_fs_context = ffs_fs_init_fs_context,
1643 	.parameters	= ffs_fs_fs_parameters,
1644 	.kill_sb	= ffs_fs_kill_sb,
1645 };
1646 MODULE_ALIAS_FS("functionfs");
1647 
1648 
1649 /* Driver's main init/cleanup functions *************************************/
1650 
1651 static int functionfs_init(void)
1652 {
1653 	int ret;
1654 
1655 	ENTER();
1656 
1657 	ret = register_filesystem(&ffs_fs_type);
1658 	if (likely(!ret))
1659 		pr_info("file system registered\n");
1660 	else
1661 		pr_err("failed registering file system (%d)\n", ret);
1662 
1663 	return ret;
1664 }
1665 
1666 static void functionfs_cleanup(void)
1667 {
1668 	ENTER();
1669 
1670 	pr_info("unloading\n");
1671 	unregister_filesystem(&ffs_fs_type);
1672 }
1673 
1674 
1675 /* ffs_data and ffs_function construction and destruction code **************/
1676 
1677 static void ffs_data_clear(struct ffs_data *ffs);
1678 static void ffs_data_reset(struct ffs_data *ffs);
1679 
1680 static void ffs_data_get(struct ffs_data *ffs)
1681 {
1682 	ENTER();
1683 
1684 	refcount_inc(&ffs->ref);
1685 }
1686 
1687 static void ffs_data_opened(struct ffs_data *ffs)
1688 {
1689 	ENTER();
1690 
1691 	refcount_inc(&ffs->ref);
1692 	if (atomic_add_return(1, &ffs->opened) == 1 &&
1693 			ffs->state == FFS_DEACTIVATED) {
1694 		ffs->state = FFS_CLOSING;
1695 		ffs_data_reset(ffs);
1696 	}
1697 }
1698 
1699 static void ffs_data_put(struct ffs_data *ffs)
1700 {
1701 	ENTER();
1702 
1703 	if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1704 		pr_info("%s(): freeing\n", __func__);
1705 		ffs_data_clear(ffs);
1706 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1707 		       swait_active(&ffs->ep0req_completion.wait) ||
1708 		       waitqueue_active(&ffs->wait));
1709 		destroy_workqueue(ffs->io_completion_wq);
1710 		kfree(ffs->dev_name);
1711 		kfree(ffs);
1712 	}
1713 }
1714 
1715 static void ffs_data_closed(struct ffs_data *ffs)
1716 {
1717 	ENTER();
1718 
1719 	if (atomic_dec_and_test(&ffs->opened)) {
1720 		if (ffs->no_disconnect) {
1721 			ffs->state = FFS_DEACTIVATED;
1722 			if (ffs->epfiles) {
1723 				ffs_epfiles_destroy(ffs->epfiles,
1724 						   ffs->eps_count);
1725 				ffs->epfiles = NULL;
1726 			}
1727 			if (ffs->setup_state == FFS_SETUP_PENDING)
1728 				__ffs_ep0_stall(ffs);
1729 		} else {
1730 			ffs->state = FFS_CLOSING;
1731 			ffs_data_reset(ffs);
1732 		}
1733 	}
1734 	if (atomic_read(&ffs->opened) < 0) {
1735 		ffs->state = FFS_CLOSING;
1736 		ffs_data_reset(ffs);
1737 	}
1738 
1739 	ffs_data_put(ffs);
1740 }
1741 
1742 static struct ffs_data *ffs_data_new(const char *dev_name)
1743 {
1744 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1745 	if (unlikely(!ffs))
1746 		return NULL;
1747 
1748 	ENTER();
1749 
1750 	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1751 	if (!ffs->io_completion_wq) {
1752 		kfree(ffs);
1753 		return NULL;
1754 	}
1755 
1756 	refcount_set(&ffs->ref, 1);
1757 	atomic_set(&ffs->opened, 0);
1758 	ffs->state = FFS_READ_DESCRIPTORS;
1759 	mutex_init(&ffs->mutex);
1760 	spin_lock_init(&ffs->eps_lock);
1761 	init_waitqueue_head(&ffs->ev.waitq);
1762 	init_waitqueue_head(&ffs->wait);
1763 	init_completion(&ffs->ep0req_completion);
1764 
1765 	/* XXX REVISIT need to update it in some places, or do we? */
1766 	ffs->ev.can_stall = 1;
1767 
1768 	return ffs;
1769 }
1770 
1771 static void ffs_data_clear(struct ffs_data *ffs)
1772 {
1773 	ENTER();
1774 
1775 	ffs_closed(ffs);
1776 
1777 	BUG_ON(ffs->gadget);
1778 
1779 	if (ffs->epfiles)
1780 		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1781 
1782 	if (ffs->ffs_eventfd)
1783 		eventfd_ctx_put(ffs->ffs_eventfd);
1784 
1785 	kfree(ffs->raw_descs_data);
1786 	kfree(ffs->raw_strings);
1787 	kfree(ffs->stringtabs);
1788 }
1789 
1790 static void ffs_data_reset(struct ffs_data *ffs)
1791 {
1792 	ENTER();
1793 
1794 	ffs_data_clear(ffs);
1795 
1796 	ffs->epfiles = NULL;
1797 	ffs->raw_descs_data = NULL;
1798 	ffs->raw_descs = NULL;
1799 	ffs->raw_strings = NULL;
1800 	ffs->stringtabs = NULL;
1801 
1802 	ffs->raw_descs_length = 0;
1803 	ffs->fs_descs_count = 0;
1804 	ffs->hs_descs_count = 0;
1805 	ffs->ss_descs_count = 0;
1806 
1807 	ffs->strings_count = 0;
1808 	ffs->interfaces_count = 0;
1809 	ffs->eps_count = 0;
1810 
1811 	ffs->ev.count = 0;
1812 
1813 	ffs->state = FFS_READ_DESCRIPTORS;
1814 	ffs->setup_state = FFS_NO_SETUP;
1815 	ffs->flags = 0;
1816 }
1817 
1818 
1819 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1820 {
1821 	struct usb_gadget_strings **lang;
1822 	int first_id;
1823 
1824 	ENTER();
1825 
1826 	if (WARN_ON(ffs->state != FFS_ACTIVE
1827 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1828 		return -EBADFD;
1829 
1830 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1831 	if (unlikely(first_id < 0))
1832 		return first_id;
1833 
1834 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1835 	if (unlikely(!ffs->ep0req))
1836 		return -ENOMEM;
1837 	ffs->ep0req->complete = ffs_ep0_complete;
1838 	ffs->ep0req->context = ffs;
1839 
1840 	lang = ffs->stringtabs;
1841 	if (lang) {
1842 		for (; *lang; ++lang) {
1843 			struct usb_string *str = (*lang)->strings;
1844 			int id = first_id;
1845 			for (; str->s; ++id, ++str)
1846 				str->id = id;
1847 		}
1848 	}
1849 
1850 	ffs->gadget = cdev->gadget;
1851 	ffs_data_get(ffs);
1852 	return 0;
1853 }
1854 
1855 static void functionfs_unbind(struct ffs_data *ffs)
1856 {
1857 	ENTER();
1858 
1859 	if (!WARN_ON(!ffs->gadget)) {
1860 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1861 		ffs->ep0req = NULL;
1862 		ffs->gadget = NULL;
1863 		clear_bit(FFS_FL_BOUND, &ffs->flags);
1864 		ffs_data_put(ffs);
1865 	}
1866 }
1867 
1868 static int ffs_epfiles_create(struct ffs_data *ffs)
1869 {
1870 	struct ffs_epfile *epfile, *epfiles;
1871 	unsigned i, count;
1872 
1873 	ENTER();
1874 
1875 	count = ffs->eps_count;
1876 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1877 	if (!epfiles)
1878 		return -ENOMEM;
1879 
1880 	epfile = epfiles;
1881 	for (i = 1; i <= count; ++i, ++epfile) {
1882 		epfile->ffs = ffs;
1883 		mutex_init(&epfile->mutex);
1884 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1885 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1886 		else
1887 			sprintf(epfile->name, "ep%u", i);
1888 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1889 						 epfile,
1890 						 &ffs_epfile_operations);
1891 		if (unlikely(!epfile->dentry)) {
1892 			ffs_epfiles_destroy(epfiles, i - 1);
1893 			return -ENOMEM;
1894 		}
1895 	}
1896 
1897 	ffs->epfiles = epfiles;
1898 	return 0;
1899 }
1900 
1901 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1902 {
1903 	struct ffs_epfile *epfile = epfiles;
1904 
1905 	ENTER();
1906 
1907 	for (; count; --count, ++epfile) {
1908 		BUG_ON(mutex_is_locked(&epfile->mutex));
1909 		if (epfile->dentry) {
1910 			d_delete(epfile->dentry);
1911 			dput(epfile->dentry);
1912 			epfile->dentry = NULL;
1913 		}
1914 	}
1915 
1916 	kfree(epfiles);
1917 }
1918 
1919 static void ffs_func_eps_disable(struct ffs_function *func)
1920 {
1921 	struct ffs_ep *ep         = func->eps;
1922 	struct ffs_epfile *epfile = func->ffs->epfiles;
1923 	unsigned count            = func->ffs->eps_count;
1924 	unsigned long flags;
1925 
1926 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1927 	while (count--) {
1928 		/* pending requests get nuked */
1929 		if (likely(ep->ep))
1930 			usb_ep_disable(ep->ep);
1931 		++ep;
1932 
1933 		if (epfile) {
1934 			epfile->ep = NULL;
1935 			__ffs_epfile_read_buffer_free(epfile);
1936 			++epfile;
1937 		}
1938 	}
1939 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1940 }
1941 
1942 static int ffs_func_eps_enable(struct ffs_function *func)
1943 {
1944 	struct ffs_data *ffs      = func->ffs;
1945 	struct ffs_ep *ep         = func->eps;
1946 	struct ffs_epfile *epfile = ffs->epfiles;
1947 	unsigned count            = ffs->eps_count;
1948 	unsigned long flags;
1949 	int ret = 0;
1950 
1951 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1952 	while(count--) {
1953 		ep->ep->driver_data = ep;
1954 
1955 		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
1956 		if (ret) {
1957 			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
1958 					__func__, ep->ep->name, ret);
1959 			break;
1960 		}
1961 
1962 		ret = usb_ep_enable(ep->ep);
1963 		if (likely(!ret)) {
1964 			epfile->ep = ep;
1965 			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
1966 			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1967 		} else {
1968 			break;
1969 		}
1970 
1971 		++ep;
1972 		++epfile;
1973 	}
1974 
1975 	wake_up_interruptible(&ffs->wait);
1976 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1977 
1978 	return ret;
1979 }
1980 
1981 
1982 /* Parsing and building descriptors and strings *****************************/
1983 
1984 /*
1985  * This validates if data pointed by data is a valid USB descriptor as
1986  * well as record how many interfaces, endpoints and strings are
1987  * required by given configuration.  Returns address after the
1988  * descriptor or NULL if data is invalid.
