1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * f_fs.c -- user mode file system API for USB composite function controllers 4 * 5 * Copyright (C) 2010 Samsung Electronics 6 * Author: Michal Nazarewicz <mina86@mina86.com> 7 * 8 * Based on inode.c (GadgetFS) which was: 9 * Copyright (C) 2003-2004 David Brownell 10 * Copyright (C) 2003 Agilent Technologies 11 */ 12 13 14 /* #define DEBUG */ 15 /* #define VERBOSE_DEBUG */ 16 17 #include <linux/blkdev.h> 18 #include <linux/pagemap.h> 19 #include <linux/export.h> 20 #include <linux/hid.h> 21 #include <linux/mm.h> 22 #include <linux/module.h> 23 #include <linux/scatterlist.h> 24 #include <linux/sched/signal.h> 25 #include <linux/uio.h> 26 #include <linux/vmalloc.h> 27 #include <asm/unaligned.h> 28 29 #include <linux/usb/ccid.h> 30 #include <linux/usb/composite.h> 31 #include <linux/usb/functionfs.h> 32 33 #include <linux/aio.h> 34 #include <linux/mmu_context.h> 35 #include <linux/poll.h> 36 #include <linux/eventfd.h> 37 38 #include "u_fs.h" 39 #include "u_f.h" 40 #include "u_os_desc.h" 41 #include "configfs.h" 42 43 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ 44 45 /* Reference counter handling */ 46 static void ffs_data_get(struct ffs_data *ffs); 47 static void ffs_data_put(struct ffs_data *ffs); 48 /* Creates new ffs_data object. */ 49 static struct ffs_data *__must_check ffs_data_new(const char *dev_name) 50 __attribute__((malloc)); 51 52 /* Opened counter handling. */ 53 static void ffs_data_opened(struct ffs_data *ffs); 54 static void ffs_data_closed(struct ffs_data *ffs); 55 56 /* Called with ffs->mutex held; take over ownership of data. */ 57 static int __must_check 58 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); 59 static int __must_check 60 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); 61 62 63 /* The function structure ***************************************************/ 64 65 struct ffs_ep; 66 67 struct ffs_function { 68 struct usb_configuration *conf; 69 struct usb_gadget *gadget; 70 struct ffs_data *ffs; 71 72 struct ffs_ep *eps; 73 u8 eps_revmap[16]; 74 short *interfaces_nums; 75 76 struct usb_function function; 77 }; 78 79 80 static struct ffs_function *ffs_func_from_usb(struct usb_function *f) 81 { 82 return container_of(f, struct ffs_function, function); 83 } 84 85 86 static inline enum ffs_setup_state 87 ffs_setup_state_clear_cancelled(struct ffs_data *ffs) 88 { 89 return (enum ffs_setup_state) 90 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); 91 } 92 93 94 static void ffs_func_eps_disable(struct ffs_function *func); 95 static int __must_check ffs_func_eps_enable(struct ffs_function *func); 96 97 static int ffs_func_bind(struct usb_configuration *, 98 struct usb_function *); 99 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); 100 static void ffs_func_disable(struct usb_function *); 101 static int ffs_func_setup(struct usb_function *, 102 const struct usb_ctrlrequest *); 103 static bool ffs_func_req_match(struct usb_function *, 104 const struct usb_ctrlrequest *, 105 bool config0); 106 static void ffs_func_suspend(struct usb_function *); 107 static void ffs_func_resume(struct usb_function *); 108 109 110 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); 111 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); 112 113 114 /* The endpoints structures *************************************************/ 115 116 struct ffs_ep { 117 struct usb_ep *ep; /* P: ffs->eps_lock */ 118 struct usb_request *req; /* P: epfile->mutex */ 119 120 /* [0]: full speed, [1]: high speed, [2]: super speed */ 121 struct usb_endpoint_descriptor *descs[3]; 122 123 u8 num; 124 125 int status; /* P: epfile->mutex */ 126 }; 127 128 struct ffs_epfile { 129 /* Protects ep->ep and ep->req. */ 130 struct mutex mutex; 131 132 struct ffs_data *ffs; 133 struct ffs_ep *ep; /* P: ffs->eps_lock */ 134 135 struct dentry *dentry; 136 137 /* 138 * Buffer for holding data from partial reads which may happen since 139 * we’re rounding user read requests to a multiple of a max packet size. 140 * 141 * The pointer is initialised with NULL value and may be set by 142 * __ffs_epfile_read_data function to point to a temporary buffer. 143 * 144 * In normal operation, calls to __ffs_epfile_read_buffered will consume 145 * data from said buffer and eventually free it. Importantly, while the 146 * function is using the buffer, it sets the pointer to NULL. This is 147 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered 148 * can never run concurrently (they are synchronised by epfile->mutex) 149 * so the latter will not assign a new value to the pointer. 150 * 151 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is 152 * valid) and sets the pointer to READ_BUFFER_DROP value. This special 153 * value is crux of the synchronisation between ffs_func_eps_disable and 154 * __ffs_epfile_read_data. 155 * 156 * Once __ffs_epfile_read_data is about to finish it will try to set the 157 * pointer back to its old value (as described above), but seeing as the 158 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free 159 * the buffer. 160 * 161 * == State transitions == 162 * 163 * • ptr == NULL: (initial state) 164 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP 165 * ◦ __ffs_epfile_read_buffered: nop 166 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf 167 * ◦ reading finishes: n/a, not in ‘and reading’ state 168 * • ptr == DROP: 169 * ◦ __ffs_epfile_read_buffer_free: nop 170 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL 171 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop 172 * ◦ reading finishes: n/a, not in ‘and reading’ state 173 * • ptr == buf: 174 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP 175 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading 176 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered 177 * is always called first 178 * ◦ reading finishes: n/a, not in ‘and reading’ state 179 * • ptr == NULL and reading: 180 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading 181 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 182 * ◦ __ffs_epfile_read_data: n/a, mutex is held 183 * ◦ reading finishes and … 184 * … all data read: free buf, go to ptr == NULL 185 * … otherwise: go to ptr == buf and reading 186 * • ptr == DROP and reading: 187 * ◦ __ffs_epfile_read_buffer_free: nop 188 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 189 * ◦ __ffs_epfile_read_data: n/a, mutex is held 190 * ◦ reading finishes: free buf, go to ptr == DROP 191 */ 192 struct ffs_buffer *read_buffer; 193 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN)) 194 195 char name[5]; 196 197 unsigned char in; /* P: ffs->eps_lock */ 198 unsigned char isoc; /* P: ffs->eps_lock */ 199 200 unsigned char _pad; 201 }; 202 203 struct ffs_buffer { 204 size_t length; 205 char *data; 206 char storage[]; 207 }; 208 209 /* ffs_io_data structure ***************************************************/ 210 211 struct ffs_io_data { 212 bool aio; 213 bool read; 214 215 struct kiocb *kiocb; 216 struct iov_iter data; 217 const void *to_free; 218 char *buf; 219 220 struct mm_struct *mm; 221 struct work_struct work; 222 223 struct usb_ep *ep; 224 struct usb_request *req; 225 struct sg_table sgt; 226 bool use_sg; 227 228 struct ffs_data *ffs; 229 }; 230 231 struct ffs_desc_helper { 232 struct ffs_data *ffs; 233 unsigned interfaces_count; 234 unsigned eps_count; 235 }; 236 237 static int __must_check ffs_epfiles_create(struct ffs_data *ffs); 238 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count); 239 240 static struct dentry * 241 ffs_sb_create_file(struct super_block *sb, const char *name, void *data, 242 const struct file_operations *fops); 243 244 /* Devices management *******************************************************/ 245 246 DEFINE_MUTEX(ffs_lock); 247 EXPORT_SYMBOL_GPL(ffs_lock); 248 249 static struct ffs_dev *_ffs_find_dev(const char *name); 250 static struct ffs_dev *_ffs_alloc_dev(void); 251 static void _ffs_free_dev(struct ffs_dev *dev); 252 static void *ffs_acquire_dev(const char *dev_name); 253 static void ffs_release_dev(struct ffs_data *ffs_data); 254 static int ffs_ready(struct ffs_data *ffs); 255 static void ffs_closed(struct ffs_data *ffs); 256 257 /* Misc helper functions ****************************************************/ 258 259 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 260 __attribute__((warn_unused_result, nonnull)); 261 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 262 __attribute__((warn_unused_result, nonnull)); 263 264 265 /* Control file aka ep0 *****************************************************/ 266 267 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) 268 { 269 struct ffs_data *ffs = req->context; 270 271 complete(&ffs->ep0req_completion); 272 } 273 274 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) 275 __releases(&ffs->ev.waitq.lock) 276 { 277 struct usb_request *req = ffs->ep0req; 278 int ret; 279 280 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); 281 282 spin_unlock_irq(&ffs->ev.waitq.lock); 283 284 req->buf = data; 285 req->length = len; 286 287 /* 288 * UDC layer requires to provide a buffer even for ZLP, but should 289 * not use it at all. Let's provide some poisoned pointer to catch 290 * possible bug in the driver. 291 */ 292 if (req->buf == NULL) 293 req->buf = (void *)0xDEADBABE; 294 295 reinit_completion(&ffs->ep0req_completion); 296 297 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); 298 if (unlikely(ret < 0)) 299 return ret; 300 301 ret = wait_for_completion_interruptible(&ffs->ep0req_completion); 302 if (unlikely(ret)) { 303 usb_ep_dequeue(ffs->gadget->ep0, req); 304 return -EINTR; 305 } 306 307 ffs->setup_state = FFS_NO_SETUP; 308 return req->status ? req->status : req->actual; 309 } 310 311 static int __ffs_ep0_stall(struct ffs_data *ffs) 312 { 313 if (ffs->ev.can_stall) { 314 pr_vdebug("ep0 stall\n"); 315 usb_ep_set_halt(ffs->gadget->ep0); 316 ffs->setup_state = FFS_NO_SETUP; 317 return -EL2HLT; 318 } else { 319 pr_debug("bogus ep0 stall!\n"); 320 return -ESRCH; 321 } 322 } 323 324 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, 325 size_t len, loff_t *ptr) 326 { 327 struct ffs_data *ffs = file->private_data; 328 ssize_t ret; 329 char *data; 330 331 ENTER(); 332 333 /* Fast check if setup was canceled */ 334 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 335 return -EIDRM; 336 337 /* Acquire mutex */ 338 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 339 if (unlikely(ret < 0)) 340 return ret; 341 342 /* Check state */ 343 switch (ffs->state) { 344 case FFS_READ_DESCRIPTORS: 345 case FFS_READ_STRINGS: 346 /* Copy data */ 347 if (unlikely(len < 16)) { 348 ret = -EINVAL; 349 break; 350 } 351 352 data = ffs_prepare_buffer(buf, len); 353 if (IS_ERR(data)) { 354 ret = PTR_ERR(data); 355 break; 356 } 357 358 /* Handle data */ 359 if (ffs->state == FFS_READ_DESCRIPTORS) { 360 pr_info("read descriptors\n"); 361 ret = __ffs_data_got_descs(ffs, data, len); 362 if (unlikely(ret < 0)) 363 break; 364 365 ffs->state = FFS_READ_STRINGS; 366 ret = len; 367 } else { 368 pr_info("read strings\n"); 369 ret = __ffs_data_got_strings(ffs, data, len); 370 if (unlikely(ret < 0)) 371 break; 372 373 ret = ffs_epfiles_create(ffs); 374 if (unlikely(ret)) { 375 ffs->state = FFS_CLOSING; 376 break; 377 } 378 379 ffs->state = FFS_ACTIVE; 380 mutex_unlock(&ffs->mutex); 381 382 ret = ffs_ready(ffs); 383 if (unlikely(ret < 0)) { 384 ffs->state = FFS_CLOSING; 385 return ret; 386 } 387 388 return len; 389 } 390 break; 391 392 case FFS_ACTIVE: 393 data = NULL; 394 /* 395 * We're called from user space, we can use _irq 396 * rather then _irqsave 397 */ 398 spin_lock_irq(&ffs->ev.waitq.lock); 399 switch (ffs_setup_state_clear_cancelled(ffs)) { 400 case FFS_SETUP_CANCELLED: 401 ret = -EIDRM; 402 goto done_spin; 403 404 case FFS_NO_SETUP: 405 ret = -ESRCH; 406 goto done_spin; 407 408 case FFS_SETUP_PENDING: 409 break; 410 } 411 412 /* FFS_SETUP_PENDING */ 413 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { 414 spin_unlock_irq(&ffs->ev.waitq.lock); 415 ret = __ffs_ep0_stall(ffs); 416 break; 417 } 418 419 /* FFS_SETUP_PENDING and not stall */ 420 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 421 422 spin_unlock_irq(&ffs->ev.waitq.lock); 423 424 data = ffs_prepare_buffer(buf, len); 425 if (IS_ERR(data)) { 426 ret = PTR_ERR(data); 427 break; 428 } 429 430 spin_lock_irq(&ffs->ev.waitq.lock); 431 432 /* 433 * We are guaranteed to be still in FFS_ACTIVE state 434 * but the state of setup could have changed from 435 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need 436 * to check for that. If that happened we copied data 437 * from user space in vain but it's unlikely. 438 * 439 * For sure we are not in FFS_NO_SETUP since this is 440 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP 441 * transition can be performed and it's protected by 442 * mutex. 