xref: /openbmc/linux/drivers/usb/gadget/function/f_fs.c (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1 /*
2  * f_fs.c -- user mode file system API for USB composite function controllers
3  *
4  * Copyright (C) 2010 Samsung Electronics
5  * Author: Michal Nazarewicz <mina86@mina86.com>
6  *
7  * Based on inode.c (GadgetFS) which was:
8  * Copyright (C) 2003-2004 David Brownell
9  * Copyright (C) 2003 Agilent Technologies
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  */
16 
17 
18 /* #define DEBUG */
19 /* #define VERBOSE_DEBUG */
20 
21 #include <linux/blkdev.h>
22 #include <linux/pagemap.h>
23 #include <linux/export.h>
24 #include <linux/hid.h>
25 #include <linux/module.h>
26 #include <linux/sched/signal.h>
27 #include <linux/uio.h>
28 #include <asm/unaligned.h>
29 
30 #include <linux/usb/composite.h>
31 #include <linux/usb/functionfs.h>
32 
33 #include <linux/aio.h>
34 #include <linux/mmu_context.h>
35 #include <linux/poll.h>
36 #include <linux/eventfd.h>
37 
38 #include "u_fs.h"
39 #include "u_f.h"
40 #include "u_os_desc.h"
41 #include "configfs.h"
42 
43 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
44 
45 /* Reference counter handling */
46 static void ffs_data_get(struct ffs_data *ffs);
47 static void ffs_data_put(struct ffs_data *ffs);
48 /* Creates new ffs_data object. */
49 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
50 	__attribute__((malloc));
51 
52 /* Opened counter handling. */
53 static void ffs_data_opened(struct ffs_data *ffs);
54 static void ffs_data_closed(struct ffs_data *ffs);
55 
56 /* Called with ffs->mutex held; take over ownership of data. */
57 static int __must_check
58 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
59 static int __must_check
60 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
61 
62 
63 /* The function structure ***************************************************/
64 
65 struct ffs_ep;
66 
67 struct ffs_function {
68 	struct usb_configuration	*conf;
69 	struct usb_gadget		*gadget;
70 	struct ffs_data			*ffs;
71 
72 	struct ffs_ep			*eps;
73 	u8				eps_revmap[16];
74 	short				*interfaces_nums;
75 
76 	struct usb_function		function;
77 };
78 
79 
80 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
81 {
82 	return container_of(f, struct ffs_function, function);
83 }
84 
85 
86 static inline enum ffs_setup_state
87 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
88 {
89 	return (enum ffs_setup_state)
90 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
91 }
92 
93 
94 static void ffs_func_eps_disable(struct ffs_function *func);
95 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
96 
97 static int ffs_func_bind(struct usb_configuration *,
98 			 struct usb_function *);
99 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
100 static void ffs_func_disable(struct usb_function *);
101 static int ffs_func_setup(struct usb_function *,
102 			  const struct usb_ctrlrequest *);
103 static bool ffs_func_req_match(struct usb_function *,
104 			       const struct usb_ctrlrequest *,
105 			       bool config0);
106 static void ffs_func_suspend(struct usb_function *);
107 static void ffs_func_resume(struct usb_function *);
108 
109 
110 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
111 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
112 
113 
114 /* The endpoints structures *************************************************/
115 
116 struct ffs_ep {
117 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
118 	struct usb_request		*req;	/* P: epfile->mutex */
119 
120 	/* [0]: full speed, [1]: high speed, [2]: super speed */
121 	struct usb_endpoint_descriptor	*descs[3];
122 
123 	u8				num;
124 
125 	int				status;	/* P: epfile->mutex */
126 };
127 
128 struct ffs_epfile {
129 	/* Protects ep->ep and ep->req. */
130 	struct mutex			mutex;
131 
132 	struct ffs_data			*ffs;
133 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
134 
135 	struct dentry			*dentry;
136 
137 	/*
138 	 * Buffer for holding data from partial reads which may happen since
139 	 * we’re rounding user read requests to a multiple of a max packet size.
140 	 *
141 	 * The pointer is initialised with NULL value and may be set by
142 	 * __ffs_epfile_read_data function to point to a temporary buffer.
143 	 *
144 	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
145 	 * data from said buffer and eventually free it.  Importantly, while the
146 	 * function is using the buffer, it sets the pointer to NULL.  This is
147 	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
148 	 * can never run concurrently (they are synchronised by epfile->mutex)
149 	 * so the latter will not assign a new value to the pointer.
150 	 *
151 	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
152 	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
153 	 * value is crux of the synchronisation between ffs_func_eps_disable and
154 	 * __ffs_epfile_read_data.
155 	 *
156 	 * Once __ffs_epfile_read_data is about to finish it will try to set the
157 	 * pointer back to its old value (as described above), but seeing as the
158 	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
159 	 * the buffer.
160 	 *
161 	 * == State transitions ==
162 	 *
163 	 * • ptr == NULL:  (initial state)
164 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
165 	 *   ◦ __ffs_epfile_read_buffered:    nop
166 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
167 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
168 	 * • ptr == DROP:
169 	 *   ◦ __ffs_epfile_read_buffer_free: nop
170 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
171 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
172 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
173 	 * • ptr == buf:
174 	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
175 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
176 	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
177 	 *                                    is always called first
178 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
179 	 * • ptr == NULL and reading:
180 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
181 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
182 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
183 	 *   ◦ reading finishes and …
184 	 *     … all data read:               free buf, go to ptr == NULL
185 	 *     … otherwise:                   go to ptr == buf and reading
186 	 * • ptr == DROP and reading:
187 	 *   ◦ __ffs_epfile_read_buffer_free: nop
188 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
189 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
190 	 *   ◦ reading finishes:              free buf, go to ptr == DROP
191 	 */
192 	struct ffs_buffer		*read_buffer;
193 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
194 
195 	char				name[5];
196 
197 	unsigned char			in;	/* P: ffs->eps_lock */
198 	unsigned char			isoc;	/* P: ffs->eps_lock */
199 
200 	unsigned char			_pad;
201 };
202 
203 struct ffs_buffer {
204 	size_t length;
205 	char *data;
206 	char storage[];
207 };
208 
209 /*  ffs_io_data structure ***************************************************/
210 
211 struct ffs_io_data {
212 	bool aio;
213 	bool read;
214 
215 	struct kiocb *kiocb;
216 	struct iov_iter data;
217 	const void *to_free;
218 	char *buf;
219 
220 	struct mm_struct *mm;
221 	struct work_struct work;
222 
223 	struct usb_ep *ep;
224 	struct usb_request *req;
225 
226 	struct ffs_data *ffs;
227 };
228 
229 struct ffs_desc_helper {
230 	struct ffs_data *ffs;
231 	unsigned interfaces_count;
232 	unsigned eps_count;
233 };
234 
235 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
236 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
237 
238 static struct dentry *
239 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
240 		   const struct file_operations *fops);
241 
242 /* Devices management *******************************************************/
243 
244 DEFINE_MUTEX(ffs_lock);
245 EXPORT_SYMBOL_GPL(ffs_lock);
246 
247 static struct ffs_dev *_ffs_find_dev(const char *name);
248 static struct ffs_dev *_ffs_alloc_dev(void);
249 static void _ffs_free_dev(struct ffs_dev *dev);
250 static void *ffs_acquire_dev(const char *dev_name);
251 static void ffs_release_dev(struct ffs_data *ffs_data);
252 static int ffs_ready(struct ffs_data *ffs);
253 static void ffs_closed(struct ffs_data *ffs);
254 
255 /* Misc helper functions ****************************************************/
256 
257 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
258 	__attribute__((warn_unused_result, nonnull));
259 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
260 	__attribute__((warn_unused_result, nonnull));
261 
262 
263 /* Control file aka ep0 *****************************************************/
264 
265 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
266 {
267 	struct ffs_data *ffs = req->context;
268 
269 	complete(&ffs->ep0req_completion);
270 }
271 
272 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
273 {
274 	struct usb_request *req = ffs->ep0req;
275 	int ret;
276 
277 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
278 
279 	spin_unlock_irq(&ffs->ev.waitq.lock);
280 
281 	req->buf      = data;
282 	req->length   = len;
283 
284 	/*
285 	 * UDC layer requires to provide a buffer even for ZLP, but should
286 	 * not use it at all. Let's provide some poisoned pointer to catch
287 	 * possible bug in the driver.
288 	 */
289 	if (req->buf == NULL)
290 		req->buf = (void *)0xDEADBABE;
291 
292 	reinit_completion(&ffs->ep0req_completion);
293 
294 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
295 	if (unlikely(ret < 0))
296 		return ret;
297 
298 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
299 	if (unlikely(ret)) {
300 		usb_ep_dequeue(ffs->gadget->ep0, req);
301 		return -EINTR;
302 	}
303 
304 	ffs->setup_state = FFS_NO_SETUP;
305 	return req->status ? req->status : req->actual;
306 }
307 
308 static int __ffs_ep0_stall(struct ffs_data *ffs)
309 {
310 	if (ffs->ev.can_stall) {
311 		pr_vdebug("ep0 stall\n");
312 		usb_ep_set_halt(ffs->gadget->ep0);
313 		ffs->setup_state = FFS_NO_SETUP;
314 		return -EL2HLT;
315 	} else {
316 		pr_debug("bogus ep0 stall!\n");
317 		return -ESRCH;
318 	}
319 }
320 
321 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
322 			     size_t len, loff_t *ptr)
323 {
324 	struct ffs_data *ffs = file->private_data;
325 	ssize_t ret;
326 	char *data;
327 
328 	ENTER();
329 
330 	/* Fast check if setup was canceled */
331 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
332 		return -EIDRM;
333 
334 	/* Acquire mutex */
335 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
336 	if (unlikely(ret < 0))
337 		return ret;
338 
339 	/* Check state */
340 	switch (ffs->state) {
341 	case FFS_READ_DESCRIPTORS:
342 	case FFS_READ_STRINGS:
343 		/* Copy data */
344 		if (unlikely(len < 16)) {
345 			ret = -EINVAL;
346 			break;
347 		}
348 
349 		data = ffs_prepare_buffer(buf, len);
350 		if (IS_ERR(data)) {
351 			ret = PTR_ERR(data);
352 			break;
353 		}
354 
355 		/* Handle data */
356 		if (ffs->state == FFS_READ_DESCRIPTORS) {
357 			pr_info("read descriptors\n");
358 			ret = __ffs_data_got_descs(ffs, data, len);
359 			if (unlikely(ret < 0))
360 				break;
361 
362 			ffs->state = FFS_READ_STRINGS;
363 			ret = len;
364 		} else {
365 			pr_info("read strings\n");
366 			ret = __ffs_data_got_strings(ffs, data, len);
367 			if (unlikely(ret < 0))
368 				break;
369 
370 			ret = ffs_epfiles_create(ffs);
371 			if (unlikely(ret)) {
372 				ffs->state = FFS_CLOSING;
373 				break;
374 			}
375 
376 			ffs->state = FFS_ACTIVE;
377 			mutex_unlock(&ffs->mutex);
378 
379 			ret = ffs_ready(ffs);
380 			if (unlikely(ret < 0)) {
381 				ffs->state = FFS_CLOSING;
382 				return ret;
383 			}
384 
385 			return len;
386 		}
387 		break;
388 
389 	case FFS_ACTIVE:
390 		data = NULL;
391 		/*
392 		 * We're called from user space, we can use _irq
393 		 * rather then _irqsave
394 		 */
395 		spin_lock_irq(&ffs->ev.waitq.lock);
396 		switch (ffs_setup_state_clear_cancelled(ffs)) {
397 		case FFS_SETUP_CANCELLED:
398 			ret = -EIDRM;
399 			goto done_spin;
400 
401 		case FFS_NO_SETUP:
402 			ret = -ESRCH;
403 			goto done_spin;
404 
405 		case FFS_SETUP_PENDING:
406 			break;
407 		}
408 
409 		/* FFS_SETUP_PENDING */
410 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
411 			spin_unlock_irq(&ffs->ev.waitq.lock);
412 			ret = __ffs_ep0_stall(ffs);
413 			break;
414 		}
415 
416 		/* FFS_SETUP_PENDING and not stall */
417 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
418 
419 		spin_unlock_irq(&ffs->ev.waitq.lock);
420 
421 		data = ffs_prepare_buffer(buf, len);
422 		if (IS_ERR(data)) {
423 			ret = PTR_ERR(data);
424 			break;
425 		}
426 
427 		spin_lock_irq(&ffs->ev.waitq.lock);
428 
429 		/*
430 		 * We are guaranteed to be still in FFS_ACTIVE state
431 		 * but the state of setup could have changed from
432 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
433 		 * to check for that.  If that happened we copied data
434 		 * from user space in vain but it's unlikely.
435 		 *
436 		 * For sure we are not in FFS_NO_SETUP since this is
437 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
438 		 * transition can be performed and it's protected by
439 		 * mutex.
440 		 */
441 		if (ffs_setup_state_clear_cancelled(ffs) ==
442 		    FFS_SETUP_CANCELLED) {
443 			ret = -EIDRM;
444 done_spin:
445 			spin_unlock_irq(&ffs->ev.waitq.lock);
446 		} else {
447 			/* unlocks spinlock */
448 			ret = __ffs_ep0_queue_wait(ffs, data, len);
449 		}
450 		kfree(data);
451 		break;
452 
453 	default:
454 		ret = -EBADFD;
455 		break;
456 	}
457 
458 	mutex_unlock(&ffs->mutex);
459 	return ret;
460 }
461 
462 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
463 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
464 				     size_t n)
465 {
466 	/*
467 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
468 	 * size of ffs->ev.types array (which is four) so that's how much space
469 	 * we reserve.
