xref: /openbmc/linux/drivers/usb/gadget/function/f_fs.c (revision a36954f5)
1 /*
2  * f_fs.c -- user mode file system API for USB composite function controllers
3  *
4  * Copyright (C) 2010 Samsung Electronics
5  * Author: Michal Nazarewicz <mina86@mina86.com>
6  *
7  * Based on inode.c (GadgetFS) which was:
8  * Copyright (C) 2003-2004 David Brownell
9  * Copyright (C) 2003 Agilent Technologies
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  */
16 
17 
18 /* #define DEBUG */
19 /* #define VERBOSE_DEBUG */
20 
21 #include <linux/blkdev.h>
22 #include <linux/pagemap.h>
23 #include <linux/export.h>
24 #include <linux/hid.h>
25 #include <linux/module.h>
26 #include <linux/sched/signal.h>
27 #include <linux/uio.h>
28 #include <asm/unaligned.h>
29 
30 #include <linux/usb/composite.h>
31 #include <linux/usb/functionfs.h>
32 
33 #include <linux/aio.h>
34 #include <linux/mmu_context.h>
35 #include <linux/poll.h>
36 #include <linux/eventfd.h>
37 
38 #include "u_fs.h"
39 #include "u_f.h"
40 #include "u_os_desc.h"
41 #include "configfs.h"
42 
43 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
44 
45 /* Reference counter handling */
46 static void ffs_data_get(struct ffs_data *ffs);
47 static void ffs_data_put(struct ffs_data *ffs);
48 /* Creates new ffs_data object. */
49 static struct ffs_data *__must_check ffs_data_new(void) __attribute__((malloc));
50 
51 /* Opened counter handling. */
52 static void ffs_data_opened(struct ffs_data *ffs);
53 static void ffs_data_closed(struct ffs_data *ffs);
54 
55 /* Called with ffs->mutex held; take over ownership of data. */
56 static int __must_check
57 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
58 static int __must_check
59 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
60 
61 
62 /* The function structure ***************************************************/
63 
64 struct ffs_ep;
65 
66 struct ffs_function {
67 	struct usb_configuration	*conf;
68 	struct usb_gadget		*gadget;
69 	struct ffs_data			*ffs;
70 
71 	struct ffs_ep			*eps;
72 	u8				eps_revmap[16];
73 	short				*interfaces_nums;
74 
75 	struct usb_function		function;
76 };
77 
78 
79 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
80 {
81 	return container_of(f, struct ffs_function, function);
82 }
83 
84 
85 static inline enum ffs_setup_state
86 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
87 {
88 	return (enum ffs_setup_state)
89 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
90 }
91 
92 
93 static void ffs_func_eps_disable(struct ffs_function *func);
94 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
95 
96 static int ffs_func_bind(struct usb_configuration *,
97 			 struct usb_function *);
98 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
99 static void ffs_func_disable(struct usb_function *);
100 static int ffs_func_setup(struct usb_function *,
101 			  const struct usb_ctrlrequest *);
102 static bool ffs_func_req_match(struct usb_function *,
103 			       const struct usb_ctrlrequest *,
104 			       bool config0);
105 static void ffs_func_suspend(struct usb_function *);
106 static void ffs_func_resume(struct usb_function *);
107 
108 
109 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
110 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
111 
112 
113 /* The endpoints structures *************************************************/
114 
115 struct ffs_ep {
116 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
117 	struct usb_request		*req;	/* P: epfile->mutex */
118 
119 	/* [0]: full speed, [1]: high speed, [2]: super speed */
120 	struct usb_endpoint_descriptor	*descs[3];
121 
122 	u8				num;
123 
124 	int				status;	/* P: epfile->mutex */
125 };
126 
127 struct ffs_epfile {
128 	/* Protects ep->ep and ep->req. */
129 	struct mutex			mutex;
130 	wait_queue_head_t		wait;
131 
132 	struct ffs_data			*ffs;
133 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
134 
135 	struct dentry			*dentry;
136 
137 	/*
138 	 * Buffer for holding data from partial reads which may happen since
139 	 * we’re rounding user read requests to a multiple of a max packet size.