443 */ 444 if (ffs_setup_state_clear_cancelled(ffs) == 445 FFS_SETUP_CANCELLED) { 446 ret = -EIDRM; 447 done_spin: 448 spin_unlock_irq(&ffs->ev.waitq.lock); 449 } else { 450 /* unlocks spinlock */ 451 ret = __ffs_ep0_queue_wait(ffs, data, len); 452 } 453 kfree(data); 454 break; 455 456 default: 457 ret = -EBADFD; 458 break; 459 } 460 461 mutex_unlock(&ffs->mutex); 462 return ret; 463 } 464 465 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */ 466 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, 467 size_t n) 468 __releases(&ffs->ev.waitq.lock) 469 { 470 /* 471 * n cannot be bigger than ffs->ev.count, which cannot be bigger than 472 * size of ffs->ev.types array (which is four) so that's how much space 473 * we reserve. 474 */ 475 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)]; 476 const size_t size = n * sizeof *events; 477 unsigned i = 0; 478 479 memset(events, 0, size); 480 481 do { 482 events[i].type = ffs->ev.types[i]; 483 if (events[i].type == FUNCTIONFS_SETUP) { 484 events[i].u.setup = ffs->ev.setup; 485 ffs->setup_state = FFS_SETUP_PENDING; 486 } 487 } while (++i < n); 488 489 ffs->ev.count -= n; 490 if (ffs->ev.count) 491 memmove(ffs->ev.types, ffs->ev.types + n, 492 ffs->ev.count * sizeof *ffs->ev.types); 493 494 spin_unlock_irq(&ffs->ev.waitq.lock); 495 mutex_unlock(&ffs->mutex); 496 497 return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size; 498 } 499 500 static ssize_t ffs_ep0_read(struct file *file, char __user *buf, 501 size_t len, loff_t *ptr) 502 { 503 struct ffs_data *ffs = file->private_data; 504 char *data = NULL; 505 size_t n; 506 int ret; 507 508 ENTER(); 509 510 /* Fast check if setup was canceled */ 511 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 512 return -EIDRM; 513 514 /* Acquire mutex */ 515 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 516 if (unlikely(ret < 0)) 517 return ret; 518 519 /* Check state */ 520 if (ffs->state != FFS_ACTIVE) { 521 ret = -EBADFD; 522 goto done_mutex; 523 } 524 525 /* 526 * We're called from user space, we can use _irq rather then 527 * _irqsave 528 */ 529 spin_lock_irq(&ffs->ev.waitq.lock); 530 531 switch (ffs_setup_state_clear_cancelled(ffs)) { 532 case FFS_SETUP_CANCELLED: 533 ret = -EIDRM; 534 break; 535 536 case FFS_NO_SETUP: 537 n = len / sizeof(struct usb_functionfs_event); 538 if (unlikely(!n)) { 539 ret = -EINVAL; 540 break; 541 } 542 543 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { 544 ret = -EAGAIN; 545 break; 546 } 547 548 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, 549 ffs->ev.count)) { 550 ret = -EINTR; 551 break; 552 } 553 554 /* unlocks spinlock */ 555 return __ffs_ep0_read_events(ffs, buf, 556 min(n, (size_t)ffs->ev.count)); 557 558 case FFS_SETUP_PENDING: 559 if (ffs->ev.setup.bRequestType & USB_DIR_IN) { 560 spin_unlock_irq(&ffs->ev.waitq.lock); 561 ret = __ffs_ep0_stall(ffs); 562 goto done_mutex; 563 } 564 565 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 566 567 spin_unlock_irq(&ffs->ev.waitq.lock); 568 569 if (likely(len)) { 570 data = kmalloc(len, GFP_KERNEL); 571 if (unlikely(!data)) { 572 ret = -ENOMEM; 573 goto done_mutex; 574 } 575 } 576 577 spin_lock_irq(&ffs->ev.waitq.lock); 578 579 /* See ffs_ep0_write() */ 580 if (ffs_setup_state_clear_cancelled(ffs) == 581 FFS_SETUP_CANCELLED) { 582 ret = -EIDRM; 583 break; 584 } 585 586 /* unlocks spinlock */ 587 ret = __ffs_ep0_queue_wait(ffs, data, len); 588 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len))) 589 ret = -EFAULT; 590 goto done_mutex; 591 592 default: 593 ret = -EBADFD; 594 break; 595 } 596 597 spin_unlock_irq(&ffs->ev.waitq.lock); 598 done_mutex: 599 mutex_unlock(&ffs->mutex); 600 kfree(data); 601 return ret; 602 } 603 604 static int ffs_ep0_open(struct inode *inode, struct file *file) 605 { 606 struct ffs_data *ffs = inode->i_private; 607 608 ENTER(); 609 610 if (unlikely(ffs->state == FFS_CLOSING)) 611 return -EBUSY; 612 613 file->private_data = ffs; 614 ffs_data_opened(ffs); 615 616 return 0; 617 } 618 619 static int ffs_ep0_release(struct inode *inode, struct file *file) 620 { 621 struct ffs_data *ffs = file->private_data; 622 623 ENTER(); 624 625 ffs_data_closed(ffs); 626 627 return 0; 628 } 629 630 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) 631 { 632 struct ffs_data *ffs = file->private_data; 633 struct usb_gadget *gadget = ffs->gadget; 634 long ret; 635 636 ENTER(); 637 638 if (code == FUNCTIONFS_INTERFACE_REVMAP) { 639 struct ffs_function *func = ffs->func; 640 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; 641 } else if (gadget && gadget->ops->ioctl) { 642 ret = gadget->ops->ioctl(gadget, code, value); 643 } else { 644 ret = -ENOTTY; 645 } 646 647 return ret; 648 } 649 650 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait) 651 { 652 struct ffs_data *ffs = file->private_data; 653 __poll_t mask = EPOLLWRNORM; 654 int ret; 655 656 poll_wait(file, &ffs->ev.waitq, wait); 657 658 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 659 if (unlikely(ret < 0)) 660 return mask; 661 662 switch (ffs->state) { 663 case FFS_READ_DESCRIPTORS: 664 case FFS_READ_STRINGS: 665 mask |= EPOLLOUT; 666 break; 667 668 case FFS_ACTIVE: 669 switch (ffs->setup_state) { 670 case FFS_NO_SETUP: 671 if (ffs->ev.count) 672 mask |= EPOLLIN; 673 break; 674 675 case FFS_SETUP_PENDING: 676 case FFS_SETUP_CANCELLED: 677 mask |= (EPOLLIN | EPOLLOUT); 678 break; 679 } 680 case FFS_CLOSING: 681 break; 682 case FFS_DEACTIVATED: 683 break; 684 } 685 686 mutex_unlock(&ffs->mutex); 687 688 return mask; 689 } 690 691 static const struct file_operations ffs_ep0_operations = { 692 .llseek = no_llseek, 693 694 .open = ffs_ep0_open, 695 .write = ffs_ep0_write, 696 .read = ffs_ep0_read, 697 .release = ffs_ep0_release, 698 .unlocked_ioctl = ffs_ep0_ioctl, 699 .poll = ffs_ep0_poll, 700 }; 701 702 703 /* "Normal" endpoints operations ********************************************/ 704 705 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) 706 { 707 ENTER(); 708 if (likely(req->context)) { 709 struct ffs_ep *ep = _ep->driver_data; 710 ep->status = req->status ? req->status : req->actual; 711 complete(req->context); 712 } 713 } 714 715 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter) 716 { 717 ssize_t ret = copy_to_iter(data, data_len, iter); 718 if (likely(ret == data_len)) 719 return ret; 720 721 if (unlikely(iov_iter_count(iter))) 722 return -EFAULT; 723 724 /* 725 * Dear user space developer! 726 * 727 * TL;DR: To stop getting below error message in your kernel log, change 728 * user space code using functionfs to align read buffers to a max 729 * packet size. 730 * 731 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max 732 * packet size. When unaligned buffer is passed to functionfs, it 733 * internally uses a larger, aligned buffer so that such UDCs are happy. 734 * 735 * Unfortunately, this means that host may send more data than was 736 * requested in read(2) system call. f_fs doesn’t know what to do with 737 * that excess data so it simply drops it. 738 * 739 * Was the buffer aligned in the first place, no such problem would 740 * happen. 741 * 742 * Data may be dropped only in AIO reads. Synchronous reads are handled 743 * by splitting a request into multiple parts. This splitting may still 744 * be a problem though so it’s likely best to align the buffer 745 * regardless of it being AIO or not.. 746 * 747 * This only affects OUT endpoints, i.e. reading data with a read(2), 748 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not 749 * affected. 750 */ 751 pr_err("functionfs read size %d > requested size %zd, dropping excess data. " 752 "Align read buffer size to max packet size to avoid the problem.\n", 753 data_len, ret); 754 755 return ret; 756 } 757 758 /* 759 * allocate a virtually contiguous buffer and create a scatterlist describing it 760 * @sg_table - pointer to a place to be filled with sg_table contents 761 * @size - required buffer size 762 */ 763 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz) 764 { 765 struct page **pages; 766 void *vaddr, *ptr; 767 unsigned int n_pages; 768 int i; 769 770 vaddr = vmalloc(sz); 771 if (!vaddr) 772 return NULL; 773 774 n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT; 775 pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL); 776 if (!pages) { 777 vfree(vaddr); 778 779 return NULL; 780 } 781 for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE) 782 pages[i] = vmalloc_to_page(ptr); 783 784 if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) { 785 kvfree(pages); 786 vfree(vaddr); 787 788 return NULL; 789 } 790 kvfree(pages); 791 792 return vaddr; 793 } 794 795 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data, 796 size_t data_len) 797 { 798 if (io_data->use_sg) 799 return ffs_build_sg_list(&io_data->sgt, data_len); 800 801 return kmalloc(data_len, GFP_KERNEL); 802 } 803 804 static inline void ffs_free_buffer(struct ffs_io_data *io_data) 805 { 806 if (!io_data->buf) 807 return; 808 809 if (io_data->use_sg) { 810 sg_free_table(&io_data->sgt); 811 vfree(io_data->buf); 812 } else { 813 kfree(io_data->buf); 814 } 815 } 816 817 static void ffs_user_copy_worker(struct work_struct *work) 818 { 819 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 820 work); 821 int ret = io_data->req->status ? io_data->req->status : 822 io_data->req->actual; 823 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD; 824 825 if (io_data->read && ret > 0) { 826 mm_segment_t oldfs = get_fs(); 827 828 set_fs(USER_DS); 829 use_mm(io_data->mm); 830 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data); 831 unuse_mm(io_data->mm); 832 set_fs(oldfs); 833 } 834 835 io_data->kiocb->ki_complete(io_data->kiocb, ret, ret); 836 837 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd) 838 eventfd_signal(io_data->ffs->ffs_eventfd, 1); 839 840 usb_ep_free_request(io_data->ep, io_data->req); 841 842 if (io_data->read) 843 kfree(io_data->to_free); 844 ffs_free_buffer(io_data); 845 kfree(io_data); 846 } 847 848 static void ffs_epfile_async_io_complete(struct usb_ep *_ep, 849 struct usb_request *req) 850 { 851 struct ffs_io_data *io_data = req->context; 852 struct ffs_data *ffs = io_data->ffs; 853 854 ENTER(); 855 856 INIT_WORK(&io_data->work, ffs_user_copy_worker); 857 queue_work(ffs->io_completion_wq, &io_data->work); 858 } 859 860 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile) 861 { 862 /* 863 * See comment in struct ffs_epfile for full read_buffer pointer 864 * synchronisation story. 865 */ 866 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP); 867 if (buf && buf != READ_BUFFER_DROP) 868 kfree(buf); 869 } 870 871 /* Assumes epfile->mutex is held. */ 872 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile, 873 struct iov_iter *iter) 874 { 875 /* 876 * Null out epfile->read_buffer so ffs_func_eps_disable does not free 877 * the buffer while we are using it. See comment in struct ffs_epfile 878 * for full read_buffer pointer synchronisation story. 879 */ 880 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL); 881 ssize_t ret; 882 if (!buf || buf == READ_BUFFER_DROP) 883 return 0; 884 885 ret = copy_to_iter(buf->data, buf->length, iter); 886 if (buf->length == ret) { 887 kfree(buf); 888 return ret; 889 } 890 891 if (unlikely(iov_iter_count(iter))) { 892 ret = -EFAULT; 893 } else { 894 buf->length -= ret; 895 buf->data += ret; 896 } 897 898 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 899 kfree(buf); 900 901 return ret; 902 } 903 904 /* Assumes epfile->mutex is held. */ 905 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile, 906 void *data, int data_len, 907 struct iov_iter *iter) 908 { 909 struct ffs_buffer *buf; 910 911 ssize_t ret = copy_to_iter(data, data_len, iter); 912 if (likely(data_len == ret)) 913 return ret; 914 915 if (unlikely(iov_iter_count(iter))) 916 return -EFAULT; 917 918 /* See ffs_copy_to_iter for more context. */ 919 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.", 920 data_len, ret); 921 922 data_len -= ret; 923 buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL); 924 if (!buf) 925 return -ENOMEM; 926 buf->length = data_len; 927 buf->data = buf->storage; 928 memcpy(buf->storage, data + ret, data_len); 929 930 /* 931 * At this point read_buffer is NULL or READ_BUFFER_DROP (if 932 * ffs_func_eps_disable has been called in the meanwhile). See comment 933 * in struct ffs_epfile for full read_buffer pointer synchronisation 934 * story. 