1 /* 2 * f_fs.c -- user mode file system API for USB composite function controllers 3 * 4 * Copyright (C) 2010 Samsung Electronics 5 * Author: Michal Nazarewicz <mina86@mina86.com> 6 * 7 * Based on inode.c (GadgetFS) which was: 8 * Copyright (C) 2003-2004 David Brownell 9 * Copyright (C) 2003 Agilent Technologies 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2 of the License, or 14 * (at your option) any later version. 15 */ 16 17 18 /* #define DEBUG */ 19 /* #define VERBOSE_DEBUG */ 20 21 #include <linux/blkdev.h> 22 #include <linux/pagemap.h> 23 #include <linux/export.h> 24 #include <linux/hid.h> 25 #include <linux/module.h> 26 #include <linux/sched/signal.h> 27 #include <linux/uio.h> 28 #include <asm/unaligned.h> 29 30 #include <linux/usb/composite.h> 31 #include <linux/usb/functionfs.h> 32 33 #include <linux/aio.h> 34 #include <linux/mmu_context.h> 35 #include <linux/poll.h> 36 #include <linux/eventfd.h> 37 38 #include "u_fs.h" 39 #include "u_f.h" 40 #include "u_os_desc.h" 41 #include "configfs.h" 42 43 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ 44 45 /* Reference counter handling */ 46 static void ffs_data_get(struct ffs_data *ffs); 47 static void ffs_data_put(struct ffs_data *ffs); 48 /* Creates new ffs_data object. */ 49 static struct ffs_data *__must_check ffs_data_new(const char *dev_name) 50 __attribute__((malloc)); 51 52 /* Opened counter handling. */ 53 static void ffs_data_opened(struct ffs_data *ffs); 54 static void ffs_data_closed(struct ffs_data *ffs); 55 56 /* Called with ffs->mutex held; take over ownership of data. */ 57 static int __must_check 58 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); 59 static int __must_check 60 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); 61 62 63 /* The function structure ***************************************************/ 64 65 struct ffs_ep; 66 67 struct ffs_function { 68 struct usb_configuration *conf; 69 struct usb_gadget *gadget; 70 struct ffs_data *ffs; 71 72 struct ffs_ep *eps; 73 u8 eps_revmap[16]; 74 short *interfaces_nums; 75 76 struct usb_function function; 77 }; 78 79 80 static struct ffs_function *ffs_func_from_usb(struct usb_function *f) 81 { 82 return container_of(f, struct ffs_function, function); 83 } 84 85 86 static inline enum ffs_setup_state 87 ffs_setup_state_clear_cancelled(struct ffs_data *ffs) 88 { 89 return (enum ffs_setup_state) 90 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); 91 } 92 93 94 static void ffs_func_eps_disable(struct ffs_function *func); 95 static int __must_check ffs_func_eps_enable(struct ffs_function *func); 96 97 static int ffs_func_bind(struct usb_configuration *, 98 struct usb_function *); 99 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); 100 static void ffs_func_disable(struct usb_function *); 101 static int ffs_func_setup(struct usb_function *, 102 const struct usb_ctrlrequest *); 103 static bool ffs_func_req_match(struct usb_function *, 104 const struct usb_ctrlrequest *, 105 bool config0); 106 static void ffs_func_suspend(struct usb_function *); 107 static void ffs_func_resume(struct usb_function *); 108 109 110 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); 111 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); 112 113 114 /* The endpoints structures *************************************************/ 115 116 struct ffs_ep { 117 struct usb_ep *ep; /* P: ffs->eps_lock */ 118 struct usb_request *req; /* P: epfile->mutex */ 119 120 /* [0]: full speed, [1]: high speed, [2]: super speed */ 121 struct usb_endpoint_descriptor *descs[3]; 122 123 u8 num; 124 125 int status; /* P: epfile->mutex */ 126 }; 127 128 struct ffs_epfile { 129 /* Protects ep->ep and ep->req. */ 130 struct mutex mutex; 131 132 struct ffs_data *ffs; 133 struct ffs_ep *ep; /* P: ffs->eps_lock */ 134 135 struct dentry *dentry; 136 137 /* 138 * Buffer for holding data from partial reads which may happen since 139 * we’re rounding user read requests to a multiple of a max packet size. 140 * 141 * The pointer is initialised with NULL value and may be set by 142 * __ffs_epfile_read_data function to point to a temporary buffer. 143 * 144 * In normal operation, calls to __ffs_epfile_read_buffered will consume 145 * data from said buffer and eventually free it. Importantly, while the 146 * function is using the buffer, it sets the pointer to NULL. This is 147 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered 148 * can never run concurrently (they are synchronised by epfile->mutex) 149 * so the latter will not assign a new value to the pointer. 150 * 151 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is 152 * valid) and sets the pointer to READ_BUFFER_DROP value. This special 153 * value is crux of the synchronisation between ffs_func_eps_disable and 154 * __ffs_epfile_read_data. 155 * 156 * Once __ffs_epfile_read_data is about to finish it will try to set the 157 * pointer back to its old value (as described above), but seeing as the 158 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free 159 * the buffer. 160 * 161 * == State transitions == 162 * 163 * • ptr == NULL: (initial state) 164 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP 165 * ◦ __ffs_epfile_read_buffered: nop 166 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf 167 * ◦ reading finishes: n/a, not in ‘and reading’ state 168 * • ptr == DROP: 169 * ◦ __ffs_epfile_read_buffer_free: nop 170 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL 171 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop 172 * ◦ reading finishes: n/a, not in ‘and reading’ state 173 * • ptr == buf: 174 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP 175 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading 176 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered 177 * is always called first 178 * ◦ reading finishes: n/a, not in ‘and reading’ state 179 * • ptr == NULL and reading: 180 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading 181 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 182 * ◦ __ffs_epfile_read_data: n/a, mutex is held 183 * ◦ reading finishes and … 184 * … all data read: free buf, go to ptr == NULL 185 * … otherwise: go to ptr == buf and reading 186 * • ptr == DROP and reading: 187 * ◦ __ffs_epfile_read_buffer_free: nop 188 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 189 * ◦ __ffs_epfile_read_data: n/a, mutex is held 190 * ◦ reading finishes: free buf, go to ptr == DROP 191 */ 192 struct ffs_buffer *read_buffer; 193 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN)) 194 195 char name[5]; 196 197 unsigned char in; /* P: ffs->eps_lock */ 198 unsigned char isoc; /* P: ffs->eps_lock */ 199 200 unsigned char _pad; 201 }; 202 203 struct ffs_buffer { 204 size_t length; 205 char *data; 206 char storage[]; 207 }; 208 209 /* ffs_io_data structure ***************************************************/ 210 211 struct ffs_io_data { 212 bool aio; 213 bool read; 214 215 struct kiocb *kiocb; 216 struct iov_iter data; 217 const void *to_free; 218 char *buf; 219 220 struct mm_struct *mm; 221 struct work_struct work; 222 223 struct usb_ep *ep; 224 struct usb_request *req; 225 226 struct ffs_data *ffs; 227 }; 228 229 struct ffs_desc_helper { 230 struct ffs_data *ffs; 231 unsigned interfaces_count; 232 unsigned eps_count; 233 }; 234 235 static int __must_check ffs_epfiles_create(struct ffs_data *ffs); 236 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count); 237 238 static struct dentry * 239 ffs_sb_create_file(struct super_block *sb, const char *name, void *data, 240 const struct file_operations *fops); 241 242 /* Devices management *******************************************************/ 243 244 DEFINE_MUTEX(ffs_lock); 245 EXPORT_SYMBOL_GPL(ffs_lock); 246 247 static struct ffs_dev *_ffs_find_dev(const char *name); 248 static struct ffs_dev *_ffs_alloc_dev(void); 249 static void _ffs_free_dev(struct ffs_dev *dev); 250 static void *ffs_acquire_dev(const char *dev_name); 251 static void ffs_release_dev(struct ffs_data *ffs_data); 252 static int ffs_ready(struct ffs_data *ffs); 253 static void ffs_closed(struct ffs_data *ffs); 254 255 /* Misc helper functions ****************************************************/ 256 257 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 258 __attribute__((warn_unused_result, nonnull)); 259 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 260 __attribute__((warn_unused_result, nonnull)); 261 262 263 /* Control file aka ep0 *****************************************************/ 264 265 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) 266 { 267 struct ffs_data *ffs = req->context; 268 269 complete(&ffs->ep0req_completion); 270 } 271 272 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) 273 { 274 struct usb_request *req = ffs->ep0req; 275 int ret; 276 277 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); 278 279 spin_unlock_irq(&ffs->ev.waitq.lock); 280 281 req->buf = data; 282 req->length = len; 283 284 /* 285 * UDC layer requires to provide a buffer even for ZLP, but should 286 * not use it at all. Let's provide some poisoned pointer to catch 287 * possible bug in the driver. 288 */ 289 if (req->buf == NULL) 290 req->buf = (void *)0xDEADBABE; 291 292 reinit_completion(&ffs->ep0req_completion); 293 294 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); 295 if (unlikely(ret < 0)) 296 return ret; 297 298 ret = wait_for_completion_interruptible(&ffs->ep0req_completion); 299 if (unlikely(ret)) { 300 usb_ep_dequeue(ffs->gadget->ep0, req); 301 return -EINTR; 302 } 303 304 ffs->setup_state = FFS_NO_SETUP; 305 return req->status ? req->status : req->actual; 306 } 307 308 static int __ffs_ep0_stall(struct ffs_data *ffs) 309 { 310 if (ffs->ev.can_stall) { 311 pr_vdebug("ep0 stall\n"); 312 usb_ep_set_halt(ffs->gadget->ep0); 313 ffs->setup_state = FFS_NO_SETUP; 314 return -EL2HLT; 315 } else { 316 pr_debug("bogus ep0 stall!\n"); 317 return -ESRCH; 318 } 319 } 320 321 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, 322 size_t len, loff_t *ptr) 323 { 324 struct ffs_data *ffs = file->private_data; 325 ssize_t ret; 326 char *data; 327 328 ENTER(); 329 330 /* Fast check if setup was canceled */ 331 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 332 return -EIDRM; 333 334 /* Acquire mutex */ 335 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 336 if (unlikely(ret < 0)) 337 return ret; 338 339 /* Check state */ 340 switch (ffs->state) { 341 case FFS_READ_DESCRIPTORS: 342 case FFS_READ_STRINGS: 343 /* Copy data */ 344 if (unlikely(len < 16)) { 345 ret = -EINVAL; 346 break; 347 } 348 349 data = ffs_prepare_buffer(buf, len); 350 if (IS_ERR(data)) { 351 ret = PTR_ERR(data); 352 break; 353 } 354 355 /* Handle data */ 356 if (ffs->state == FFS_READ_DESCRIPTORS) { 357 pr_info("read descriptors\n"); 358 ret = __ffs_data_got_descs(ffs, data, len); 359 if (unlikely(ret < 0)) 360 break; 361 362 ffs->state = FFS_READ_STRINGS; 363 ret = len; 364 } else { 365 pr_info("read strings\n"); 366 ret = __ffs_data_got_strings(ffs, data, len); 367 if (unlikely(ret < 0)) 368 break; 369 370 ret = ffs_epfiles_create(ffs); 371 if (unlikely(ret)) { 372 ffs->state = FFS_CLOSING; 373 break; 374 } 375 376 ffs->state = FFS_ACTIVE; 377 mutex_unlock(&ffs->mutex); 378 379 ret = ffs_ready(ffs); 380 if (unlikely(ret < 0)) { 381 ffs->state = FFS_CLOSING; 382 return ret; 383 } 384 385 return len; 386 } 387 break; 388 389 case FFS_ACTIVE: 390 data = NULL; 391 /* 392 * We're called from user space, we can use _irq 393 * rather then _irqsave 394 */ 395 spin_lock_irq(&ffs->ev.waitq.lock); 396 switch (ffs_setup_state_clear_cancelled(ffs)) { 397 case FFS_SETUP_CANCELLED: 398 ret = -EIDRM; 399 goto done_spin; 400 401 case FFS_NO_SETUP: 402 ret = -ESRCH; 403 goto done_spin; 404 405 case FFS_SETUP_PENDING: 406 break; 407 } 408 409 /* FFS_SETUP_PENDING */ 410 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { 411 spin_unlock_irq(&ffs->ev.waitq.lock); 412 ret = __ffs_ep0_stall(ffs); 413 break; 414 } 415 416 /* FFS_SETUP_PENDING and not stall */ 417 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 418 419 spin_unlock_irq(&ffs->ev.waitq.lock); 420 421 data = ffs_prepare_buffer(buf, len); 422 if (IS_ERR(data)) { 423 ret = PTR_ERR(data); 424 break; 425 } 426 427 spin_lock_irq(&ffs->ev.waitq.lock); 428 429 /* 430 * We are guaranteed to be still in FFS_ACTIVE state 431 * but the state of setup could have changed from 432 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need 433 * to check for that. If that happened we copied data 434 * from user space in vain but it's unlikely. 