140 	 *
141 	 * The pointer is initialised with NULL value and may be set by
142 	 * __ffs_epfile_read_data function to point to a temporary buffer.
143 	 *
144 	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
145 	 * data from said buffer and eventually free it.  Importantly, while the
146 	 * function is using the buffer, it sets the pointer to NULL.  This is
147 	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
148 	 * can never run concurrently (they are synchronised by epfile->mutex)
149 	 * so the latter will not assign a new value to the pointer.
150 	 *
151 	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
152 	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
153 	 * value is crux of the synchronisation between ffs_func_eps_disable and
154 	 * __ffs_epfile_read_data.
155 	 *
156 	 * Once __ffs_epfile_read_data is about to finish it will try to set the
157 	 * pointer back to its old value (as described above), but seeing as the
158 	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
159 	 * the buffer.
160 	 *
161 	 * == State transitions ==
162 	 *
163 	 * • ptr == NULL:  (initial state)
164 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
165 	 *   ◦ __ffs_epfile_read_buffered:    nop
166 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
167 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
168 	 * • ptr == DROP:
169 	 *   ◦ __ffs_epfile_read_buffer_free: nop
170 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
171 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
172 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
173 	 * • ptr == buf:
174 	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
175 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
176 	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
177 	 *                                    is always called first
178 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
179 	 * • ptr == NULL and reading:
180 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
181 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
182 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
183 	 *   ◦ reading finishes and …
184 	 *     … all data read:               free buf, go to ptr == NULL
185 	 *     … otherwise:                   go to ptr == buf and reading
186 	 * • ptr == DROP and reading:
187 	 *   ◦ __ffs_epfile_read_buffer_free: nop
188 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
189 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
190 	 *   ◦ reading finishes:              free buf, go to ptr == DROP
191 	 */
192 	struct ffs_buffer		*read_buffer;
193 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
194 
195 	char				name[5];
196 
197 	unsigned char			in;	/* P: ffs->eps_lock */
198 	unsigned char			isoc;	/* P: ffs->eps_lock */
199 
200 	unsigned char			_pad;
201 };
202 
203 struct ffs_buffer {
204 	size_t length;
205 	char *data;
206 	char storage[];
207 };
208 
209 /*  ffs_io_data structure ***************************************************/
210 
211 struct ffs_io_data {
212 	bool aio;
213 	bool read;
214 
215 	struct kiocb *kiocb;
216 	struct iov_iter data;
217 	const void *to_free;
218 	char *buf;
219 
220 	struct mm_struct *mm;
221 	struct work_struct work;
222 
223 	struct usb_ep *ep;
224 	struct usb_request *req;
225 
226 	struct ffs_data *ffs;
227 };
228 
229 struct ffs_desc_helper {
230 	struct ffs_data *ffs;
231 	unsigned interfaces_count;
232 	unsigned eps_count;
233 };
234 
235 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
236 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
237 
238 static struct dentry *
239 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
240 		   const struct file_operations *fops);
241 
242 /* Devices management *******************************************************/
243 
244 DEFINE_MUTEX(ffs_lock);
245 EXPORT_SYMBOL_GPL(ffs_lock);
246 
247 static struct ffs_dev *_ffs_find_dev(const char *name);
248 static struct ffs_dev *_ffs_alloc_dev(void);
249 static void _ffs_free_dev(struct ffs_dev *dev);
250 static void *ffs_acquire_dev(const char *dev_name);
251 static void ffs_release_dev(struct ffs_data *ffs_data);
252 static int ffs_ready(struct ffs_data *ffs);
253 static void ffs_closed(struct ffs_data *ffs);
254 
255 /* Misc helper functions ****************************************************/
256 
257 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
258 	__attribute__((warn_unused_result, nonnull));
259 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
260 	__attribute__((warn_unused_result, nonnull));
261 
262 
263 /* Control file aka ep0 *****************************************************/
264 
265 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
266 {
267 	struct ffs_data *ffs = req->context;
268 
269 	complete(&ffs->ep0req_completion);
270 }
271 
272 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
273 {
274 	struct usb_request *req = ffs->ep0req;
275 	int ret;
276 
277 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
278 
279 	spin_unlock_irq(&ffs->ev.waitq.lock);
280 
281 	req->buf      = data;
282 	req->length   = len;
283 
284 	/*
285 	 * UDC layer requires to provide a buffer even for ZLP, but should
286 	 * not use it at all. Let's provide some poisoned pointer to catch
287 	 * possible bug in the driver.