935 */ 936 if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf))) 937 kfree(buf); 938 939 return ret; 940 } 941 942 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) 943 { 944 struct ffs_epfile *epfile = file->private_data; 945 struct usb_request *req; 946 struct ffs_ep *ep; 947 char *data = NULL; 948 ssize_t ret, data_len = -EINVAL; 949 int halt; 950 951 /* Are we still active? */ 952 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 953 return -ENODEV; 954 955 /* Wait for endpoint to be enabled */ 956 ep = epfile->ep; 957 if (!ep) { 958 if (file->f_flags & O_NONBLOCK) 959 return -EAGAIN; 960 961 ret = wait_event_interruptible( 962 epfile->ffs->wait, (ep = epfile->ep)); 963 if (ret) 964 return -EINTR; 965 } 966 967 /* Do we halt? */ 968 halt = (!io_data->read == !epfile->in); 969 if (halt && epfile->isoc) 970 return -EINVAL; 971 972 /* We will be using request and read_buffer */ 973 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); 974 if (unlikely(ret)) 975 goto error; 976 977 /* Allocate & copy */ 978 if (!halt) { 979 struct usb_gadget *gadget; 980 981 /* 982 * Do we have buffered data from previous partial read? Check 983 * that for synchronous case only because we do not have 984 * facility to ‘wake up’ a pending asynchronous read and push 985 * buffered data to it which we would need to make things behave 986 * consistently. 987 */ 988 if (!io_data->aio && io_data->read) { 989 ret = __ffs_epfile_read_buffered(epfile, &io_data->data); 990 if (ret) 991 goto error_mutex; 992 } 993 994 /* 995 * if we _do_ wait above, the epfile->ffs->gadget might be NULL 996 * before the waiting completes, so do not assign to 'gadget' 997 * earlier 998 */ 999 gadget = epfile->ffs->gadget; 1000 1001 spin_lock_irq(&epfile->ffs->eps_lock); 1002 /* In the meantime, endpoint got disabled or changed. */ 1003 if (epfile->ep != ep) { 1004 ret = -ESHUTDOWN; 1005 goto error_lock; 1006 } 1007 data_len = iov_iter_count(&io_data->data); 1008 /* 1009 * Controller may require buffer size to be aligned to 1010 * maxpacketsize of an out endpoint. 1011 */ 1012 if (io_data->read) 1013 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len); 1014 1015 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE; 1016 spin_unlock_irq(&epfile->ffs->eps_lock); 1017 1018 data = ffs_alloc_buffer(io_data, data_len); 1019 if (unlikely(!data)) { 1020 ret = -ENOMEM; 1021 goto error_mutex; 1022 } 1023 if (!io_data->read && 1024 !copy_from_iter_full(data, data_len, &io_data->data)) { 1025 ret = -EFAULT; 1026 goto error_mutex; 1027 } 1028 } 1029 1030 spin_lock_irq(&epfile->ffs->eps_lock); 1031 1032 if (epfile->ep != ep) { 1033 /* In the meantime, endpoint got disabled or changed. */ 1034 ret = -ESHUTDOWN; 1035 } else if (halt) { 1036 ret = usb_ep_set_halt(ep->ep); 1037 if (!ret) 1038 ret = -EBADMSG; 1039 } else if (unlikely(data_len == -EINVAL)) { 1040 /* 1041 * Sanity Check: even though data_len can't be used 1042 * uninitialized at the time I write this comment, some 1043 * compilers complain about this situation. 1044 * In order to keep the code clean from warnings, data_len is 1045 * being initialized to -EINVAL during its declaration, which 1046 * means we can't rely on compiler anymore to warn no future 1047 * changes won't result in data_len being used uninitialized. 1048 * For such reason, we're adding this redundant sanity check 1049 * here. 1050 */ 1051 WARN(1, "%s: data_len == -EINVAL\n", __func__); 1052 ret = -EINVAL; 1053 } else if (!io_data->aio) { 1054 DECLARE_COMPLETION_ONSTACK(done); 1055 bool interrupted = false; 1056 1057 req = ep->req; 1058 if (io_data->use_sg) { 1059 req->buf = NULL; 1060 req->sg = io_data->sgt.sgl; 1061 req->num_sgs = io_data->sgt.nents; 1062 } else { 1063 req->buf = data; 1064 } 1065 req->length = data_len; 1066 1067 io_data->buf = data; 1068 1069 req->context = &done; 1070 req->complete = ffs_epfile_io_complete; 1071 1072 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1073 if (unlikely(ret < 0)) 1074 goto error_lock; 1075 1076 spin_unlock_irq(&epfile->ffs->eps_lock); 1077 1078 if (unlikely(wait_for_completion_interruptible(&done))) { 1079 /* 1080 * To avoid race condition with ffs_epfile_io_complete, 1081 * dequeue the request first then check 1082 * status. usb_ep_dequeue API should guarantee no race 1083 * condition with req->complete callback. 1084 */ 1085 usb_ep_dequeue(ep->ep, req); 1086 wait_for_completion(&done); 1087 interrupted = ep->status < 0; 1088 } 1089 1090 if (interrupted) 1091 ret = -EINTR; 1092 else if (io_data->read && ep->status > 0) 1093 ret = __ffs_epfile_read_data(epfile, data, ep->status, 1094 &io_data->data); 1095 else 1096 ret = ep->status; 1097 goto error_mutex; 1098 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) { 1099 ret = -ENOMEM; 1100 } else { 1101 if (io_data->use_sg) { 1102 req->buf = NULL; 1103 req->sg = io_data->sgt.sgl; 1104 req->num_sgs = io_data->sgt.nents; 1105 } else { 1106 req->buf = data; 1107 } 1108 req->length = data_len; 1109 1110 io_data->buf = data; 1111 io_data->ep = ep->ep; 1112 io_data->req = req; 1113 io_data->ffs = epfile->ffs; 1114 1115 req->context = io_data; 1116 req->complete = ffs_epfile_async_io_complete; 1117 1118 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1119 if (unlikely(ret)) { 1120 usb_ep_free_request(ep->ep, req); 1121 goto error_lock; 1122 } 1123 1124 ret = -EIOCBQUEUED; 1125 /* 1126 * Do not kfree the buffer in this function. It will be freed 1127 * by ffs_user_copy_worker. 1128 */ 1129 data = NULL; 1130 } 1131 1132 error_lock: 1133 spin_unlock_irq(&epfile->ffs->eps_lock); 1134 error_mutex: 1135 mutex_unlock(&epfile->mutex); 1136 error: 1137 if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */ 1138 ffs_free_buffer(io_data); 1139 return ret; 1140 } 1141 1142 static int 1143 ffs_epfile_open(struct inode *inode, struct file *file) 1144 { 1145 struct ffs_epfile *epfile = inode->i_private; 1146 1147 ENTER(); 1148 1149 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1150 return -ENODEV; 1151 1152 file->private_data = epfile; 1153 ffs_data_opened(epfile->ffs); 1154 1155 return 0; 1156 } 1157 1158 static int ffs_aio_cancel(struct kiocb *kiocb) 1159 { 1160 struct ffs_io_data *io_data = kiocb->private; 1161 struct ffs_epfile *epfile = kiocb->ki_filp->private_data; 1162 int value; 1163 1164 ENTER(); 1165 1166 spin_lock_irq(&epfile->ffs->eps_lock); 1167 1168 if (likely(io_data && io_data->ep && io_data->req)) 1169 value = usb_ep_dequeue(io_data->ep, io_data->req); 1170 else 1171 value = -EINVAL; 1172 1173 spin_unlock_irq(&epfile->ffs->eps_lock); 1174 1175 return value; 1176 } 1177 1178 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from) 1179 { 1180 struct ffs_io_data io_data, *p = &io_data; 1181 ssize_t res; 1182 1183 ENTER(); 1184 1185 if (!is_sync_kiocb(kiocb)) { 1186 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1187 if (unlikely(!p)) 1188 return -ENOMEM; 1189 p->aio = true; 1190 } else { 1191 memset(p, 0, sizeof(*p)); 1192 p->aio = false; 1193 } 1194 1195 p->read = false; 1196 p->kiocb = kiocb; 1197 p->data = *from; 1198 p->mm = current->mm; 1199 1200 kiocb->private = p; 1201 1202 if (p->aio) 1203 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1204 1205 res = ffs_epfile_io(kiocb->ki_filp, p); 1206 if (res == -EIOCBQUEUED) 1207 return res; 1208 if (p->aio) 1209 kfree(p); 1210 else 1211 *from = p->data; 1212 return res; 1213 } 1214 1215 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to) 1216 { 1217 struct ffs_io_data io_data, *p = &io_data; 1218 ssize_t res; 1219 1220 ENTER(); 1221 1222 if (!is_sync_kiocb(kiocb)) { 1223 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1224 if (unlikely(!p)) 1225 return -ENOMEM; 1226 p->aio = true; 1227 } else { 1228 memset(p, 0, sizeof(*p)); 1229 p->aio = false; 1230 } 1231 1232 p->read = true; 1233 p->kiocb = kiocb; 1234 if (p->aio) { 1235 p->to_free = dup_iter(&p->data, to, GFP_KERNEL); 1236 if (!p->to_free) { 1237 kfree(p); 1238 return -ENOMEM; 1239 } 1240 } else { 1241 p->data = *to; 1242 p->to_free = NULL; 1243 } 1244 p->mm = current->mm; 1245 1246 kiocb->private = p; 1247 1248 if (p->aio) 1249 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1250 1251 res = ffs_epfile_io(kiocb->ki_filp, p); 1252 if (res == -EIOCBQUEUED) 1253 return res; 1254 1255 if (p->aio) { 1256 kfree(p->to_free); 1257 kfree(p); 1258 } else { 1259 *to = p->data; 1260 } 1261 return res; 1262 } 1263 1264 static int 1265 ffs_epfile_release(struct inode *inode, struct file *file) 1266 { 1267 struct ffs_epfile *epfile = inode->i_private; 1268 1269 ENTER(); 1270 1271 __ffs_epfile_read_buffer_free(epfile); 1272 ffs_data_closed(epfile->ffs); 1273 1274 return 0; 1275 } 1276 1277 static long ffs_epfile_ioctl(struct file *file, unsigned code, 1278 unsigned long value) 1279 { 1280 struct ffs_epfile *epfile = file->private_data; 1281 struct ffs_ep *ep; 1282 int ret; 1283 1284 ENTER(); 1285 1286 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1287 return -ENODEV; 1288 1289 /* Wait for endpoint to be enabled */ 1290 ep = epfile->ep; 1291 if (!ep) { 1292 if (file->f_flags & O_NONBLOCK) 1293 return -EAGAIN; 1294 1295 ret = wait_event_interruptible( 1296 epfile->ffs->wait, (ep = epfile->ep)); 1297 if (ret) 1298 return -EINTR; 1299 } 1300 1301 spin_lock_irq(&epfile->ffs->eps_lock); 1302 1303 /* In the meantime, endpoint got disabled or changed. */ 1304 if (epfile->ep != ep) { 1305 spin_unlock_irq(&epfile->ffs->eps_lock); 1306 return -ESHUTDOWN; 1307 } 1308 1309 switch (code) { 1310 case FUNCTIONFS_FIFO_STATUS: 1311 ret = usb_ep_fifo_status(epfile->ep->ep); 1312 break; 1313 case FUNCTIONFS_FIFO_FLUSH: 1314 usb_ep_fifo_flush(epfile->ep->ep); 1315 ret = 0; 1316 break; 1317 case FUNCTIONFS_CLEAR_HALT: 1318 ret = usb_ep_clear_halt(epfile->ep->ep); 1319 break; 1320 case FUNCTIONFS_ENDPOINT_REVMAP: 1321 ret = epfile->ep->num; 1322 break; 1323 case FUNCTIONFS_ENDPOINT_DESC: 1324 { 1325 int desc_idx; 1326 struct usb_endpoint_descriptor *desc; 1327 1328 switch (epfile->ffs->gadget->speed) { 1329 case USB_SPEED_SUPER: 1330 desc_idx = 2; 1331 break; 1332 case USB_SPEED_HIGH: 1333 desc_idx = 1; 1334 break; 1335 default: 1336 desc_idx = 0; 1337 } 1338 desc = epfile->ep->descs[desc_idx]; 1339 1340 spin_unlock_irq(&epfile->ffs->eps_lock); 1341 ret = copy_to_user((void __user *)value, desc, desc->bLength); 1342 if (ret) 1343 ret = -EFAULT; 1344 return ret; 1345 } 1346 default: 1347 ret = -ENOTTY; 1348 } 1349 spin_unlock_irq(&epfile->ffs->eps_lock); 1350 1351 return ret; 1352 } 1353 1354 #ifdef CONFIG_COMPAT 1355 static long ffs_epfile_compat_ioctl(struct file *file, unsigned code, 1356 unsigned long value) 1357 { 1358 return ffs_epfile_ioctl(file, code, value); 1359 } 1360 #endif 1361 1362 static const struct file_operations ffs_epfile_operations = { 1363 .llseek = no_llseek, 1364 1365 .open = ffs_epfile_open, 1366 .write_iter = ffs_epfile_write_iter, 1367 .read_iter = ffs_epfile_read_iter, 1368 .release = ffs_epfile_release, 1369 .unlocked_ioctl = ffs_epfile_ioctl, 1370 #ifdef CONFIG_COMPAT 1371 .compat_ioctl = ffs_epfile_compat_ioctl, 1372 #endif 1373 }; 1374 1375 1376 /* File system and super block operations ***********************************/ 1377 1378 /* 1379 * Mounting the file system creates a controller file, used first for 1380 * function configuration then later for event monitoring. 1381 */ 1382 1383 static struct inode *__must_check 1384 ffs_sb_make_inode(struct super_block *sb, void *data, 1385 const struct file_operations *fops, 1386 const struct inode_operations *iops, 1387 struct ffs_file_perms *perms) 1388 { 1389 struct inode *inode; 1390 1391 ENTER(); 1392 1393 inode = new_inode(sb); 1394 1395 if (likely(inode)) { 1396 struct timespec64 ts = current_time(inode); 1397 1398 inode->i_ino = get_next_ino(); 1399 inode->i_mode = perms->mode; 1400 inode->i_uid = perms->uid; 1401 inode->i_gid = perms->gid; 1402 inode->i_atime = ts; 1403 inode->i_mtime = ts; 1404 inode->i_ctime = ts; 1405 inode->i_private = data; 1406 if (fops) 1407 inode->i_fop = fops; 1408 if (iops) 1409 inode->i_op = iops; 1410 } 1411 1412 return inode; 1413 } 1414 1415 /* Create "regular" file */ 1416 static struct dentry *ffs_sb_create_file(struct super_block *sb, 1417 const char *name, void *data, 1418 const struct file_operations *fops) 1419 { 1420 struct ffs_data *ffs = sb->s_fs_info; 1421 struct dentry *dentry; 1422 struct inode *inode; 1423 1424 ENTER(); 1425 1426 dentry = d_alloc_name(sb->s_root, name); 1427 if (unlikely(!dentry)) 1428 return NULL; 1429 1430 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); 1431 if (unlikely(!inode)) { 1432 dput(dentry); 1433 return NULL; 1434 } 1435 1436 d_add(dentry, inode); 1437 return dentry; 1438 } 1439 1440 /* Super block */ 1441 static const struct super_operations ffs_sb_operations = { 1442 .statfs = simple_statfs, 1443 .drop_inode = generic_delete_inode, 1444 }; 1445 1446 struct ffs_sb_fill_data { 1447 struct ffs_file_perms perms; 1448 umode_t root_mode; 1449 const char *dev_name; 1450 bool no_disconnect; 1451 struct ffs_data *ffs_data; 1452 }; 1453 1454 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent) 1455 { 1456 struct ffs_sb_fill_data *data = _data; 1457 struct inode *inode; 1458 struct ffs_data *ffs = data->ffs_data; 1459 1460 ENTER(); 1461 1462 ffs->sb = sb; 1463 data->ffs_data = NULL; 1464 sb->s_fs_info = ffs; 1465 sb->s_blocksize = PAGE_SIZE; 1466 sb->s_blocksize_bits = PAGE_SHIFT; 1467 sb->s_magic = FUNCTIONFS_MAGIC; 1468 sb->s_op = &ffs_sb_operations; 1469 sb->s_time_gran = 1; 1470 1471 /* Root inode */ 1472 data->perms.mode = data->root_mode; 1473 inode = ffs_sb_make_inode(sb, NULL, 1474 &simple_dir_operations, 1475 &simple_dir_inode_operations, 1476 &data->perms); 1477 sb->s_root = d_make_root(inode); 1478 if (unlikely(!sb->s_root)) 1479 return -ENOMEM; 1480 1481 /* EP0 file */ 1482 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs, 1483 &ffs_ep0_operations))) 1484 return -ENOMEM; 1485 1486 return 0; 1487 } 1488 1489 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts) 1490 { 1491 ENTER(); 1492 1493 if (!opts || !