xref: /openbmc/linux/drivers/usb/gadget/function/f_fs.c (revision ba61bb17)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * f_fs.c -- user mode file system API for USB composite function controllers
4  *
5  * Copyright (C) 2010 Samsung Electronics
6  * Author: Michal Nazarewicz <mina86@mina86.com>
7  *
8  * Based on inode.c (GadgetFS) which was:
9  * Copyright (C) 2003-2004 David Brownell
10  * Copyright (C) 2003 Agilent Technologies
11  */
12 
13 
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16 
17 #include <linux/blkdev.h>
18 #include <linux/pagemap.h>
19 #include <linux/export.h>
20 #include <linux/hid.h>
21 #include <linux/module.h>
22 #include <linux/sched/signal.h>
23 #include <linux/uio.h>
24 #include <asm/unaligned.h>
25 
26 #include <linux/usb/composite.h>
27 #include <linux/usb/functionfs.h>
28 
29 #include <linux/aio.h>
30 #include <linux/mmu_context.h>
31 #include <linux/poll.h>
32 #include <linux/eventfd.h>
33 
34 #include "u_fs.h"
35 #include "u_f.h"
36 #include "u_os_desc.h"
37 #include "configfs.h"
38 
39 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
40 
41 /* Reference counter handling */
42 static void ffs_data_get(struct ffs_data *ffs);
43 static void ffs_data_put(struct ffs_data *ffs);
44 /* Creates new ffs_data object. */
45 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
46 	__attribute__((malloc));
47 
48 /* Opened counter handling. */
49 static void ffs_data_opened(struct ffs_data *ffs);
50 static void ffs_data_closed(struct ffs_data *ffs);
51 
52 /* Called with ffs->mutex held; take over ownership of data. */
53 static int __must_check
54 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
55 static int __must_check
56 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
57 
58 
59 /* The function structure ***************************************************/
60 
61 struct ffs_ep;
62 
63 struct ffs_function {
64 	struct usb_configuration	*conf;
65 	struct usb_gadget		*gadget;
66 	struct ffs_data			*ffs;
67 
68 	struct ffs_ep			*eps;
69 	u8				eps_revmap[16];
70 	short				*interfaces_nums;
71 
72 	struct usb_function		function;
73 };
74 
75 
76 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
77 {
78 	return container_of(f, struct ffs_function, function);
79 }
80 
81 
82 static inline enum ffs_setup_state
83 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
84 {
85 	return (enum ffs_setup_state)
86 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
87 }
88 
89 
90 static void ffs_func_eps_disable(struct ffs_function *func);
91 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
92 
93 static int ffs_func_bind(struct usb_configuration *,
94 			 struct usb_function *);
95 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
96 static void ffs_func_disable(struct usb_function *);
97 static int ffs_func_setup(struct usb_function *,
98 			  const struct usb_ctrlrequest *);
99 static bool ffs_func_req_match(struct usb_function *,
100 			       const struct usb_ctrlrequest *,
101 			       bool config0);
102 static void ffs_func_suspend(struct usb_function *);
103 static void ffs_func_resume(struct usb_function *);
104 
105 
106 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
107 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
108 
109 
110 /* The endpoints structures *************************************************/
111 
112 struct ffs_ep {
113 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
114 	struct usb_request		*req;	/* P: epfile->mutex */
115 
116 	/* [0]: full speed, [1]: high speed, [2]: super speed */
117 	struct usb_endpoint_descriptor	*descs[3];
118 
119 	u8				num;
120 
121 	int				status;	/* P: epfile->mutex */
122 };
123 
124 struct ffs_epfile {
125 	/* Protects ep->ep and ep->req. */
126 	struct mutex			mutex;
127 
128 	struct ffs_data			*ffs;
129 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
130 
131 	struct dentry			*dentry;
132 
133 	/*
134 	 * Buffer for holding data from partial reads which may happen since
135 	 * we’re rounding user read requests to a multiple of a max packet size.
136 	 *
137 	 * The pointer is initialised with NULL value and may be set by
138 	 * __ffs_epfile_read_data function to point to a temporary buffer.
139 	 *
140 	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
141 	 * data from said buffer and eventually free it.  Importantly, while the
142 	 * function is using the buffer, it sets the pointer to NULL.  This is
143 	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
144 	 * can never run concurrently (they are synchronised by epfile->mutex)
145 	 * so the latter will not assign a new value to the pointer.
146 	 *
147 	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
148 	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
149 	 * value is crux of the synchronisation between ffs_func_eps_disable and
150 	 * __ffs_epfile_read_data.
151 	 *
152 	 * Once __ffs_epfile_read_data is about to finish it will try to set the
153 	 * pointer back to its old value (as described above), but seeing as the
154 	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
155 	 * the buffer.
156 	 *
157 	 * == State transitions ==
158 	 *
159 	 * • ptr == NULL:  (initial state)
160 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
161 	 *   ◦ __ffs_epfile_read_buffered:    nop
162 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
163 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
164 	 * • ptr == DROP:
165 	 *   ◦ __ffs_epfile_read_buffer_free: nop
166 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
167 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
168 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
169 	 * • ptr == buf:
170 	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
171 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
172 	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
173 	 *                                    is always called first
174 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
175 	 * • ptr == NULL and reading:
176 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
177 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
178 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
179 	 *   ◦ reading finishes and …
180 	 *     … all data read:               free buf, go to ptr == NULL
181 	 *     … otherwise:                   go to ptr == buf and reading
182 	 * • ptr == DROP and reading:
183 	 *   ◦ __ffs_epfile_read_buffer_free: nop
184 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
185 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
186 	 *   ◦ reading finishes:              free buf, go to ptr == DROP
187 	 */
188 	struct ffs_buffer		*read_buffer;
189 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
190 
191 	char				name[5];
192 
193 	unsigned char			in;	/* P: ffs->eps_lock */
194 	unsigned char			isoc;	/* P: ffs->eps_lock */
195 
196 	unsigned char			_pad;
197 };
198 
199 struct ffs_buffer {
200 	size_t length;
201 	char *data;
202 	char storage[];
203 };
204 
205 /*  ffs_io_data structure ***************************************************/
206 
207 struct ffs_io_data {
208 	bool aio;
209 	bool read;
210 
211 	struct kiocb *kiocb;
212 	struct iov_iter data;
213 	const void *to_free;
214 	char *buf;
215 
216 	struct mm_struct *mm;
217 	struct work_struct work;
218 	struct work_struct cancellation_work;
219 
220 	struct usb_ep *ep;
221 	struct usb_request *req;
222 
223 	struct ffs_data *ffs;
224 };
225 
226 struct ffs_desc_helper {
227 	struct ffs_data *ffs;
228 	unsigned interfaces_count;
229 	unsigned eps_count;
230 };
231 
232 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
233 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
234 
235 static struct dentry *
236 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
237 		   const struct file_operations *fops);
238 
239 /* Devices management *******************************************************/
240 
241 DEFINE_MUTEX(ffs_lock);
242 EXPORT_SYMBOL_GPL(ffs_lock);
243 
244 static struct ffs_dev *_ffs_find_dev(const char *name);
245 static struct ffs_dev *_ffs_alloc_dev(void);
246 static void _ffs_free_dev(struct ffs_dev *dev);
247 static void *ffs_acquire_dev(const char *dev_name);
248 static void ffs_release_dev(struct ffs_data *ffs_data);
249 static int ffs_ready(struct ffs_data *ffs);
250 static void ffs_closed(struct ffs_data *ffs);
251 
252 /* Misc helper functions ****************************************************/
253 
254 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
255 	__attribute__((warn_unused_result, nonnull));
256 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
257 	__attribute__((warn_unused_result, nonnull));
258 
259 
260 /* Control file aka ep0 *****************************************************/
261 
262 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
263 {
264 	struct ffs_data *ffs = req->context;
265 
266 	complete(&ffs->ep0req_completion);
267 }
268 
269 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
270 	__releases(&ffs->ev.waitq.lock)
271 {
272 	struct usb_request *req = ffs->ep0req;
273 	int ret;
274 
275 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
276 
277 	spin_unlock_irq(&ffs->ev.waitq.lock);
278 
279 	req->buf      = data;
280 	req->length   = len;
281 
282 	/*
283 	 * UDC layer requires to provide a buffer even for ZLP, but should
284 	 * not use it at all. Let's provide some poisoned pointer to catch
285 	 * possible bug in the driver.
286 	 */
287 	if (req->buf == NULL)
288 		req->buf = (void *)0xDEADBABE;
289 
290 	reinit_completion(&ffs->ep0req_completion);
291 
292 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
293 	if (unlikely(ret < 0))
294 		return ret;
295 
296 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
297 	if (unlikely(ret)) {
298 		usb_ep_dequeue(ffs->gadget->ep0, req);
299 		return -EINTR;
300 	}
301 
302 	ffs->setup_state = FFS_NO_SETUP;
303 	return req->status ? req->status : req->actual;
304 }
305 
306 static int __ffs_ep0_stall(struct ffs_data *ffs)
307 {
308 	if (ffs->ev.can_stall) {
309 		pr_vdebug("ep0 stall\n");
310 		usb_ep_set_halt(ffs->gadget->ep0);
311 		ffs->setup_state = FFS_NO_SETUP;
312 		return -EL2HLT;
313 	} else {
314 		pr_debug("bogus ep0 stall!\n");
315 		return -ESRCH;
316 	}
317 }
318 
319 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
320 			     size_t len, loff_t *ptr)
321 {
322 	struct ffs_data *ffs = file->private_data;
323 	ssize_t ret;
324 	char *data;
325 
326 	ENTER();
327 
328 	/* Fast check if setup was canceled */
329 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
330 		return -EIDRM;
331 
332 	/* Acquire mutex */
333 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
334 	if (unlikely(ret < 0))
335 		return ret;
336 
337 	/* Check state */
338 	switch (ffs->state) {
339 	case FFS_READ_DESCRIPTORS:
340 	case FFS_READ_STRINGS:
341 		/* Copy data */
342 		if (unlikely(len < 16)) {
343 			ret = -EINVAL;
344 			break;
345 		}
346 
347 		data = ffs_prepare_buffer(buf, len);
348 		if (IS_ERR(data)) {
349 			ret = PTR_ERR(data);
350 			break;
351 		}
352 
353 		/* Handle data */
354 		if (ffs->state == FFS_READ_DESCRIPTORS) {
355 			pr_info("read descriptors\n");
356 			ret = __ffs_data_got_descs(ffs, data, len);
357 			if (unlikely(ret < 0))
358 				break;
359 
360 			ffs->state = FFS_READ_STRINGS;
361 			ret = len;
362 		} else {
363 			pr_info("read strings\n");
364 			ret = __ffs_data_got_strings(ffs, data, len);
365 			if (unlikely(ret < 0))
366 				break;
367 
368 			ret = ffs_epfiles_create(ffs);
369 			if (unlikely(ret)) {
370 				ffs->state = FFS_CLOSING;
371 				break;
372 			}
373 
374 			ffs->state = FFS_ACTIVE;
375 			mutex_unlock(&ffs->mutex);
376 
377 			ret = ffs_ready(ffs);
378 			if (unlikely(ret < 0)) {
379 				ffs->state = FFS_CLOSING;
380 				return ret;
381 			}
382 
383 			return len;
384 		}
385 		break;
386 
387 	case FFS_ACTIVE:
388 		data = NULL;
389 		/*
390 		 * We're called from user space, we can use _irq
391 		 * rather then _irqsave
392 		 */
393 		spin_lock_irq(&ffs->ev.waitq.lock);
394 		switch (ffs_setup_state_clear_cancelled(ffs)) {
395 		case FFS_SETUP_CANCELLED:
396 			ret = -EIDRM;
397 			goto done_spin;
398 
399 		case FFS_NO_SETUP:
400 			ret = -ESRCH;
401 			goto done_spin;
402 
403 		case FFS_SETUP_PENDING:
404 			break;
405 		}
406 
407 		/* FFS_SETUP_PENDING */
408 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
409 			spin_unlock_irq(&ffs->ev.waitq.lock);
410 			ret = __ffs_ep0_stall(ffs);
411 			break;
412 		}
413 
414 		/* FFS_SETUP_PENDING and not stall */
415 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
416 
417 		spin_unlock_irq(&ffs->ev.waitq.lock);
418 
419 		data = ffs_prepare_buffer(buf, len);
420 		if (IS_ERR(data)) {
421 			ret = PTR_ERR(data);
422 			break;
423 		}
424 
425 		spin_lock_irq(&ffs->ev.waitq.lock);
426 
427 		/*
428 		 * We are guaranteed to be still in FFS_ACTIVE state
429 		 * but the state of setup could have changed from
430 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
431 		 * to check for that.  If that happened we copied data
432 		 * from user space in vain but it's unlikely.
433 		 *
434 		 * For sure we are not in FFS_NO_SETUP since this is
435 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
436 		 * transition can be performed and it's protected by
437 		 * mutex.
438 		 */
439 		if (ffs_setup_state_clear_cancelled(ffs) ==
440 		    FFS_SETUP_CANCELLED) {
441 			ret = -EIDRM;
442 done_spin:
443 			spin_unlock_irq(&ffs->ev.waitq.lock);
444 		} else {
445 			/* unlocks spinlock */
446 			ret = __ffs_ep0_queue_wait(ffs, data, len);
447 		}
448 		kfree(data);
449 		break;
450 
451 	default:
452 		ret = -EBADFD;
453 		break;
454 	}
455 
456 	mutex_unlock(&ffs->mutex);
457 	return ret;
458 }
459 
460 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
461 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
462 				     size_t n)
463 	__releases(&ffs->ev.waitq.lock)
464 {
465 	/*
466 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
467 	 * size of ffs->ev.types array (which is four) so that's how much space
468 	 * we reserve.