470 	 */
471 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
472 	const size_t size = n * sizeof *events;
473 	unsigned i = 0;
474 
475 	memset(events, 0, size);
476 
477 	do {
478 		events[i].type = ffs->ev.types[i];
479 		if (events[i].type == FUNCTIONFS_SETUP) {
480 			events[i].u.setup = ffs->ev.setup;
481 			ffs->setup_state = FFS_SETUP_PENDING;
482 		}
483 	} while (++i < n);
484 
485 	ffs->ev.count -= n;
486 	if (ffs->ev.count)
487 		memmove(ffs->ev.types, ffs->ev.types + n,
488 			ffs->ev.count * sizeof *ffs->ev.types);
489 
490 	spin_unlock_irq(&ffs->ev.waitq.lock);
491 	mutex_unlock(&ffs->mutex);
492 
493 	return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
494 }
495 
496 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
497 			    size_t len, loff_t *ptr)
498 {
499 	struct ffs_data *ffs = file->private_data;
500 	char *data = NULL;
501 	size_t n;
502 	int ret;
503 
504 	ENTER();
505 
506 	/* Fast check if setup was canceled */
507 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
508 		return -EIDRM;
509 
510 	/* Acquire mutex */
511 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
512 	if (unlikely(ret < 0))
513 		return ret;
514 
515 	/* Check state */
516 	if (ffs->state != FFS_ACTIVE) {
517 		ret = -EBADFD;
518 		goto done_mutex;
519 	}
520 
521 	/*
522 	 * We're called from user space, we can use _irq rather then
523 	 * _irqsave
524 	 */
525 	spin_lock_irq(&ffs->ev.waitq.lock);
526 
527 	switch (ffs_setup_state_clear_cancelled(ffs)) {
528 	case FFS_SETUP_CANCELLED:
529 		ret = -EIDRM;
530 		break;
531 
532 	case FFS_NO_SETUP:
533 		n = len / sizeof(struct usb_functionfs_event);
534 		if (unlikely(!n)) {
535 			ret = -EINVAL;
536 			break;
537 		}
538 
539 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
540 			ret = -EAGAIN;
541 			break;
542 		}
543 
544 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
545 							ffs->ev.count)) {
546 			ret = -EINTR;
547 			break;
548 		}
549 
550 		return __ffs_ep0_read_events(ffs, buf,
551 					     min(n, (size_t)ffs->ev.count));
552 
553 	case FFS_SETUP_PENDING:
554 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
555 			spin_unlock_irq(&ffs->ev.waitq.lock);
556 			ret = __ffs_ep0_stall(ffs);
557 			goto done_mutex;
558 		}
559 
560 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
561 
562 		spin_unlock_irq(&ffs->ev.waitq.lock);
563 
564 		if (likely(len)) {
565 			data = kmalloc(len, GFP_KERNEL);
566 			if (unlikely(!data)) {
567 				ret = -ENOMEM;
568 				goto done_mutex;
569 			}
570 		}
571 
572 		spin_lock_irq(&ffs->ev.waitq.lock);
573 
574 		/* See ffs_ep0_write() */
575 		if (ffs_setup_state_clear_cancelled(ffs) ==
576 		    FFS_SETUP_CANCELLED) {
577 			ret = -EIDRM;
578 			break;
579 		}
580 
581 		/* unlocks spinlock */
582 		ret = __ffs_ep0_queue_wait(ffs, data, len);
583 		if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
584 			ret = -EFAULT;
585 		goto done_mutex;
586 
587 	default:
588 		ret = -EBADFD;
589 		break;
590 	}
591 
592 	spin_unlock_irq(&ffs->ev.waitq.lock);
593 done_mutex:
594 	mutex_unlock(&ffs->mutex);
595 	kfree(data);
596 	return ret;
597 }
598 
599 static int ffs_ep0_open(struct inode *inode, struct file *file)
600 {
601 	struct ffs_data *ffs = inode->i_private;
602 
603 	ENTER();
604 
605 	if (unlikely(ffs->state == FFS_CLOSING))
606 		return -EBUSY;
607 
608 	file->private_data = ffs;
609 	ffs_data_opened(ffs);
610 
611 	return 0;
612 }
613 
614 static int ffs_ep0_release(struct inode *inode, struct file *file)
615 {
616 	struct ffs_data *ffs = file->private_data;
617 
618 	ENTER();
619 
620 	ffs_data_closed(ffs);
621 
622 	return 0;
623 }
624 
625 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
626 {
627 	struct ffs_data *ffs = file->private_data;
628 	struct usb_gadget *gadget = ffs->gadget;
629 	long ret;
630 
631 	ENTER();
632 
633 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
634 		struct ffs_function *func = ffs->func;
635 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
636 	} else if (gadget && gadget->ops->ioctl) {
637 		ret = gadget->ops->ioctl(gadget, code, value);
638 	} else {
639 		ret = -ENOTTY;
640 	}
641 
642 	return ret;
643 }
644 
645 static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait)
646 {
647 	struct ffs_data *ffs = file->private_data;
648 	unsigned int mask = POLLWRNORM;
649 	int ret;
650 
651 	poll_wait(file, &ffs->ev.waitq, wait);
652 
653 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
654 	if (unlikely(ret < 0))
655 		return mask;
656 
657 	switch (ffs->state) {
658 	case FFS_READ_DESCRIPTORS:
659 	case FFS_READ_STRINGS:
660 		mask |= POLLOUT;
661 		break;
662 
663 	case FFS_ACTIVE:
664 		switch (ffs->setup_state) {
665 		case FFS_NO_SETUP:
666 			if (ffs->ev.count)
667 				mask |= POLLIN;
668 			break;
669 
670 		case FFS_SETUP_PENDING:
671 		case FFS_SETUP_CANCELLED:
672 			mask |= (POLLIN | POLLOUT);
673 			break;
674 		}
675 	case FFS_CLOSING:
676 		break;
677 	case FFS_DEACTIVATED:
678 		break;
679 	}
680 
681 	mutex_unlock(&ffs->mutex);
682 
683 	return mask;
684 }
685 
686 static const struct file_operations ffs_ep0_operations = {
687 	.llseek =	no_llseek,
688 
689 	.open =		ffs_ep0_open,
690 	.write =	ffs_ep0_write,
691 	.read =		ffs_ep0_read,
692 	.release =	ffs_ep0_release,
693 	.unlocked_ioctl =	ffs_ep0_ioctl,
694 	.poll =		ffs_ep0_poll,
695 };
696 
697 
698 /* "Normal" endpoints operations ********************************************/
699 
700 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
701 {
702 	ENTER();
703 	if (likely(req->context)) {
704 		struct ffs_ep *ep = _ep->driver_data;
705 		ep->status = req->status ? req->status : req->actual;
706 		complete(req->context);
707 	}
708 }
709 
710 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
711 {
712 	ssize_t ret = copy_to_iter(data, data_len, iter);
713 	if (likely(ret == data_len))
714 		return ret;
715 
716 	if (unlikely(iov_iter_count(iter)))
717 		return -EFAULT;
718 
719 	/*
720 	 * Dear user space developer!
721 	 *
722 	 * TL;DR: To stop getting below error message in your kernel log, change
723 	 * user space code using functionfs to align read buffers to a max
724 	 * packet size.
725 	 *
726 	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
727 	 * packet size.  When unaligned buffer is passed to functionfs, it
728 	 * internally uses a larger, aligned buffer so that such UDCs are happy.
729 	 *
730 	 * Unfortunately, this means that host may send more data than was
731 	 * requested in read(2) system call.  f_fs doesn’t know what to do with
732 	 * that excess data so it simply drops it.
733 	 *
734 	 * Was the buffer aligned in the first place, no such problem would
735 	 * happen.
736 	 *
737 	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
738 	 * by splitting a request into multiple parts.  This splitting may still
739 	 * be a problem though so it’s likely best to align the buffer
740 	 * regardless of it being AIO or not..
741 	 *
742 	 * This only affects OUT endpoints, i.e. reading data with a read(2),
743 	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
744 	 * affected.
745 	 */
746 	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
747 	       "Align read buffer size to max packet size to avoid the problem.\n",
748 	       data_len, ret);
749 
750 	return ret;
751 }
752 
753 static void ffs_user_copy_worker(struct work_struct *work)
754 {
755 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
756 						   work);
757 	int ret = io_data->req->status ? io_data->req->status :
758 					 io_data->req->actual;
759 	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
760 
761 	if (io_data->read && ret > 0) {
762 		use_mm(io_data->mm);
763 		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
764 		unuse_mm(io_data->mm);
765 	}
766 
767 	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
768 
769 	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
770 		eventfd_signal(io_data->ffs->ffs_eventfd, 1);
771 
772 	usb_ep_free_request(io_data->ep, io_data->req);
773 
774 	if (io_data->read)
775 		kfree(io_data->to_free);
776 	kfree(io_data->buf);
777 	kfree(io_data);
778 }
779 
780 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
781 					 struct usb_request *req)
782 {
783 	struct ffs_io_data *io_data = req->context;
784 	struct ffs_data *ffs = io_data->ffs;
785 
786 	ENTER();
787 
788 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
789 	queue_work(ffs->io_completion_wq, &io_data->work);
790 }
791 
792 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
793 {
794 	/*
795 	 * See comment in struct ffs_epfile for full read_buffer pointer
796 	 * synchronisation story.
797 	 */
798 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
799 	if (buf && buf != READ_BUFFER_DROP)
800 		kfree(buf);
801 }
802 
803 /* Assumes epfile->mutex is held. */
804 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
805 					  struct iov_iter *iter)
806 {
807 	/*
808 	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
809 	 * the buffer while we are using it.  See comment in struct ffs_epfile
810 	 * for full read_buffer pointer synchronisation story.
811 	 */
812 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
813 	ssize_t ret;
814 	if (!buf || buf == READ_BUFFER_DROP)
815 		return 0;
816 
817 	ret = copy_to_iter(buf->data, buf->length, iter);
818 	if (buf->length == ret) {
819 		kfree(buf);
820 		return ret;
821 	}
822 
823 	if (unlikely(iov_iter_count(iter))) {
824 		ret = -EFAULT;
825 	} else {
826 		buf->length -= ret;
827 		buf->data += ret;
828 	}
829 
830 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
831 		kfree(buf);
832 
833 	return ret;
834 }
835 
836 /* Assumes epfile->mutex is held. */
837 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
838 				      void *data, int data_len,
839 				      struct iov_iter *iter)
840 {
841 	struct ffs_buffer *buf;
842 
843 	ssize_t ret = copy_to_iter(data, data_len, iter);
844 	if (likely(data_len == ret))
845 		return ret;
846 
847 	if (unlikely(iov_iter_count(iter)))
848 		return -EFAULT;
849 
850 	/* See ffs_copy_to_iter for more context. */
851 	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
852 		data_len, ret);
853 
854 	data_len -= ret;
855 	buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
856 	if (!buf)
857 		return -ENOMEM;
858 	buf->length = data_len;
859 	buf->data = buf->storage;
860 	memcpy(buf->storage, data + ret, data_len);
861 
862 	/*
863 	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
864 	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
865 	 * in struct ffs_epfile for full read_buffer pointer synchronisation
866 	 * story.
867 	 */
868 	if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
869 		kfree(buf);
870 
871 	return ret;
872 }
873 
874 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
875 {
876 	struct ffs_epfile *epfile = file->private_data;
877 	struct usb_request *req;
878 	struct ffs_ep *ep;
879 	char *data = NULL;
880 	ssize_t ret, data_len = -EINVAL;
881 	int halt;
882 
883 	/* Are we still active? */
884 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
885 		return -ENODEV;
886 
887 	/* Wait for endpoint to be enabled */
888 	ep = epfile->ep;
889 	if (!ep) {
890 		if (file->f_flags & O_NONBLOCK)
891 			return -EAGAIN;
892 
893 		ret = wait_event_interruptible(
894 				epfile->ffs->wait, (ep = epfile->ep));
895 		if (ret)
896 			return -EINTR;
897 	}
898 
899 	/* Do we halt? */
900 	halt = (!io_data->read == !epfile->in);
901 	if (halt && epfile->isoc)
902 		return -EINVAL;
903 
904 	/* We will be using request and read_buffer */
905 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
906 	if (unlikely(ret))
907 		goto error;
908 
909 	/* Allocate & copy */
910 	if (!halt) {
911 		struct usb_gadget *gadget;
912 
913 		/*
914 		 * Do we have buffered data from previous partial read?  Check
915 		 * that for synchronous case only because we do not have
916 		 * facility to ‘wake up’ a pending asynchronous read and push
917 		 * buffered data to it which we would need to make things behave
918 		 * consistently.
919 		 */
920 		if (!io_data->aio && io_data->read) {
921 			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
922 			if (ret)
923 				goto error_mutex;
924 		}
925 
926 		/*
927 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
928 		 * before the waiting completes, so do not assign to 'gadget'
929 		 * earlier
930 		 */
931 		gadget = epfile->ffs->gadget;
932 
933 		spin_lock_irq(&epfile->ffs->eps_lock);
934 		/* In the meantime, endpoint got disabled or changed. */
935 		if (epfile->ep != ep) {
936 			ret = -ESHUTDOWN;
937 			goto error_lock;
938 		}
939 		data_len = iov_iter_count(&io_data->data);
940 		/*
941 		 * Controller may require buffer size to be aligned to
942 		 * maxpacketsize of an out endpoint.
943 		 */
944 		if (io_data->read)
945 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
946 		spin_unlock_irq(&epfile->ffs->eps_lock);
947 
948 		data = kmalloc(data_len, GFP_KERNEL);
949 		if (unlikely(!data)) {
950 			ret = -ENOMEM;
951 			goto error_mutex;
952 		}
953 		if (!io_data->read &&
954 		    !copy_from_iter_full(data, data_len, &io_data->data)) {
955 			ret = -EFAULT;
956 			goto error_mutex;
957 		}
958 	}
959 
960 	spin_lock_irq(&epfile->ffs->eps_lock);
961 
962 	if (epfile->ep != ep) {
963 		/* In the meantime, endpoint got disabled or changed. */
964 		ret = -ESHUTDOWN;
965 	} else if (halt) {
966 		ret = usb_ep_set_halt(ep->ep);
967 		if (!ret)
968 			ret = -EBADMSG;
969 	} else if (unlikely(data_len == -EINVAL)) {
970 		/*
971 		 * Sanity Check: even though data_len can't be used
972 		 * uninitialized at the time I write this comment, some
973 		 * compilers complain about this situation.
974 		 * In order to keep the code clean from warnings, data_len is
975 		 * being initialized to -EINVAL during its declaration, which
976 		 * means we can't rely on compiler anymore to warn no future
977 		 * changes won't result in data_len being used uninitialized.
978 		 * For such reason, we're adding this redundant sanity check
979 		 * here.
980 		 */
981 		WARN(1, "%s: data_len == -EINVAL\n", __func__);
982 		ret = -EINVAL;
983 	} else if (!io_data->aio) {
984 		DECLARE_COMPLETION_ONSTACK(done);
985 		bool interrupted = false;
986 
987 		req = ep->req;
988 		req->buf      = data;
989 		req->length   = data_len;
990 
991 		req->context  = &done;
992 		req->complete = ffs_epfile_io_complete;
993 
994 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
995 		if (unlikely(ret < 0))
996 			goto error_lock;
997 
998 		spin_unlock_irq(&epfile->ffs->eps_lock);
999 
1000 		if (unlikely(wait_for_completion_interruptible(&done))) {
1001 			/*
1002 			 * To avoid race condition with ffs_epfile_io_complete,
1003 			 * dequeue the request first then check
1004 			 * status. usb_ep_dequeue API should guarantee no race
1005 			 * condition with req->complete callback.