435 * 436 * For sure we are not in FFS_NO_SETUP since this is 437 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP 438 * transition can be performed and it's protected by 439 * mutex. 440 */ 441 if (ffs_setup_state_clear_cancelled(ffs) == 442 FFS_SETUP_CANCELLED) { 443 ret = -EIDRM; 444 done_spin: 445 spin_unlock_irq(&ffs->ev.waitq.lock); 446 } else { 447 /* unlocks spinlock */ 448 ret = __ffs_ep0_queue_wait(ffs, data, len); 449 } 450 kfree(data); 451 break; 452 453 default: 454 ret = -EBADFD; 455 break; 456 } 457 458 mutex_unlock(&ffs->mutex); 459 return ret; 460 } 461 462 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */ 463 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, 464 size_t n) 465 { 466 /* 467 * n cannot be bigger than ffs->ev.count, which cannot be bigger than 468 * size of ffs->ev.types array (which is four) so that's how much space 469 * we reserve. 470 */ 471 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)]; 472 const size_t size = n * sizeof *events; 473 unsigned i = 0; 474 475 memset(events, 0, size); 476 477 do { 478 events[i].type = ffs->ev.types[i]; 479 if (events[i].type == FUNCTIONFS_SETUP) { 480 events[i].u.setup = ffs->ev.setup; 481 ffs->setup_state = FFS_SETUP_PENDING; 482 } 483 } while (++i < n); 484 485 ffs->ev.count -= n; 486 if (ffs->ev.count) 487 memmove(ffs->ev.types, ffs->ev.types + n, 488 ffs->ev.count * sizeof *ffs->ev.types); 489 490 spin_unlock_irq(&ffs->ev.waitq.lock); 491 mutex_unlock(&ffs->mutex); 492 493 return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size; 494 } 495 496 static ssize_t ffs_ep0_read(struct file *file, char __user *buf, 497 size_t len, loff_t *ptr) 498 { 499 struct ffs_data *ffs = file->private_data; 500 char *data = NULL; 501 size_t n; 502 int ret; 503 504 ENTER(); 505 506 /* Fast check if setup was canceled */ 507 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 508 return -EIDRM; 509 510 /* Acquire mutex */ 511 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 512 if (unlikely(ret < 0)) 513 return ret; 514 515 /* Check state */ 516 if (ffs->state != FFS_ACTIVE) { 517 ret = -EBADFD; 518 goto done_mutex; 519 } 520 521 /* 522 * We're called from user space, we can use _irq rather then 523 * _irqsave 524 */ 525 spin_lock_irq(&ffs->ev.waitq.lock); 526 527 switch (ffs_setup_state_clear_cancelled(ffs)) { 528 case FFS_SETUP_CANCELLED: 529 ret = -EIDRM; 530 break; 531 532 case FFS_NO_SETUP: 533 n = len / sizeof(struct usb_functionfs_event); 534 if (unlikely(!n)) { 535 ret = -EINVAL; 536 break; 537 } 538 539 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { 540 ret = -EAGAIN; 541 break; 542 } 543 544 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, 545 ffs->ev.count)) { 546 ret = -EINTR; 547 break; 548 } 549 550 return __ffs_ep0_read_events(ffs, buf, 551 min(n, (size_t)ffs->ev.count)); 552 553 case FFS_SETUP_PENDING: 554 if (ffs->ev.setup.bRequestType & USB_DIR_IN) { 555 spin_unlock_irq(&ffs->ev.waitq.lock); 556 ret = __ffs_ep0_stall(ffs); 557 goto done_mutex; 558 } 559 560 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 561 562 spin_unlock_irq(&ffs->ev.waitq.lock); 563 564 if (likely(len)) { 565 data = kmalloc(len, GFP_KERNEL); 566 if (unlikely(!data)) { 567 ret = -ENOMEM; 568 goto done_mutex; 569 } 570 } 571 572 spin_lock_irq(&ffs->ev.waitq.lock); 573 574 /* See ffs_ep0_write() */ 575 if (ffs_setup_state_clear_cancelled(ffs) == 576 FFS_SETUP_CANCELLED) { 577 ret = -EIDRM; 578 break; 579 } 580 581 /* unlocks spinlock */ 582 ret = __ffs_ep0_queue_wait(ffs, data, len); 583 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len))) 584 ret = -EFAULT; 585 goto done_mutex; 586 587 default: 588 ret = -EBADFD; 589 break; 590 } 591 592 spin_unlock_irq(&ffs->ev.waitq.lock); 593 done_mutex: 594 mutex_unlock(&ffs->mutex); 595 kfree(data); 596 return ret; 597 } 598 599 static int ffs_ep0_open(struct inode *inode, struct file *file) 600 { 601 struct ffs_data *ffs = inode->i_private; 602 603 ENTER(); 604 605 if (unlikely(ffs->state == FFS_CLOSING)) 606 return -EBUSY; 607 608 file->private_data = ffs; 609 ffs_data_opened(ffs); 610 611 return 0; 612 } 613 614 static int ffs_ep0_release(struct inode *inode, struct file *file) 615 { 616 struct ffs_data *ffs = file->private_data; 617 618 ENTER(); 619 620 ffs_data_closed(ffs); 621 622 return 0; 623 } 624 625 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) 626 { 627 struct ffs_data *ffs = file->private_data; 628 struct usb_gadget *gadget = ffs->gadget; 629 long ret; 630 631 ENTER(); 632 633 if (code == FUNCTIONFS_INTERFACE_REVMAP) { 634 struct ffs_function *func = ffs->func; 635 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; 636 } else if (gadget && gadget->ops->ioctl) { 637 ret = gadget->ops->ioctl(gadget, code, value); 638 } else { 639 ret = -ENOTTY; 640 } 641 642 return ret; 643 } 644 645 static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait) 646 { 647 struct ffs_data *ffs = file->private_data; 648 unsigned int mask = POLLWRNORM; 649 int ret; 650 651 poll_wait(file, &ffs->ev.waitq, wait); 652 653 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 654 if (unlikely(ret < 0)) 655 return mask; 656 657 switch (ffs->state) { 658 case FFS_READ_DESCRIPTORS: 659 case FFS_READ_STRINGS: 660 mask |= POLLOUT; 661 break; 662 663 case FFS_ACTIVE: 664 switch (ffs->setup_state) { 665 case FFS_NO_SETUP: 666 if (ffs->ev.count) 667 mask |= POLLIN; 668 break; 669 670 case FFS_SETUP_PENDING: 671 case FFS_SETUP_CANCELLED: 672 mask |= (POLLIN | POLLOUT); 673 break; 674 } 675 case FFS_CLOSING: 676 break; 677 case FFS_DEACTIVATED: 678 break; 679 } 680 681 mutex_unlock(&ffs->mutex); 682 683 return mask; 684 } 685 686 static const struct file_operations ffs_ep0_operations = { 687 .llseek = no_llseek, 688 689 .open = ffs_ep0_open, 690 .write = ffs_ep0_write, 691 .read = ffs_ep0_read, 692 .release = ffs_ep0_release, 693 .unlocked_ioctl = ffs_ep0_ioctl, 694 .poll = ffs_ep0_poll, 695 }; 696 697 698 /* "Normal" endpoints operations ********************************************/ 699 700 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) 701 { 702 ENTER(); 703 if (likely(req->context)) { 704 struct ffs_ep *ep = _ep->driver_data; 705 ep->status = req->status ? req->status : req->actual; 706 complete(req->context); 707 } 708 } 709 710 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter) 711 { 712 ssize_t ret = copy_to_iter(data, data_len, iter); 713 if (likely(ret == data_len)) 714 return ret; 715 716 if (unlikely(iov_iter_count(iter))) 717 return -EFAULT; 718 719 /* 720 * Dear user space developer! 721 * 722 * TL;DR: To stop getting below error message in your kernel log, change 723 * user space code using functionfs to align read buffers to a max 724 * packet size. 725 * 726 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max 727 * packet size. When unaligned buffer is passed to functionfs, it 728 * internally uses a larger, aligned buffer so that such UDCs are happy. 729 * 730 * Unfortunately, this means that host may send more data than was 731 * requested in read(2) system call. f_fs doesn’t know what to do with 732 * that excess data so it simply drops it. 733 * 734 * Was the buffer aligned in the first place, no such problem would 735 * happen. 736 * 737 * Data may be dropped only in AIO reads. Synchronous reads are handled 738 * by splitting a request into multiple parts. This splitting may still 739 * be a problem though so it’s likely best to align the buffer 740 * regardless of it being AIO or not.. 741 * 742 * This only affects OUT endpoints, i.e. reading data with a read(2), 743 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not 744 * affected. 745 */ 746 pr_err("functionfs read size %d > requested size %zd, dropping excess data. " 747 "Align read buffer size to max packet size to avoid the problem.\n", 748 data_len, ret); 749 750 return ret; 751 } 752 753 static void ffs_user_copy_worker(struct work_struct *work) 754 { 755 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 756 work); 757 int ret = io_data->req->status ? io_data->req->status : 758 io_data->req->actual; 759 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD; 760 761 if (io_data->read && ret > 0) { 762 use_mm(io_data->mm); 763 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data); 764 unuse_mm(io_data->mm); 765 } 766 767 io_data->kiocb->ki_complete(io_data->kiocb, ret, ret); 768 769 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd) 770 eventfd_signal(io_data->ffs->ffs_eventfd, 1); 771 772 usb_ep_free_request(io_data->ep, io_data->req); 773 774 if (io_data->read) 775 kfree(io_data->to_free); 776 kfree(io_data->buf); 777 kfree(io_data); 778 } 779 780 static void ffs_epfile_async_io_complete(struct usb_ep *_ep, 781 struct usb_request *req) 782 { 783 struct ffs_io_data *io_data = req->context; 784 struct ffs_data *ffs = io_data->ffs; 785 786 ENTER(); 787 788 INIT_WORK(&io_data->work, ffs_user_copy_worker); 789 queue_work(ffs->io_completion_wq, &io_data->work); 790 } 791 792 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile) 793 { 794 /* 795 * See comment in struct ffs_epfile for full read_buffer pointer 796 * synchronisation story. 797 */ 798 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP); 799 if (buf && buf != READ_BUFFER_DROP) 800 kfree(buf); 801 } 802 803 /* Assumes epfile->mutex is held. */ 804 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile, 805 struct iov_iter *iter) 806 { 807 /* 808 * Null out epfile->read_buffer so ffs_func_eps_disable does not free 809 * the buffer while we are using it. See comment in struct ffs_epfile 810 * for full read_buffer pointer synchronisation story. 811 */ 812 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL); 813 ssize_t ret; 814 if (!buf || buf == READ_BUFFER_DROP) 815 return 0; 816 817 ret = copy_to_iter(buf->data, buf->length, iter); 818 if (buf->length == ret) { 819 kfree(buf); 820 return ret; 821 } 822 823 if (unlikely(iov_iter_count(iter))) { 824 ret = -EFAULT; 825 } else { 826 buf->length -= ret; 827 buf->data += ret; 828 } 829 830 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 831 kfree(buf); 832 833 return ret; 834 } 835 836 /* Assumes epfile->mutex is held. */ 837 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile, 838 void *data, int data_len, 839 struct iov_iter *iter) 840 { 841 struct ffs_buffer *buf; 842 843 ssize_t ret = copy_to_iter(data, data_len, iter); 844 if (likely(data_len == ret)) 845 return ret; 846 847 if (unlikely(iov_iter_count(iter))) 848 return -EFAULT; 849 850 /* See ffs_copy_to_iter for more context. */ 851 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.", 852 data_len, ret); 853 854 data_len -= ret; 855 buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL); 856 if (!buf) 857 return -ENOMEM; 858 buf->length = data_len; 859 buf->data = buf->storage; 860 memcpy(buf->storage, data + ret, data_len); 861 862 /* 863 * At this point read_buffer is NULL or READ_BUFFER_DROP (if 864 * ffs_func_eps_disable has been called in the meanwhile). See comment 865 * in struct ffs_epfile for full read_buffer pointer synchronisation 866 * story. 867 */ 868 if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf))) 869 kfree(buf); 870 871 return ret; 872 } 873 874 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) 875 { 876 struct ffs_epfile *epfile = file->private_data; 877 struct usb_request *req; 878 struct ffs_ep *ep; 879 char *data = NULL; 880 ssize_t ret, data_len = -EINVAL; 881 int halt; 882 883 /* Are we still active? */ 884 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 885 return -ENODEV; 886 887 /* Wait for endpoint to be enabled */ 888 ep = epfile->ep; 889 if (!ep) { 890 if (file->f_flags & O_NONBLOCK) 891 return -EAGAIN; 892 893 ret = wait_event_interruptible( 894 epfile->ffs->wait, (ep = epfile->ep)); 895 if (ret) 896 return -EINTR; 897 } 898 899 /* Do we halt? */ 900 halt = (!io_data->read == !epfile->in); 901 if (halt && epfile->isoc) 902 return -EINVAL; 903 904 /* We will be using request and read_buffer */ 905 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); 906 if (unlikely(ret)) 907 goto error; 908 909 /* Allocate & copy */ 910 if (!halt) { 911 struct usb_gadget *gadget; 912 913 /* 914 * Do we have buffered data from previous partial read? Check 915 * that for synchronous case only because we do not have 916 * facility to ‘wake up’ a pending asynchronous read and push 917 * buffered data to it which we would need to make things behave 918 * consistently. 