469 	 */
470 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
471 	const size_t size = n * sizeof *events;
472 	unsigned i = 0;
473 
474 	memset(events, 0, size);
475 
476 	do {
477 		events[i].type = ffs->ev.types[i];
478 		if (events[i].type == FUNCTIONFS_SETUP) {
479 			events[i].u.setup = ffs->ev.setup;
480 			ffs->setup_state = FFS_SETUP_PENDING;
481 		}
482 	} while (++i < n);
483 
484 	ffs->ev.count -= n;
485 	if (ffs->ev.count)
486 		memmove(ffs->ev.types, ffs->ev.types + n,
487 			ffs->ev.count * sizeof *ffs->ev.types);
488 
489 	spin_unlock_irq(&ffs->ev.waitq.lock);
490 	mutex_unlock(&ffs->mutex);
491 
492 	return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
493 }
494 
495 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
496 			    size_t len, loff_t *ptr)
497 {
498 	struct ffs_data *ffs = file->private_data;
499 	char *data = NULL;
500 	size_t n;
501 	int ret;
502 
503 	ENTER();
504 
505 	/* Fast check if setup was canceled */
506 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
507 		return -EIDRM;
508 
509 	/* Acquire mutex */
510 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
511 	if (unlikely(ret < 0))
512 		return ret;
513 
514 	/* Check state */
515 	if (ffs->state != FFS_ACTIVE) {
516 		ret = -EBADFD;
517 		goto done_mutex;
518 	}
519 
520 	/*
521 	 * We're called from user space, we can use _irq rather then
522 	 * _irqsave
523 	 */
524 	spin_lock_irq(&ffs->ev.waitq.lock);
525 
526 	switch (ffs_setup_state_clear_cancelled(ffs)) {
527 	case FFS_SETUP_CANCELLED:
528 		ret = -EIDRM;
529 		break;
530 
531 	case FFS_NO_SETUP:
532 		n = len / sizeof(struct usb_functionfs_event);
533 		if (unlikely(!n)) {
534 			ret = -EINVAL;
535 			break;
536 		}
537 
538 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
539 			ret = -EAGAIN;
540 			break;
541 		}
542 
543 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
544 							ffs->ev.count)) {
545 			ret = -EINTR;
546 			break;
547 		}
548 
549 		/* unlocks spinlock */
550 		return __ffs_ep0_read_events(ffs, buf,
551 					     min(n, (size_t)ffs->ev.count));
552 
553 	case FFS_SETUP_PENDING:
554 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
555 			spin_unlock_irq(&ffs->ev.waitq.lock);
556 			ret = __ffs_ep0_stall(ffs);
557 			goto done_mutex;
558 		}
559 
560 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
561 
562 		spin_unlock_irq(&ffs->ev.waitq.lock);
563 
564 		if (likely(len)) {
565 			data = kmalloc(len, GFP_KERNEL);
566 			if (unlikely(!data)) {
567 				ret = -ENOMEM;
568 				goto done_mutex;
569 			}
570 		}
571 
572 		spin_lock_irq(&ffs->ev.waitq.lock);
573 
574 		/* See ffs_ep0_write() */
575 		if (ffs_setup_state_clear_cancelled(ffs) ==
576 		    FFS_SETUP_CANCELLED) {
577 			ret = -EIDRM;
578 			break;
579 		}
580 
581 		/* unlocks spinlock */
582 		ret = __ffs_ep0_queue_wait(ffs, data, len);
583 		if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
584 			ret = -EFAULT;
585 		goto done_mutex;
586 
587 	default:
588 		ret = -EBADFD;
589 		break;
590 	}
591 
592 	spin_unlock_irq(&ffs->ev.waitq.lock);
593 done_mutex:
594 	mutex_unlock(&ffs->mutex);
595 	kfree(data);
596 	return ret;
597 }
598 
599 static int ffs_ep0_open(struct inode *inode, struct file *file)
600 {
601 	struct ffs_data *ffs = inode->i_private;
602 
603 	ENTER();
604 
605 	if (unlikely(ffs->state == FFS_CLOSING))
606 		return -EBUSY;
607 
608 	file->private_data = ffs;
609 	ffs_data_opened(ffs);
610 
611 	return 0;
612 }
613 
614 static int ffs_ep0_release(struct inode *inode, struct file *file)
615 {
616 	struct ffs_data *ffs = file->private_data;
617 
618 	ENTER();
619 
620 	ffs_data_closed(ffs);
621 
622 	return 0;
623 }
624 
625 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
626 {
627 	struct ffs_data *ffs = file->private_data;
628 	struct usb_gadget *gadget = ffs->gadget;
629 	long ret;
630 
631 	ENTER();
632 
633 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
634 		struct ffs_function *func = ffs->func;
635 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
636 	} else if (gadget && gadget->ops->ioctl) {
637 		ret = gadget->ops->ioctl(gadget, code, value);
638 	} else {
639 		ret = -ENOTTY;
640 	}
641 
642 	return ret;
643 }
644 
645 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
646 {
647 	struct ffs_data *ffs = file->private_data;
648 	__poll_t mask = EPOLLWRNORM;
649 	int ret;
650 
651 	poll_wait(file, &ffs->ev.waitq, wait);
652 
653 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
654 	if (unlikely(ret < 0))
655 		return mask;
656 
657 	switch (ffs->state) {
658 	case FFS_READ_DESCRIPTORS:
659 	case FFS_READ_STRINGS:
660 		mask |= EPOLLOUT;
661 		break;
662 
663 	case FFS_ACTIVE:
664 		switch (ffs->setup_state) {
665 		case FFS_NO_SETUP:
666 			if (ffs->ev.count)
667 				mask |= EPOLLIN;
668 			break;
669 
670 		case FFS_SETUP_PENDING:
671 		case FFS_SETUP_CANCELLED:
672 			mask |= (EPOLLIN | EPOLLOUT);
673 			break;
674 		}
675 	case FFS_CLOSING:
676 		break;
677 	case FFS_DEACTIVATED:
678 		break;
679 	}
680 
681 	mutex_unlock(&ffs->mutex);
682 
683 	return mask;
684 }
685 
686 static const struct file_operations ffs_ep0_operations = {
687 	.llseek =	no_llseek,
688 
689 	.open =		ffs_ep0_open,
690 	.write =	ffs_ep0_write,
691 	.read =		ffs_ep0_read,
692 	.release =	ffs_ep0_release,
693 	.unlocked_ioctl =	ffs_ep0_ioctl,
694 	.poll =		ffs_ep0_poll,
695 };
696 
697 
698 /* "Normal" endpoints operations ********************************************/
699 
700 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
701 {
702 	ENTER();
703 	if (likely(req->context)) {
704 		struct ffs_ep *ep = _ep->driver_data;
705 		ep->status = req->status ? req->status : req->actual;
706 		complete(req->context);
707 	}
708 }
709 
710 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
711 {
712 	ssize_t ret = copy_to_iter(data, data_len, iter);
713 	if (likely(ret == data_len))
714 		return ret;
715 
716 	if (unlikely(iov_iter_count(iter)))
717 		return -EFAULT;
718 
719 	/*
720 	 * Dear user space developer!
721 	 *
722 	 * TL;DR: To stop getting below error message in your kernel log, change
723 	 * user space code using functionfs to align read buffers to a max
724 	 * packet size.
725 	 *
726 	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
727 	 * packet size.  When unaligned buffer is passed to functionfs, it
728 	 * internally uses a larger, aligned buffer so that such UDCs are happy.
729 	 *
730 	 * Unfortunately, this means that host may send more data than was
731 	 * requested in read(2) system call.  f_fs doesn’t know what to do with
732 	 * that excess data so it simply drops it.
733 	 *
734 	 * Was the buffer aligned in the first place, no such problem would
735 	 * happen.
736 	 *
737 	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
738 	 * by splitting a request into multiple parts.  This splitting may still
739 	 * be a problem though so it’s likely best to align the buffer
740 	 * regardless of it being AIO or not..
741 	 *
742 	 * This only affects OUT endpoints, i.e. reading data with a read(2),
743 	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
744 	 * affected.
745 	 */
746 	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
747 	       "Align read buffer size to max packet size to avoid the problem.\n",
748 	       data_len, ret);
749 
750 	return ret;
751 }
752 
753 static void ffs_user_copy_worker(struct work_struct *work)
754 {
755 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
756 						   work);
757 	int ret = io_data->req->status ? io_data->req->status :
758 					 io_data->req->actual;
759 	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
760 
761 	if (io_data->read && ret > 0) {
762 		mm_segment_t oldfs = get_fs();
763 
764 		set_fs(USER_DS);
765 		use_mm(io_data->mm);
766 		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
767 		unuse_mm(io_data->mm);
768 		set_fs(oldfs);
769 	}
770 
771 	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
772 
773 	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
774 		eventfd_signal(io_data->ffs->ffs_eventfd, 1);
775 
776 	usb_ep_free_request(io_data->ep, io_data->req);
777 
778 	if (io_data->read)
779 		kfree(io_data->to_free);
780 	kfree(io_data->buf);
781 	kfree(io_data);
782 }
783 
784 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
785 					 struct usb_request *req)
786 {
787 	struct ffs_io_data *io_data = req->context;
788 	struct ffs_data *ffs = io_data->ffs;
789 
790 	ENTER();
791 
792 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
793 	queue_work(ffs->io_completion_wq, &io_data->work);
794 }
795 
796 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
797 {
798 	/*
799 	 * See comment in struct ffs_epfile for full read_buffer pointer
800 	 * synchronisation story.
801 	 */
802 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
803 	if (buf && buf != READ_BUFFER_DROP)
804 		kfree(buf);
805 }
806 
807 /* Assumes epfile->mutex is held. */
808 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
809 					  struct iov_iter *iter)
810 {
811 	/*
812 	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
813 	 * the buffer while we are using it.  See comment in struct ffs_epfile
814 	 * for full read_buffer pointer synchronisation story.
815 	 */
816 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
817 	ssize_t ret;
818 	if (!buf || buf == READ_BUFFER_DROP)
819 		return 0;
820 
821 	ret = copy_to_iter(buf->data, buf->length, iter);
822 	if (buf->length == ret) {
823 		kfree(buf);
824 		return ret;
825 	}
826 
827 	if (unlikely(iov_iter_count(iter))) {
828 		ret = -EFAULT;
829 	} else {
830 		buf->length -= ret;
831 		buf->data += ret;
832 	}
833 
834 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
835 		kfree(buf);
836 
837 	return ret;
838 }
839 
840 /* Assumes epfile->mutex is held. */
841 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
842 				      void *data, int data_len,
843 				      struct iov_iter *iter)
844 {
845 	struct ffs_buffer *buf;
846 
847 	ssize_t ret = copy_to_iter(data, data_len, iter);
848 	if (likely(data_len == ret))
849 		return ret;
850 
851 	if (unlikely(iov_iter_count(iter)))
852 		return -EFAULT;
853 
854 	/* See ffs_copy_to_iter for more context. */
855 	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
856 		data_len, ret);
857 
858 	data_len -= ret;
859 	buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
860 	if (!buf)
861 		return -ENOMEM;
862 	buf->length = data_len;
863 	buf->data = buf->storage;
864 	memcpy(buf->storage, data + ret, data_len);
865 
866 	/*
867 	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
868 	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
869 	 * in struct ffs_epfile for full read_buffer pointer synchronisation
870 	 * story.
871 	 */
872 	if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
873 		kfree(buf);
874 
875 	return ret;
876 }
877 
878 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
879 {
880 	struct ffs_epfile *epfile = file->private_data;
881 	struct usb_request *req;
882 	struct ffs_ep *ep;
883 	char *data = NULL;
884 	ssize_t ret, data_len = -EINVAL;
885 	int halt;
886 
887 	/* Are we still active? */
888 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
889 		return -ENODEV;
890 
891 	/* Wait for endpoint to be enabled */
892 	ep = epfile->ep;
893 	if (!ep) {
894 		if (file->f_flags & O_NONBLOCK)
895 			return -EAGAIN;
896 
897 		ret = wait_event_interruptible(
898 				epfile->ffs->wait, (ep = epfile->ep));
899 		if (ret)
900 			return -EINTR;
901 	}
902 
903 	/* Do we halt? */
904 	halt = (!io_data->read == !epfile->in);
905 	if (halt && epfile->isoc)
906 		return -EINVAL;
907 
908 	/* We will be using request and read_buffer */
909 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
910 	if (unlikely(ret))
911 		goto error;
912 
913 	/* Allocate & copy */
914 	if (!halt) {
915 		struct usb_gadget *gadget;
916 
917 		/*
918 		 * Do we have buffered data from previous partial read?  Check
919 		 * that for synchronous case only because we do not have
920 		 * facility to ‘wake up’ a pending asynchronous read and push
921 		 * buffered data to it which we would need to make things behave
922 		 * consistently.
923 		 */
924 		if (!io_data->aio && io_data->read) {
925 			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
926 			if (ret)
927 				goto error_mutex;
928 		}
929 
930 		/*
931 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
932 		 * before the waiting completes, so do not assign to 'gadget'
933 		 * earlier
934 		 */
935 		gadget = epfile->ffs->gadget;
936 
937 		spin_lock_irq(&epfile->ffs->eps_lock);
938 		/* In the meantime, endpoint got disabled or changed. */
939 		if (epfile->ep != ep) {
940 			ret = -ESHUTDOWN;
941 			goto error_lock;
942 		}
943 		data_len = iov_iter_count(&io_data->data);
944 		/*
945 		 * Controller may require buffer size to be aligned to
946 		 * maxpacketsize of an out endpoint.
947 		 */
948 		if (io_data->read)
949 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
950 		spin_unlock_irq(&epfile->ffs->eps_lock);
951 
952 		data = kmalloc(data_len, GFP_KERNEL);
953 		if (unlikely(!data)) {
954 			ret = -ENOMEM;
955 			goto error_mutex;
956 		}
957 		if (!io_data->read &&
958 		    !copy_from_iter_full(data, data_len, &io_data->data)) {
959 			ret = -EFAULT;
960 			goto error_mutex;
961 		}
962 	}
963 
964 	spin_lock_irq(&epfile->ffs->eps_lock);
965 
966 	if (epfile->ep != ep) {
967 		/* In the meantime, endpoint got disabled or changed. */
968 		ret = -ESHUTDOWN;
969 	} else if (halt) {
970 		ret = usb_ep_set_halt(ep->ep);
971 		if (!ret)
972 			ret = -EBADMSG;
973 	} else if (unlikely(data_len == -EINVAL)) {
974 		/*
975 		 * Sanity Check: even though data_len can't be used
976 		 * uninitialized at the time I write this comment, some
977 		 * compilers complain about this situation.
978 		 * In order to keep the code clean from warnings, data_len is
979 		 * being initialized to -EINVAL during its declaration, which
980 		 * means we can't rely on compiler anymore to warn no future
981 		 * changes won't result in data_len being used uninitialized.
982 		 * For such reason, we're adding this redundant sanity check
983 		 * here.
984 		 */
985 		WARN(1, "%s: data_len == -EINVAL\n", __func__);
986 		ret = -EINVAL;
987 	} else if (!io_data->aio) {
988 		DECLARE_COMPLETION_ONSTACK(done);
989 		bool interrupted = false;
990 
991 		req = ep->req;
992 		req->buf      = data;
993 		req->length   = data_len;
994 
995 		req->context  = &done;
996 		req->complete = ffs_epfile_io_complete;
997 
998 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
999 		if (unlikely(ret < 0))
1000 			goto error_lock;
1001 
1002 		spin_unlock_irq(&epfile->ffs->eps_lock);
1003 
1004 		if (unlikely(wait_for_completion_interruptible(&done))) {
1005 			/*
1006 			 * To avoid race condition with ffs_epfile_io_complete,
1007 			 * dequeue the request first then check
1008 			 * status. usb_ep_dequeue API should guarantee no race
1009 			 * condition with req->complete callback.
