1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * f_fs.c -- user mode file system API for USB composite function controllers 4 * 5 * Copyright (C) 2010 Samsung Electronics 6 * Author: Michal Nazarewicz <mina86@mina86.com> 7 * 8 * Based on inode.c (GadgetFS) which was: 9 * Copyright (C) 2003-2004 David Brownell 10 * Copyright (C) 2003 Agilent Technologies 11 */ 12 13 14 /* #define DEBUG */ 15 /* #define VERBOSE_DEBUG */ 16 17 #include <linux/blkdev.h> 18 #include <linux/pagemap.h> 19 #include <linux/export.h> 20 #include <linux/fs_parser.h> 21 #include <linux/hid.h> 22 #include <linux/mm.h> 23 #include <linux/module.h> 24 #include <linux/scatterlist.h> 25 #include <linux/sched/signal.h> 26 #include <linux/uio.h> 27 #include <linux/vmalloc.h> 28 #include <asm/unaligned.h> 29 30 #include <linux/usb/ccid.h> 31 #include <linux/usb/composite.h> 32 #include <linux/usb/functionfs.h> 33 34 #include <linux/aio.h> 35 #include <linux/mmu_context.h> 36 #include <linux/poll.h> 37 #include <linux/eventfd.h> 38 39 #include "u_fs.h" 40 #include "u_f.h" 41 #include "u_os_desc.h" 42 #include "configfs.h" 43 44 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ 45 46 /* Reference counter handling */ 47 static void ffs_data_get(struct ffs_data *ffs); 48 static void ffs_data_put(struct ffs_data *ffs); 49 /* Creates new ffs_data object. */ 50 static struct ffs_data *__must_check ffs_data_new(const char *dev_name) 51 __attribute__((malloc)); 52 53 /* Opened counter handling. */ 54 static void ffs_data_opened(struct ffs_data *ffs); 55 static void ffs_data_closed(struct ffs_data *ffs); 56 57 /* Called with ffs->mutex held; take over ownership of data. */ 58 static int __must_check 59 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); 60 static int __must_check 61 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); 62 63 64 /* The function structure ***************************************************/ 65 66 struct ffs_ep; 67 68 struct ffs_function { 69 struct usb_configuration *conf; 70 struct usb_gadget *gadget; 71 struct ffs_data *ffs; 72 73 struct ffs_ep *eps; 74 u8 eps_revmap[16]; 75 short *interfaces_nums; 76 77 struct usb_function function; 78 }; 79 80 81 static struct ffs_function *ffs_func_from_usb(struct usb_function *f) 82 { 83 return container_of(f, struct ffs_function, function); 84 } 85 86 87 static inline enum ffs_setup_state 88 ffs_setup_state_clear_cancelled(struct ffs_data *ffs) 89 { 90 return (enum ffs_setup_state) 91 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); 92 } 93 94 95 static void ffs_func_eps_disable(struct ffs_function *func); 96 static int __must_check ffs_func_eps_enable(struct ffs_function *func); 97 98 static int ffs_func_bind(struct usb_configuration *, 99 struct usb_function *); 100 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); 101 static void ffs_func_disable(struct usb_function *); 102 static int ffs_func_setup(struct usb_function *, 103 const struct usb_ctrlrequest *); 104 static bool ffs_func_req_match(struct usb_function *, 105 const struct usb_ctrlrequest *, 106 bool config0); 107 static void ffs_func_suspend(struct usb_function *); 108 static void ffs_func_resume(struct usb_function *); 109 110 111 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); 112 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); 113 114 115 /* The endpoints structures *************************************************/ 116 117 struct ffs_ep { 118 struct usb_ep *ep; /* P: ffs->eps_lock */ 119 struct usb_request *req; /* P: epfile->mutex */ 120 121 /* [0]: full speed, [1]: high speed, [2]: super speed */ 122 struct usb_endpoint_descriptor *descs[3]; 123 124 u8 num; 125 126 int status; /* P: epfile->mutex */ 127 }; 128 129 struct ffs_epfile { 130 /* Protects ep->ep and ep->req. */ 131 struct mutex mutex; 132 133 struct ffs_data *ffs; 134 struct ffs_ep *ep; /* P: ffs->eps_lock */ 135 136 struct dentry *dentry; 137 138 /* 139 * Buffer for holding data from partial reads which may happen since 140 * we’re rounding user read requests to a multiple of a max packet size. 141 * 142 * The pointer is initialised with NULL value and may be set by 143 * __ffs_epfile_read_data function to point to a temporary buffer. 144 * 145 * In normal operation, calls to __ffs_epfile_read_buffered will consume 146 * data from said buffer and eventually free it. Importantly, while the 147 * function is using the buffer, it sets the pointer to NULL. This is 148 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered 149 * can never run concurrently (they are synchronised by epfile->mutex) 150 * so the latter will not assign a new value to the pointer. 151 * 152 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is 153 * valid) and sets the pointer to READ_BUFFER_DROP value. This special 154 * value is crux of the synchronisation between ffs_func_eps_disable and 155 * __ffs_epfile_read_data. 156 * 157 * Once __ffs_epfile_read_data is about to finish it will try to set the 158 * pointer back to its old value (as described above), but seeing as the 159 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free 160 * the buffer. 161 * 162 * == State transitions == 163 * 164 * • ptr == NULL: (initial state) 165 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP 166 * ◦ __ffs_epfile_read_buffered: nop 167 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf 168 * ◦ reading finishes: n/a, not in ‘and reading’ state 169 * • ptr == DROP: 170 * ◦ __ffs_epfile_read_buffer_free: nop 171 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL 172 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop 173 * ◦ reading finishes: n/a, not in ‘and reading’ state 174 * • ptr == buf: 175 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP 176 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading 177 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered 178 * is always called first 179 * ◦ reading finishes: n/a, not in ‘and reading’ state 180 * • ptr == NULL and reading: 181 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading 182 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 183 * ◦ __ffs_epfile_read_data: n/a, mutex is held 184 * ◦ reading finishes and … 185 * … all data read: free buf, go to ptr == NULL 186 * … otherwise: go to ptr == buf and reading 187 * • ptr == DROP and reading: 188 * ◦ __ffs_epfile_read_buffer_free: nop 189 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 190 * ◦ __ffs_epfile_read_data: n/a, mutex is held 191 * ◦ reading finishes: free buf, go to ptr == DROP 192 */ 193 struct ffs_buffer *read_buffer; 194 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN)) 195 196 char name[5]; 197 198 unsigned char in; /* P: ffs->eps_lock */ 199 unsigned char isoc; /* P: ffs->eps_lock */ 200 201 unsigned char _pad; 202 }; 203 204 struct ffs_buffer { 205 size_t length; 206 char *data; 207 char storage[]; 208 }; 209 210 /* ffs_io_data structure ***************************************************/ 211 212 struct ffs_io_data { 213 bool aio; 214 bool read; 215 216 struct kiocb *kiocb; 217 struct iov_iter data; 218 const void *to_free; 219 char *buf; 220 221 struct mm_struct *mm; 222 struct work_struct work; 223 224 struct usb_ep *ep; 225 struct usb_request *req; 226 struct sg_table sgt; 227 bool use_sg; 228 229 struct ffs_data *ffs; 230 }; 231 232 struct ffs_desc_helper { 233 struct ffs_data *ffs; 234 unsigned interfaces_count; 235 unsigned eps_count; 236 }; 237 238 static int __must_check ffs_epfiles_create(struct ffs_data *ffs); 239 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count); 240 241 static struct dentry * 242 ffs_sb_create_file(struct super_block *sb, const char *name, void *data, 243 const struct file_operations *fops); 244 245 /* Devices management *******************************************************/ 246 247 DEFINE_MUTEX(ffs_lock); 248 EXPORT_SYMBOL_GPL(ffs_lock); 249 250 static struct ffs_dev *_ffs_find_dev(const char *name); 251 static struct ffs_dev *_ffs_alloc_dev(void); 252 static void _ffs_free_dev(struct ffs_dev *dev); 253 static void *ffs_acquire_dev(const char *dev_name); 254 static void ffs_release_dev(struct ffs_data *ffs_data); 255 static int ffs_ready(struct ffs_data *ffs); 256 static void ffs_closed(struct ffs_data *ffs); 257 258 /* Misc helper functions ****************************************************/ 259 260 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 261 __attribute__((warn_unused_result, nonnull)); 262 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 263 __attribute__((warn_unused_result, nonnull)); 264 265 266 /* Control file aka ep0 *****************************************************/ 267 268 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) 269 { 270 struct ffs_data *ffs = req->context; 271 272 complete(&ffs->ep0req_completion); 273 } 274 275 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) 276 __releases(&ffs->ev.waitq.lock) 277 { 278 struct usb_request *req = ffs->ep0req; 279 int ret; 280 281 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); 282 283 spin_unlock_irq(&ffs->ev.waitq.lock); 284 285 req->buf = data; 286 req->length = len; 287 288 /* 289 * UDC layer requires to provide a buffer even for ZLP, but should 290 * not use it at all. Let's provide some poisoned pointer to catch 291 * possible bug in the driver. 292 */ 293 if (req->buf == NULL) 294 req->buf = (void *)0xDEADBABE; 295 296 reinit_completion(&ffs->ep0req_completion); 297 298 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); 299 if (unlikely(ret < 0)) 300 return ret; 301 302 ret = wait_for_completion_interruptible(&ffs->ep0req_completion); 303 if (unlikely(ret)) { 304 usb_ep_dequeue(ffs->gadget->ep0, req); 305 return -EINTR; 306 } 307 308 ffs->setup_state = FFS_NO_SETUP; 309 return req->status ? req->status : req->actual; 310 } 311 312 static int __ffs_ep0_stall(struct ffs_data *ffs) 313 { 314 if (ffs->ev.can_stall) { 315 pr_vdebug("ep0 stall\n"); 316 usb_ep_set_halt(ffs->gadget->ep0); 317 ffs->setup_state = FFS_NO_SETUP; 318 return -EL2HLT; 319 } else { 320 pr_debug("bogus ep0 stall!\n"); 321 return -ESRCH; 322 } 323 } 324 325 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, 326 size_t len, loff_t *ptr) 327 { 328 struct ffs_data *ffs = file->private_data; 329 ssize_t ret; 330 char *data; 331 332 ENTER(); 333 334 /* Fast check if setup was canceled */ 335 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 336 return -EIDRM; 337 338 /* Acquire mutex */ 339 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 340 if (unlikely(ret < 0)) 341 return ret; 342 343 /* Check state */ 344 switch (ffs->state) { 345 case FFS_READ_DESCRIPTORS: 346 case FFS_READ_STRINGS: 347 /* Copy data */ 348 if (unlikely(len < 16)) { 349 ret = -EINVAL; 350 break; 351 } 352 353 data = ffs_prepare_buffer(buf, len); 354 if (IS_ERR(data)) { 355 ret = PTR_ERR(data); 356 break; 357 } 358 359 /* Handle data */ 360 if (ffs->state == FFS_READ_DESCRIPTORS) { 361 pr_info("read descriptors\n"); 362 ret = __ffs_data_got_descs(ffs, data, len); 363 if (unlikely(ret < 0)) 364 break; 365 366 ffs->state = FFS_READ_STRINGS; 367 ret = len; 368 } else { 369 pr_info("read strings\n"); 370 ret = __ffs_data_got_strings(ffs, data, len); 371 if (unlikely(ret < 0)) 372 break; 373 374 ret = ffs_epfiles_create(ffs); 375 if (unlikely(ret)) { 376 ffs->state = FFS_CLOSING; 377 break; 378 } 379 380 ffs->state = FFS_ACTIVE; 381 mutex_unlock(&ffs->mutex); 382 383 ret = ffs_ready(ffs); 384 if (unlikely(ret < 0)) { 385 ffs->state = FFS_CLOSING; 386 return ret; 387 } 388 389 return len; 390 } 391 break; 392 393 case FFS_ACTIVE: 394 data = NULL; 395 /* 396 * We're called from user space, we can use _irq 397 * rather then _irqsave 398 */ 399 spin_lock_irq(&ffs->ev.waitq.lock); 400 switch (ffs_setup_state_clear_cancelled(ffs)) { 401 case FFS_SETUP_CANCELLED: 402 ret = -EIDRM; 403 goto done_spin; 404 405 case FFS_NO_SETUP: 406 ret = -ESRCH; 407 goto done_spin; 408 409 case FFS_SETUP_PENDING: 410 break; 411 } 412 413 /* FFS_SETUP_PENDING */ 414 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { 415 spin_unlock_irq(&ffs->ev.waitq.lock); 416 ret = __ffs_ep0_stall(ffs); 417 break; 418 } 419 420 /* FFS_SETUP_PENDING and not stall */ 421 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 422 423 spin_unlock_irq(&ffs->ev.waitq.lock); 424 425 data = ffs_prepare_buffer(buf, len); 426 if (IS_ERR(data)) { 427 ret = PTR_ERR(data); 428 break; 429 } 430 431 spin_lock_irq(&ffs->ev.waitq.lock); 432 433 /* 434 * We are guaranteed to be still in FFS_ACTIVE state 435 * but the state of setup could have changed from 436 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need 437 * to check for that. If that happened we copied data 438 * from user space in vain but it's unlikely. 