919 */ 920 if (!io_data->aio && io_data->read) { 921 ret = __ffs_epfile_read_buffered(epfile, &io_data->data); 922 if (ret) 923 goto error_mutex; 924 } 925 926 /* 927 * if we _do_ wait above, the epfile->ffs->gadget might be NULL 928 * before the waiting completes, so do not assign to 'gadget' 929 * earlier 930 */ 931 gadget = epfile->ffs->gadget; 932 933 spin_lock_irq(&epfile->ffs->eps_lock); 934 /* In the meantime, endpoint got disabled or changed. */ 935 if (epfile->ep != ep) { 936 ret = -ESHUTDOWN; 937 goto error_lock; 938 } 939 data_len = iov_iter_count(&io_data->data); 940 /* 941 * Controller may require buffer size to be aligned to 942 * maxpacketsize of an out endpoint. 943 */ 944 if (io_data->read) 945 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len); 946 spin_unlock_irq(&epfile->ffs->eps_lock); 947 948 data = kmalloc(data_len, GFP_KERNEL); 949 if (unlikely(!data)) { 950 ret = -ENOMEM; 951 goto error_mutex; 952 } 953 if (!io_data->read && 954 !copy_from_iter_full(data, data_len, &io_data->data)) { 955 ret = -EFAULT; 956 goto error_mutex; 957 } 958 } 959 960 spin_lock_irq(&epfile->ffs->eps_lock); 961 962 if (epfile->ep != ep) { 963 /* In the meantime, endpoint got disabled or changed. */ 964 ret = -ESHUTDOWN; 965 } else if (halt) { 966 ret = usb_ep_set_halt(ep->ep); 967 if (!ret) 968 ret = -EBADMSG; 969 } else if (unlikely(data_len == -EINVAL)) { 970 /* 971 * Sanity Check: even though data_len can't be used 972 * uninitialized at the time I write this comment, some 973 * compilers complain about this situation. 974 * In order to keep the code clean from warnings, data_len is 975 * being initialized to -EINVAL during its declaration, which 976 * means we can't rely on compiler anymore to warn no future 977 * changes won't result in data_len being used uninitialized. 978 * For such reason, we're adding this redundant sanity check 979 * here. 980 */ 981 WARN(1, "%s: data_len == -EINVAL\n", __func__); 982 ret = -EINVAL; 983 } else if (!io_data->aio) { 984 DECLARE_COMPLETION_ONSTACK(done); 985 bool interrupted = false; 986 987 req = ep->req; 988 req->buf = data; 989 req->length = data_len; 990 991 req->context = &done; 992 req->complete = ffs_epfile_io_complete; 993 994 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 995 if (unlikely(ret < 0)) 996 goto error_lock; 997 998 spin_unlock_irq(&epfile->ffs->eps_lock); 999 1000 if (unlikely(wait_for_completion_interruptible(&done))) { 1001 /* 1002 * To avoid race condition with ffs_epfile_io_complete, 1003 * dequeue the request first then check 1004 * status. usb_ep_dequeue API should guarantee no race 1005 * condition with req->complete callback. 1006 */ 1007 usb_ep_dequeue(ep->ep, req); 1008 interrupted = ep->status < 0; 1009 } 1010 1011 if (interrupted) 1012 ret = -EINTR; 1013 else if (io_data->read && ep->status > 0) 1014 ret = __ffs_epfile_read_data(epfile, data, ep->status, 1015 &io_data->data); 1016 else 1017 ret = ep->status; 1018 goto error_mutex; 1019 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_KERNEL))) { 1020 ret = -ENOMEM; 1021 } else { 1022 req->buf = data; 1023 req->length = data_len; 1024 1025 io_data->buf = data; 1026 io_data->ep = ep->ep; 1027 io_data->req = req; 1028 io_data->ffs = epfile->ffs; 1029 1030 req->context = io_data; 1031 req->complete = ffs_epfile_async_io_complete; 1032 1033 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1034 if (unlikely(ret)) { 1035 usb_ep_free_request(ep->ep, req); 1036 goto error_lock; 1037 } 1038 1039 ret = -EIOCBQUEUED; 1040 /* 1041 * Do not kfree the buffer in this function. It will be freed 1042 * by ffs_user_copy_worker. 1043 */ 1044 data = NULL; 1045 } 1046 1047 error_lock: 1048 spin_unlock_irq(&epfile->ffs->eps_lock); 1049 error_mutex: 1050 mutex_unlock(&epfile->mutex); 1051 error: 1052 kfree(data); 1053 return ret; 1054 } 1055 1056 static int 1057 ffs_epfile_open(struct inode *inode, struct file *file) 1058 { 1059 struct ffs_epfile *epfile = inode->i_private; 1060 1061 ENTER(); 1062 1063 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1064 return -ENODEV; 1065 1066 file->private_data = epfile; 1067 ffs_data_opened(epfile->ffs); 1068 1069 return 0; 1070 } 1071 1072 static int ffs_aio_cancel(struct kiocb *kiocb) 1073 { 1074 struct ffs_io_data *io_data = kiocb->private; 1075 struct ffs_epfile *epfile = kiocb->ki_filp->private_data; 1076 int value; 1077 1078 ENTER(); 1079 1080 spin_lock_irq(&epfile->ffs->eps_lock); 1081 1082 if (likely(io_data && io_data->ep && io_data->req)) 1083 value = usb_ep_dequeue(io_data->ep, io_data->req); 1084 else 1085 value = -EINVAL; 1086 1087 spin_unlock_irq(&epfile->ffs->eps_lock); 1088 1089 return value; 1090 } 1091 1092 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from) 1093 { 1094 struct ffs_io_data io_data, *p = &io_data; 1095 ssize_t res; 1096 1097 ENTER(); 1098 1099 if (!is_sync_kiocb(kiocb)) { 1100 p = kmalloc(sizeof(io_data), GFP_KERNEL); 1101 if (unlikely(!p)) 1102 return -ENOMEM; 1103 p->aio = true; 1104 } else { 1105 p->aio = false; 1106 } 1107 1108 p->read = false; 1109 p->kiocb = kiocb; 1110 p->data = *from; 1111 p->mm = current->mm; 1112 1113 kiocb->private = p; 1114 1115 if (p->aio) 1116 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1117 1118 res = ffs_epfile_io(kiocb->ki_filp, p); 1119 if (res == -EIOCBQUEUED) 1120 return res; 1121 if (p->aio) 1122 kfree(p); 1123 else 1124 *from = p->data; 1125 return res; 1126 } 1127 1128 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to) 1129 { 1130 struct ffs_io_data io_data, *p = &io_data; 1131 ssize_t res; 1132 1133 ENTER(); 1134 1135 if (!is_sync_kiocb(kiocb)) { 1136 p = kmalloc(sizeof(io_data), GFP_KERNEL); 1137 if (unlikely(!p)) 1138 return -ENOMEM; 1139 p->aio = true; 1140 } else { 1141 p->aio = false; 1142 } 1143 1144 p->read = true; 1145 p->kiocb = kiocb; 1146 if (p->aio) { 1147 p->to_free = dup_iter(&p->data, to, GFP_KERNEL); 1148 if (!p->to_free) { 1149 kfree(p); 1150 return -ENOMEM; 1151 } 1152 } else { 1153 p->data = *to; 1154 p->to_free = NULL; 1155 } 1156 p->mm = current->mm; 1157 1158 kiocb->private = p; 1159 1160 if (p->aio) 1161 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1162 1163 res = ffs_epfile_io(kiocb->ki_filp, p); 1164 if (res == -EIOCBQUEUED) 1165 return res; 1166 1167 if (p->aio) { 1168 kfree(p->to_free); 1169 kfree(p); 1170 } else { 1171 *to = p->data; 1172 } 1173 return res; 1174 } 1175 1176 static int 1177 ffs_epfile_release(struct inode *inode, struct file *file) 1178 { 1179 struct ffs_epfile *epfile = inode->i_private; 1180 1181 ENTER(); 1182 1183 __ffs_epfile_read_buffer_free(epfile); 1184 ffs_data_closed(epfile->ffs); 1185 1186 return 0; 1187 } 1188 1189 static long ffs_epfile_ioctl(struct file *file, unsigned code, 1190 unsigned long value) 1191 { 1192 struct ffs_epfile *epfile = file->private_data; 1193 struct ffs_ep *ep; 1194 int ret; 1195 1196 ENTER(); 1197 1198 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1199 return -ENODEV; 1200 1201 /* Wait for endpoint to be enabled */ 1202 ep = epfile->ep; 1203 if (!ep) { 1204 if (file->f_flags & O_NONBLOCK) 1205 return -EAGAIN; 1206 1207 ret = wait_event_interruptible( 1208 epfile->ffs->wait, (ep = epfile->ep)); 1209 if (ret) 1210 return -EINTR; 1211 } 1212 1213 spin_lock_irq(&epfile->ffs->eps_lock); 1214 1215 /* In the meantime, endpoint got disabled or changed. */ 1216 if (epfile->ep != ep) { 1217 spin_unlock_irq(&epfile->ffs->eps_lock); 1218 return -ESHUTDOWN; 1219 } 1220 1221 switch (code) { 1222 case FUNCTIONFS_FIFO_STATUS: 1223 ret = usb_ep_fifo_status(epfile->ep->ep); 1224 break; 1225 case FUNCTIONFS_FIFO_FLUSH: 1226 usb_ep_fifo_flush(epfile->ep->ep); 1227 ret = 0; 1228 break; 1229 case FUNCTIONFS_CLEAR_HALT: 1230 ret = usb_ep_clear_halt(epfile->ep->ep); 1231 break; 1232 case FUNCTIONFS_ENDPOINT_REVMAP: 1233 ret = epfile->ep->num; 1234 break; 1235 case FUNCTIONFS_ENDPOINT_DESC: 1236 { 1237 int desc_idx; 1238 struct usb_endpoint_descriptor *desc; 1239 1240 switch (epfile->ffs->gadget->speed) { 1241 case USB_SPEED_SUPER: 1242 desc_idx = 2; 1243 break; 1244 case USB_SPEED_HIGH: 1245 desc_idx = 1; 1246 break; 1247 default: 1248 desc_idx = 0; 1249 } 1250 desc = epfile->ep->descs[desc_idx]; 1251 1252 spin_unlock_irq(&epfile->ffs->eps_lock); 1253 ret = copy_to_user((void *)value, desc, desc->bLength); 1254 if (ret) 1255 ret = -EFAULT; 1256 return ret; 1257 } 1258 default: 1259 ret = -ENOTTY; 1260 } 1261 spin_unlock_irq(&epfile->ffs->eps_lock); 1262 1263 return ret; 1264 } 1265 1266 static const struct file_operations ffs_epfile_operations = { 1267 .llseek = no_llseek, 1268 1269 .open = ffs_epfile_open, 1270 .write_iter = ffs_epfile_write_iter, 1271 .read_iter = ffs_epfile_read_iter, 1272 .release = ffs_epfile_release, 1273 .unlocked_ioctl = ffs_epfile_ioctl, 1274 }; 1275 1276 1277 /* File system and super block operations ***********************************/ 1278 1279 /* 1280 * Mounting the file system creates a controller file, used first for 1281 * function configuration then later for event monitoring. 1282 */ 1283 1284 static struct inode *__must_check 1285 ffs_sb_make_inode(struct super_block *sb, void *data, 1286 const struct file_operations *fops, 1287 const struct inode_operations *iops, 1288 struct ffs_file_perms *perms) 1289 { 1290 struct inode *inode; 1291 1292 ENTER(); 1293 1294 inode = new_inode(sb); 1295 1296 if (likely(inode)) { 1297 struct timespec ts = current_time(inode); 1298 1299 inode->i_ino = get_next_ino(); 1300 inode->i_mode = perms->mode; 1301 inode->i_uid = perms->uid; 1302 inode->i_gid = perms->gid; 1303 inode->i_atime = ts; 1304 inode->i_mtime = ts; 1305 inode->i_ctime = ts; 1306 inode->i_private = data; 1307 if (fops) 1308 inode->i_fop = fops; 1309 if (iops) 1310 inode->i_op = iops; 1311 } 1312 1313 return inode; 1314 } 1315 1316 /* Create "regular" file */ 1317 static struct dentry *ffs_sb_create_file(struct super_block *sb, 1318 const char *name, void *data, 1319 const struct file_operations *fops) 1320 { 1321 struct ffs_data *ffs = sb->s_fs_info; 1322 struct dentry *dentry; 1323 struct inode *inode; 1324 1325 ENTER(); 1326 1327 dentry = d_alloc_name(sb->s_root, name); 1328 if (unlikely(!dentry)) 1329 return NULL; 1330 1331 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); 1332 if (unlikely(!inode)) { 1333 dput(dentry); 1334 return NULL; 1335 } 1336 1337 d_add(dentry, inode); 1338 return dentry; 1339 } 1340 1341 /* Super block */ 1342 static const struct super_operations ffs_sb_operations = { 1343 .statfs = simple_statfs, 1344 .drop_inode = generic_delete_inode, 1345 }; 1346 1347 struct ffs_sb_fill_data { 1348 struct ffs_file_perms perms; 1349 umode_t root_mode; 1350 const char *dev_name; 1351 bool no_disconnect; 1352 struct ffs_data *ffs_data; 1353 }; 1354 1355 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent) 1356 { 1357 struct ffs_sb_fill_data *data = _data; 1358 struct inode *inode; 1359 struct ffs_data *ffs = data->ffs_data; 1360 1361 ENTER(); 1362 1363 ffs->sb = sb; 1364 data->ffs_data = NULL; 1365 sb->s_fs_info = ffs; 1366 sb->s_blocksize = PAGE_SIZE; 1367 sb->s_blocksize_bits = PAGE_SHIFT; 1368 sb->s_magic = FUNCTIONFS_MAGIC; 1369 sb->s_op = &ffs_sb_operations; 1370 sb->s_time_gran = 1; 1371 1372 /* Root inode */ 1373 data->perms.mode = data->root_mode; 1374 inode = ffs_sb_make_inode(sb, NULL, 1375 &simple_dir_operations, 1376 &simple_dir_inode_operations, 1377 &data->perms); 1378 sb->s_root = d_make_root(inode); 1379 if (unlikely(!sb->s_root)) 1380 return -ENOMEM; 1381 1382 /* EP0 file */ 1383 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs, 1384 &ffs_ep0_operations))) 1385 return -ENOMEM; 1386 1387 return 0; 1388 } 1389 1390 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts) 1391 { 1392 ENTER(); 1393 1394 if (!opts || !