1010 			 */
1011 			usb_ep_dequeue(ep->ep, req);
1012 			interrupted = ep->status < 0;
1013 		}
1014 
1015 		if (interrupted)
1016 			ret = -EINTR;
1017 		else if (io_data->read && ep->status > 0)
1018 			ret = __ffs_epfile_read_data(epfile, data, ep->status,
1019 						     &io_data->data);
1020 		else
1021 			ret = ep->status;
1022 		goto error_mutex;
1023 	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1024 		ret = -ENOMEM;
1025 	} else {
1026 		req->buf      = data;
1027 		req->length   = data_len;
1028 
1029 		io_data->buf = data;
1030 		io_data->ep = ep->ep;
1031 		io_data->req = req;
1032 		io_data->ffs = epfile->ffs;
1033 
1034 		req->context  = io_data;
1035 		req->complete = ffs_epfile_async_io_complete;
1036 
1037 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1038 		if (unlikely(ret)) {
1039 			usb_ep_free_request(ep->ep, req);
1040 			goto error_lock;
1041 		}
1042 
1043 		ret = -EIOCBQUEUED;
1044 		/*
1045 		 * Do not kfree the buffer in this function.  It will be freed
1046 		 * by ffs_user_copy_worker.
1047 		 */
1048 		data = NULL;
1049 	}
1050 
1051 error_lock:
1052 	spin_unlock_irq(&epfile->ffs->eps_lock);
1053 error_mutex:
1054 	mutex_unlock(&epfile->mutex);
1055 error:
1056 	kfree(data);
1057 	return ret;
1058 }
1059 
1060 static int
1061 ffs_epfile_open(struct inode *inode, struct file *file)
1062 {
1063 	struct ffs_epfile *epfile = inode->i_private;
1064 
1065 	ENTER();
1066 
1067 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1068 		return -ENODEV;
1069 
1070 	file->private_data = epfile;
1071 	ffs_data_opened(epfile->ffs);
1072 
1073 	return 0;
1074 }
1075 
1076 static void ffs_aio_cancel_worker(struct work_struct *work)
1077 {
1078 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
1079 						   cancellation_work);
1080 
1081 	ENTER();
1082 
1083 	usb_ep_dequeue(io_data->ep, io_data->req);
1084 }
1085 
1086 static int ffs_aio_cancel(struct kiocb *kiocb)
1087 {
1088 	struct ffs_io_data *io_data = kiocb->private;
1089 	struct ffs_data *ffs = io_data->ffs;
1090 	int value;
1091 
1092 	ENTER();
1093 
1094 	if (likely(io_data && io_data->ep && io_data->req)) {
1095 		INIT_WORK(&io_data->cancellation_work, ffs_aio_cancel_worker);
1096 		queue_work(ffs->io_completion_wq, &io_data->cancellation_work);
1097 		value = -EINPROGRESS;
1098 	} else {
1099 		value = -EINVAL;
1100 	}
1101 
1102 	return value;
1103 }
1104 
1105 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1106 {
1107 	struct ffs_io_data io_data, *p = &io_data;
1108 	ssize_t res;
1109 
1110 	ENTER();
1111 
1112 	if (!is_sync_kiocb(kiocb)) {
1113 		p = kmalloc(sizeof(io_data), GFP_KERNEL);
1114 		if (unlikely(!p))
1115 			return -ENOMEM;
1116 		p->aio = true;
1117 	} else {
1118 		p->aio = false;
1119 	}
1120 
1121 	p->read = false;
1122 	p->kiocb = kiocb;
1123 	p->data = *from;
1124 	p->mm = current->mm;
1125 
1126 	kiocb->private = p;
1127 
1128 	if (p->aio)
1129 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1130 
1131 	res = ffs_epfile_io(kiocb->ki_filp, p);
1132 	if (res == -EIOCBQUEUED)
1133 		return res;
1134 	if (p->aio)
1135 		kfree(p);
1136 	else
1137 		*from = p->data;
1138 	return res;
1139 }
1140 
1141 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1142 {
1143 	struct ffs_io_data io_data, *p = &io_data;
1144 	ssize_t res;
1145 
1146 	ENTER();
1147 
1148 	if (!is_sync_kiocb(kiocb)) {
1149 		p = kmalloc(sizeof(io_data), GFP_KERNEL);
1150 		if (unlikely(!p))
1151 			return -ENOMEM;
1152 		p->aio = true;
1153 	} else {
1154 		p->aio = false;
1155 	}
1156 
1157 	p->read = true;
1158 	p->kiocb = kiocb;
1159 	if (p->aio) {
1160 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1161 		if (!p->to_free) {
1162 			kfree(p);
1163 			return -ENOMEM;
1164 		}
1165 	} else {
1166 		p->data = *to;
1167 		p->to_free = NULL;
1168 	}
1169 	p->mm = current->mm;
1170 
1171 	kiocb->private = p;
1172 
1173 	if (p->aio)
1174 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1175 
1176 	res = ffs_epfile_io(kiocb->ki_filp, p);
1177 	if (res == -EIOCBQUEUED)
1178 		return res;
1179 
1180 	if (p->aio) {
1181 		kfree(p->to_free);
1182 		kfree(p);
1183 	} else {
1184 		*to = p->data;
1185 	}
1186 	return res;
1187 }
1188 
1189 static int
1190 ffs_epfile_release(struct inode *inode, struct file *file)
1191 {
1192 	struct ffs_epfile *epfile = inode->i_private;
1193 
1194 	ENTER();
1195 
1196 	__ffs_epfile_read_buffer_free(epfile);
1197 	ffs_data_closed(epfile->ffs);
1198 
1199 	return 0;
1200 }
1201 
1202 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1203 			     unsigned long value)
1204 {
1205 	struct ffs_epfile *epfile = file->private_data;
1206 	struct ffs_ep *ep;
1207 	int ret;
1208 
1209 	ENTER();
1210 
1211 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1212 		return -ENODEV;
1213 
1214 	/* Wait for endpoint to be enabled */
1215 	ep = epfile->ep;
1216 	if (!ep) {
1217 		if (file->f_flags & O_NONBLOCK)
1218 			return -EAGAIN;
1219 
1220 		ret = wait_event_interruptible(
1221 				epfile->ffs->wait, (ep = epfile->ep));
1222 		if (ret)
1223 			return -EINTR;
1224 	}
1225 
1226 	spin_lock_irq(&epfile->ffs->eps_lock);
1227 
1228 	/* In the meantime, endpoint got disabled or changed. */
1229 	if (epfile->ep != ep) {
1230 		spin_unlock_irq(&epfile->ffs->eps_lock);
1231 		return -ESHUTDOWN;
1232 	}
1233 
1234 	switch (code) {
1235 	case FUNCTIONFS_FIFO_STATUS:
1236 		ret = usb_ep_fifo_status(epfile->ep->ep);
1237 		break;
1238 	case FUNCTIONFS_FIFO_FLUSH:
1239 		usb_ep_fifo_flush(epfile->ep->ep);
1240 		ret = 0;
1241 		break;
1242 	case FUNCTIONFS_CLEAR_HALT:
1243 		ret = usb_ep_clear_halt(epfile->ep->ep);
1244 		break;
1245 	case FUNCTIONFS_ENDPOINT_REVMAP:
1246 		ret = epfile->ep->num;
1247 		break;
1248 	case FUNCTIONFS_ENDPOINT_DESC:
1249 	{
1250 		int desc_idx;
1251 		struct usb_endpoint_descriptor *desc;
1252 
1253 		switch (epfile->ffs->gadget->speed) {
1254 		case USB_SPEED_SUPER:
1255 			desc_idx = 2;
1256 			break;
1257 		case USB_SPEED_HIGH:
1258 			desc_idx = 1;
1259 			break;
1260 		default:
1261 			desc_idx = 0;
1262 		}
1263 		desc = epfile->ep->descs[desc_idx];
1264 
1265 		spin_unlock_irq(&epfile->ffs->eps_lock);
1266 		ret = copy_to_user((void __user *)value, desc, desc->bLength);
1267 		if (ret)
1268 			ret = -EFAULT;
1269 		return ret;
1270 	}
1271 	default:
1272 		ret = -ENOTTY;
1273 	}
1274 	spin_unlock_irq(&epfile->ffs->eps_lock);
1275 
1276 	return ret;
1277 }
1278 
1279 #ifdef CONFIG_COMPAT
1280 static long ffs_epfile_compat_ioctl(struct file *file, unsigned code,
1281 		unsigned long value)
1282 {
1283 	return ffs_epfile_ioctl(file, code, value);
1284 }
1285 #endif
1286 
1287 static const struct file_operations ffs_epfile_operations = {
1288 	.llseek =	no_llseek,
1289 
1290 	.open =		ffs_epfile_open,
1291 	.write_iter =	ffs_epfile_write_iter,
1292 	.read_iter =	ffs_epfile_read_iter,
1293 	.release =	ffs_epfile_release,
1294 	.unlocked_ioctl =	ffs_epfile_ioctl,
1295 #ifdef CONFIG_COMPAT
1296 	.compat_ioctl = ffs_epfile_compat_ioctl,
1297 #endif
1298 };
1299 
1300 
1301 /* File system and super block operations ***********************************/
1302 
1303 /*
1304  * Mounting the file system creates a controller file, used first for
1305  * function configuration then later for event monitoring.
1306  */
1307 
1308 static struct inode *__must_check
1309 ffs_sb_make_inode(struct super_block *sb, void *data,
1310 		  const struct file_operations *fops,
1311 		  const struct inode_operations *iops,
1312 		  struct ffs_file_perms *perms)
1313 {
1314 	struct inode *inode;
1315 
1316 	ENTER();
1317 
1318 	inode = new_inode(sb);
1319 
1320 	if (likely(inode)) {
1321 		struct timespec64 ts = current_time(inode);
1322 
1323 		inode->i_ino	 = get_next_ino();
1324 		inode->i_mode    = perms->mode;
1325 		inode->i_uid     = perms->uid;
1326 		inode->i_gid     = perms->gid;
1327 		inode->i_atime   = ts;
1328 		inode->i_mtime   = ts;
1329 		inode->i_ctime   = ts;
1330 		inode->i_private = data;
1331 		if (fops)
1332 			inode->i_fop = fops;
1333 		if (iops)
1334 			inode->i_op  = iops;
1335 	}
1336 
1337 	return inode;
1338 }
1339 
1340 /* Create "regular" file */
1341 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1342 					const char *name, void *data,
1343 					const struct file_operations *fops)
1344 {
1345 	struct ffs_data	*ffs = sb->s_fs_info;
1346 	struct dentry	*dentry;
1347 	struct inode	*inode;
1348 
1349 	ENTER();
1350 
1351 	dentry = d_alloc_name(sb->s_root, name);
1352 	if (unlikely(!dentry))
1353 		return NULL;
1354 
1355 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1356 	if (unlikely(!inode)) {
1357 		dput(dentry);
1358 		return NULL;
1359 	}
1360 
1361 	d_add(dentry, inode);
1362 	return dentry;
1363 }
1364 
1365 /* Super block */
1366 static const struct super_operations ffs_sb_operations = {
1367 	.statfs =	simple_statfs,
1368 	.drop_inode =	generic_delete_inode,
1369 };
1370 
1371 struct ffs_sb_fill_data {
1372 	struct ffs_file_perms perms;
1373 	umode_t root_mode;
1374 	const char *dev_name;
1375 	bool no_disconnect;
1376 	struct ffs_data *ffs_data;
1377 };
1378 
1379 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1380 {
1381 	struct ffs_sb_fill_data *data = _data;
1382 	struct inode	*inode;
1383 	struct ffs_data	*ffs = data->ffs_data;
1384 
1385 	ENTER();
1386 
1387 	ffs->sb              = sb;
1388 	data->ffs_data       = NULL;
1389 	sb->s_fs_info        = ffs;
1390 	sb->s_blocksize      = PAGE_SIZE;
1391 	sb->s_blocksize_bits = PAGE_SHIFT;
1392 	sb->s_magic          = FUNCTIONFS_MAGIC;
1393 	sb->s_op             = &ffs_sb_operations;
1394 	sb->s_time_gran      = 1;
1395 
1396 	/* Root inode */
1397 	data->perms.mode = data->root_mode;
1398 	inode = ffs_sb_make_inode(sb, NULL,
1399 				  &simple_dir_operations,
1400 				  &simple_dir_inode_operations,
1401 				  &data->perms);
1402 	sb->s_root = d_make_root(inode);
1403 	if (unlikely(!sb->s_root))
1404 		return -ENOMEM;
1405 
1406 	/* EP0 file */
1407 	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1408 					 &ffs_ep0_operations)))
1409 		return -ENOMEM;
1410 
1411 	return 0;
1412 }
1413 
1414 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1415 {
1416 	ENTER();
1417 
1418 	if (!opts || !*opts)
1419 		return 0;
1420 
1421 	for (;;) {
1422 		unsigned long value;
1423 		char *eq, *comma;
1424 
1425 		/* Option limit */
1426 		comma = strchr(opts, ',');
1427 		if (comma)
1428 			*comma = 0;
1429 
1430 		/* Value limit */
1431 		eq = strchr(opts, '=');
1432 		if (unlikely(!eq)) {
1433 			pr_err("'=' missing in %s\n", opts);
1434 			return -EINVAL;
1435 		}
1436 		*eq = 0;
1437 
1438 		/* Parse value */
1439 		if (kstrtoul(eq + 1, 0, &value)) {
1440 			pr_err("%s: invalid value: %s\n", opts, eq + 1);
1441 			return -EINVAL;
1442 		}
1443 
1444 		/* Interpret option */
1445 		switch (eq - opts) {
1446 		case 13:
1447 			if (!memcmp(opts, "no_disconnect", 13))
1448 				data->no_disconnect = !!value;
1449 			else
1450 				goto invalid;
1451 			break;
1452 		case 5:
1453 			if (!memcmp(opts, "rmode", 5))
1454 				data->root_mode  = (value & 0555) | S_IFDIR;
1455 			else if (!memcmp(opts, "fmode", 5))
1456 				data->perms.mode = (value & 0666) | S_IFREG;
1457 			else
1458 				goto invalid;
1459 			break;
1460 
1461 		case 4:
1462 			if (!memcmp(opts, "mode", 4)) {
1463 				data->root_mode  = (value & 0555) | S_IFDIR;
1464 				data->perms.mode = (value & 0666) | S_IFREG;
1465 			} else {
1466 				goto invalid;
1467 			}
1468 			break;
1469 
1470 		case 3:
1471 			if (!memcmp(opts, "uid", 3)) {