439 * 440 * For sure we are not in FFS_NO_SETUP since this is 441 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP 442 * transition can be performed and it's protected by 443 * mutex. 444 */ 445 if (ffs_setup_state_clear_cancelled(ffs) == 446 FFS_SETUP_CANCELLED) { 447 ret = -EIDRM; 448 done_spin: 449 spin_unlock_irq(&ffs->ev.waitq.lock); 450 } else { 451 /* unlocks spinlock */ 452 ret = __ffs_ep0_queue_wait(ffs, data, len); 453 } 454 kfree(data); 455 break; 456 457 default: 458 ret = -EBADFD; 459 break; 460 } 461 462 mutex_unlock(&ffs->mutex); 463 return ret; 464 } 465 466 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */ 467 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, 468 size_t n) 469 __releases(&ffs->ev.waitq.lock) 470 { 471 /* 472 * n cannot be bigger than ffs->ev.count, which cannot be bigger than 473 * size of ffs->ev.types array (which is four) so that's how much space 474 * we reserve. 475 */ 476 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)]; 477 const size_t size = n * sizeof *events; 478 unsigned i = 0; 479 480 memset(events, 0, size); 481 482 do { 483 events[i].type = ffs->ev.types[i]; 484 if (events[i].type == FUNCTIONFS_SETUP) { 485 events[i].u.setup = ffs->ev.setup; 486 ffs->setup_state = FFS_SETUP_PENDING; 487 } 488 } while (++i < n); 489 490 ffs->ev.count -= n; 491 if (ffs->ev.count) 492 memmove(ffs->ev.types, ffs->ev.types + n, 493 ffs->ev.count * sizeof *ffs->ev.types); 494 495 spin_unlock_irq(&ffs->ev.waitq.lock); 496 mutex_unlock(&ffs->mutex); 497 498 return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size; 499 } 500 501 static ssize_t ffs_ep0_read(struct file *file, char __user *buf, 502 size_t len, loff_t *ptr) 503 { 504 struct ffs_data *ffs = file->private_data; 505 char *data = NULL; 506 size_t n; 507 int ret; 508 509 ENTER(); 510 511 /* Fast check if setup was canceled */ 512 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 513 return -EIDRM; 514 515 /* Acquire mutex */ 516 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 517 if (unlikely(ret < 0)) 518 return ret; 519 520 /* Check state */ 521 if (ffs->state != FFS_ACTIVE) { 522 ret = -EBADFD; 523 goto done_mutex; 524 } 525 526 /* 527 * We're called from user space, we can use _irq rather then 528 * _irqsave 529 */ 530 spin_lock_irq(&ffs->ev.waitq.lock); 531 532 switch (ffs_setup_state_clear_cancelled(ffs)) { 533 case FFS_SETUP_CANCELLED: 534 ret = -EIDRM; 535 break; 536 537 case FFS_NO_SETUP: 538 n = len / sizeof(struct usb_functionfs_event); 539 if (unlikely(!n)) { 540 ret = -EINVAL; 541 break; 542 } 543 544 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { 545 ret = -EAGAIN; 546 break; 547 } 548 549 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, 550 ffs->ev.count)) { 551 ret = -EINTR; 552 break; 553 } 554 555 /* unlocks spinlock */ 556 return __ffs_ep0_read_events(ffs, buf, 557 min(n, (size_t)ffs->ev.count)); 558 559 case FFS_SETUP_PENDING: 560 if (ffs->ev.setup.bRequestType & USB_DIR_IN) { 561 spin_unlock_irq(&ffs->ev.waitq.lock); 562 ret = __ffs_ep0_stall(ffs); 563 goto done_mutex; 564 } 565 566 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 567 568 spin_unlock_irq(&ffs->ev.waitq.lock); 569 570 if (likely(len)) { 571 data = kmalloc(len, GFP_KERNEL); 572 if (unlikely(!data)) { 573 ret = -ENOMEM; 574 goto done_mutex; 575 } 576 } 577 578 spin_lock_irq(&ffs->ev.waitq.lock); 579 580 /* See ffs_ep0_write() */ 581 if (ffs_setup_state_clear_cancelled(ffs) == 582 FFS_SETUP_CANCELLED) { 583 ret = -EIDRM; 584 break; 585 } 586 587 /* unlocks spinlock */ 588 ret = __ffs_ep0_queue_wait(ffs, data, len); 589 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len))) 590 ret = -EFAULT; 591 goto done_mutex; 592 593 default: 594 ret = -EBADFD; 595 break; 596 } 597 598 spin_unlock_irq(&ffs->ev.waitq.lock); 599 done_mutex: 600 mutex_unlock(&ffs->mutex); 601 kfree(data); 602 return ret; 603 } 604 605 static int ffs_ep0_open(struct inode *inode, struct file *file) 606 { 607 struct ffs_data *ffs = inode->i_private; 608 609 ENTER(); 610 611 if (unlikely(ffs->state == FFS_CLOSING)) 612 return -EBUSY; 613 614 file->private_data = ffs; 615 ffs_data_opened(ffs); 616 617 return 0; 618 } 619 620 static int ffs_ep0_release(struct inode *inode, struct file *file) 621 { 622 struct ffs_data *ffs = file->private_data; 623 624 ENTER(); 625 626 ffs_data_closed(ffs); 627 628 return 0; 629 } 630 631 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) 632 { 633 struct ffs_data *ffs = file->private_data; 634 struct usb_gadget *gadget = ffs->gadget; 635 long ret; 636 637 ENTER(); 638 639 if (code == FUNCTIONFS_INTERFACE_REVMAP) { 640 struct ffs_function *func = ffs->func; 641 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; 642 } else if (gadget && gadget->ops->ioctl) { 643 ret = gadget->ops->ioctl(gadget, code, value); 644 } else { 645 ret = -ENOTTY; 646 } 647 648 return ret; 649 } 650 651 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait) 652 { 653 struct ffs_data *ffs = file->private_data; 654 __poll_t mask = EPOLLWRNORM; 655 int ret; 656 657 poll_wait(file, &ffs->ev.waitq, wait); 658 659 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 660 if (unlikely(ret < 0)) 661 return mask; 662 663 switch (ffs->state) { 664 case FFS_READ_DESCRIPTORS: 665 case FFS_READ_STRINGS: 666 mask |= EPOLLOUT; 667 break; 668 669 case FFS_ACTIVE: 670 switch (ffs->setup_state) { 671 case FFS_NO_SETUP: 672 if (ffs->ev.count) 673 mask |= EPOLLIN; 674 break; 675 676 case FFS_SETUP_PENDING: 677 case FFS_SETUP_CANCELLED: 678 mask |= (EPOLLIN | EPOLLOUT); 679 break; 680 } 681 case FFS_CLOSING: 682 break; 683 case FFS_DEACTIVATED: 684 break; 685 } 686 687 mutex_unlock(&ffs->mutex); 688 689 return mask; 690 } 691 692 static const struct file_operations ffs_ep0_operations = { 693 .llseek = no_llseek, 694 695 .open = ffs_ep0_open, 696 .write = ffs_ep0_write, 697 .read = ffs_ep0_read, 698 .release = ffs_ep0_release, 699 .unlocked_ioctl = ffs_ep0_ioctl, 700 .poll = ffs_ep0_poll, 701 }; 702 703 704 /* "Normal" endpoints operations ********************************************/ 705 706 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) 707 { 708 ENTER(); 709 if (likely(req->context)) { 710 struct ffs_ep *ep = _ep->driver_data; 711 ep->status = req->status ? req->status : req->actual; 712 complete(req->context); 713 } 714 } 715 716 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter) 717 { 718 ssize_t ret = copy_to_iter(data, data_len, iter); 719 if (likely(ret == data_len)) 720 return ret; 721 722 if (unlikely(iov_iter_count(iter))) 723 return -EFAULT; 724 725 /* 726 * Dear user space developer! 727 * 728 * TL;DR: To stop getting below error message in your kernel log, change 729 * user space code using functionfs to align read buffers to a max 730 * packet size. 731 * 732 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max 733 * packet size. When unaligned buffer is passed to functionfs, it 734 * internally uses a larger, aligned buffer so that such UDCs are happy. 735 * 736 * Unfortunately, this means that host may send more data than was 737 * requested in read(2) system call. f_fs doesn’t know what to do with 738 * that excess data so it simply drops it. 739 * 740 * Was the buffer aligned in the first place, no such problem would 741 * happen. 742 * 743 * Data may be dropped only in AIO reads. Synchronous reads are handled 744 * by splitting a request into multiple parts. This splitting may still 745 * be a problem though so it’s likely best to align the buffer 746 * regardless of it being AIO or not.. 747 * 748 * This only affects OUT endpoints, i.e. reading data with a read(2), 749 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not 750 * affected. 751 */ 752 pr_err("functionfs read size %d > requested size %zd, dropping excess data. " 753 "Align read buffer size to max packet size to avoid the problem.\n", 754 data_len, ret); 755 756 return ret; 757 } 758 759 /* 760 * allocate a virtually contiguous buffer and create a scatterlist describing it 761 * @sg_table - pointer to a place to be filled with sg_table contents 762 * @size - required buffer size 763 */ 764 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz) 765 { 766 struct page **pages; 767 void *vaddr, *ptr; 768 unsigned int n_pages; 769 int i; 770 771 vaddr = vmalloc(sz); 772 if (!vaddr) 773 return NULL; 774 775 n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT; 776 pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL); 777 if (!pages) { 778 vfree(vaddr); 779 780 return NULL; 781 } 782 for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE) 783 pages[i] = vmalloc_to_page(ptr); 784 785 if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) { 786 kvfree(pages); 787 vfree(vaddr); 788 789 return NULL; 790 } 791 kvfree(pages); 792 793 return vaddr; 794 } 795 796 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data, 797 size_t data_len) 798 { 799 if (io_data->use_sg) 800 return ffs_build_sg_list(&io_data->sgt, data_len); 801 802 return kmalloc(data_len, GFP_KERNEL); 803 } 804 805 static inline void ffs_free_buffer(struct ffs_io_data *io_data) 806 { 807 if (!io_data->buf) 808 return; 809 810 if (io_data->use_sg) { 811 sg_free_table(&io_data->sgt); 812 vfree(io_data->buf); 813 } else { 814 kfree(io_data->buf); 815 } 816 } 817 818 static void ffs_user_copy_worker(struct work_struct *work) 819 { 820 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 821 work); 822 int ret = io_data->req->status ? io_data->req->status : 823 io_data->req->actual; 824 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD; 825 826 if (io_data->read && ret > 0) { 827 mm_segment_t oldfs = get_fs(); 828 829 set_fs(USER_DS); 830 use_mm(io_data->mm); 831 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data); 832 unuse_mm(io_data->mm); 833 set_fs(oldfs); 834 } 835 836 io_data->kiocb->ki_complete(io_data->kiocb, ret, ret); 837 838 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd) 839 eventfd_signal(io_data->ffs->ffs_eventfd, 1); 840 841 usb_ep_free_request(io_data->ep, io_data->req); 842 843 if (io_data->read) 844 kfree(io_data->to_free); 845 ffs_free_buffer(io_data); 846 kfree(io_data); 847 } 848 849 static void ffs_epfile_async_io_complete(struct usb_ep *_ep, 850 struct usb_request *req) 851 { 852 struct ffs_io_data *io_data = req->context; 853 struct ffs_data *ffs = io_data->ffs; 854 855 ENTER(); 856 857 INIT_WORK(&io_data->work, ffs_user_copy_worker); 858 queue_work(ffs->io_completion_wq, &io_data->work); 859 } 860 861 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile) 862 { 863 /* 864 * See comment in struct ffs_epfile for full read_buffer pointer 865 * synchronisation story. 866 */ 867 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP); 868 if (buf && buf != READ_BUFFER_DROP) 869 kfree(buf); 870 } 871 872 /* Assumes epfile->mutex is held. */ 873 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile, 874 struct iov_iter *iter) 875 { 876 /* 877 * Null out epfile->read_buffer so ffs_func_eps_disable does not free 878 * the buffer while we are using it. See comment in struct ffs_epfile 879 * for full read_buffer pointer synchronisation story. 880 */ 881 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL); 882 ssize_t ret; 883 if (!buf || buf == READ_BUFFER_DROP) 884 return 0; 885 886 ret = copy_to_iter(buf->data, buf->length, iter); 887 if (buf->length == ret) { 888 kfree(buf); 889 return ret; 890 } 891 892 if (unlikely(iov_iter_count(iter))) { 893 ret = -EFAULT; 894 } else { 895 buf->length -= ret; 896 buf->data += ret; 897 } 898 899 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 900 kfree(buf); 901 902 return ret; 903 } 904 905 /* Assumes epfile->mutex is held. */ 906 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile, 907 void *data, int data_len, 908 struct iov_iter *iter) 909 { 910 struct ffs_buffer *buf; 911 912 ssize_t ret = copy_to_iter(data, data_len, iter); 913 if (likely(data_len == ret)) 914 return ret; 915 916 if (unlikely(iov_iter_count(iter))) 917 return -EFAULT; 918 919 /* See ffs_copy_to_iter for more context. */ 920 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.", 921 data_len, ret); 922 923 data_len -= ret; 924 buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL); 925 if (!buf) 926 return -ENOMEM; 927 buf->length = data_len; 928 buf->data = buf->storage; 929 memcpy(buf->storage, data + ret, data_len); 930 931 /* 932 * At this point read_buffer is NULL or READ_BUFFER_DROP (if 933 * ffs_func_eps_disable has been called in the meanwhile). See comment 934 * in struct ffs_epfile for full read_buffer pointer synchronisation 935 * story. 