1006 			 */
1007 			usb_ep_dequeue(ep->ep, req);
1008 			interrupted = ep->status < 0;
1009 		}
1010 
1011 		if (interrupted)
1012 			ret = -EINTR;
1013 		else if (io_data->read && ep->status > 0)
1014 			ret = __ffs_epfile_read_data(epfile, data, ep->status,
1015 						     &io_data->data);
1016 		else
1017 			ret = ep->status;
1018 		goto error_mutex;
1019 	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_KERNEL))) {
1020 		ret = -ENOMEM;
1021 	} else {
1022 		req->buf      = data;
1023 		req->length   = data_len;
1024 
1025 		io_data->buf = data;
1026 		io_data->ep = ep->ep;
1027 		io_data->req = req;
1028 		io_data->ffs = epfile->ffs;
1029 
1030 		req->context  = io_data;
1031 		req->complete = ffs_epfile_async_io_complete;
1032 
1033 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1034 		if (unlikely(ret)) {
1035 			usb_ep_free_request(ep->ep, req);
1036 			goto error_lock;
1037 		}
1038 
1039 		ret = -EIOCBQUEUED;
1040 		/*
1041 		 * Do not kfree the buffer in this function.  It will be freed
1042 		 * by ffs_user_copy_worker.
1043 		 */
1044 		data = NULL;
1045 	}
1046 
1047 error_lock:
1048 	spin_unlock_irq(&epfile->ffs->eps_lock);
1049 error_mutex:
1050 	mutex_unlock(&epfile->mutex);
1051 error:
1052 	kfree(data);
1053 	return ret;
1054 }
1055 
1056 static int
1057 ffs_epfile_open(struct inode *inode, struct file *file)
1058 {
1059 	struct ffs_epfile *epfile = inode->i_private;
1060 
1061 	ENTER();
1062 
1063 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1064 		return -ENODEV;
1065 
1066 	file->private_data = epfile;
1067 	ffs_data_opened(epfile->ffs);
1068 
1069 	return 0;
1070 }
1071 
1072 static int ffs_aio_cancel(struct kiocb *kiocb)
1073 {
1074 	struct ffs_io_data *io_data = kiocb->private;
1075 	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1076 	int value;
1077 
1078 	ENTER();
1079 
1080 	spin_lock_irq(&epfile->ffs->eps_lock);
1081 
1082 	if (likely(io_data && io_data->ep && io_data->req))
1083 		value = usb_ep_dequeue(io_data->ep, io_data->req);
1084 	else
1085 		value = -EINVAL;
1086 
1087 	spin_unlock_irq(&epfile->ffs->eps_lock);
1088 
1089 	return value;
1090 }
1091 
1092 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1093 {
1094 	struct ffs_io_data io_data, *p = &io_data;
1095 	ssize_t res;
1096 
1097 	ENTER();
1098 
1099 	if (!is_sync_kiocb(kiocb)) {
1100 		p = kmalloc(sizeof(io_data), GFP_KERNEL);
1101 		if (unlikely(!p))
1102 			return -ENOMEM;
1103 		p->aio = true;
1104 	} else {
1105 		p->aio = false;
1106 	}
1107 
1108 	p->read = false;
1109 	p->kiocb = kiocb;
1110 	p->data = *from;
1111 	p->mm = current->mm;
1112 
1113 	kiocb->private = p;
1114 
1115 	if (p->aio)
1116 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1117 
1118 	res = ffs_epfile_io(kiocb->ki_filp, p);
1119 	if (res == -EIOCBQUEUED)
1120 		return res;
1121 	if (p->aio)
1122 		kfree(p);
1123 	else
1124 		*from = p->data;
1125 	return res;
1126 }
1127 
1128 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1129 {
1130 	struct ffs_io_data io_data, *p = &io_data;
1131 	ssize_t res;
1132 
1133 	ENTER();
1134 
1135 	if (!is_sync_kiocb(kiocb)) {
1136 		p = kmalloc(sizeof(io_data), GFP_KERNEL);
1137 		if (unlikely(!p))
1138 			return -ENOMEM;
1139 		p->aio = true;
1140 	} else {
1141 		p->aio = false;
1142 	}
1143 
1144 	p->read = true;
1145 	p->kiocb = kiocb;
1146 	if (p->aio) {
1147 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1148 		if (!p->to_free) {
1149 			kfree(p);
1150 			return -ENOMEM;
1151 		}
1152 	} else {
1153 		p->data = *to;
1154 		p->to_free = NULL;
1155 	}
1156 	p->mm = current->mm;
1157 
1158 	kiocb->private = p;
1159 
1160 	if (p->aio)
1161 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1162 
1163 	res = ffs_epfile_io(kiocb->ki_filp, p);
1164 	if (res == -EIOCBQUEUED)
1165 		return res;
1166 
1167 	if (p->aio) {
1168 		kfree(p->to_free);
1169 		kfree(p);
1170 	} else {
1171 		*to = p->data;
1172 	}
1173 	return res;
1174 }
1175 
1176 static int
1177 ffs_epfile_release(struct inode *inode, struct file *file)
1178 {
1179 	struct ffs_epfile *epfile = inode->i_private;
1180 
1181 	ENTER();
1182 
1183 	__ffs_epfile_read_buffer_free(epfile);
1184 	ffs_data_closed(epfile->ffs);
1185 
1186 	return 0;
1187 }
1188 
1189 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1190 			     unsigned long value)
1191 {
1192 	struct ffs_epfile *epfile = file->private_data;
1193 	struct ffs_ep *ep;
1194 	int ret;
1195 
1196 	ENTER();
1197 
1198 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1199 		return -ENODEV;
1200 
1201 	/* Wait for endpoint to be enabled */
1202 	ep = epfile->ep;
1203 	if (!ep) {
1204 		if (file->f_flags & O_NONBLOCK)
1205 			return -EAGAIN;
1206 
1207 		ret = wait_event_interruptible(
1208 				epfile->ffs->wait, (ep = epfile->ep));
1209 		if (ret)
1210 			return -EINTR;
1211 	}
1212 
1213 	spin_lock_irq(&epfile->ffs->eps_lock);
1214 
1215 	/* In the meantime, endpoint got disabled or changed. */
1216 	if (epfile->ep != ep) {
1217 		spin_unlock_irq(&epfile->ffs->eps_lock);
1218 		return -ESHUTDOWN;
1219 	}
1220 
1221 	switch (code) {
1222 	case FUNCTIONFS_FIFO_STATUS:
1223 		ret = usb_ep_fifo_status(epfile->ep->ep);
1224 		break;
1225 	case FUNCTIONFS_FIFO_FLUSH:
1226 		usb_ep_fifo_flush(epfile->ep->ep);
1227 		ret = 0;
1228 		break;
1229 	case FUNCTIONFS_CLEAR_HALT:
1230 		ret = usb_ep_clear_halt(epfile->ep->ep);
1231 		break;
1232 	case FUNCTIONFS_ENDPOINT_REVMAP:
1233 		ret = epfile->ep->num;
1234 		break;
1235 	case FUNCTIONFS_ENDPOINT_DESC:
1236 	{
1237 		int desc_idx;
1238 		struct usb_endpoint_descriptor *desc;
1239 
1240 		switch (epfile->ffs->gadget->speed) {
1241 		case USB_SPEED_SUPER:
1242 			desc_idx = 2;
1243 			break;
1244 		case USB_SPEED_HIGH:
1245 			desc_idx = 1;
1246 			break;
1247 		default:
1248 			desc_idx = 0;
1249 		}
1250 		desc = epfile->ep->descs[desc_idx];
1251 
1252 		spin_unlock_irq(&epfile->ffs->eps_lock);
1253 		ret = copy_to_user((void *)value, desc, desc->bLength);
1254 		if (ret)
1255 			ret = -EFAULT;
1256 		return ret;
1257 	}
1258 	default:
1259 		ret = -ENOTTY;
1260 	}
1261 	spin_unlock_irq(&epfile->ffs->eps_lock);
1262 
1263 	return ret;
1264 }
1265 
1266 static const struct file_operations ffs_epfile_operations = {
1267 	.llseek =	no_llseek,
1268 
1269 	.open =		ffs_epfile_open,
1270 	.write_iter =	ffs_epfile_write_iter,
1271 	.read_iter =	ffs_epfile_read_iter,
1272 	.release =	ffs_epfile_release,
1273 	.unlocked_ioctl =	ffs_epfile_ioctl,
1274 };
1275 
1276 
1277 /* File system and super block operations ***********************************/
1278 
1279 /*
1280  * Mounting the file system creates a controller file, used first for
1281  * function configuration then later for event monitoring.
1282  */
1283 
1284 static struct inode *__must_check
1285 ffs_sb_make_inode(struct super_block *sb, void *data,
1286 		  const struct file_operations *fops,
1287 		  const struct inode_operations *iops,
1288 		  struct ffs_file_perms *perms)
1289 {
1290 	struct inode *inode;
1291 
1292 	ENTER();
1293 
1294 	inode = new_inode(sb);
1295 
1296 	if (likely(inode)) {
1297 		struct timespec ts = current_time(inode);
1298 
1299 		inode->i_ino	 = get_next_ino();
1300 		inode->i_mode    = perms->mode;
1301 		inode->i_uid     = perms->uid;
1302 		inode->i_gid     = perms->gid;
1303 		inode->i_atime   = ts;
1304 		inode->i_mtime   = ts;
1305 		inode->i_ctime   = ts;
1306 		inode->i_private = data;
1307 		if (fops)
1308 			inode->i_fop = fops;
1309 		if (iops)
1310 			inode->i_op  = iops;
1311 	}
1312 
1313 	return inode;
1314 }
1315 
1316 /* Create "regular" file */
1317 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1318 					const char *name, void *data,
1319 					const struct file_operations *fops)
1320 {
1321 	struct ffs_data	*ffs = sb->s_fs_info;
1322 	struct dentry	*dentry;
1323 	struct inode	*inode;
1324 
1325 	ENTER();
1326 
1327 	dentry = d_alloc_name(sb->s_root, name);
1328 	if (unlikely(!dentry))
1329 		return NULL;
1330 
1331 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1332 	if (unlikely(!inode)) {
1333 		dput(dentry);
1334 		return NULL;
1335 	}
1336 
1337 	d_add(dentry, inode);
1338 	return dentry;
1339 }
1340 
1341 /* Super block */
1342 static const struct super_operations ffs_sb_operations = {
1343 	.statfs =	simple_statfs,
1344 	.drop_inode =	generic_delete_inode,
1345 };
1346 
1347 struct ffs_sb_fill_data {
1348 	struct ffs_file_perms perms;
1349 	umode_t root_mode;
1350 	const char *dev_name;
1351 	bool no_disconnect;
1352 	struct ffs_data *ffs_data;
1353 };
1354 
1355 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1356 {
1357 	struct ffs_sb_fill_data *data = _data;
1358 	struct inode	*inode;
1359 	struct ffs_data	*ffs = data->ffs_data;
1360 
1361 	ENTER();
1362 
1363 	ffs->sb              = sb;
1364 	data->ffs_data       = NULL;
1365 	sb->s_fs_info        = ffs;
1366 	sb->s_blocksize      = PAGE_SIZE;
1367 	sb->s_blocksize_bits = PAGE_SHIFT;
1368 	sb->s_magic          = FUNCTIONFS_MAGIC;
1369 	sb->s_op             = &ffs_sb_operations;
1370 	sb->s_time_gran      = 1;
1371 
1372 	/* Root inode */
1373 	data->perms.mode = data->root_mode;
1374 	inode = ffs_sb_make_inode(sb, NULL,
1375 				  &simple_dir_operations,
1376 				  &simple_dir_inode_operations,
1377 				  &data->perms);
1378 	sb->s_root = d_make_root(inode);
1379 	if (unlikely(!sb->s_root))
1380 		return -ENOMEM;
1381 
1382 	/* EP0 file */
1383 	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1384 					 &ffs_ep0_operations)))
1385 		return -ENOMEM;
1386 
1387 	return 0;
1388 }
1389 
1390 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1391 {
1392 	ENTER();
1393 
1394 	if (!opts || !*opts)
1395 		return 0;
1396 
1397 	for (;;) {
1398 		unsigned long value;
1399 		char *eq, *comma;
1400 
1401 		/* Option limit */
1402 		comma = strchr(opts, ',');
1403 		if (comma)
1404 			*comma = 0;
1405 
1406 		/* Value limit */
1407 		eq = strchr(opts, '=');
1408 		if (unlikely(!eq)) {
1409 			pr_err("'=' missing in %s\n", opts);
1410 			return -EINVAL;
1411 		}
1412 		*eq = 0;
1413 
1414 		/* Parse value */
1415 		if (kstrtoul(eq + 1, 0, &value)) {
1416 			pr_err("%s: invalid value: %s\n", opts, eq + 1);
1417 			return -EINVAL;
1418 		}
1419 
1420 		/* Interpret option */
1421 		switch (eq - opts) {
1422 		case 13:
1423 			if (!memcmp(opts, "no_disconnect", 13))
1424 				data->no_disconnect = !!value;
1425 			else
1426 				goto invalid;
1427 			break;
1428 		case 5:
1429 			if (!memcmp(opts, "rmode", 5))
1430 				data->root_mode  = (value & 0555) | S_IFDIR;
1431 			else if (!memcmp(opts, "fmode", 5))
1432 				data->perms.mode = (value & 0666) | S_IFREG;
1433 			else
1434 				goto invalid;
1435 			break;
1436 
1437 		case 4:
1438 			if (!memcmp(opts, "mode", 4)) {
1439 				data->root_mode  = (value & 0555) | S_IFDIR;
1440 				data->perms.mode = (value & 0666) | S_IFREG;
1441 			} else {
1442 				goto invalid;
1443 			}
1444 			break;
1445 
1446 		case 3:
1447 			if (!memcmp(opts, "uid", 3)) {
1448 				data->perms.uid = make_kuid(current_user_ns(), value);
1449 				if (!uid_valid(data->perms.uid)) {
1450 					pr_err("%s: unmapped value: %lu\n", opts, value);
1451 					return -EINVAL;
1452 				}
1453 			} else if (!memcmp(opts, "gid", 3)) {
1454 				data->perms.gid = make_kgid(current_user_ns(), value);
1455 				if (!gid_valid(data->perms.gid)) {
1456 					pr_err("%s: unmapped value: %lu\n", opts, value);
1457 					return -EINVAL;
1458 				}
1459 			} else {
1460 				goto invalid;
1461 			}
1462 			break;
1463 
1464 		default:
1465 invalid:
1466 			pr_err("%s: invalid option\n", opts);
1467 			return -EINVAL;
1468 		}
1469 