1472 				data->perms.uid = make_kuid(current_user_ns(), value);
1473 				if (!uid_valid(data->perms.uid)) {
1474 					pr_err("%s: unmapped value: %lu\n", opts, value);
1475 					return -EINVAL;
1476 				}
1477 			} else if (!memcmp(opts, "gid", 3)) {
1478 				data->perms.gid = make_kgid(current_user_ns(), value);
1479 				if (!gid_valid(data->perms.gid)) {
1480 					pr_err("%s: unmapped value: %lu\n", opts, value);
1481 					return -EINVAL;
1482 				}
1483 			} else {
1484 				goto invalid;
1485 			}
1486 			break;
1487 
1488 		default:
1489 invalid:
1490 			pr_err("%s: invalid option\n", opts);
1491 			return -EINVAL;
1492 		}
1493 
1494 		/* Next iteration */
1495 		if (!comma)
1496 			break;
1497 		opts = comma + 1;
1498 	}
1499 
1500 	return 0;
1501 }
1502 
1503 /* "mount -t functionfs dev_name /dev/function" ends up here */
1504 
1505 static struct dentry *
1506 ffs_fs_mount(struct file_system_type *t, int flags,
1507 	      const char *dev_name, void *opts)
1508 {
1509 	struct ffs_sb_fill_data data = {
1510 		.perms = {
1511 			.mode = S_IFREG | 0600,
1512 			.uid = GLOBAL_ROOT_UID,
1513 			.gid = GLOBAL_ROOT_GID,
1514 		},
1515 		.root_mode = S_IFDIR | 0500,
1516 		.no_disconnect = false,
1517 	};
1518 	struct dentry *rv;
1519 	int ret;
1520 	void *ffs_dev;
1521 	struct ffs_data	*ffs;
1522 
1523 	ENTER();
1524 
1525 	ret = ffs_fs_parse_opts(&data, opts);
1526 	if (unlikely(ret < 0))
1527 		return ERR_PTR(ret);
1528 
1529 	ffs = ffs_data_new(dev_name);
1530 	if (unlikely(!ffs))
1531 		return ERR_PTR(-ENOMEM);
1532 	ffs->file_perms = data.perms;
1533 	ffs->no_disconnect = data.no_disconnect;
1534 
1535 	ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1536 	if (unlikely(!ffs->dev_name)) {
1537 		ffs_data_put(ffs);
1538 		return ERR_PTR(-ENOMEM);
1539 	}
1540 
1541 	ffs_dev = ffs_acquire_dev(dev_name);
1542 	if (IS_ERR(ffs_dev)) {
1543 		ffs_data_put(ffs);
1544 		return ERR_CAST(ffs_dev);
1545 	}
1546 	ffs->private_data = ffs_dev;
1547 	data.ffs_data = ffs;
1548 
1549 	rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1550 	if (IS_ERR(rv) && data.ffs_data) {
1551 		ffs_release_dev(data.ffs_data);
1552 		ffs_data_put(data.ffs_data);
1553 	}
1554 	return rv;
1555 }
1556 
1557 static void
1558 ffs_fs_kill_sb(struct super_block *sb)
1559 {
1560 	ENTER();
1561 
1562 	kill_litter_super(sb);
1563 	if (sb->s_fs_info) {
1564 		ffs_release_dev(sb->s_fs_info);
1565 		ffs_data_closed(sb->s_fs_info);
1566 	}
1567 }
1568 
1569 static struct file_system_type ffs_fs_type = {
1570 	.owner		= THIS_MODULE,
1571 	.name		= "functionfs",
1572 	.mount		= ffs_fs_mount,
1573 	.kill_sb	= ffs_fs_kill_sb,
1574 };
1575 MODULE_ALIAS_FS("functionfs");
1576 
1577 
1578 /* Driver's main init/cleanup functions *************************************/
1579 
1580 static int functionfs_init(void)
1581 {
1582 	int ret;
1583 
1584 	ENTER();
1585 
1586 	ret = register_filesystem(&ffs_fs_type);
1587 	if (likely(!ret))
1588 		pr_info("file system registered\n");
1589 	else
1590 		pr_err("failed registering file system (%d)\n", ret);
1591 
1592 	return ret;
1593 }
1594 
1595 static void functionfs_cleanup(void)
1596 {
1597 	ENTER();
1598 
1599 	pr_info("unloading\n");
1600 	unregister_filesystem(&ffs_fs_type);
1601 }
1602 
1603 
1604 /* ffs_data and ffs_function construction and destruction code **************/
1605 
1606 static void ffs_data_clear(struct ffs_data *ffs);
1607 static void ffs_data_reset(struct ffs_data *ffs);
1608 
1609 static void ffs_data_get(struct ffs_data *ffs)
1610 {
1611 	ENTER();
1612 
1613 	refcount_inc(&ffs->ref);
1614 }
1615 
1616 static void ffs_data_opened(struct ffs_data *ffs)
1617 {
1618 	ENTER();
1619 
1620 	refcount_inc(&ffs->ref);
1621 	if (atomic_add_return(1, &ffs->opened) == 1 &&
1622 			ffs->state == FFS_DEACTIVATED) {
1623 		ffs->state = FFS_CLOSING;
1624 		ffs_data_reset(ffs);
1625 	}
1626 }
1627 
1628 static void ffs_data_put(struct ffs_data *ffs)
1629 {
1630 	ENTER();
1631 
1632 	if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1633 		pr_info("%s(): freeing\n", __func__);
1634 		ffs_data_clear(ffs);
1635 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1636 		       waitqueue_active(&ffs->ep0req_completion.wait) ||
1637 		       waitqueue_active(&ffs->wait));
1638 		destroy_workqueue(ffs->io_completion_wq);
1639 		kfree(ffs->dev_name);
1640 		kfree(ffs);
1641 	}
1642 }
1643 
1644 static void ffs_data_closed(struct ffs_data *ffs)
1645 {
1646 	ENTER();
1647 
1648 	if (atomic_dec_and_test(&ffs->opened)) {
1649 		if (ffs->no_disconnect) {
1650 			ffs->state = FFS_DEACTIVATED;
1651 			if (ffs->epfiles) {
1652 				ffs_epfiles_destroy(ffs->epfiles,
1653 						   ffs->eps_count);
1654 				ffs->epfiles = NULL;
1655 			}
1656 			if (ffs->setup_state == FFS_SETUP_PENDING)
1657 				__ffs_ep0_stall(ffs);
1658 		} else {
1659 			ffs->state = FFS_CLOSING;
1660 			ffs_data_reset(ffs);
1661 		}
1662 	}
1663 	if (atomic_read(&ffs->opened) < 0) {
1664 		ffs->state = FFS_CLOSING;
1665 		ffs_data_reset(ffs);
1666 	}
1667 
1668 	ffs_data_put(ffs);
1669 }
1670 
1671 static struct ffs_data *ffs_data_new(const char *dev_name)
1672 {
1673 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1674 	if (unlikely(!ffs))
1675 		return NULL;
1676 
1677 	ENTER();
1678 
1679 	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1680 	if (!ffs->io_completion_wq) {
1681 		kfree(ffs);
1682 		return NULL;
1683 	}
1684 
1685 	refcount_set(&ffs->ref, 1);
1686 	atomic_set(&ffs->opened, 0);
1687 	ffs->state = FFS_READ_DESCRIPTORS;
1688 	mutex_init(&ffs->mutex);
1689 	spin_lock_init(&ffs->eps_lock);
1690 	init_waitqueue_head(&ffs->ev.waitq);
1691 	init_waitqueue_head(&ffs->wait);
1692 	init_completion(&ffs->ep0req_completion);
1693 
1694 	/* XXX REVISIT need to update it in some places, or do we? */
1695 	ffs->ev.can_stall = 1;
1696 
1697 	return ffs;
1698 }
1699 
1700 static void ffs_data_clear(struct ffs_data *ffs)
1701 {
1702 	ENTER();
1703 
1704 	ffs_closed(ffs);
1705 
1706 	BUG_ON(ffs->gadget);
1707 
1708 	if (ffs->epfiles)
1709 		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1710 
1711 	if (ffs->ffs_eventfd)
1712 		eventfd_ctx_put(ffs->ffs_eventfd);
1713 
1714 	kfree(ffs->raw_descs_data);
1715 	kfree(ffs->raw_strings);
1716 	kfree(ffs->stringtabs);
1717 }
1718 
1719 static void ffs_data_reset(struct ffs_data *ffs)
1720 {
1721 	ENTER();
1722 
1723 	ffs_data_clear(ffs);
1724 
1725 	ffs->epfiles = NULL;
1726 	ffs->raw_descs_data = NULL;
1727 	ffs->raw_descs = NULL;
1728 	ffs->raw_strings = NULL;
1729 	ffs->stringtabs = NULL;
1730 
1731 	ffs->raw_descs_length = 0;
1732 	ffs->fs_descs_count = 0;
1733 	ffs->hs_descs_count = 0;
1734 	ffs->ss_descs_count = 0;
1735 
1736 	ffs->strings_count = 0;
1737 	ffs->interfaces_count = 0;
1738 	ffs->eps_count = 0;
1739 
1740 	ffs->ev.count = 0;
1741 
1742 	ffs->state = FFS_READ_DESCRIPTORS;
1743 	ffs->setup_state = FFS_NO_SETUP;
1744 	ffs->flags = 0;
1745 }
1746 
1747 
1748 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1749 {
1750 	struct usb_gadget_strings **lang;
1751 	int first_id;
1752 
1753 	ENTER();
1754 
1755 	if (WARN_ON(ffs->state != FFS_ACTIVE
1756 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1757 		return -EBADFD;
1758 
1759 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1760 	if (unlikely(first_id < 0))
1761 		return first_id;
1762 
1763 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1764 	if (unlikely(!ffs->ep0req))
1765 		return -ENOMEM;
1766 	ffs->ep0req->complete = ffs_ep0_complete;
1767 	ffs->ep0req->context = ffs;
1768 
1769 	lang = ffs->stringtabs;
1770 	if (lang) {
1771 		for (; *lang; ++lang) {
1772 			struct usb_string *str = (*lang)->strings;
1773 			int id = first_id;
1774 			for (; str->s; ++id, ++str)
1775 				str->id = id;
1776 		}
1777 	}
1778 
1779 	ffs->gadget = cdev->gadget;
1780 	ffs_data_get(ffs);
1781 	return 0;
1782 }
1783 
1784 static void functionfs_unbind(struct ffs_data *ffs)
1785 {
1786 	ENTER();
1787 
1788 	if (!WARN_ON(!ffs->gadget)) {
1789 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1790 		ffs->ep0req = NULL;
1791 		ffs->gadget = NULL;
1792 		clear_bit(FFS_FL_BOUND, &ffs->flags);
1793 		ffs_data_put(ffs);
1794 	}
1795 }
1796 
1797 static int ffs_epfiles_create(struct ffs_data *ffs)
1798 {
1799 	struct ffs_epfile *epfile, *epfiles;
1800 	unsigned i, count;
1801 
1802 	ENTER();
1803 
1804 	count = ffs->eps_count;
1805 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1806 	if (!epfiles)
1807 		return -ENOMEM;
1808 
1809 	epfile = epfiles;
1810 	for (i = 1; i <= count; ++i, ++epfile) {
1811 		epfile->ffs = ffs;
1812 		mutex_init(&epfile->mutex);
1813 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1814 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1815 		else
1816 			sprintf(epfile->name, "ep%u", i);
1817 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1818 						 epfile,
1819 						 &ffs_epfile_operations);
1820 		if (unlikely(!epfile->dentry)) {
1821 			ffs_epfiles_destroy(epfiles, i - 1);
1822 			return -ENOMEM;
1823 		}
1824 	}
1825 
1826 	ffs->epfiles = epfiles;
1827 	return 0;
1828 }
1829 
1830 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1831 {
1832 	struct ffs_epfile *epfile = epfiles;
1833 
1834 	ENTER();
1835 
1836 	for (; count; --count, ++epfile) {
1837 		BUG_ON(mutex_is_locked(&epfile->mutex));
1838 		if (epfile->dentry) {
1839 			d_delete(epfile->dentry);
1840 			dput(epfile->dentry);
1841 			epfile->dentry = NULL;
1842 		}
1843 	}
1844 
1845 	kfree(epfiles);
1846 }
1847 
1848 static void ffs_func_eps_disable(struct ffs_function *func)
1849 {
1850 	struct ffs_ep *ep         = func->eps;
1851 	struct ffs_epfile *epfile = func->ffs->epfiles;
1852 	unsigned count            = func->ffs->eps_count;
1853 	unsigned long flags;
1854 
1855 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1856 	while (count--) {
1857 		/* pending requests get nuked */
1858 		if (likely(ep->ep))
1859 			usb_ep_disable(ep->ep);
1860 		++ep;
1861 
1862 		if (epfile) {
1863 			epfile->ep = NULL;
1864 			__ffs_epfile_read_buffer_free(epfile);
1865 			++epfile;
1866 		}
1867 	}
1868 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1869 }
1870 
1871 static int ffs_func_eps_enable(struct ffs_function *func)
1872 {
1873 	struct ffs_data *ffs      = func->ffs;
1874 	struct ffs_ep *ep         = func->eps;
1875 	struct ffs_epfile *epfile = ffs->epfiles;
1876 	unsigned count            = ffs->eps_count;
1877 	unsigned long flags;
1878 	int ret = 0;
1879 
1880 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1881 	while(count--) {
1882 		ep->ep->driver_data = ep;
1883 
1884 		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
1885 		if (ret) {
1886 			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
1887 					__func__, ep->ep->name, ret);
1888 			break;
1889 		}
1890 
1891 		ret = usb_ep_enable(ep->ep);
1892 		if (likely(!ret)) {
1893 			epfile->ep = ep;
1894 			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
1895 			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1896 		} else {
1897 			break;
1898 		}
1899 
1900 		++ep;
1901 		++epfile;
1902 	}
1903 
1904 	wake_up_interruptible(&ffs->wait);
1905 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1906 
1907 	return ret;
1908 }
1909 
1910 
1911 /* Parsing and building descriptors and strings *****************************/
1912 
1913 /*
1914  * This validates if data pointed by data is a valid USB descriptor as
1915  * well as record how many interfaces, endpoints and strings are
1916  * required by given configuration.  Returns address after the
1917  * descriptor or NULL if data is invalid.