*opts) 1494 return 0; 1495 1496 for (;;) { 1497 unsigned long value; 1498 char *eq, *comma; 1499 1500 /* Option limit */ 1501 comma = strchr(opts, ','); 1502 if (comma) 1503 *comma = 0; 1504 1505 /* Value limit */ 1506 eq = strchr(opts, '='); 1507 if (unlikely(!eq)) { 1508 pr_err("'=' missing in %s\n", opts); 1509 return -EINVAL; 1510 } 1511 *eq = 0; 1512 1513 /* Parse value */ 1514 if (kstrtoul(eq + 1, 0, &value)) { 1515 pr_err("%s: invalid value: %s\n", opts, eq + 1); 1516 return -EINVAL; 1517 } 1518 1519 /* Interpret option */ 1520 switch (eq - opts) { 1521 case 13: 1522 if (!memcmp(opts, "no_disconnect", 13)) 1523 data->no_disconnect = !!value; 1524 else 1525 goto invalid; 1526 break; 1527 case 5: 1528 if (!memcmp(opts, "rmode", 5)) 1529 data->root_mode = (value & 0555) | S_IFDIR; 1530 else if (!memcmp(opts, "fmode", 5)) 1531 data->perms.mode = (value & 0666) | S_IFREG; 1532 else 1533 goto invalid; 1534 break; 1535 1536 case 4: 1537 if (!memcmp(opts, "mode", 4)) { 1538 data->root_mode = (value & 0555) | S_IFDIR; 1539 data->perms.mode = (value & 0666) | S_IFREG; 1540 } else { 1541 goto invalid; 1542 } 1543 break; 1544 1545 case 3: 1546 if (!memcmp(opts, "uid", 3)) { 1547 data->perms.uid = make_kuid(current_user_ns(), value); 1548 if (!uid_valid(data->perms.uid)) { 1549 pr_err("%s: unmapped value: %lu\n", opts, value); 1550 return -EINVAL; 1551 } 1552 } else if (!memcmp(opts, "gid", 3)) { 1553 data->perms.gid = make_kgid(current_user_ns(), value); 1554 if (!gid_valid(data->perms.gid)) { 1555 pr_err("%s: unmapped value: %lu\n", opts, value); 1556 return -EINVAL; 1557 } 1558 } else { 1559 goto invalid; 1560 } 1561 break; 1562 1563 default: 1564 invalid: 1565 pr_err("%s: invalid option\n", opts); 1566 return -EINVAL; 1567 } 1568 1569 /* Next iteration */ 1570 if (!comma) 1571 break; 1572 opts = comma + 1; 1573 } 1574 1575 return 0; 1576 } 1577 1578 /* "mount -t functionfs dev_name /dev/function" ends up here */ 1579 1580 static struct dentry * 1581 ffs_fs_mount(struct file_system_type *t, int flags, 1582 const char *dev_name, void *opts) 1583 { 1584 struct ffs_sb_fill_data data = { 1585 .perms = { 1586 .mode = S_IFREG | 0600, 1587 .uid = GLOBAL_ROOT_UID, 1588 .gid = GLOBAL_ROOT_GID, 1589 }, 1590 .root_mode = S_IFDIR | 0500, 1591 .no_disconnect = false, 1592 }; 1593 struct dentry *rv; 1594 int ret; 1595 void *ffs_dev; 1596 struct ffs_data *ffs; 1597 1598 ENTER(); 1599 1600 ret = ffs_fs_parse_opts(&data, opts); 1601 if (unlikely(ret < 0)) 1602 return ERR_PTR(ret); 1603 1604 ffs = ffs_data_new(dev_name); 1605 if (unlikely(!ffs)) 1606 return ERR_PTR(-ENOMEM); 1607 ffs->file_perms = data.perms; 1608 ffs->no_disconnect = data.no_disconnect; 1609 1610 ffs->dev_name = kstrdup(dev_name, GFP_KERNEL); 1611 if (unlikely(!ffs->dev_name)) { 1612 ffs_data_put(ffs); 1613 return ERR_PTR(-ENOMEM); 1614 } 1615 1616 ffs_dev = ffs_acquire_dev(dev_name); 1617 if (IS_ERR(ffs_dev)) { 1618 ffs_data_put(ffs); 1619 return ERR_CAST(ffs_dev); 1620 } 1621 ffs->private_data = ffs_dev; 1622 data.ffs_data = ffs; 1623 1624 rv = mount_nodev(t, flags, &data, ffs_sb_fill); 1625 if (IS_ERR(rv) && data.ffs_data) { 1626 ffs_release_dev(data.ffs_data); 1627 ffs_data_put(data.ffs_data); 1628 } 1629 return rv; 1630 } 1631 1632 static void 1633 ffs_fs_kill_sb(struct super_block *sb) 1634 { 1635 ENTER(); 1636 1637 kill_litter_super(sb); 1638 if (sb->s_fs_info) { 1639 ffs_release_dev(sb->s_fs_info); 1640 ffs_data_closed(sb->s_fs_info); 1641 } 1642 } 1643 1644 static struct file_system_type ffs_fs_type = { 1645 .owner = THIS_MODULE, 1646 .name = "functionfs", 1647 .mount = ffs_fs_mount, 1648 .kill_sb = ffs_fs_kill_sb, 1649 }; 1650 MODULE_ALIAS_FS("functionfs"); 1651 1652 1653 /* Driver's main init/cleanup functions *************************************/ 1654 1655 static int functionfs_init(void) 1656 { 1657 int ret; 1658 1659 ENTER(); 1660 1661 ret = register_filesystem(&ffs_fs_type); 1662 if (likely(!ret)) 1663 pr_info("file system registered\n"); 1664 else 1665 pr_err("failed registering file system (%d)\n", ret); 1666 1667 return ret; 1668 } 1669 1670 static void functionfs_cleanup(void) 1671 { 1672 ENTER(); 1673 1674 pr_info("unloading\n"); 1675 unregister_filesystem(&ffs_fs_type); 1676 } 1677 1678 1679 /* ffs_data and ffs_function construction and destruction code **************/ 1680 1681 static void ffs_data_clear(struct ffs_data *ffs); 1682 static void ffs_data_reset(struct ffs_data *ffs); 1683 1684 static void ffs_data_get(struct ffs_data *ffs) 1685 { 1686 ENTER(); 1687 1688 refcount_inc(&ffs->ref); 1689 } 1690 1691 static void ffs_data_opened(struct ffs_data *ffs) 1692 { 1693 ENTER(); 1694 1695 refcount_inc(&ffs->ref); 1696 if (atomic_add_return(1, &ffs->opened) == 1 && 1697 ffs->state == FFS_DEACTIVATED) { 1698 ffs->state = FFS_CLOSING; 1699 ffs_data_reset(ffs); 1700 } 1701 } 1702 1703 static void ffs_data_put(struct ffs_data *ffs) 1704 { 1705 ENTER(); 1706 1707 if (unlikely(refcount_dec_and_test(&ffs->ref))) { 1708 pr_info("%s(): freeing\n", __func__); 1709 ffs_data_clear(ffs); 1710 BUG_ON(waitqueue_active(&ffs->ev.waitq) || 1711 waitqueue_active(&ffs->ep0req_completion.wait) || 1712 waitqueue_active(&ffs->wait)); 1713 destroy_workqueue(ffs->io_completion_wq); 1714 kfree(ffs->dev_name); 1715 kfree(ffs); 1716 } 1717 } 1718 1719 static void ffs_data_closed(struct ffs_data *ffs) 1720 { 1721 ENTER(); 1722 1723 if (atomic_dec_and_test(&ffs->opened)) { 1724 if (ffs->no_disconnect) { 1725 ffs->state = FFS_DEACTIVATED; 1726 if (ffs->epfiles) { 1727 ffs_epfiles_destroy(ffs->epfiles, 1728 ffs->eps_count); 1729 ffs->epfiles = NULL; 1730 } 1731 if (ffs->setup_state == FFS_SETUP_PENDING) 1732 __ffs_ep0_stall(ffs); 1733 } else { 1734 ffs->state = FFS_CLOSING; 1735 ffs_data_reset(ffs); 1736 } 1737 } 1738 if (atomic_read(&ffs->opened) < 0) { 1739 ffs->state = FFS_CLOSING; 1740 ffs_data_reset(ffs); 1741 } 1742 1743 ffs_data_put(ffs); 1744 } 1745 1746 static struct ffs_data *ffs_data_new(const char *dev_name) 1747 { 1748 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); 1749 if (unlikely(!ffs)) 1750 return NULL; 1751 1752 ENTER(); 1753 1754 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name); 1755 if (!ffs->io_completion_wq) { 1756 kfree(ffs); 1757 return NULL; 1758 } 1759 1760 refcount_set(&ffs->ref, 1); 1761 atomic_set(&ffs->opened, 0); 1762 ffs->state = FFS_READ_DESCRIPTORS; 1763 mutex_init(&ffs->mutex); 1764 spin_lock_init(&ffs->eps_lock); 1765 init_waitqueue_head(&ffs->ev.waitq); 1766 init_waitqueue_head(&ffs->wait); 1767 init_completion(&ffs->ep0req_completion); 1768 1769 /* XXX REVISIT need to update it in some places, or do we? */ 1770 ffs->ev.can_stall = 1; 1771 1772 return ffs; 1773 } 1774 1775 static void ffs_data_clear(struct ffs_data *ffs) 1776 { 1777 ENTER(); 1778 1779 ffs_closed(ffs); 1780 1781 BUG_ON(ffs->gadget); 1782 1783 if (ffs->epfiles) 1784 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count); 1785 1786 if (ffs->ffs_eventfd) 1787 eventfd_ctx_put(ffs->ffs_eventfd); 1788 1789 kfree(ffs->raw_descs_data); 1790 kfree(ffs->raw_strings); 1791 kfree(ffs->stringtabs); 1792 } 1793 1794 static void ffs_data_reset(struct ffs_data *ffs) 1795 { 1796 ENTER(); 1797 1798 ffs_data_clear(ffs); 1799 1800 ffs->epfiles = NULL; 1801 ffs->raw_descs_data = NULL; 1802 ffs->raw_descs = NULL; 1803 ffs->raw_strings = NULL; 1804 ffs->stringtabs = NULL; 1805 1806 ffs->raw_descs_length = 0; 1807 ffs->fs_descs_count = 0; 1808 ffs->hs_descs_count = 0; 1809 ffs->ss_descs_count = 0; 1810 1811 ffs->strings_count = 0; 1812 ffs->interfaces_count = 0; 1813 ffs->eps_count = 0; 1814 1815 ffs->ev.count = 0; 1816 1817 ffs->state = FFS_READ_DESCRIPTORS; 1818 ffs->setup_state = FFS_NO_SETUP; 1819 ffs->flags = 0; 1820 } 1821 1822 1823 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) 1824 { 1825 struct usb_gadget_strings **lang; 1826 int first_id; 1827 1828 ENTER(); 1829 1830 if (WARN_ON(ffs->state != FFS_ACTIVE 1831 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) 1832 return -EBADFD; 1833 1834 first_id = usb_string_ids_n(cdev, ffs->strings_count); 1835 if (unlikely(first_id < 0)) 1836 return first_id; 1837 1838 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); 1839 if (unlikely(!ffs->ep0req)) 1840 return -ENOMEM; 1841 ffs->ep0req->complete = ffs_ep0_complete; 1842 ffs->ep0req->context = ffs; 1843 1844 lang = ffs->stringtabs; 1845 if (lang) { 1846 for (; *lang; ++lang) { 1847 struct usb_string *str = (*lang)->strings; 1848 int id = first_id; 1849 for (; str->s; ++id, ++str) 1850 str->id = id; 1851 } 1852 } 1853 1854 ffs->gadget = cdev->gadget; 1855 ffs_data_get(ffs); 1856 return 0; 1857 } 1858 1859 static void functionfs_unbind(struct ffs_data *ffs) 1860 { 1861 ENTER(); 1862 1863 if (!WARN_ON(!ffs->gadget)) { 1864 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); 1865 ffs->ep0req = NULL; 1866 ffs->gadget = NULL; 1867 clear_bit(FFS_FL_BOUND, &ffs->flags); 1868 ffs_data_put(ffs); 1869 } 1870 } 1871 1872 static int ffs_epfiles_create(struct ffs_data *ffs) 1873 { 1874 struct ffs_epfile *epfile, *epfiles; 1875 unsigned i, count; 1876 1877 ENTER(); 1878 1879 count = ffs->eps_count; 1880 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); 1881 if (!epfiles) 1882 return -ENOMEM; 1883 1884 epfile = epfiles; 1885 for (i = 1; i <= count; ++i, ++epfile) { 1886 epfile->ffs = ffs; 1887 mutex_init(&epfile->mutex); 1888 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 1889 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]); 1890 else 1891 sprintf(epfile->name, "ep%u", i); 1892 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name, 1893 epfile, 1894 &ffs_epfile_operations); 1895 if (unlikely(!epfile->dentry)) { 1896 ffs_epfiles_destroy(epfiles, i - 1); 1897 return -ENOMEM; 1898 } 1899 } 1900 1901 ffs->epfiles = epfiles; 1902 return 0; 1903 } 1904 1905 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count) 1906 { 1907 struct ffs_epfile *epfile = epfiles; 1908 1909 ENTER(); 1910 1911 for (; count; --count, ++epfile) { 1912 BUG_ON(mutex_is_locked(&epfile->mutex)); 1913 if (epfile->dentry) { 1914 d_delete(epfile->dentry); 1915 dput(epfile->dentry); 1916 epfile->dentry = NULL; 1917 } 1918 } 1919 1920 kfree(epfiles); 1921 } 1922 1923 static void ffs_func_eps_disable(struct ffs_function *func) 1924 { 1925 struct ffs_ep *ep = func->eps; 1926 struct ffs_epfile *epfile = func->ffs->epfiles; 1927 unsigned count = func->ffs->eps_count; 1928 unsigned long flags; 1929 1930 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1931 while (count--) { 1932 /* pending requests get nuked */ 1933 if (likely(ep->ep)) 1934 usb_ep_disable(ep->ep); 1935 ++ep; 1936 1937 if (epfile) { 1938 epfile->ep = NULL; 1939 __ffs_epfile_read_buffer_free(epfile); 1940 ++epfile; 1941 } 1942 } 1943 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1944 } 1945 1946 static int ffs_func_eps_enable(struct ffs_function *func) 1947 { 1948 struct ffs_data *ffs = func->ffs; 1949 struct ffs_ep *ep = func->eps; 1950 struct ffs_epfile *epfile = ffs->epfiles; 1951 unsigned count = ffs->eps_count; 1952 unsigned long flags; 1953 int ret = 0; 1954 1955 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1956 while(count--) { 1957 ep->ep->driver_data = ep; 1958 1959 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep); 1960 if (ret) { 1961 pr_err("%s: config_ep_by_speed(%s) returned %d\n", 1962 __func__, ep->ep->name, ret); 1963 break; 1964 } 1965 1966 ret = usb_ep_enable(ep->ep); 1967 if (likely(!ret)) { 1968 epfile->ep = ep; 1969 epfile->in = usb_endpoint_dir_in(ep->ep->desc); 1970 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc); 1971 } else { 1972 break; 1973 } 1974 1975 ++ep; 1976 ++epfile; 1977 } 1978 1979 wake_up_interruptible(&ffs->wait); 1980 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1981 1982 return ret; 1983 } 1984 1985 1986 /* Parsing and building descriptors and strings *****************************/ 1987 1988 /* 1989 * This validates if data pointed by data is a valid USB descriptor as 1990 * well as record how many interfaces, endpoints and strings are 1991 * required by given configuration. Returns address after the 1992 * descriptor or NULL if data is invalid. 