*opts) 1395 return 0; 1396 1397 for (;;) { 1398 unsigned long value; 1399 char *eq, *comma; 1400 1401 /* Option limit */ 1402 comma = strchr(opts, ','); 1403 if (comma) 1404 *comma = 0; 1405 1406 /* Value limit */ 1407 eq = strchr(opts, '='); 1408 if (unlikely(!eq)) { 1409 pr_err("'=' missing in %s\n", opts); 1410 return -EINVAL; 1411 } 1412 *eq = 0; 1413 1414 /* Parse value */ 1415 if (kstrtoul(eq + 1, 0, &value)) { 1416 pr_err("%s: invalid value: %s\n", opts, eq + 1); 1417 return -EINVAL; 1418 } 1419 1420 /* Interpret option */ 1421 switch (eq - opts) { 1422 case 13: 1423 if (!memcmp(opts, "no_disconnect", 13)) 1424 data->no_disconnect = !!value; 1425 else 1426 goto invalid; 1427 break; 1428 case 5: 1429 if (!memcmp(opts, "rmode", 5)) 1430 data->root_mode = (value & 0555) | S_IFDIR; 1431 else if (!memcmp(opts, "fmode", 5)) 1432 data->perms.mode = (value & 0666) | S_IFREG; 1433 else 1434 goto invalid; 1435 break; 1436 1437 case 4: 1438 if (!memcmp(opts, "mode", 4)) { 1439 data->root_mode = (value & 0555) | S_IFDIR; 1440 data->perms.mode = (value & 0666) | S_IFREG; 1441 } else { 1442 goto invalid; 1443 } 1444 break; 1445 1446 case 3: 1447 if (!memcmp(opts, "uid", 3)) { 1448 data->perms.uid = make_kuid(current_user_ns(), value); 1449 if (!uid_valid(data->perms.uid)) { 1450 pr_err("%s: unmapped value: %lu\n", opts, value); 1451 return -EINVAL; 1452 } 1453 } else if (!memcmp(opts, "gid", 3)) { 1454 data->perms.gid = make_kgid(current_user_ns(), value); 1455 if (!gid_valid(data->perms.gid)) { 1456 pr_err("%s: unmapped value: %lu\n", opts, value); 1457 return -EINVAL; 1458 } 1459 } else { 1460 goto invalid; 1461 } 1462 break; 1463 1464 default: 1465 invalid: 1466 pr_err("%s: invalid option\n", opts); 1467 return -EINVAL; 1468 } 1469 1470 /* Next iteration */ 1471 if (!comma) 1472 break; 1473 opts = comma + 1; 1474 } 1475 1476 return 0; 1477 } 1478 1479 /* "mount -t functionfs dev_name /dev/function" ends up here */ 1480 1481 static struct dentry * 1482 ffs_fs_mount(struct file_system_type *t, int flags, 1483 const char *dev_name, void *opts) 1484 { 1485 struct ffs_sb_fill_data data = { 1486 .perms = { 1487 .mode = S_IFREG | 0600, 1488 .uid = GLOBAL_ROOT_UID, 1489 .gid = GLOBAL_ROOT_GID, 1490 }, 1491 .root_mode = S_IFDIR | 0500, 1492 .no_disconnect = false, 1493 }; 1494 struct dentry *rv; 1495 int ret; 1496 void *ffs_dev; 1497 struct ffs_data *ffs; 1498 1499 ENTER(); 1500 1501 ret = ffs_fs_parse_opts(&data, opts); 1502 if (unlikely(ret < 0)) 1503 return ERR_PTR(ret); 1504 1505 ffs = ffs_data_new(dev_name); 1506 if (unlikely(!ffs)) 1507 return ERR_PTR(-ENOMEM); 1508 ffs->file_perms = data.perms; 1509 ffs->no_disconnect = data.no_disconnect; 1510 1511 ffs->dev_name = kstrdup(dev_name, GFP_KERNEL); 1512 if (unlikely(!ffs->dev_name)) { 1513 ffs_data_put(ffs); 1514 return ERR_PTR(-ENOMEM); 1515 } 1516 1517 ffs_dev = ffs_acquire_dev(dev_name); 1518 if (IS_ERR(ffs_dev)) { 1519 ffs_data_put(ffs); 1520 return ERR_CAST(ffs_dev); 1521 } 1522 ffs->private_data = ffs_dev; 1523 data.ffs_data = ffs; 1524 1525 rv = mount_nodev(t, flags, &data, ffs_sb_fill); 1526 if (IS_ERR(rv) && data.ffs_data) { 1527 ffs_release_dev(data.ffs_data); 1528 ffs_data_put(data.ffs_data); 1529 } 1530 return rv; 1531 } 1532 1533 static void 1534 ffs_fs_kill_sb(struct super_block *sb) 1535 { 1536 ENTER(); 1537 1538 kill_litter_super(sb); 1539 if (sb->s_fs_info) { 1540 ffs_release_dev(sb->s_fs_info); 1541 ffs_data_closed(sb->s_fs_info); 1542 ffs_data_put(sb->s_fs_info); 1543 } 1544 } 1545 1546 static struct file_system_type ffs_fs_type = { 1547 .owner = THIS_MODULE, 1548 .name = "functionfs", 1549 .mount = ffs_fs_mount, 1550 .kill_sb = ffs_fs_kill_sb, 1551 }; 1552 MODULE_ALIAS_FS("functionfs"); 1553 1554 1555 /* Driver's main init/cleanup functions *************************************/ 1556 1557 static int functionfs_init(void) 1558 { 1559 int ret; 1560 1561 ENTER(); 1562 1563 ret = register_filesystem(&ffs_fs_type); 1564 if (likely(!ret)) 1565 pr_info("file system registered\n"); 1566 else 1567 pr_err("failed registering file system (%d)\n", ret); 1568 1569 return ret; 1570 } 1571 1572 static void functionfs_cleanup(void) 1573 { 1574 ENTER(); 1575 1576 pr_info("unloading\n"); 1577 unregister_filesystem(&ffs_fs_type); 1578 } 1579 1580 1581 /* ffs_data and ffs_function construction and destruction code **************/ 1582 1583 static void ffs_data_clear(struct ffs_data *ffs); 1584 static void ffs_data_reset(struct ffs_data *ffs); 1585 1586 static void ffs_data_get(struct ffs_data *ffs) 1587 { 1588 ENTER(); 1589 1590 refcount_inc(&ffs->ref); 1591 } 1592 1593 static void ffs_data_opened(struct ffs_data *ffs) 1594 { 1595 ENTER(); 1596 1597 refcount_inc(&ffs->ref); 1598 if (atomic_add_return(1, &ffs->opened) == 1 && 1599 ffs->state == FFS_DEACTIVATED) { 1600 ffs->state = FFS_CLOSING; 1601 ffs_data_reset(ffs); 1602 } 1603 } 1604 1605 static void ffs_data_put(struct ffs_data *ffs) 1606 { 1607 ENTER(); 1608 1609 if (unlikely(refcount_dec_and_test(&ffs->ref))) { 1610 pr_info("%s(): freeing\n", __func__); 1611 ffs_data_clear(ffs); 1612 BUG_ON(waitqueue_active(&ffs->ev.waitq) || 1613 waitqueue_active(&ffs->ep0req_completion.wait) || 1614 waitqueue_active(&ffs->wait)); 1615 destroy_workqueue(ffs->io_completion_wq); 1616 kfree(ffs->dev_name); 1617 kfree(ffs); 1618 } 1619 } 1620 1621 static void ffs_data_closed(struct ffs_data *ffs) 1622 { 1623 ENTER(); 1624 1625 if (atomic_dec_and_test(&ffs->opened)) { 1626 if (ffs->no_disconnect) { 1627 ffs->state = FFS_DEACTIVATED; 1628 if (ffs->epfiles) { 1629 ffs_epfiles_destroy(ffs->epfiles, 1630 ffs->eps_count); 1631 ffs->epfiles = NULL; 1632 } 1633 if (ffs->setup_state == FFS_SETUP_PENDING) 1634 __ffs_ep0_stall(ffs); 1635 } else { 1636 ffs->state = FFS_CLOSING; 1637 ffs_data_reset(ffs); 1638 } 1639 } 1640 if (atomic_read(&ffs->opened) < 0) { 1641 ffs->state = FFS_CLOSING; 1642 ffs_data_reset(ffs); 1643 } 1644 1645 ffs_data_put(ffs); 1646 } 1647 1648 static struct ffs_data *ffs_data_new(const char *dev_name) 1649 { 1650 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); 1651 if (unlikely(!ffs)) 1652 return NULL; 1653 1654 ENTER(); 1655 1656 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name); 1657 if (!ffs->io_completion_wq) { 1658 kfree(ffs); 1659 return NULL; 1660 } 1661 1662 refcount_set(&ffs->ref, 1); 1663 atomic_set(&ffs->opened, 0); 1664 ffs->state = FFS_READ_DESCRIPTORS; 1665 mutex_init(&ffs->mutex); 1666 spin_lock_init(&ffs->eps_lock); 1667 init_waitqueue_head(&ffs->ev.waitq); 1668 init_waitqueue_head(&ffs->wait); 1669 init_completion(&ffs->ep0req_completion); 1670 1671 /* XXX REVISIT need to update it in some places, or do we? */ 1672 ffs->ev.can_stall = 1; 1673 1674 return ffs; 1675 } 1676 1677 static void ffs_data_clear(struct ffs_data *ffs) 1678 { 1679 ENTER(); 1680 1681 ffs_closed(ffs); 1682 1683 BUG_ON(ffs->gadget); 1684 1685 if (ffs->epfiles) 1686 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count); 1687 1688 if (ffs->ffs_eventfd) 1689 eventfd_ctx_put(ffs->ffs_eventfd); 1690 1691 kfree(ffs->raw_descs_data); 1692 kfree(ffs->raw_strings); 1693 kfree(ffs->stringtabs); 1694 } 1695 1696 static void ffs_data_reset(struct ffs_data *ffs) 1697 { 1698 ENTER(); 1699 1700 ffs_data_clear(ffs); 1701 1702 ffs->epfiles = NULL; 1703 ffs->raw_descs_data = NULL; 1704 ffs->raw_descs = NULL; 1705 ffs->raw_strings = NULL; 1706 ffs->stringtabs = NULL; 1707 1708 ffs->raw_descs_length = 0; 1709 ffs->fs_descs_count = 0; 1710 ffs->hs_descs_count = 0; 1711 ffs->ss_descs_count = 0; 1712 1713 ffs->strings_count = 0; 1714 ffs->interfaces_count = 0; 1715 ffs->eps_count = 0; 1716 1717 ffs->ev.count = 0; 1718 1719 ffs->state = FFS_READ_DESCRIPTORS; 1720 ffs->setup_state = FFS_NO_SETUP; 1721 ffs->flags = 0; 1722 } 1723 1724 1725 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) 1726 { 1727 struct usb_gadget_strings **lang; 1728 int first_id; 1729 1730 ENTER(); 1731 1732 if (WARN_ON(ffs->state != FFS_ACTIVE 1733 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) 1734 return -EBADFD; 1735 1736 first_id = usb_string_ids_n(cdev, ffs->strings_count); 1737 if (unlikely(first_id < 0)) 1738 return first_id; 1739 1740 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); 1741 if (unlikely(!ffs->ep0req)) 1742 return -ENOMEM; 1743 ffs->ep0req->complete = ffs_ep0_complete; 1744 ffs->ep0req->context = ffs; 1745 1746 lang = ffs->stringtabs; 1747 if (lang) { 1748 for (; *lang; ++lang) { 1749 struct usb_string *str = (*lang)->strings; 1750 int id = first_id; 1751 for (; str->s; ++id, ++str) 1752 str->id = id; 1753 } 1754 } 1755 1756 ffs->gadget = cdev->gadget; 1757 ffs_data_get(ffs); 1758 return 0; 1759 } 1760 1761 static void functionfs_unbind(struct ffs_data *ffs) 1762 { 1763 ENTER(); 1764 1765 if (!WARN_ON(!ffs->gadget)) { 1766 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); 1767 ffs->ep0req = NULL; 1768 ffs->gadget = NULL; 1769 clear_bit(FFS_FL_BOUND, &ffs->flags); 1770 ffs_data_put(ffs); 1771 } 1772 } 1773 1774 static int ffs_epfiles_create(struct ffs_data *ffs) 1775 { 1776 struct ffs_epfile *epfile, *epfiles; 1777 unsigned i, count; 1778 1779 ENTER(); 1780 1781 count = ffs->eps_count; 1782 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); 1783 if (!epfiles) 1784 return -ENOMEM; 1785 1786 epfile = epfiles; 1787 for (i = 1; i <= count; ++i, ++epfile) { 1788 epfile->ffs = ffs; 1789 mutex_init(&epfile->mutex); 1790 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 1791 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]); 1792 else 1793 sprintf(epfile->name, "ep%u", i); 1794 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name, 1795 epfile, 1796 &ffs_epfile_operations); 1797 if (unlikely(!epfile->dentry)) { 1798 ffs_epfiles_destroy(epfiles, i - 1); 1799 return -ENOMEM; 1800 } 1801 } 1802 1803 ffs->epfiles = epfiles; 1804 return 0; 1805 } 1806 1807 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count) 1808 { 1809 struct ffs_epfile *epfile = epfiles; 1810 1811 ENTER(); 1812 1813 for (; count; --count, ++epfile) { 1814 BUG_ON(mutex_is_locked(&epfile->mutex)); 1815 if (epfile->dentry) { 1816 d_delete(epfile->dentry); 1817 dput(epfile->dentry); 1818 epfile->dentry = NULL; 1819 } 1820 } 1821 1822 kfree(epfiles); 1823 } 1824 1825 static void ffs_func_eps_disable(struct ffs_function *func) 1826 { 1827 struct ffs_ep *ep = func->eps; 1828 struct ffs_epfile *epfile = func->ffs->epfiles; 1829 unsigned count = func->ffs->eps_count; 1830 unsigned long flags; 1831 1832 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1833 while (count--) { 1834 /* pending requests get nuked */ 1835 if (likely(ep->ep)) 1836 usb_ep_disable(ep->ep); 1837 ++ep; 1838 1839 if (epfile) { 1840 epfile->ep = NULL; 1841 __ffs_epfile_read_buffer_free(epfile); 1842 ++epfile; 1843 } 1844 } 1845 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1846 } 1847 1848 static int ffs_func_eps_enable(struct ffs_function *func) 1849 { 1850 struct ffs_data *ffs = func->ffs; 1851 struct ffs_ep *ep = func->eps; 1852 struct ffs_epfile *epfile = ffs->epfiles; 1853 unsigned count = ffs->eps_count; 1854 unsigned long flags; 1855 int ret = 0; 1856 1857 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1858 while(count--) { 1859 struct usb_endpoint_descriptor *ds; 1860 struct usb_ss_ep_comp_descriptor *comp_desc = NULL; 1861 int needs_comp_desc = false; 1862 int desc_idx; 1863 1864 if (ffs->gadget->speed == USB_SPEED_SUPER) { 1865 desc_idx = 2; 1866 needs_comp_desc = true; 1867 } else if (ffs->gadget->speed == USB_SPEED_HIGH) 1868 desc_idx = 1; 1869 else 1870 desc_idx = 0; 1871 1872 /* fall-back to lower speed if desc missing for current speed */ 1873 do { 1874 ds = ep->descs[desc_idx]; 1875 } while (!ds && --desc_idx >= 0); 1876 1877 if (!ds) { 1878 ret = -EINVAL; 1879 break; 1880 } 1881 1882 ep->ep->driver_data = ep; 1883 ep->ep->desc = ds; 1884 1885 if (needs_comp_desc) { 1886 comp_desc = (struct usb_ss_ep_comp_descriptor *)(ds + 1887 USB_DT_ENDPOINT_SIZE); 1888 ep->ep->maxburst = comp_desc->bMaxBurst + 1; 1889 ep->ep->comp_desc = comp_desc; 1890 } 1891 1892 ret = usb_ep_enable(ep->ep); 1893 if (likely(!ret)) { 1894 epfile->ep = ep; 1895 epfile->in = usb_endpoint_dir_in(ds); 1896 epfile->isoc = usb_endpoint_xfer_isoc(ds); 1897 } else { 1898 break; 1899 } 1900 1901 ++ep; 1902 ++epfile; 1903 } 1904 1905 wake_up_interruptible(&ffs->wait); 1906 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1907 1908 return ret; 1909 } 1910 1911 1912 /* Parsing and building descriptors and strings *****************************/ 1913 1914 /* 1915 * This validates if data pointed by data is a valid USB descriptor as 1916 * well as record how many interfaces, endpoints and strings are 1917 * required by given configuration. Returns address after the 1918 * descriptor or NULL if data is invalid. 