936 */ 937 if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf))) 938 kfree(buf); 939 940 return ret; 941 } 942 943 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) 944 { 945 struct ffs_epfile *epfile = file->private_data; 946 struct usb_request *req; 947 struct ffs_ep *ep; 948 char *data = NULL; 949 ssize_t ret, data_len = -EINVAL; 950 int halt; 951 952 /* Are we still active? */ 953 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 954 return -ENODEV; 955 956 /* Wait for endpoint to be enabled */ 957 ep = epfile->ep; 958 if (!ep) { 959 if (file->f_flags & O_NONBLOCK) 960 return -EAGAIN; 961 962 ret = wait_event_interruptible( 963 epfile->ffs->wait, (ep = epfile->ep)); 964 if (ret) 965 return -EINTR; 966 } 967 968 /* Do we halt? */ 969 halt = (!io_data->read == !epfile->in); 970 if (halt && epfile->isoc) 971 return -EINVAL; 972 973 /* We will be using request and read_buffer */ 974 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); 975 if (unlikely(ret)) 976 goto error; 977 978 /* Allocate & copy */ 979 if (!halt) { 980 struct usb_gadget *gadget; 981 982 /* 983 * Do we have buffered data from previous partial read? Check 984 * that for synchronous case only because we do not have 985 * facility to ‘wake up’ a pending asynchronous read and push 986 * buffered data to it which we would need to make things behave 987 * consistently. 988 */ 989 if (!io_data->aio && io_data->read) { 990 ret = __ffs_epfile_read_buffered(epfile, &io_data->data); 991 if (ret) 992 goto error_mutex; 993 } 994 995 /* 996 * if we _do_ wait above, the epfile->ffs->gadget might be NULL 997 * before the waiting completes, so do not assign to 'gadget' 998 * earlier 999 */ 1000 gadget = epfile->ffs->gadget; 1001 1002 spin_lock_irq(&epfile->ffs->eps_lock); 1003 /* In the meantime, endpoint got disabled or changed. */ 1004 if (epfile->ep != ep) { 1005 ret = -ESHUTDOWN; 1006 goto error_lock; 1007 } 1008 data_len = iov_iter_count(&io_data->data); 1009 /* 1010 * Controller may require buffer size to be aligned to 1011 * maxpacketsize of an out endpoint. 1012 */ 1013 if (io_data->read) 1014 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len); 1015 1016 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE; 1017 spin_unlock_irq(&epfile->ffs->eps_lock); 1018 1019 data = ffs_alloc_buffer(io_data, data_len); 1020 if (unlikely(!data)) { 1021 ret = -ENOMEM; 1022 goto error_mutex; 1023 } 1024 if (!io_data->read && 1025 !copy_from_iter_full(data, data_len, &io_data->data)) { 1026 ret = -EFAULT; 1027 goto error_mutex; 1028 } 1029 } 1030 1031 spin_lock_irq(&epfile->ffs->eps_lock); 1032 1033 if (epfile->ep != ep) { 1034 /* In the meantime, endpoint got disabled or changed. */ 1035 ret = -ESHUTDOWN; 1036 } else if (halt) { 1037 ret = usb_ep_set_halt(ep->ep); 1038 if (!ret) 1039 ret = -EBADMSG; 1040 } else if (unlikely(data_len == -EINVAL)) { 1041 /* 1042 * Sanity Check: even though data_len can't be used 1043 * uninitialized at the time I write this comment, some 1044 * compilers complain about this situation. 1045 * In order to keep the code clean from warnings, data_len is 1046 * being initialized to -EINVAL during its declaration, which 1047 * means we can't rely on compiler anymore to warn no future 1048 * changes won't result in data_len being used uninitialized. 1049 * For such reason, we're adding this redundant sanity check 1050 * here. 1051 */ 1052 WARN(1, "%s: data_len == -EINVAL\n", __func__); 1053 ret = -EINVAL; 1054 } else if (!io_data->aio) { 1055 DECLARE_COMPLETION_ONSTACK(done); 1056 bool interrupted = false; 1057 1058 req = ep->req; 1059 if (io_data->use_sg) { 1060 req->buf = NULL; 1061 req->sg = io_data->sgt.sgl; 1062 req->num_sgs = io_data->sgt.nents; 1063 } else { 1064 req->buf = data; 1065 req->num_sgs = 0; 1066 } 1067 req->length = data_len; 1068 1069 io_data->buf = data; 1070 1071 req->context = &done; 1072 req->complete = ffs_epfile_io_complete; 1073 1074 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1075 if (unlikely(ret < 0)) 1076 goto error_lock; 1077 1078 spin_unlock_irq(&epfile->ffs->eps_lock); 1079 1080 if (unlikely(wait_for_completion_interruptible(&done))) { 1081 /* 1082 * To avoid race condition with ffs_epfile_io_complete, 1083 * dequeue the request first then check 1084 * status. usb_ep_dequeue API should guarantee no race 1085 * condition with req->complete callback. 1086 */ 1087 usb_ep_dequeue(ep->ep, req); 1088 wait_for_completion(&done); 1089 interrupted = ep->status < 0; 1090 } 1091 1092 if (interrupted) 1093 ret = -EINTR; 1094 else if (io_data->read && ep->status > 0) 1095 ret = __ffs_epfile_read_data(epfile, data, ep->status, 1096 &io_data->data); 1097 else 1098 ret = ep->status; 1099 goto error_mutex; 1100 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) { 1101 ret = -ENOMEM; 1102 } else { 1103 if (io_data->use_sg) { 1104 req->buf = NULL; 1105 req->sg = io_data->sgt.sgl; 1106 req->num_sgs = io_data->sgt.nents; 1107 } else { 1108 req->buf = data; 1109 req->num_sgs = 0; 1110 } 1111 req->length = data_len; 1112 1113 io_data->buf = data; 1114 io_data->ep = ep->ep; 1115 io_data->req = req; 1116 io_data->ffs = epfile->ffs; 1117 1118 req->context = io_data; 1119 req->complete = ffs_epfile_async_io_complete; 1120 1121 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1122 if (unlikely(ret)) { 1123 io_data->req = NULL; 1124 usb_ep_free_request(ep->ep, req); 1125 goto error_lock; 1126 } 1127 1128 ret = -EIOCBQUEUED; 1129 /* 1130 * Do not kfree the buffer in this function. It will be freed 1131 * by ffs_user_copy_worker. 1132 */ 1133 data = NULL; 1134 } 1135 1136 error_lock: 1137 spin_unlock_irq(&epfile->ffs->eps_lock); 1138 error_mutex: 1139 mutex_unlock(&epfile->mutex); 1140 error: 1141 if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */ 1142 ffs_free_buffer(io_data); 1143 return ret; 1144 } 1145 1146 static int 1147 ffs_epfile_open(struct inode *inode, struct file *file) 1148 { 1149 struct ffs_epfile *epfile = inode->i_private; 1150 1151 ENTER(); 1152 1153 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1154 return -ENODEV; 1155 1156 file->private_data = epfile; 1157 ffs_data_opened(epfile->ffs); 1158 1159 return 0; 1160 } 1161 1162 static int ffs_aio_cancel(struct kiocb *kiocb) 1163 { 1164 struct ffs_io_data *io_data = kiocb->private; 1165 struct ffs_epfile *epfile = kiocb->ki_filp->private_data; 1166 unsigned long flags; 1167 int value; 1168 1169 ENTER(); 1170 1171 spin_lock_irqsave(&epfile->ffs->eps_lock, flags); 1172 1173 if (likely(io_data && io_data->ep && io_data->req)) 1174 value = usb_ep_dequeue(io_data->ep, io_data->req); 1175 else 1176 value = -EINVAL; 1177 1178 spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags); 1179 1180 return value; 1181 } 1182 1183 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from) 1184 { 1185 struct ffs_io_data io_data, *p = &io_data; 1186 ssize_t res; 1187 1188 ENTER(); 1189 1190 if (!is_sync_kiocb(kiocb)) { 1191 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1192 if (unlikely(!p)) 1193 return -ENOMEM; 1194 p->aio = true; 1195 } else { 1196 memset(p, 0, sizeof(*p)); 1197 p->aio = false; 1198 } 1199 1200 p->read = false; 1201 p->kiocb = kiocb; 1202 p->data = *from; 1203 p->mm = current->mm; 1204 1205 kiocb->private = p; 1206 1207 if (p->aio) 1208 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1209 1210 res = ffs_epfile_io(kiocb->ki_filp, p); 1211 if (res == -EIOCBQUEUED) 1212 return res; 1213 if (p->aio) 1214 kfree(p); 1215 else 1216 *from = p->data; 1217 return res; 1218 } 1219 1220 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to) 1221 { 1222 struct ffs_io_data io_data, *p = &io_data; 1223 ssize_t res; 1224 1225 ENTER(); 1226 1227 if (!is_sync_kiocb(kiocb)) { 1228 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1229 if (unlikely(!p)) 1230 return -ENOMEM; 1231 p->aio = true; 1232 } else { 1233 memset(p, 0, sizeof(*p)); 1234 p->aio = false; 1235 } 1236 1237 p->read = true; 1238 p->kiocb = kiocb; 1239 if (p->aio) { 1240 p->to_free = dup_iter(&p->data, to, GFP_KERNEL); 1241 if (!p->to_free) { 1242 kfree(p); 1243 return -ENOMEM; 1244 } 1245 } else { 1246 p->data = *to; 1247 p->to_free = NULL; 1248 } 1249 p->mm = current->mm; 1250 1251 kiocb->private = p; 1252 1253 if (p->aio) 1254 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1255 1256 res = ffs_epfile_io(kiocb->ki_filp, p); 1257 if (res == -EIOCBQUEUED) 1258 return res; 1259 1260 if (p->aio) { 1261 kfree(p->to_free); 1262 kfree(p); 1263 } else { 1264 *to = p->data; 1265 } 1266 return res; 1267 } 1268 1269 static int 1270 ffs_epfile_release(struct inode *inode, struct file *file) 1271 { 1272 struct ffs_epfile *epfile = inode->i_private; 1273 1274 ENTER(); 1275 1276 __ffs_epfile_read_buffer_free(epfile); 1277 ffs_data_closed(epfile->ffs); 1278 1279 return 0; 1280 } 1281 1282 static long ffs_epfile_ioctl(struct file *file, unsigned code, 1283 unsigned long value) 1284 { 1285 struct ffs_epfile *epfile = file->private_data; 1286 struct ffs_ep *ep; 1287 int ret; 1288 1289 ENTER(); 1290 1291 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1292 return -ENODEV; 1293 1294 /* Wait for endpoint to be enabled */ 1295 ep = epfile->ep; 1296 if (!ep) { 1297 if (file->f_flags & O_NONBLOCK) 1298 return -EAGAIN; 1299 1300 ret = wait_event_interruptible( 1301 epfile->ffs->wait, (ep = epfile->ep)); 1302 if (ret) 1303 return -EINTR; 1304 } 1305 1306 spin_lock_irq(&epfile->ffs->eps_lock); 1307 1308 /* In the meantime, endpoint got disabled or changed. */ 1309 if (epfile->ep != ep) { 1310 spin_unlock_irq(&epfile->ffs->eps_lock); 1311 return -ESHUTDOWN; 1312 } 1313 1314 switch (code) { 1315 case FUNCTIONFS_FIFO_STATUS: 1316 ret = usb_ep_fifo_status(epfile->ep->ep); 1317 break; 1318 case FUNCTIONFS_FIFO_FLUSH: 1319 usb_ep_fifo_flush(epfile->ep->ep); 1320 ret = 0; 1321 break; 1322 case FUNCTIONFS_CLEAR_HALT: 1323 ret = usb_ep_clear_halt(epfile->ep->ep); 1324 break; 1325 case FUNCTIONFS_ENDPOINT_REVMAP: 1326 ret = epfile->ep->num; 1327 break; 1328 case FUNCTIONFS_ENDPOINT_DESC: 1329 { 1330 int desc_idx; 1331 struct usb_endpoint_descriptor *desc; 1332 1333 switch (epfile->ffs->gadget->speed) { 1334 case USB_SPEED_SUPER: 1335 desc_idx = 2; 1336 break; 1337 case USB_SPEED_HIGH: 1338 desc_idx = 1; 1339 break; 1340 default: 1341 desc_idx = 0; 1342 } 1343 desc = epfile->ep->descs[desc_idx]; 1344 1345 spin_unlock_irq(&epfile->ffs->eps_lock); 1346 ret = copy_to_user((void __user *)value, desc, desc->bLength); 1347 if (ret) 1348 ret = -EFAULT; 1349 return ret; 1350 } 1351 default: 1352 ret = -ENOTTY; 1353 } 1354 spin_unlock_irq(&epfile->ffs->eps_lock); 1355 1356 return ret; 1357 } 1358 1359 static const struct file_operations ffs_epfile_operations = { 1360 .llseek = no_llseek, 1361 1362 .open = ffs_epfile_open, 1363 .write_iter = ffs_epfile_write_iter, 1364 .read_iter = ffs_epfile_read_iter, 1365 .release = ffs_epfile_release, 1366 .unlocked_ioctl = ffs_epfile_ioctl, 1367 .compat_ioctl = compat_ptr_ioctl, 1368 }; 1369 1370 1371 /* File system and super block operations ***********************************/ 1372 1373 /* 1374 * Mounting the file system creates a controller file, used first for 1375 * function configuration then later for event monitoring. 1376 */ 1377 1378 static struct inode *__must_check 1379 ffs_sb_make_inode(struct super_block *sb, void *data, 1380 const struct file_operations *fops, 1381 const struct inode_operations *iops, 1382 struct ffs_file_perms *perms) 1383 { 1384 struct inode *inode; 1385 1386 ENTER(); 1387 1388 inode = new_inode(sb); 1389 1390 if (likely(inode)) { 1391 struct timespec64 ts = current_time(inode); 1392 1393 inode->i_ino = get_next_ino(); 1394 inode->i_mode = perms->mode; 1395 inode->i_uid = perms->uid; 1396 inode->i_gid = perms->gid; 1397 inode->i_atime = ts; 1398 inode->i_mtime = ts; 1399 inode->i_ctime = ts; 1400 inode->i_private = data; 1401 if (fops) 1402 inode->i_fop = fops; 1403 if (iops) 1404 inode->i_op = iops; 1405 } 1406 1407 return inode; 1408 } 1409 1410 /* Create "regular" file */ 1411 static struct dentry *ffs_sb_create_file(struct super_block *sb, 1412 const char *name, void *data, 1413 const struct file_operations *fops) 1414 { 1415 struct ffs_data *ffs = sb->s_fs_info; 1416 struct dentry *dentry; 1417 struct inode *inode; 1418 1419 ENTER(); 1420 1421 dentry = d_alloc_name(sb->s_root, name); 1422 if (unlikely(!dentry)) 1423 return NULL; 1424 1425 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); 1426 if (unlikely(!inode)) { 1427 dput(dentry); 1428 return NULL; 1429 } 1430 1431 d_add(dentry, inode); 1432 return dentry; 1433 } 1434 1435 /* Super block */ 1436 static const struct super_operations ffs_sb_operations = { 1437 .statfs = simple_statfs, 1438 .drop_inode = generic_delete_inode, 1439 }; 1440 1441 struct ffs_sb_fill_data { 1442 struct ffs_file_perms perms; 1443 umode_t root_mode; 1444 const char *dev_name; 1445 bool no_disconnect; 1446 struct ffs_data *ffs_data; 1447 }; 1448 1449 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc) 1450 { 1451 struct ffs_sb_fill_data *data = fc->fs_private; 1452 struct inode *inode; 1453 struct ffs_data *ffs = data->ffs_data; 1454 1455 ENTER(); 