1989  */
1990 
1991 enum ffs_entity_type {
1992 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1993 };
1994 
1995 enum ffs_os_desc_type {
1996 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1997 };
1998 
1999 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2000 				   u8 *valuep,
2001 				   struct usb_descriptor_header *desc,
2002 				   void *priv);
2003 
2004 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2005 				    struct usb_os_desc_header *h, void *data,
2006 				    unsigned len, void *priv);
2007 
2008 static int __must_check ffs_do_single_desc(char *data, unsigned len,
2009 					   ffs_entity_callback entity,
2010 					   void *priv, int *current_class)
2011 {
2012 	struct usb_descriptor_header *_ds = (void *)data;
2013 	u8 length;
2014 	int ret;
2015 
2016 	ENTER();
2017 
2018 	/* At least two bytes are required: length and type */
2019 	if (len < 2) {
2020 		pr_vdebug("descriptor too short\n");
2021 		return -EINVAL;
2022 	}
2023 
2024 	/* If we have at least as many bytes as the descriptor takes? */
2025 	length = _ds->bLength;
2026 	if (len < length) {
2027 		pr_vdebug("descriptor longer then available data\n");
2028 		return -EINVAL;
2029 	}
2030 
2031 #define __entity_check_INTERFACE(val)  1
2032 #define __entity_check_STRING(val)     (val)
2033 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
2034 #define __entity(type, val) do {					\
2035 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
2036 		if (unlikely(!__entity_check_ ##type(val))) {		\
2037 			pr_vdebug("invalid entity's value\n");		\
2038 			return -EINVAL;					\
2039 		}							\
2040 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
2041 		if (unlikely(ret < 0)) {				\
2042 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
2043 				 (val), ret);				\
2044 			return ret;					\
2045 		}							\
2046 	} while (0)
2047 
2048 	/* Parse descriptor depending on type. */
2049 	switch (_ds->bDescriptorType) {
2050 	case USB_DT_DEVICE:
2051 	case USB_DT_CONFIG:
2052 	case USB_DT_STRING:
2053 	case USB_DT_DEVICE_QUALIFIER:
2054 		/* function can't have any of those */
2055 		pr_vdebug("descriptor reserved for gadget: %d\n",
2056 		      _ds->bDescriptorType);
2057 		return -EINVAL;
2058 
2059 	case USB_DT_INTERFACE: {
2060 		struct usb_interface_descriptor *ds = (void *)_ds;
2061 		pr_vdebug("interface descriptor\n");
2062 		if (length != sizeof *ds)
2063 			goto inv_length;
2064 
2065 		__entity(INTERFACE, ds->bInterfaceNumber);
2066 		if (ds->iInterface)
2067 			__entity(STRING, ds->iInterface);
2068 		*current_class = ds->bInterfaceClass;
2069 	}
2070 		break;
2071 
2072 	case USB_DT_ENDPOINT: {
2073 		struct usb_endpoint_descriptor *ds = (void *)_ds;
2074 		pr_vdebug("endpoint descriptor\n");
2075 		if (length != USB_DT_ENDPOINT_SIZE &&
2076 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
2077 			goto inv_length;
2078 		__entity(ENDPOINT, ds->bEndpointAddress);
2079 	}
2080 		break;
2081 
2082 	case USB_TYPE_CLASS | 0x01:
2083                 if (*current_class == USB_INTERFACE_CLASS_HID) {
2084 			pr_vdebug("hid descriptor\n");
2085 			if (length != sizeof(struct hid_descriptor))
2086 				goto inv_length;
2087 			break;
2088 		} else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2089 			pr_vdebug("ccid descriptor\n");
2090 			if (length != sizeof(struct ccid_descriptor))
2091 				goto inv_length;
2092 			break;
2093 		} else {
2094 			pr_vdebug("unknown descriptor: %d for class %d\n",
2095 			      _ds->bDescriptorType, *current_class);
2096 			return -EINVAL;
2097 		}
2098 
2099 	case USB_DT_OTG:
2100 		if (length != sizeof(struct usb_otg_descriptor))
2101 			goto inv_length;
2102 		break;
2103 
2104 	case USB_DT_INTERFACE_ASSOCIATION: {
2105 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2106 		pr_vdebug("interface association descriptor\n");
2107 		if (length != sizeof *ds)
2108 			goto inv_length;
2109 		if (ds->iFunction)
2110 			__entity(STRING, ds->iFunction);
2111 	}
2112 		break;
2113 
2114 	case USB_DT_SS_ENDPOINT_COMP:
2115 		pr_vdebug("EP SS companion descriptor\n");
2116 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2117 			goto inv_length;
2118 		break;
2119 
2120 	case USB_DT_OTHER_SPEED_CONFIG:
2121 	case USB_DT_INTERFACE_POWER:
2122 	case USB_DT_DEBUG:
2123 	case USB_DT_SECURITY:
2124 	case USB_DT_CS_RADIO_CONTROL:
2125 		/* TODO */
2126 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2127 		return -EINVAL;
2128 
2129 	default:
2130 		/* We should never be here */
2131 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2132 		return -EINVAL;
2133 
2134 inv_length:
2135 		pr_vdebug("invalid length: %d (descriptor %d)\n",
2136 			  _ds->bLength, _ds->bDescriptorType);
2137 		return -EINVAL;
2138 	}
2139 
2140 #undef __entity
2141 #undef __entity_check_DESCRIPTOR
2142 #undef __entity_check_INTERFACE
2143 #undef __entity_check_STRING
2144 #undef __entity_check_ENDPOINT
2145 
2146 	return length;
2147 }
2148 
2149 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2150 				     ffs_entity_callback entity, void *priv)
2151 {
2152 	const unsigned _len = len;
2153 	unsigned long num = 0;
2154 	int current_class = -1;
2155 
2156 	ENTER();
2157 
2158 	for (;;) {
2159 		int ret;
2160 
2161 		if (num == count)
2162 			data = NULL;
2163 
2164 		/* Record "descriptor" entity */
2165 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2166 		if (unlikely(ret < 0)) {
2167 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2168 				 num, ret);
2169 			return ret;
2170 		}
2171 
2172 		if (!data)
2173 			return _len - len;
2174 
2175 		ret = ffs_do_single_desc(data, len, entity, priv,
2176 			&current_class);
2177 		if (unlikely(ret < 0)) {
2178 			pr_debug("%s returns %d\n", __func__, ret);
2179 			return ret;
2180 		}
2181 
2182 		len -= ret;
2183 		data += ret;
2184 		++num;
2185 	}
2186 }
2187 
2188 static int __ffs_data_do_entity(enum ffs_entity_type type,
2189 				u8 *valuep, struct usb_descriptor_header *desc,
2190 				void *priv)
2191 {
2192 	struct ffs_desc_helper *helper = priv;
2193 	struct usb_endpoint_descriptor *d;
2194 
2195 	ENTER();
2196 
2197 	switch (type) {
2198 	case FFS_DESCRIPTOR:
2199 		break;
2200 
2201 	case FFS_INTERFACE:
2202 		/*
2203 		 * Interfaces are indexed from zero so if we
2204 		 * encountered interface "n" then there are at least
2205 		 * "n+1" interfaces.