1993 */ 1994 1995 enum ffs_entity_type { 1996 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT 1997 }; 1998 1999 enum ffs_os_desc_type { 2000 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP 2001 }; 2002 2003 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, 2004 u8 *valuep, 2005 struct usb_descriptor_header *desc, 2006 void *priv); 2007 2008 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, 2009 struct usb_os_desc_header *h, void *data, 2010 unsigned len, void *priv); 2011 2012 static int __must_check ffs_do_single_desc(char *data, unsigned len, 2013 ffs_entity_callback entity, 2014 void *priv, int *current_class) 2015 { 2016 struct usb_descriptor_header *_ds = (void *)data; 2017 u8 length; 2018 int ret; 2019 2020 ENTER(); 2021 2022 /* At least two bytes are required: length and type */ 2023 if (len < 2) { 2024 pr_vdebug("descriptor too short\n"); 2025 return -EINVAL; 2026 } 2027 2028 /* If we have at least as many bytes as the descriptor takes? */ 2029 length = _ds->bLength; 2030 if (len < length) { 2031 pr_vdebug("descriptor longer then available data\n"); 2032 return -EINVAL; 2033 } 2034 2035 #define __entity_check_INTERFACE(val) 1 2036 #define __entity_check_STRING(val) (val) 2037 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) 2038 #define __entity(type, val) do { \ 2039 pr_vdebug("entity " #type "(%02x)\n", (val)); \ 2040 if (unlikely(!__entity_check_ ##type(val))) { \ 2041 pr_vdebug("invalid entity's value\n"); \ 2042 return -EINVAL; \ 2043 } \ 2044 ret = entity(FFS_ ##type, &val, _ds, priv); \ 2045 if (unlikely(ret < 0)) { \ 2046 pr_debug("entity " #type "(%02x); ret = %d\n", \ 2047 (val), ret); \ 2048 return ret; \ 2049 } \ 2050 } while (0) 2051 2052 /* Parse descriptor depending on type. */ 2053 switch (_ds->bDescriptorType) { 2054 case USB_DT_DEVICE: 2055 case USB_DT_CONFIG: 2056 case USB_DT_STRING: 2057 case USB_DT_DEVICE_QUALIFIER: 2058 /* function can't have any of those */ 2059 pr_vdebug("descriptor reserved for gadget: %d\n", 2060 _ds->bDescriptorType); 2061 return -EINVAL; 2062 2063 case USB_DT_INTERFACE: { 2064 struct usb_interface_descriptor *ds = (void *)_ds; 2065 pr_vdebug("interface descriptor\n"); 2066 if (length != sizeof *ds) 2067 goto inv_length; 2068 2069 __entity(INTERFACE, ds->bInterfaceNumber); 2070 if (ds->iInterface) 2071 __entity(STRING, ds->iInterface); 2072 *current_class = ds->bInterfaceClass; 2073 } 2074 break; 2075 2076 case USB_DT_ENDPOINT: { 2077 struct usb_endpoint_descriptor *ds = (void *)_ds; 2078 pr_vdebug("endpoint descriptor\n"); 2079 if (length != USB_DT_ENDPOINT_SIZE && 2080 length != USB_DT_ENDPOINT_AUDIO_SIZE) 2081 goto inv_length; 2082 __entity(ENDPOINT, ds->bEndpointAddress); 2083 } 2084 break; 2085 2086 case USB_TYPE_CLASS | 0x01: 2087 if (*current_class == USB_INTERFACE_CLASS_HID) { 2088 pr_vdebug("hid descriptor\n"); 2089 if (length != sizeof(struct hid_descriptor)) 2090 goto inv_length; 2091 break; 2092 } else if (*current_class == USB_INTERFACE_CLASS_CCID) { 2093 pr_vdebug("ccid descriptor\n"); 2094 if (length != sizeof(struct ccid_descriptor)) 2095 goto inv_length; 2096 break; 2097 } else { 2098 pr_vdebug("unknown descriptor: %d for class %d\n", 2099 _ds->bDescriptorType, *current_class); 2100 return -EINVAL; 2101 } 2102 2103 case USB_DT_OTG: 2104 if (length != sizeof(struct usb_otg_descriptor)) 2105 goto inv_length; 2106 break; 2107 2108 case USB_DT_INTERFACE_ASSOCIATION: { 2109 struct usb_interface_assoc_descriptor *ds = (void *)_ds; 2110 pr_vdebug("interface association descriptor\n"); 2111 if (length != sizeof *ds) 2112 goto inv_length; 2113 if (ds->iFunction) 2114 __entity(STRING, ds->iFunction); 2115 } 2116 break; 2117 2118 case USB_DT_SS_ENDPOINT_COMP: 2119 pr_vdebug("EP SS companion descriptor\n"); 2120 if (length != sizeof(struct usb_ss_ep_comp_descriptor)) 2121 goto inv_length; 2122 break; 2123 2124 case USB_DT_OTHER_SPEED_CONFIG: 2125 case USB_DT_INTERFACE_POWER: 2126 case USB_DT_DEBUG: 2127 case USB_DT_SECURITY: 2128 case USB_DT_CS_RADIO_CONTROL: 2129 /* TODO */ 2130 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); 2131 return -EINVAL; 2132 2133 default: 2134 /* We should never be here */ 2135 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); 2136 return -EINVAL; 2137 2138 inv_length: 2139 pr_vdebug("invalid length: %d (descriptor %d)\n", 2140 _ds->bLength, _ds->bDescriptorType); 2141 return -EINVAL; 2142 } 2143 2144 #undef __entity 2145 #undef __entity_check_DESCRIPTOR 2146 #undef __entity_check_INTERFACE 2147 #undef __entity_check_STRING 2148 #undef __entity_check_ENDPOINT 2149 2150 return length; 2151 } 2152 2153 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, 2154 ffs_entity_callback entity, void *priv) 2155 { 2156 const unsigned _len = len; 2157 unsigned long num = 0; 2158 int current_class = -1; 2159 2160 ENTER(); 2161 2162 for (;;) { 2163 int ret; 2164 2165 if (num == count) 2166 data = NULL; 2167 2168 /* Record "descriptor" entity */ 2169 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); 2170 if (unlikely(ret < 0)) { 2171 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", 2172 num, ret); 2173 return ret; 2174 } 2175 2176 if (!data) 2177 return _len - len; 2178 2179 ret = ffs_do_single_desc(data, len, entity, priv, 2180 ¤t_class); 2181 if (unlikely(ret < 0)) { 2182 pr_debug("%s returns %d\n", __func__, ret); 2183 return ret; 2184 } 2185 2186 len -= ret; 2187 data += ret; 2188 ++num; 2189 } 2190 } 2191 2192 static int __ffs_data_do_entity(enum ffs_entity_type type, 2193 u8 *valuep, struct usb_descriptor_header *desc, 2194 void *priv) 2195 { 2196 struct ffs_desc_helper *helper = priv; 2197 struct usb_endpoint_descriptor *d; 2198 2199 ENTER(); 2200 2201 switch (type) { 2202 case FFS_DESCRIPTOR: 2203 break; 2204 2205 case FFS_INTERFACE: 2206 /* 2207 * Interfaces are indexed from zero so if we 2208 * encountered interface "n" then there are at least 2209 * "n+1" interfaces. 2210 */ 2211 if (*valuep >= helper->interfaces_count) 2212 helper->interfaces_count = *valuep + 1; 2213 break; 2214 2215 case FFS_STRING: 2216 /* 2217 * Strings are indexed from 1 (0 is reserved 2218 * for languages list) 2219 */ 2220 if (*valuep > helper->ffs->strings_count) 2221 helper->ffs->strings_count = *valuep; 2222 break; 2223 2224 case FFS_ENDPOINT: 2225 d = (void *)desc; 2226 helper->eps_count++; 2227 if (helper->eps_count >= FFS_MAX_EPS_COUNT) 2228 return -EINVAL; 2229 /* Check if descriptors for any speed were already parsed */ 2230 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count) 2231 helper->ffs->eps_addrmap[helper->eps_count] = 2232 d->bEndpointAddress; 2233 else if (helper->ffs->eps_addrmap[helper->eps_count] != 2234 d->bEndpointAddress) 2235 return -EINVAL; 2236 break; 2237 } 2238 2239 return 0; 2240 } 2241 2242 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, 2243 struct usb_os_desc_header *desc) 2244 { 2245 u16 bcd_version = le16_to_cpu(desc->bcdVersion); 2246 u16 w_index = le16_to_cpu(desc->wIndex); 2247 2248 if (bcd_version != 1) { 2249 pr_vdebug("unsupported os descriptors version: %d", 2250 bcd_version); 2251 return -EINVAL; 2252 } 2253 switch (w_index) { 2254 case 0x4: 2255 *next_type = FFS_OS_DESC_EXT_COMPAT; 2256 break; 2257 case 0x5: 2258 *next_type = FFS_OS_DESC_EXT_PROP; 2259 break; 2260 default: 2261 pr_vdebug("unsupported os descriptor type: %d", w_index); 2262 return -EINVAL; 2263 } 2264 2265 return sizeof(*desc); 2266 } 2267 2268 /* 2269 * Process all extended compatibility/extended property descriptors 2270 * of a feature descriptor 2271 */ 2272 static int __must_check ffs_do_single_os_desc(char *data, unsigned len, 2273 enum ffs_os_desc_type type, 2274 u16 feature_count, 2275 ffs_os_desc_callback entity, 2276 void *priv, 2277 struct usb_os_desc_header *h) 2278 { 2279 int ret; 2280 const unsigned _len = len; 2281 2282 ENTER(); 2283 2284 /* loop over all ext compat/ext prop descriptors */ 2285 while (feature_count--) { 2286 ret = entity(type, h, data, len, priv); 2287 if (unlikely(ret < 0)) { 2288 pr_debug("bad OS descriptor, type: %d\n", type); 2289 return ret; 2290 } 2291 data += ret; 2292 len -= ret; 2293 } 2294 return _len - len; 2295 } 2296 2297 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ 2298 static int __must_check ffs_do_os_descs(unsigned count, 2299 char *data, unsigned len, 2300 ffs_os_desc_callback entity, void *priv) 2301 { 2302 const unsigned _len = len; 2303 unsigned long num = 0; 2304 2305 ENTER(); 2306 2307 for (num = 0; num < count; ++num) { 2308 int ret; 2309 enum ffs_os_desc_type type; 2310 u16 feature_count; 2311 struct usb_os_desc_header *desc = (void *)data; 2312 2313 if (len < sizeof(*desc)) 2314 return -EINVAL; 2315 2316 /* 2317 * Record "descriptor" entity. 2318 * Process dwLength, bcdVersion, wIndex, get b/wCount. 2319 * Move the data pointer to the beginning of extended 2320 * compatibilities proper or extended properties proper 2321 * portions of the data 2322 */ 2323 if (le32_to_cpu(desc->dwLength) > len) 2324 return -EINVAL; 2325 2326 ret = __ffs_do_os_desc_header(&type, desc); 2327 if (unlikely(ret < 0)) { 2328 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", 2329 num, ret); 2330 return ret; 2331 } 2332 /* 2333 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" 2334 */ 2335 feature_count = le16_to_cpu(desc->wCount); 2336 if (type == FFS_OS_DESC_EXT_COMPAT && 2337 (feature_count > 255 || desc->Reserved)) 2338 return -EINVAL; 2339 len -= ret; 2340 data += ret; 2341 2342 /* 2343 * Process all function/property descriptors 2344 * of this Feature Descriptor 2345 */ 2346 ret = ffs_do_single_os_desc(data, len, type, 2347 feature_count, entity, priv, desc); 2348 if (unlikely(ret < 0)) { 2349 pr_debug("%s returns %d\n", __func__, ret); 2350 return ret; 2351 } 2352 2353 len -= ret; 2354 data += ret; 2355 } 2356 return _len - len; 2357 } 2358 2359 /** 2360 * Validate contents of the buffer from userspace related to OS descriptors. 2361 */ 2362 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, 2363 struct usb_os_desc_header *h, void *data, 2364 unsigned len, void *priv) 2365 { 2366 struct ffs_data *ffs = priv; 2367 u8 length; 2368 2369 ENTER(); 2370 2371 switch (type) { 2372 case FFS_OS_DESC_EXT_COMPAT: { 2373 struct usb_ext_compat_desc *d = data; 2374 int i; 2375 2376 if (len < sizeof(*d) || 2377 d->bFirstInterfaceNumber >= ffs->interfaces_count) 2378 return -EINVAL; 2379 if (d->Reserved1 != 1) { 2380 /* 2381 * According to the spec, Reserved1 must be set to 1 2382 * but older kernels incorrectly rejected non-zero 2383 * values. We fix it here to avoid returning EINVAL 2384 * in response to values we used to accept. 2385 */ 2386 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n"); 2387 d->Reserved1 = 1; 2388 } 2389 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) 2390 if (d->Reserved2[i]) 2391 return -EINVAL; 2392 2393 length = sizeof(struct usb_ext_compat_desc); 2394 } 2395 break; 2396 case FFS_OS_DESC_EXT_PROP: { 2397 struct usb_ext_prop_desc *d = data; 2398 u32 type, pdl; 2399 u16 pnl; 2400 2401 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) 2402 return -EINVAL; 2403 length = le32_to_cpu(d->dwSize); 2404 if (len < length) 2405 return -EINVAL; 2406 type = le32_to_cpu(d->dwPropertyDataType); 2407 if (type < USB_EXT_PROP_UNICODE || 2408 type > USB_EXT_PROP_UNICODE_MULTI) { 2409 pr_vdebug("unsupported os descriptor property type: %d", 2410 type); 2411 return -EINVAL; 2412 } 2413 pnl = le16_to_cpu(d->wPropertyNameLength); 2414 if (length < 14 + pnl) { 2415 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n", 2416 length, pnl, type); 2417 return -EINVAL; 2418 } 2419 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl)); 2420 if (length != 14 + pnl + pdl) { 2421 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", 2422 length, pnl, pdl, type); 2423 return -EINVAL; 2424 } 2425 ++ffs->ms_os_descs_ext_prop_count; 2426 /* property name reported to the host as "WCHAR"s */ 2427 ffs->ms_os_descs_ext_prop_name_len += pnl * 2; 2428 ffs->ms_os_descs_ext_prop_data_len += pdl; 2429 } 2430 break; 2431 default: 2432 pr_vdebug("unknown descriptor: %d\n", type); 2433 return -EINVAL; 2434 } 2435 return length; 2436 } 2437 2438 static int __ffs_data_got_descs(struct ffs_data *ffs, 2439 char *const _data, size_t len) 2440 { 2441 char *data = _data, *raw_descs; 2442 unsigned os_descs_count = 0, counts[3], flags; 2443 int ret = -EINVAL, i; 2444 struct ffs_desc_helper helper; 2445 2446 ENTER(); 2447 2448 if (get_unaligned_le32(data + 4) != len) 2449 goto error; 2450 2451 switch (get_unaligned_le32(data)) { 2452 case FUNCTIONFS_DESCRIPTORS_MAGIC: 2453 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; 2454 data += 8; 2455 len -= 8; 2456 break; 2457 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: 2458 flags = get_unaligned_le32(data + 8); 2459 ffs->user_flags = flags; 2460 if (flags & ~(FUNCTIONFS_HAS_FS_DESC | 2461 FUNCTIONFS_HAS_HS_DESC | 2462 FUNCTIONFS_HAS_SS_DESC | 2463 FUNCTIONFS_HAS_MS_OS_DESC | 2464 FUNCTIONFS_VIRTUAL_ADDR | 2465 FUNCTIONFS_EVENTFD | 2466 FUNCTIONFS_ALL_CTRL_RECIP | 2467 FUNCTIONFS_CONFIG0_SETUP)) { 2468 ret = -ENOSYS; 2469 goto error; 2470 } 2471 data += 12; 2472 len -= 12; 2473 break; 2474 default: 2475 goto error; 2476 } 2477 2478 if (flags & FUNCTIONFS_EVENTFD) { 2479 if (len < 4) 2480 goto error; 2481 ffs->ffs_eventfd = 2482 eventfd_ctx_fdget((int)get_unaligned_le32(data)); 2483 if (IS_ERR(ffs->ffs_eventfd)) { 2484 ret = PTR_ERR(ffs->ffs_eventfd); 2485 ffs->ffs_eventfd = NULL; 2486 goto error; 2487 } 2488 data += 4; 2489 len -= 4; 2490 } 2491 2492 /* Read fs_count, hs_count and ss_count (if present) */ 2493 for (i = 0; i < 3; ++i) { 2494 if (!