1456 1457 ffs->sb = sb; 1458 data->ffs_data = NULL; 1459 sb->s_fs_info = ffs; 1460 sb->s_blocksize = PAGE_SIZE; 1461 sb->s_blocksize_bits = PAGE_SHIFT; 1462 sb->s_magic = FUNCTIONFS_MAGIC; 1463 sb->s_op = &ffs_sb_operations; 1464 sb->s_time_gran = 1; 1465 1466 /* Root inode */ 1467 data->perms.mode = data->root_mode; 1468 inode = ffs_sb_make_inode(sb, NULL, 1469 &simple_dir_operations, 1470 &simple_dir_inode_operations, 1471 &data->perms); 1472 sb->s_root = d_make_root(inode); 1473 if (unlikely(!sb->s_root)) 1474 return -ENOMEM; 1475 1476 /* EP0 file */ 1477 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs, 1478 &ffs_ep0_operations))) 1479 return -ENOMEM; 1480 1481 return 0; 1482 } 1483 1484 enum { 1485 Opt_no_disconnect, 1486 Opt_rmode, 1487 Opt_fmode, 1488 Opt_mode, 1489 Opt_uid, 1490 Opt_gid, 1491 }; 1492 1493 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = { 1494 fsparam_bool ("no_disconnect", Opt_no_disconnect), 1495 fsparam_u32 ("rmode", Opt_rmode), 1496 fsparam_u32 ("fmode", Opt_fmode), 1497 fsparam_u32 ("mode", Opt_mode), 1498 fsparam_u32 ("uid", Opt_uid), 1499 fsparam_u32 ("gid", Opt_gid), 1500 {} 1501 }; 1502 1503 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1504 { 1505 struct ffs_sb_fill_data *data = fc->fs_private; 1506 struct fs_parse_result result; 1507 int opt; 1508 1509 ENTER(); 1510 1511 opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result); 1512 if (opt < 0) 1513 return opt; 1514 1515 switch (opt) { 1516 case Opt_no_disconnect: 1517 data->no_disconnect = result.boolean; 1518 break; 1519 case Opt_rmode: 1520 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1521 break; 1522 case Opt_fmode: 1523 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 1524 break; 1525 case Opt_mode: 1526 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1527 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 1528 break; 1529 1530 case Opt_uid: 1531 data->perms.uid = make_kuid(current_user_ns(), result.uint_32); 1532 if (!uid_valid(data->perms.uid)) 1533 goto unmapped_value; 1534 break; 1535 case Opt_gid: 1536 data->perms.gid = make_kgid(current_user_ns(), result.uint_32); 1537 if (!gid_valid(data->perms.gid)) 1538 goto unmapped_value; 1539 break; 1540 1541 default: 1542 return -ENOPARAM; 1543 } 1544 1545 return 0; 1546 1547 unmapped_value: 1548 return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32); 1549 } 1550 1551 /* 1552 * Set up the superblock for a mount. 1553 */ 1554 static int ffs_fs_get_tree(struct fs_context *fc) 1555 { 1556 struct ffs_sb_fill_data *ctx = fc->fs_private; 1557 void *ffs_dev; 1558 struct ffs_data *ffs; 1559 1560 ENTER(); 1561 1562 if (!fc->source) 1563 return invalf(fc, "No source specified"); 1564 1565 ffs = ffs_data_new(fc->source); 1566 if (unlikely(!ffs)) 1567 return -ENOMEM; 1568 ffs->file_perms = ctx->perms; 1569 ffs->no_disconnect = ctx->no_disconnect; 1570 1571 ffs->dev_name = kstrdup(fc->source, GFP_KERNEL); 1572 if (unlikely(!ffs->dev_name)) { 1573 ffs_data_put(ffs); 1574 return -ENOMEM; 1575 } 1576 1577 ffs_dev = ffs_acquire_dev(ffs->dev_name); 1578 if (IS_ERR(ffs_dev)) { 1579 ffs_data_put(ffs); 1580 return PTR_ERR(ffs_dev); 1581 } 1582 1583 ffs->private_data = ffs_dev; 1584 ctx->ffs_data = ffs; 1585 return get_tree_nodev(fc, ffs_sb_fill); 1586 } 1587 1588 static void ffs_fs_free_fc(struct fs_context *fc) 1589 { 1590 struct ffs_sb_fill_data *ctx = fc->fs_private; 1591 1592 if (ctx) { 1593 if (ctx->ffs_data) { 1594 ffs_release_dev(ctx->ffs_data); 1595 ffs_data_put(ctx->ffs_data); 1596 } 1597 1598 kfree(ctx); 1599 } 1600 } 1601 1602 static const struct fs_context_operations ffs_fs_context_ops = { 1603 .free = ffs_fs_free_fc, 1604 .parse_param = ffs_fs_parse_param, 1605 .get_tree = ffs_fs_get_tree, 1606 }; 1607 1608 static int ffs_fs_init_fs_context(struct fs_context *fc) 1609 { 1610 struct ffs_sb_fill_data *ctx; 1611 1612 ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL); 1613 if (!ctx) 1614 return -ENOMEM; 1615 1616 ctx->perms.mode = S_IFREG | 0600; 1617 ctx->perms.uid = GLOBAL_ROOT_UID; 1618 ctx->perms.gid = GLOBAL_ROOT_GID; 1619 ctx->root_mode = S_IFDIR | 0500; 1620 ctx->no_disconnect = false; 1621 1622 fc->fs_private = ctx; 1623 fc->ops = &ffs_fs_context_ops; 1624 return 0; 1625 } 1626 1627 static void 1628 ffs_fs_kill_sb(struct super_block *sb) 1629 { 1630 ENTER(); 1631 1632 kill_litter_super(sb); 1633 if (sb->s_fs_info) { 1634 ffs_release_dev(sb->s_fs_info); 1635 ffs_data_closed(sb->s_fs_info); 1636 } 1637 } 1638 1639 static struct file_system_type ffs_fs_type = { 1640 .owner = THIS_MODULE, 1641 .name = "functionfs", 1642 .init_fs_context = ffs_fs_init_fs_context, 1643 .parameters = ffs_fs_fs_parameters, 1644 .kill_sb = ffs_fs_kill_sb, 1645 }; 1646 MODULE_ALIAS_FS("functionfs"); 1647 1648 1649 /* Driver's main init/cleanup functions *************************************/ 1650 1651 static int functionfs_init(void) 1652 { 1653 int ret; 1654 1655 ENTER(); 1656 1657 ret = register_filesystem(&ffs_fs_type); 1658 if (likely(!ret)) 1659 pr_info("file system registered\n"); 1660 else 1661 pr_err("failed registering file system (%d)\n", ret); 1662 1663 return ret; 1664 } 1665 1666 static void functionfs_cleanup(void) 1667 { 1668 ENTER(); 1669 1670 pr_info("unloading\n"); 1671 unregister_filesystem(&ffs_fs_type); 1672 } 1673 1674 1675 /* ffs_data and ffs_function construction and destruction code **************/ 1676 1677 static void ffs_data_clear(struct ffs_data *ffs); 1678 static void ffs_data_reset(struct ffs_data *ffs); 1679 1680 static void ffs_data_get(struct ffs_data *ffs) 1681 { 1682 ENTER(); 1683 1684 refcount_inc(&ffs->ref); 1685 } 1686 1687 static void ffs_data_opened(struct ffs_data *ffs) 1688 { 1689 ENTER(); 1690 1691 refcount_inc(&ffs->ref); 1692 if (atomic_add_return(1, &ffs->opened) == 1 && 1693 ffs->state == FFS_DEACTIVATED) { 1694 ffs->state = FFS_CLOSING; 1695 ffs_data_reset(ffs); 1696 } 1697 } 1698 1699 static void ffs_data_put(struct ffs_data *ffs) 1700 { 1701 ENTER(); 1702 1703 if (unlikely(refcount_dec_and_test(&ffs->ref))) { 1704 pr_info("%s(): freeing\n", __func__); 1705 ffs_data_clear(ffs); 1706 BUG_ON(waitqueue_active(&ffs->ev.waitq) || 1707 swait_active(&ffs->ep0req_completion.wait) || 1708 waitqueue_active(&ffs->wait)); 1709 destroy_workqueue(ffs->io_completion_wq); 1710 kfree(ffs->dev_name); 1711 kfree(ffs); 1712 } 1713 } 1714 1715 static void ffs_data_closed(struct ffs_data *ffs) 1716 { 1717 ENTER(); 1718 1719 if (atomic_dec_and_test(&ffs->opened)) { 1720 if (ffs->no_disconnect) { 1721 ffs->state = FFS_DEACTIVATED; 1722 if (ffs->epfiles) { 1723 ffs_epfiles_destroy(ffs->epfiles, 1724 ffs->eps_count); 1725 ffs->epfiles = NULL; 1726 } 1727 if (ffs->setup_state == FFS_SETUP_PENDING) 1728 __ffs_ep0_stall(ffs); 1729 } else { 1730 ffs->state = FFS_CLOSING; 1731 ffs_data_reset(ffs); 1732 } 1733 } 1734 if (atomic_read(&ffs->opened) < 0) { 1735 ffs->state = FFS_CLOSING; 1736 ffs_data_reset(ffs); 1737 } 1738 1739 ffs_data_put(ffs); 1740 } 1741 1742 static struct ffs_data *ffs_data_new(const char *dev_name) 1743 { 1744 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); 1745 if (unlikely(!ffs)) 1746 return NULL; 1747 1748 ENTER(); 1749 1750 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name); 1751 if (!ffs->io_completion_wq) { 1752 kfree(ffs); 1753 return NULL; 1754 } 1755 1756 refcount_set(&ffs->ref, 1); 1757 atomic_set(&ffs->opened, 0); 1758 ffs->state = FFS_READ_DESCRIPTORS; 1759 mutex_init(&ffs->mutex); 1760 spin_lock_init(&ffs->eps_lock); 1761 init_waitqueue_head(&ffs->ev.waitq); 1762 init_waitqueue_head(&ffs->wait); 1763 init_completion(&ffs->ep0req_completion); 1764 1765 /* XXX REVISIT need to update it in some places, or do we? */ 1766 ffs->ev.can_stall = 1; 1767 1768 return ffs; 1769 } 1770 1771 static void ffs_data_clear(struct ffs_data *ffs) 1772 { 1773 ENTER(); 1774 1775 ffs_closed(ffs); 1776 1777 BUG_ON(ffs->gadget); 1778 1779 if (ffs->epfiles) 1780 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count); 1781 1782 if (ffs->ffs_eventfd) 1783 eventfd_ctx_put(ffs->ffs_eventfd); 1784 1785 kfree(ffs->raw_descs_data); 1786 kfree(ffs->raw_strings); 1787 kfree(ffs->stringtabs); 1788 } 1789 1790 static void ffs_data_reset(struct ffs_data *ffs) 1791 { 1792 ENTER(); 1793 1794 ffs_data_clear(ffs); 1795 1796 ffs->epfiles = NULL; 1797 ffs->raw_descs_data = NULL; 1798 ffs->raw_descs = NULL; 1799 ffs->raw_strings = NULL; 1800 ffs->stringtabs = NULL; 1801 1802 ffs->raw_descs_length = 0; 1803 ffs->fs_descs_count = 0; 1804 ffs->hs_descs_count = 0; 1805 ffs->ss_descs_count = 0; 1806 1807 ffs->strings_count = 0; 1808 ffs->interfaces_count = 0; 1809 ffs->eps_count = 0; 1810 1811 ffs->ev.count = 0; 1812 1813 ffs->state = FFS_READ_DESCRIPTORS; 1814 ffs->setup_state = FFS_NO_SETUP; 1815 ffs->flags = 0; 1816 } 1817 1818 1819 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) 1820 { 1821 struct usb_gadget_strings **lang; 1822 int first_id; 1823 1824 ENTER(); 1825 1826 if (WARN_ON(ffs->state != FFS_ACTIVE 1827 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) 1828 return -EBADFD; 1829 1830 first_id = usb_string_ids_n(cdev, ffs->strings_count); 1831 if (unlikely(first_id < 0)) 1832 return first_id; 1833 1834 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); 1835 if (unlikely(!ffs->ep0req)) 1836 return -ENOMEM; 1837 ffs->ep0req->complete = ffs_ep0_complete; 1838 ffs->ep0req->context = ffs; 1839 1840 lang = ffs->stringtabs; 1841 if (lang) { 1842 for (; *lang; ++lang) { 1843 struct usb_string *str = (*lang)->strings; 1844 int id = first_id; 1845 for (; str->s; ++id, ++str) 1846 str->id = id; 1847 } 1848 } 1849 1850 ffs->gadget = cdev->gadget; 1851 ffs_data_get(ffs); 1852 return 0; 1853 } 1854 1855 static void functionfs_unbind(struct ffs_data *ffs) 1856 { 1857 ENTER(); 1858 1859 if (!WARN_ON(!ffs->gadget)) { 1860 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); 1861 ffs->ep0req = NULL; 1862 ffs->gadget = NULL; 1863 clear_bit(FFS_FL_BOUND, &ffs->flags); 1864 ffs_data_put(ffs); 1865 } 1866 } 1867 1868 static int ffs_epfiles_create(struct ffs_data *ffs) 1869 { 1870 struct ffs_epfile *epfile, *epfiles; 1871 unsigned i, count; 1872 1873 ENTER(); 1874 1875 count = ffs->eps_count; 1876 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); 1877 if (!epfiles) 1878 return -ENOMEM; 1879 1880 epfile = epfiles; 1881 for (i = 1; i <= count; ++i, ++epfile) { 1882 epfile->ffs = ffs; 1883 mutex_init(&epfile->mutex); 1884 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 1885 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]); 1886 else 1887 sprintf(epfile->name, "ep%u", i); 1888 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name, 1889 epfile, 1890 &ffs_epfile_operations); 1891 if (unlikely(!epfile->dentry)) { 1892 ffs_epfiles_destroy(epfiles, i - 1); 1893 return -ENOMEM; 1894 } 1895 } 1896 1897 ffs->epfiles = epfiles; 1898 return 0; 1899 } 1900 1901 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count) 1902 { 1903 struct ffs_epfile *epfile = epfiles; 1904 1905 ENTER(); 1906 1907 for (; count; --count, ++epfile) { 1908 BUG_ON(mutex_is_locked(&epfile->mutex)); 1909 if (epfile->dentry) { 1910 d_delete(epfile->dentry); 1911 dput(epfile->dentry); 1912 epfile->dentry = NULL; 1913 } 1914 } 1915 1916 kfree(epfiles); 1917 } 1918 1919 static void ffs_func_eps_disable(struct ffs_function *func) 1920 { 1921 struct ffs_ep *ep = func->eps; 1922 struct ffs_epfile *epfile = func->ffs->epfiles; 1923 unsigned count = func->ffs->eps_count; 1924 unsigned long flags; 1925 1926 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1927 while (count--) { 1928 /* pending requests get nuked */ 1929 if (likely(ep->ep)) 1930 usb_ep_disable(ep->ep); 1931 ++ep; 1932 1933 if (epfile) { 1934 epfile->ep = NULL; 1935 __ffs_epfile_read_buffer_free(epfile); 1936 ++epfile; 1937 } 1938 } 1939 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1940 } 1941 1942 static int ffs_func_eps_enable(struct ffs_function *func) 1943 { 1944 struct ffs_data *ffs = func->ffs; 1945 struct ffs_ep *ep = func->eps; 1946 struct ffs_epfile *epfile = ffs->epfiles; 1947 unsigned count = ffs->eps_count; 1948 unsigned long flags; 1949 int ret = 0; 1950 1951 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1952 while(count--) { 1953 ep->ep->driver_data = ep; 1954 1955 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep); 1956 if (ret) { 1957 pr_err("%s: config_ep_by_speed(%s) returned %d\n", 1958 __func__, ep->ep->name, ret); 1959 break; 1960 } 1961 1962 ret = usb_ep_enable(ep->ep); 1963 if (likely(!ret)) { 1964 epfile->ep = ep; 1965 epfile->in = usb_endpoint_dir_in(ep->ep->desc); 1966 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc); 1967 } else { 1968 break; 1969 } 1970 1971 ++ep; 1972 ++epfile; 1973 } 1974 1975 wake_up_interruptible(&ffs->wait); 1976 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1977 1978 return ret; 1979 } 1980 1981 1982 /* Parsing and building descriptors and strings *****************************/ 1983 1984 /* 1985 * This validates if data pointed by data is a valid USB descriptor as 1986 * well as record how many interfaces, endpoints and strings are 1987 * required by given configuration. Returns address after the 1988 * descriptor or NULL if data is invalid. 