1918  */
1919 
1920 enum ffs_entity_type {
1921 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1922 };
1923 
1924 enum ffs_os_desc_type {
1925 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1926 };
1927 
1928 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1929 				   u8 *valuep,
1930 				   struct usb_descriptor_header *desc,
1931 				   void *priv);
1932 
1933 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1934 				    struct usb_os_desc_header *h, void *data,
1935 				    unsigned len, void *priv);
1936 
1937 static int __must_check ffs_do_single_desc(char *data, unsigned len,
1938 					   ffs_entity_callback entity,
1939 					   void *priv)
1940 {
1941 	struct usb_descriptor_header *_ds = (void *)data;
1942 	u8 length;
1943 	int ret;
1944 
1945 	ENTER();
1946 
1947 	/* At least two bytes are required: length and type */
1948 	if (len < 2) {
1949 		pr_vdebug("descriptor too short\n");
1950 		return -EINVAL;
1951 	}
1952 
1953 	/* If we have at least as many bytes as the descriptor takes? */
1954 	length = _ds->bLength;
1955 	if (len < length) {
1956 		pr_vdebug("descriptor longer then available data\n");
1957 		return -EINVAL;
1958 	}
1959 
1960 #define __entity_check_INTERFACE(val)  1
1961 #define __entity_check_STRING(val)     (val)
1962 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
1963 #define __entity(type, val) do {					\
1964 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
1965 		if (unlikely(!__entity_check_ ##type(val))) {		\
1966 			pr_vdebug("invalid entity's value\n");		\
1967 			return -EINVAL;					\
1968 		}							\
1969 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
1970 		if (unlikely(ret < 0)) {				\
1971 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
1972 				 (val), ret);				\
1973 			return ret;					\
1974 		}							\
1975 	} while (0)
1976 
1977 	/* Parse descriptor depending on type. */
1978 	switch (_ds->bDescriptorType) {
1979 	case USB_DT_DEVICE:
1980 	case USB_DT_CONFIG:
1981 	case USB_DT_STRING:
1982 	case USB_DT_DEVICE_QUALIFIER:
1983 		/* function can't have any of those */
1984 		pr_vdebug("descriptor reserved for gadget: %d\n",
1985 		      _ds->bDescriptorType);
1986 		return -EINVAL;
1987 
1988 	case USB_DT_INTERFACE: {
1989 		struct usb_interface_descriptor *ds = (void *)_ds;
1990 		pr_vdebug("interface descriptor\n");
1991 		if (length != sizeof *ds)
1992 			goto inv_length;
1993 
1994 		__entity(INTERFACE, ds->bInterfaceNumber);
1995 		if (ds->iInterface)
1996 			__entity(STRING, ds->iInterface);
1997 	}
1998 		break;
1999 
2000 	case USB_DT_ENDPOINT: {
2001 		struct usb_endpoint_descriptor *ds = (void *)_ds;
2002 		pr_vdebug("endpoint descriptor\n");
2003 		if (length != USB_DT_ENDPOINT_SIZE &&
2004 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
2005 			goto inv_length;
2006 		__entity(ENDPOINT, ds->bEndpointAddress);
2007 	}
2008 		break;
2009 
2010 	case HID_DT_HID:
2011 		pr_vdebug("hid descriptor\n");
2012 		if (length != sizeof(struct hid_descriptor))
2013 			goto inv_length;
2014 		break;
2015 
2016 	case USB_DT_OTG:
2017 		if (length != sizeof(struct usb_otg_descriptor))
2018 			goto inv_length;
2019 		break;
2020 
2021 	case USB_DT_INTERFACE_ASSOCIATION: {
2022 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2023 		pr_vdebug("interface association descriptor\n");
2024 		if (length != sizeof *ds)
2025 			goto inv_length;
2026 		if (ds->iFunction)
2027 			__entity(STRING, ds->iFunction);
2028 	}
2029 		break;
2030 
2031 	case USB_DT_SS_ENDPOINT_COMP:
2032 		pr_vdebug("EP SS companion descriptor\n");
2033 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2034 			goto inv_length;
2035 		break;
2036 
2037 	case USB_DT_OTHER_SPEED_CONFIG:
2038 	case USB_DT_INTERFACE_POWER:
2039 	case USB_DT_DEBUG:
2040 	case USB_DT_SECURITY:
2041 	case USB_DT_CS_RADIO_CONTROL:
2042 		/* TODO */
2043 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2044 		return -EINVAL;
2045 
2046 	default:
2047 		/* We should never be here */
2048 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2049 		return -EINVAL;
2050 
2051 inv_length:
2052 		pr_vdebug("invalid length: %d (descriptor %d)\n",
2053 			  _ds->bLength, _ds->bDescriptorType);
2054 		return -EINVAL;
2055 	}
2056 
2057 #undef __entity
2058 #undef __entity_check_DESCRIPTOR
2059 #undef __entity_check_INTERFACE
2060 #undef __entity_check_STRING
2061 #undef __entity_check_ENDPOINT
2062 
2063 	return length;
2064 }
2065 
2066 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2067 				     ffs_entity_callback entity, void *priv)
2068 {
2069 	const unsigned _len = len;
2070 	unsigned long num = 0;
2071 
2072 	ENTER();
2073 
2074 	for (;;) {
2075 		int ret;
2076 
2077 		if (num == count)
2078 			data = NULL;
2079 
2080 		/* Record "descriptor" entity */
2081 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2082 		if (unlikely(ret < 0)) {
2083 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2084 				 num, ret);
2085 			return ret;
2086 		}
2087 
2088 		if (!data)
2089 			return _len - len;
2090 
2091 		ret = ffs_do_single_desc(data, len, entity, priv);
2092 		if (unlikely(ret < 0)) {
2093 			pr_debug("%s returns %d\n", __func__, ret);
2094 			return ret;
2095 		}
2096 
2097 		len -= ret;
2098 		data += ret;
2099 		++num;
2100 	}
2101 }
2102 
2103 static int __ffs_data_do_entity(enum ffs_entity_type type,
2104 				u8 *valuep, struct usb_descriptor_header *desc,
2105 				void *priv)
2106 {
2107 	struct ffs_desc_helper *helper = priv;
2108 	struct usb_endpoint_descriptor *d;
2109 
2110 	ENTER();
2111 
2112 	switch (type) {
2113 	case FFS_DESCRIPTOR:
2114 		break;
2115 
2116 	case FFS_INTERFACE:
2117 		/*
2118 		 * Interfaces are indexed from zero so if we
2119 		 * encountered interface "n" then there are at least
2120 		 * "n+1" interfaces.
2121 		 */
2122 		if (*valuep >= helper->interfaces_count)
2123 			helper->interfaces_count = *valuep + 1;
2124 		break;
2125 
2126 	case FFS_STRING:
2127 		/*
2128 		 * Strings are indexed from 1 (0 is reserved
2129 		 * for languages list)
2130 		 */
2131 		if (*valuep > helper->ffs->strings_count)
2132 			helper->ffs->strings_count = *valuep;
2133 		break;
2134 
2135 	case FFS_ENDPOINT:
2136 		d = (void *)desc;
2137 		helper->eps_count++;
2138 		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2139 			return -EINVAL;
2140 		/* Check if descriptors for any speed were already parsed */
2141 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2142 			helper->ffs->eps_addrmap[helper->eps_count] =
2143 				d->bEndpointAddress;
2144 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2145 				d->bEndpointAddress)
2146 			return -EINVAL;
2147 		break;
2148 	}
2149 
2150 	return 0;
2151 }
2152 
2153 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2154 				   struct usb_os_desc_header *desc)
2155 {
2156 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2157 	u16 w_index = le16_to_cpu(desc->wIndex);
2158 
2159 	if (bcd_version != 1) {
2160 		pr_vdebug("unsupported os descriptors version: %d",
2161 			  bcd_version);
2162 		return -EINVAL;
2163 	}
2164 	switch (w_index) {
2165 	case 0x4:
2166 		*next_type = FFS_OS_DESC_EXT_COMPAT;
2167 		break;
2168 	case 0x5:
2169 		*next_type = FFS_OS_DESC_EXT_PROP;
2170 		break;
2171 	default:
2172 		pr_vdebug("unsupported os descriptor type: %d", w_index);
2173 		return -EINVAL;
2174 	}
2175 
2176 	return sizeof(*desc);
2177 }
2178 
2179 /*
2180  * Process all extended compatibility/extended property descriptors
2181  * of a feature descriptor
2182  */
2183 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2184 					      enum ffs_os_desc_type type,
2185 					      u16 feature_count,
2186 					      ffs_os_desc_callback entity,
2187 					      void *priv,
2188 					      struct usb_os_desc_header *h)
2189 {
2190 	int ret;
2191 	const unsigned _len = len;
2192 
2193 	ENTER();
2194 
2195 	/* loop over all ext compat/ext prop descriptors */
2196 	while (feature_count--) {
2197 		ret = entity(type, h, data, len, priv);
2198 		if (unlikely(ret < 0)) {
2199 			pr_debug("bad OS descriptor, type: %d\n", type);
2200 			return ret;
2201 		}
2202 		data += ret;
2203 		len -= ret;
2204 	}
2205 	return _len - len;
2206 }
2207 
2208 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2209 static int __must_check ffs_do_os_descs(unsigned count,
2210 					char *data, unsigned len,
2211 					ffs_os_desc_callback entity, void *priv)
2212 {
2213 	const unsigned _len = len;
2214 	unsigned long num = 0;
2215 
2216 	ENTER();
2217 
2218 	for (num = 0; num < count; ++num) {
2219 		int ret;
2220 		enum ffs_os_desc_type type;
2221 		u16 feature_count;
2222 		struct usb_os_desc_header *desc = (void *)data;
2223 
2224 		if (len < sizeof(*desc))
2225 			return -EINVAL;
2226 
2227 		/*
2228 		 * Record "descriptor" entity.
2229 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2230 		 * Move the data pointer to the beginning of extended
2231 		 * compatibilities proper or extended properties proper
2232 		 * portions of the data
2233 		 */
2234 		if (le32_to_cpu(desc->dwLength) > len)
2235 			return -EINVAL;
2236 
2237 		ret = __ffs_do_os_desc_header(&type, desc);
2238 		if (unlikely(ret < 0)) {
2239 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2240 				 num, ret);
2241 			return ret;
2242 		}
2243 		/*
2244 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2245 		 */
2246 		feature_count = le16_to_cpu(desc->wCount);
2247 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2248 		    (feature_count > 255 || desc->Reserved))
2249 				return -EINVAL;
2250 		len -= ret;
2251 		data += ret;
2252 
2253 		/*
2254 		 * Process all function/property descriptors
2255 		 * of this Feature Descriptor
2256 		 */
2257 		ret = ffs_do_single_os_desc(data, len, type,
2258 					    feature_count, entity, priv, desc);
2259 		if (unlikely(ret < 0)) {
2260 			pr_debug("%s returns %d\n", __func__, ret);
2261 			return ret;
2262 		}
2263 
2264 		len -= ret;
2265 		data += ret;
2266 	}
2267 	return _len - len;
2268 }
2269 
2270 /**
2271  * Validate contents of the buffer from userspace related to OS descriptors.
2272  */
2273 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2274 				 struct usb_os_desc_header *h, void *data,
2275 				 unsigned len, void *priv)
2276 {
2277 	struct ffs_data *ffs = priv;
2278 	u8 length;
2279 
2280 	ENTER();
2281 
2282 	switch (type) {
2283 	case FFS_OS_DESC_EXT_COMPAT: {
2284 		struct usb_ext_compat_desc *d = data;
2285 		int i;
2286 
2287 		if (len < sizeof(*d) ||
2288 		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2289 			return -EINVAL;
2290 		if (d->Reserved1 != 1) {
2291 			/*
2292 			 * According to the spec, Reserved1 must be set to 1
2293 			 * but older kernels incorrectly rejected non-zero
2294 			 * values.  We fix it here to avoid returning EINVAL
2295 			 * in response to values we used to accept.