(flags & (1 << i))) { 2495 counts[i] = 0; 2496 } else if (len < 4) { 2497 goto error; 2498 } else { 2499 counts[i] = get_unaligned_le32(data); 2500 data += 4; 2501 len -= 4; 2502 } 2503 } 2504 if (flags & (1 << i)) { 2505 if (len < 4) { 2506 goto error; 2507 } 2508 os_descs_count = get_unaligned_le32(data); 2509 data += 4; 2510 len -= 4; 2511 }; 2512 2513 /* Read descriptors */ 2514 raw_descs = data; 2515 helper.ffs = ffs; 2516 for (i = 0; i < 3; ++i) { 2517 if (!counts[i]) 2518 continue; 2519 helper.interfaces_count = 0; 2520 helper.eps_count = 0; 2521 ret = ffs_do_descs(counts[i], data, len, 2522 __ffs_data_do_entity, &helper); 2523 if (ret < 0) 2524 goto error; 2525 if (!ffs->eps_count && !ffs->interfaces_count) { 2526 ffs->eps_count = helper.eps_count; 2527 ffs->interfaces_count = helper.interfaces_count; 2528 } else { 2529 if (ffs->eps_count != helper.eps_count) { 2530 ret = -EINVAL; 2531 goto error; 2532 } 2533 if (ffs->interfaces_count != helper.interfaces_count) { 2534 ret = -EINVAL; 2535 goto error; 2536 } 2537 } 2538 data += ret; 2539 len -= ret; 2540 } 2541 if (os_descs_count) { 2542 ret = ffs_do_os_descs(os_descs_count, data, len, 2543 __ffs_data_do_os_desc, ffs); 2544 if (ret < 0) 2545 goto error; 2546 data += ret; 2547 len -= ret; 2548 } 2549 2550 if (raw_descs == data || len) { 2551 ret = -EINVAL; 2552 goto error; 2553 } 2554 2555 ffs->raw_descs_data = _data; 2556 ffs->raw_descs = raw_descs; 2557 ffs->raw_descs_length = data - raw_descs; 2558 ffs->fs_descs_count = counts[0]; 2559 ffs->hs_descs_count = counts[1]; 2560 ffs->ss_descs_count = counts[2]; 2561 ffs->ms_os_descs_count = os_descs_count; 2562 2563 return 0; 2564 2565 error: 2566 kfree(_data); 2567 return ret; 2568 } 2569 2570 static int __ffs_data_got_strings(struct ffs_data *ffs, 2571 char *const _data, size_t len) 2572 { 2573 u32 str_count, needed_count, lang_count; 2574 struct usb_gadget_strings **stringtabs, *t; 2575 const char *data = _data; 2576 struct usb_string *s; 2577 2578 ENTER(); 2579 2580 if (unlikely(len < 16 || 2581 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || 2582 get_unaligned_le32(data + 4) != len)) 2583 goto error; 2584 str_count = get_unaligned_le32(data + 8); 2585 lang_count = get_unaligned_le32(data + 12); 2586 2587 /* if one is zero the other must be zero */ 2588 if (unlikely(!str_count != !lang_count)) 2589 goto error; 2590 2591 /* Do we have at least as many strings as descriptors need? */ 2592 needed_count = ffs->strings_count; 2593 if (unlikely(str_count < needed_count)) 2594 goto error; 2595 2596 /* 2597 * If we don't need any strings just return and free all 2598 * memory. 2599 */ 2600 if (!needed_count) { 2601 kfree(_data); 2602 return 0; 2603 } 2604 2605 /* Allocate everything in one chunk so there's less maintenance. */ 2606 { 2607 unsigned i = 0; 2608 vla_group(d); 2609 vla_item(d, struct usb_gadget_strings *, stringtabs, 2610 lang_count + 1); 2611 vla_item(d, struct usb_gadget_strings, stringtab, lang_count); 2612 vla_item(d, struct usb_string, strings, 2613 lang_count*(needed_count+1)); 2614 2615 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); 2616 2617 if (unlikely(!vlabuf)) { 2618 kfree(_data); 2619 return -ENOMEM; 2620 } 2621 2622 /* Initialize the VLA pointers */ 2623 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2624 t = vla_ptr(vlabuf, d, stringtab); 2625 i = lang_count; 2626 do { 2627 *stringtabs++ = t++; 2628 } while (--i); 2629 *stringtabs = NULL; 2630 2631 /* stringtabs = vlabuf = d_stringtabs for later kfree */ 2632 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2633 t = vla_ptr(vlabuf, d, stringtab); 2634 s = vla_ptr(vlabuf, d, strings); 2635 } 2636 2637 /* For each language */ 2638 data += 16; 2639 len -= 16; 2640 2641 do { /* lang_count > 0 so we can use do-while */ 2642 unsigned needed = needed_count; 2643 2644 if (unlikely(len < 3)) 2645 goto error_free; 2646 t->language = get_unaligned_le16(data); 2647 t->strings = s; 2648 ++t; 2649 2650 data += 2; 2651 len -= 2; 2652 2653 /* For each string */ 2654 do { /* str_count > 0 so we can use do-while */ 2655 size_t length = strnlen(data, len); 2656 2657 if (unlikely(length == len)) 2658 goto error_free; 2659 2660 /* 2661 * User may provide more strings then we need, 2662 * if that's the case we simply ignore the 2663 * rest 2664 */ 2665 if (likely(needed)) { 2666 /* 2667 * s->id will be set while adding 2668 * function to configuration so for 2669 * now just leave garbage here. 2670 */ 2671 s->s = data; 2672 --needed; 2673 ++s; 2674 } 2675 2676 data += length + 1; 2677 len -= length + 1; 2678 } while (--str_count); 2679 2680 s->id = 0; /* terminator */ 2681 s->s = NULL; 2682 ++s; 2683 2684 } while (--lang_count); 2685 2686 /* Some garbage left? */ 2687 if (unlikely(len)) 2688 goto error_free; 2689 2690 /* Done! */ 2691 ffs->stringtabs = stringtabs; 2692 ffs->raw_strings = _data; 2693 2694 return 0; 2695 2696 error_free: 2697 kfree(stringtabs); 2698 error: 2699 kfree(_data); 2700 return -EINVAL; 2701 } 2702 2703 2704 /* Events handling and management *******************************************/ 2705 2706 static void __ffs_event_add(struct ffs_data *ffs, 2707 enum usb_functionfs_event_type type) 2708 { 2709 enum usb_functionfs_event_type rem_type1, rem_type2 = type; 2710 int neg = 0; 2711 2712 /* 2713 * Abort any unhandled setup 2714 * 2715 * We do not need to worry about some cmpxchg() changing value 2716 * of ffs->setup_state without holding the lock because when 2717 * state is FFS_SETUP_PENDING cmpxchg() in several places in 2718 * the source does nothing. 2719 */ 2720 if (ffs->setup_state == FFS_SETUP_PENDING) 2721 ffs->setup_state = FFS_SETUP_CANCELLED; 2722 2723 /* 2724 * Logic of this function guarantees that there are at most four pending 2725 * evens on ffs->ev.types queue. This is important because the queue 2726 * has space for four elements only and __ffs_ep0_read_events function 2727 * depends on that limit as well. If more event types are added, those 2728 * limits have to be revisited or guaranteed to still hold. 2729 */ 2730 switch (type) { 2731 case FUNCTIONFS_RESUME: 2732 rem_type2 = FUNCTIONFS_SUSPEND; 2733 /* FALL THROUGH */ 2734 case FUNCTIONFS_SUSPEND: 2735 case FUNCTIONFS_SETUP: 2736 rem_type1 = type; 2737 /* Discard all similar events */ 2738 break; 2739 2740 case FUNCTIONFS_BIND: 2741 case FUNCTIONFS_UNBIND: 2742 case FUNCTIONFS_DISABLE: 2743 case FUNCTIONFS_ENABLE: 2744 /* Discard everything other then power management. */ 2745 rem_type1 = FUNCTIONFS_SUSPEND; 2746 rem_type2 = FUNCTIONFS_RESUME; 2747 neg = 1; 2748 break; 2749 2750 default: 2751 WARN(1, "%d: unknown event, this should not happen\n", type); 2752 return; 2753 } 2754 2755 { 2756 u8 *ev = ffs->ev.types, *out = ev; 2757 unsigned n = ffs->ev.count; 2758 for (; n; --n, ++ev) 2759 if ((*ev == rem_type1 || *ev == rem_type2) == neg) 2760 *out++ = *ev; 2761 else 2762 pr_vdebug("purging event %d\n", *ev); 2763 ffs->ev.count = out - ffs->ev.types; 2764 } 2765 2766 pr_vdebug("adding event %d\n", type); 2767 ffs->ev.types[ffs->ev.count++] = type; 2768 wake_up_locked(&ffs->ev.waitq); 2769 if (ffs->ffs_eventfd) 2770 eventfd_signal(ffs->ffs_eventfd, 1); 2771 } 2772 2773 static void ffs_event_add(struct ffs_data *ffs, 2774 enum usb_functionfs_event_type type) 2775 { 2776 unsigned long flags; 2777 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 2778 __ffs_event_add(ffs, type); 2779 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 2780 } 2781 2782 /* Bind/unbind USB function hooks *******************************************/ 2783 2784 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address) 2785 { 2786 int i; 2787 2788 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i) 2789 if (ffs->eps_addrmap[i] == endpoint_address) 2790 return i; 2791 return -ENOENT; 2792 } 2793 2794 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, 2795 struct usb_descriptor_header *desc, 2796 void *priv) 2797 { 2798 struct usb_endpoint_descriptor *ds = (void *)desc; 2799 struct ffs_function *func = priv; 2800 struct ffs_ep *ffs_ep; 2801 unsigned ep_desc_id; 2802 int idx; 2803 static const char *speed_names[] = { "full", "high", "super" }; 2804 2805 if (type != FFS_DESCRIPTOR) 2806 return 0; 2807 2808 /* 2809 * If ss_descriptors is not NULL, we are reading super speed 2810 * descriptors; if hs_descriptors is not NULL, we are reading high 2811 * speed descriptors; otherwise, we are reading full speed 2812 * descriptors. 2813 */ 2814 if (func->function.ss_descriptors) { 2815 ep_desc_id = 2; 2816 func->function.ss_descriptors[(long)valuep] = desc; 2817 } else if (func->function.hs_descriptors) { 2818 ep_desc_id = 1; 2819 func->function.hs_descriptors[(long)valuep] = desc; 2820 } else { 2821 ep_desc_id = 0; 2822 func->function.fs_descriptors[(long)valuep] = desc; 2823 } 2824 2825 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) 2826 return 0; 2827 2828 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1; 2829 if (idx < 0) 2830 return idx; 2831 2832 ffs_ep = func->eps + idx; 2833 2834 if (unlikely(ffs_ep->descs[ep_desc_id])) { 2835 pr_err("two %sspeed descriptors for EP %d\n", 2836 speed_names[ep_desc_id], 2837 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); 2838 return -EINVAL; 2839 } 2840 ffs_ep->descs[ep_desc_id] = ds; 2841 2842 ffs_dump_mem(": Original ep desc", ds, ds->bLength); 2843 if (ffs_ep->ep) { 2844 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; 2845 if (!ds->wMaxPacketSize) 2846 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; 2847 } else { 2848 struct usb_request *req; 2849 struct usb_ep *ep; 2850 u8 bEndpointAddress; 2851 u16 wMaxPacketSize; 2852 2853 /* 2854 * We back up bEndpointAddress because autoconfig overwrites 2855 * it with physical endpoint address. 2856 */ 2857 bEndpointAddress = ds->bEndpointAddress; 2858 /* 2859 * We back up wMaxPacketSize because autoconfig treats 2860 * endpoint descriptors as if they were full speed. 2861 */ 2862 wMaxPacketSize = ds->wMaxPacketSize; 2863 pr_vdebug("autoconfig\n"); 2864 ep = usb_ep_autoconfig(func->gadget, ds); 2865 if (unlikely(!ep)) 2866 return -ENOTSUPP; 2867 ep->driver_data = func->eps + idx; 2868 2869 req = usb_ep_alloc_request(ep, GFP_KERNEL); 2870 if (unlikely(!req)) 2871 return -ENOMEM; 2872 2873 ffs_ep->ep = ep; 2874 ffs_ep->req = req; 2875 func->eps_revmap[ds->bEndpointAddress & 2876 USB_ENDPOINT_NUMBER_MASK] = idx + 1; 2877 /* 2878 * If we use virtual address mapping, we restore 2879 * original bEndpointAddress value. 2880 */ 2881 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 2882 ds->bEndpointAddress = bEndpointAddress; 2883 /* 2884 * Restore wMaxPacketSize which was potentially 2885 * overwritten by autoconfig. 2886 */ 2887 ds->wMaxPacketSize = wMaxPacketSize; 2888 } 2889 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); 2890 2891 return 0; 2892 } 2893 2894 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, 2895 struct usb_descriptor_header *desc, 2896 void *priv) 2897 { 2898 struct ffs_function *func = priv; 2899 unsigned idx; 2900 u8 newValue; 2901 2902 switch (type) { 2903 default: 2904 case FFS_DESCRIPTOR: 2905 /* Handled in previous pass by __ffs_func_bind_do_descs() */ 2906 return 0; 2907 2908 case FFS_INTERFACE: 2909 idx = *valuep; 2910 if (func->interfaces_nums[idx] < 0) { 2911 int id = usb_interface_id(func->conf, &func->function); 2912 if (unlikely(id < 0)) 2913 return id; 2914 func->interfaces_nums[idx] = id; 2915 } 2916 newValue = func->interfaces_nums[idx]; 2917 break; 2918 2919 case FFS_STRING: 2920 /* String' IDs are allocated when fsf_data is bound to cdev */ 2921 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; 2922 break; 2923 2924 case FFS_ENDPOINT: 2925 /* 2926 * USB_DT_ENDPOINT are handled in 2927 * __ffs_func_bind_do_descs(). 