2206 		 */
2207 		if (*valuep >= helper->interfaces_count)
2208 			helper->interfaces_count = *valuep + 1;
2209 		break;
2210 
2211 	case FFS_STRING:
2212 		/*
2213 		 * Strings are indexed from 1 (0 is reserved
2214 		 * for languages list)
2215 		 */
2216 		if (*valuep > helper->ffs->strings_count)
2217 			helper->ffs->strings_count = *valuep;
2218 		break;
2219 
2220 	case FFS_ENDPOINT:
2221 		d = (void *)desc;
2222 		helper->eps_count++;
2223 		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2224 			return -EINVAL;
2225 		/* Check if descriptors for any speed were already parsed */
2226 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2227 			helper->ffs->eps_addrmap[helper->eps_count] =
2228 				d->bEndpointAddress;
2229 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2230 				d->bEndpointAddress)
2231 			return -EINVAL;
2232 		break;
2233 	}
2234 
2235 	return 0;
2236 }
2237 
2238 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2239 				   struct usb_os_desc_header *desc)
2240 {
2241 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2242 	u16 w_index = le16_to_cpu(desc->wIndex);
2243 
2244 	if (bcd_version != 1) {
2245 		pr_vdebug("unsupported os descriptors version: %d",
2246 			  bcd_version);
2247 		return -EINVAL;
2248 	}
2249 	switch (w_index) {
2250 	case 0x4:
2251 		*next_type = FFS_OS_DESC_EXT_COMPAT;
2252 		break;
2253 	case 0x5:
2254 		*next_type = FFS_OS_DESC_EXT_PROP;
2255 		break;
2256 	default:
2257 		pr_vdebug("unsupported os descriptor type: %d", w_index);
2258 		return -EINVAL;
2259 	}
2260 
2261 	return sizeof(*desc);
2262 }
2263 
2264 /*
2265  * Process all extended compatibility/extended property descriptors
2266  * of a feature descriptor
2267  */
2268 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2269 					      enum ffs_os_desc_type type,
2270 					      u16 feature_count,
2271 					      ffs_os_desc_callback entity,
2272 					      void *priv,
2273 					      struct usb_os_desc_header *h)
2274 {
2275 	int ret;
2276 	const unsigned _len = len;
2277 
2278 	ENTER();
2279 
2280 	/* loop over all ext compat/ext prop descriptors */
2281 	while (feature_count--) {
2282 		ret = entity(type, h, data, len, priv);
2283 		if (unlikely(ret < 0)) {
2284 			pr_debug("bad OS descriptor, type: %d\n", type);
2285 			return ret;
2286 		}
2287 		data += ret;
2288 		len -= ret;
2289 	}
2290 	return _len - len;
2291 }
2292 
2293 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2294 static int __must_check ffs_do_os_descs(unsigned count,
2295 					char *data, unsigned len,
2296 					ffs_os_desc_callback entity, void *priv)
2297 {
2298 	const unsigned _len = len;
2299 	unsigned long num = 0;
2300 
2301 	ENTER();
2302 
2303 	for (num = 0; num < count; ++num) {
2304 		int ret;
2305 		enum ffs_os_desc_type type;
2306 		u16 feature_count;
2307 		struct usb_os_desc_header *desc = (void *)data;
2308 
2309 		if (len < sizeof(*desc))
2310 			return -EINVAL;
2311 
2312 		/*
2313 		 * Record "descriptor" entity.
2314 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2315 		 * Move the data pointer to the beginning of extended
2316 		 * compatibilities proper or extended properties proper
2317 		 * portions of the data
2318 		 */
2319 		if (le32_to_cpu(desc->dwLength) > len)
2320 			return -EINVAL;
2321 
2322 		ret = __ffs_do_os_desc_header(&type, desc);
2323 		if (unlikely(ret < 0)) {
2324 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2325 				 num, ret);
2326 			return ret;
2327 		}
2328 		/*
2329 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2330 		 */
2331 		feature_count = le16_to_cpu(desc->wCount);
2332 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2333 		    (feature_count > 255 || desc->Reserved))
2334 				return -EINVAL;
2335 		len -= ret;
2336 		data += ret;
2337 
2338 		/*
2339 		 * Process all function/property descriptors
2340 		 * of this Feature Descriptor
2341 		 */
2342 		ret = ffs_do_single_os_desc(data, len, type,
2343 					    feature_count, entity, priv, desc);
2344 		if (unlikely(ret < 0)) {
2345 			pr_debug("%s returns %d\n", __func__, ret);
2346 			return ret;
2347 		}
2348 
2349 		len -= ret;
2350 		data += ret;
2351 	}
2352 	return _len - len;
2353 }
2354 
2355 /**
2356  * Validate contents of the buffer from userspace related to OS descriptors.
2357  */
2358 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2359 				 struct usb_os_desc_header *h, void *data,
2360 				 unsigned len, void *priv)
2361 {
2362 	struct ffs_data *ffs = priv;
2363 	u8 length;
2364 
2365 	ENTER();
2366 
2367 	switch (type) {
2368 	case FFS_OS_DESC_EXT_COMPAT: {
2369 		struct usb_ext_compat_desc *d = data;
2370 		int i;
2371 
2372 		if (len < sizeof(*d) ||
2373 		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2374 			return -EINVAL;
2375 		if (d->Reserved1 != 1) {
2376 			/*
2377 			 * According to the spec, Reserved1 must be set to 1
2378 			 * but older kernels incorrectly rejected non-zero
2379 			 * values.  We fix it here to avoid returning EINVAL
2380 			 * in response to values we used to accept.
2381 			 */
2382 			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2383 			d->Reserved1 = 1;
2384 		}
2385 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2386 			if (d->Reserved2[i])
2387 				return -EINVAL;
2388 
2389 		length = sizeof(struct usb_ext_compat_desc);
2390 	}
2391 		break;
2392 	case FFS_OS_DESC_EXT_PROP: {
2393 		struct usb_ext_prop_desc *d = data;
2394 		u32 type, pdl;
2395 		u16 pnl;
2396 
2397 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2398 			return -EINVAL;
2399 		length = le32_to_cpu(d->dwSize);
2400 		if (len < length)
2401 			return -EINVAL;
2402 		type = le32_to_cpu(d->dwPropertyDataType);
2403 		if (type < USB_EXT_PROP_UNICODE ||
2404 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2405 			pr_vdebug("unsupported os descriptor property type: %d",
2406 				  type);
2407 			return -EINVAL;
2408 		}
2409 		pnl = le16_to_cpu(d->wPropertyNameLength);
2410 		if (length < 14 + pnl) {
2411 			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2412 				  length, pnl, type);
2413 			return -EINVAL;
2414 		}
2415 		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2416 		if (length != 14 + pnl + pdl) {
2417 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2418 				  length, pnl, pdl, type);
2419 			return -EINVAL;
2420 		}
2421 		++ffs->ms_os_descs_ext_prop_count;
2422 		/* property name reported to the host as "WCHAR"s */
2423 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2424 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2425 	}
2426 		break;
2427 	default:
2428 		pr_vdebug("unknown descriptor: %d\n", type);
2429 		return -EINVAL;
2430 	}
2431 	return length;
2432 }
2433 
2434 static int __ffs_data_got_descs(struct ffs_data *ffs,
2435 				char *const _data, size_t len)
2436 {
2437 	char *data = _data, *raw_descs;
2438 	unsigned os_descs_count = 0, counts[3], flags;
2439 	int ret = -EINVAL, i;
2440 	struct ffs_desc_helper helper;
2441 
2442 	ENTER();
2443 
2444 	if (get_unaligned_le32(data + 4) != len)
2445 		goto error;
2446 
2447 	switch (get_unaligned_le32(data)) {
2448 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2449 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2450 		data += 8;
2451 		len  -= 8;
2452 		break;
2453 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2454 		flags = get_unaligned_le32(data + 8);
2455 		ffs->user_flags = flags;