2296 			 */
2297 			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2298 			d->Reserved1 = 1;
2299 		}
2300 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2301 			if (d->Reserved2[i])
2302 				return -EINVAL;
2303 
2304 		length = sizeof(struct usb_ext_compat_desc);
2305 	}
2306 		break;
2307 	case FFS_OS_DESC_EXT_PROP: {
2308 		struct usb_ext_prop_desc *d = data;
2309 		u32 type, pdl;
2310 		u16 pnl;
2311 
2312 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2313 			return -EINVAL;
2314 		length = le32_to_cpu(d->dwSize);
2315 		if (len < length)
2316 			return -EINVAL;
2317 		type = le32_to_cpu(d->dwPropertyDataType);
2318 		if (type < USB_EXT_PROP_UNICODE ||
2319 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2320 			pr_vdebug("unsupported os descriptor property type: %d",
2321 				  type);
2322 			return -EINVAL;
2323 		}
2324 		pnl = le16_to_cpu(d->wPropertyNameLength);
2325 		if (length < 14 + pnl) {
2326 			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2327 				  length, pnl, type);
2328 			return -EINVAL;
2329 		}
2330 		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2331 		if (length != 14 + pnl + pdl) {
2332 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2333 				  length, pnl, pdl, type);
2334 			return -EINVAL;
2335 		}
2336 		++ffs->ms_os_descs_ext_prop_count;
2337 		/* property name reported to the host as "WCHAR"s */
2338 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2339 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2340 	}
2341 		break;
2342 	default:
2343 		pr_vdebug("unknown descriptor: %d\n", type);
2344 		return -EINVAL;
2345 	}
2346 	return length;
2347 }
2348 
2349 static int __ffs_data_got_descs(struct ffs_data *ffs,
2350 				char *const _data, size_t len)
2351 {
2352 	char *data = _data, *raw_descs;
2353 	unsigned os_descs_count = 0, counts[3], flags;
2354 	int ret = -EINVAL, i;
2355 	struct ffs_desc_helper helper;
2356 
2357 	ENTER();
2358 
2359 	if (get_unaligned_le32(data + 4) != len)
2360 		goto error;
2361 
2362 	switch (get_unaligned_le32(data)) {
2363 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2364 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2365 		data += 8;
2366 		len  -= 8;
2367 		break;
2368 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2369 		flags = get_unaligned_le32(data + 8);
2370 		ffs->user_flags = flags;
2371 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2372 			      FUNCTIONFS_HAS_HS_DESC |
2373 			      FUNCTIONFS_HAS_SS_DESC |
2374 			      FUNCTIONFS_HAS_MS_OS_DESC |
2375 			      FUNCTIONFS_VIRTUAL_ADDR |
2376 			      FUNCTIONFS_EVENTFD |
2377 			      FUNCTIONFS_ALL_CTRL_RECIP |
2378 			      FUNCTIONFS_CONFIG0_SETUP)) {
2379 			ret = -ENOSYS;
2380 			goto error;
2381 		}
2382 		data += 12;
2383 		len  -= 12;
2384 		break;
2385 	default:
2386 		goto error;
2387 	}
2388 
2389 	if (flags & FUNCTIONFS_EVENTFD) {
2390 		if (len < 4)
2391 			goto error;
2392 		ffs->ffs_eventfd =
2393 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2394 		if (IS_ERR(ffs->ffs_eventfd)) {
2395 			ret = PTR_ERR(ffs->ffs_eventfd);
2396 			ffs->ffs_eventfd = NULL;
2397 			goto error;
2398 		}
2399 		data += 4;
2400 		len  -= 4;
2401 	}
2402 
2403 	/* Read fs_count, hs_count and ss_count (if present) */
2404 	for (i = 0; i < 3; ++i) {
2405 		if (!(flags & (1 << i))) {
2406 			counts[i] = 0;
2407 		} else if (len < 4) {
2408 			goto error;
2409 		} else {
2410 			counts[i] = get_unaligned_le32(data);
2411 			data += 4;
2412 			len  -= 4;
2413 		}
2414 	}
2415 	if (flags & (1 << i)) {
2416 		if (len < 4) {
2417 			goto error;
2418 		}
2419 		os_descs_count = get_unaligned_le32(data);
2420 		data += 4;
2421 		len -= 4;
2422 	};
2423 
2424 	/* Read descriptors */
2425 	raw_descs = data;
2426 	helper.ffs = ffs;
2427 	for (i = 0; i < 3; ++i) {
2428 		if (!counts[i])
2429 			continue;
2430 		helper.interfaces_count = 0;
2431 		helper.eps_count = 0;
2432 		ret = ffs_do_descs(counts[i], data, len,
2433 				   __ffs_data_do_entity, &helper);
2434 		if (ret < 0)
2435 			goto error;
2436 		if (!ffs->eps_count && !ffs->interfaces_count) {
2437 			ffs->eps_count = helper.eps_count;
2438 			ffs->interfaces_count = helper.interfaces_count;
2439 		} else {
2440 			if (ffs->eps_count != helper.eps_count) {
2441 				ret = -EINVAL;
2442 				goto error;
2443 			}
2444 			if (ffs->interfaces_count != helper.interfaces_count) {
2445 				ret = -EINVAL;
2446 				goto error;
2447 			}
2448 		}
2449 		data += ret;
2450 		len  -= ret;
2451 	}
2452 	if (os_descs_count) {
2453 		ret = ffs_do_os_descs(os_descs_count, data, len,
2454 				      __ffs_data_do_os_desc, ffs);
2455 		if (ret < 0)
2456 			goto error;
2457 		data += ret;
2458 		len -= ret;
2459 	}
2460 
2461 	if (raw_descs == data || len) {
2462 		ret = -EINVAL;
2463 		goto error;
2464 	}
2465 
2466 	ffs->raw_descs_data	= _data;
2467 	ffs->raw_descs		= raw_descs;
2468 	ffs->raw_descs_length	= data - raw_descs;
2469 	ffs->fs_descs_count	= counts[0];
2470 	ffs->hs_descs_count	= counts[1];
2471 	ffs->ss_descs_count	= counts[2];
2472 	ffs->ms_os_descs_count	= os_descs_count;
2473 
2474 	return 0;
2475 
2476 error:
2477 	kfree(_data);
2478 	return ret;
2479 }
2480 
2481 static int __ffs_data_got_strings(struct ffs_data *ffs,
2482 				  char *const _data, size_t len)
2483 {
2484 	u32 str_count, needed_count, lang_count;
2485 	struct usb_gadget_strings **stringtabs, *t;
2486 	const char *data = _data;
2487 	struct usb_string *s;
2488 
2489 	ENTER();
2490 
2491 	if (unlikely(len < 16 ||
2492 		     get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2493 		     get_unaligned_le32(data + 4) != len))
2494 		goto error;
2495 	str_count  = get_unaligned_le32(data + 8);
2496 	lang_count = get_unaligned_le32(data + 12);
2497 
2498 	/* if one is zero the other must be zero */
2499 	if (unlikely(!str_count != !lang_count))
2500 		goto error;
2501 
2502 	/* Do we have at least as many strings as descriptors need? */
2503 	needed_count = ffs->strings_count;
2504 	if (unlikely(str_count < needed_count))
2505 		goto error;
2506 
2507 	/*
2508 	 * If we don't need any strings just return and free all
2509 	 * memory.
2510 	 */
2511 	if (!needed_count) {
2512 		kfree(_data);
2513 		return 0;
2514 	}
2515 
2516 	/* Allocate everything in one chunk so there's less maintenance. */
2517 	{
2518 		unsigned i = 0;
2519 		vla_group(d);
2520 		vla_item(d, struct usb_gadget_strings *, stringtabs,
2521 			lang_count + 1);
2522 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2523 		vla_item(d, struct usb_string, strings,
2524 			lang_count*(needed_count+1));
2525 
2526 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2527 
2528 		if (unlikely(!vlabuf)) {
2529 			kfree(_data);
2530 			return -ENOMEM;
2531 		}
2532 
2533 		/* Initialize the VLA pointers */
2534 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2535 		t = vla_ptr(vlabuf, d, stringtab);
2536 		i = lang_count;
2537 		do {
2538 			*stringtabs++ = t++;
2539 		} while (--i);
2540 		*stringtabs = NULL;
2541 
2542 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2543 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2544 		t = vla_ptr(vlabuf, d, stringtab);
2545 		s = vla_ptr(vlabuf, d, strings);
2546 	}
2547 
2548 	/* For each language */
2549 	data += 16;
2550 	len -= 16;
2551 
2552 	do { /* lang_count > 0 so we can use do-while */
2553 		unsigned needed = needed_count;
2554 
2555 		if (unlikely(len < 3))
2556 			goto error_free;
2557 		t->language = get_unaligned_le16(data);
2558 		t->strings  = s;
2559 		++t;
2560 
2561 		data += 2;
2562 		len -= 2;
2563 
2564 		/* For each string */
2565 		do { /* str_count > 0 so we can use do-while */
2566 			size_t length = strnlen(data, len);
2567 
2568 			if (unlikely(length == len))
2569 				goto error_free;
2570 
2571 			/*
2572 			 * User may provide more strings then we need,
2573 			 * if that's the case we simply ignore the
2574 			 * rest
2575 			 */
2576 			if (likely(needed)) {
2577 				/*
2578 				 * s->id will be set while adding
2579 				 * function to configuration so for
2580 				 * now just leave garbage here.
2581 				 */
2582 				s->s = data;
2583 				--needed;
2584 				++s;
2585 			}
2586 
2587 			data += length + 1;
2588 			len -= length + 1;
2589 		} while (--str_count);
2590 
2591 		s->id = 0;   /* terminator */
2592 		s->s = NULL;
2593 		++s;
2594 
2595 	} while (--lang_count);
2596 
2597 	/* Some garbage left? */
2598 	if (unlikely(len))
2599 		goto error_free;
2600 
2601 	/* Done! */
2602 	ffs->stringtabs = stringtabs;
2603 	ffs->raw_strings = _data;
2604 
2605 	return 0;
2606 
2607 error_free:
2608 	kfree(stringtabs);
2609 error:
2610 	kfree(_data);
2611 	return -EINVAL;
2612 }
2613 
2614 
2615 /* Events handling and management *******************************************/
2616 
2617 static void __ffs_event_add(struct ffs_data *ffs,
2618 			    enum usb_functionfs_event_type type)
2619 {
2620 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2621 	int neg = 0;
2622 
2623 	/*
2624 	 * Abort any unhandled setup
2625 	 *
2626 	 * We do not need to worry about some cmpxchg() changing value
2627 	 * of ffs->setup_state without holding the lock because when
2628 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2629 	 * the source does nothing.
2630 	 */
2631 	if (ffs->setup_state == FFS_SETUP_PENDING)
2632 		ffs->setup_state = FFS_SETUP_CANCELLED;
2633 
2634 	/*
2635 	 * Logic of this function guarantees that there are at most four pending
2636 	 * evens on ffs->ev.types queue.  This is important because the queue
2637 	 * has space for four elements only and __ffs_ep0_read_events function
2638 	 * depends on that limit as well.  If more event types are added, those
2639 	 * limits have to be revisited or guaranteed to still hold.
2640 	 */
2641 	switch (type) {
2642 	case FUNCTIONFS_RESUME:
2643 		rem_type2 = FUNCTIONFS_SUSPEND;
2644 		/* FALL THROUGH */
2645 	case FUNCTIONFS_SUSPEND:
2646 	case FUNCTIONFS_SETUP:
2647 		rem_type1 = type;
2648 		/* Discard all similar events */
2649 		break;
2650 
2651 	case FUNCTIONFS_BIND:
2652 	case FUNCTIONFS_UNBIND:
2653 	case FUNCTIONFS_DISABLE:
2654 	case FUNCTIONFS_ENABLE:
2655 		/* Discard everything other then power management. */
2656 		rem_type1 = FUNCTIONFS_SUSPEND;
2657 		rem_type2 = FUNCTIONFS_RESUME;
2658 		neg = 1;
2659 		break;
2660 
2661 	default:
2662 		WARN(1, "%d: unknown event, this should not happen\n", type);
2663 		return;
2664 	}
2665 
2666 	{
2667 		u8 *ev  = ffs->ev.types, *out = ev;
2668 		unsigned n = ffs->ev.count;
2669 		for (; n; --n, ++ev)
2670 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2671 				*out++ = *ev;
2672 			else
2673 				pr_vdebug("purging event %d\n", *ev);
2674 		ffs->ev.count = out - ffs->ev.types;
2675 	}
2676 
2677 	pr_vdebug("adding event %d\n", type);
2678 	ffs->ev.types[ffs->ev.count++] = type;
2679 	wake_up_locked(&ffs->ev.waitq);
2680 	if (ffs->ffs_eventfd)
2681 		eventfd_signal(ffs->ffs_eventfd, 1);
2682 }
2683 
2684 static void ffs_event_add(struct ffs_data *ffs,
2685 			  enum usb_functionfs_event_type type)
2686 {
2687 	unsigned long flags;
2688 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2689 	__ffs_event_add(ffs, type);
2690 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2691 }
2692 
2693 /* Bind/unbind USB function hooks *******************************************/
2694 
2695 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2696 {
2697 	int i;
2698 
2699 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2700 		if (ffs->eps_addrmap[i] == endpoint_address)
2701 			return i;
2702 	return -ENOENT;
2703 }
2704 
2705 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2706 				    struct usb_descriptor_header *desc,
2707 				    void *priv)
2708 {
2709 	struct usb_endpoint_descriptor *ds = (void *)desc;
2710 	struct ffs_function *func = priv;
2711 	struct ffs_ep *ffs_ep;
2712 	unsigned ep_desc_id;
2713 	int idx;
2714 	static const char *speed_names[] = { "full", "high", "super" };
2715 
2716 	if (type != FFS_DESCRIPTOR)
2717 		return 0;
2718 
2719 	/*
2720 	 * If ss_descriptors is not NULL, we are reading super speed
2721 	 * descriptors; if hs_descriptors is not NULL, we are reading high
2722 	 * speed descriptors; otherwise, we are reading full speed
2723 	 * descriptors.
2724 	 */
2725 	if (func->function.ss_descriptors) {
2726 		ep_desc_id = 2;
2727 		func->function.ss_descriptors[(long)valuep] = desc;
2728 	} else if (func->function.hs_descriptors) {
2729 		ep_desc_id = 1;
2730 		func->function.hs_descriptors[(long)valuep] = desc;
2731 	} else {
2732 		ep_desc_id = 0;
2733 		func->function.fs_descriptors[(long)valuep]    = desc;
2734 	}
2735 
2736 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2737 		return 0;
2738 
2739 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2740 	if (idx < 0)
2741 		return idx;
2742 
2743 	ffs_ep = func->eps + idx;
2744 
2745 	if (unlikely(ffs_ep->descs[ep_desc_id])) {
2746 		pr_err("two %sspeed descriptors for EP %d\n",
2747 			  speed_names[ep_desc_id],
2748 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2749 		return -EINVAL;
2750 	}
2751 	ffs_ep->descs[ep_desc_id] = ds;
2752 
2753 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2754 	if (ffs_ep->ep) {
2755 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2756 		if (!ds->wMaxPacketSize)
2757 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2758 	} else {
2759 		struct usb_request *req;
2760 		struct usb_ep *ep;
2761 		u8 bEndpointAddress;
2762 
2763 		/*
2764 		 * We back up bEndpointAddress because autoconfig overwrites
2765 		 * it with physical endpoint address.
2766 		 */
2767 		bEndpointAddress = ds->bEndpointAddress;
2768 		pr_vdebug("autoconfig\n");
2769 		ep = usb_ep_autoconfig(func->gadget, ds);
2770 		if (unlikely(!ep))
2771 			return -ENOTSUPP;
2772 		ep->driver_data = func->eps + idx;
2773 
2774 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2775 		if (unlikely(!req))
2776 			return -ENOMEM;
2777 
2778 		ffs_ep->ep  = ep;
2779 		ffs_ep->req = req;
2780 		func->eps_revmap[ds->bEndpointAddress &
2781 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2782 		/*
2783 		 * If we use virtual address mapping, we restore
2784 		 * original bEndpointAddress value.
2785 		 */
2786 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2787 			ds->bEndpointAddress = bEndpointAddress;
2788 	}
2789 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2790 
2791 	return 0;
2792 }
2793 
2794 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2795 				   struct usb_descriptor_header *desc,
2796 				   void *priv)
2797 {
2798 	struct ffs_function *func = priv;
2799 	unsigned idx;
2800 	u8 newValue;
2801 
2802 	switch (type) {
2803 	default:
2804 	case FFS_DESCRIPTOR:
2805 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2806 		return 0;
2807 
2808 	case FFS_INTERFACE:
2809 		idx = *valuep;
2810 		if (func->interfaces_nums[idx] < 0) {
2811 			int id = usb_interface_id(func->conf, &func->function);
2812 			if (unlikely(id < 0))
2813 				return id;
2814 			func->interfaces_nums[idx] = id;
2815 		}
2816 		newValue = func->interfaces_nums[idx];
2817 		break;
2818 
2819 	case FFS_STRING:
2820 		/* String' IDs are allocated when fsf_data is bound to cdev */
2821 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2822 		break;
2823 
2824 	case FFS_ENDPOINT:
2825 		/*
2826 		 * USB_DT_ENDPOINT are handled in
2827 		 * __ffs_func_bind_do_descs().