288 	 */
289 	if (req->buf == NULL)
290 		req->buf = (void *)0xDEADBABE;
291 
292 	reinit_completion(&ffs->ep0req_completion);
293 
294 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
295 	if (unlikely(ret < 0))
296 		return ret;
297 
298 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
299 	if (unlikely(ret)) {
300 		usb_ep_dequeue(ffs->gadget->ep0, req);
301 		return -EINTR;
302 	}
303 
304 	ffs->setup_state = FFS_NO_SETUP;
305 	return req->status ? req->status : req->actual;
306 }
307 
308 static int __ffs_ep0_stall(struct ffs_data *ffs)
309 {
310 	if (ffs->ev.can_stall) {
311 		pr_vdebug("ep0 stall\n");
312 		usb_ep_set_halt(ffs->gadget->ep0);
313 		ffs->setup_state = FFS_NO_SETUP;
314 		return -EL2HLT;
315 	} else {
316 		pr_debug("bogus ep0 stall!\n");
317 		return -ESRCH;
318 	}
319 }
320 
321 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
322 			     size_t len, loff_t *ptr)
323 {
324 	struct ffs_data *ffs = file->private_data;
325 	ssize_t ret;
326 	char *data;
327 
328 	ENTER();
329 
330 	/* Fast check if setup was canceled */
331 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
332 		return -EIDRM;
333 
334 	/* Acquire mutex */
335 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
336 	if (unlikely(ret < 0))
337 		return ret;
338 
339 	/* Check state */
340 	switch (ffs->state) {
341 	case FFS_READ_DESCRIPTORS:
342 	case FFS_READ_STRINGS:
343 		/* Copy data */
344 		if (unlikely(len < 16)) {
345 			ret = -EINVAL;
346 			break;
347 		}
348 
349 		data = ffs_prepare_buffer(buf, len);
350 		if (IS_ERR(data)) {
351 			ret = PTR_ERR(data);
352 			break;
353 		}
354 
355 		/* Handle data */
356 		if (ffs->state == FFS_READ_DESCRIPTORS) {
357 			pr_info("read descriptors\n");
358 			ret = __ffs_data_got_descs(ffs, data, len);
359 			if (unlikely(ret < 0))
360 				break;
361 
362 			ffs->state = FFS_READ_STRINGS;
363 			ret = len;
364 		} else {
365 			pr_info("read strings\n");
366 			ret = __ffs_data_got_strings(ffs, data, len);
367 			if (unlikely(ret < 0))
368 				break;
369 
370 			ret = ffs_epfiles_create(ffs);
371 			if (unlikely(ret)) {
372 				ffs->state = FFS_CLOSING;
373 				break;
374 			}
375 
376 			ffs->state = FFS_ACTIVE;
377 			mutex_unlock(&ffs->mutex);
378 
379 			ret = ffs_ready(ffs);
380 			if (unlikely(ret < 0)) {
381 				ffs->state = FFS_CLOSING;
382 				return ret;
383 			}
384 
385 			return len;
386 		}
387 		break;
388 
389 	case FFS_ACTIVE:
390 		data = NULL;
391 		/*
392 		 * We're called from user space, we can use _irq
393 		 * rather then _irqsave
394 		 */
395 		spin_lock_irq(&ffs->ev.waitq.lock);
396 		switch (ffs_setup_state_clear_cancelled(ffs)) {
397 		case FFS_SETUP_CANCELLED:
398 			ret = -EIDRM;
399 			goto done_spin;
400 
401 		case FFS_NO_SETUP:
402 			ret = -ESRCH;
403 			goto done_spin;
404 
405 		case FFS_SETUP_PENDING:
406 			break;
407 		}
408 
409 		/* FFS_SETUP_PENDING */
410 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
411 			spin_unlock_irq(&ffs->ev.waitq.lock);
412 			ret = __ffs_ep0_stall(ffs);
413 			break;
414 		}
415 
416 		/* FFS_SETUP_PENDING and not stall */
417 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
418 
419 		spin_unlock_irq(&ffs->ev.waitq.lock);
420 
421 		data = ffs_prepare_buffer(buf, len);
422 		if (IS_ERR(data)) {
423 			ret = PTR_ERR(data);
424 			break;
425 		}
426 
427 		spin_lock_irq(&ffs->ev.waitq.lock);
428 
429 		/*
430 		 * We are guaranteed to be still in FFS_ACTIVE state
431 		 * but the state of setup could have changed from
432 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
433 		 * to check for that.  If that happened we copied data
434 		 * from user space in vain but it's unlikely.