1989 */ 1990 1991 enum ffs_entity_type { 1992 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT 1993 }; 1994 1995 enum ffs_os_desc_type { 1996 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP 1997 }; 1998 1999 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, 2000 u8 *valuep, 2001 struct usb_descriptor_header *desc, 2002 void *priv); 2003 2004 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, 2005 struct usb_os_desc_header *h, void *data, 2006 unsigned len, void *priv); 2007 2008 static int __must_check ffs_do_single_desc(char *data, unsigned len, 2009 ffs_entity_callback entity, 2010 void *priv, int *current_class) 2011 { 2012 struct usb_descriptor_header *_ds = (void *)data; 2013 u8 length; 2014 int ret; 2015 2016 ENTER(); 2017 2018 /* At least two bytes are required: length and type */ 2019 if (len < 2) { 2020 pr_vdebug("descriptor too short\n"); 2021 return -EINVAL; 2022 } 2023 2024 /* If we have at least as many bytes as the descriptor takes? */ 2025 length = _ds->bLength; 2026 if (len < length) { 2027 pr_vdebug("descriptor longer then available data\n"); 2028 return -EINVAL; 2029 } 2030 2031 #define __entity_check_INTERFACE(val) 1 2032 #define __entity_check_STRING(val) (val) 2033 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) 2034 #define __entity(type, val) do { \ 2035 pr_vdebug("entity " #type "(%02x)\n", (val)); \ 2036 if (unlikely(!__entity_check_ ##type(val))) { \ 2037 pr_vdebug("invalid entity's value\n"); \ 2038 return -EINVAL; \ 2039 } \ 2040 ret = entity(FFS_ ##type, &val, _ds, priv); \ 2041 if (unlikely(ret < 0)) { \ 2042 pr_debug("entity " #type "(%02x); ret = %d\n", \ 2043 (val), ret); \ 2044 return ret; \ 2045 } \ 2046 } while (0) 2047 2048 /* Parse descriptor depending on type. */ 2049 switch (_ds->bDescriptorType) { 2050 case USB_DT_DEVICE: 2051 case USB_DT_CONFIG: 2052 case USB_DT_STRING: 2053 case USB_DT_DEVICE_QUALIFIER: 2054 /* function can't have any of those */ 2055 pr_vdebug("descriptor reserved for gadget: %d\n", 2056 _ds->bDescriptorType); 2057 return -EINVAL; 2058 2059 case USB_DT_INTERFACE: { 2060 struct usb_interface_descriptor *ds = (void *)_ds; 2061 pr_vdebug("interface descriptor\n"); 2062 if (length != sizeof *ds) 2063 goto inv_length; 2064 2065 __entity(INTERFACE, ds->bInterfaceNumber); 2066 if (ds->iInterface) 2067 __entity(STRING, ds->iInterface); 2068 *current_class = ds->bInterfaceClass; 2069 } 2070 break; 2071 2072 case USB_DT_ENDPOINT: { 2073 struct usb_endpoint_descriptor *ds = (void *)_ds; 2074 pr_vdebug("endpoint descriptor\n"); 2075 if (length != USB_DT_ENDPOINT_SIZE && 2076 length != USB_DT_ENDPOINT_AUDIO_SIZE) 2077 goto inv_length; 2078 __entity(ENDPOINT, ds->bEndpointAddress); 2079 } 2080 break; 2081 2082 case USB_TYPE_CLASS | 0x01: 2083 if (*current_class == USB_INTERFACE_CLASS_HID) { 2084 pr_vdebug("hid descriptor\n"); 2085 if (length != sizeof(struct hid_descriptor)) 2086 goto inv_length; 2087 break; 2088 } else if (*current_class == USB_INTERFACE_CLASS_CCID) { 2089 pr_vdebug("ccid descriptor\n"); 2090 if (length != sizeof(struct ccid_descriptor)) 2091 goto inv_length; 2092 break; 2093 } else { 2094 pr_vdebug("unknown descriptor: %d for class %d\n", 2095 _ds->bDescriptorType, *current_class); 2096 return -EINVAL; 2097 } 2098 2099 case USB_DT_OTG: 2100 if (length != sizeof(struct usb_otg_descriptor)) 2101 goto inv_length; 2102 break; 2103 2104 case USB_DT_INTERFACE_ASSOCIATION: { 2105 struct usb_interface_assoc_descriptor *ds = (void *)_ds; 2106 pr_vdebug("interface association descriptor\n"); 2107 if (length != sizeof *ds) 2108 goto inv_length; 2109 if (ds->iFunction) 2110 __entity(STRING, ds->iFunction); 2111 } 2112 break; 2113 2114 case USB_DT_SS_ENDPOINT_COMP: 2115 pr_vdebug("EP SS companion descriptor\n"); 2116 if (length != sizeof(struct usb_ss_ep_comp_descriptor)) 2117 goto inv_length; 2118 break; 2119 2120 case USB_DT_OTHER_SPEED_CONFIG: 2121 case USB_DT_INTERFACE_POWER: 2122 case USB_DT_DEBUG: 2123 case USB_DT_SECURITY: 2124 case USB_DT_CS_RADIO_CONTROL: 2125 /* TODO */ 2126 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); 2127 return -EINVAL; 2128 2129 default: 2130 /* We should never be here */ 2131 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); 2132 return -EINVAL; 2133 2134 inv_length: 2135 pr_vdebug("invalid length: %d (descriptor %d)\n", 2136 _ds->bLength, _ds->bDescriptorType); 2137 return -EINVAL; 2138 } 2139 2140 #undef __entity 2141 #undef __entity_check_DESCRIPTOR 2142 #undef __entity_check_INTERFACE 2143 #undef __entity_check_STRING 2144 #undef __entity_check_ENDPOINT 2145 2146 return length; 2147 } 2148 2149 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, 2150 ffs_entity_callback entity, void *priv) 2151 { 2152 const unsigned _len = len; 2153 unsigned long num = 0; 2154 int current_class = -1; 2155 2156 ENTER(); 2157 2158 for (;;) { 2159 int ret; 2160 2161 if (num == count) 2162 data = NULL; 2163 2164 /* Record "descriptor" entity */ 2165 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); 2166 if (unlikely(ret < 0)) { 2167 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", 2168 num, ret); 2169 return ret; 2170 } 2171 2172 if (!data) 2173 return _len - len; 2174 2175 ret = ffs_do_single_desc(data, len, entity, priv, 2176 ¤t_class); 2177 if (unlikely(ret < 0)) { 2178 pr_debug("%s returns %d\n", __func__, ret); 2179 return ret; 2180 } 2181 2182 len -= ret; 2183 data += ret; 2184 ++num; 2185 } 2186 } 2187 2188 static int __ffs_data_do_entity(enum ffs_entity_type type, 2189 u8 *valuep, struct usb_descriptor_header *desc, 2190 void *priv) 2191 { 2192 struct ffs_desc_helper *helper = priv; 2193 struct usb_endpoint_descriptor *d; 2194 2195 ENTER(); 2196 2197 switch (type) { 2198 case FFS_DESCRIPTOR: 2199 break; 2200 2201 case FFS_INTERFACE: 2202 /* 2203 * Interfaces are indexed from zero so if we 2204 * encountered interface "n" then there are at least 2205 * "n+1" interfaces. 2206 */ 2207 if (*valuep >= helper->interfaces_count) 2208 helper->interfaces_count = *valuep + 1; 2209 break; 2210 2211 case FFS_STRING: 2212 /* 2213 * Strings are indexed from 1 (0 is reserved 2214 * for languages list) 2215 */ 2216 if (*valuep > helper->ffs->strings_count) 2217 helper->ffs->strings_count = *valuep; 2218 break; 2219 2220 case FFS_ENDPOINT: 2221 d = (void *)desc; 2222 helper->eps_count++; 2223 if (helper->eps_count >= FFS_MAX_EPS_COUNT) 2224 return -EINVAL; 2225 /* Check if descriptors for any speed were already parsed */ 2226 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count) 2227 helper->ffs->eps_addrmap[helper->eps_count] = 2228 d->bEndpointAddress; 2229 else if (helper->ffs->eps_addrmap[helper->eps_count] != 2230 d->bEndpointAddress) 2231 return -EINVAL; 2232 break; 2233 } 2234 2235 return 0; 2236 } 2237 2238 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, 2239 struct usb_os_desc_header *desc) 2240 { 2241 u16 bcd_version = le16_to_cpu(desc->bcdVersion); 2242 u16 w_index = le16_to_cpu(desc->wIndex); 2243 2244 if (bcd_version != 1) { 2245 pr_vdebug("unsupported os descriptors version: %d", 2246 bcd_version); 2247 return -EINVAL; 2248 } 2249 switch (w_index) { 2250 case 0x4: 2251 *next_type = FFS_OS_DESC_EXT_COMPAT; 2252 break; 2253 case 0x5: 2254 *next_type = FFS_OS_DESC_EXT_PROP; 2255 break; 2256 default: 2257 pr_vdebug("unsupported os descriptor type: %d", w_index); 2258 return -EINVAL; 2259 } 2260 2261 return sizeof(*desc); 2262 } 2263 2264 /* 2265 * Process all extended compatibility/extended property descriptors 2266 * of a feature descriptor 2267 */ 2268 static int __must_check ffs_do_single_os_desc(char *data, unsigned len, 2269 enum ffs_os_desc_type type, 2270 u16 feature_count, 2271 ffs_os_desc_callback entity, 2272 void *priv, 2273 struct usb_os_desc_header *h) 2274 { 2275 int ret; 2276 const unsigned _len = len; 2277 2278 ENTER(); 2279 2280 /* loop over all ext compat/ext prop descriptors */ 2281 while (feature_count--) { 2282 ret = entity(type, h, data, len, priv); 2283 if (unlikely(ret < 0)) { 2284 pr_debug("bad OS descriptor, type: %d\n", type); 2285 return ret; 2286 } 2287 data += ret; 2288 len -= ret; 2289 } 2290 return _len - len; 2291 } 2292 2293 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ 2294 static int __must_check ffs_do_os_descs(unsigned count, 2295 char *data, unsigned len, 2296 ffs_os_desc_callback entity, void *priv) 2297 { 2298 const unsigned _len = len; 2299 unsigned long num = 0; 2300 2301 ENTER(); 2302 2303 for (num = 0; num < count; ++num) { 2304 int ret; 2305 enum ffs_os_desc_type type; 2306 u16 feature_count; 2307 struct usb_os_desc_header *desc = (void *)data; 2308 2309 if (len < sizeof(*desc)) 2310 return -EINVAL; 2311 2312 /* 2313 * Record "descriptor" entity. 2314 * Process dwLength, bcdVersion, wIndex, get b/wCount. 2315 * Move the data pointer to the beginning of extended 2316 * compatibilities proper or extended properties proper 2317 * portions of the data 2318 */ 2319 if (le32_to_cpu(desc->dwLength) > len) 2320 return -EINVAL; 2321 2322 ret = __ffs_do_os_desc_header(&type, desc); 2323 if (unlikely(ret < 0)) { 2324 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", 2325 num, ret); 2326 return ret; 2327 } 2328 /* 2329 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" 2330 */ 2331 feature_count = le16_to_cpu(desc->wCount); 2332 if (type == FFS_OS_DESC_EXT_COMPAT && 2333 (feature_count > 255 || desc->Reserved)) 2334 return -EINVAL; 2335 len -= ret; 2336 data += ret; 2337 2338 /* 2339 * Process all function/property descriptors 2340 * of this Feature Descriptor 2341 */ 2342 ret = ffs_do_single_os_desc(data, len, type, 2343 feature_count, entity, priv, desc); 2344 if (unlikely(ret < 0)) { 2345 pr_debug("%s returns %d\n", __func__, ret); 2346 return ret; 2347 } 2348 2349 len -= ret; 2350 data += ret; 2351 } 2352 return _len - len; 2353 } 2354 2355 /** 2356 * Validate contents of the buffer from userspace related to OS descriptors. 2357 */ 2358 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, 2359 struct usb_os_desc_header *h, void *data, 2360 unsigned len, void *priv) 2361 { 2362 struct ffs_data *ffs = priv; 2363 u8 length; 2364 2365 ENTER(); 2366 2367 switch (type) { 2368 case FFS_OS_DESC_EXT_COMPAT: { 2369 struct usb_ext_compat_desc *d = data; 2370 int i; 2371 2372 if (len < sizeof(*d) || 2373 d->bFirstInterfaceNumber >= ffs->interfaces_count) 2374 return -EINVAL; 2375 if (d->Reserved1 != 1) { 2376 /* 2377 * According to the spec, Reserved1 must be set to 1 2378 * but older kernels incorrectly rejected non-zero 2379 * values. We fix it here to avoid returning EINVAL 2380 * in response to values we used to accept. 2381 */ 2382 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n"); 2383 d->Reserved1 = 1; 2384 } 2385 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) 2386 if (d->Reserved2[i]) 2387 return -EINVAL; 2388 2389 length = sizeof(struct usb_ext_compat_desc); 2390 } 2391 break; 2392 case FFS_OS_DESC_EXT_PROP: { 2393 struct usb_ext_prop_desc *d = data; 2394 u32 type, pdl; 2395 u16 pnl; 2396 2397 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) 2398 return -EINVAL; 2399 length = le32_to_cpu(d->dwSize); 2400 if (len < length) 2401 return -EINVAL; 2402 type = le32_to_cpu(d->dwPropertyDataType); 2403 if (type < USB_EXT_PROP_UNICODE || 2404 type > USB_EXT_PROP_UNICODE_MULTI) { 2405 pr_vdebug("unsupported os descriptor property type: %d", 2406 type); 2407 return -EINVAL; 2408 } 2409 pnl = le16_to_cpu(d->wPropertyNameLength); 2410 if (length < 14 + pnl) { 2411 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n", 2412 length, pnl, type); 2413 return -EINVAL; 2414 } 2415 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl)); 2416 if (length != 14 + pnl + pdl) { 2417 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", 2418 length, pnl, pdl, type); 2419 return -EINVAL; 2420 } 2421 ++ffs->ms_os_descs_ext_prop_count; 2422 /* property name reported to the host as "WCHAR"s */ 2423 ffs->ms_os_descs_ext_prop_name_len += pnl * 2; 2424 ffs->ms_os_descs_ext_prop_data_len += pdl; 2425 } 2426 break; 2427 default: 2428 pr_vdebug("unknown descriptor: %d\n", type); 2429 return -EINVAL; 2430 } 2431 return length; 2432 } 2433 2434 static int __ffs_data_got_descs(struct ffs_data *ffs, 2435 char *const _data, size_t len) 2436 { 2437 char *data = _data, *raw_descs; 2438 unsigned os_descs_count = 0, counts[3], flags; 2439 int ret = -EINVAL, i; 2440 struct ffs_desc_helper helper; 2441 2442 ENTER(); 2443 2444 if (get_unaligned_le32(data + 4) != len) 2445 goto error; 2446 2447 switch (get_unaligned_le32(data)) { 2448 case FUNCTIONFS_DESCRIPTORS_MAGIC: 2449 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; 2450 data += 8; 2451 len -= 8; 2452 break; 2453 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: 2454 flags = get_unaligned_le32(data + 8); 2455 ffs->user_flags = flags; 2456 if (flags & ~(FUNCTIONFS_HAS_FS_DESC | 2457 FUNCTIONFS_HAS_HS_DESC | 2458 FUNCTIONFS_HAS_SS_DESC | 2459 FUNCTIONFS_HAS_MS_OS_DESC | 2460 FUNCTIONFS_VIRTUAL_ADDR | 2461 FUNCTIONFS_EVENTFD | 2462 FUNCTIONFS_ALL_CTRL_RECIP | 2463 FUNCTIONFS_CONFIG0_SETUP)) { 2464 ret = -ENOSYS; 2465 goto error; 2466 } 2467 data += 12; 2468 len -= 12; 2469 break; 2470 default: 2471 goto error; 2472 } 2473 2474 if (flags & FUNCTIONFS_EVENTFD) { 2475 if (len < 4) 2476 goto error; 2477 ffs->ffs_eventfd = 2478 eventfd_ctx_fdget((int)get_unaligned_le32(data)); 2479 if (IS_ERR(ffs->ffs_eventfd)) { 2480 ret = PTR_ERR(ffs->ffs_eventfd); 2481 ffs->ffs_eventfd = NULL; 2482 goto error; 2483 } 2484 data += 4; 2485 len -= 4; 2486 } 2487 2488 /* Read fs_count, hs_count and ss_count (if present) */ 2489 for (i = 0; i < 3; ++i) { 2490 if (!