2456 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2457 			      FUNCTIONFS_HAS_HS_DESC |
2458 			      FUNCTIONFS_HAS_SS_DESC |
2459 			      FUNCTIONFS_HAS_MS_OS_DESC |
2460 			      FUNCTIONFS_VIRTUAL_ADDR |
2461 			      FUNCTIONFS_EVENTFD |
2462 			      FUNCTIONFS_ALL_CTRL_RECIP |
2463 			      FUNCTIONFS_CONFIG0_SETUP)) {
2464 			ret = -ENOSYS;
2465 			goto error;
2466 		}
2467 		data += 12;
2468 		len  -= 12;
2469 		break;
2470 	default:
2471 		goto error;
2472 	}
2473 
2474 	if (flags & FUNCTIONFS_EVENTFD) {
2475 		if (len < 4)
2476 			goto error;
2477 		ffs->ffs_eventfd =
2478 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2479 		if (IS_ERR(ffs->ffs_eventfd)) {
2480 			ret = PTR_ERR(ffs->ffs_eventfd);
2481 			ffs->ffs_eventfd = NULL;
2482 			goto error;
2483 		}
2484 		data += 4;
2485 		len  -= 4;
2486 	}
2487 
2488 	/* Read fs_count, hs_count and ss_count (if present) */
2489 	for (i = 0; i < 3; ++i) {
2490 		if (!(flags & (1 << i))) {
2491 			counts[i] = 0;
2492 		} else if (len < 4) {
2493 			goto error;
2494 		} else {
2495 			counts[i] = get_unaligned_le32(data);
2496 			data += 4;
2497 			len  -= 4;
2498 		}
2499 	}
2500 	if (flags & (1 << i)) {
2501 		if (len < 4) {
2502 			goto error;
2503 		}
2504 		os_descs_count = get_unaligned_le32(data);
2505 		data += 4;
2506 		len -= 4;
2507 	};
2508 
2509 	/* Read descriptors */
2510 	raw_descs = data;
2511 	helper.ffs = ffs;
2512 	for (i = 0; i < 3; ++i) {
2513 		if (!counts[i])
2514 			continue;
2515 		helper.interfaces_count = 0;
2516 		helper.eps_count = 0;
2517 		ret = ffs_do_descs(counts[i], data, len,
2518 				   __ffs_data_do_entity, &helper);
2519 		if (ret < 0)
2520 			goto error;
2521 		if (!ffs->eps_count && !ffs->interfaces_count) {
2522 			ffs->eps_count = helper.eps_count;
2523 			ffs->interfaces_count = helper.interfaces_count;
2524 		} else {
2525 			if (ffs->eps_count != helper.eps_count) {
2526 				ret = -EINVAL;
2527 				goto error;
2528 			}
2529 			if (ffs->interfaces_count != helper.interfaces_count) {
2530 				ret = -EINVAL;
2531 				goto error;
2532 			}
2533 		}
2534 		data += ret;
2535 		len  -= ret;
2536 	}
2537 	if (os_descs_count) {
2538 		ret = ffs_do_os_descs(os_descs_count, data, len,
2539 				      __ffs_data_do_os_desc, ffs);
2540 		if (ret < 0)
2541 			goto error;
2542 		data += ret;
2543 		len -= ret;
2544 	}
2545 
2546 	if (raw_descs == data || len) {
2547 		ret = -EINVAL;
2548 		goto error;
2549 	}
2550 
2551 	ffs->raw_descs_data	= _data;
2552 	ffs->raw_descs		= raw_descs;
2553 	ffs->raw_descs_length	= data - raw_descs;
2554 	ffs->fs_descs_count	= counts[0];
2555 	ffs->hs_descs_count	= counts[1];
2556 	ffs->ss_descs_count	= counts[2];
2557 	ffs->ms_os_descs_count	= os_descs_count;
2558 
2559 	return 0;
2560 
2561 error:
2562 	kfree(_data);
2563 	return ret;
2564 }
2565 
2566 static int __ffs_data_got_strings(struct ffs_data *ffs,
2567 				  char *const _data, size_t len)
2568 {
2569 	u32 str_count, needed_count, lang_count;
2570 	struct usb_gadget_strings **stringtabs, *t;
2571 	const char *data = _data;
2572 	struct usb_string *s;
2573 
2574 	ENTER();
2575 
2576 	if (unlikely(len < 16 ||
2577 		     get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2578 		     get_unaligned_le32(data + 4) != len))
2579 		goto error;
2580 	str_count  = get_unaligned_le32(data + 8);
2581 	lang_count = get_unaligned_le32(data + 12);
2582 
2583 	/* if one is zero the other must be zero */
2584 	if (unlikely(!str_count != !lang_count))
2585 		goto error;
2586 
2587 	/* Do we have at least as many strings as descriptors need? */
2588 	needed_count = ffs->strings_count;
2589 	if (unlikely(str_count < needed_count))
2590 		goto error;
2591 
2592 	/*
2593 	 * If we don't need any strings just return and free all
2594 	 * memory.
2595 	 */
2596 	if (!needed_count) {
2597 		kfree(_data);
2598 		return 0;
2599 	}
2600 
2601 	/* Allocate everything in one chunk so there's less maintenance. */
2602 	{
2603 		unsigned i = 0;
2604 		vla_group(d);
2605 		vla_item(d, struct usb_gadget_strings *, stringtabs,
2606 			lang_count + 1);
2607 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2608 		vla_item(d, struct usb_string, strings,
2609 			lang_count*(needed_count+1));
2610 
2611 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2612 
2613 		if (unlikely(!vlabuf)) {
2614 			kfree(_data);
2615 			return -ENOMEM;
2616 		}
2617 
2618 		/* Initialize the VLA pointers */
2619 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2620 		t = vla_ptr(vlabuf, d, stringtab);
2621 		i = lang_count;
2622 		do {
2623 			*stringtabs++ = t++;
2624 		} while (--i);
2625 		*stringtabs = NULL;
2626 
2627 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2628 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2629 		t = vla_ptr(vlabuf, d, stringtab);
2630 		s = vla_ptr(vlabuf, d, strings);
2631 	}
2632 
2633 	/* For each language */
2634 	data += 16;
2635 	len -= 16;
2636 
2637 	do { /* lang_count > 0 so we can use do-while */
2638 		unsigned needed = needed_count;
2639 
2640 		if (unlikely(len < 3))
2641 			goto error_free;
2642 		t->language = get_unaligned_le16(data);
2643 		t->strings  = s;
2644 		++t;
2645 
2646 		data += 2;
2647 		len -= 2;
2648 
2649 		/* For each string */
2650 		do { /* str_count > 0 so we can use do-while */
2651 			size_t length = strnlen(data, len);
2652 
2653 			if (unlikely(length == len))
2654 				goto error_free;
2655 
2656 			/*
2657 			 * User may provide more strings then we need,
2658 			 * if that's the case we simply ignore the
2659 			 * rest
2660 			 */
2661 			if (likely(needed)) {
2662 				/*
2663 				 * s->id will be set while adding
2664 				 * function to configuration so for
2665 				 * now just leave garbage here.
2666 				 */
2667 				s->s = data;
2668 				--needed;
2669 				++s;
2670 			}
2671 
2672 			data += length + 1;
2673 			len -= length + 1;
2674 		} while (--str_count);
2675 
2676 		s->id = 0;   /* terminator */
2677 		s->s = NULL;
2678 		++s;
2679 
2680 	} while (--lang_count);
2681 
2682 	/* Some garbage left? */
2683 	if (unlikely(len))
2684 		goto error_free;
2685 
2686 	/* Done! */
2687 	ffs->stringtabs = stringtabs;
2688 	ffs->raw_strings = _data;
2689 
2690 	return 0;
2691 
2692 error_free:
2693 	kfree(stringtabs);
2694 error:
2695 	kfree(_data);
2696 	return -EINVAL;
2697 }
2698 
2699 
2700 /* Events handling and management *******************************************/
2701 
2702 static void __ffs_event_add(struct ffs_data *ffs,
2703 			    enum usb_functionfs_event_type type)
2704 {
2705 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2706 	int neg = 0;
2707 
2708 	/*
2709 	 * Abort any unhandled setup
2710 	 *
2711 	 * We do not need to worry about some cmpxchg() changing value
2712 	 * of ffs->setup_state without holding the lock because when
2713 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2714 	 * the source does nothing.
2715 	 */
2716 	if (ffs->setup_state == FFS_SETUP_PENDING)
2717 		ffs->setup_state = FFS_SETUP_CANCELLED;
2718 
2719 	/*
2720 	 * Logic of this function guarantees that there are at most four pending
2721 	 * evens on ffs->ev.types queue.  This is important because the queue
2722 	 * has space for four elements only and __ffs_ep0_read_events function
2723 	 * depends on that limit as well.  If more event types are added, those
2724 	 * limits have to be revisited or guaranteed to still hold.