2928 */ 2929 if (desc->bDescriptorType == USB_DT_ENDPOINT) 2930 return 0; 2931 2932 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; 2933 if (unlikely(!func->eps[idx].ep)) 2934 return -EINVAL; 2935 2936 { 2937 struct usb_endpoint_descriptor **descs; 2938 descs = func->eps[idx].descs; 2939 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; 2940 } 2941 break; 2942 } 2943 2944 pr_vdebug("%02x -> %02x\n", *valuep, newValue); 2945 *valuep = newValue; 2946 return 0; 2947 } 2948 2949 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, 2950 struct usb_os_desc_header *h, void *data, 2951 unsigned len, void *priv) 2952 { 2953 struct ffs_function *func = priv; 2954 u8 length = 0; 2955 2956 switch (type) { 2957 case FFS_OS_DESC_EXT_COMPAT: { 2958 struct usb_ext_compat_desc *desc = data; 2959 struct usb_os_desc_table *t; 2960 2961 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; 2962 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; 2963 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID, 2964 ARRAY_SIZE(desc->CompatibleID) + 2965 ARRAY_SIZE(desc->SubCompatibleID)); 2966 length = sizeof(*desc); 2967 } 2968 break; 2969 case FFS_OS_DESC_EXT_PROP: { 2970 struct usb_ext_prop_desc *desc = data; 2971 struct usb_os_desc_table *t; 2972 struct usb_os_desc_ext_prop *ext_prop; 2973 char *ext_prop_name; 2974 char *ext_prop_data; 2975 2976 t = &func->function.os_desc_table[h->interface]; 2977 t->if_id = func->interfaces_nums[h->interface]; 2978 2979 ext_prop = func->ffs->ms_os_descs_ext_prop_avail; 2980 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); 2981 2982 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); 2983 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); 2984 ext_prop->data_len = le32_to_cpu(*(__le32 *) 2985 usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); 2986 length = ext_prop->name_len + ext_prop->data_len + 14; 2987 2988 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; 2989 func->ffs->ms_os_descs_ext_prop_name_avail += 2990 ext_prop->name_len; 2991 2992 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; 2993 func->ffs->ms_os_descs_ext_prop_data_avail += 2994 ext_prop->data_len; 2995 memcpy(ext_prop_data, 2996 usb_ext_prop_data_ptr(data, ext_prop->name_len), 2997 ext_prop->data_len); 2998 /* unicode data reported to the host as "WCHAR"s */ 2999 switch (ext_prop->type) { 3000 case USB_EXT_PROP_UNICODE: 3001 case USB_EXT_PROP_UNICODE_ENV: 3002 case USB_EXT_PROP_UNICODE_LINK: 3003 case USB_EXT_PROP_UNICODE_MULTI: 3004 ext_prop->data_len *= 2; 3005 break; 3006 } 3007 ext_prop->data = ext_prop_data; 3008 3009 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), 3010 ext_prop->name_len); 3011 /* property name reported to the host as "WCHAR"s */ 3012 ext_prop->name_len *= 2; 3013 ext_prop->name = ext_prop_name; 3014 3015 t->os_desc->ext_prop_len += 3016 ext_prop->name_len + ext_prop->data_len + 14; 3017 ++t->os_desc->ext_prop_count; 3018 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); 3019 } 3020 break; 3021 default: 3022 pr_vdebug("unknown descriptor: %d\n", type); 3023 } 3024 3025 return length; 3026 } 3027 3028 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, 3029 struct usb_configuration *c) 3030 { 3031 struct ffs_function *func = ffs_func_from_usb(f); 3032 struct f_fs_opts *ffs_opts = 3033 container_of(f->fi, struct f_fs_opts, func_inst); 3034 int ret; 3035 3036 ENTER(); 3037 3038 /* 3039 * Legacy gadget triggers binding in functionfs_ready_callback, 3040 * which already uses locking; taking the same lock here would 3041 * cause a deadlock. 3042 * 3043 * Configfs-enabled gadgets however do need ffs_dev_lock. 3044 */ 3045 if (!ffs_opts->no_configfs) 3046 ffs_dev_lock(); 3047 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; 3048 func->ffs = ffs_opts->dev->ffs_data; 3049 if (!ffs_opts->no_configfs) 3050 ffs_dev_unlock(); 3051 if (ret) 3052 return ERR_PTR(ret); 3053 3054 func->conf = c; 3055 func->gadget = c->cdev->gadget; 3056 3057 /* 3058 * in drivers/usb/gadget/configfs.c:configfs_composite_bind() 3059 * configurations are bound in sequence with list_for_each_entry, 3060 * in each configuration its functions are bound in sequence 3061 * with list_for_each_entry, so we assume no race condition 3062 * with regard to ffs_opts->bound access 3063 */ 3064 if (!ffs_opts->refcnt) { 3065 ret = functionfs_bind(func->ffs, c->cdev); 3066 if (ret) 3067 return ERR_PTR(ret); 3068 } 3069 ffs_opts->refcnt++; 3070 func->function.strings = func->ffs->stringtabs; 3071 3072 return ffs_opts; 3073 } 3074 3075 static int _ffs_func_bind(struct usb_configuration *c, 3076 struct usb_function *f) 3077 { 3078 struct ffs_function *func = ffs_func_from_usb(f); 3079 struct ffs_data *ffs = func->ffs; 3080 3081 const int full = !!func->ffs->fs_descs_count; 3082 const int high = !!func->ffs->hs_descs_count; 3083 const int super = !!func->ffs->ss_descs_count; 3084 3085 int fs_len, hs_len, ss_len, ret, i; 3086 struct ffs_ep *eps_ptr; 3087 3088 /* Make it a single chunk, less management later on */ 3089 vla_group(d); 3090 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); 3091 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, 3092 full ? ffs->fs_descs_count + 1 : 0); 3093 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, 3094 high ? ffs->hs_descs_count + 1 : 0); 3095 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, 3096 super ? ffs->ss_descs_count + 1 : 0); 3097 vla_item_with_sz(d, short, inums, ffs->interfaces_count); 3098 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, 3099 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3100 vla_item_with_sz(d, char[16], ext_compat, 3101 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3102 vla_item_with_sz(d, struct usb_os_desc, os_desc, 3103 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3104 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, 3105 ffs->ms_os_descs_ext_prop_count); 3106 vla_item_with_sz(d, char, ext_prop_name, 3107 ffs->ms_os_descs_ext_prop_name_len); 3108 vla_item_with_sz(d, char, ext_prop_data, 3109 ffs->ms_os_descs_ext_prop_data_len); 3110 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); 3111 char *vlabuf; 3112 3113 ENTER(); 3114 3115 /* Has descriptors only for speeds gadget does not support */ 3116 if (unlikely(!(full | high | super))) 3117 return -ENOTSUPP; 3118 3119 /* Allocate a single chunk, less management later on */ 3120 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); 3121 if (unlikely(!vlabuf)) 3122 return -ENOMEM; 3123 3124 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); 3125 ffs->ms_os_descs_ext_prop_name_avail = 3126 vla_ptr(vlabuf, d, ext_prop_name); 3127 ffs->ms_os_descs_ext_prop_data_avail = 3128 vla_ptr(vlabuf, d, ext_prop_data); 3129 3130 /* Copy descriptors */ 3131 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, 3132 ffs->raw_descs_length); 3133 3134 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); 3135 eps_ptr = vla_ptr(vlabuf, d, eps); 3136 for (i = 0; i < ffs->eps_count; i++) 3137 eps_ptr[i].num = -1; 3138 3139 /* Save pointers 3140 * d_eps == vlabuf, func->eps used to kfree vlabuf later 3141 */ 3142 func->eps = vla_ptr(vlabuf, d, eps); 3143 func->interfaces_nums = vla_ptr(vlabuf, d, inums); 3144 3145 /* 3146 * Go through all the endpoint descriptors and allocate 3147 * endpoints first, so that later we can rewrite the endpoint 3148 * numbers without worrying that it may be described later on. 3149 */ 3150 if (likely(full)) { 3151 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); 3152 fs_len = ffs_do_descs(ffs->fs_descs_count, 3153 vla_ptr(vlabuf, d, raw_descs), 3154 d_raw_descs__sz, 3155 __ffs_func_bind_do_descs, func); 3156 if (unlikely(fs_len < 0)) { 3157 ret = fs_len; 3158 goto error; 3159 } 3160 } else { 3161 fs_len = 0; 3162 } 3163 3164 if (likely(high)) { 3165 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); 3166 hs_len = ffs_do_descs(ffs->hs_descs_count, 3167 vla_ptr(vlabuf, d, raw_descs) + fs_len, 3168 d_raw_descs__sz - fs_len, 3169 __ffs_func_bind_do_descs, func); 3170 if (unlikely(hs_len < 0)) { 3171 ret = hs_len; 3172 goto error; 3173 } 3174 } else { 3175 hs_len = 0; 3176 } 3177 3178 if (likely(super)) { 3179 func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs); 3180 ss_len = ffs_do_descs(ffs->ss_descs_count, 3181 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, 3182 d_raw_descs__sz - fs_len - hs_len, 3183 __ffs_func_bind_do_descs, func); 3184 if (unlikely(ss_len < 0)) { 3185 ret = ss_len; 3186 goto error; 3187 } 3188 } else { 3189 ss_len = 0; 3190 } 3191 3192 /* 3193 * Now handle interface numbers allocation and interface and 3194 * endpoint numbers rewriting. We can do that in one go 3195 * now. 3196 */ 3197 ret = ffs_do_descs(ffs->fs_descs_count + 3198 (high ? ffs->hs_descs_count : 0) + 3199 (super ? ffs->ss_descs_count : 0), 3200 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, 3201 __ffs_func_bind_do_nums, func); 3202 if (unlikely(ret < 0)) 3203 goto error; 3204 3205 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); 3206 if (c->cdev->use_os_string) { 3207 for (i = 0; i < ffs->interfaces_count; ++i) { 3208 struct usb_os_desc *desc; 3209 3210 desc = func->function.os_desc_table[i].os_desc = 3211 vla_ptr(vlabuf, d, os_desc) + 3212 i * sizeof(struct usb_os_desc); 3213 desc->ext_compat_id = 3214 vla_ptr(vlabuf, d, ext_compat) + i * 16; 3215 INIT_LIST_HEAD(&desc->ext_prop); 3216 } 3217 ret = ffs_do_os_descs(ffs->ms_os_descs_count, 3218 vla_ptr(vlabuf, d, raw_descs) + 3219 fs_len + hs_len + ss_len, 3220 d_raw_descs__sz - fs_len - hs_len - 3221 ss_len, 3222 __ffs_func_bind_do_os_desc, func); 3223 if (unlikely(ret < 0)) 3224 goto error; 3225 } 3226 func->function.os_desc_n = 3227 c->cdev->use_os_string ? ffs->interfaces_count : 0; 3228 3229 /* And we're done */ 3230 ffs_event_add(ffs, FUNCTIONFS_BIND); 3231 return 0; 3232 3233 error: 3234 /* XXX Do we need to release all claimed endpoints here? */ 3235 return ret; 3236 } 3237 3238 static int ffs_func_bind(struct usb_configuration *c, 3239 struct usb_function *f) 3240 { 3241 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); 3242 struct ffs_function *func = ffs_func_from_usb(f); 3243 int ret; 3244 3245 if (IS_ERR(ffs_opts)) 3246 return PTR_ERR(ffs_opts); 3247 3248 ret = _ffs_func_bind(c, f); 3249 if (ret && !--ffs_opts->refcnt) 3250 functionfs_unbind(func->ffs); 3251 3252 return ret; 3253 } 3254 3255 3256 /* Other USB function hooks *************************************************/ 3257 3258 static void ffs_reset_work(struct work_struct *work) 3259 { 3260 struct ffs_data *ffs = container_of(work, 3261 struct ffs_data, reset_work); 3262 ffs_data_reset(ffs); 3263 } 3264 3265 static int ffs_func_set_alt(struct usb_function *f, 3266 unsigned interface, unsigned alt) 3267 { 3268 struct ffs_function *func = ffs_func_from_usb(f); 3269 struct ffs_data *ffs = func->ffs; 3270 int ret = 0, intf; 3271 3272 if (alt != (unsigned)-1) { 3273 intf = ffs_func_revmap_intf(func, interface); 3274 if (unlikely(intf < 0)) 3275 return intf; 3276 } 3277 3278 if (ffs->func) 3279 ffs_func_eps_disable(ffs->func); 3280 3281 if (ffs->state == FFS_DEACTIVATED) { 3282 ffs->state = FFS_CLOSING; 3283 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3284 schedule_work(&ffs->reset_work); 3285 return -ENODEV; 3286 } 3287 3288 if (ffs->state != FFS_ACTIVE) 3289 return -ENODEV; 3290 3291 if (alt == (unsigned)-1) { 3292 ffs->func = NULL; 3293 ffs_event_add(ffs, FUNCTIONFS_DISABLE); 3294 return 0; 3295 } 3296 3297 ffs->func = func; 3298 ret = ffs_func_eps_enable(func); 3299 if (likely(ret >= 0)) 3300 ffs_event_add(ffs, FUNCTIONFS_ENABLE); 3301 return ret; 3302 } 3303 3304 static void ffs_func_disable(struct usb_function *f) 3305 { 3306 ffs_func_set_alt(f, 0, (unsigned)-1); 3307 } 3308 3309 static int ffs_func_setup(struct usb_function *f, 3310 const struct usb_ctrlrequest *creq) 3311 { 3312 struct ffs_function *func = ffs_func_from_usb(f); 3313 struct ffs_data *ffs = func->ffs; 3314 unsigned long flags; 3315 int ret; 3316 3317 ENTER(); 3318 3319 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); 3320 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); 3321 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); 3322 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); 3323 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); 3324 3325 /* 3326 * Most requests directed to interface go through here 3327 * (notable exceptions are set/get interface) so we need to 3328 * handle them. All other either handled by composite or 3329 * passed to usb_configuration->setup() (if one is set). No 3330 * matter, we will handle requests directed to endpoint here 3331 * as well (as it's straightforward). Other request