1470 		/* Next iteration */
1471 		if (!comma)
1472 			break;
1473 		opts = comma + 1;
1474 	}
1475 
1476 	return 0;
1477 }
1478 
1479 /* "mount -t functionfs dev_name /dev/function" ends up here */
1480 
1481 static struct dentry *
1482 ffs_fs_mount(struct file_system_type *t, int flags,
1483 	      const char *dev_name, void *opts)
1484 {
1485 	struct ffs_sb_fill_data data = {
1486 		.perms = {
1487 			.mode = S_IFREG | 0600,
1488 			.uid = GLOBAL_ROOT_UID,
1489 			.gid = GLOBAL_ROOT_GID,
1490 		},
1491 		.root_mode = S_IFDIR | 0500,
1492 		.no_disconnect = false,
1493 	};
1494 	struct dentry *rv;
1495 	int ret;
1496 	void *ffs_dev;
1497 	struct ffs_data	*ffs;
1498 
1499 	ENTER();
1500 
1501 	ret = ffs_fs_parse_opts(&data, opts);
1502 	if (unlikely(ret < 0))
1503 		return ERR_PTR(ret);
1504 
1505 	ffs = ffs_data_new(dev_name);
1506 	if (unlikely(!ffs))
1507 		return ERR_PTR(-ENOMEM);
1508 	ffs->file_perms = data.perms;
1509 	ffs->no_disconnect = data.no_disconnect;
1510 
1511 	ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1512 	if (unlikely(!ffs->dev_name)) {
1513 		ffs_data_put(ffs);
1514 		return ERR_PTR(-ENOMEM);
1515 	}
1516 
1517 	ffs_dev = ffs_acquire_dev(dev_name);
1518 	if (IS_ERR(ffs_dev)) {
1519 		ffs_data_put(ffs);
1520 		return ERR_CAST(ffs_dev);
1521 	}
1522 	ffs->private_data = ffs_dev;
1523 	data.ffs_data = ffs;
1524 
1525 	rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1526 	if (IS_ERR(rv) && data.ffs_data) {
1527 		ffs_release_dev(data.ffs_data);
1528 		ffs_data_put(data.ffs_data);
1529 	}
1530 	return rv;
1531 }
1532 
1533 static void
1534 ffs_fs_kill_sb(struct super_block *sb)
1535 {
1536 	ENTER();
1537 
1538 	kill_litter_super(sb);
1539 	if (sb->s_fs_info) {
1540 		ffs_release_dev(sb->s_fs_info);
1541 		ffs_data_closed(sb->s_fs_info);
1542 		ffs_data_put(sb->s_fs_info);
1543 	}
1544 }
1545 
1546 static struct file_system_type ffs_fs_type = {
1547 	.owner		= THIS_MODULE,
1548 	.name		= "functionfs",
1549 	.mount		= ffs_fs_mount,
1550 	.kill_sb	= ffs_fs_kill_sb,
1551 };
1552 MODULE_ALIAS_FS("functionfs");
1553 
1554 
1555 /* Driver's main init/cleanup functions *************************************/
1556 
1557 static int functionfs_init(void)
1558 {
1559 	int ret;
1560 
1561 	ENTER();
1562 
1563 	ret = register_filesystem(&ffs_fs_type);
1564 	if (likely(!ret))
1565 		pr_info("file system registered\n");
1566 	else
1567 		pr_err("failed registering file system (%d)\n", ret);
1568 
1569 	return ret;
1570 }
1571 
1572 static void functionfs_cleanup(void)
1573 {
1574 	ENTER();
1575 
1576 	pr_info("unloading\n");
1577 	unregister_filesystem(&ffs_fs_type);
1578 }
1579 
1580 
1581 /* ffs_data and ffs_function construction and destruction code **************/
1582 
1583 static void ffs_data_clear(struct ffs_data *ffs);
1584 static void ffs_data_reset(struct ffs_data *ffs);
1585 
1586 static void ffs_data_get(struct ffs_data *ffs)
1587 {
1588 	ENTER();
1589 
1590 	refcount_inc(&ffs->ref);
1591 }
1592 
1593 static void ffs_data_opened(struct ffs_data *ffs)
1594 {
1595 	ENTER();
1596 
1597 	refcount_inc(&ffs->ref);
1598 	if (atomic_add_return(1, &ffs->opened) == 1 &&
1599 			ffs->state == FFS_DEACTIVATED) {
1600 		ffs->state = FFS_CLOSING;
1601 		ffs_data_reset(ffs);
1602 	}
1603 }
1604 
1605 static void ffs_data_put(struct ffs_data *ffs)
1606 {
1607 	ENTER();
1608 
1609 	if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1610 		pr_info("%s(): freeing\n", __func__);
1611 		ffs_data_clear(ffs);
1612 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1613 		       waitqueue_active(&ffs->ep0req_completion.wait) ||
1614 		       waitqueue_active(&ffs->wait));
1615 		destroy_workqueue(ffs->io_completion_wq);
1616 		kfree(ffs->dev_name);
1617 		kfree(ffs);
1618 	}
1619 }
1620 
1621 static void ffs_data_closed(struct ffs_data *ffs)
1622 {
1623 	ENTER();
1624 
1625 	if (atomic_dec_and_test(&ffs->opened)) {
1626 		if (ffs->no_disconnect) {
1627 			ffs->state = FFS_DEACTIVATED;
1628 			if (ffs->epfiles) {
1629 				ffs_epfiles_destroy(ffs->epfiles,
1630 						   ffs->eps_count);
1631 				ffs->epfiles = NULL;
1632 			}
1633 			if (ffs->setup_state == FFS_SETUP_PENDING)
1634 				__ffs_ep0_stall(ffs);
1635 		} else {
1636 			ffs->state = FFS_CLOSING;
1637 			ffs_data_reset(ffs);
1638 		}
1639 	}
1640 	if (atomic_read(&ffs->opened) < 0) {
1641 		ffs->state = FFS_CLOSING;
1642 		ffs_data_reset(ffs);
1643 	}
1644 
1645 	ffs_data_put(ffs);
1646 }
1647 
1648 static struct ffs_data *ffs_data_new(const char *dev_name)
1649 {
1650 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1651 	if (unlikely(!ffs))
1652 		return NULL;
1653 
1654 	ENTER();
1655 
1656 	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1657 	if (!ffs->io_completion_wq) {
1658 		kfree(ffs);
1659 		return NULL;
1660 	}
1661 
1662 	refcount_set(&ffs->ref, 1);
1663 	atomic_set(&ffs->opened, 0);
1664 	ffs->state = FFS_READ_DESCRIPTORS;
1665 	mutex_init(&ffs->mutex);
1666 	spin_lock_init(&ffs->eps_lock);
1667 	init_waitqueue_head(&ffs->ev.waitq);
1668 	init_waitqueue_head(&ffs->wait);
1669 	init_completion(&ffs->ep0req_completion);
1670 
1671 	/* XXX REVISIT need to update it in some places, or do we? */
1672 	ffs->ev.can_stall = 1;
1673 
1674 	return ffs;
1675 }
1676 
1677 static void ffs_data_clear(struct ffs_data *ffs)
1678 {
1679 	ENTER();
1680 
1681 	ffs_closed(ffs);
1682 
1683 	BUG_ON(ffs->gadget);
1684 
1685 	if (ffs->epfiles)
1686 		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1687 
1688 	if (ffs->ffs_eventfd)
1689 		eventfd_ctx_put(ffs->ffs_eventfd);
1690 
1691 	kfree(ffs->raw_descs_data);
1692 	kfree(ffs->raw_strings);
1693 	kfree(ffs->stringtabs);
1694 }
1695 
1696 static void ffs_data_reset(struct ffs_data *ffs)
1697 {
1698 	ENTER();
1699 
1700 	ffs_data_clear(ffs);
1701 
1702 	ffs->epfiles = NULL;
1703 	ffs->raw_descs_data = NULL;
1704 	ffs->raw_descs = NULL;
1705 	ffs->raw_strings = NULL;
1706 	ffs->stringtabs = NULL;
1707 
1708 	ffs->raw_descs_length = 0;
1709 	ffs->fs_descs_count = 0;
1710 	ffs->hs_descs_count = 0;
1711 	ffs->ss_descs_count = 0;
1712 
1713 	ffs->strings_count = 0;
1714 	ffs->interfaces_count = 0;
1715 	ffs->eps_count = 0;
1716 
1717 	ffs->ev.count = 0;
1718 
1719 	ffs->state = FFS_READ_DESCRIPTORS;
1720 	ffs->setup_state = FFS_NO_SETUP;
1721 	ffs->flags = 0;
1722 }
1723 
1724 
1725 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1726 {
1727 	struct usb_gadget_strings **lang;
1728 	int first_id;
1729 
1730 	ENTER();
1731 
1732 	if (WARN_ON(ffs->state != FFS_ACTIVE
1733 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1734 		return -EBADFD;
1735 
1736 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1737 	if (unlikely(first_id < 0))
1738 		return first_id;
1739 
1740 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1741 	if (unlikely(!ffs->ep0req))
1742 		return -ENOMEM;
1743 	ffs->ep0req->complete = ffs_ep0_complete;
1744 	ffs->ep0req->context = ffs;
1745 
1746 	lang = ffs->stringtabs;
1747 	if (lang) {
1748 		for (; *lang; ++lang) {
1749 			struct usb_string *str = (*lang)->strings;
1750 			int id = first_id;
1751 			for (; str->s; ++id, ++str)
1752 				str->id = id;
1753 		}
1754 	}
1755 
1756 	ffs->gadget = cdev->gadget;
1757 	ffs_data_get(ffs);
1758 	return 0;
1759 }
1760 
1761 static void functionfs_unbind(struct ffs_data *ffs)
1762 {
1763 	ENTER();
1764 
1765 	if (!WARN_ON(!ffs->gadget)) {
1766 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1767 		ffs->ep0req = NULL;
1768 		ffs->gadget = NULL;
1769 		clear_bit(FFS_FL_BOUND, &ffs->flags);
1770 		ffs_data_put(ffs);
1771 	}
1772 }
1773 
1774 static int ffs_epfiles_create(struct ffs_data *ffs)
1775 {
1776 	struct ffs_epfile *epfile, *epfiles;
1777 	unsigned i, count;
1778 
1779 	ENTER();
1780 
1781 	count = ffs->eps_count;
1782 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1783 	if (!epfiles)
1784 		return -ENOMEM;
1785 
1786 	epfile = epfiles;
1787 	for (i = 1; i <= count; ++i, ++epfile) {
1788 		epfile->ffs = ffs;
1789 		mutex_init(&epfile->mutex);
1790 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1791 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1792 		else
1793 			sprintf(epfile->name, "ep%u", i);
1794 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1795 						 epfile,
1796 						 &ffs_epfile_operations);
1797 		if (unlikely(!epfile->dentry)) {
1798 			ffs_epfiles_destroy(epfiles, i - 1);
1799 			return -ENOMEM;
1800 		}
1801 	}
1802 
1803 	ffs->epfiles = epfiles;
1804 	return 0;
1805 }
1806 
1807 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1808 {
1809 	struct ffs_epfile *epfile = epfiles;
1810 
1811 	ENTER();
1812 
1813 	for (; count; --count, ++epfile) {
1814 		BUG_ON(mutex_is_locked(&epfile->mutex));
1815 		if (epfile->dentry) {
1816 			d_delete(epfile->dentry);
1817 			dput(epfile->dentry);
1818 			epfile->dentry = NULL;
1819 		}
1820 	}
1821 
1822 	kfree(epfiles);
1823 }
1824 
1825 static void ffs_func_eps_disable(struct ffs_function *func)
1826 {
1827 	struct ffs_ep *ep         = func->eps;
1828 	struct ffs_epfile *epfile = func->ffs->epfiles;
1829 	unsigned count            = func->ffs->eps_count;
1830 	unsigned long flags;
1831 
1832 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1833 	while (count--) {
1834 		/* pending requests get nuked */
1835 		if (likely(ep->ep))
1836 			usb_ep_disable(ep->ep);
1837 		++ep;
1838 
1839 		if (epfile) {
1840 			epfile->ep = NULL;
1841 			__ffs_epfile_read_buffer_free(epfile);
1842 			++epfile;
1843 		}
1844 	}
1845 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1846 }
1847 
1848 static int ffs_func_eps_enable(struct ffs_function *func)
1849 {
1850 	struct ffs_data *ffs      = func->ffs;
1851 	struct ffs_ep *ep         = func->eps;
1852 	struct ffs_epfile *epfile = ffs->epfiles;
1853 	unsigned count            = ffs->eps_count;
1854 	unsigned long flags;
1855 	int ret = 0;
1856 
1857 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1858 	while(count--) {
1859 		struct usb_endpoint_descriptor *ds;
1860 		struct usb_ss_ep_comp_descriptor *comp_desc = NULL;
1861 		int needs_comp_desc = false;
1862 		int desc_idx;
1863 
1864 		if (ffs->gadget->speed == USB_SPEED_SUPER) {
1865 			desc_idx = 2;
1866 			needs_comp_desc = true;
1867 		} else if (ffs->gadget->speed == USB_SPEED_HIGH)
1868 			desc_idx = 1;
1869 		else
1870 			desc_idx = 0;
1871 
1872 		/* fall-back to lower speed if desc missing for current speed */
1873 		do {
1874 			ds = ep->descs[desc_idx];
1875 		} while (!ds && --desc_idx >= 0);
1876 
1877 		if (!ds) {
1878 			ret = -EINVAL;
1879 			break;
1880 		}
1881 
1882 		ep->ep->driver_data = ep;
1883 		ep->ep->desc = ds;
1884 
1885 		if (needs_comp_desc) {
1886 			comp_desc = (struct usb_ss_ep_comp_descriptor *)(ds +
1887 					USB_DT_ENDPOINT_SIZE);
1888 			ep->ep->maxburst = comp_desc->bMaxBurst + 1;
1889 			ep->ep->comp_desc = comp_desc;
1890 		}
1891 
1892 		ret = usb_ep_enable(ep->ep);
1893 		if (likely(!ret)) {
1894 			epfile->ep = ep;
1895 			epfile->in = usb_endpoint_dir_in(ds);
1896 			epfile->isoc = usb_endpoint_xfer_isoc(ds);
1897 		} else {
1898 			break;
1899 		}
1900 
1901 		++ep;
1902 		++epfile;
1903 	}
1904 
1905 	wake_up_interruptible(&ffs->wait);
1906 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1907 
1908 	return ret;
1909 }
1910 
1911 
1912 /* Parsing and building descriptors and strings *****************************/
1913 
1914 /*
1915  * This validates if data pointed by data is a valid USB descriptor as
1916  * well as record how many interfaces, endpoints and strings are
1917  * required by given configuration.  Returns address after the
1918  * descriptor or NULL if data is invalid.