2725 	 */
2726 	switch (type) {
2727 	case FUNCTIONFS_RESUME:
2728 		rem_type2 = FUNCTIONFS_SUSPEND;
2729 		/* FALL THROUGH */
2730 	case FUNCTIONFS_SUSPEND:
2731 	case FUNCTIONFS_SETUP:
2732 		rem_type1 = type;
2733 		/* Discard all similar events */
2734 		break;
2735 
2736 	case FUNCTIONFS_BIND:
2737 	case FUNCTIONFS_UNBIND:
2738 	case FUNCTIONFS_DISABLE:
2739 	case FUNCTIONFS_ENABLE:
2740 		/* Discard everything other then power management. */
2741 		rem_type1 = FUNCTIONFS_SUSPEND;
2742 		rem_type2 = FUNCTIONFS_RESUME;
2743 		neg = 1;
2744 		break;
2745 
2746 	default:
2747 		WARN(1, "%d: unknown event, this should not happen\n", type);
2748 		return;
2749 	}
2750 
2751 	{
2752 		u8 *ev  = ffs->ev.types, *out = ev;
2753 		unsigned n = ffs->ev.count;
2754 		for (; n; --n, ++ev)
2755 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2756 				*out++ = *ev;
2757 			else
2758 				pr_vdebug("purging event %d\n", *ev);
2759 		ffs->ev.count = out - ffs->ev.types;
2760 	}
2761 
2762 	pr_vdebug("adding event %d\n", type);
2763 	ffs->ev.types[ffs->ev.count++] = type;
2764 	wake_up_locked(&ffs->ev.waitq);
2765 	if (ffs->ffs_eventfd)
2766 		eventfd_signal(ffs->ffs_eventfd, 1);
2767 }
2768 
2769 static void ffs_event_add(struct ffs_data *ffs,
2770 			  enum usb_functionfs_event_type type)
2771 {
2772 	unsigned long flags;
2773 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2774 	__ffs_event_add(ffs, type);
2775 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2776 }
2777 
2778 /* Bind/unbind USB function hooks *******************************************/
2779 
2780 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2781 {
2782 	int i;
2783 
2784 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2785 		if (ffs->eps_addrmap[i] == endpoint_address)
2786 			return i;
2787 	return -ENOENT;
2788 }
2789 
2790 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2791 				    struct usb_descriptor_header *desc,
2792 				    void *priv)
2793 {
2794 	struct usb_endpoint_descriptor *ds = (void *)desc;
2795 	struct ffs_function *func = priv;
2796 	struct ffs_ep *ffs_ep;
2797 	unsigned ep_desc_id;
2798 	int idx;
2799 	static const char *speed_names[] = { "full", "high", "super" };
2800 
2801 	if (type != FFS_DESCRIPTOR)
2802 		return 0;
2803 
2804 	/*
2805 	 * If ss_descriptors is not NULL, we are reading super speed
2806 	 * descriptors; if hs_descriptors is not NULL, we are reading high
2807 	 * speed descriptors; otherwise, we are reading full speed
2808 	 * descriptors.
2809 	 */
2810 	if (func->function.ss_descriptors) {
2811 		ep_desc_id = 2;
2812 		func->function.ss_descriptors[(long)valuep] = desc;
2813 	} else if (func->function.hs_descriptors) {
2814 		ep_desc_id = 1;
2815 		func->function.hs_descriptors[(long)valuep] = desc;
2816 	} else {
2817 		ep_desc_id = 0;
2818 		func->function.fs_descriptors[(long)valuep]    = desc;
2819 	}
2820 
2821 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2822 		return 0;
2823 
2824 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2825 	if (idx < 0)
2826 		return idx;
2827 
2828 	ffs_ep = func->eps + idx;
2829 
2830 	if (unlikely(ffs_ep->descs[ep_desc_id])) {
2831 		pr_err("two %sspeed descriptors for EP %d\n",
2832 			  speed_names[ep_desc_id],
2833 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2834 		return -EINVAL;
2835 	}
2836 	ffs_ep->descs[ep_desc_id] = ds;
2837 
2838 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2839 	if (ffs_ep->ep) {
2840 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2841 		if (!ds->wMaxPacketSize)
2842 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2843 	} else {
2844 		struct usb_request *req;
2845 		struct usb_ep *ep;
2846 		u8 bEndpointAddress;
2847 		u16 wMaxPacketSize;
2848 
2849 		/*
2850 		 * We back up bEndpointAddress because autoconfig overwrites
2851 		 * it with physical endpoint address.
2852 		 */
2853 		bEndpointAddress = ds->bEndpointAddress;
2854 		/*
2855 		 * We back up wMaxPacketSize because autoconfig treats
2856 		 * endpoint descriptors as if they were full speed.
2857 		 */
2858 		wMaxPacketSize = ds->wMaxPacketSize;
2859 		pr_vdebug("autoconfig\n");
2860 		ep = usb_ep_autoconfig(func->gadget, ds);
2861 		if (unlikely(!ep))
2862 			return -ENOTSUPP;
2863 		ep->driver_data = func->eps + idx;
2864 
2865 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2866 		if (unlikely(!req))
2867 			return -ENOMEM;
2868 
2869 		ffs_ep->ep  = ep;
2870 		ffs_ep->req = req;
2871 		func->eps_revmap[ds->bEndpointAddress &
2872 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2873 		/*
2874 		 * If we use virtual address mapping, we restore
2875 		 * original bEndpointAddress value.
2876 		 */
2877 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2878 			ds->bEndpointAddress = bEndpointAddress;
2879 		/*
2880 		 * Restore wMaxPacketSize which was potentially
2881 		 * overwritten by autoconfig.
2882 		 */
2883 		ds->wMaxPacketSize = wMaxPacketSize;
2884 	}
2885 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2886 
2887 	return 0;
2888 }
2889 
2890 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2891 				   struct usb_descriptor_header *desc,
2892 				   void *priv)
2893 {
2894 	struct ffs_function *func = priv;
2895 	unsigned idx;
2896 	u8 newValue;
2897 
2898 	switch (type) {
2899 	default:
2900 	case FFS_DESCRIPTOR:
2901 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2902 		return 0;
2903 
2904 	case FFS_INTERFACE:
2905 		idx = *valuep;
2906 		if (func->interfaces_nums[idx] < 0) {
2907 			int id = usb_interface_id(func->conf, &func->function);
2908 			if (unlikely(id < 0))
2909 				return id;
2910 			func->interfaces_nums[idx] = id;
2911 		}
2912 		newValue = func->interfaces_nums[idx];
2913 		break;
2914 
2915 	case FFS_STRING:
2916 		/* String' IDs are allocated when fsf_data is bound to cdev */
2917 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2918 		break;
2919 
2920 	case FFS_ENDPOINT:
2921 		/*
2922 		 * USB_DT_ENDPOINT are handled in
2923 		 * __ffs_func_bind_do_descs().
2924 		 */
2925 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2926 			return 0;
2927 
2928 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2929 		if (unlikely(!func->eps[idx].ep))
2930 			return -EINVAL;
2931 
2932 		{
2933 			struct usb_endpoint_descriptor **descs;
2934 			descs = func->eps[idx].descs;
2935 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2936 		}
2937 		break;
2938 	}
2939 
2940 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2941 	*valuep = newValue;
2942 	return 0;
2943 }
2944 
2945 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2946 				      struct usb_os_desc_header *h, void *data,
2947 				      unsigned len, void *priv)
2948 {
2949 	struct ffs_function *func = priv;
2950 	u8 length = 0;
2951 
2952 	switch (type) {
2953 	case FFS_OS_DESC_EXT_COMPAT: {
2954 		struct usb_ext_compat_desc *desc = data;
2955 		struct usb_os_desc_table *t;
2956 
2957 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2958 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2959 		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2960 		       ARRAY_SIZE(desc->CompatibleID) +
2961 		       ARRAY_SIZE(desc->SubCompatibleID));
2962 		length = sizeof(*desc);
2963 	}
2964 		break;
2965 	case FFS_OS_DESC_EXT_PROP: {
2966 		struct usb_ext_prop_desc *desc = data;
2967 		struct usb_os_desc_table *t;
2968 		struct usb_os_desc_ext_prop *ext_prop;
2969 		char *ext_prop_name;
2970 		char *ext_prop_data;
2971 
2972 		t = &func->function.os_desc_table[h->interface];
2973 		t->if_id = func->interfaces_nums[h->interface];
2974 
2975 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2976 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2977 
2978 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2979 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2980 		ext_prop->data_len = le32_to_cpu(*(__le32 *)
2981 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2982 		length = ext_prop->name_len + ext_prop->data_len + 14;
2983 
2984 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2985 		func->ffs->ms_os_descs_ext_prop_name_avail +=
2986 			ext_prop->name_len;
2987 
2988 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2989 		func->ffs->ms_os_descs_ext_prop_data_avail +=
2990 			ext_prop->data_len;
2991 		memcpy(ext_prop_data,
2992 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2993 		       ext_prop->data_len);
2994 		/* unicode data reported to the host as "WCHAR"s */
2995 		switch (ext_prop->type) {
2996 		case USB_EXT_PROP_UNICODE:
2997 		case USB_EXT_PROP_UNICODE_ENV:
2998 		case USB_EXT_PROP_UNICODE_LINK:
2999 		case USB_EXT_PROP_UNICODE_MULTI:
3000 			ext_prop->data_len *= 2;
3001 			break;
3002 		}
3003 		ext_prop->data = ext_prop_data;
3004 
3005 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3006 		       ext_prop->name_len);
3007 		/* property name reported to the host as "WCHAR"s */
3008 		ext_prop->name_len *= 2;
3009 		ext_prop->name = ext_prop_name;
3010 
3011 		t->os_desc->ext_prop_len +=
3012 			ext_prop->name_len + ext_prop->data_len + 14;
3013 		++t->os_desc->ext_prop_count;
3014 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3015 	}
3016 		break;
3017 	default:
3018 		pr_vdebug("unknown descriptor: %d\n", type);
3019 	}
3020 
3021 	return length;
3022 }
3023 
3024 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3025 						struct usb_configuration *c)
3026 {
3027 	struct ffs_function *func = ffs_func_from_usb(f);
3028 	struct f_fs_opts *ffs_opts =
3029 		container_of(f->fi, struct f_fs_opts, func_inst);
3030 	int ret;
3031 
3032 	ENTER();
3033 
3034 	/*
3035 	 * Legacy gadget triggers binding in functionfs_ready_callback,
3036 	 * which already uses locking; taking the same lock here would
3037 	 * cause a deadlock.