1919 */ 1920 1921 enum ffs_entity_type { 1922 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT 1923 }; 1924 1925 enum ffs_os_desc_type { 1926 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP 1927 }; 1928 1929 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, 1930 u8 *valuep, 1931 struct usb_descriptor_header *desc, 1932 void *priv); 1933 1934 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, 1935 struct usb_os_desc_header *h, void *data, 1936 unsigned len, void *priv); 1937 1938 static int __must_check ffs_do_single_desc(char *data, unsigned len, 1939 ffs_entity_callback entity, 1940 void *priv) 1941 { 1942 struct usb_descriptor_header *_ds = (void *)data; 1943 u8 length; 1944 int ret; 1945 1946 ENTER(); 1947 1948 /* At least two bytes are required: length and type */ 1949 if (len < 2) { 1950 pr_vdebug("descriptor too short\n"); 1951 return -EINVAL; 1952 } 1953 1954 /* If we have at least as many bytes as the descriptor takes? */ 1955 length = _ds->bLength; 1956 if (len < length) { 1957 pr_vdebug("descriptor longer then available data\n"); 1958 return -EINVAL; 1959 } 1960 1961 #define __entity_check_INTERFACE(val) 1 1962 #define __entity_check_STRING(val) (val) 1963 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) 1964 #define __entity(type, val) do { \ 1965 pr_vdebug("entity " #type "(%02x)\n", (val)); \ 1966 if (unlikely(!__entity_check_ ##type(val))) { \ 1967 pr_vdebug("invalid entity's value\n"); \ 1968 return -EINVAL; \ 1969 } \ 1970 ret = entity(FFS_ ##type, &val, _ds, priv); \ 1971 if (unlikely(ret < 0)) { \ 1972 pr_debug("entity " #type "(%02x); ret = %d\n", \ 1973 (val), ret); \ 1974 return ret; \ 1975 } \ 1976 } while (0) 1977 1978 /* Parse descriptor depending on type. */ 1979 switch (_ds->bDescriptorType) { 1980 case USB_DT_DEVICE: 1981 case USB_DT_CONFIG: 1982 case USB_DT_STRING: 1983 case USB_DT_DEVICE_QUALIFIER: 1984 /* function can't have any of those */ 1985 pr_vdebug("descriptor reserved for gadget: %d\n", 1986 _ds->bDescriptorType); 1987 return -EINVAL; 1988 1989 case USB_DT_INTERFACE: { 1990 struct usb_interface_descriptor *ds = (void *)_ds; 1991 pr_vdebug("interface descriptor\n"); 1992 if (length != sizeof *ds) 1993 goto inv_length; 1994 1995 __entity(INTERFACE, ds->bInterfaceNumber); 1996 if (ds->iInterface) 1997 __entity(STRING, ds->iInterface); 1998 } 1999 break; 2000 2001 case USB_DT_ENDPOINT: { 2002 struct usb_endpoint_descriptor *ds = (void *)_ds; 2003 pr_vdebug("endpoint descriptor\n"); 2004 if (length != USB_DT_ENDPOINT_SIZE && 2005 length != USB_DT_ENDPOINT_AUDIO_SIZE) 2006 goto inv_length; 2007 __entity(ENDPOINT, ds->bEndpointAddress); 2008 } 2009 break; 2010 2011 case HID_DT_HID: 2012 pr_vdebug("hid descriptor\n"); 2013 if (length != sizeof(struct hid_descriptor)) 2014 goto inv_length; 2015 break; 2016 2017 case USB_DT_OTG: 2018 if (length != sizeof(struct usb_otg_descriptor)) 2019 goto inv_length; 2020 break; 2021 2022 case USB_DT_INTERFACE_ASSOCIATION: { 2023 struct usb_interface_assoc_descriptor *ds = (void *)_ds; 2024 pr_vdebug("interface association descriptor\n"); 2025 if (length != sizeof *ds) 2026 goto inv_length; 2027 if (ds->iFunction) 2028 __entity(STRING, ds->iFunction); 2029 } 2030 break; 2031 2032 case USB_DT_SS_ENDPOINT_COMP: 2033 pr_vdebug("EP SS companion descriptor\n"); 2034 if (length != sizeof(struct usb_ss_ep_comp_descriptor)) 2035 goto inv_length; 2036 break; 2037 2038 case USB_DT_OTHER_SPEED_CONFIG: 2039 case USB_DT_INTERFACE_POWER: 2040 case USB_DT_DEBUG: 2041 case USB_DT_SECURITY: 2042 case USB_DT_CS_RADIO_CONTROL: 2043 /* TODO */ 2044 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); 2045 return -EINVAL; 2046 2047 default: 2048 /* We should never be here */ 2049 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); 2050 return -EINVAL; 2051 2052 inv_length: 2053 pr_vdebug("invalid length: %d (descriptor %d)\n", 2054 _ds->bLength, _ds->bDescriptorType); 2055 return -EINVAL; 2056 } 2057 2058 #undef __entity 2059 #undef __entity_check_DESCRIPTOR 2060 #undef __entity_check_INTERFACE 2061 #undef __entity_check_STRING 2062 #undef __entity_check_ENDPOINT 2063 2064 return length; 2065 } 2066 2067 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, 2068 ffs_entity_callback entity, void *priv) 2069 { 2070 const unsigned _len = len; 2071 unsigned long num = 0; 2072 2073 ENTER(); 2074 2075 for (;;) { 2076 int ret; 2077 2078 if (num == count) 2079 data = NULL; 2080 2081 /* Record "descriptor" entity */ 2082 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); 2083 if (unlikely(ret < 0)) { 2084 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", 2085 num, ret); 2086 return ret; 2087 } 2088 2089 if (!data) 2090 return _len - len; 2091 2092 ret = ffs_do_single_desc(data, len, entity, priv); 2093 if (unlikely(ret < 0)) { 2094 pr_debug("%s returns %d\n", __func__, ret); 2095 return ret; 2096 } 2097 2098 len -= ret; 2099 data += ret; 2100 ++num; 2101 } 2102 } 2103 2104 static int __ffs_data_do_entity(enum ffs_entity_type type, 2105 u8 *valuep, struct usb_descriptor_header *desc, 2106 void *priv) 2107 { 2108 struct ffs_desc_helper *helper = priv; 2109 struct usb_endpoint_descriptor *d; 2110 2111 ENTER(); 2112 2113 switch (type) { 2114 case FFS_DESCRIPTOR: 2115 break; 2116 2117 case FFS_INTERFACE: 2118 /* 2119 * Interfaces are indexed from zero so if we 2120 * encountered interface "n" then there are at least 2121 * "n+1" interfaces. 2122 */ 2123 if (*valuep >= helper->interfaces_count) 2124 helper->interfaces_count = *valuep + 1; 2125 break; 2126 2127 case FFS_STRING: 2128 /* 2129 * Strings are indexed from 1 (0 is reserved 2130 * for languages list) 2131 */ 2132 if (*valuep > helper->ffs->strings_count) 2133 helper->ffs->strings_count = *valuep; 2134 break; 2135 2136 case FFS_ENDPOINT: 2137 d = (void *)desc; 2138 helper->eps_count++; 2139 if (helper->eps_count >= FFS_MAX_EPS_COUNT) 2140 return -EINVAL; 2141 /* Check if descriptors for any speed were already parsed */ 2142 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count) 2143 helper->ffs->eps_addrmap[helper->eps_count] = 2144 d->bEndpointAddress; 2145 else if (helper->ffs->eps_addrmap[helper->eps_count] != 2146 d->bEndpointAddress) 2147 return -EINVAL; 2148 break; 2149 } 2150 2151 return 0; 2152 } 2153 2154 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, 2155 struct usb_os_desc_header *desc) 2156 { 2157 u16 bcd_version = le16_to_cpu(desc->bcdVersion); 2158 u16 w_index = le16_to_cpu(desc->wIndex); 2159 2160 if (bcd_version != 1) { 2161 pr_vdebug("unsupported os descriptors version: %d", 2162 bcd_version); 2163 return -EINVAL; 2164 } 2165 switch (w_index) { 2166 case 0x4: 2167 *next_type = FFS_OS_DESC_EXT_COMPAT; 2168 break; 2169 case 0x5: 2170 *next_type = FFS_OS_DESC_EXT_PROP; 2171 break; 2172 default: 2173 pr_vdebug("unsupported os descriptor type: %d", w_index); 2174 return -EINVAL; 2175 } 2176 2177 return sizeof(*desc); 2178 } 2179 2180 /* 2181 * Process all extended compatibility/extended property descriptors 2182 * of a feature descriptor 2183 */ 2184 static int __must_check ffs_do_single_os_desc(char *data, unsigned len, 2185 enum ffs_os_desc_type type, 2186 u16 feature_count, 2187 ffs_os_desc_callback entity, 2188 void *priv, 2189 struct usb_os_desc_header *h) 2190 { 2191 int ret; 2192 const unsigned _len = len; 2193 2194 ENTER(); 2195 2196 /* loop over all ext compat/ext prop descriptors */ 2197 while (feature_count--) { 2198 ret = entity(type, h, data, len, priv); 2199 if (unlikely(ret < 0)) { 2200 pr_debug("bad OS descriptor, type: %d\n", type); 2201 return ret; 2202 } 2203 data += ret; 2204 len -= ret; 2205 } 2206 return _len - len; 2207 } 2208 2209 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ 2210 static int __must_check ffs_do_os_descs(unsigned count, 2211 char *data, unsigned len, 2212 ffs_os_desc_callback entity, void *priv) 2213 { 2214 const unsigned _len = len; 2215 unsigned long num = 0; 2216 2217 ENTER(); 2218 2219 for (num = 0; num < count; ++num) { 2220 int ret; 2221 enum ffs_os_desc_type type; 2222 u16 feature_count; 2223 struct usb_os_desc_header *desc = (void *)data; 2224 2225 if (len < sizeof(*desc)) 2226 return -EINVAL; 2227 2228 /* 2229 * Record "descriptor" entity. 2230 * Process dwLength, bcdVersion, wIndex, get b/wCount. 2231 * Move the data pointer to the beginning of extended 2232 * compatibilities proper or extended properties proper 2233 * portions of the data 2234 */ 2235 if (le32_to_cpu(desc->dwLength) > len) 2236 return -EINVAL; 2237 2238 ret = __ffs_do_os_desc_header(&type, desc); 2239 if (unlikely(ret < 0)) { 2240 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", 2241 num, ret); 2242 return ret; 2243 } 2244 /* 2245 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" 2246 */ 2247 feature_count = le16_to_cpu(desc->wCount); 2248 if (type == FFS_OS_DESC_EXT_COMPAT && 2249 (feature_count > 255 || desc->Reserved)) 2250 return -EINVAL; 2251 len -= ret; 2252 data += ret; 2253 2254 /* 2255 * Process all function/property descriptors 2256 * of this Feature Descriptor 2257 */ 2258 ret = ffs_do_single_os_desc(data, len, type, 2259 feature_count, entity, priv, desc); 2260 if (unlikely(ret < 0)) { 2261 pr_debug("%s returns %d\n", __func__, ret); 2262 return ret; 2263 } 2264 2265 len -= ret; 2266 data += ret; 2267 } 2268 return _len - len; 2269 } 2270 2271 /** 2272 * Validate contents of the buffer from userspace related to OS descriptors. 2273 */ 2274 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, 2275 struct usb_os_desc_header *h, void *data, 2276 unsigned len, void *priv) 2277 { 2278 struct ffs_data *ffs = priv; 2279 u8 length; 2280 2281 ENTER(); 2282 2283 switch (type) { 2284 case FFS_OS_DESC_EXT_COMPAT: { 2285 struct usb_ext_compat_desc *d = data; 2286 int i; 2287 2288 if (len < sizeof(*d) || 2289 d->bFirstInterfaceNumber >= ffs->interfaces_count || 2290 !d->Reserved1) 2291 return -EINVAL; 2292 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) 2293 if (d->Reserved2[i]) 2294 return -EINVAL; 2295 2296 length = sizeof(struct usb_ext_compat_desc); 2297 } 2298 break; 2299 case FFS_OS_DESC_EXT_PROP: { 2300 struct usb_ext_prop_desc *d = data; 2301 u32 type, pdl; 2302 u16 pnl; 2303 2304 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) 2305 return -EINVAL; 2306 length = le32_to_cpu(d->dwSize); 2307 if (len < length) 2308 return -EINVAL; 2309 type = le32_to_cpu(d->dwPropertyDataType); 2310 if (type < USB_EXT_PROP_UNICODE || 2311 type > USB_EXT_PROP_UNICODE_MULTI) { 2312 pr_vdebug("unsupported os descriptor property type: %d", 2313 type); 2314 return -EINVAL; 2315 } 2316 pnl = le16_to_cpu(d->wPropertyNameLength); 2317 if (length < 14 + pnl) { 2318 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n", 2319 length, pnl, type); 2320 return -EINVAL; 2321 } 2322 pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl)); 2323 if (length != 14 + pnl + pdl) { 2324 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", 2325 length, pnl, pdl, type); 2326 return -EINVAL; 2327 } 2328 ++ffs->ms_os_descs_ext_prop_count; 2329 /* property name reported to the host as "WCHAR"s */ 2330 ffs->ms_os_descs_ext_prop_name_len += pnl * 2; 2331 ffs->ms_os_descs_ext_prop_data_len += pdl; 2332 } 2333 break; 2334 default: 2335 pr_vdebug("unknown descriptor: %d\n", type); 2336 return -EINVAL; 2337 } 2338 return length; 2339 } 2340 2341 static int __ffs_data_got_descs(struct ffs_data *ffs, 2342 char *const _data, size_t len) 2343 { 2344 char *data = _data, *raw_descs; 2345 unsigned os_descs_count = 0, counts[3], flags; 2346 int ret = -EINVAL, i; 2347 struct ffs_desc_helper helper; 2348 2349 ENTER(); 2350 2351 if (get_unaligned_le32(data + 4) != len) 2352 goto error; 2353 2354 switch (get_unaligned_le32(data)) { 2355 case FUNCTIONFS_DESCRIPTORS_MAGIC: 2356 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; 2357 data += 8; 2358 len -= 8; 2359 break; 2360 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: 2361 flags = get_unaligned_le32(data + 8); 2362 ffs->user_flags = flags; 2363 if (flags & ~(FUNCTIONFS_HAS_FS_DESC | 2364 FUNCTIONFS_HAS_HS_DESC | 2365 FUNCTIONFS_HAS_SS_DESC | 2366 FUNCTIONFS_HAS_MS_OS_DESC | 2367 FUNCTIONFS_VIRTUAL_ADDR | 2368 FUNCTIONFS_EVENTFD | 2369 FUNCTIONFS_ALL_CTRL_RECIP | 2370 FUNCTIONFS_CONFIG0_SETUP)) { 2371 ret = -ENOSYS; 2372 goto error; 2373 } 2374 data += 12; 2375 len -= 12; 2376 break; 2377 default: 2378 goto error; 2379 } 2380 2381 if (flags & FUNCTIONFS_EVENTFD) { 2382 if (len < 4) 2383 goto error; 2384 ffs->ffs_eventfd = 2385 eventfd_ctx_fdget((int)get_unaligned_le32(data)); 2386 if (IS_ERR(ffs->ffs_eventfd)) { 2387 ret = PTR_ERR(ffs->ffs_eventfd); 2388 ffs->ffs_eventfd = NULL; 2389 goto error; 2390 } 2391 data += 4; 2392 len -= 4; 2393 } 2394 2395 /* Read fs_count, hs_count and ss_count (if present) */ 2396 for (i = 0; i < 3; ++i) { 2397 if (!