recipient 3332 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP 3333 * is being used. 3334 */ 3335 if (ffs->state != FFS_ACTIVE) 3336 return -ENODEV; 3337 3338 switch (creq->bRequestType & USB_RECIP_MASK) { 3339 case USB_RECIP_INTERFACE: 3340 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); 3341 if (unlikely(ret < 0)) 3342 return ret; 3343 break; 3344 3345 case USB_RECIP_ENDPOINT: 3346 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); 3347 if (unlikely(ret < 0)) 3348 return ret; 3349 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3350 ret = func->ffs->eps_addrmap[ret]; 3351 break; 3352 3353 default: 3354 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP) 3355 ret = le16_to_cpu(creq->wIndex); 3356 else 3357 return -EOPNOTSUPP; 3358 } 3359 3360 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3361 ffs->ev.setup = *creq; 3362 ffs->ev.setup.wIndex = cpu_to_le16(ret); 3363 __ffs_event_add(ffs, FUNCTIONFS_SETUP); 3364 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3365 3366 return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0; 3367 } 3368 3369 static bool ffs_func_req_match(struct usb_function *f, 3370 const struct usb_ctrlrequest *creq, 3371 bool config0) 3372 { 3373 struct ffs_function *func = ffs_func_from_usb(f); 3374 3375 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP)) 3376 return false; 3377 3378 switch (creq->bRequestType & USB_RECIP_MASK) { 3379 case USB_RECIP_INTERFACE: 3380 return (ffs_func_revmap_intf(func, 3381 le16_to_cpu(creq->wIndex)) >= 0); 3382 case USB_RECIP_ENDPOINT: 3383 return (ffs_func_revmap_ep(func, 3384 le16_to_cpu(creq->wIndex)) >= 0); 3385 default: 3386 return (bool) (func->ffs->user_flags & 3387 FUNCTIONFS_ALL_CTRL_RECIP); 3388 } 3389 } 3390 3391 static void ffs_func_suspend(struct usb_function *f) 3392 { 3393 ENTER(); 3394 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); 3395 } 3396 3397 static void ffs_func_resume(struct usb_function *f) 3398 { 3399 ENTER(); 3400 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); 3401 } 3402 3403 3404 /* Endpoint and interface numbers reverse mapping ***************************/ 3405 3406 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) 3407 { 3408 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; 3409 return num ? num : -EDOM; 3410 } 3411 3412 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) 3413 { 3414 short *nums = func->interfaces_nums; 3415 unsigned count = func->ffs->interfaces_count; 3416 3417 for (; count; --count, ++nums) { 3418 if (*nums >= 0 && *nums == intf) 3419 return nums - func->interfaces_nums; 3420 } 3421 3422 return -EDOM; 3423 } 3424 3425 3426 /* Devices management *******************************************************/ 3427 3428 static LIST_HEAD(ffs_devices); 3429 3430 static struct ffs_dev *_ffs_do_find_dev(const char *name) 3431 { 3432 struct ffs_dev *dev; 3433 3434 if (!name) 3435 return NULL; 3436 3437 list_for_each_entry(dev, &ffs_devices, entry) { 3438 if (strcmp(dev->name, name) == 0) 3439 return dev; 3440 } 3441 3442 return NULL; 3443 } 3444 3445 /* 3446 * ffs_lock must be taken by the caller of this function 3447 */ 3448 static struct ffs_dev *_ffs_get_single_dev(void) 3449 { 3450 struct ffs_dev *dev; 3451 3452 if (list_is_singular(&ffs_devices)) { 3453 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); 3454 if (dev->single) 3455 return dev; 3456 } 3457 3458 return NULL; 3459 } 3460 3461 /* 3462 * ffs_lock must be taken by the caller of this function 3463 */ 3464 static struct ffs_dev *_ffs_find_dev(const char *name) 3465 { 3466 struct ffs_dev *dev; 3467 3468 dev = _ffs_get_single_dev(); 3469 if (dev) 3470 return dev; 3471 3472 return _ffs_do_find_dev(name); 3473 } 3474 3475 /* Configfs support *********************************************************/ 3476 3477 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) 3478 { 3479 return container_of(to_config_group(item), struct f_fs_opts, 3480 func_inst.group); 3481 } 3482 3483 static void ffs_attr_release(struct config_item *item) 3484 { 3485 struct f_fs_opts *opts = to_ffs_opts(item); 3486 3487 usb_put_function_instance(&opts->func_inst); 3488 } 3489 3490 static struct configfs_item_operations ffs_item_ops = { 3491 .release = ffs_attr_release, 3492 }; 3493 3494 static const struct config_item_type ffs_func_type = { 3495 .ct_item_ops = &ffs_item_ops, 3496 .ct_owner = THIS_MODULE, 3497 }; 3498 3499 3500 /* Function registration interface ******************************************/ 3501 3502 static void ffs_free_inst(struct usb_function_instance *f) 3503 { 3504 struct f_fs_opts *opts; 3505 3506 opts = to_f_fs_opts(f); 3507 ffs_dev_lock(); 3508 _ffs_free_dev(opts->dev); 3509 ffs_dev_unlock(); 3510 kfree(opts); 3511 } 3512 3513 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) 3514 { 3515 if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name)) 3516 return -ENAMETOOLONG; 3517 return ffs_name_dev(to_f_fs_opts(fi)->dev, name); 3518 } 3519 3520 static struct usb_function_instance *ffs_alloc_inst(void) 3521 { 3522 struct f_fs_opts *opts; 3523 struct ffs_dev *dev; 3524 3525 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 3526 if (!opts) 3527 return ERR_PTR(-ENOMEM); 3528 3529 opts->func_inst.set_inst_name = ffs_set_inst_name; 3530 opts->func_inst.free_func_inst = ffs_free_inst; 3531 ffs_dev_lock(); 3532 dev = _ffs_alloc_dev(); 3533 ffs_dev_unlock(); 3534 if (IS_ERR(dev)) { 3535 kfree(opts); 3536 return ERR_CAST(dev); 3537 } 3538 opts->dev = dev; 3539 dev->opts = opts; 3540 3541 config_group_init_type_name(&opts->func_inst.group, "", 3542 &ffs_func_type); 3543 return &opts->func_inst; 3544 } 3545 3546 static void ffs_free(struct usb_function *f) 3547 { 3548 kfree(ffs_func_from_usb(f)); 3549 } 3550 3551 static void ffs_func_unbind(struct usb_configuration *c, 3552 struct usb_function *f) 3553 { 3554 struct ffs_function *func = ffs_func_from_usb(f); 3555 struct ffs_data *ffs = func->ffs; 3556 struct f_fs_opts *opts = 3557 container_of(f->fi, struct f_fs_opts, func_inst); 3558 struct ffs_ep *ep = func->eps; 3559 unsigned count = ffs->eps_count; 3560 unsigned long flags; 3561 3562 ENTER(); 3563 if (ffs->func == func) { 3564 ffs_func_eps_disable(func); 3565 ffs->func = NULL; 3566 } 3567 3568 if (!--opts->refcnt) 3569 functionfs_unbind(ffs); 3570 3571 /* cleanup after autoconfig */ 3572 spin_lock_irqsave(&func->ffs->eps_lock, flags); 3573 while (count--) { 3574 if (ep->ep && ep->req) 3575 usb_ep_free_request(ep->ep, ep->req); 3576 ep->req = NULL; 3577 ++ep; 3578 } 3579 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 3580 kfree(func->eps); 3581 func->eps = NULL; 3582 /* 3583 * eps, descriptors and interfaces_nums are allocated in the 3584 * same chunk so only one free is required. 3585 */ 3586 func->function.fs_descriptors = NULL; 3587 func->function.hs_descriptors = NULL; 3588 func->function.ss_descriptors = NULL; 3589 func->interfaces_nums = NULL; 3590 3591 ffs_event_add(ffs, FUNCTIONFS_UNBIND); 3592 } 3593 3594 static struct usb_function *ffs_alloc(struct usb_function_instance *fi) 3595 { 3596 struct ffs_function *func; 3597 3598 ENTER(); 3599 3600 func = kzalloc(sizeof(*func), GFP_KERNEL); 3601 if (unlikely(!func)) 3602 return ERR_PTR(-ENOMEM); 3603 3604 func->function.name = "Function FS Gadget"; 3605 3606 func->function.bind = ffs_func_bind; 3607 func->function.unbind = ffs_func_unbind; 3608 func->function.set_alt = ffs_func_set_alt; 3609 func->function.disable = ffs_func_disable; 3610 func->function.setup = ffs_func_setup; 3611 func->function.req_match = ffs_func_req_match; 3612 func->function.suspend = ffs_func_suspend; 3613 func->function.resume = ffs_func_resume; 3614 func->function.free_func = ffs_free; 3615 3616 return &func->function; 3617 } 3618 3619 /* 3620 * ffs_lock must be taken by the caller of this function 3621 */ 3622 static struct ffs_dev *_ffs_alloc_dev(void) 3623 { 3624 struct ffs_dev *dev; 3625 int ret; 3626 3627 if (_ffs_get_single_dev()) 3628 return ERR_PTR(-EBUSY); 3629 3630 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3631 if (!dev) 3632 return ERR_PTR(-ENOMEM); 3633 3634 if (list_empty(&ffs_devices)) { 3635 ret = functionfs_init(); 3636 if (ret) { 3637 kfree(dev); 3638 return ERR_PTR(ret); 3639 } 3640 } 3641 3642 list_add(&dev->entry, &ffs_devices); 3643 3644 return dev; 3645 } 3646 3647 int ffs_name_dev(struct ffs_dev *dev, const char *name) 3648 { 3649 struct ffs_dev *existing; 3650 int ret = 0; 3651 3652 ffs_dev_lock(); 3653 3654 existing = _ffs_do_find_dev(name); 3655 if (!existing) 3656 strlcpy(dev->name, name, ARRAY_SIZE(dev->name)); 3657 else if (existing != dev) 3658 ret = -EBUSY; 3659 3660 ffs_dev_unlock(); 3661 3662 return ret; 3663 } 3664 EXPORT_SYMBOL_GPL(ffs_name_dev); 3665 3666 int ffs_single_dev(struct ffs_dev *dev) 3667 { 3668 int ret; 3669 3670 ret = 0; 3671 ffs_dev_lock(); 3672 3673 if (!list_is_singular(&ffs_devices)) 3674 ret = -EBUSY; 3675 else 3676 dev->single = true; 3677 3678 ffs_dev_unlock(); 3679 return ret; 3680 } 3681 EXPORT_SYMBOL_GPL(ffs_single_dev); 3682 3683 /* 3684 * ffs_lock must be taken by the caller of this function 3685 */ 3686 static void _ffs_free_dev(struct ffs_dev *dev) 3687 { 3688 list_del(&dev->entry); 3689 3690 /* Clear the private_data pointer to stop incorrect dev access */ 3691 if (dev->ffs_data) 3692 dev->ffs_data->private_data = NULL; 3693 3694 kfree(dev); 3695 if (list_empty(&ffs_devices)) 3696 functionfs_cleanup(); 3697 } 3698 3699 static void *ffs_acquire_dev(const char *dev_name) 3700 { 3701 struct ffs_dev *ffs_dev; 3702 3703 ENTER(); 3704 ffs_dev_lock(); 3705 3706 ffs_dev = _ffs_find_dev(dev_name); 3707 if (!ffs_dev) 3708 ffs_dev = ERR_PTR(-ENOENT); 3709 else if (ffs_dev->mounted) 3710 ffs_dev = ERR_PTR(-EBUSY); 3711 else if (ffs_dev->ffs_acquire_dev_callback && 3712 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) 3713 ffs_dev = ERR_PTR(-ENOENT); 3714 else 3715 ffs_dev->mounted = true; 3716 3717 ffs_dev_unlock(); 3718 return ffs_dev; 3719 } 3720 3721 static void ffs_release_dev(struct ffs_data *ffs_data) 3722 { 3723 struct ffs_dev *ffs_dev; 3724 3725 ENTER(); 3726 ffs_dev_lock(); 3727 3728 ffs_dev = ffs_data->private_data; 3729 if (ffs_dev) { 3730 ffs_dev->mounted = false; 3731 3732 if (ffs_dev->ffs_release_dev_callback) 3733 ffs_dev->ffs_release_dev_callback(ffs_dev); 3734 } 3735 3736 ffs_dev_unlock(); 3737 } 3738 3739 static int ffs_ready(struct ffs_data *ffs) 3740 { 3741 struct ffs_dev *ffs_obj; 3742 int ret = 0; 3743 3744 ENTER(); 3745 ffs_dev_lock(); 3746 3747 ffs_obj = ffs->private_data; 3748 if (!ffs_obj) { 3749 ret = -EINVAL; 3750 goto done; 3751 } 3752 if (WARN_ON(ffs_obj->desc_ready)) { 3753 ret = -EBUSY; 3754 goto done; 3755 } 3756 3757 ffs_obj->desc_ready = true; 3758 ffs_obj->ffs_data = ffs; 3759 3760 if (ffs_obj->ffs_ready_callback) { 3761 ret = ffs_obj->ffs_ready_callback(ffs); 3762 if (ret) 3763 goto done; 3764 } 3765 3766 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); 3767 done: 3768 ffs_dev_unlock(); 3769 return ret; 3770 } 3771 3772 static void ffs_closed(struct ffs_data *ffs) 3773 { 3774 struct ffs_dev *ffs_obj; 3775 struct f_fs_opts *opts; 3776 struct config_item *ci; 3777 3778 ENTER(); 3779 ffs_dev_lock(); 3780 3781 ffs_obj = ffs->private_data; 3782 if (!ffs_obj) 3783 goto done; 3784 3785 ffs_obj->desc_ready = false; 3786 ffs_obj->ffs_data = NULL; 3787 3788 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) && 3789 ffs_obj->ffs_closed_callback) 3790 ffs_obj->ffs_closed_callback(ffs); 3791 3792 if (ffs_obj->opts) 3793 opts = ffs_obj->opts; 3794 else 3795 goto done; 3796 3797 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent 3798 || !kref_read(&opts->func_inst.group.cg_item.ci_kref)) 3799 goto done; 3800 3801 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent; 3802 ffs_dev_unlock(); 3803 3804 if (test_bit(FFS_FL_BOUND, &ffs->flags)) 3805 unregister_gadget_item(ci); 3806 return; 3807 done: 3808 ffs_dev_unlock(); 3809 } 3810 3811 /* Misc helper functions ****************************************************/ 3812 3813 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 3814 { 3815 return nonblock 3816 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN 3817 : mutex_lock_interruptible(mutex); 3818 } 3819 3820 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 3821 { 3822 char *data; 3823 3824 if (unlikely(!len)) 3825 return NULL; 3826 3827 data = kmalloc(len, GFP_KERNEL); 3828 if (unlikely(!data)) 3829 return ERR_PTR(-ENOMEM); 3830 3831 if (unlikely(copy_from_user(data, buf, len))) { 3832 kfree(data); 3833 return ERR_PTR(-EFAULT); 3834 } 3835 3836 pr_vdebug("Buffer from user space:\n"); 3837 ffs_dump_mem("", data, len); 3838 3839 return data; 3840 } 3841 3842 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); 3843 MODULE_LICENSE("GPL"); 3844 MODULE_AUTHOR("Michal Nazarewicz"); 3845