435 		 *
436 		 * For sure we are not in FFS_NO_SETUP since this is
437 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
438 		 * transition can be performed and it's protected by
439 		 * mutex.
440 		 */
441 		if (ffs_setup_state_clear_cancelled(ffs) ==
442 		    FFS_SETUP_CANCELLED) {
443 			ret = -EIDRM;
444 done_spin:
445 			spin_unlock_irq(&ffs->ev.waitq.lock);
446 		} else {
447 			/* unlocks spinlock */
448 			ret = __ffs_ep0_queue_wait(ffs, data, len);
449 		}
450 		kfree(data);
451 		break;
452 
453 	default:
454 		ret = -EBADFD;
455 		break;
456 	}
457 
458 	mutex_unlock(&ffs->mutex);
459 	return ret;
460 }
461 
462 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
463 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
464 				     size_t n)
465 {
466 	/*
467 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
468 	 * size of ffs->ev.types array (which is four) so that's how much space
469 	 * we reserve.
470 	 */
471 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
472 	const size_t size = n * sizeof *events;
473 	unsigned i = 0;
474 
475 	memset(events, 0, size);
476 
477 	do {
478 		events[i].type = ffs->ev.types[i];
479 		if (events[i].type == FUNCTIONFS_SETUP) {
480 			events[i].u.setup = ffs->ev.setup;
481 			ffs->setup_state = FFS_SETUP_PENDING;
482 		}
483 	} while (++i < n);
484 
485 	ffs->ev.count -= n;
486 	if (ffs->ev.count)
487 		memmove(ffs->ev.types, ffs->ev.types + n,
488 			ffs->ev.count * sizeof *ffs->ev.types);
489 
490 	spin_unlock_irq(&ffs->ev.waitq.lock);
491 	mutex_unlock(&ffs->mutex);
492 
493 	return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
494 }
495 
496 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
497 			    size_t len, loff_t *ptr)
498 {
499 	struct ffs_data *ffs = file->private_data;
500 	char *data = NULL;
501 	size_t n;
502 	int ret;
503 
504 	ENTER();
505 
506 	/* Fast check if setup was canceled */
507 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
508 		return -EIDRM;
509 
510 	/* Acquire mutex */
511 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
512 	if (unlikely(ret < 0))
513 		return ret;
514 
515 	/* Check state */
516 	if (ffs->state != FFS_ACTIVE) {
517 		ret = -EBADFD;
518 		goto done_mutex;
519 	}
520 
521 	/*
522 	 * We're called from user space, we can use _irq rather then
523 	 * _irqsave
524 	 */
525 	spin_lock_irq(&ffs->ev.waitq.lock);
526 
527 	switch (ffs_setup_state_clear_cancelled(ffs)) {
528 	case FFS_SETUP_CANCELLED:
529 		ret = -EIDRM;
530 		break;
531 
532 	case FFS_NO_SETUP:
533 		n = len / sizeof(struct usb_functionfs_event);
534 		if (unlikely(!n)) {
535 			ret = -EINVAL;
536 			break;
537 		}
538 
539 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
540 			ret = -EAGAIN;
541 			break;
542 		}
543 
544 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
545 							ffs->ev.count)) {
546 			ret = -EINTR;
547 			break;
548 		}
549 
550 		return __ffs_ep0_read_events(ffs, buf,
551 					     min(n, (size_t)ffs->ev.count));
552 
553 	case FFS_SETUP_PENDING:
554 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
555 			spin_unlock_irq(&ffs->ev.waitq.lock);
556 			ret = __ffs_ep0_stall(ffs);
557 			goto done_mutex;
558 		}
559 
560 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
561 
562 		spin_unlock_irq(&ffs->ev.waitq.lock);
563 
564 		if (likely(len)) {
565 			data = kmalloc(len, GFP_KERNEL);
566 			if (unlikely(!data)) {
567 				ret = -ENOMEM;
568 				goto done_mutex;
569 			}