(flags & (1 << i))) { 2398 counts[i] = 0; 2399 } else if (len < 4) { 2400 goto error; 2401 } else { 2402 counts[i] = get_unaligned_le32(data); 2403 data += 4; 2404 len -= 4; 2405 } 2406 } 2407 if (flags & (1 << i)) { 2408 if (len < 4) { 2409 goto error; 2410 } 2411 os_descs_count = get_unaligned_le32(data); 2412 data += 4; 2413 len -= 4; 2414 }; 2415 2416 /* Read descriptors */ 2417 raw_descs = data; 2418 helper.ffs = ffs; 2419 for (i = 0; i < 3; ++i) { 2420 if (!counts[i]) 2421 continue; 2422 helper.interfaces_count = 0; 2423 helper.eps_count = 0; 2424 ret = ffs_do_descs(counts[i], data, len, 2425 __ffs_data_do_entity, &helper); 2426 if (ret < 0) 2427 goto error; 2428 if (!ffs->eps_count && !ffs->interfaces_count) { 2429 ffs->eps_count = helper.eps_count; 2430 ffs->interfaces_count = helper.interfaces_count; 2431 } else { 2432 if (ffs->eps_count != helper.eps_count) { 2433 ret = -EINVAL; 2434 goto error; 2435 } 2436 if (ffs->interfaces_count != helper.interfaces_count) { 2437 ret = -EINVAL; 2438 goto error; 2439 } 2440 } 2441 data += ret; 2442 len -= ret; 2443 } 2444 if (os_descs_count) { 2445 ret = ffs_do_os_descs(os_descs_count, data, len, 2446 __ffs_data_do_os_desc, ffs); 2447 if (ret < 0) 2448 goto error; 2449 data += ret; 2450 len -= ret; 2451 } 2452 2453 if (raw_descs == data || len) { 2454 ret = -EINVAL; 2455 goto error; 2456 } 2457 2458 ffs->raw_descs_data = _data; 2459 ffs->raw_descs = raw_descs; 2460 ffs->raw_descs_length = data - raw_descs; 2461 ffs->fs_descs_count = counts[0]; 2462 ffs->hs_descs_count = counts[1]; 2463 ffs->ss_descs_count = counts[2]; 2464 ffs->ms_os_descs_count = os_descs_count; 2465 2466 return 0; 2467 2468 error: 2469 kfree(_data); 2470 return ret; 2471 } 2472 2473 static int __ffs_data_got_strings(struct ffs_data *ffs, 2474 char *const _data, size_t len) 2475 { 2476 u32 str_count, needed_count, lang_count; 2477 struct usb_gadget_strings **stringtabs, *t; 2478 const char *data = _data; 2479 struct usb_string *s; 2480 2481 ENTER(); 2482 2483 if (unlikely(len < 16 || 2484 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || 2485 get_unaligned_le32(data + 4) != len)) 2486 goto error; 2487 str_count = get_unaligned_le32(data + 8); 2488 lang_count = get_unaligned_le32(data + 12); 2489 2490 /* if one is zero the other must be zero */ 2491 if (unlikely(!str_count != !lang_count)) 2492 goto error; 2493 2494 /* Do we have at least as many strings as descriptors need? */ 2495 needed_count = ffs->strings_count; 2496 if (unlikely(str_count < needed_count)) 2497 goto error; 2498 2499 /* 2500 * If we don't need any strings just return and free all 2501 * memory. 2502 */ 2503 if (!needed_count) { 2504 kfree(_data); 2505 return 0; 2506 } 2507 2508 /* Allocate everything in one chunk so there's less maintenance. */ 2509 { 2510 unsigned i = 0; 2511 vla_group(d); 2512 vla_item(d, struct usb_gadget_strings *, stringtabs, 2513 lang_count + 1); 2514 vla_item(d, struct usb_gadget_strings, stringtab, lang_count); 2515 vla_item(d, struct usb_string, strings, 2516 lang_count*(needed_count+1)); 2517 2518 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); 2519 2520 if (unlikely(!vlabuf)) { 2521 kfree(_data); 2522 return -ENOMEM; 2523 } 2524 2525 /* Initialize the VLA pointers */ 2526 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2527 t = vla_ptr(vlabuf, d, stringtab); 2528 i = lang_count; 2529 do { 2530 *stringtabs++ = t++; 2531 } while (--i); 2532 *stringtabs = NULL; 2533 2534 /* stringtabs = vlabuf = d_stringtabs for later kfree */ 2535 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2536 t = vla_ptr(vlabuf, d, stringtab); 2537 s = vla_ptr(vlabuf, d, strings); 2538 } 2539 2540 /* For each language */ 2541 data += 16; 2542 len -= 16; 2543 2544 do { /* lang_count > 0 so we can use do-while */ 2545 unsigned needed = needed_count; 2546 2547 if (unlikely(len < 3)) 2548 goto error_free; 2549 t->language = get_unaligned_le16(data); 2550 t->strings = s; 2551 ++t; 2552 2553 data += 2; 2554 len -= 2; 2555 2556 /* For each string */ 2557 do { /* str_count > 0 so we can use do-while */ 2558 size_t length = strnlen(data, len); 2559 2560 if (unlikely(length == len)) 2561 goto error_free; 2562 2563 /* 2564 * User may provide more strings then we need, 2565 * if that's the case we simply ignore the 2566 * rest 2567 */ 2568 if (likely(needed)) { 2569 /* 2570 * s->id will be set while adding 2571 * function to configuration so for 2572 * now just leave garbage here. 2573 */ 2574 s->s = data; 2575 --needed; 2576 ++s; 2577 } 2578 2579 data += length + 1; 2580 len -= length + 1; 2581 } while (--str_count); 2582 2583 s->id = 0; /* terminator */ 2584 s->s = NULL; 2585 ++s; 2586 2587 } while (--lang_count); 2588 2589 /* Some garbage left? */ 2590 if (unlikely(len)) 2591 goto error_free; 2592 2593 /* Done! */ 2594 ffs->stringtabs = stringtabs; 2595 ffs->raw_strings = _data; 2596 2597 return 0; 2598 2599 error_free: 2600 kfree(stringtabs); 2601 error: 2602 kfree(_data); 2603 return -EINVAL; 2604 } 2605 2606 2607 /* Events handling and management *******************************************/ 2608 2609 static void __ffs_event_add(struct ffs_data *ffs, 2610 enum usb_functionfs_event_type type) 2611 { 2612 enum usb_functionfs_event_type rem_type1, rem_type2 = type; 2613 int neg = 0; 2614 2615 /* 2616 * Abort any unhandled setup 2617 * 2618 * We do not need to worry about some cmpxchg() changing value 2619 * of ffs->setup_state without holding the lock because when 2620 * state is FFS_SETUP_PENDING cmpxchg() in several places in 2621 * the source does nothing. 2622 */ 2623 if (ffs->setup_state == FFS_SETUP_PENDING) 2624 ffs->setup_state = FFS_SETUP_CANCELLED; 2625 2626 /* 2627 * Logic of this function guarantees that there are at most four pending 2628 * evens on ffs->ev.types queue. This is important because the queue 2629 * has space for four elements only and __ffs_ep0_read_events function 2630 * depends on that limit as well. If more event types are added, those 2631 * limits have to be revisited or guaranteed to still hold. 2632 */ 2633 switch (type) { 2634 case FUNCTIONFS_RESUME: 2635 rem_type2 = FUNCTIONFS_SUSPEND; 2636 /* FALL THROUGH */ 2637 case FUNCTIONFS_SUSPEND: 2638 case FUNCTIONFS_SETUP: 2639 rem_type1 = type; 2640 /* Discard all similar events */ 2641 break; 2642 2643 case FUNCTIONFS_BIND: 2644 case FUNCTIONFS_UNBIND: 2645 case FUNCTIONFS_DISABLE: 2646 case FUNCTIONFS_ENABLE: 2647 /* Discard everything other then power management. */ 2648 rem_type1 = FUNCTIONFS_SUSPEND; 2649 rem_type2 = FUNCTIONFS_RESUME; 2650 neg = 1; 2651 break; 2652 2653 default: 2654 WARN(1, "%d: unknown event, this should not happen\n", type); 2655 return; 2656 } 2657 2658 { 2659 u8 *ev = ffs->ev.types, *out = ev; 2660 unsigned n = ffs->ev.count; 2661 for (; n; --n, ++ev) 2662 if ((*ev == rem_type1 || *ev == rem_type2) == neg) 2663 *out++ = *ev; 2664 else 2665 pr_vdebug("purging event %d\n", *ev); 2666 ffs->ev.count = out - ffs->ev.types; 2667 } 2668 2669 pr_vdebug("adding event %d\n", type); 2670 ffs->ev.types[ffs->ev.count++] = type; 2671 wake_up_locked(&ffs->ev.waitq); 2672 if (ffs->ffs_eventfd) 2673 eventfd_signal(ffs->ffs_eventfd, 1); 2674 } 2675 2676 static void ffs_event_add(struct ffs_data *ffs, 2677 enum usb_functionfs_event_type type) 2678 { 2679 unsigned long flags; 2680 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 2681 __ffs_event_add(ffs, type); 2682 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 2683 } 2684 2685 /* Bind/unbind USB function hooks *******************************************/ 2686 2687 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address) 2688 { 2689 int i; 2690 2691 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i) 2692 if (ffs->eps_addrmap[i] == endpoint_address) 2693 return i; 2694 return -ENOENT; 2695 } 2696 2697 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, 2698 struct usb_descriptor_header *desc, 2699 void *priv) 2700 { 2701 struct usb_endpoint_descriptor *ds = (void *)desc; 2702 struct ffs_function *func = priv; 2703 struct ffs_ep *ffs_ep; 2704 unsigned ep_desc_id; 2705 int idx; 2706 static const char *speed_names[] = { "full", "high", "super" }; 2707 2708 if (type != FFS_DESCRIPTOR) 2709 return 0; 2710 2711 /* 2712 * If ss_descriptors is not NULL, we are reading super speed 2713 * descriptors; if hs_descriptors is not NULL, we are reading high 2714 * speed descriptors; otherwise, we are reading full speed 2715 * descriptors. 2716 */ 2717 if (func->function.ss_descriptors) { 2718 ep_desc_id = 2; 2719 func->function.ss_descriptors[(long)valuep] = desc; 2720 } else if (func->function.hs_descriptors) { 2721 ep_desc_id = 1; 2722 func->function.hs_descriptors[(long)valuep] = desc; 2723 } else { 2724 ep_desc_id = 0; 2725 func->function.fs_descriptors[(long)valuep] = desc; 2726 } 2727 2728 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) 2729 return 0; 2730 2731 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1; 2732 if (idx < 0) 2733 return idx; 2734 2735 ffs_ep = func->eps + idx; 2736 2737 if (unlikely(ffs_ep->descs[ep_desc_id])) { 2738 pr_err("two %sspeed descriptors for EP %d\n", 2739 speed_names[ep_desc_id], 2740 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); 2741 return -EINVAL; 2742 } 2743 ffs_ep->descs[ep_desc_id] = ds; 2744 2745 ffs_dump_mem(": Original ep desc", ds, ds->bLength); 2746 if (ffs_ep->ep) { 2747 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; 2748 if (!ds->wMaxPacketSize) 2749 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; 2750 } else { 2751 struct usb_request *req; 2752 struct usb_ep *ep; 2753 u8 bEndpointAddress; 2754 2755 /* 2756 * We back up bEndpointAddress because autoconfig overwrites 2757 * it with physical endpoint address. 2758 */ 2759 bEndpointAddress = ds->bEndpointAddress; 2760 pr_vdebug("autoconfig\n"); 2761 ep = usb_ep_autoconfig(func->gadget, ds); 2762 if (unlikely(!ep)) 2763 return -ENOTSUPP; 2764 ep->driver_data = func->eps + idx; 2765 2766 req = usb_ep_alloc_request(ep, GFP_KERNEL); 2767 if (unlikely(!req)) 2768 return -ENOMEM; 2769 2770 ffs_ep->ep = ep; 2771 ffs_ep->req = req; 2772 func->eps_revmap[ds->bEndpointAddress & 2773 USB_ENDPOINT_NUMBER_MASK] = idx + 1; 2774 /* 2775 * If we use virtual address mapping, we restore 2776 * original bEndpointAddress value. 2777 */ 2778 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 2779 ds->bEndpointAddress = bEndpointAddress; 2780 } 2781 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); 2782 2783 return 0; 2784 } 2785 2786 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, 2787 struct usb_descriptor_header *desc, 2788 void *priv) 2789 { 2790 struct ffs_function *func = priv; 2791 unsigned idx; 2792 u8 newValue; 2793 2794 switch (type) { 2795 default: 2796 case FFS_DESCRIPTOR: 2797 /* Handled in previous pass by __ffs_func_bind_do_descs() */ 2798 return 0; 2799 2800 case FFS_INTERFACE: 2801 idx = *valuep; 2802 if (func->interfaces_nums[idx] < 0) { 2803 int id = usb_interface_id(func->conf, &func->function); 2804 if (unlikely(id < 0)) 2805 return id; 2806 func->interfaces_nums[idx] = id; 2807 } 2808 newValue = func->interfaces_nums[idx]; 2809 break; 2810 2811 case FFS_STRING: 2812 /* String' IDs are allocated when fsf_data is bound to cdev */ 2813 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; 2814 break; 2815 2816 case FFS_ENDPOINT: 2817 /* 2818 * USB_DT_ENDPOINT are handled in 2819 * __ffs_func_bind_do_descs(). 