2828 		 */
2829 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2830 			return 0;
2831 
2832 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2833 		if (unlikely(!func->eps[idx].ep))
2834 			return -EINVAL;
2835 
2836 		{
2837 			struct usb_endpoint_descriptor **descs;
2838 			descs = func->eps[idx].descs;
2839 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2840 		}
2841 		break;
2842 	}
2843 
2844 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2845 	*valuep = newValue;
2846 	return 0;
2847 }
2848 
2849 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2850 				      struct usb_os_desc_header *h, void *data,
2851 				      unsigned len, void *priv)
2852 {
2853 	struct ffs_function *func = priv;
2854 	u8 length = 0;
2855 
2856 	switch (type) {
2857 	case FFS_OS_DESC_EXT_COMPAT: {
2858 		struct usb_ext_compat_desc *desc = data;
2859 		struct usb_os_desc_table *t;
2860 
2861 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2862 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2863 		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2864 		       ARRAY_SIZE(desc->CompatibleID) +
2865 		       ARRAY_SIZE(desc->SubCompatibleID));
2866 		length = sizeof(*desc);
2867 	}
2868 		break;
2869 	case FFS_OS_DESC_EXT_PROP: {
2870 		struct usb_ext_prop_desc *desc = data;
2871 		struct usb_os_desc_table *t;
2872 		struct usb_os_desc_ext_prop *ext_prop;
2873 		char *ext_prop_name;
2874 		char *ext_prop_data;
2875 
2876 		t = &func->function.os_desc_table[h->interface];
2877 		t->if_id = func->interfaces_nums[h->interface];
2878 
2879 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2880 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2881 
2882 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2883 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2884 		ext_prop->data_len = le32_to_cpu(*(__le32 *)
2885 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2886 		length = ext_prop->name_len + ext_prop->data_len + 14;
2887 
2888 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2889 		func->ffs->ms_os_descs_ext_prop_name_avail +=
2890 			ext_prop->name_len;
2891 
2892 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2893 		func->ffs->ms_os_descs_ext_prop_data_avail +=
2894 			ext_prop->data_len;
2895 		memcpy(ext_prop_data,
2896 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2897 		       ext_prop->data_len);
2898 		/* unicode data reported to the host as "WCHAR"s */
2899 		switch (ext_prop->type) {
2900 		case USB_EXT_PROP_UNICODE:
2901 		case USB_EXT_PROP_UNICODE_ENV:
2902 		case USB_EXT_PROP_UNICODE_LINK:
2903 		case USB_EXT_PROP_UNICODE_MULTI:
2904 			ext_prop->data_len *= 2;
2905 			break;
2906 		}
2907 		ext_prop->data = ext_prop_data;
2908 
2909 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2910 		       ext_prop->name_len);
2911 		/* property name reported to the host as "WCHAR"s */
2912 		ext_prop->name_len *= 2;
2913 		ext_prop->name = ext_prop_name;
2914 
2915 		t->os_desc->ext_prop_len +=
2916 			ext_prop->name_len + ext_prop->data_len + 14;
2917 		++t->os_desc->ext_prop_count;
2918 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2919 	}
2920 		break;
2921 	default:
2922 		pr_vdebug("unknown descriptor: %d\n", type);
2923 	}
2924 
2925 	return length;
2926 }
2927 
2928 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2929 						struct usb_configuration *c)
2930 {
2931 	struct ffs_function *func = ffs_func_from_usb(f);
2932 	struct f_fs_opts *ffs_opts =
2933 		container_of(f->fi, struct f_fs_opts, func_inst);
2934 	int ret;
2935 
2936 	ENTER();
2937 
2938 	/*
2939 	 * Legacy gadget triggers binding in functionfs_ready_callback,
2940 	 * which already uses locking; taking the same lock here would
2941 	 * cause a deadlock.
2942 	 *
2943 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
2944 	 */
2945 	if (!ffs_opts->no_configfs)
2946 		ffs_dev_lock();
2947 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2948 	func->ffs = ffs_opts->dev->ffs_data;
2949 	if (!ffs_opts->no_configfs)
2950 		ffs_dev_unlock();
2951 	if (ret)
2952 		return ERR_PTR(ret);
2953 
2954 	func->conf = c;
2955 	func->gadget = c->cdev->gadget;
2956 
2957 	/*
2958 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2959 	 * configurations are bound in sequence with list_for_each_entry,
2960 	 * in each configuration its functions are bound in sequence
2961 	 * with list_for_each_entry, so we assume no race condition
2962 	 * with regard to ffs_opts->bound access
2963 	 */
2964 	if (!ffs_opts->refcnt) {
2965 		ret = functionfs_bind(func->ffs, c->cdev);
2966 		if (ret)
2967 			return ERR_PTR(ret);
2968 	}
2969 	ffs_opts->refcnt++;
2970 	func->function.strings = func->ffs->stringtabs;
2971 
2972 	return ffs_opts;
2973 }
2974 
2975 static int _ffs_func_bind(struct usb_configuration *c,
2976 			  struct usb_function *f)
2977 {
2978 	struct ffs_function *func = ffs_func_from_usb(f);
2979 	struct ffs_data *ffs = func->ffs;
2980 
2981 	const int full = !!func->ffs->fs_descs_count;
2982 	const int high = !!func->ffs->hs_descs_count;
2983 	const int super = !!func->ffs->ss_descs_count;
2984 
2985 	int fs_len, hs_len, ss_len, ret, i;
2986 	struct ffs_ep *eps_ptr;
2987 
2988 	/* Make it a single chunk, less management later on */
2989 	vla_group(d);
2990 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2991 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2992 		full ? ffs->fs_descs_count + 1 : 0);
2993 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2994 		high ? ffs->hs_descs_count + 1 : 0);
2995 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2996 		super ? ffs->ss_descs_count + 1 : 0);
2997 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2998 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2999 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3000 	vla_item_with_sz(d, char[16], ext_compat,
3001 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3002 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
3003 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3004 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3005 			 ffs->ms_os_descs_ext_prop_count);
3006 	vla_item_with_sz(d, char, ext_prop_name,
3007 			 ffs->ms_os_descs_ext_prop_name_len);
3008 	vla_item_with_sz(d, char, ext_prop_data,
3009 			 ffs->ms_os_descs_ext_prop_data_len);
3010 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3011 	char *vlabuf;
3012 
3013 	ENTER();
3014 
3015 	/* Has descriptors only for speeds gadget does not support */
3016 	if (unlikely(!(full | high | super)))
3017 		return -ENOTSUPP;
3018 
3019 	/* Allocate a single chunk, less management later on */
3020 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3021 	if (unlikely(!vlabuf))
3022 		return -ENOMEM;
3023 
3024 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3025 	ffs->ms_os_descs_ext_prop_name_avail =
3026 		vla_ptr(vlabuf, d, ext_prop_name);
3027 	ffs->ms_os_descs_ext_prop_data_avail =
3028 		vla_ptr(vlabuf, d, ext_prop_data);
3029 
3030 	/* Copy descriptors  */
3031 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3032 	       ffs->raw_descs_length);
3033 
3034 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3035 	eps_ptr = vla_ptr(vlabuf, d, eps);
3036 	for (i = 0; i < ffs->eps_count; i++)
3037 		eps_ptr[i].num = -1;
3038 
3039 	/* Save pointers
3040 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3041 	*/
3042 	func->eps             = vla_ptr(vlabuf, d, eps);
3043 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3044 
3045 	/*
3046 	 * Go through all the endpoint descriptors and allocate
3047 	 * endpoints first, so that later we can rewrite the endpoint
3048 	 * numbers without worrying that it may be described later on.
3049 	 */
3050 	if (likely(full)) {
3051 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3052 		fs_len = ffs_do_descs(ffs->fs_descs_count,
3053 				      vla_ptr(vlabuf, d, raw_descs),
3054 				      d_raw_descs__sz,
3055 				      __ffs_func_bind_do_descs, func);
3056 		if (unlikely(fs_len < 0)) {
3057 			ret = fs_len;
3058 			goto error;
3059 		}
3060 	} else {
3061 		fs_len = 0;
3062 	}
3063 
3064 	if (likely(high)) {
3065 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3066 		hs_len = ffs_do_descs(ffs->hs_descs_count,
3067 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3068 				      d_raw_descs__sz - fs_len,
3069 				      __ffs_func_bind_do_descs, func);
3070 		if (unlikely(hs_len < 0)) {
3071 			ret = hs_len;
3072 			goto error;
3073 		}
3074 	} else {
3075 		hs_len = 0;
3076 	}
3077 
3078 	if (likely(super)) {
3079 		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3080 		ss_len = ffs_do_descs(ffs->ss_descs_count,
3081 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3082 				d_raw_descs__sz - fs_len - hs_len,
3083 				__ffs_func_bind_do_descs, func);
3084 		if (unlikely(ss_len < 0)) {
3085 			ret = ss_len;
3086 			goto error;
3087 		}
3088 	} else {
3089 		ss_len = 0;
3090 	}
3091 
3092 	/*
3093 	 * Now handle interface numbers allocation and interface and
3094 	 * endpoint numbers rewriting.  We can do that in one go
3095 	 * now.
3096 	 */
3097 	ret = ffs_do_descs(ffs->fs_descs_count +
3098 			   (high ? ffs->hs_descs_count : 0) +
3099 			   (super ? ffs->ss_descs_count : 0),
3100 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3101 			   __ffs_func_bind_do_nums, func);
3102 	if (unlikely(ret < 0))
3103 		goto error;
3104 
3105 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3106 	if (c->cdev->use_os_string) {
3107 		for (i = 0; i < ffs->interfaces_count; ++i) {
3108 			struct usb_os_desc *desc;
3109 
3110 			desc = func->function.os_desc_table[i].os_desc =
3111 				vla_ptr(vlabuf, d, os_desc) +
3112 				i * sizeof(struct usb_os_desc);
3113 			desc->ext_compat_id =
3114 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3115 			INIT_LIST_HEAD(&desc->ext_prop);
3116 		}
3117 		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3118 				      vla_ptr(vlabuf, d, raw_descs) +
3119 				      fs_len + hs_len + ss_len,
3120 				      d_raw_descs__sz - fs_len - hs_len -
3121 				      ss_len,
3122 				      __ffs_func_bind_do_os_desc, func);
3123 		if (unlikely(ret < 0))
3124 			goto error;
3125 	}
3126 	func->function.os_desc_n =
3127 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3128 
3129 	/* And we're done */
3130 	ffs_event_add(ffs, FUNCTIONFS_BIND);
3131 	return 0;
3132 
3133 error:
3134 	/* XXX Do we need to release all claimed endpoints here? */
3135 	return ret;
3136 }
3137 
3138 static int ffs_func_bind(struct usb_configuration *c,
3139 			 struct usb_function *f)
3140 {
3141 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3142 	struct ffs_function *func = ffs_func_from_usb(f);
3143 	int ret;
3144 
3145 	if (IS_ERR(ffs_opts))
3146 		return PTR_ERR(ffs_opts);
3147 
3148 	ret = _ffs_func_bind(c, f);
3149 	if (ret && !--ffs_opts->refcnt)
3150 		functionfs_unbind(func->ffs);
3151 
3152 	return ret;
3153 }
3154 
3155 
3156 /* Other USB function hooks *************************************************/
3157 
3158 static void ffs_reset_work(struct work_struct *work)
3159 {
3160 	struct ffs_data *ffs = container_of(work,
3161 		struct ffs_data, reset_work);
3162 	ffs_data_reset(ffs);
3163 }
3164 
3165 static int ffs_func_set_alt(struct usb_function *f,
3166 			    unsigned interface, unsigned alt)
3167 {
3168 	struct ffs_function *func = ffs_func_from_usb(f);
3169 	struct ffs_data *ffs = func->ffs;
3170 	int ret = 0, intf;
3171 
3172 	if (alt != (unsigned)-1) {
3173 		intf = ffs_func_revmap_intf(func, interface);
3174 		if (unlikely(intf < 0))
3175 			return intf;
3176 	}
3177 
3178 	if (ffs->func)
3179 		ffs_func_eps_disable(ffs->func);
3180 
3181 	if (ffs->state == FFS_DEACTIVATED) {
3182 		ffs->state = FFS_CLOSING;
3183 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3184 		schedule_work(&ffs->reset_work);
3185 		return -ENODEV;
3186 	}
3187 
3188 	if (ffs->state != FFS_ACTIVE)
3189 		return -ENODEV;
3190 
3191 	if (alt == (unsigned)-1) {
3192 		ffs->func = NULL;
3193 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3194 		return 0;
3195 	}
3196 
3197 	ffs->func = func;
3198 	ret = ffs_func_eps_enable(func);
3199 	if (likely(ret >= 0))
3200 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3201 	return ret;
3202 }
3203 
3204 static void ffs_func_disable(struct usb_function *f)
3205 {
3206 	ffs_func_set_alt(f, 0, (unsigned)-1);
3207 }
3208 
3209 static int ffs_func_setup(struct usb_function *f,
3210 			  const struct usb_ctrlrequest *creq)
3211 {
3212 	struct ffs_function *func = ffs_func_from_usb(f);
3213 	struct ffs_data *ffs = func->ffs;
3214 	unsigned long flags;
3215 	int ret;
3216 
3217 	ENTER();
3218 
3219 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3220 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3221 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3222 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3223 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3224 
3225 	/*
3226 	 * Most requests directed to interface go through here
3227 	 * (notable exceptions are set/get interface) so we need to
3228 	 * handle them.  All other either handled by composite or
3229 	 * passed to usb_configuration->setup() (if one is set).  No
3230 	 * matter, we will handle requests directed to endpoint here
3231 	 * as well (as it's straightforward).  Other request recipient
3232 	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3233 	 * is being used.