(flags & (1 << i))) { 2491 counts[i] = 0; 2492 } else if (len < 4) { 2493 goto error; 2494 } else { 2495 counts[i] = get_unaligned_le32(data); 2496 data += 4; 2497 len -= 4; 2498 } 2499 } 2500 if (flags & (1 << i)) { 2501 if (len < 4) { 2502 goto error; 2503 } 2504 os_descs_count = get_unaligned_le32(data); 2505 data += 4; 2506 len -= 4; 2507 }; 2508 2509 /* Read descriptors */ 2510 raw_descs = data; 2511 helper.ffs = ffs; 2512 for (i = 0; i < 3; ++i) { 2513 if (!counts[i]) 2514 continue; 2515 helper.interfaces_count = 0; 2516 helper.eps_count = 0; 2517 ret = ffs_do_descs(counts[i], data, len, 2518 __ffs_data_do_entity, &helper); 2519 if (ret < 0) 2520 goto error; 2521 if (!ffs->eps_count && !ffs->interfaces_count) { 2522 ffs->eps_count = helper.eps_count; 2523 ffs->interfaces_count = helper.interfaces_count; 2524 } else { 2525 if (ffs->eps_count != helper.eps_count) { 2526 ret = -EINVAL; 2527 goto error; 2528 } 2529 if (ffs->interfaces_count != helper.interfaces_count) { 2530 ret = -EINVAL; 2531 goto error; 2532 } 2533 } 2534 data += ret; 2535 len -= ret; 2536 } 2537 if (os_descs_count) { 2538 ret = ffs_do_os_descs(os_descs_count, data, len, 2539 __ffs_data_do_os_desc, ffs); 2540 if (ret < 0) 2541 goto error; 2542 data += ret; 2543 len -= ret; 2544 } 2545 2546 if (raw_descs == data || len) { 2547 ret = -EINVAL; 2548 goto error; 2549 } 2550 2551 ffs->raw_descs_data = _data; 2552 ffs->raw_descs = raw_descs; 2553 ffs->raw_descs_length = data - raw_descs; 2554 ffs->fs_descs_count = counts[0]; 2555 ffs->hs_descs_count = counts[1]; 2556 ffs->ss_descs_count = counts[2]; 2557 ffs->ms_os_descs_count = os_descs_count; 2558 2559 return 0; 2560 2561 error: 2562 kfree(_data); 2563 return ret; 2564 } 2565 2566 static int __ffs_data_got_strings(struct ffs_data *ffs, 2567 char *const _data, size_t len) 2568 { 2569 u32 str_count, needed_count, lang_count; 2570 struct usb_gadget_strings **stringtabs, *t; 2571 const char *data = _data; 2572 struct usb_string *s; 2573 2574 ENTER(); 2575 2576 if (unlikely(len < 16 || 2577 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || 2578 get_unaligned_le32(data + 4) != len)) 2579 goto error; 2580 str_count = get_unaligned_le32(data + 8); 2581 lang_count = get_unaligned_le32(data + 12); 2582 2583 /* if one is zero the other must be zero */ 2584 if (unlikely(!str_count != !lang_count)) 2585 goto error; 2586 2587 /* Do we have at least as many strings as descriptors need? */ 2588 needed_count = ffs->strings_count; 2589 if (unlikely(str_count < needed_count)) 2590 goto error; 2591 2592 /* 2593 * If we don't need any strings just return and free all 2594 * memory. 2595 */ 2596 if (!needed_count) { 2597 kfree(_data); 2598 return 0; 2599 } 2600 2601 /* Allocate everything in one chunk so there's less maintenance. */ 2602 { 2603 unsigned i = 0; 2604 vla_group(d); 2605 vla_item(d, struct usb_gadget_strings *, stringtabs, 2606 lang_count + 1); 2607 vla_item(d, struct usb_gadget_strings, stringtab, lang_count); 2608 vla_item(d, struct usb_string, strings, 2609 lang_count*(needed_count+1)); 2610 2611 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); 2612 2613 if (unlikely(!vlabuf)) { 2614 kfree(_data); 2615 return -ENOMEM; 2616 } 2617 2618 /* Initialize the VLA pointers */ 2619 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2620 t = vla_ptr(vlabuf, d, stringtab); 2621 i = lang_count; 2622 do { 2623 *stringtabs++ = t++; 2624 } while (--i); 2625 *stringtabs = NULL; 2626 2627 /* stringtabs = vlabuf = d_stringtabs for later kfree */ 2628 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2629 t = vla_ptr(vlabuf, d, stringtab); 2630 s = vla_ptr(vlabuf, d, strings); 2631 } 2632 2633 /* For each language */ 2634 data += 16; 2635 len -= 16; 2636 2637 do { /* lang_count > 0 so we can use do-while */ 2638 unsigned needed = needed_count; 2639 2640 if (unlikely(len < 3)) 2641 goto error_free; 2642 t->language = get_unaligned_le16(data); 2643 t->strings = s; 2644 ++t; 2645 2646 data += 2; 2647 len -= 2; 2648 2649 /* For each string */ 2650 do { /* str_count > 0 so we can use do-while */ 2651 size_t length = strnlen(data, len); 2652 2653 if (unlikely(length == len)) 2654 goto error_free; 2655 2656 /* 2657 * User may provide more strings then we need, 2658 * if that's the case we simply ignore the 2659 * rest 2660 */ 2661 if (likely(needed)) { 2662 /* 2663 * s->id will be set while adding 2664 * function to configuration so for 2665 * now just leave garbage here. 2666 */ 2667 s->s = data; 2668 --needed; 2669 ++s; 2670 } 2671 2672 data += length + 1; 2673 len -= length + 1; 2674 } while (--str_count); 2675 2676 s->id = 0; /* terminator */ 2677 s->s = NULL; 2678 ++s; 2679 2680 } while (--lang_count); 2681 2682 /* Some garbage left? */ 2683 if (unlikely(len)) 2684 goto error_free; 2685 2686 /* Done! */ 2687 ffs->stringtabs = stringtabs; 2688 ffs->raw_strings = _data; 2689 2690 return 0; 2691 2692 error_free: 2693 kfree(stringtabs); 2694 error: 2695 kfree(_data); 2696 return -EINVAL; 2697 } 2698 2699 2700 /* Events handling and management *******************************************/ 2701 2702 static void __ffs_event_add(struct ffs_data *ffs, 2703 enum usb_functionfs_event_type type) 2704 { 2705 enum usb_functionfs_event_type rem_type1, rem_type2 = type; 2706 int neg = 0; 2707 2708 /* 2709 * Abort any unhandled setup 2710 * 2711 * We do not need to worry about some cmpxchg() changing value 2712 * of ffs->setup_state without holding the lock because when 2713 * state is FFS_SETUP_PENDING cmpxchg() in several places in 2714 * the source does nothing. 2715 */ 2716 if (ffs->setup_state == FFS_SETUP_PENDING) 2717 ffs->setup_state = FFS_SETUP_CANCELLED; 2718 2719 /* 2720 * Logic of this function guarantees that there are at most four pending 2721 * evens on ffs->ev.types queue. This is important because the queue 2722 * has space for four elements only and __ffs_ep0_read_events function 2723 * depends on that limit as well. If more event types are added, those 2724 * limits have to be revisited or guaranteed to still hold. 2725 */ 2726 switch (type) { 2727 case FUNCTIONFS_RESUME: 2728 rem_type2 = FUNCTIONFS_SUSPEND; 2729 /* FALL THROUGH */ 2730 case FUNCTIONFS_SUSPEND: 2731 case FUNCTIONFS_SETUP: 2732 rem_type1 = type; 2733 /* Discard all similar events */ 2734 break; 2735 2736 case FUNCTIONFS_BIND: 2737 case FUNCTIONFS_UNBIND: 2738 case FUNCTIONFS_DISABLE: 2739 case FUNCTIONFS_ENABLE: 2740 /* Discard everything other then power management. */ 2741 rem_type1 = FUNCTIONFS_SUSPEND; 2742 rem_type2 = FUNCTIONFS_RESUME; 2743 neg = 1; 2744 break; 2745 2746 default: 2747 WARN(1, "%d: unknown event, this should not happen\n", type); 2748 return; 2749 } 2750 2751 { 2752 u8 *ev = ffs->ev.types, *out = ev; 2753 unsigned n = ffs->ev.count; 2754 for (; n; --n, ++ev) 2755 if ((*ev == rem_type1 || *ev == rem_type2) == neg) 2756 *out++ = *ev; 2757 else 2758 pr_vdebug("purging event %d\n", *ev); 2759 ffs->ev.count = out - ffs->ev.types; 2760 } 2761 2762 pr_vdebug("adding event %d\n", type); 2763 ffs->ev.types[ffs->ev.count++] = type; 2764 wake_up_locked(&ffs->ev.waitq); 2765 if (ffs->ffs_eventfd) 2766 eventfd_signal(ffs->ffs_eventfd, 1); 2767 } 2768 2769 static void ffs_event_add(struct ffs_data *ffs, 2770 enum usb_functionfs_event_type type) 2771 { 2772 unsigned long flags; 2773 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 2774 __ffs_event_add(ffs, type); 2775 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 2776 } 2777 2778 /* Bind/unbind USB function hooks *******************************************/ 2779 2780 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address) 2781 { 2782 int i; 2783 2784 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i) 2785 if (ffs->eps_addrmap[i] == endpoint_address) 2786 return i; 2787 return -ENOENT; 2788 } 2789 2790 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, 2791 struct usb_descriptor_header *desc, 2792 void *priv) 2793 { 2794 struct usb_endpoint_descriptor *ds = (void *)desc; 2795 struct ffs_function *func = priv; 2796 struct ffs_ep *ffs_ep; 2797 unsigned ep_desc_id; 2798 int idx; 2799 static const char *speed_names[] = { "full", "high", "super" }; 2800 2801 if (type != FFS_DESCRIPTOR) 2802 return 0; 2803 2804 /* 2805 * If ss_descriptors is not NULL, we are reading super speed 2806 * descriptors; if hs_descriptors is not NULL, we are reading high 2807 * speed descriptors; otherwise, we are reading full speed 2808 * descriptors. 2809 */ 2810 if (func->function.ss_descriptors) { 2811 ep_desc_id = 2; 2812 func->function.ss_descriptors[(long)valuep] = desc; 2813 } else if (func->function.hs_descriptors) { 2814 ep_desc_id = 1; 2815 func->function.hs_descriptors[(long)valuep] = desc; 2816 } else { 2817 ep_desc_id = 0; 2818 func->function.fs_descriptors[(long)valuep] = desc; 2819 } 2820 2821 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) 2822 return 0; 2823 2824 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1; 2825 if (idx < 0) 2826 return idx; 2827 2828 ffs_ep = func->eps + idx; 2829 2830 if (unlikely(ffs_ep->descs[ep_desc_id])) { 2831 pr_err("two %sspeed descriptors for EP %d\n", 2832 speed_names[ep_desc_id], 2833 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); 2834 return -EINVAL; 2835 } 2836 ffs_ep->descs[ep_desc_id] = ds; 2837 2838 ffs_dump_mem(": Original ep desc", ds, ds->bLength); 2839 if (ffs_ep->ep) { 2840 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; 2841 if (!ds->wMaxPacketSize) 2842 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; 2843 } else { 2844 struct usb_request *req; 2845 struct usb_ep *ep; 2846 u8 bEndpointAddress; 2847 u16 wMaxPacketSize; 2848 2849 /* 2850 * We back up bEndpointAddress because autoconfig overwrites 2851 * it with physical endpoint address. 2852 */ 2853 bEndpointAddress = ds->bEndpointAddress; 2854 /* 2855 * We back up wMaxPacketSize because autoconfig treats 2856 * endpoint descriptors as if they were full speed. 2857 */ 2858 wMaxPacketSize = ds->wMaxPacketSize; 2859 pr_vdebug("autoconfig\n"); 2860 ep = usb_ep_autoconfig(func->gadget, ds); 2861 if (unlikely(!ep)) 2862 return -ENOTSUPP; 2863 ep->driver_data = func->eps + idx; 2864 2865 req = usb_ep_alloc_request(ep, GFP_KERNEL); 2866 if (unlikely(!req)) 2867 return -ENOMEM; 2868 2869 ffs_ep->ep = ep; 2870 ffs_ep->req = req; 2871 func->eps_revmap[ds->bEndpointAddress & 2872 USB_ENDPOINT_NUMBER_MASK] = idx + 1; 2873 /* 2874 * If we use virtual address mapping, we restore 2875 * original bEndpointAddress value. 2876 */ 2877 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 2878 ds->bEndpointAddress = bEndpointAddress; 2879 /* 2880 * Restore wMaxPacketSize which was potentially 2881 * overwritten by autoconfig. 2882 */ 2883 ds->wMaxPacketSize = wMaxPacketSize; 2884 } 2885 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); 2886 2887 return 0; 2888 } 2889 2890 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, 2891 struct usb_descriptor_header *desc, 2892 void *priv) 2893 { 2894 struct ffs_function *func = priv; 2895 unsigned idx; 2896 u8 newValue; 2897 2898 switch (type) { 2899 default: 2900 case FFS_DESCRIPTOR: 2901 /* Handled in previous pass by __ffs_func_bind_do_descs() */ 2902 return 0; 2903 2904 case FFS_INTERFACE: 2905 idx = *valuep; 2906 if (func->interfaces_nums[idx] < 0) { 2907 int id = usb_interface_id(func->conf, &func->function); 2908 if (unlikely(id < 0)) 2909 return id; 2910 func->interfaces_nums[idx] = id; 2911 } 2912 newValue = func->interfaces_nums[idx]; 2913 break; 2914 2915 case FFS_STRING: 2916 /* String' IDs are allocated when fsf_data is bound to cdev */ 2917 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; 2918 break; 2919 2920 case FFS_ENDPOINT: 2921 /* 2922 * USB_DT_ENDPOINT are handled in 2923 * __ffs_func_bind_do_descs(). 