570 		}
571 
572 		spin_lock_irq(&ffs->ev.waitq.lock);
573 
574 		/* See ffs_ep0_write() */
575 		if (ffs_setup_state_clear_cancelled(ffs) ==
576 		    FFS_SETUP_CANCELLED) {
577 			ret = -EIDRM;
578 			break;
579 		}
580 
581 		/* unlocks spinlock */
582 		ret = __ffs_ep0_queue_wait(ffs, data, len);
583 		if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
584 			ret = -EFAULT;
585 		goto done_mutex;
586 
587 	default:
588 		ret = -EBADFD;
589 		break;
590 	}
591 
592 	spin_unlock_irq(&ffs->ev.waitq.lock);
593 done_mutex:
594 	mutex_unlock(&ffs->mutex);
595 	kfree(data);
596 	return ret;
597 }
598 
599 static int ffs_ep0_open(struct inode *inode, struct file *file)
600 {
601 	struct ffs_data *ffs = inode->i_private;
602 
603 	ENTER();
604 
605 	if (unlikely(ffs->state == FFS_CLOSING))
606 		return -EBUSY;
607 
608 	file->private_data = ffs;
609 	ffs_data_opened(ffs);
610 
611 	return 0;
612 }
613 
614 static int ffs_ep0_release(struct inode *inode, struct file *file)
615 {
616 	struct ffs_data *ffs = file->private_data;
617 
618 	ENTER();
619 
620 	ffs_data_closed(ffs);
621 
622 	return 0;
623 }
624 
625 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
626 {
627 	struct ffs_data *ffs = file->private_data;
628 	struct usb_gadget *gadget = ffs->gadget;
629 	long ret;
630 
631 	ENTER();
632 
633 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
634 		struct ffs_function *func = ffs->func;
635 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
636 	} else if (gadget && gadget->ops->ioctl) {
637 		ret = gadget->ops->ioctl(gadget, code, value);
638 	} else {
639 		ret = -ENOTTY;
640 	}
641 
642 	return ret;
643 }
644 
645 static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait)
646 {
647 	struct ffs_data *ffs = file->private_data;
648 	unsigned int mask = POLLWRNORM;
649 	int ret;
650 
651 	poll_wait(file, &ffs->ev.waitq, wait);
652 
653 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
654 	if (unlikely(ret < 0))
655 		return mask;
656 
657 	switch (ffs->state) {
658 	case FFS_READ_DESCRIPTORS:
659 	case FFS_READ_STRINGS:
660 		mask |= POLLOUT;
661 		break;
662 
663 	case FFS_ACTIVE:
664 		switch (ffs->setup_state) {
665 		case FFS_NO_SETUP:
666 			if (ffs->ev.count)
667 				mask |= POLLIN;
668 			break;
669 
670 		case FFS_SETUP_PENDING:
671 		case FFS_SETUP_CANCELLED:
672 			mask |= (POLLIN | POLLOUT);
673 			break;
674 		}
675 	case FFS_CLOSING:
676 		break;
677 	case FFS_DEACTIVATED:
678 		break;
679 	}
680 
681 	mutex_unlock(&ffs->mutex);
682 
683 	return mask;
684 }
685 
686 static const struct file_operations ffs_ep0_operations = {
687 	.llseek =	no_llseek,
688 
689 	.open =		ffs_ep0_open,
690 	.write =	ffs_ep0_write,
691 	.read =		ffs_ep0_read,
692 	.release =	ffs_ep0_release,
693 	.unlocked_ioctl =	ffs_ep0_ioctl,
694 	.poll =		ffs_ep0_poll,
695 };
696 
697 
698 /* "Normal" endpoints operations ********************************************/
699 
700 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
701 {
702 	ENTER();
703 	if (likely(req->context)) {
704 		struct ffs_ep *ep = _ep->driver_data;
705 		ep->status = req->status ? req->status : req->actual;
706 		complete(req->context);
707 	}
708 }
709 
710 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
711 {
712 	ssize_t ret = copy_to_iter(data, data_len, iter);
713 	if (likely(ret == data_len))
714 		return ret;
715 
716 	if (unlikely(iov_iter_count(iter)))
717 		return -EFAULT;
718 
719 	/*
720 	 * Dear user space developer!