3038 	 *
3039 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
3040 	 */
3041 	if (!ffs_opts->no_configfs)
3042 		ffs_dev_lock();
3043 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3044 	func->ffs = ffs_opts->dev->ffs_data;
3045 	if (!ffs_opts->no_configfs)
3046 		ffs_dev_unlock();
3047 	if (ret)
3048 		return ERR_PTR(ret);
3049 
3050 	func->conf = c;
3051 	func->gadget = c->cdev->gadget;
3052 
3053 	/*
3054 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3055 	 * configurations are bound in sequence with list_for_each_entry,
3056 	 * in each configuration its functions are bound in sequence
3057 	 * with list_for_each_entry, so we assume no race condition
3058 	 * with regard to ffs_opts->bound access
3059 	 */
3060 	if (!ffs_opts->refcnt) {
3061 		ret = functionfs_bind(func->ffs, c->cdev);
3062 		if (ret)
3063 			return ERR_PTR(ret);
3064 	}
3065 	ffs_opts->refcnt++;
3066 	func->function.strings = func->ffs->stringtabs;
3067 
3068 	return ffs_opts;
3069 }
3070 
3071 static int _ffs_func_bind(struct usb_configuration *c,
3072 			  struct usb_function *f)
3073 {
3074 	struct ffs_function *func = ffs_func_from_usb(f);
3075 	struct ffs_data *ffs = func->ffs;
3076 
3077 	const int full = !!func->ffs->fs_descs_count;
3078 	const int high = !!func->ffs->hs_descs_count;
3079 	const int super = !!func->ffs->ss_descs_count;
3080 
3081 	int fs_len, hs_len, ss_len, ret, i;
3082 	struct ffs_ep *eps_ptr;
3083 
3084 	/* Make it a single chunk, less management later on */
3085 	vla_group(d);
3086 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3087 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3088 		full ? ffs->fs_descs_count + 1 : 0);
3089 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3090 		high ? ffs->hs_descs_count + 1 : 0);
3091 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3092 		super ? ffs->ss_descs_count + 1 : 0);
3093 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3094 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3095 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3096 	vla_item_with_sz(d, char[16], ext_compat,
3097 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3098 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
3099 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3100 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3101 			 ffs->ms_os_descs_ext_prop_count);
3102 	vla_item_with_sz(d, char, ext_prop_name,
3103 			 ffs->ms_os_descs_ext_prop_name_len);
3104 	vla_item_with_sz(d, char, ext_prop_data,
3105 			 ffs->ms_os_descs_ext_prop_data_len);
3106 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3107 	char *vlabuf;
3108 
3109 	ENTER();
3110 
3111 	/* Has descriptors only for speeds gadget does not support */
3112 	if (unlikely(!(full | high | super)))
3113 		return -ENOTSUPP;
3114 
3115 	/* Allocate a single chunk, less management later on */
3116 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3117 	if (unlikely(!vlabuf))
3118 		return -ENOMEM;
3119 
3120 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3121 	ffs->ms_os_descs_ext_prop_name_avail =
3122 		vla_ptr(vlabuf, d, ext_prop_name);
3123 	ffs->ms_os_descs_ext_prop_data_avail =
3124 		vla_ptr(vlabuf, d, ext_prop_data);
3125 
3126 	/* Copy descriptors  */
3127 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3128 	       ffs->raw_descs_length);
3129 
3130 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3131 	eps_ptr = vla_ptr(vlabuf, d, eps);
3132 	for (i = 0; i < ffs->eps_count; i++)
3133 		eps_ptr[i].num = -1;
3134 
3135 	/* Save pointers
3136 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3137 	*/
3138 	func->eps             = vla_ptr(vlabuf, d, eps);
3139 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3140 
3141 	/*
3142 	 * Go through all the endpoint descriptors and allocate
3143 	 * endpoints first, so that later we can rewrite the endpoint
3144 	 * numbers without worrying that it may be described later on.
3145 	 */
3146 	if (likely(full)) {
3147 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3148 		fs_len = ffs_do_descs(ffs->fs_descs_count,
3149 				      vla_ptr(vlabuf, d, raw_descs),
3150 				      d_raw_descs__sz,
3151 				      __ffs_func_bind_do_descs, func);
3152 		if (unlikely(fs_len < 0)) {
3153 			ret = fs_len;
3154 			goto error;
3155 		}
3156 	} else {
3157 		fs_len = 0;
3158 	}
3159 
3160 	if (likely(high)) {
3161 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3162 		hs_len = ffs_do_descs(ffs->hs_descs_count,
3163 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3164 				      d_raw_descs__sz - fs_len,
3165 				      __ffs_func_bind_do_descs, func);
3166 		if (unlikely(hs_len < 0)) {
3167 			ret = hs_len;
3168 			goto error;
3169 		}
3170 	} else {
3171 		hs_len = 0;
3172 	}
3173 
3174 	if (likely(super)) {
3175 		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3176 		ss_len = ffs_do_descs(ffs->ss_descs_count,
3177 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3178 				d_raw_descs__sz - fs_len - hs_len,
3179 				__ffs_func_bind_do_descs, func);
3180 		if (unlikely(ss_len < 0)) {
3181 			ret = ss_len;
3182 			goto error;
3183 		}
3184 	} else {
3185 		ss_len = 0;
3186 	}
3187 
3188 	/*
3189 	 * Now handle interface numbers allocation and interface and
3190 	 * endpoint numbers rewriting.  We can do that in one go
3191 	 * now.
3192 	 */
3193 	ret = ffs_do_descs(ffs->fs_descs_count +
3194 			   (high ? ffs->hs_descs_count : 0) +
3195 			   (super ? ffs->ss_descs_count : 0),
3196 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3197 			   __ffs_func_bind_do_nums, func);
3198 	if (unlikely(ret < 0))
3199 		goto error;
3200 
3201 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3202 	if (c->cdev->use_os_string) {
3203 		for (i = 0; i < ffs->interfaces_count; ++i) {
3204 			struct usb_os_desc *desc;
3205 
3206 			desc = func->function.os_desc_table[i].os_desc =
3207 				vla_ptr(vlabuf, d, os_desc) +
3208 				i * sizeof(struct usb_os_desc);
3209 			desc->ext_compat_id =
3210 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3211 			INIT_LIST_HEAD(&desc->ext_prop);
3212 		}
3213 		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3214 				      vla_ptr(vlabuf, d, raw_descs) +
3215 				      fs_len + hs_len + ss_len,
3216 				      d_raw_descs__sz - fs_len - hs_len -
3217 				      ss_len,
3218 				      __ffs_func_bind_do_os_desc, func);
3219 		if (unlikely(ret < 0))
3220 			goto error;
3221 	}
3222 	func->function.os_desc_n =
3223 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3224 
3225 	/* And we're done */
3226 	ffs_event_add(ffs, FUNCTIONFS_BIND);
3227 	return 0;
3228 
3229 error:
3230 	/* XXX Do we need to release all claimed endpoints here? */
3231 	return ret;
3232 }
3233 
3234 static int ffs_func_bind(struct usb_configuration *c,
3235 			 struct usb_function *f)
3236 {
3237 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3238 	struct ffs_function *func = ffs_func_from_usb(f);
3239 	int ret;
3240 
3241 	if (IS_ERR(ffs_opts))
3242 		return PTR_ERR(ffs_opts);
3243 
3244 	ret = _ffs_func_bind(c, f);
3245 	if (ret && !--ffs_opts->refcnt)
3246 		functionfs_unbind(func->ffs);
3247 
3248 	return ret;
3249 }
3250 
3251 
3252 /* Other USB function hooks *************************************************/
3253 
3254 static void ffs_reset_work(struct work_struct *work)
3255 {
3256 	struct ffs_data *ffs = container_of(work,
3257 		struct ffs_data, reset_work);
3258 	ffs_data_reset(ffs);
3259 }
3260 
3261 static int ffs_func_set_alt(struct usb_function *f,
3262 			    unsigned interface, unsigned alt)
3263 {
3264 	struct ffs_function *func = ffs_func_from_usb(f);
3265 	struct ffs_data *ffs = func->ffs;
3266 	int ret = 0, intf;
3267 
3268 	if (alt != (unsigned)-1) {
3269 		intf = ffs_func_revmap_intf(func, interface);
3270 		if (unlikely(intf < 0))
3271 			return intf;
3272 	}
3273 
3274 	if (ffs->func)
3275 		ffs_func_eps_disable(ffs->func);
3276 
3277 	if (ffs->state == FFS_DEACTIVATED) {
3278 		ffs->state = FFS_CLOSING;
3279 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3280 		schedule_work(&ffs->reset_work);
3281 		return -ENODEV;
3282 	}
3283 
3284 	if (ffs->state != FFS_ACTIVE)
3285 		return -ENODEV;
3286 
3287 	if (alt == (unsigned)-1) {
3288 		ffs->func = NULL;
3289 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3290 		return 0;
3291 	}
3292 
3293 	ffs->func = func;
3294 	ret = ffs_func_eps_enable(func);
3295 	if (likely(ret >= 0))
3296 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3297 	return ret;
3298 }
3299 
3300 static void ffs_func_disable(struct usb_function *f)
3301 {
3302 	ffs_func_set_alt(f, 0, (unsigned)-1);
3303 }
3304 
3305 static int ffs_func_setup(struct usb_function *f,
3306 			  const struct usb_ctrlrequest *creq)
3307 {
3308 	struct ffs_function *func = ffs_func_from_usb(f);
3309 	struct ffs_data *ffs = func->ffs;
3310 	unsigned long flags;
3311 	int ret;
3312 
3313 	ENTER();
3314 
3315 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3316 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3317 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3318 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3319 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3320 
3321 	/*
3322 	 * Most requests directed to interface go through here
3323 	 * (notable exceptions are set/get interface) so we need to
3324 	 * handle them.  All other either handled by composite or
3325 	 * passed to usb_configuration->setup() (if one is set).  No
3326 	 * matter, we will handle requests directed to endpoint here
3327 	 * as well (as it's straightforward).  Other request recipient
3328 	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3329 	 * is being used.