1919  */
1920 
1921 enum ffs_entity_type {
1922 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1923 };
1924 
1925 enum ffs_os_desc_type {
1926 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1927 };
1928 
1929 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1930 				   u8 *valuep,
1931 				   struct usb_descriptor_header *desc,
1932 				   void *priv);
1933 
1934 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1935 				    struct usb_os_desc_header *h, void *data,
1936 				    unsigned len, void *priv);
1937 
1938 static int __must_check ffs_do_single_desc(char *data, unsigned len,
1939 					   ffs_entity_callback entity,
1940 					   void *priv)
1941 {
1942 	struct usb_descriptor_header *_ds = (void *)data;
1943 	u8 length;
1944 	int ret;
1945 
1946 	ENTER();
1947 
1948 	/* At least two bytes are required: length and type */
1949 	if (len < 2) {
1950 		pr_vdebug("descriptor too short\n");
1951 		return -EINVAL;
1952 	}
1953 
1954 	/* If we have at least as many bytes as the descriptor takes? */
1955 	length = _ds->bLength;
1956 	if (len < length) {
1957 		pr_vdebug("descriptor longer then available data\n");
1958 		return -EINVAL;
1959 	}
1960 
1961 #define __entity_check_INTERFACE(val)  1
1962 #define __entity_check_STRING(val)     (val)
1963 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
1964 #define __entity(type, val) do {					\
1965 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
1966 		if (unlikely(!__entity_check_ ##type(val))) {		\
1967 			pr_vdebug("invalid entity's value\n");		\
1968 			return -EINVAL;					\
1969 		}							\
1970 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
1971 		if (unlikely(ret < 0)) {				\
1972 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
1973 				 (val), ret);				\
1974 			return ret;					\
1975 		}							\
1976 	} while (0)
1977 
1978 	/* Parse descriptor depending on type. */
1979 	switch (_ds->bDescriptorType) {
1980 	case USB_DT_DEVICE:
1981 	case USB_DT_CONFIG:
1982 	case USB_DT_STRING:
1983 	case USB_DT_DEVICE_QUALIFIER:
1984 		/* function can't have any of those */
1985 		pr_vdebug("descriptor reserved for gadget: %d\n",
1986 		      _ds->bDescriptorType);
1987 		return -EINVAL;
1988 
1989 	case USB_DT_INTERFACE: {
1990 		struct usb_interface_descriptor *ds = (void *)_ds;
1991 		pr_vdebug("interface descriptor\n");
1992 		if (length != sizeof *ds)
1993 			goto inv_length;
1994 
1995 		__entity(INTERFACE, ds->bInterfaceNumber);
1996 		if (ds->iInterface)
1997 			__entity(STRING, ds->iInterface);
1998 	}
1999 		break;
2000 
2001 	case USB_DT_ENDPOINT: {
2002 		struct usb_endpoint_descriptor *ds = (void *)_ds;
2003 		pr_vdebug("endpoint descriptor\n");
2004 		if (length != USB_DT_ENDPOINT_SIZE &&
2005 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
2006 			goto inv_length;
2007 		__entity(ENDPOINT, ds->bEndpointAddress);
2008 	}
2009 		break;
2010 
2011 	case HID_DT_HID:
2012 		pr_vdebug("hid descriptor\n");
2013 		if (length != sizeof(struct hid_descriptor))
2014 			goto inv_length;
2015 		break;
2016 
2017 	case USB_DT_OTG:
2018 		if (length != sizeof(struct usb_otg_descriptor))
2019 			goto inv_length;
2020 		break;
2021 
2022 	case USB_DT_INTERFACE_ASSOCIATION: {
2023 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2024 		pr_vdebug("interface association descriptor\n");
2025 		if (length != sizeof *ds)
2026 			goto inv_length;
2027 		if (ds->iFunction)
2028 			__entity(STRING, ds->iFunction);
2029 	}
2030 		break;
2031 
2032 	case USB_DT_SS_ENDPOINT_COMP:
2033 		pr_vdebug("EP SS companion descriptor\n");
2034 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2035 			goto inv_length;
2036 		break;
2037 
2038 	case USB_DT_OTHER_SPEED_CONFIG:
2039 	case USB_DT_INTERFACE_POWER:
2040 	case USB_DT_DEBUG:
2041 	case USB_DT_SECURITY:
2042 	case USB_DT_CS_RADIO_CONTROL:
2043 		/* TODO */
2044 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2045 		return -EINVAL;
2046 
2047 	default:
2048 		/* We should never be here */
2049 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2050 		return -EINVAL;
2051 
2052 inv_length:
2053 		pr_vdebug("invalid length: %d (descriptor %d)\n",
2054 			  _ds->bLength, _ds->bDescriptorType);
2055 		return -EINVAL;
2056 	}
2057 
2058 #undef __entity
2059 #undef __entity_check_DESCRIPTOR
2060 #undef __entity_check_INTERFACE
2061 #undef __entity_check_STRING
2062 #undef __entity_check_ENDPOINT
2063 
2064 	return length;
2065 }
2066 
2067 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2068 				     ffs_entity_callback entity, void *priv)
2069 {
2070 	const unsigned _len = len;
2071 	unsigned long num = 0;
2072 
2073 	ENTER();
2074 
2075 	for (;;) {
2076 		int ret;
2077 
2078 		if (num == count)
2079 			data = NULL;
2080 
2081 		/* Record "descriptor" entity */
2082 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2083 		if (unlikely(ret < 0)) {
2084 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2085 				 num, ret);
2086 			return ret;
2087 		}
2088 
2089 		if (!data)
2090 			return _len - len;
2091 
2092 		ret = ffs_do_single_desc(data, len, entity, priv);
2093 		if (unlikely(ret < 0)) {
2094 			pr_debug("%s returns %d\n", __func__, ret);
2095 			return ret;
2096 		}
2097 
2098 		len -= ret;
2099 		data += ret;
2100 		++num;
2101 	}
2102 }
2103 
2104 static int __ffs_data_do_entity(enum ffs_entity_type type,
2105 				u8 *valuep, struct usb_descriptor_header *desc,
2106 				void *priv)
2107 {
2108 	struct ffs_desc_helper *helper = priv;
2109 	struct usb_endpoint_descriptor *d;
2110 
2111 	ENTER();
2112 
2113 	switch (type) {
2114 	case FFS_DESCRIPTOR:
2115 		break;
2116 
2117 	case FFS_INTERFACE:
2118 		/*
2119 		 * Interfaces are indexed from zero so if we
2120 		 * encountered interface "n" then there are at least
2121 		 * "n+1" interfaces.
2122 		 */
2123 		if (*valuep >= helper->interfaces_count)
2124 			helper->interfaces_count = *valuep + 1;
2125 		break;
2126 
2127 	case FFS_STRING:
2128 		/*
2129 		 * Strings are indexed from 1 (0 is reserved
2130 		 * for languages list)
2131 		 */
2132 		if (*valuep > helper->ffs->strings_count)
2133 			helper->ffs->strings_count = *valuep;
2134 		break;
2135 
2136 	case FFS_ENDPOINT:
2137 		d = (void *)desc;
2138 		helper->eps_count++;
2139 		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2140 			return -EINVAL;
2141 		/* Check if descriptors for any speed were already parsed */
2142 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2143 			helper->ffs->eps_addrmap[helper->eps_count] =
2144 				d->bEndpointAddress;
2145 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2146 				d->bEndpointAddress)
2147 			return -EINVAL;
2148 		break;
2149 	}
2150 
2151 	return 0;
2152 }
2153 
2154 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2155 				   struct usb_os_desc_header *desc)
2156 {
2157 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2158 	u16 w_index = le16_to_cpu(desc->wIndex);
2159 
2160 	if (bcd_version != 1) {
2161 		pr_vdebug("unsupported os descriptors version: %d",
2162 			  bcd_version);
2163 		return -EINVAL;
2164 	}
2165 	switch (w_index) {
2166 	case 0x4:
2167 		*next_type = FFS_OS_DESC_EXT_COMPAT;
2168 		break;
2169 	case 0x5:
2170 		*next_type = FFS_OS_DESC_EXT_PROP;
2171 		break;
2172 	default:
2173 		pr_vdebug("unsupported os descriptor type: %d", w_index);
2174 		return -EINVAL;
2175 	}
2176 
2177 	return sizeof(*desc);
2178 }
2179 
2180 /*
2181  * Process all extended compatibility/extended property descriptors
2182  * of a feature descriptor
2183  */
2184 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2185 					      enum ffs_os_desc_type type,
2186 					      u16 feature_count,
2187 					      ffs_os_desc_callback entity,
2188 					      void *priv,
2189 					      struct usb_os_desc_header *h)
2190 {
2191 	int ret;
2192 	const unsigned _len = len;
2193 
2194 	ENTER();
2195 
2196 	/* loop over all ext compat/ext prop descriptors */
2197 	while (feature_count--) {
2198 		ret = entity(type, h, data, len, priv);
2199 		if (unlikely(ret < 0)) {
2200 			pr_debug("bad OS descriptor, type: %d\n", type);
2201 			return ret;
2202 		}
2203 		data += ret;
2204 		len -= ret;
2205 	}
2206 	return _len - len;
2207 }
2208 
2209 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2210 static int __must_check ffs_do_os_descs(unsigned count,
2211 					char *data, unsigned len,
2212 					ffs_os_desc_callback entity, void *priv)
2213 {
2214 	const unsigned _len = len;
2215 	unsigned long num = 0;
2216 
2217 	ENTER();
2218 
2219 	for (num = 0; num < count; ++num) {
2220 		int ret;
2221 		enum ffs_os_desc_type type;
2222 		u16 feature_count;
2223 		struct usb_os_desc_header *desc = (void *)data;
2224 
2225 		if (len < sizeof(*desc))
2226 			return -EINVAL;
2227 
2228 		/*
2229 		 * Record "descriptor" entity.
2230 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2231 		 * Move the data pointer to the beginning of extended
2232 		 * compatibilities proper or extended properties proper
2233 		 * portions of the data
2234 		 */
2235 		if (le32_to_cpu(desc->dwLength) > len)
2236 			return -EINVAL;
2237 
2238 		ret = __ffs_do_os_desc_header(&type, desc);
2239 		if (unlikely(ret < 0)) {
2240 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2241 				 num, ret);
2242 			return ret;
2243 		}
2244 		/*
2245 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2246 		 */
2247 		feature_count = le16_to_cpu(desc->wCount);
2248 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2249 		    (feature_count > 255 || desc->Reserved))
2250 				return -EINVAL;
2251 		len -= ret;
2252 		data += ret;
2253 
2254 		/*
2255 		 * Process all function/property descriptors
2256 		 * of this Feature Descriptor
2257 		 */
2258 		ret = ffs_do_single_os_desc(data, len, type,
2259 					    feature_count, entity, priv, desc);
2260 		if (unlikely(ret < 0)) {
2261 			pr_debug("%s returns %d\n", __func__, ret);
2262 			return ret;
2263 		}
2264 
2265 		len -= ret;
2266 		data += ret;
2267 	}
2268 	return _len - len;
2269 }
2270 
2271 /**
2272  * Validate contents of the buffer from userspace related to OS descriptors.