3234 	 */
3235 	if (ffs->state != FFS_ACTIVE)
3236 		return -ENODEV;
3237 
3238 	switch (creq->bRequestType & USB_RECIP_MASK) {
3239 	case USB_RECIP_INTERFACE:
3240 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3241 		if (unlikely(ret < 0))
3242 			return ret;
3243 		break;
3244 
3245 	case USB_RECIP_ENDPOINT:
3246 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3247 		if (unlikely(ret < 0))
3248 			return ret;
3249 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3250 			ret = func->ffs->eps_addrmap[ret];
3251 		break;
3252 
3253 	default:
3254 		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3255 			ret = le16_to_cpu(creq->wIndex);
3256 		else
3257 			return -EOPNOTSUPP;
3258 	}
3259 
3260 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3261 	ffs->ev.setup = *creq;
3262 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3263 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3264 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3265 
3266 	return USB_GADGET_DELAYED_STATUS;
3267 }
3268 
3269 static bool ffs_func_req_match(struct usb_function *f,
3270 			       const struct usb_ctrlrequest *creq,
3271 			       bool config0)
3272 {
3273 	struct ffs_function *func = ffs_func_from_usb(f);
3274 
3275 	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3276 		return false;
3277 
3278 	switch (creq->bRequestType & USB_RECIP_MASK) {
3279 	case USB_RECIP_INTERFACE:
3280 		return (ffs_func_revmap_intf(func,
3281 					     le16_to_cpu(creq->wIndex)) >= 0);
3282 	case USB_RECIP_ENDPOINT:
3283 		return (ffs_func_revmap_ep(func,
3284 					   le16_to_cpu(creq->wIndex)) >= 0);
3285 	default:
3286 		return (bool) (func->ffs->user_flags &
3287 			       FUNCTIONFS_ALL_CTRL_RECIP);
3288 	}
3289 }
3290 
3291 static void ffs_func_suspend(struct usb_function *f)
3292 {
3293 	ENTER();
3294 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3295 }
3296 
3297 static void ffs_func_resume(struct usb_function *f)
3298 {
3299 	ENTER();
3300 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3301 }
3302 
3303 
3304 /* Endpoint and interface numbers reverse mapping ***************************/
3305 
3306 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3307 {
3308 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3309 	return num ? num : -EDOM;
3310 }
3311 
3312 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3313 {
3314 	short *nums = func->interfaces_nums;
3315 	unsigned count = func->ffs->interfaces_count;
3316 
3317 	for (; count; --count, ++nums) {
3318 		if (*nums >= 0 && *nums == intf)
3319 			return nums - func->interfaces_nums;
3320 	}
3321 
3322 	return -EDOM;
3323 }
3324 
3325 
3326 /* Devices management *******************************************************/
3327 
3328 static LIST_HEAD(ffs_devices);
3329 
3330 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3331 {
3332 	struct ffs_dev *dev;
3333 
3334 	if (!name)
3335 		return NULL;
3336 
3337 	list_for_each_entry(dev, &ffs_devices, entry) {
3338 		if (strcmp(dev->name, name) == 0)
3339 			return dev;
3340 	}
3341 
3342 	return NULL;
3343 }
3344 
3345 /*
3346  * ffs_lock must be taken by the caller of this function
3347  */
3348 static struct ffs_dev *_ffs_get_single_dev(void)
3349 {
3350 	struct ffs_dev *dev;
3351 
3352 	if (list_is_singular(&ffs_devices)) {
3353 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3354 		if (dev->single)
3355 			return dev;
3356 	}
3357 
3358 	return NULL;
3359 }
3360 
3361 /*
3362  * ffs_lock must be taken by the caller of this function
3363  */
3364 static struct ffs_dev *_ffs_find_dev(const char *name)
3365 {
3366 	struct ffs_dev *dev;
3367 
3368 	dev = _ffs_get_single_dev();
3369 	if (dev)
3370 		return dev;
3371 
3372 	return _ffs_do_find_dev(name);
3373 }
3374 
3375 /* Configfs support *********************************************************/
3376 
3377 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3378 {
3379 	return container_of(to_config_group(item), struct f_fs_opts,
3380 			    func_inst.group);
3381 }
3382 
3383 static void ffs_attr_release(struct config_item *item)
3384 {
3385 	struct f_fs_opts *opts = to_ffs_opts(item);
3386 
3387 	usb_put_function_instance(&opts->func_inst);
3388 }
3389 
3390 static struct configfs_item_operations ffs_item_ops = {
3391 	.release	= ffs_attr_release,
3392 };
3393 
3394 static const struct config_item_type ffs_func_type = {
3395 	.ct_item_ops	= &ffs_item_ops,
3396 	.ct_owner	= THIS_MODULE,
3397 };
3398 
3399 
3400 /* Function registration interface ******************************************/
3401 
3402 static void ffs_free_inst(struct usb_function_instance *f)
3403 {
3404 	struct f_fs_opts *opts;
3405 
3406 	opts = to_f_fs_opts(f);
3407 	ffs_dev_lock();
3408 	_ffs_free_dev(opts->dev);
3409 	ffs_dev_unlock();
3410 	kfree(opts);
3411 }
3412 
3413 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3414 {
3415 	if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name))
3416 		return -ENAMETOOLONG;
3417 	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3418 }
3419 
3420 static struct usb_function_instance *ffs_alloc_inst(void)
3421 {
3422 	struct f_fs_opts *opts;
3423 	struct ffs_dev *dev;
3424 
3425 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3426 	if (!opts)
3427 		return ERR_PTR(-ENOMEM);
3428 
3429 	opts->func_inst.set_inst_name = ffs_set_inst_name;
3430 	opts->func_inst.free_func_inst = ffs_free_inst;
3431 	ffs_dev_lock();
3432 	dev = _ffs_alloc_dev();
3433 	ffs_dev_unlock();
3434 	if (IS_ERR(dev)) {
3435 		kfree(opts);
3436 		return ERR_CAST(dev);
3437 	}
3438 	opts->dev = dev;
3439 	dev->opts = opts;
3440 
3441 	config_group_init_type_name(&opts->func_inst.group, "",
3442 				    &ffs_func_type);
3443 	return &opts->func_inst;
3444 }
3445 
3446 static void ffs_free(struct usb_function *f)
3447 {
3448 	kfree(ffs_func_from_usb(f));
3449 }
3450 
3451 static void ffs_func_unbind(struct usb_configuration *c,
3452 			    struct usb_function *f)
3453 {
3454 	struct ffs_function *func = ffs_func_from_usb(f);
3455 	struct ffs_data *ffs = func->ffs;
3456 	struct f_fs_opts *opts =
3457 		container_of(f->fi, struct f_fs_opts, func_inst);
3458 	struct ffs_ep *ep = func->eps;
3459 	unsigned count = ffs->eps_count;
3460 	unsigned long flags;
3461 
3462 	ENTER();
3463 	if (ffs->func == func) {
3464 		ffs_func_eps_disable(func);
3465 		ffs->func = NULL;
3466 	}
3467 
3468 	if (!--opts->refcnt)
3469 		functionfs_unbind(ffs);
3470 
3471 	/* cleanup after autoconfig */
3472 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3473 	while (count--) {
3474 		if (ep->ep && ep->req)
3475 			usb_ep_free_request(ep->ep, ep->req);
3476 		ep->req = NULL;
3477 		++ep;
3478 	}
3479 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3480 	kfree(func->eps);
3481 	func->eps = NULL;
3482 	/*
3483 	 * eps, descriptors and interfaces_nums are allocated in the
3484 	 * same chunk so only one free is required.
3485 	 */
3486 	func->function.fs_descriptors = NULL;
3487 	func->function.hs_descriptors = NULL;
3488 	func->function.ss_descriptors = NULL;
3489 	func->interfaces_nums = NULL;
3490 
3491 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3492 }
3493 
3494 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3495 {
3496 	struct ffs_function *func;
3497 
3498 	ENTER();
3499 
3500 	func = kzalloc(sizeof(*func), GFP_KERNEL);
3501 	if (unlikely(!func))
3502 		return ERR_PTR(-ENOMEM);
3503 
3504 	func->function.name    = "Function FS Gadget";
3505 
3506 	func->function.bind    = ffs_func_bind;
3507 	func->function.unbind  = ffs_func_unbind;
3508 	func->function.set_alt = ffs_func_set_alt;
3509 	func->function.disable = ffs_func_disable;
3510 	func->function.setup   = ffs_func_setup;
3511 	func->function.req_match = ffs_func_req_match;
3512 	func->function.suspend = ffs_func_suspend;
3513 	func->function.resume  = ffs_func_resume;
3514 	func->function.free_func = ffs_free;
3515 
3516 	return &func->function;
3517 }
3518 
3519 /*
3520  * ffs_lock must be taken by the caller of this function
3521  */
3522 static struct ffs_dev *_ffs_alloc_dev(void)
3523 {
3524 	struct ffs_dev *dev;
3525 	int ret;
3526 
3527 	if (_ffs_get_single_dev())
3528 			return ERR_PTR(-EBUSY);
3529 
3530 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3531 	if (!dev)
3532 		return ERR_PTR(-ENOMEM);
3533 
3534 	if (list_empty(&ffs_devices)) {
3535 		ret = functionfs_init();
3536 		if (ret) {
3537 			kfree(dev);
3538 			return ERR_PTR(ret);
3539 		}
3540 	}
3541 
3542 	list_add(&dev->entry, &ffs_devices);
3543 
3544 	return dev;
3545 }
3546 
3547 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3548 {
3549 	struct ffs_dev *existing;
3550 	int ret = 0;
3551 
3552 	ffs_dev_lock();
3553 
3554 	existing = _ffs_do_find_dev(name);
3555 	if (!existing)
3556 		strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3557 	else if (existing != dev)
3558 		ret = -EBUSY;
3559 
3560 	ffs_dev_unlock();
3561 
3562 	return ret;
3563 }
3564 EXPORT_SYMBOL_GPL(ffs_name_dev);
3565 
3566 int ffs_single_dev(struct ffs_dev *dev)
3567 {
3568 	int ret;
3569 
3570 	ret = 0;
3571 	ffs_dev_lock();
3572 
3573 	if (!list_is_singular(&ffs_devices))
3574 		ret = -EBUSY;
3575 	else
3576 		dev->single = true;
3577 
3578 	ffs_dev_unlock();
3579 	return ret;
3580 }
3581 EXPORT_SYMBOL_GPL(ffs_single_dev);
3582 
3583 /*
3584  * ffs_lock must be taken by the caller of this function
3585  */
3586 static void _ffs_free_dev(struct ffs_dev *dev)
3587 {
3588 	list_del(&dev->entry);
3589 
3590 	/* Clear the private_data pointer to stop incorrect dev access */
3591 	if (dev->ffs_data)
3592 		dev->ffs_data->private_data = NULL;
3593 
3594 	kfree(dev);
3595 	if (list_empty(&ffs_devices))
3596 		functionfs_cleanup();
3597 }
3598 
3599 static void *ffs_acquire_dev(const char *dev_name)
3600 {
3601 	struct ffs_dev *ffs_dev;
3602 
3603 	ENTER();
3604 	ffs_dev_lock();
3605 
3606 	ffs_dev = _ffs_find_dev(dev_name);
3607 	if (!ffs_dev)
3608 		ffs_dev = ERR_PTR(-ENOENT);
3609 	else if (ffs_dev->mounted)
3610 		ffs_dev = ERR_PTR(-EBUSY);
3611 	else if (ffs_dev->ffs_acquire_dev_callback &&
3612 	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3613 		ffs_dev = ERR_PTR(-ENOENT);
3614 	else
3615 		ffs_dev->mounted = true;
3616 
3617 	ffs_dev_unlock();
3618 	return ffs_dev;
3619 }
3620 
3621 static void ffs_release_dev(struct ffs_data *ffs_data)
3622 {
3623 	struct ffs_dev *ffs_dev;
3624 
3625 	ENTER();
3626 	ffs_dev_lock();
3627 
3628 	ffs_dev = ffs_data->private_data;
3629 	if (ffs_dev) {
3630 		ffs_dev->mounted = false;
3631 
3632 		if (ffs_dev->ffs_release_dev_callback)
3633 			ffs_dev->ffs_release_dev_callback(ffs_dev);
3634 	}
3635 
3636 	ffs_dev_unlock();
3637 }
3638 
3639 static int ffs_ready(struct ffs_data *ffs)
3640 {
3641 	struct ffs_dev *ffs_obj;
3642 	int ret = 0;
3643 
3644 	ENTER();
3645 	ffs_dev_lock();
3646 
3647 	ffs_obj = ffs->private_data;
3648 	if (!ffs_obj) {
3649 		ret = -EINVAL;
3650 		goto done;
3651 	}
3652 	if (WARN_ON(ffs_obj->desc_ready)) {
3653 		ret = -EBUSY;
3654 		goto done;
3655 	}
3656 
3657 	ffs_obj->desc_ready = true;
3658 	ffs_obj->ffs_data = ffs;
3659 
3660 	if (ffs_obj->ffs_ready_callback) {
3661 		ret = ffs_obj->ffs_ready_callback(ffs);
3662 		if (ret)
3663 			goto done;
3664 	}
3665 
3666 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3667 done:
3668 	ffs_dev_unlock();
3669 	return ret;
3670 }
3671 
3672 static void ffs_closed(struct ffs_data *ffs)
3673 {
3674 	struct ffs_dev *ffs_obj;
3675 	struct f_fs_opts *opts;
3676 	struct config_item *ci;
3677 
3678 	ENTER();
3679 	ffs_dev_lock();
3680 
3681 	ffs_obj = ffs->private_data;
3682 	if (!ffs_obj)
3683 		goto done;
3684 
3685 	ffs_obj->desc_ready = false;
3686 	ffs_obj->ffs_data = NULL;
3687 
3688 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3689 	    ffs_obj->ffs_closed_callback)
3690 		ffs_obj->ffs_closed_callback(ffs);
3691 
3692 	if (ffs_obj->opts)
3693 		opts = ffs_obj->opts;
3694 	else
3695 		goto done;
3696 
3697 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3698 	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3699 		goto done;
3700 
3701 	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3702 	ffs_dev_unlock();
3703 
3704 	if (test_bit(FFS_FL_BOUND, &ffs->flags))
3705 		unregister_gadget_item(ci);
3706 	return;
3707 done:
3708 	ffs_dev_unlock();
3709 }
3710 
3711 /* Misc helper functions ****************************************************/
3712 
3713 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3714 {
3715 	return nonblock
3716 		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3717 		: mutex_lock_interruptible(mutex);
3718 }
3719 
3720 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3721 {
3722 	char *data;
3723 
3724 	if (unlikely(!len))
3725 		return NULL;
3726 
3727 	data = kmalloc(len, GFP_KERNEL);
3728 	if (unlikely(!data))
3729 		return ERR_PTR(-ENOMEM);
3730 
3731 	if (unlikely(copy_from_user(data, buf, len))) {
3732 		kfree(data);
3733 		return ERR_PTR(-EFAULT);
3734 	}
3735 
3736 	pr_vdebug("Buffer from user space:\n");
3737 	ffs_dump_mem("", data, len);
3738 
3739 	return data;
3740 }
3741 
3742 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3743 MODULE_LICENSE("GPL");
3744 MODULE_AUTHOR("Michal Nazarewicz");
3745