3330 	 */
3331 	if (ffs->state != FFS_ACTIVE)
3332 		return -ENODEV;
3333 
3334 	switch (creq->bRequestType & USB_RECIP_MASK) {
3335 	case USB_RECIP_INTERFACE:
3336 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3337 		if (unlikely(ret < 0))
3338 			return ret;
3339 		break;
3340 
3341 	case USB_RECIP_ENDPOINT:
3342 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3343 		if (unlikely(ret < 0))
3344 			return ret;
3345 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3346 			ret = func->ffs->eps_addrmap[ret];
3347 		break;
3348 
3349 	default:
3350 		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3351 			ret = le16_to_cpu(creq->wIndex);
3352 		else
3353 			return -EOPNOTSUPP;
3354 	}
3355 
3356 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3357 	ffs->ev.setup = *creq;
3358 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3359 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3360 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3361 
3362 	return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3363 }
3364 
3365 static bool ffs_func_req_match(struct usb_function *f,
3366 			       const struct usb_ctrlrequest *creq,
3367 			       bool config0)
3368 {
3369 	struct ffs_function *func = ffs_func_from_usb(f);
3370 
3371 	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3372 		return false;
3373 
3374 	switch (creq->bRequestType & USB_RECIP_MASK) {
3375 	case USB_RECIP_INTERFACE:
3376 		return (ffs_func_revmap_intf(func,
3377 					     le16_to_cpu(creq->wIndex)) >= 0);
3378 	case USB_RECIP_ENDPOINT:
3379 		return (ffs_func_revmap_ep(func,
3380 					   le16_to_cpu(creq->wIndex)) >= 0);
3381 	default:
3382 		return (bool) (func->ffs->user_flags &
3383 			       FUNCTIONFS_ALL_CTRL_RECIP);
3384 	}
3385 }
3386 
3387 static void ffs_func_suspend(struct usb_function *f)
3388 {
3389 	ENTER();
3390 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3391 }
3392 
3393 static void ffs_func_resume(struct usb_function *f)
3394 {
3395 	ENTER();
3396 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3397 }
3398 
3399 
3400 /* Endpoint and interface numbers reverse mapping ***************************/
3401 
3402 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3403 {
3404 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3405 	return num ? num : -EDOM;
3406 }
3407 
3408 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3409 {
3410 	short *nums = func->interfaces_nums;
3411 	unsigned count = func->ffs->interfaces_count;
3412 
3413 	for (; count; --count, ++nums) {
3414 		if (*nums >= 0 && *nums == intf)
3415 			return nums - func->interfaces_nums;
3416 	}
3417 
3418 	return -EDOM;
3419 }
3420 
3421 
3422 /* Devices management *******************************************************/
3423 
3424 static LIST_HEAD(ffs_devices);
3425 
3426 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3427 {
3428 	struct ffs_dev *dev;
3429 
3430 	if (!name)
3431 		return NULL;
3432 
3433 	list_for_each_entry(dev, &ffs_devices, entry) {
3434 		if (strcmp(dev->name, name) == 0)
3435 			return dev;
3436 	}
3437 
3438 	return NULL;
3439 }
3440 
3441 /*
3442  * ffs_lock must be taken by the caller of this function
3443  */
3444 static struct ffs_dev *_ffs_get_single_dev(void)
3445 {
3446 	struct ffs_dev *dev;
3447 
3448 	if (list_is_singular(&ffs_devices)) {
3449 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3450 		if (dev->single)
3451 			return dev;
3452 	}
3453 
3454 	return NULL;
3455 }
3456 
3457 /*
3458  * ffs_lock must be taken by the caller of this function
3459  */
3460 static struct ffs_dev *_ffs_find_dev(const char *name)
3461 {
3462 	struct ffs_dev *dev;
3463 
3464 	dev = _ffs_get_single_dev();
3465 	if (dev)
3466 		return dev;
3467 
3468 	return _ffs_do_find_dev(name);
3469 }
3470 
3471 /* Configfs support *********************************************************/
3472 
3473 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3474 {
3475 	return container_of(to_config_group(item), struct f_fs_opts,
3476 			    func_inst.group);
3477 }
3478 
3479 static void ffs_attr_release(struct config_item *item)
3480 {
3481 	struct f_fs_opts *opts = to_ffs_opts(item);
3482 
3483 	usb_put_function_instance(&opts->func_inst);
3484 }
3485 
3486 static struct configfs_item_operations ffs_item_ops = {
3487 	.release	= ffs_attr_release,
3488 };
3489 
3490 static const struct config_item_type ffs_func_type = {
3491 	.ct_item_ops	= &ffs_item_ops,
3492 	.ct_owner	= THIS_MODULE,
3493 };
3494 
3495 
3496 /* Function registration interface ******************************************/
3497 
3498 static void ffs_free_inst(struct usb_function_instance *f)
3499 {
3500 	struct f_fs_opts *opts;
3501 
3502 	opts = to_f_fs_opts(f);
3503 	ffs_dev_lock();
3504 	_ffs_free_dev(opts->dev);
3505 	ffs_dev_unlock();
3506 	kfree(opts);
3507 }
3508 
3509 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3510 {
3511 	if (strlen(name) >= sizeof_field(struct ffs_dev, name))
3512 		return -ENAMETOOLONG;
3513 	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3514 }
3515 
3516 static struct usb_function_instance *ffs_alloc_inst(void)
3517 {
3518 	struct f_fs_opts *opts;
3519 	struct ffs_dev *dev;
3520 
3521 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3522 	if (!opts)
3523 		return ERR_PTR(-ENOMEM);
3524 
3525 	opts->func_inst.set_inst_name = ffs_set_inst_name;
3526 	opts->func_inst.free_func_inst = ffs_free_inst;
3527 	ffs_dev_lock();
3528 	dev = _ffs_alloc_dev();
3529 	ffs_dev_unlock();
3530 	if (IS_ERR(dev)) {
3531 		kfree(opts);
3532 		return ERR_CAST(dev);
3533 	}
3534 	opts->dev = dev;
3535 	dev->opts = opts;
3536 
3537 	config_group_init_type_name(&opts->func_inst.group, "",
3538 				    &ffs_func_type);
3539 	return &opts->func_inst;
3540 }
3541 
3542 static void ffs_free(struct usb_function *f)
3543 {
3544 	kfree(ffs_func_from_usb(f));
3545 }
3546 
3547 static void ffs_func_unbind(struct usb_configuration *c,
3548 			    struct usb_function *f)
3549 {
3550 	struct ffs_function *func = ffs_func_from_usb(f);
3551 	struct ffs_data *ffs = func->ffs;
3552 	struct f_fs_opts *opts =
3553 		container_of(f->fi, struct f_fs_opts, func_inst);
3554 	struct ffs_ep *ep = func->eps;
3555 	unsigned count = ffs->eps_count;
3556 	unsigned long flags;
3557 
3558 	ENTER();
3559 	if (ffs->func == func) {
3560 		ffs_func_eps_disable(func);
3561 		ffs->func = NULL;
3562 	}
3563 
3564 	if (!--opts->refcnt)
3565 		functionfs_unbind(ffs);
3566 
3567 	/* cleanup after autoconfig */
3568 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3569 	while (count--) {
3570 		if (ep->ep && ep->req)
3571 			usb_ep_free_request(ep->ep, ep->req);
3572 		ep->req = NULL;
3573 		++ep;
3574 	}
3575 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3576 	kfree(func->eps);
3577 	func->eps = NULL;
3578 	/*
3579 	 * eps, descriptors and interfaces_nums are allocated in the
3580 	 * same chunk so only one free is required.