2273  */
2274 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2275 				 struct usb_os_desc_header *h, void *data,
2276 				 unsigned len, void *priv)
2277 {
2278 	struct ffs_data *ffs = priv;
2279 	u8 length;
2280 
2281 	ENTER();
2282 
2283 	switch (type) {
2284 	case FFS_OS_DESC_EXT_COMPAT: {
2285 		struct usb_ext_compat_desc *d = data;
2286 		int i;
2287 
2288 		if (len < sizeof(*d) ||
2289 		    d->bFirstInterfaceNumber >= ffs->interfaces_count ||
2290 		    !d->Reserved1)
2291 			return -EINVAL;
2292 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2293 			if (d->Reserved2[i])
2294 				return -EINVAL;
2295 
2296 		length = sizeof(struct usb_ext_compat_desc);
2297 	}
2298 		break;
2299 	case FFS_OS_DESC_EXT_PROP: {
2300 		struct usb_ext_prop_desc *d = data;
2301 		u32 type, pdl;
2302 		u16 pnl;
2303 
2304 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2305 			return -EINVAL;
2306 		length = le32_to_cpu(d->dwSize);
2307 		if (len < length)
2308 			return -EINVAL;
2309 		type = le32_to_cpu(d->dwPropertyDataType);
2310 		if (type < USB_EXT_PROP_UNICODE ||
2311 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2312 			pr_vdebug("unsupported os descriptor property type: %d",
2313 				  type);
2314 			return -EINVAL;
2315 		}
2316 		pnl = le16_to_cpu(d->wPropertyNameLength);
2317 		if (length < 14 + pnl) {
2318 			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2319 				  length, pnl, type);
2320 			return -EINVAL;
2321 		}
2322 		pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl));
2323 		if (length != 14 + pnl + pdl) {
2324 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2325 				  length, pnl, pdl, type);
2326 			return -EINVAL;
2327 		}
2328 		++ffs->ms_os_descs_ext_prop_count;
2329 		/* property name reported to the host as "WCHAR"s */
2330 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2331 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2332 	}
2333 		break;
2334 	default:
2335 		pr_vdebug("unknown descriptor: %d\n", type);
2336 		return -EINVAL;
2337 	}
2338 	return length;
2339 }
2340 
2341 static int __ffs_data_got_descs(struct ffs_data *ffs,
2342 				char *const _data, size_t len)
2343 {
2344 	char *data = _data, *raw_descs;
2345 	unsigned os_descs_count = 0, counts[3], flags;
2346 	int ret = -EINVAL, i;
2347 	struct ffs_desc_helper helper;
2348 
2349 	ENTER();
2350 
2351 	if (get_unaligned_le32(data + 4) != len)
2352 		goto error;
2353 
2354 	switch (get_unaligned_le32(data)) {
2355 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2356 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2357 		data += 8;
2358 		len  -= 8;
2359 		break;
2360 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2361 		flags = get_unaligned_le32(data + 8);
2362 		ffs->user_flags = flags;
2363 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2364 			      FUNCTIONFS_HAS_HS_DESC |
2365 			      FUNCTIONFS_HAS_SS_DESC |
2366 			      FUNCTIONFS_HAS_MS_OS_DESC |
2367 			      FUNCTIONFS_VIRTUAL_ADDR |
2368 			      FUNCTIONFS_EVENTFD |
2369 			      FUNCTIONFS_ALL_CTRL_RECIP |
2370 			      FUNCTIONFS_CONFIG0_SETUP)) {
2371 			ret = -ENOSYS;
2372 			goto error;
2373 		}
2374 		data += 12;
2375 		len  -= 12;
2376 		break;
2377 	default:
2378 		goto error;
2379 	}
2380 
2381 	if (flags & FUNCTIONFS_EVENTFD) {
2382 		if (len < 4)
2383 			goto error;
2384 		ffs->ffs_eventfd =
2385 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2386 		if (IS_ERR(ffs->ffs_eventfd)) {
2387 			ret = PTR_ERR(ffs->ffs_eventfd);
2388 			ffs->ffs_eventfd = NULL;
2389 			goto error;
2390 		}
2391 		data += 4;
2392 		len  -= 4;
2393 	}
2394 
2395 	/* Read fs_count, hs_count and ss_count (if present) */
2396 	for (i = 0; i < 3; ++i) {
2397 		if (!(flags & (1 << i))) {
2398 			counts[i] = 0;
2399 		} else if (len < 4) {
2400 			goto error;
2401 		} else {
2402 			counts[i] = get_unaligned_le32(data);
2403 			data += 4;
2404 			len  -= 4;
2405 		}
2406 	}
2407 	if (flags & (1 << i)) {
2408 		if (len < 4) {
2409 			goto error;
2410 		}
2411 		os_descs_count = get_unaligned_le32(data);
2412 		data += 4;
2413 		len -= 4;
2414 	};
2415 
2416 	/* Read descriptors */
2417 	raw_descs = data;
2418 	helper.ffs = ffs;
2419 	for (i = 0; i < 3; ++i) {
2420 		if (!counts[i])
2421 			continue;
2422 		helper.interfaces_count = 0;
2423 		helper.eps_count = 0;
2424 		ret = ffs_do_descs(counts[i], data, len,
2425 				   __ffs_data_do_entity, &helper);
2426 		if (ret < 0)
2427 			goto error;
2428 		if (!ffs->eps_count && !ffs->interfaces_count) {
2429 			ffs->eps_count = helper.eps_count;
2430 			ffs->interfaces_count = helper.interfaces_count;
2431 		} else {
2432 			if (ffs->eps_count != helper.eps_count) {
2433 				ret = -EINVAL;
2434 				goto error;
2435 			}
2436 			if (ffs->interfaces_count != helper.interfaces_count) {
2437 				ret = -EINVAL;
2438 				goto error;
2439 			}
2440 		}
2441 		data += ret;
2442 		len  -= ret;
2443 	}
2444 	if (os_descs_count) {
2445 		ret = ffs_do_os_descs(os_descs_count, data, len,
2446 				      __ffs_data_do_os_desc, ffs);
2447 		if (ret < 0)
2448 			goto error;
2449 		data += ret;
2450 		len -= ret;
2451 	}
2452 
2453 	if (raw_descs == data || len) {
2454 		ret = -EINVAL;
2455 		goto error;
2456 	}
2457 
2458 	ffs->raw_descs_data	= _data;
2459 	ffs->raw_descs		= raw_descs;
2460 	ffs->raw_descs_length	= data - raw_descs;
2461 	ffs->fs_descs_count	= counts[0];
2462 	ffs->hs_descs_count	= counts[1];
2463 	ffs->ss_descs_count	= counts[2];
2464 	ffs->ms_os_descs_count	= os_descs_count;
2465 
2466 	return 0;
2467 
2468 error:
2469 	kfree(_data);
2470 	return ret;
2471 }
2472 
2473 static int __ffs_data_got_strings(struct ffs_data *ffs,
2474 				  char *const _data, size_t len)
2475 {
2476 	u32 str_count, needed_count, lang_count;
2477 	struct usb_gadget_strings **stringtabs, *t;
2478 	const char *data = _data;
2479 	struct usb_string *s;
2480 
2481 	ENTER();
2482 
2483 	if (unlikely(len < 16 ||
2484 		     get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2485 		     get_unaligned_le32(data + 4) != len))
2486 		goto error;
2487 	str_count  = get_unaligned_le32(data + 8);
2488 	lang_count = get_unaligned_le32(data + 12);
2489 
2490 	/* if one is zero the other must be zero */
2491 	if (unlikely(!str_count != !lang_count))
2492 		goto error;
2493 
2494 	/* Do we have at least as many strings as descriptors need? */
2495 	needed_count = ffs->strings_count;
2496 	if (unlikely(str_count < needed_count))
2497 		goto error;
2498 
2499 	/*
2500 	 * If we don't need any strings just return and free all
2501 	 * memory.
2502 	 */
2503 	if (!needed_count) {
2504 		kfree(_data);
2505 		return 0;
2506 	}
2507 
2508 	/* Allocate everything in one chunk so there's less maintenance. */
2509 	{
2510 		unsigned i = 0;
2511 		vla_group(d);
2512 		vla_item(d, struct usb_gadget_strings *, stringtabs,
2513 			lang_count + 1);
2514 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2515 		vla_item(d, struct usb_string, strings,
2516 			lang_count*(needed_count+1));
2517 
2518 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2519 
2520 		if (unlikely(!vlabuf)) {
2521 			kfree(_data);
2522 			return -ENOMEM;
2523 		}
2524 
2525 		/* Initialize the VLA pointers */
2526 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2527 		t = vla_ptr(vlabuf, d, stringtab);
2528 		i = lang_count;
2529 		do {
2530 			*stringtabs++ = t++;
2531 		} while (--i);
2532 		*stringtabs = NULL;
2533 
2534 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2535 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2536 		t = vla_ptr(vlabuf, d, stringtab);
2537 		s = vla_ptr(vlabuf, d, strings);
2538 	}
2539 
2540 	/* For each language */
2541 	data += 16;
2542 	len -= 16;
2543 
2544 	do { /* lang_count > 0 so we can use do-while */
2545 		unsigned needed = needed_count;
2546 
2547 		if (unlikely(len < 3))
2548 			goto error_free;
2549 		t->language = get_unaligned_le16(data);
2550 		t->strings  = s;
2551 		++t;
2552 
2553 		data += 2;
2554 		len -= 2;
2555 
2556 		/* For each string */
2557 		do { /* str_count > 0 so we can use do-while */
2558 			size_t length = strnlen(data, len);
2559 
2560 			if (unlikely(length == len))
2561 				goto error_free;
2562 
2563 			/*
2564 			 * User may provide more strings then we need,
2565 			 * if that's the case we simply ignore the
2566 			 * rest
2567 			 */
2568 			if (likely(needed)) {
2569 				/*
2570 				 * s->id will be set while adding
2571 				 * function to configuration so for
2572 				 * now just leave garbage here.
2573 				 */
2574 				s->s = data;
2575 				--needed;
2576 				++s;
2577 			}
2578 
2579 			data += length + 1;
2580 			len -= length + 1;
2581 		} while (--str_count);
2582 
2583 		s->id = 0;   /* terminator */
2584 		s->s = NULL;
2585 		++s;
2586 
2587 	} while (--lang_count);
2588 
2589 	/* Some garbage left? */
2590 	if (unlikely(len))
2591 		goto error_free;
2592 
2593 	/* Done! */
2594 	ffs->stringtabs = stringtabs;
2595 	ffs->raw_strings = _data;
2596 
2597 	return 0;
2598 
2599 error_free:
2600 	kfree(stringtabs);
2601 error:
2602 	kfree(_data);
2603 	return -EINVAL;
2604 }
2605 
2606 
2607 /* Events handling and management *******************************************/
2608 
2609 static void __ffs_event_add(struct ffs_data *ffs,
2610 			    enum usb_functionfs_event_type type)
2611 {
2612 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2613 	int neg = 0;
2614 
2615 	/*
2616 	 * Abort any unhandled setup
2617 	 *
2618 	 * We do not need to worry about some cmpxchg() changing value
2619 	 * of ffs->setup_state without holding the lock because when
2620 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2621 	 * the source does nothing.
2622 	 */
2623 	if (ffs->setup_state == FFS_SETUP_PENDING)
2624 		ffs->setup_state = FFS_SETUP_CANCELLED;
2625 
2626 	/*
2627 	 * Logic of this function guarantees that there are at most four pending
2628 	 * evens on ffs->ev.types queue.  This is important because the queue
2629 	 * has space for four elements only and __ffs_ep0_read_events function
2630 	 * depends on that limit as well.  If more event types are added, those
2631 	 * limits have to be revisited or guaranteed to still hold.
2632 	 */
2633 	switch (type) {
2634 	case FUNCTIONFS_RESUME:
2635 		rem_type2 = FUNCTIONFS_SUSPEND;
2636 		/* FALL THROUGH */
2637 	case FUNCTIONFS_SUSPEND:
2638 	case FUNCTIONFS_SETUP:
2639 		rem_type1 = type;
2640 		/* Discard all similar events */
2641 		break;
2642 
2643 	case FUNCTIONFS_BIND:
2644 	case FUNCTIONFS_UNBIND:
2645 	case FUNCTIONFS_DISABLE:
2646 	case FUNCTIONFS_ENABLE:
2647 		/* Discard everything other then power management. */
2648 		rem_type1 = FUNCTIONFS_SUSPEND;
2649 		rem_type2 = FUNCTIONFS_RESUME;
2650 		neg = 1;
2651 		break;
2652 
2653 	default:
2654 		WARN(1, "%d: unknown event, this should not happen\n", type);
2655 		return;
2656 	}
2657 
2658 	{
2659 		u8 *ev  = ffs->ev.types, *out = ev;
2660 		unsigned n = ffs->ev.count;
2661 		for (; n; --n, ++ev)
2662 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2663 				*out++ = *ev;
2664 			else
2665 				pr_vdebug("purging event %d\n", *ev);
2666 		ffs->ev.count = out - ffs->ev.types;
2667 	}
2668 
2669 	pr_vdebug("adding event %d\n", type);
2670 	ffs->ev.types[ffs->ev.count++] = type;
2671 	wake_up_locked(&ffs->ev.waitq);
2672 	if (ffs->ffs_eventfd)
2673 		eventfd_signal(ffs->ffs_eventfd, 1);
2674 }
2675 
2676 static void ffs_event_add(struct ffs_data *ffs,
2677 			  enum usb_functionfs_event_type type)
2678 {
2679 	unsigned long flags;
2680 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2681 	__ffs_event_add(ffs, type);
2682 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2683 }
2684 
2685 /* Bind/unbind USB function hooks *******************************************/
2686 
2687 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2688 {
2689 	int i;
2690 
2691 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2692 		if (ffs->eps_addrmap[i] == endpoint_address)
2693 			return i;
2694 	return -ENOENT;
2695 }
2696 
2697 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2698 				    struct usb_descriptor_header *desc,
2699 				    void *priv)
2700 {
2701 	struct usb_endpoint_descriptor *ds = (void *)desc;
2702 	struct ffs_function *func = priv;
2703 	struct ffs_ep *ffs_ep;
2704 	unsigned ep_desc_id;
2705 	int idx;
2706 	static const char *speed_names[] = { "full", "high", "super" };
2707 
2708 	if (type != FFS_DESCRIPTOR)
2709 		return 0;
2710 
2711 	/*
2712 	 * If ss_descriptors is not NULL, we are reading super speed
2713 	 * descriptors; if hs_descriptors is not NULL, we are reading high
2714 	 * speed descriptors; otherwise, we are reading full speed
2715 	 * descriptors.
2716 	 */
2717 	if (func->function.ss_descriptors) {
2718 		ep_desc_id = 2;
2719 		func->function.ss_descriptors[(long)valuep] = desc;
2720 	} else if (func->function.hs_descriptors) {
2721 		ep_desc_id = 1;
2722 		func->function.hs_descriptors[(long)valuep] = desc;
2723 	} else {
2724 		ep_desc_id = 0;
2725 		func->function.fs_descriptors[(long)valuep]    = desc;
2726 	}
2727 
2728 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2729 		return 0;
2730 
2731 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2732 	if (idx < 0)
2733 		return idx;
2734 
2735 	ffs_ep = func->eps + idx;
2736 
2737 	if (unlikely(ffs_ep->descs[ep_desc_id])) {
2738 		pr_err("two %sspeed descriptors for EP %d\n",
2739 			  speed_names[ep_desc_id],
2740 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2741 		return -EINVAL;
2742 	}
2743 	ffs_ep->descs[ep_desc_id] = ds;
2744 
2745 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2746 	if (ffs_ep->ep) {
2747 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2748 		if (!ds->wMaxPacketSize)
2749 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2750 	} else {
2751 		struct usb_request *req;
2752 		struct usb_ep *ep;
2753 		u8 bEndpointAddress;
2754 
2755 		/*
2756 		 * We back up bEndpointAddress because autoconfig overwrites
2757 		 * it with physical endpoint address.
2758 		 */
2759 		bEndpointAddress = ds->bEndpointAddress;
2760 		pr_vdebug("autoconfig\n");
2761 		ep = usb_ep_autoconfig(func->gadget, ds);
2762 		if (unlikely(!ep))
2763 			return -ENOTSUPP;
2764 		ep->driver_data = func->eps + idx;
2765 
2766 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2767 		if (unlikely(!req))
2768 			return -ENOMEM;
2769 
2770 		ffs_ep->ep  = ep;
2771 		ffs_ep->req = req;
2772 		func->eps_revmap[ds->bEndpointAddress &
2773 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2774 		/*
2775 		 * If we use virtual address mapping, we restore
2776 		 * original bEndpointAddress value.
2777 		 */
2778 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2779 			ds->bEndpointAddress = bEndpointAddress;
2780 	}
2781 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2782 
2783 	return 0;
2784 }
2785 
2786 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2787 				   struct usb_descriptor_header *desc,
2788 				   void *priv)
2789 {
2790 	struct ffs_function *func = priv;
2791 	unsigned idx;
2792 	u8 newValue;
2793 
2794 	switch (type) {
2795 	default:
2796 	case FFS_DESCRIPTOR:
2797 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2798 		return 0;
2799 
2800 	case FFS_INTERFACE:
2801 		idx = *valuep;
2802 		if (func->interfaces_nums[idx] < 0) {
2803 			int id = usb_interface_id(func->conf, &func->function);
2804 			if (unlikely(id < 0))
2805 				return id;
2806 			func->interfaces_nums[idx] = id;
2807 		}
2808 		newValue = func->interfaces_nums[idx];
2809 		break;
2810 
2811 	case FFS_STRING:
2812 		/* String' IDs are allocated when fsf_data is bound to cdev */
2813 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2814 		break;
2815 
2816 	case FFS_ENDPOINT:
2817 		/*
2818 		 * USB_DT_ENDPOINT are handled in
2819 		 * __ffs_func_bind_do_descs().