721 	 *
722 	 * TL;DR: To stop getting below error message in your kernel log, change
723 	 * user space code using functionfs to align read buffers to a max
724 	 * packet size.
725 	 *
726 	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
727 	 * packet size.  When unaligned buffer is passed to functionfs, it
728 	 * internally uses a larger, aligned buffer so that such UDCs are happy.
729 	 *
730 	 * Unfortunately, this means that host may send more data than was
731 	 * requested in read(2) system call.  f_fs doesn’t know what to do with
732 	 * that excess data so it simply drops it.
733 	 *
734 	 * Was the buffer aligned in the first place, no such problem would
735 	 * happen.
736 	 *
737 	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
738 	 * by splitting a request into multiple parts.  This splitting may still
739 	 * be a problem though so it’s likely best to align the buffer
740 	 * regardless of it being AIO or not..
741 	 *
742 	 * This only affects OUT endpoints, i.e. reading data with a read(2),
743 	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
744 	 * affected.
745 	 */
746 	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
747 	       "Align read buffer size to max packet size to avoid the problem.\n",
748 	       data_len, ret);
749 
750 	return ret;
751 }
752 
753 static void ffs_user_copy_worker(struct work_struct *work)
754 {
755 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
756 						   work);
757 	int ret = io_data->req->status ? io_data->req->status :
758 					 io_data->req->actual;
759 	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
760 
761 	if (io_data->read && ret > 0) {
762 		use_mm(io_data->mm);
763 		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
764 		unuse_mm(io_data->mm);
765 	}
766 
767 	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
768 
769 	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
770 		eventfd_signal(io_data->ffs->ffs_eventfd, 1);
771 
772 	usb_ep_free_request(io_data->ep, io_data->req);
773 
774 	if (io_data->read)
775 		kfree(io_data->to_free);
776 	kfree(io_data->buf);
777 	kfree(io_data);
778 }
779 
780 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
781 					 struct usb_request *req)
782 {
783 	struct ffs_io_data *io_data = req->context;
784 
785 	ENTER();
786 
787 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
788 	schedule_work(&io_data->work);
789 }
790 
791 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
792 {
793 	/*
794 	 * See comment in struct ffs_epfile for full read_buffer pointer
795 	 * synchronisation story.
796 	 */
797 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
798 	if (buf && buf != READ_BUFFER_DROP)
799 		kfree(buf);
800 }
801 
802 /* Assumes epfile->mutex is held. */
803 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
804 					  struct iov_iter *iter)
805 {
806 	/*
807 	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
808 	 * the buffer while we are using it.  See comment in struct ffs_epfile
809 	 * for full read_buffer pointer synchronisation story.
810 	 */
811 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
812 	ssize_t ret;
813 	if (!buf || buf == READ_BUFFER_DROP)
814 		return 0;
815 
816 	ret = copy_to_iter(buf->data, buf->length, iter);
817 	if (buf->length == ret) {
818 		kfree(buf);
819 		return ret;
820 	}
821 
822 	if (unlikely(iov_iter_count(iter))) {
823 		ret = -EFAULT;
824 	} else {
825 		buf->length -= ret;
826 		buf->data += ret;
827 	}
828 
829 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
830 		kfree(buf);
831 
832 	return ret;
833 }
834 
835 /* Assumes epfile->mutex is held. */
836 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
837 				      void *data, int data_len,
838 				      struct iov_iter *iter)
839 {
840 	struct ffs_buffer *buf;
841 
842 	ssize_t ret = copy_to_iter(data, data_len, iter);
843 	if (likely(data_len == ret))
844 		return ret;
845 
846 	if (unlikely(iov_iter_count(iter)))
847 		return -EFAULT;
848 
849 	/* See ffs_copy_to_iter for more context. */
850 	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
851 		data_len, ret);
852 
853 	data_len -= ret;
854 	buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
855 	if (!buf)
856 		return -ENOMEM;
857 	buf->length = data_len;
858 	buf->data = buf->storage;
859 	memcpy(buf->storage, data + ret, data_len);
860 
861 	/*
862 	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
863 	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
864 	 * in struct ffs_epfile for full read_buffer pointer synchronisation
865 	 * story.