2924 */ 2925 if (desc->bDescriptorType == USB_DT_ENDPOINT) 2926 return 0; 2927 2928 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; 2929 if (unlikely(!func->eps[idx].ep)) 2930 return -EINVAL; 2931 2932 { 2933 struct usb_endpoint_descriptor **descs; 2934 descs = func->eps[idx].descs; 2935 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; 2936 } 2937 break; 2938 } 2939 2940 pr_vdebug("%02x -> %02x\n", *valuep, newValue); 2941 *valuep = newValue; 2942 return 0; 2943 } 2944 2945 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, 2946 struct usb_os_desc_header *h, void *data, 2947 unsigned len, void *priv) 2948 { 2949 struct ffs_function *func = priv; 2950 u8 length = 0; 2951 2952 switch (type) { 2953 case FFS_OS_DESC_EXT_COMPAT: { 2954 struct usb_ext_compat_desc *desc = data; 2955 struct usb_os_desc_table *t; 2956 2957 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; 2958 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; 2959 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID, 2960 ARRAY_SIZE(desc->CompatibleID) + 2961 ARRAY_SIZE(desc->SubCompatibleID)); 2962 length = sizeof(*desc); 2963 } 2964 break; 2965 case FFS_OS_DESC_EXT_PROP: { 2966 struct usb_ext_prop_desc *desc = data; 2967 struct usb_os_desc_table *t; 2968 struct usb_os_desc_ext_prop *ext_prop; 2969 char *ext_prop_name; 2970 char *ext_prop_data; 2971 2972 t = &func->function.os_desc_table[h->interface]; 2973 t->if_id = func->interfaces_nums[h->interface]; 2974 2975 ext_prop = func->ffs->ms_os_descs_ext_prop_avail; 2976 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); 2977 2978 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); 2979 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); 2980 ext_prop->data_len = le32_to_cpu(*(__le32 *) 2981 usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); 2982 length = ext_prop->name_len + ext_prop->data_len + 14; 2983 2984 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; 2985 func->ffs->ms_os_descs_ext_prop_name_avail += 2986 ext_prop->name_len; 2987 2988 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; 2989 func->ffs->ms_os_descs_ext_prop_data_avail += 2990 ext_prop->data_len; 2991 memcpy(ext_prop_data, 2992 usb_ext_prop_data_ptr(data, ext_prop->name_len), 2993 ext_prop->data_len); 2994 /* unicode data reported to the host as "WCHAR"s */ 2995 switch (ext_prop->type) { 2996 case USB_EXT_PROP_UNICODE: 2997 case USB_EXT_PROP_UNICODE_ENV: 2998 case USB_EXT_PROP_UNICODE_LINK: 2999 case USB_EXT_PROP_UNICODE_MULTI: 3000 ext_prop->data_len *= 2; 3001 break; 3002 } 3003 ext_prop->data = ext_prop_data; 3004 3005 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), 3006 ext_prop->name_len); 3007 /* property name reported to the host as "WCHAR"s */ 3008 ext_prop->name_len *= 2; 3009 ext_prop->name = ext_prop_name; 3010 3011 t->os_desc->ext_prop_len += 3012 ext_prop->name_len + ext_prop->data_len + 14; 3013 ++t->os_desc->ext_prop_count; 3014 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); 3015 } 3016 break; 3017 default: 3018 pr_vdebug("unknown descriptor: %d\n", type); 3019 } 3020 3021 return length; 3022 } 3023 3024 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, 3025 struct usb_configuration *c) 3026 { 3027 struct ffs_function *func = ffs_func_from_usb(f); 3028 struct f_fs_opts *ffs_opts = 3029 container_of(f->fi, struct f_fs_opts, func_inst); 3030 int ret; 3031 3032 ENTER(); 3033 3034 /* 3035 * Legacy gadget triggers binding in functionfs_ready_callback, 3036 * which already uses locking; taking the same lock here would 3037 * cause a deadlock. 3038 * 3039 * Configfs-enabled gadgets however do need ffs_dev_lock. 3040 */ 3041 if (!ffs_opts->no_configfs) 3042 ffs_dev_lock(); 3043 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; 3044 func->ffs = ffs_opts->dev->ffs_data; 3045 if (!ffs_opts->no_configfs) 3046 ffs_dev_unlock(); 3047 if (ret) 3048 return ERR_PTR(ret); 3049 3050 func->conf = c; 3051 func->gadget = c->cdev->gadget; 3052 3053 /* 3054 * in drivers/usb/gadget/configfs.c:configfs_composite_bind() 3055 * configurations are bound in sequence with list_for_each_entry, 3056 * in each configuration its functions are bound in sequence 3057 * with list_for_each_entry, so we assume no race condition 3058 * with regard to ffs_opts->bound access 3059 */ 3060 if (!ffs_opts->refcnt) { 3061 ret = functionfs_bind(func->ffs, c->cdev); 3062 if (ret) 3063 return ERR_PTR(ret); 3064 } 3065 ffs_opts->refcnt++; 3066 func->function.strings = func->ffs->stringtabs; 3067 3068 return ffs_opts; 3069 } 3070 3071 static int _ffs_func_bind(struct usb_configuration *c, 3072 struct usb_function *f) 3073 { 3074 struct ffs_function *func = ffs_func_from_usb(f); 3075 struct ffs_data *ffs = func->ffs; 3076 3077 const int full = !!func->ffs->fs_descs_count; 3078 const int high = !!func->ffs->hs_descs_count; 3079 const int super = !!func->ffs->ss_descs_count; 3080 3081 int fs_len, hs_len, ss_len, ret, i; 3082 struct ffs_ep *eps_ptr; 3083 3084 /* Make it a single chunk, less management later on */ 3085 vla_group(d); 3086 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); 3087 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, 3088 full ? ffs->fs_descs_count + 1 : 0); 3089 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, 3090 high ? ffs->hs_descs_count + 1 : 0); 3091 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, 3092 super ? ffs->ss_descs_count + 1 : 0); 3093 vla_item_with_sz(d, short, inums, ffs->interfaces_count); 3094 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, 3095 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3096 vla_item_with_sz(d, char[16], ext_compat, 3097 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3098 vla_item_with_sz(d, struct usb_os_desc, os_desc, 3099 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3100 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, 3101 ffs->ms_os_descs_ext_prop_count); 3102 vla_item_with_sz(d, char, ext_prop_name, 3103 ffs->ms_os_descs_ext_prop_name_len); 3104 vla_item_with_sz(d, char, ext_prop_data, 3105 ffs->ms_os_descs_ext_prop_data_len); 3106 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); 3107 char *vlabuf; 3108 3109 ENTER(); 3110 3111 /* Has descriptors only for speeds gadget does not support */ 3112 if (unlikely(!(full | high | super))) 3113 return -ENOTSUPP; 3114 3115 /* Allocate a single chunk, less management later on */ 3116 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); 3117 if (unlikely(!vlabuf)) 3118 return -ENOMEM; 3119 3120 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); 3121 ffs->ms_os_descs_ext_prop_name_avail = 3122 vla_ptr(vlabuf, d, ext_prop_name); 3123 ffs->ms_os_descs_ext_prop_data_avail = 3124 vla_ptr(vlabuf, d, ext_prop_data); 3125 3126 /* Copy descriptors */ 3127 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, 3128 ffs->raw_descs_length); 3129 3130 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); 3131 eps_ptr = vla_ptr(vlabuf, d, eps); 3132 for (i = 0; i < ffs->eps_count; i++) 3133 eps_ptr[i].num = -1; 3134 3135 /* Save pointers 3136 * d_eps == vlabuf, func->eps used to kfree vlabuf later 3137 */ 3138 func->eps = vla_ptr(vlabuf, d, eps); 3139 func->interfaces_nums = vla_ptr(vlabuf, d, inums); 3140 3141 /* 3142 * Go through all the endpoint descriptors and allocate 3143 * endpoints first, so that later we can rewrite the endpoint 3144 * numbers without worrying that it may be described later on. 3145 */ 3146 if (likely(full)) { 3147 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); 3148 fs_len = ffs_do_descs(ffs->fs_descs_count, 3149 vla_ptr(vlabuf, d, raw_descs), 3150 d_raw_descs__sz, 3151 __ffs_func_bind_do_descs, func); 3152 if (unlikely(fs_len < 0)) { 3153 ret = fs_len; 3154 goto error; 3155 } 3156 } else { 3157 fs_len = 0; 3158 } 3159 3160 if (likely(high)) { 3161 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); 3162 hs_len = ffs_do_descs(ffs->hs_descs_count, 3163 vla_ptr(vlabuf, d, raw_descs) + fs_len, 3164 d_raw_descs__sz - fs_len, 3165 __ffs_func_bind_do_descs, func); 3166 if (unlikely(hs_len < 0)) { 3167 ret = hs_len; 3168 goto error; 3169 } 3170 } else { 3171 hs_len = 0; 3172 } 3173 3174 if (likely(super)) { 3175 func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs); 3176 ss_len = ffs_do_descs(ffs->ss_descs_count, 3177 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, 3178 d_raw_descs__sz - fs_len - hs_len, 3179 __ffs_func_bind_do_descs, func); 3180 if (unlikely(ss_len < 0)) { 3181 ret = ss_len; 3182 goto error; 3183 } 3184 } else { 3185 ss_len = 0; 3186 } 3187 3188 /* 3189 * Now handle interface numbers allocation and interface and 3190 * endpoint numbers rewriting. We can do that in one go 3191 * now. 3192 */ 3193 ret = ffs_do_descs(ffs->fs_descs_count + 3194 (high ? ffs->hs_descs_count : 0) + 3195 (super ? ffs->ss_descs_count : 0), 3196 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, 3197 __ffs_func_bind_do_nums, func); 3198 if (unlikely(ret < 0)) 3199 goto error; 3200 3201 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); 3202 if (c->cdev->use_os_string) { 3203 for (i = 0; i < ffs->interfaces_count; ++i) { 3204 struct usb_os_desc *desc; 3205 3206 desc = func->function.os_desc_table[i].os_desc = 3207 vla_ptr(vlabuf, d, os_desc) + 3208 i * sizeof(struct usb_os_desc); 3209 desc->ext_compat_id = 3210 vla_ptr(vlabuf, d, ext_compat) + i * 16; 3211 INIT_LIST_HEAD(&desc->ext_prop); 3212 } 3213 ret = ffs_do_os_descs(ffs->ms_os_descs_count, 3214 vla_ptr(vlabuf, d, raw_descs) + 3215 fs_len + hs_len + ss_len, 3216 d_raw_descs__sz - fs_len - hs_len - 3217 ss_len, 3218 __ffs_func_bind_do_os_desc, func); 3219 if (unlikely(ret < 0)) 3220 goto error; 3221 } 3222 func->function.os_desc_n = 3223 c->cdev->use_os_string ? ffs->interfaces_count : 0; 3224 3225 /* And we're done */ 3226 ffs_event_add(ffs, FUNCTIONFS_BIND); 3227 return 0; 3228 3229 error: 3230 /* XXX Do we need to release all claimed endpoints here? */ 3231 return ret; 3232 } 3233 3234 static int ffs_func_bind(struct usb_configuration *c, 3235 struct usb_function *f) 3236 { 3237 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); 3238 struct ffs_function *func = ffs_func_from_usb(f); 3239 int ret; 3240 3241 if (IS_ERR(ffs_opts)) 3242 return PTR_ERR(ffs_opts); 3243 3244 ret = _ffs_func_bind(c, f); 3245 if (ret && !--ffs_opts->refcnt) 3246 functionfs_unbind(func->ffs); 3247 3248 return ret; 3249 } 3250 3251 3252 /* Other USB function hooks *************************************************/ 3253 3254 static void ffs_reset_work(struct work_struct *work) 3255 { 3256 struct ffs_data *ffs = container_of(work, 3257 struct ffs_data, reset_work); 3258 ffs_data_reset(ffs); 3259 } 3260 3261 static int ffs_func_set_alt(struct usb_function *f, 3262 unsigned interface, unsigned alt) 3263 { 3264 struct ffs_function *func = ffs_func_from_usb(f); 3265 struct ffs_data *ffs = func->ffs; 3266 int ret = 0, intf; 3267 3268 if (alt != (unsigned)-1) { 3269 intf = ffs_func_revmap_intf(func, interface); 3270 if (unlikely(intf < 0)) 3271 return intf; 3272 } 3273 3274 if (ffs->func) 3275 ffs_func_eps_disable(ffs->func); 3276 3277 if (ffs->state == FFS_DEACTIVATED) { 3278 ffs->state = FFS_CLOSING; 3279 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3280 schedule_work(&ffs->reset_work); 3281 return -ENODEV; 3282 } 3283 3284 if (ffs->state != FFS_ACTIVE) 3285 return -ENODEV; 3286 3287 if (alt == (unsigned)-1) { 3288 ffs->func = NULL; 3289 ffs_event_add(ffs, FUNCTIONFS_DISABLE); 3290 return 0; 3291 } 3292 3293 ffs->func = func; 3294 ret = ffs_func_eps_enable(func); 3295 if (likely(ret >= 0)) 3296 ffs_event_add(ffs, FUNCTIONFS_ENABLE); 3297 return ret; 3298 } 3299 3300 static void ffs_func_disable(struct usb_function *f) 3301 { 3302 ffs_func_set_alt(f, 0, (unsigned)-1); 3303 } 3304 3305 static int ffs_func_setup(struct usb_function *f, 3306 const struct usb_ctrlrequest *creq) 3307 { 3308 struct ffs_function *func = ffs_func_from_usb(f); 3309 struct ffs_data *ffs = func->ffs; 3310 unsigned long flags; 3311 int ret; 3312 3313 ENTER(); 3314 3315 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); 3316 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); 3317 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); 3318 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); 3319 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); 3320 3321 /* 3322 * Most requests directed to interface go through here 3323 * (notable exceptions are set/get interface) so we need to 3324 * handle them. All other either handled by composite or 3325 * passed to usb_configuration->setup() (if one is set). No 3326 * matter, we will handle requests directed to endpoint here 3327 * as well (as it's