2820 		 */
2821 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2822 			return 0;
2823 
2824 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2825 		if (unlikely(!func->eps[idx].ep))
2826 			return -EINVAL;
2827 
2828 		{
2829 			struct usb_endpoint_descriptor **descs;
2830 			descs = func->eps[idx].descs;
2831 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2832 		}
2833 		break;
2834 	}
2835 
2836 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2837 	*valuep = newValue;
2838 	return 0;
2839 }
2840 
2841 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2842 				      struct usb_os_desc_header *h, void *data,
2843 				      unsigned len, void *priv)
2844 {
2845 	struct ffs_function *func = priv;
2846 	u8 length = 0;
2847 
2848 	switch (type) {
2849 	case FFS_OS_DESC_EXT_COMPAT: {
2850 		struct usb_ext_compat_desc *desc = data;
2851 		struct usb_os_desc_table *t;
2852 
2853 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2854 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2855 		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2856 		       ARRAY_SIZE(desc->CompatibleID) +
2857 		       ARRAY_SIZE(desc->SubCompatibleID));
2858 		length = sizeof(*desc);
2859 	}
2860 		break;
2861 	case FFS_OS_DESC_EXT_PROP: {
2862 		struct usb_ext_prop_desc *desc = data;
2863 		struct usb_os_desc_table *t;
2864 		struct usb_os_desc_ext_prop *ext_prop;
2865 		char *ext_prop_name;
2866 		char *ext_prop_data;
2867 
2868 		t = &func->function.os_desc_table[h->interface];
2869 		t->if_id = func->interfaces_nums[h->interface];
2870 
2871 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2872 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2873 
2874 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2875 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2876 		ext_prop->data_len = le32_to_cpu(*(u32 *)
2877 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2878 		length = ext_prop->name_len + ext_prop->data_len + 14;
2879 
2880 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2881 		func->ffs->ms_os_descs_ext_prop_name_avail +=
2882 			ext_prop->name_len;
2883 
2884 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2885 		func->ffs->ms_os_descs_ext_prop_data_avail +=
2886 			ext_prop->data_len;
2887 		memcpy(ext_prop_data,
2888 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2889 		       ext_prop->data_len);
2890 		/* unicode data reported to the host as "WCHAR"s */
2891 		switch (ext_prop->type) {
2892 		case USB_EXT_PROP_UNICODE:
2893 		case USB_EXT_PROP_UNICODE_ENV:
2894 		case USB_EXT_PROP_UNICODE_LINK:
2895 		case USB_EXT_PROP_UNICODE_MULTI:
2896 			ext_prop->data_len *= 2;
2897 			break;
2898 		}
2899 		ext_prop->data = ext_prop_data;
2900 
2901 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2902 		       ext_prop->name_len);
2903 		/* property name reported to the host as "WCHAR"s */
2904 		ext_prop->name_len *= 2;
2905 		ext_prop->name = ext_prop_name;
2906 
2907 		t->os_desc->ext_prop_len +=
2908 			ext_prop->name_len + ext_prop->data_len + 14;
2909 		++t->os_desc->ext_prop_count;
2910 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2911 	}
2912 		break;
2913 	default:
2914 		pr_vdebug("unknown descriptor: %d\n", type);
2915 	}
2916 
2917 	return length;
2918 }
2919 
2920 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2921 						struct usb_configuration *c)
2922 {
2923 	struct ffs_function *func = ffs_func_from_usb(f);
2924 	struct f_fs_opts *ffs_opts =
2925 		container_of(f->fi, struct f_fs_opts, func_inst);
2926 	int ret;
2927 
2928 	ENTER();
2929 
2930 	/*
2931 	 * Legacy gadget triggers binding in functionfs_ready_callback,
2932 	 * which already uses locking; taking the same lock here would
2933 	 * cause a deadlock.
2934 	 *
2935 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
2936 	 */
2937 	if (!ffs_opts->no_configfs)
2938 		ffs_dev_lock();
2939 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2940 	func->ffs = ffs_opts->dev->ffs_data;
2941 	if (!ffs_opts->no_configfs)
2942 		ffs_dev_unlock();
2943 	if (ret)
2944 		return ERR_PTR(ret);
2945 
2946 	func->conf = c;
2947 	func->gadget = c->cdev->gadget;
2948 
2949 	/*
2950 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2951 	 * configurations are bound in sequence with list_for_each_entry,
2952 	 * in each configuration its functions are bound in sequence
2953 	 * with list_for_each_entry, so we assume no race condition
2954 	 * with regard to ffs_opts->bound access
2955 	 */
2956 	if (!ffs_opts->refcnt) {
2957 		ret = functionfs_bind(func->ffs, c->cdev);
2958 		if (ret)
2959 			return ERR_PTR(ret);
2960 	}
2961 	ffs_opts->refcnt++;
2962 	func->function.strings = func->ffs->stringtabs;
2963 
2964 	return ffs_opts;
2965 }
2966 
2967 static int _ffs_func_bind(struct usb_configuration *c,
2968 			  struct usb_function *f)
2969 {
2970 	struct ffs_function *func = ffs_func_from_usb(f);
2971 	struct ffs_data *ffs = func->ffs;
2972 
2973 	const int full = !!func->ffs->fs_descs_count;
2974 	const int high = gadget_is_dualspeed(func->gadget) &&
2975 		func->ffs->hs_descs_count;
2976 	const int super = gadget_is_superspeed(func->gadget) &&
2977 		func->ffs->ss_descs_count;
2978 
2979 	int fs_len, hs_len, ss_len, ret, i;
2980 	struct ffs_ep *eps_ptr;
2981 
2982 	/* Make it a single chunk, less management later on */
2983 	vla_group(d);
2984 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2985 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2986 		full ? ffs->fs_descs_count + 1 : 0);
2987 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2988 		high ? ffs->hs_descs_count + 1 : 0);
2989 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2990 		super ? ffs->ss_descs_count + 1 : 0);
2991 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2992 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2993 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2994 	vla_item_with_sz(d, char[16], ext_compat,
2995 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2996 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
2997 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2998 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
2999 			 ffs->ms_os_descs_ext_prop_count);
3000 	vla_item_with_sz(d, char, ext_prop_name,
3001 			 ffs->ms_os_descs_ext_prop_name_len);
3002 	vla_item_with_sz(d, char, ext_prop_data,
3003 			 ffs->ms_os_descs_ext_prop_data_len);
3004 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3005 	char *vlabuf;
3006 
3007 	ENTER();
3008 
3009 	/* Has descriptors only for speeds gadget does not support */
3010 	if (unlikely(!(full | high | super)))
3011 		return -ENOTSUPP;
3012 
3013 	/* Allocate a single chunk, less management later on */
3014 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3015 	if (unlikely(!vlabuf))
3016 		return -ENOMEM;
3017 
3018 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3019 	ffs->ms_os_descs_ext_prop_name_avail =
3020 		vla_ptr(vlabuf, d, ext_prop_name);
3021 	ffs->ms_os_descs_ext_prop_data_avail =
3022 		vla_ptr(vlabuf, d, ext_prop_data);
3023 
3024 	/* Copy descriptors  */
3025 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3026 	       ffs->raw_descs_length);
3027 
3028 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3029 	eps_ptr = vla_ptr(vlabuf, d, eps);
3030 	for (i = 0; i < ffs->eps_count; i++)
3031 		eps_ptr[i].num = -1;
3032 
3033 	/* Save pointers
3034 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3035 	*/
3036 	func->eps             = vla_ptr(vlabuf, d, eps);
3037 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3038 
3039 	/*
3040 	 * Go through all the endpoint descriptors and allocate
3041 	 * endpoints first, so that later we can rewrite the endpoint
3042 	 * numbers without worrying that it may be described later on.
3043 	 */
3044 	if (likely(full)) {
3045 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3046 		fs_len = ffs_do_descs(ffs->fs_descs_count,
3047 				      vla_ptr(vlabuf, d, raw_descs),
3048 				      d_raw_descs__sz,
3049 				      __ffs_func_bind_do_descs, func);
3050 		if (unlikely(fs_len < 0)) {
3051 			ret = fs_len;
3052 			goto error;
3053 		}
3054 	} else {
3055 		fs_len = 0;
3056 	}
3057 
3058 	if (likely(high)) {
3059 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3060 		hs_len = ffs_do_descs(ffs->hs_descs_count,
3061 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3062 				      d_raw_descs__sz - fs_len,
3063 				      __ffs_func_bind_do_descs, func);
3064 		if (unlikely(hs_len < 0)) {
3065 			ret = hs_len;
3066 			goto error;
3067 		}
3068 	} else {
3069 		hs_len = 0;
3070 	}
3071 
3072 	if (likely(super)) {
3073 		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3074 		ss_len = ffs_do_descs(ffs->ss_descs_count,
3075 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3076 				d_raw_descs__sz - fs_len - hs_len,
3077 				__ffs_func_bind_do_descs, func);
3078 		if (unlikely(ss_len < 0)) {
3079 			ret = ss_len;
3080 			goto error;
3081 		}
3082 	} else {
3083 		ss_len = 0;
3084 	}
3085 
3086 	/*
3087 	 * Now handle interface numbers allocation and interface and
3088 	 * endpoint numbers rewriting.  We can do that in one go
3089 	 * now.
3090 	 */
3091 	ret = ffs_do_descs(ffs->fs_descs_count +
3092 			   (high ? ffs->hs_descs_count : 0) +
3093 			   (super ? ffs->ss_descs_count : 0),
3094 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3095 			   __ffs_func_bind_do_nums, func);
3096 	if (unlikely(ret < 0))
3097 		goto error;
3098 
3099 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3100 	if (c->cdev->use_os_string) {
3101 		for (i = 0; i < ffs->interfaces_count; ++i) {
3102 			struct usb_os_desc *desc;
3103 
3104 			desc = func->function.os_desc_table[i].os_desc =
3105 				vla_ptr(vlabuf, d, os_desc) +
3106 				i * sizeof(struct usb_os_desc);
3107 			desc->ext_compat_id =
3108 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3109 			INIT_LIST_HEAD(&desc->ext_prop);
3110 		}
3111 		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3112 				      vla_ptr(vlabuf, d, raw_descs) +
3113 				      fs_len + hs_len + ss_len,
3114 				      d_raw_descs__sz - fs_len - hs_len -
3115 				      ss_len,
3116 				      __ffs_func_bind_do_os_desc, func);
3117 		if (unlikely(ret < 0))
3118 			goto error;
3119 	}
3120 	func->function.os_desc_n =
3121 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3122 
3123 	/* And we're done */
3124 	ffs_event_add(ffs, FUNCTIONFS_BIND);
3125 	return 0;
3126 
3127 error:
3128 	/* XXX Do we need to release all claimed endpoints here? */
3129 	return ret;
3130 }
3131 
3132 static int ffs_func_bind(struct usb_configuration *c,
3133 			 struct usb_function *f)
3134 {
3135 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3136 	struct ffs_function *func = ffs_func_from_usb(f);
3137 	int ret;
3138 
3139 	if (IS_ERR(ffs_opts))
3140 		return PTR_ERR(ffs_opts);
3141 
3142 	ret = _ffs_func_bind(c, f);
3143 	if (ret && !--ffs_opts->refcnt)
3144 		functionfs_unbind(func->ffs);
3145 
3146 	return ret;
3147 }
3148 
3149 
3150 /* Other USB function hooks *************************************************/
3151 
3152 static void ffs_reset_work(struct work_struct *work)
3153 {
3154 	struct ffs_data *ffs = container_of(work,
3155 		struct ffs_data, reset_work);
3156 	ffs_data_reset(ffs);
3157 }
3158 
3159 static int ffs_func_set_alt(struct usb_function *f,
3160 			    unsigned interface, unsigned alt)
3161 {
3162 	struct ffs_function *func = ffs_func_from_usb(f);
3163 	struct ffs_data *ffs = func->ffs;
3164 	int ret = 0, intf;
3165 
3166 	if (alt != (unsigned)-1) {
3167 		intf = ffs_func_revmap_intf(func, interface);
3168 		if (unlikely(intf < 0))
3169 			return intf;
3170 	}
3171 
3172 	if (ffs->func)
3173 		ffs_func_eps_disable(ffs->func);
3174 
3175 	if (ffs->state == FFS_DEACTIVATED) {
3176 		ffs->state = FFS_CLOSING;
3177 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3178 		schedule_work(&ffs->reset_work);
3179 		return -ENODEV;
3180 	}
3181 
3182 	if (ffs->state != FFS_ACTIVE)
3183 		return -ENODEV;
3184 
3185 	if (alt == (unsigned)-1) {
3186 		ffs->func = NULL;
3187 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3188 		return 0;
3189 	}
3190 
3191 	ffs->func = func;
3192 	ret = ffs_func_eps_enable(func);
3193 	if (likely(ret >= 0))
3194 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3195 	return ret;
3196 }
3197 
3198 static void ffs_func_disable(struct usb_function *f)
3199 {
3200 	ffs_func_set_alt(f, 0, (unsigned)-1);
3201 }
3202 
3203 static int ffs_func_setup(struct usb_function *f,
3204 			  const struct usb_ctrlrequest *creq)
3205 {
3206 	struct ffs_function *func = ffs_func_from_usb(f);
3207 	struct ffs_data *ffs = func->ffs;
3208 	unsigned long flags;
3209 	int ret;
3210 
3211 	ENTER();
3212 
3213 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3214 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3215 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3216 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3217 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3218 
3219 	/*
3220 	 * Most requests directed to interface go through here
3221 	 * (notable exceptions are set/get interface) so we need to
3222 	 * handle them.  All other either handled by composite or
3223 	 * passed to usb_configuration->setup() (if one is set).  No
3224 	 * matter, we will handle requests directed to endpoint here
3225 	 * as well (as it's straightforward).  Other request recipient
3226 	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3227 	 * is being used.