866 	 */
867 	if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
868 		kfree(buf);
869 
870 	return ret;
871 }
872 
873 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
874 {
875 	struct ffs_epfile *epfile = file->private_data;
876 	struct usb_request *req;
877 	struct ffs_ep *ep;
878 	char *data = NULL;
879 	ssize_t ret, data_len = -EINVAL;
880 	int halt;
881 
882 	/* Are we still active? */
883 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
884 		return -ENODEV;
885 
886 	/* Wait for endpoint to be enabled */
887 	ep = epfile->ep;
888 	if (!ep) {
889 		if (file->f_flags & O_NONBLOCK)
890 			return -EAGAIN;
891 
892 		ret = wait_event_interruptible(epfile->wait, (ep = epfile->ep));
893 		if (ret)
894 			return -EINTR;
895 	}
896 
897 	/* Do we halt? */
898 	halt = (!io_data->read == !epfile->in);
899 	if (halt && epfile->isoc)
900 		return -EINVAL;
901 
902 	/* We will be using request and read_buffer */
903 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
904 	if (unlikely(ret))
905 		goto error;
906 
907 	/* Allocate & copy */
908 	if (!halt) {
909 		struct usb_gadget *gadget;
910 
911 		/*
912 		 * Do we have buffered data from previous partial read?  Check
913 		 * that for synchronous case only because we do not have
914 		 * facility to ‘wake up’ a pending asynchronous read and push
915 		 * buffered data to it which we would need to make things behave
916 		 * consistently.
917 		 */
918 		if (!io_data->aio && io_data->read) {
919 			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
920 			if (ret)
921 				goto error_mutex;
922 		}
923 
924 		/*
925 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
926 		 * before the waiting completes, so do not assign to 'gadget'
927 		 * earlier
928 		 */
929 		gadget = epfile->ffs->gadget;
930 
931 		spin_lock_irq(&epfile->ffs->eps_lock);
932 		/* In the meantime, endpoint got disabled or changed. */
933 		if (epfile->ep != ep) {
934 			ret = -ESHUTDOWN;
935 			goto error_lock;
936 		}
937 		data_len = iov_iter_count(&io_data->data);
938 		/*
939 		 * Controller may require buffer size to be aligned to
940 		 * maxpacketsize of an out endpoint.
941 		 */
942 		if (io_data->read)
943 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
944 		spin_unlock_irq(&epfile->ffs->eps_lock);
945 
946 		data = kmalloc(data_len, GFP_KERNEL);
947 		if (unlikely(!data)) {
948 			ret = -ENOMEM;
949 			goto error_mutex;
950 		}
951 		if (!io_data->read &&
952 		    !copy_from_iter_full(data, data_len, &io_data->data)) {
953 			ret = -EFAULT;
954 			goto error_mutex;
955 		}
956 	}
957 
958 	spin_lock_irq(&epfile->ffs->eps_lock);
959 
960 	if (epfile->ep != ep) {
961 		/* In the meantime, endpoint got disabled or changed. */
962 		ret = -ESHUTDOWN;
963 	} else if (halt) {
964 		/* Halt */
965 		if (likely(epfile->ep == ep) && !WARN_ON(!ep->ep))
966 			usb_ep_set_halt(ep->ep);
967 		ret = -EBADMSG;
968 	} else if (unlikely(data_len == -EINVAL)) {
969 		/*
970 		 * Sanity Check: even though data_len can't be used
971 		 * uninitialized at the time I write this comment, some
972 		 * compilers complain about this situation.
973 		 * In order to keep the code clean from warnings, data_len is
974 		 * being initialized to -EINVAL during its declaration, which
975 		 * means we can't rely on compiler anymore to warn no future
976 		 * changes won't result in data_len being used uninitialized.