straightforward). Other request recipient 3328 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP 3329 * is being used. 3330 */ 3331 if (ffs->state != FFS_ACTIVE) 3332 return -ENODEV; 3333 3334 switch (creq->bRequestType & USB_RECIP_MASK) { 3335 case USB_RECIP_INTERFACE: 3336 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); 3337 if (unlikely(ret < 0)) 3338 return ret; 3339 break; 3340 3341 case USB_RECIP_ENDPOINT: 3342 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); 3343 if (unlikely(ret < 0)) 3344 return ret; 3345 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3346 ret = func->ffs->eps_addrmap[ret]; 3347 break; 3348 3349 default: 3350 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP) 3351 ret = le16_to_cpu(creq->wIndex); 3352 else 3353 return -EOPNOTSUPP; 3354 } 3355 3356 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3357 ffs->ev.setup = *creq; 3358 ffs->ev.setup.wIndex = cpu_to_le16(ret); 3359 __ffs_event_add(ffs, FUNCTIONFS_SETUP); 3360 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3361 3362 return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0; 3363 } 3364 3365 static bool ffs_func_req_match(struct usb_function *f, 3366 const struct usb_ctrlrequest *creq, 3367 bool config0) 3368 { 3369 struct ffs_function *func = ffs_func_from_usb(f); 3370 3371 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP)) 3372 return false; 3373 3374 switch (creq->bRequestType & USB_RECIP_MASK) { 3375 case USB_RECIP_INTERFACE: 3376 return (ffs_func_revmap_intf(func, 3377 le16_to_cpu(creq->wIndex)) >= 0); 3378 case USB_RECIP_ENDPOINT: 3379 return (ffs_func_revmap_ep(func, 3380 le16_to_cpu(creq->wIndex)) >= 0); 3381 default: 3382 return (bool) (func->ffs->user_flags & 3383 FUNCTIONFS_ALL_CTRL_RECIP); 3384 } 3385 } 3386 3387 static void ffs_func_suspend(struct usb_function *f) 3388 { 3389 ENTER(); 3390 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); 3391 } 3392 3393 static void ffs_func_resume(struct usb_function *f) 3394 { 3395 ENTER(); 3396 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); 3397 } 3398 3399 3400 /* Endpoint and interface numbers reverse mapping ***************************/ 3401 3402 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) 3403 { 3404 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; 3405 return num ? num : -EDOM; 3406 } 3407 3408 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) 3409 { 3410 short *nums = func->interfaces_nums; 3411 unsigned count = func->ffs->interfaces_count; 3412 3413 for (; count; --count, ++nums) { 3414 if (*nums >= 0 && *nums == intf) 3415 return nums - func->interfaces_nums; 3416 } 3417 3418 return -EDOM; 3419 } 3420 3421 3422 /* Devices management *******************************************************/ 3423 3424 static LIST_HEAD(ffs_devices); 3425 3426 static struct ffs_dev *_ffs_do_find_dev(const char *name) 3427 { 3428 struct ffs_dev *dev; 3429 3430 if (!name) 3431 return NULL; 3432 3433 list_for_each_entry(dev, &ffs_devices, entry) { 3434 if (strcmp(dev->name, name) == 0) 3435 return dev; 3436 } 3437 3438 return NULL; 3439 } 3440 3441 /* 3442 * ffs_lock must be taken by the caller of this function 3443 */ 3444 static struct ffs_dev *_ffs_get_single_dev(void) 3445 { 3446 struct ffs_dev *dev; 3447 3448 if (list_is_singular(&ffs_devices)) { 3449 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); 3450 if (dev->single) 3451 return dev; 3452 } 3453 3454 return NULL; 3455 } 3456 3457 /* 3458 * ffs_lock must be taken by the caller of this function 3459 */ 3460 static struct ffs_dev *_ffs_find_dev(const char *name) 3461 { 3462 struct ffs_dev *dev; 3463 3464 dev = _ffs_get_single_dev(); 3465 if (dev) 3466 return dev; 3467 3468 return _ffs_do_find_dev(name); 3469 } 3470 3471 /* Configfs support *********************************************************/ 3472 3473 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) 3474 { 3475 return container_of(to_config_group(item), struct f_fs_opts, 3476 func_inst.group); 3477 } 3478 3479 static void ffs_attr_release(struct config_item *item) 3480 { 3481 struct f_fs_opts *opts = to_ffs_opts(item); 3482 3483 usb_put_function_instance(&opts->func_inst); 3484 } 3485 3486 static struct configfs_item_operations ffs_item_ops = { 3487 .release = ffs_attr_release, 3488 }; 3489 3490 static const struct config_item_type ffs_func_type = { 3491 .ct_item_ops = &ffs_item_ops, 3492 .ct_owner = THIS_MODULE, 3493 }; 3494 3495 3496 /* Function registration interface ******************************************/ 3497 3498 static void ffs_free_inst(struct usb_function_instance *f) 3499 { 3500 struct f_fs_opts *opts; 3501 3502 opts = to_f_fs_opts(f); 3503 ffs_dev_lock(); 3504 _ffs_free_dev(opts->dev); 3505 ffs_dev_unlock(); 3506 kfree(opts); 3507 } 3508 3509 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) 3510 { 3511 if (strlen(name) >= sizeof_field(struct ffs_dev, name)) 3512 return -ENAMETOOLONG; 3513 return ffs_name_dev(to_f_fs_opts(fi)->dev, name); 3514 } 3515 3516 static struct usb_function_instance *ffs_alloc_inst(void) 3517 { 3518 struct f_fs_opts *opts; 3519 struct ffs_dev *dev; 3520 3521 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 3522 if (!opts) 3523 return ERR_PTR(-ENOMEM); 3524 3525 opts->func_inst.set_inst_name = ffs_set_inst_name; 3526 opts->func_inst.free_func_inst = ffs_free_inst; 3527 ffs_dev_lock(); 3528 dev = _ffs_alloc_dev(); 3529 ffs_dev_unlock(); 3530 if (IS_ERR(dev)) { 3531 kfree(opts); 3532 return ERR_CAST(dev); 3533 } 3534 opts->dev = dev; 3535 dev->opts = opts; 3536 3537 config_group_init_type_name(&opts->func_inst.group, "", 3538 &ffs_func_type); 3539 return &opts->func_inst; 3540 } 3541 3542 static void ffs_free(struct usb_function *f) 3543 { 3544 kfree(ffs_func_from_usb(f)); 3545 } 3546 3547 static void ffs_func_unbind(struct usb_configuration *c, 3548 struct usb_function *f) 3549 { 3550 struct ffs_function *func = ffs_func_from_usb(f); 3551 struct ffs_data *ffs = func->ffs; 3552 struct f_fs_opts *opts = 3553 container_of(f->fi, struct f_fs_opts, func_inst); 3554 struct ffs_ep *ep = func->eps; 3555 unsigned count = ffs->eps_count; 3556 unsigned long flags; 3557 3558 ENTER(); 3559 if (ffs->func == func) { 3560 ffs_func_eps_disable(func); 3561 ffs->func = NULL; 3562 } 3563 3564 if (!--opts->refcnt) 3565 functionfs_unbind(ffs); 3566 3567 /* cleanup after autoconfig */ 3568 spin_lock_irqsave(&func->ffs->eps_lock, flags); 3569 while (count--) { 3570 if (ep->ep && ep->req) 3571 usb_ep_free_request(ep->ep, ep->req); 3572 ep->req = NULL; 3573 ++ep; 3574 } 3575 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 3576 kfree(func->eps); 3577 func->eps = NULL; 3578 /* 3579 * eps, descriptors and interfaces_nums are allocated in the 3580 * same chunk so only one free is required. 3581 */ 3582 func->function.fs_descriptors = NULL; 3583 func->function.hs_descriptors = NULL; 3584 func->function.ss_descriptors = NULL; 3585 func->interfaces_nums = NULL; 3586 3587 ffs_event_add(ffs, FUNCTIONFS_UNBIND); 3588 } 3589 3590 static struct usb_function *ffs_alloc(struct usb_function_instance *fi) 3591 { 3592 struct ffs_function *func; 3593 3594 ENTER(); 3595 3596 func = kzalloc(sizeof(*func), GFP_KERNEL); 3597 if (unlikely(!func)) 3598 return ERR_PTR(-ENOMEM); 3599 3600 func->function.name = "Function FS Gadget"; 3601 3602 func->function.bind = ffs_func_bind; 3603 func->function.unbind = ffs_func_unbind; 3604 func->function.set_alt = ffs_func_set_alt; 3605 func->function.disable = ffs_func_disable; 3606 func->function.setup = ffs_func_setup; 3607 func->function.req_match = ffs_func_req_match; 3608 func->function.suspend = ffs_func_suspend; 3609 func->function.resume = ffs_func_resume; 3610 func->function.free_func = ffs_free; 3611 3612 return &func->function; 3613 } 3614 3615 /* 3616 * ffs_lock must be taken by the caller of this function 3617 */ 3618 static struct ffs_dev *_ffs_alloc_dev(void) 3619 { 3620 struct ffs_dev *dev; 3621 int ret; 3622 3623 if (_ffs_get_single_dev()) 3624 return ERR_PTR(-EBUSY); 3625 3626 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3627 if (!dev) 3628 return ERR_PTR(-ENOMEM); 3629 3630 if (list_empty(&ffs_devices)) { 3631 ret = functionfs_init(); 3632 if (ret) { 3633 kfree(dev); 3634 return ERR_PTR(ret); 3635 } 3636 } 3637 3638 list_add(&dev->entry, &ffs_devices); 3639 3640 return dev; 3641 } 3642 3643 int ffs_name_dev(struct ffs_dev *dev, const char *name) 3644 { 3645 struct ffs_dev *existing; 3646 int ret = 0; 3647 3648 ffs_dev_lock(); 3649 3650 existing = _ffs_do_find_dev(name); 3651 if (!existing) 3652 strlcpy(dev->name, name, ARRAY_SIZE(dev->name)); 3653 else if (existing != dev) 3654 ret = -EBUSY; 3655 3656 ffs_dev_unlock(); 3657 3658 return ret; 3659 } 3660 EXPORT_SYMBOL_GPL(ffs_name_dev); 3661 3662 int ffs_single_dev(struct ffs_dev *dev) 3663 { 3664 int ret; 3665 3666 ret = 0; 3667 ffs_dev_lock(); 3668 3669 if (!list_is_singular(&ffs_devices)) 3670 ret = -EBUSY; 3671 else 3672 dev->single = true; 3673 3674 ffs_dev_unlock(); 3675 return ret; 3676 } 3677 EXPORT_SYMBOL_GPL(ffs_single_dev); 3678 3679 /* 3680 * ffs_lock must be taken by the caller of this function 3681 */ 3682 static void _ffs_free_dev(struct ffs_dev *dev) 3683 { 3684 list_del(&dev->entry); 3685 3686 /* Clear the private_data pointer to stop incorrect dev access */ 3687 if (dev->ffs_data) 3688 dev->ffs_data->private_data = NULL; 3689 3690 kfree(dev); 3691 if (list_empty(&ffs_devices)) 3692 functionfs_cleanup(); 3693 } 3694 3695 static void *ffs_acquire_dev(const char *dev_name) 3696 { 3697 struct ffs_dev *ffs_dev; 3698 3699 ENTER(); 3700 ffs_dev_lock(); 3701 3702 ffs_dev = _ffs_find_dev(dev_name); 3703 if (!ffs_dev) 3704 ffs_dev = ERR_PTR(-ENOENT); 3705 else if (ffs_dev->mounted) 3706 ffs_dev = ERR_PTR(-EBUSY); 3707 else if (ffs_dev->ffs_acquire_dev_callback && 3708 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) 3709 ffs_dev = ERR_PTR(-ENOENT); 3710 else 3711 ffs_dev->mounted = true; 3712 3713 ffs_dev_unlock(); 3714 return ffs_dev; 3715 } 3716 3717 static void ffs_release_dev(struct ffs_data *ffs_data) 3718 { 3719 struct ffs_dev *ffs_dev; 3720 3721 ENTER(); 3722 ffs_dev_lock(); 3723 3724 ffs_dev = ffs_data->private_data; 3725 if (ffs_dev) { 3726 ffs_dev->mounted = false; 3727 3728 if (ffs_dev->ffs_release_dev_callback) 3729 ffs_dev->ffs_release_dev_callback(ffs_dev); 3730 } 3731 3732 ffs_dev_unlock(); 3733 } 3734 3735 static int ffs_ready(struct ffs_data *ffs) 3736 { 3737 struct ffs_dev *ffs_obj; 3738 int ret = 0; 3739 3740 ENTER(); 3741 ffs_dev_lock(); 3742 3743 ffs_obj = ffs->private_data; 3744 if (!ffs_obj) { 3745 ret = -EINVAL; 3746 goto done; 3747 } 3748 if (WARN_ON(ffs_obj->desc_ready)) { 3749 ret = -EBUSY; 3750 goto done; 3751 } 3752 3753 ffs_obj->desc_ready = true; 3754 ffs_obj->ffs_data = ffs; 3755 3756 if (ffs_obj->ffs_ready_callback) { 3757 ret = ffs_obj->ffs_ready_callback(ffs); 3758 if (ret) 3759 goto done; 3760 } 3761 3762 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); 3763 done: 3764 ffs_dev_unlock(); 3765 return ret; 3766 } 3767 3768 static void ffs_closed(struct ffs_data *ffs) 3769 { 3770 struct ffs_dev *ffs_obj; 3771 struct f_fs_opts *opts; 3772 struct config_item *ci; 3773 3774 ENTER(); 3775 ffs_dev_lock(); 3776 3777 ffs_obj = ffs->private_data; 3778 if (!ffs_obj) 3779 goto done; 3780 3781 ffs_obj->desc_ready = false; 3782 ffs_obj->ffs_data = NULL; 3783 3784 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) && 3785 ffs_obj->ffs_closed_callback) 3786 ffs_obj->ffs_closed_callback(ffs); 3787 3788 if (ffs_obj->opts) 3789 opts = ffs_obj->opts; 3790 else 3791 goto done; 3792 3793 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent 3794 || !kref_read(&opts->func_inst.group.cg_item.ci_kref)) 3795 goto done; 3796 3797 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent; 3798 ffs_dev_unlock(); 3799 3800 if (test_bit(FFS_FL_BOUND, &ffs->flags)) 3801 unregister_gadget_item(ci); 3802 return; 3803 done: 3804 ffs_dev_unlock(); 3805 } 3806 3807 /* Misc helper functions ****************************************************/ 3808 3809 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 3810 { 3811 return nonblock 3812 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN 3813 : mutex_lock_interruptible(mutex); 3814 } 3815 3816 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 3817 { 3818 char *data; 3819 3820 if (unlikely(!len)) 3821 return NULL; 3822 3823 data = kmalloc(len, GFP_KERNEL); 3824 if (unlikely(!data)) 3825 return ERR_PTR(-ENOMEM); 3826 3827 if (unlikely(copy_from_user(data, buf, len))) { 3828 kfree(data); 3829 return ERR_PTR(-EFAULT); 3830 } 3831 3832 pr_vdebug("Buffer from user space:\n"); 3833 ffs_dump_mem("", data, len); 3834 3835 return data; 3836 } 3837 3838 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); 3839 MODULE_LICENSE("GPL"); 3840 MODULE_AUTHOR("Michal Nazarewicz"); 3841