3228 	 */
3229 	if (ffs->state != FFS_ACTIVE)
3230 		return -ENODEV;
3231 
3232 	switch (creq->bRequestType & USB_RECIP_MASK) {
3233 	case USB_RECIP_INTERFACE:
3234 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3235 		if (unlikely(ret < 0))
3236 			return ret;
3237 		break;
3238 
3239 	case USB_RECIP_ENDPOINT:
3240 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3241 		if (unlikely(ret < 0))
3242 			return ret;
3243 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3244 			ret = func->ffs->eps_addrmap[ret];
3245 		break;
3246 
3247 	default:
3248 		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3249 			ret = le16_to_cpu(creq->wIndex);
3250 		else
3251 			return -EOPNOTSUPP;
3252 	}
3253 
3254 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3255 	ffs->ev.setup = *creq;
3256 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3257 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3258 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3259 
3260 	return 0;
3261 }
3262 
3263 static bool ffs_func_req_match(struct usb_function *f,
3264 			       const struct usb_ctrlrequest *creq,
3265 			       bool config0)
3266 {
3267 	struct ffs_function *func = ffs_func_from_usb(f);
3268 
3269 	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3270 		return false;
3271 
3272 	switch (creq->bRequestType & USB_RECIP_MASK) {
3273 	case USB_RECIP_INTERFACE:
3274 		return (ffs_func_revmap_intf(func,
3275 					     le16_to_cpu(creq->wIndex)) >= 0);
3276 	case USB_RECIP_ENDPOINT:
3277 		return (ffs_func_revmap_ep(func,
3278 					   le16_to_cpu(creq->wIndex)) >= 0);
3279 	default:
3280 		return (bool) (func->ffs->user_flags &
3281 			       FUNCTIONFS_ALL_CTRL_RECIP);
3282 	}
3283 }
3284 
3285 static void ffs_func_suspend(struct usb_function *f)
3286 {
3287 	ENTER();
3288 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3289 }
3290 
3291 static void ffs_func_resume(struct usb_function *f)
3292 {
3293 	ENTER();
3294 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3295 }
3296 
3297 
3298 /* Endpoint and interface numbers reverse mapping ***************************/
3299 
3300 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3301 {
3302 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3303 	return num ? num : -EDOM;
3304 }
3305 
3306 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3307 {
3308 	short *nums = func->interfaces_nums;
3309 	unsigned count = func->ffs->interfaces_count;
3310 
3311 	for (; count; --count, ++nums) {
3312 		if (*nums >= 0 && *nums == intf)
3313 			return nums - func->interfaces_nums;
3314 	}
3315 
3316 	return -EDOM;
3317 }
3318 
3319 
3320 /* Devices management *******************************************************/
3321 
3322 static LIST_HEAD(ffs_devices);
3323 
3324 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3325 {
3326 	struct ffs_dev *dev;
3327 
3328 	if (!name)
3329 		return NULL;
3330 
3331 	list_for_each_entry(dev, &ffs_devices, entry) {
3332 		if (strcmp(dev->name, name) == 0)
3333 			return dev;
3334 	}
3335 
3336 	return NULL;
3337 }
3338 
3339 /*
3340  * ffs_lock must be taken by the caller of this function
3341  */
3342 static struct ffs_dev *_ffs_get_single_dev(void)
3343 {
3344 	struct ffs_dev *dev;
3345 
3346 	if (list_is_singular(&ffs_devices)) {
3347 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3348 		if (dev->single)
3349 			return dev;
3350 	}
3351 
3352 	return NULL;
3353 }
3354 
3355 /*
3356  * ffs_lock must be taken by the caller of this function
3357  */
3358 static struct ffs_dev *_ffs_find_dev(const char *name)
3359 {
3360 	struct ffs_dev *dev;
3361 
3362 	dev = _ffs_get_single_dev();
3363 	if (dev)
3364 		return dev;
3365 
3366 	return _ffs_do_find_dev(name);
3367 }
3368 
3369 /* Configfs support *********************************************************/
3370 
3371 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3372 {
3373 	return container_of(to_config_group(item), struct f_fs_opts,
3374 			    func_inst.group);
3375 }
3376 
3377 static void ffs_attr_release(struct config_item *item)
3378 {
3379 	struct f_fs_opts *opts = to_ffs_opts(item);
3380 
3381 	usb_put_function_instance(&opts->func_inst);
3382 }
3383 
3384 static struct configfs_item_operations ffs_item_ops = {
3385 	.release	= ffs_attr_release,
3386 };
3387 
3388 static struct config_item_type ffs_func_type = {
3389 	.ct_item_ops	= &ffs_item_ops,
3390 	.ct_owner	= THIS_MODULE,
3391 };
3392 
3393 
3394 /* Function registration interface ******************************************/
3395 
3396 static void ffs_free_inst(struct usb_function_instance *f)
3397 {
3398 	struct f_fs_opts *opts;
3399 
3400 	opts = to_f_fs_opts(f);
3401 	ffs_dev_lock();
3402 	_ffs_free_dev(opts->dev);
3403 	ffs_dev_unlock();
3404 	kfree(opts);
3405 }
3406 
3407 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3408 {
3409 	if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name))
3410 		return -ENAMETOOLONG;
3411 	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3412 }
3413 
3414 static struct usb_function_instance *ffs_alloc_inst(void)
3415 {
3416 	struct f_fs_opts *opts;
3417 	struct ffs_dev *dev;
3418 
3419 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3420 	if (!opts)
3421 		return ERR_PTR(-ENOMEM);
3422 
3423 	opts->func_inst.set_inst_name = ffs_set_inst_name;
3424 	opts->func_inst.free_func_inst = ffs_free_inst;
3425 	ffs_dev_lock();
3426 	dev = _ffs_alloc_dev();
3427 	ffs_dev_unlock();
3428 	if (IS_ERR(dev)) {
3429 		kfree(opts);
3430 		return ERR_CAST(dev);
3431 	}
3432 	opts->dev = dev;
3433 	dev->opts = opts;
3434 
3435 	config_group_init_type_name(&opts->func_inst.group, "",
3436 				    &ffs_func_type);
3437 	return &opts->func_inst;
3438 }
3439 
3440 static void ffs_free(struct usb_function *f)
3441 {
3442 	kfree(ffs_func_from_usb(f));
3443 }
3444 
3445 static void ffs_func_unbind(struct usb_configuration *c,
3446 			    struct usb_function *f)
3447 {
3448 	struct ffs_function *func = ffs_func_from_usb(f);
3449 	struct ffs_data *ffs = func->ffs;
3450 	struct f_fs_opts *opts =
3451 		container_of(f->fi, struct f_fs_opts, func_inst);
3452 	struct ffs_ep *ep = func->eps;
3453 	unsigned count = ffs->eps_count;
3454 	unsigned long flags;
3455 
3456 	ENTER();
3457 	if (ffs->func == func) {
3458 		ffs_func_eps_disable(func);
3459 		ffs->func = NULL;
3460 	}
3461 
3462 	if (!--opts->refcnt)
3463 		functionfs_unbind(ffs);
3464 
3465 	/* cleanup after autoconfig */
3466 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3467 	while (count--) {
3468 		if (ep->ep && ep->req)
3469 			usb_ep_free_request(ep->ep, ep->req);
3470 		ep->req = NULL;
3471 		++ep;
3472 	}
3473 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3474 	kfree(func->eps);
3475 	func->eps = NULL;
3476 	/*
3477 	 * eps, descriptors and interfaces_nums are allocated in the
3478 	 * same chunk so only one free is required.
3479 	 */
3480 	func->function.fs_descriptors = NULL;
3481 	func->function.hs_descriptors = NULL;
3482 	func->function.ss_descriptors = NULL;
3483 	func->interfaces_nums = NULL;
3484 
3485 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3486 }
3487 
3488 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3489 {
3490 	struct ffs_function *func;
3491 
3492 	ENTER();
3493 
3494 	func = kzalloc(sizeof(*func), GFP_KERNEL);
3495 	if (unlikely(!func))
3496 		return ERR_PTR(-ENOMEM);
3497 
3498 	func->function.name    = "Function FS Gadget";
3499 
3500 	func->function.bind    = ffs_func_bind;
3501 	func->function.unbind  = ffs_func_unbind;
3502 	func->function.set_alt = ffs_func_set_alt;
3503 	func->function.disable = ffs_func_disable;
3504 	func->function.setup   = ffs_func_setup;
3505 	func->function.req_match = ffs_func_req_match;
3506 	func->function.suspend = ffs_func_suspend;
3507 	func->function.resume  = ffs_func_resume;
3508 	func->function.free_func = ffs_free;
3509 
3510 	return &func->function;
3511 }
3512 
3513 /*
3514  * ffs_lock must be taken by the caller of this function
3515  */
3516 static struct ffs_dev *_ffs_alloc_dev(void)
3517 {
3518 	struct ffs_dev *dev;
3519 	int ret;
3520 
3521 	if (_ffs_get_single_dev())
3522 			return ERR_PTR(-EBUSY);
3523 
3524 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3525 	if (!dev)
3526 		return ERR_PTR(-ENOMEM);
3527 
3528 	if (list_empty(&ffs_devices)) {
3529 		ret = functionfs_init();
3530 		if (ret) {
3531 			kfree(dev);
3532 			return ERR_PTR(ret);
3533 		}
3534 	}
3535 
3536 	list_add(&dev->entry, &ffs_devices);
3537 
3538 	return dev;
3539 }
3540 
3541 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3542 {
3543 	struct ffs_dev *existing;
3544 	int ret = 0;
3545 
3546 	ffs_dev_lock();
3547 
3548 	existing = _ffs_do_find_dev(name);
3549 	if (!existing)
3550 		strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3551 	else if (existing != dev)
3552 		ret = -EBUSY;
3553 
3554 	ffs_dev_unlock();
3555 
3556 	return ret;
3557 }
3558 EXPORT_SYMBOL_GPL(ffs_name_dev);
3559 
3560 int ffs_single_dev(struct ffs_dev *dev)
3561 {
3562 	int ret;
3563 
3564 	ret = 0;
3565 	ffs_dev_lock();
3566 
3567 	if (!list_is_singular(&ffs_devices))
3568 		ret = -EBUSY;
3569 	else
3570 		dev->single = true;
3571 
3572 	ffs_dev_unlock();
3573 	return ret;
3574 }
3575 EXPORT_SYMBOL_GPL(ffs_single_dev);
3576 
3577 /*
3578  * ffs_lock must be taken by the caller of this function
3579  */
3580 static void _ffs_free_dev(struct ffs_dev *dev)
3581 {
3582 	list_del(&dev->entry);
3583 
3584 	/* Clear the private_data pointer to stop incorrect dev access */
3585 	if (dev->ffs_data)
3586 		dev->ffs_data->private_data = NULL;
3587 
3588 	kfree(dev);
3589 	if (list_empty(&ffs_devices))
3590 		functionfs_cleanup();
3591 }
3592 
3593 static void *ffs_acquire_dev(const char *dev_name)
3594 {
3595 	struct ffs_dev *ffs_dev;
3596 
3597 	ENTER();
3598 	ffs_dev_lock();
3599 
3600 	ffs_dev = _ffs_find_dev(dev_name);
3601 	if (!ffs_dev)
3602 		ffs_dev = ERR_PTR(-ENOENT);
3603 	else if (ffs_dev->mounted)
3604 		ffs_dev = ERR_PTR(-EBUSY);
3605 	else if (ffs_dev->ffs_acquire_dev_callback &&
3606 	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3607 		ffs_dev = ERR_PTR(-ENOENT);
3608 	else
3609 		ffs_dev->mounted = true;
3610 
3611 	ffs_dev_unlock();
3612 	return ffs_dev;
3613 }
3614 
3615 static void ffs_release_dev(struct ffs_data *ffs_data)
3616 {
3617 	struct ffs_dev *ffs_dev;
3618 
3619 	ENTER();
3620 	ffs_dev_lock();
3621 
3622 	ffs_dev = ffs_data->private_data;
3623 	if (ffs_dev) {
3624 		ffs_dev->mounted = false;
3625 
3626 		if (ffs_dev->ffs_release_dev_callback)
3627 			ffs_dev->ffs_release_dev_callback(ffs_dev);
3628 	}
3629 
3630 	ffs_dev_unlock();
3631 }
3632 
3633 static int ffs_ready(struct ffs_data *ffs)
3634 {
3635 	struct ffs_dev *ffs_obj;
3636 	int ret = 0;
3637 
3638 	ENTER();
3639 	ffs_dev_lock();
3640 
3641 	ffs_obj = ffs->private_data;
3642 	if (!ffs_obj) {
3643 		ret = -EINVAL;
3644 		goto done;
3645 	}
3646 	if (WARN_ON(ffs_obj->desc_ready)) {
3647 		ret = -EBUSY;
3648 		goto done;
3649 	}
3650 
3651 	ffs_obj->desc_ready = true;
3652 	ffs_obj->ffs_data = ffs;
3653 
3654 	if (ffs_obj->ffs_ready_callback) {
3655 		ret = ffs_obj->ffs_ready_callback(ffs);
3656 		if (ret)
3657 			goto done;
3658 	}
3659 
3660 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3661 done:
3662 	ffs_dev_unlock();
3663 	return ret;
3664 }
3665 
3666 static void ffs_closed(struct ffs_data *ffs)
3667 {
3668 	struct ffs_dev *ffs_obj;
3669 	struct f_fs_opts *opts;
3670 	struct config_item *ci;
3671 
3672 	ENTER();
3673 	ffs_dev_lock();
3674 
3675 	ffs_obj = ffs->private_data;
3676 	if (!ffs_obj)
3677 		goto done;
3678 
3679 	ffs_obj->desc_ready = false;
3680 
3681 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3682 	    ffs_obj->ffs_closed_callback)
3683 		ffs_obj->ffs_closed_callback(ffs);
3684 
3685 	if (ffs_obj->opts)
3686 		opts = ffs_obj->opts;
3687 	else
3688 		goto done;
3689 
3690 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3691 	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3692 		goto done;
3693 
3694 	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3695 	ffs_dev_unlock();
3696 
3697 	unregister_gadget_item(ci);
3698 	return;
3699 done:
3700 	ffs_dev_unlock();
3701 }
3702 
3703 /* Misc helper functions ****************************************************/
3704 
3705 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3706 {
3707 	return nonblock
3708 		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3709 		: mutex_lock_interruptible(mutex);
3710 }
3711 
3712 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3713 {
3714 	char *data;
3715 
3716 	if (unlikely(!len))
3717 		return NULL;
3718 
3719 	data = kmalloc(len, GFP_KERNEL);
3720 	if (unlikely(!data))
3721 		return ERR_PTR(-ENOMEM);
3722 
3723 	if (unlikely(copy_from_user(data, buf, len))) {
3724 		kfree(data);
3725 		return ERR_PTR(-EFAULT);
3726 	}
3727 
3728 	pr_vdebug("Buffer from user space:\n");
3729 	ffs_dump_mem("", data, len);
3730 
3731 	return data;
3732 }
3733 
3734 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3735 MODULE_LICENSE("GPL");
3736 MODULE_AUTHOR("Michal Nazarewicz");
3737