2820 */ 2821 if (desc->bDescriptorType == USB_DT_ENDPOINT) 2822 return 0; 2823 2824 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; 2825 if (unlikely(!func->eps[idx].ep)) 2826 return -EINVAL; 2827 2828 { 2829 struct usb_endpoint_descriptor **descs; 2830 descs = func->eps[idx].descs; 2831 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; 2832 } 2833 break; 2834 } 2835 2836 pr_vdebug("%02x -> %02x\n", *valuep, newValue); 2837 *valuep = newValue; 2838 return 0; 2839 } 2840 2841 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, 2842 struct usb_os_desc_header *h, void *data, 2843 unsigned len, void *priv) 2844 { 2845 struct ffs_function *func = priv; 2846 u8 length = 0; 2847 2848 switch (type) { 2849 case FFS_OS_DESC_EXT_COMPAT: { 2850 struct usb_ext_compat_desc *desc = data; 2851 struct usb_os_desc_table *t; 2852 2853 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; 2854 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; 2855 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID, 2856 ARRAY_SIZE(desc->CompatibleID) + 2857 ARRAY_SIZE(desc->SubCompatibleID)); 2858 length = sizeof(*desc); 2859 } 2860 break; 2861 case FFS_OS_DESC_EXT_PROP: { 2862 struct usb_ext_prop_desc *desc = data; 2863 struct usb_os_desc_table *t; 2864 struct usb_os_desc_ext_prop *ext_prop; 2865 char *ext_prop_name; 2866 char *ext_prop_data; 2867 2868 t = &func->function.os_desc_table[h->interface]; 2869 t->if_id = func->interfaces_nums[h->interface]; 2870 2871 ext_prop = func->ffs->ms_os_descs_ext_prop_avail; 2872 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); 2873 2874 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); 2875 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); 2876 ext_prop->data_len = le32_to_cpu(*(u32 *) 2877 usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); 2878 length = ext_prop->name_len + ext_prop->data_len + 14; 2879 2880 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; 2881 func->ffs->ms_os_descs_ext_prop_name_avail += 2882 ext_prop->name_len; 2883 2884 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; 2885 func->ffs->ms_os_descs_ext_prop_data_avail += 2886 ext_prop->data_len; 2887 memcpy(ext_prop_data, 2888 usb_ext_prop_data_ptr(data, ext_prop->name_len), 2889 ext_prop->data_len); 2890 /* unicode data reported to the host as "WCHAR"s */ 2891 switch (ext_prop->type) { 2892 case USB_EXT_PROP_UNICODE: 2893 case USB_EXT_PROP_UNICODE_ENV: 2894 case USB_EXT_PROP_UNICODE_LINK: 2895 case USB_EXT_PROP_UNICODE_MULTI: 2896 ext_prop->data_len *= 2; 2897 break; 2898 } 2899 ext_prop->data = ext_prop_data; 2900 2901 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), 2902 ext_prop->name_len); 2903 /* property name reported to the host as "WCHAR"s */ 2904 ext_prop->name_len *= 2; 2905 ext_prop->name = ext_prop_name; 2906 2907 t->os_desc->ext_prop_len += 2908 ext_prop->name_len + ext_prop->data_len + 14; 2909 ++t->os_desc->ext_prop_count; 2910 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); 2911 } 2912 break; 2913 default: 2914 pr_vdebug("unknown descriptor: %d\n", type); 2915 } 2916 2917 return length; 2918 } 2919 2920 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, 2921 struct usb_configuration *c) 2922 { 2923 struct ffs_function *func = ffs_func_from_usb(f); 2924 struct f_fs_opts *ffs_opts = 2925 container_of(f->fi, struct f_fs_opts, func_inst); 2926 int ret; 2927 2928 ENTER(); 2929 2930 /* 2931 * Legacy gadget triggers binding in functionfs_ready_callback, 2932 * which already uses locking; taking the same lock here would 2933 * cause a deadlock. 2934 * 2935 * Configfs-enabled gadgets however do need ffs_dev_lock. 2936 */ 2937 if (!ffs_opts->no_configfs) 2938 ffs_dev_lock(); 2939 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; 2940 func->ffs = ffs_opts->dev->ffs_data; 2941 if (!ffs_opts->no_configfs) 2942 ffs_dev_unlock(); 2943 if (ret) 2944 return ERR_PTR(ret); 2945 2946 func->conf = c; 2947 func->gadget = c->cdev->gadget; 2948 2949 /* 2950 * in drivers/usb/gadget/configfs.c:configfs_composite_bind() 2951 * configurations are bound in sequence with list_for_each_entry, 2952 * in each configuration its functions are bound in sequence 2953 * with list_for_each_entry, so we assume no race condition 2954 * with regard to ffs_opts->bound access 2955 */ 2956 if (!ffs_opts->refcnt) { 2957 ret = functionfs_bind(func->ffs, c->cdev); 2958 if (ret) 2959 return ERR_PTR(ret); 2960 } 2961 ffs_opts->refcnt++; 2962 func->function.strings = func->ffs->stringtabs; 2963 2964 return ffs_opts; 2965 } 2966 2967 static int _ffs_func_bind(struct usb_configuration *c, 2968 struct usb_function *f) 2969 { 2970 struct ffs_function *func = ffs_func_from_usb(f); 2971 struct ffs_data *ffs = func->ffs; 2972 2973 const int full = !!func->ffs->fs_descs_count; 2974 const int high = gadget_is_dualspeed(func->gadget) && 2975 func->ffs->hs_descs_count; 2976 const int super = gadget_is_superspeed(func->gadget) && 2977 func->ffs->ss_descs_count; 2978 2979 int fs_len, hs_len, ss_len, ret, i; 2980 struct ffs_ep *eps_ptr; 2981 2982 /* Make it a single chunk, less management later on */ 2983 vla_group(d); 2984 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); 2985 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, 2986 full ? ffs->fs_descs_count + 1 : 0); 2987 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, 2988 high ? ffs->hs_descs_count + 1 : 0); 2989 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, 2990 super ? ffs->ss_descs_count + 1 : 0); 2991 vla_item_with_sz(d, short, inums, ffs->interfaces_count); 2992 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, 2993 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2994 vla_item_with_sz(d, char[16], ext_compat, 2995 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2996 vla_item_with_sz(d, struct usb_os_desc, os_desc, 2997 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2998 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, 2999 ffs->ms_os_descs_ext_prop_count); 3000 vla_item_with_sz(d, char, ext_prop_name, 3001 ffs->ms_os_descs_ext_prop_name_len); 3002 vla_item_with_sz(d, char, ext_prop_data, 3003 ffs->ms_os_descs_ext_prop_data_len); 3004 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); 3005 char *vlabuf; 3006 3007 ENTER(); 3008 3009 /* Has descriptors only for speeds gadget does not support */ 3010 if (unlikely(!(full | high | super))) 3011 return -ENOTSUPP; 3012 3013 /* Allocate a single chunk, less management later on */ 3014 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); 3015 if (unlikely(!vlabuf)) 3016 return -ENOMEM; 3017 3018 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); 3019 ffs->ms_os_descs_ext_prop_name_avail = 3020 vla_ptr(vlabuf, d, ext_prop_name); 3021 ffs->ms_os_descs_ext_prop_data_avail = 3022 vla_ptr(vlabuf, d, ext_prop_data); 3023 3024 /* Copy descriptors */ 3025 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, 3026 ffs->raw_descs_length); 3027 3028 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); 3029 eps_ptr = vla_ptr(vlabuf, d, eps); 3030 for (i = 0; i < ffs->eps_count; i++) 3031 eps_ptr[i].num = -1; 3032 3033 /* Save pointers 3034 * d_eps == vlabuf, func->eps used to kfree vlabuf later 3035 */ 3036 func->eps = vla_ptr(vlabuf, d, eps); 3037 func->interfaces_nums = vla_ptr(vlabuf, d, inums); 3038 3039 /* 3040 * Go through all the endpoint descriptors and allocate 3041 * endpoints first, so that later we can rewrite the endpoint 3042 * numbers without worrying that it may be described later on. 3043 */ 3044 if (likely(full)) { 3045 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); 3046 fs_len = ffs_do_descs(ffs->fs_descs_count, 3047 vla_ptr(vlabuf, d, raw_descs), 3048 d_raw_descs__sz, 3049 __ffs_func_bind_do_descs, func); 3050 if (unlikely(fs_len < 0)) { 3051 ret = fs_len; 3052 goto error; 3053 } 3054 } else { 3055 fs_len = 0; 3056 } 3057 3058 if (likely(high)) { 3059 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); 3060 hs_len = ffs_do_descs(ffs->hs_descs_count, 3061 vla_ptr(vlabuf, d, raw_descs) + fs_len, 3062 d_raw_descs__sz - fs_len, 3063 __ffs_func_bind_do_descs, func); 3064 if (unlikely(hs_len < 0)) { 3065 ret = hs_len; 3066 goto error; 3067 } 3068 } else { 3069 hs_len = 0; 3070 } 3071 3072 if (likely(super)) { 3073 func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs); 3074 ss_len = ffs_do_descs(ffs->ss_descs_count, 3075 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, 3076 d_raw_descs__sz - fs_len - hs_len, 3077 __ffs_func_bind_do_descs, func); 3078 if (unlikely(ss_len < 0)) { 3079 ret = ss_len; 3080 goto error; 3081 } 3082 } else { 3083 ss_len = 0; 3084 } 3085 3086 /* 3087 * Now handle interface numbers allocation and interface and 3088 * endpoint numbers rewriting. We can do that in one go 3089 * now. 3090 */ 3091 ret = ffs_do_descs(ffs->fs_descs_count + 3092 (high ? ffs->hs_descs_count : 0) + 3093 (super ? ffs->ss_descs_count : 0), 3094 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, 3095 __ffs_func_bind_do_nums, func); 3096 if (unlikely(ret < 0)) 3097 goto error; 3098 3099 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); 3100 if (c->cdev->use_os_string) { 3101 for (i = 0; i < ffs->interfaces_count; ++i) { 3102 struct usb_os_desc *desc; 3103 3104 desc = func->function.os_desc_table[i].os_desc = 3105 vla_ptr(vlabuf, d, os_desc) + 3106 i * sizeof(struct usb_os_desc); 3107 desc->ext_compat_id = 3108 vla_ptr(vlabuf, d, ext_compat) + i * 16; 3109 INIT_LIST_HEAD(&desc->ext_prop); 3110 } 3111 ret = ffs_do_os_descs(ffs->ms_os_descs_count, 3112 vla_ptr(vlabuf, d, raw_descs) + 3113 fs_len + hs_len + ss_len, 3114 d_raw_descs__sz - fs_len - hs_len - 3115 ss_len, 3116 __ffs_func_bind_do_os_desc, func); 3117 if (unlikely(ret < 0)) 3118 goto error; 3119 } 3120 func->function.os_desc_n = 3121 c->cdev->use_os_string ? ffs->interfaces_count : 0; 3122 3123 /* And we're done */ 3124 ffs_event_add(ffs, FUNCTIONFS_BIND); 3125 return 0; 3126 3127 error: 3128 /* XXX Do we need to release all claimed endpoints here? */ 3129 return ret; 3130 } 3131 3132 static int ffs_func_bind(struct usb_configuration *c, 3133 struct usb_function *f) 3134 { 3135 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); 3136 struct ffs_function *func = ffs_func_from_usb(f); 3137 int ret; 3138 3139 if (IS_ERR(ffs_opts)) 3140 return PTR_ERR(ffs_opts); 3141 3142 ret = _ffs_func_bind(c, f); 3143 if (ret && !--ffs_opts->refcnt) 3144 functionfs_unbind(func->ffs); 3145 3146 return ret; 3147 } 3148 3149 3150 /* Other USB function hooks *************************************************/ 3151 3152 static void ffs_reset_work(struct work_struct *work) 3153 { 3154 struct ffs_data *ffs = container_of(work, 3155 struct ffs_data, reset_work); 3156 ffs_data_reset(ffs); 3157 } 3158 3159 static int ffs_func_set_alt(struct usb_function *f, 3160 unsigned interface, unsigned alt) 3161 { 3162 struct ffs_function *func = ffs_func_from_usb(f); 3163 struct ffs_data *ffs = func->ffs; 3164 int ret = 0, intf; 3165 3166 if (alt != (unsigned)-1) { 3167 intf = ffs_func_revmap_intf(func, interface); 3168 if (unlikely(intf < 0)) 3169 return intf; 3170 } 3171 3172 if (ffs->func) 3173 ffs_func_eps_disable(ffs->func); 3174 3175 if (ffs->state == FFS_DEACTIVATED) { 3176 ffs->state = FFS_CLOSING; 3177 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3178 schedule_work(&ffs->reset_work); 3179 return -ENODEV; 3180 } 3181 3182 if (ffs->state != FFS_ACTIVE) 3183 return -ENODEV; 3184 3185 if (alt == (unsigned)-1) { 3186 ffs->func = NULL; 3187 ffs_event_add(ffs, FUNCTIONFS_DISABLE); 3188 return 0; 3189 } 3190 3191 ffs->func = func; 3192 ret = ffs_func_eps_enable(func); 3193 if (likely(ret >= 0)) 3194 ffs_event_add(ffs, FUNCTIONFS_ENABLE); 3195 return ret; 3196 } 3197 3198 static void ffs_func_disable(struct usb_function *f) 3199 { 3200 ffs_func_set_alt(f, 0, (unsigned)-1); 3201 } 3202 3203 static int ffs_func_setup(struct usb_function *f, 3204 const struct usb_ctrlrequest *creq) 3205 { 3206 struct ffs_function *func = ffs_func_from_usb(f); 3207 struct ffs_data *ffs = func->ffs; 3208 unsigned long flags; 3209 int ret; 3210 3211 ENTER(); 3212 3213 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); 3214 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); 3215 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); 3216 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); 3217 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); 3218 3219 /* 3220 * Most requests directed to interface go through here 3221 * (notable exceptions are set/get interface) so we need to 3222 * handle them. All other either handled by composite or 3223 * passed to usb_configuration->setup() (if one is set). No 3224 * matter, we will handle requests directed to endpoint here 3225 * as well (as it's straightforward). Other request recipient 3226 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP 3227 * is being used. 3228 */ 3229 if (ffs->state != FFS_ACTIVE) 3230 return -ENODEV; 3231 3232 switch (creq->bRequestType & USB_RECIP_MASK) { 3233 case USB_RECIP_INTERFACE: 3234 