3581 	 */
3582 	func->function.fs_descriptors = NULL;
3583 	func->function.hs_descriptors = NULL;
3584 	func->function.ss_descriptors = NULL;
3585 	func->interfaces_nums = NULL;
3586 
3587 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3588 }
3589 
3590 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3591 {
3592 	struct ffs_function *func;
3593 
3594 	ENTER();
3595 
3596 	func = kzalloc(sizeof(*func), GFP_KERNEL);
3597 	if (unlikely(!func))
3598 		return ERR_PTR(-ENOMEM);
3599 
3600 	func->function.name    = "Function FS Gadget";
3601 
3602 	func->function.bind    = ffs_func_bind;
3603 	func->function.unbind  = ffs_func_unbind;
3604 	func->function.set_alt = ffs_func_set_alt;
3605 	func->function.disable = ffs_func_disable;
3606 	func->function.setup   = ffs_func_setup;
3607 	func->function.req_match = ffs_func_req_match;
3608 	func->function.suspend = ffs_func_suspend;
3609 	func->function.resume  = ffs_func_resume;
3610 	func->function.free_func = ffs_free;
3611 
3612 	return &func->function;
3613 }
3614 
3615 /*
3616  * ffs_lock must be taken by the caller of this function
3617  */
3618 static struct ffs_dev *_ffs_alloc_dev(void)
3619 {
3620 	struct ffs_dev *dev;
3621 	int ret;
3622 
3623 	if (_ffs_get_single_dev())
3624 			return ERR_PTR(-EBUSY);
3625 
3626 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3627 	if (!dev)
3628 		return ERR_PTR(-ENOMEM);
3629 
3630 	if (list_empty(&ffs_devices)) {
3631 		ret = functionfs_init();
3632 		if (ret) {
3633 			kfree(dev);
3634 			return ERR_PTR(ret);
3635 		}
3636 	}
3637 
3638 	list_add(&dev->entry, &ffs_devices);
3639 
3640 	return dev;
3641 }
3642 
3643 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3644 {
3645 	struct ffs_dev *existing;
3646 	int ret = 0;
3647 
3648 	ffs_dev_lock();
3649 
3650 	existing = _ffs_do_find_dev(name);
3651 	if (!existing)
3652 		strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3653 	else if (existing != dev)
3654 		ret = -EBUSY;
3655 
3656 	ffs_dev_unlock();
3657 
3658 	return ret;
3659 }
3660 EXPORT_SYMBOL_GPL(ffs_name_dev);
3661 
3662 int ffs_single_dev(struct ffs_dev *dev)
3663 {
3664 	int ret;
3665 
3666 	ret = 0;
3667 	ffs_dev_lock();
3668 
3669 	if (!list_is_singular(&ffs_devices))
3670 		ret = -EBUSY;
3671 	else
3672 		dev->single = true;
3673 
3674 	ffs_dev_unlock();
3675 	return ret;
3676 }
3677 EXPORT_SYMBOL_GPL(ffs_single_dev);
3678 
3679 /*
3680  * ffs_lock must be taken by the caller of this function
3681  */
3682 static void _ffs_free_dev(struct ffs_dev *dev)
3683 {
3684 	list_del(&dev->entry);
3685 
3686 	/* Clear the private_data pointer to stop incorrect dev access */
3687 	if (dev->ffs_data)
3688 		dev->ffs_data->private_data = NULL;
3689 
3690 	kfree(dev);
3691 	if (list_empty(&ffs_devices))
3692 		functionfs_cleanup();
3693 }
3694 
3695 static void *ffs_acquire_dev(const char *dev_name)
3696 {
3697 	struct ffs_dev *ffs_dev;
3698 
3699 	ENTER();
3700 	ffs_dev_lock();
3701 
3702 	ffs_dev = _ffs_find_dev(dev_name);
3703 	if (!ffs_dev)
3704 		ffs_dev = ERR_PTR(-ENOENT);
3705 	else if (ffs_dev->mounted)
3706 		ffs_dev = ERR_PTR(-EBUSY);
3707 	else if (ffs_dev->ffs_acquire_dev_callback &&
3708 	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3709 		ffs_dev = ERR_PTR(-ENOENT);
3710 	else
3711 		ffs_dev->mounted = true;
3712 
3713 	ffs_dev_unlock();
3714 	return ffs_dev;
3715 }
3716 
3717 static void ffs_release_dev(struct ffs_data *ffs_data)
3718 {
3719 	struct ffs_dev *ffs_dev;
3720 
3721 	ENTER();
3722 	ffs_dev_lock();
3723 
3724 	ffs_dev = ffs_data->private_data;
3725 	if (ffs_dev) {
3726 		ffs_dev->mounted = false;
3727 
3728 		if (ffs_dev->ffs_release_dev_callback)
3729 			ffs_dev->ffs_release_dev_callback(ffs_dev);
3730 	}
3731 
3732 	ffs_dev_unlock();
3733 }
3734 
3735 static int ffs_ready(struct ffs_data *ffs)
3736 {
3737 	struct ffs_dev *ffs_obj;
3738 	int ret = 0;
3739 
3740 	ENTER();
3741 	ffs_dev_lock();
3742 
3743 	ffs_obj = ffs->private_data;
3744 	if (!ffs_obj) {
3745 		ret = -EINVAL;
3746 		goto done;
3747 	}
3748 	if (WARN_ON(ffs_obj->desc_ready)) {
3749 		ret = -EBUSY;
3750 		goto done;
3751 	}
3752 
3753 	ffs_obj->desc_ready = true;
3754 	ffs_obj->ffs_data = ffs;
3755 
3756 	if (ffs_obj->ffs_ready_callback) {
3757 		ret = ffs_obj->ffs_ready_callback(ffs);
3758 		if (ret)
3759 			goto done;
3760 	}
3761 
3762 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3763 done:
3764 	ffs_dev_unlock();
3765 	return ret;
3766 }
3767 
3768 static void ffs_closed(struct ffs_data *ffs)
3769 {
3770 	struct ffs_dev *ffs_obj;
3771 	struct f_fs_opts *opts;
3772 	struct config_item *ci;
3773 
3774 	ENTER();
3775 	ffs_dev_lock();
3776 
3777 	ffs_obj = ffs->private_data;
3778 	if (!ffs_obj)
3779 		goto done;
3780 
3781 	ffs_obj->desc_ready = false;
3782 	ffs_obj->ffs_data = NULL;
3783 
3784 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3785 	    ffs_obj->ffs_closed_callback)
3786 		ffs_obj->ffs_closed_callback(ffs);
3787 
3788 	if (ffs_obj->opts)
3789 		opts = ffs_obj->opts;
3790 	else
3791 		goto done;
3792 
3793 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3794 	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3795 		goto done;
3796 
3797 	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3798 	ffs_dev_unlock();
3799 
3800 	if (test_bit(FFS_FL_BOUND, &ffs->flags))
3801 		unregister_gadget_item(ci);
3802 	return;
3803 done:
3804 	ffs_dev_unlock();
3805 }
3806 
3807 /* Misc helper functions ****************************************************/
3808 
3809 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3810 {
3811 	return nonblock
3812 		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3813 		: mutex_lock_interruptible(mutex);
3814 }
3815 
3816 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3817 {
3818 	char *data;
3819 
3820 	if (unlikely(!len))
3821 		return NULL;
3822 
3823 	data = kmalloc(len, GFP_KERNEL);
3824 	if (unlikely(!data))
3825 		return ERR_PTR(-ENOMEM);
3826 
3827 	if (unlikely(copy_from_user(data, buf, len))) {
3828 		kfree(data);
3829 		return ERR_PTR(-EFAULT);
3830 	}
3831 
3832 	pr_vdebug("Buffer from user space:\n");
3833 	ffs_dump_mem("", data, len);
3834 
3835 	return data;
3836 }
3837 
3838 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3839 MODULE_LICENSE("GPL");
3840 MODULE_AUTHOR("Michal Nazarewicz");
3841