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); 3235 if (unlikely(ret < 0)) 3236 return ret; 3237 break; 3238 3239 case USB_RECIP_ENDPOINT: 3240 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); 3241 if (unlikely(ret < 0)) 3242 return ret; 3243 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3244 ret = func->ffs->eps_addrmap[ret]; 3245 break; 3246 3247 default: 3248 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP) 3249 ret = le16_to_cpu(creq->wIndex); 3250 else 3251 return -EOPNOTSUPP; 3252 } 3253 3254 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3255 ffs->ev.setup = *creq; 3256 ffs->ev.setup.wIndex = cpu_to_le16(ret); 3257 __ffs_event_add(ffs, FUNCTIONFS_SETUP); 3258 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3259 3260 return 0; 3261 } 3262 3263 static bool ffs_func_req_match(struct usb_function *f, 3264 const struct usb_ctrlrequest *creq, 3265 bool config0) 3266 { 3267 struct ffs_function *func = ffs_func_from_usb(f); 3268 3269 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP)) 3270 return false; 3271 3272 switch (creq->bRequestType & USB_RECIP_MASK) { 3273 case USB_RECIP_INTERFACE: 3274 return (ffs_func_revmap_intf(func, 3275 le16_to_cpu(creq->wIndex)) >= 0); 3276 case USB_RECIP_ENDPOINT: 3277 return (ffs_func_revmap_ep(func, 3278 le16_to_cpu(creq->wIndex)) >= 0); 3279 default: 3280 return (bool) (func->ffs->user_flags & 3281 FUNCTIONFS_ALL_CTRL_RECIP); 3282 } 3283 } 3284 3285 static void ffs_func_suspend(struct usb_function *f) 3286 { 3287 ENTER(); 3288 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); 3289 } 3290 3291 static void ffs_func_resume(struct usb_function *f) 3292 { 3293 ENTER(); 3294 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); 3295 } 3296 3297 3298 /* Endpoint and interface numbers reverse mapping ***************************/ 3299 3300 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) 3301 { 3302 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; 3303 return num ? num : -EDOM; 3304 } 3305 3306 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) 3307 { 3308 short *nums = func->interfaces_nums; 3309 unsigned count = func->ffs->interfaces_count; 3310 3311 for (; count; --count, ++nums) { 3312 if (*nums >= 0 && *nums == intf) 3313 return nums - func->interfaces_nums; 3314 } 3315 3316 return -EDOM; 3317 } 3318 3319 3320 /* Devices management *******************************************************/ 3321 3322 static LIST_HEAD(ffs_devices); 3323 3324 static struct ffs_dev *_ffs_do_find_dev(const char *name) 3325 { 3326 struct ffs_dev *dev; 3327 3328 if (!name) 3329 return NULL; 3330 3331 list_for_each_entry(dev, &ffs_devices, entry) { 3332 if (strcmp(dev->name, name) == 0) 3333 return dev; 3334 } 3335 3336 return NULL; 3337 } 3338 3339 /* 3340 * ffs_lock must be taken by the caller of this function 3341 */ 3342 static struct ffs_dev *_ffs_get_single_dev(void) 3343 { 3344 struct ffs_dev *dev; 3345 3346 if (list_is_singular(&ffs_devices)) { 3347 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); 3348 if (dev->single) 3349 return dev; 3350 } 3351 3352 return NULL; 3353 } 3354 3355 /* 3356 * ffs_lock must be taken by the caller of this function 3357 */ 3358 static struct ffs_dev *_ffs_find_dev(const char *name) 3359 { 3360 struct ffs_dev *dev; 3361 3362 dev = _ffs_get_single_dev(); 3363 if (dev) 3364 return dev; 3365 3366 return _ffs_do_find_dev(name); 3367 } 3368 3369 /* Configfs support *********************************************************/ 3370 3371 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) 3372 { 3373 return container_of(to_config_group(item), struct f_fs_opts, 3374 func_inst.group); 3375 } 3376 3377 static void ffs_attr_release(struct config_item *item) 3378 { 3379 struct f_fs_opts *opts = to_ffs_opts(item); 3380 3381 usb_put_function_instance(&opts->func_inst); 3382 } 3383 3384 static struct configfs_item_operations ffs_item_ops = { 3385 .release = ffs_attr_release, 3386 }; 3387 3388 static struct config_item_type ffs_func_type = { 3389 .ct_item_ops = &ffs_item_ops, 3390 .ct_owner = THIS_MODULE, 3391 }; 3392 3393 3394 /* Function registration interface ******************************************/ 3395 3396 static void ffs_free_inst(struct usb_function_instance *f) 3397 { 3398 struct f_fs_opts *opts; 3399 3400 opts = to_f_fs_opts(f); 3401 ffs_dev_lock(); 3402 _ffs_free_dev(opts->dev); 3403 ffs_dev_unlock(); 3404 kfree(opts); 3405 } 3406 3407 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) 3408 { 3409 if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name)) 3410 return -ENAMETOOLONG; 3411 return ffs_name_dev(to_f_fs_opts(fi)->dev, name); 3412 } 3413 3414 static struct usb_function_instance *ffs_alloc_inst(void) 3415 { 3416 struct f_fs_opts *opts; 3417 struct ffs_dev *dev; 3418 3419 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 3420 if (!opts) 3421 return ERR_PTR(-ENOMEM); 3422 3423 opts->func_inst.set_inst_name = ffs_set_inst_name; 3424 opts->func_inst.free_func_inst = ffs_free_inst; 3425 ffs_dev_lock(); 3426 dev = _ffs_alloc_dev(); 3427 ffs_dev_unlock(); 3428 if (IS_ERR(dev)) { 3429 kfree(opts); 3430 return ERR_CAST(dev); 3431 } 3432 opts->dev = dev; 3433 dev->opts = opts; 3434 3435 config_group_init_type_name(&opts->func_inst.group, "", 3436 &ffs_func_type); 3437 return &opts->func_inst; 3438 } 3439 3440 static void ffs_free(struct usb_function *f) 3441 { 3442 kfree(ffs_func_from_usb(f)); 3443 } 3444 3445 static void ffs_func_unbind(struct usb_configuration *c, 3446 struct usb_function *f) 3447 { 3448 struct ffs_function *func = ffs_func_from_usb(f); 3449 struct ffs_data *ffs = func->ffs; 3450 struct f_fs_opts *opts = 3451 container_of(f->fi, struct f_fs_opts, func_inst); 3452 struct ffs_ep *ep = func->eps; 3453 unsigned count = ffs->eps_count; 3454 unsigned long flags; 3455 3456 ENTER(); 3457 if (ffs->func == func) { 3458 ffs_func_eps_disable(func); 3459 ffs->func = NULL; 3460 } 3461 3462 if (!--opts->refcnt) 3463 functionfs_unbind(ffs); 3464 3465 /* cleanup after autoconfig */ 3466 spin_lock_irqsave(&func->ffs->eps_lock, flags); 3467 while (count--) { 3468 if (ep->ep && ep->req) 3469 usb_ep_free_request(ep->ep, ep->req); 3470 ep->req = NULL; 3471 ++ep; 3472 } 3473 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 3474 kfree(func->eps); 3475 func->eps = NULL; 3476 /* 3477 * eps, descriptors and interfaces_nums are allocated in the 3478 * same chunk so only one free is required. 3479 */ 3480 func->function.fs_descriptors = NULL; 3481 func->function.hs_descriptors = NULL; 3482 func->function.ss_descriptors = NULL; 3483 func->interfaces_nums = NULL; 3484 3485 ffs_event_add(ffs, FUNCTIONFS_UNBIND); 3486 } 3487 3488 static struct usb_function *ffs_alloc(struct usb_function_instance *fi) 3489 { 3490 struct ffs_function *func; 3491 3492 ENTER(); 3493 3494 func = kzalloc(sizeof(*func), GFP_KERNEL); 3495 if (unlikely(!func)) 3496 return ERR_PTR(-ENOMEM); 3497 3498 func->function.name = "Function FS Gadget"; 3499 3500 func->function.bind = ffs_func_bind; 3501 func->function.unbind = ffs_func_unbind; 3502 func->function.set_alt = ffs_func_set_alt; 3503 func->function.disable = ffs_func_disable; 3504 func->function.setup = ffs_func_setup; 3505 func->function.req_match = ffs_func_req_match; 3506 func->function.suspend = ffs_func_suspend; 3507 func->function.resume = ffs_func_resume; 3508 func->function.free_func = ffs_free; 3509 3510 return &func->function; 3511 } 3512 3513 /* 3514 * ffs_lock must be taken by the caller of this function 3515 */ 3516 static struct ffs_dev *_ffs_alloc_dev(void) 3517 { 3518 struct ffs_dev *dev; 3519 int ret; 3520 3521 if (_ffs_get_single_dev()) 3522 return ERR_PTR(-EBUSY); 3523 3524 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3525 if (!dev) 3526 return ERR_PTR(-ENOMEM); 3527 3528 if (list_empty(&ffs_devices)) { 3529 ret = functionfs_init(); 3530 if (ret) { 3531 kfree(dev); 3532 return ERR_PTR(ret); 3533 } 3534 } 3535 3536 list_add(&dev->entry, &ffs_devices); 3537 3538 return dev; 3539 } 3540 3541 int ffs_name_dev(struct ffs_dev *dev, const char *name) 3542 { 3543 struct ffs_dev *existing; 3544 int ret = 0; 3545 3546 ffs_dev_lock(); 3547 3548 existing = _ffs_do_find_dev(name); 3549 if (!existing) 3550 strlcpy(dev->name, name, ARRAY_SIZE(dev->name)); 3551 else if (existing != dev) 3552 ret = -EBUSY; 3553 3554 ffs_dev_unlock(); 3555 3556 return ret; 3557 } 3558 EXPORT_SYMBOL_GPL(ffs_name_dev); 3559 3560 int ffs_single_dev(struct ffs_dev *dev) 3561 { 3562 int ret; 3563 3564 ret = 0; 3565 ffs_dev_lock(); 3566 3567 if (!list_is_singular(&ffs_devices)) 3568 ret = -EBUSY; 3569 else 3570 dev->single = true; 3571 3572 ffs_dev_unlock(); 3573 return ret; 3574 } 3575 EXPORT_SYMBOL_GPL(ffs_single_dev); 3576 3577 /* 3578 * ffs_lock must be taken by the caller of this function 3579 */ 3580 static void _ffs_free_dev(struct ffs_dev *dev) 3581 { 3582 list_del(&dev->entry); 3583 3584 /* Clear the private_data pointer to stop incorrect dev access */ 3585 if (dev->ffs_data) 3586 dev->ffs_data->private_data = NULL; 3587 3588 kfree(dev); 3589 if (list_empty(&ffs_devices)) 3590 functionfs_cleanup(); 3591 } 3592 3593 static void *ffs_acquire_dev(const char *dev_name) 3594 { 3595 struct ffs_dev *ffs_dev; 3596 3597 ENTER(); 3598 ffs_dev_lock(); 3599 3600 ffs_dev = _ffs_find_dev(dev_name); 3601 if (!ffs_dev) 3602 ffs_dev = ERR_PTR(-ENOENT); 3603 else if (ffs_dev->mounted) 3604 ffs_dev = ERR_PTR(-EBUSY); 3605 else if (ffs_dev->ffs_acquire_dev_callback && 3606 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) 3607 ffs_dev = ERR_PTR(-ENOENT); 3608 else 3609 ffs_dev->mounted = true; 3610 3611 ffs_dev_unlock(); 3612 return ffs_dev; 3613 } 3614 3615 static void ffs_release_dev(struct ffs_data *ffs_data) 3616 { 3617 struct ffs_dev *ffs_dev; 3618 3619 ENTER(); 3620 ffs_dev_lock(); 3621 3622 ffs_dev = ffs_data->private_data; 3623 if (ffs_dev) { 3624 ffs_dev->mounted = false; 3625 3626 if (ffs_dev->ffs_release_dev_callback) 3627 ffs_dev->ffs_release_dev_callback(ffs_dev); 3628 } 3629 3630 ffs_dev_unlock(); 3631 } 3632 3633 static int ffs_ready(struct ffs_data *ffs) 3634 { 3635 struct ffs_dev *ffs_obj; 3636 int ret = 0; 3637 3638 ENTER(); 3639 ffs_dev_lock(); 3640 3641 ffs_obj = ffs->private_data; 3642 if (!ffs_obj) { 3643 ret = -EINVAL; 3644 goto done; 3645 } 3646 if (WARN_ON(ffs_obj->desc_ready)) { 3647 ret = -EBUSY; 3648 goto done; 3649 } 3650 3651 ffs_obj->desc_ready = true; 3652 ffs_obj->ffs_data = ffs; 3653 3654 if (ffs_obj->ffs_ready_callback) { 3655 ret = ffs_obj->ffs_ready_callback(ffs); 3656 if (ret) 3657 goto done; 3658 } 3659 3660 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); 3661 done: 3662 ffs_dev_unlock(); 3663 return ret; 3664 } 3665 3666 static void ffs_closed(struct ffs_data *ffs) 3667 { 3668 struct ffs_dev *ffs_obj; 3669 struct f_fs_opts *opts; 3670 struct config_item *ci; 3671 3672 ENTER(); 3673 ffs_dev_lock(); 3674 3675 ffs_obj = ffs->private_data; 3676 if (!ffs_obj) 3677 goto done; 3678 3679 ffs_obj->desc_ready = false; 3680 3681 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) && 3682 ffs_obj->ffs_closed_callback) 3683 ffs_obj->ffs_closed_callback(ffs); 3684 3685 if (ffs_obj->opts) 3686 opts = ffs_obj->opts; 3687 else 3688 goto done; 3689 3690 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent 3691 || !kref_read(&opts->func_inst.group.cg_item.ci_kref)) 3692 goto done; 3693 3694 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent; 3695 ffs_dev_unlock(); 3696 3697 unregister_gadget_item(ci); 3698 return; 3699 done: 3700 ffs_dev_unlock(); 3701 } 3702 3703 /* Misc helper functions ****************************************************/ 3704 3705 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 3706 { 3707 return nonblock 3708 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN 3709 : mutex_lock_interruptible(mutex); 3710 } 3711 3712 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 3713 { 3714 char *data; 3715 3716 if (unlikely(!len)) 3717 return NULL; 3718 3719 data = kmalloc(len, GFP_KERNEL); 3720 if (unlikely(!data)) 3721 return ERR_PTR(-ENOMEM); 3722 3723 if (unlikely(copy_from_user(data, buf, len))) { 3724 kfree(data); 3725 return ERR_PTR(-EFAULT); 3726 } 3727 3728 pr_vdebug("Buffer from user space:\n"); 3729 ffs_dump_mem("", data, len); 3730 3731 return data; 3732 } 3733 3734 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); 3735 MODULE_LICENSE("GPL"); 3736 MODULE_AUTHOR("Michal Nazarewicz"); 3737