977 		 * For such reason, we're adding this redundant sanity check
978 		 * here.
979 		 */
980 		WARN(1, "%s: data_len == -EINVAL\n", __func__);
981 		ret = -EINVAL;
982 	} else if (!io_data->aio) {
983 		DECLARE_COMPLETION_ONSTACK(done);
984 		bool interrupted = false;
985 
986 		req = ep->req;
987 		req->buf      = data;
988 		req->length   = data_len;
989 
990 		req->context  = &done;
991 		req->complete = ffs_epfile_io_complete;
992 
993 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
994 		if (unlikely(ret < 0))
995 			goto error_lock;
996 
997 		spin_unlock_irq(&epfile->ffs->eps_lock);
998 
999 		if (unlikely(wait_for_completion_interruptible(&done))) {
1000 			/*
1001 			 * To avoid race condition with ffs_epfile_io_complete,
1002 			 * dequeue the request first then check
1003 			 * status. usb_ep_dequeue API should guarantee no race
1004 			 * condition with req->complete callback.
1005 			 */
1006 			usb_ep_dequeue(ep->ep, req);
1007 			interrupted = ep->status < 0;
1008 		}
1009 
1010 		if (interrupted)
1011 			ret = -EINTR;
1012 		else if (io_data->read && ep->status > 0)
1013 			ret = __ffs_epfile_read_data(epfile, data, ep->status,
1014 						     &io_data->data);
1015 		else
1016 			ret = ep->status;
1017 		goto error_mutex;
1018 	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_KERNEL))) {
1019 		ret = -ENOMEM;
1020 	} else {
1021 		req->buf      = data;
1022 		req->length   = data_len;
1023 
1024 		io_data->buf = data;
1025 		io_data->ep = ep->ep;
1026 		io_data->req = req;
1027 		io_data->ffs = epfile->ffs;
1028 
1029 		req->context  = io_data;
1030 		req->complete = ffs_epfile_async_io_complete;
1031 
1032 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1033 		if (unlikely(ret)) {
1034 			usb_ep_free_request(ep->ep, req);
1035 			goto error_lock;
1036 		}
1037 
1038 		ret = -EIOCBQUEUED;
1039 		/*
1040 		 * Do not kfree the buffer in this function.  It will be freed
1041 		 * by ffs_user_copy_worker.
1042 		 */
1043 		data = NULL;
1044 	}
1045 
1046 error_lock:
1047 	spin_unlock_irq(&epfile->ffs->eps_lock);
1048 error_mutex:
1049 	mutex_unlock(&epfile->mutex);
1050 error:
1051 	kfree(data);
1052 	return ret;
1053 }
1054 
1055 static int
1056 ffs_epfile_open(struct inode *inode, struct file *file)
1057 {
1058 	struct ffs_epfile *epfile = inode->i_private;
1059 
1060 	ENTER();
1061 
1062 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1063 		return -ENODEV;
1064 
1065 	file->private_data = epfile;
1066 	ffs_data_opened(epfile->ffs);
1067 
1068 	return 0;
1069 }
1070 
1071 static int ffs_aio_cancel(struct kiocb *kiocb)
1072 {
1073 	struct ffs_io_data *io_data = kiocb->private;
1074 	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1075 	int value;
1076 
1077 	ENTER();
1078 
1079 	spin_lock_irq(&epfile->ffs->eps_lock);
1080 
1081 	if (likely(io_data && io_data->ep && io_data->req))
1082 		value = usb_ep_dequeue(io_data->ep, io_data->req);
1083 	else
1084 		value = -EINVAL;
1085 
1086 	spin_unlock_irq(&epfile->ffs->eps_lock);
1087 
1088 	return value;
1089 }
1090 
1091 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1092 {
1093 	struct ffs_io_data io_data, *p = &io_data;
1094 	ssize_t res;
1095 
1096 	ENTER();
1097 
1098 	if (!is_sync_kiocb(kiocb)) {
1099 		p = kmalloc(sizeof(io_data), GFP_KERNEL);
1100 		if (unlikely(!p))
1101 			return -ENOMEM;
1102 		p->aio = true;
1103 	} else {
1104 		p->aio = false;
1105 	}
1106 
1107 	p->read = false;
1108 	p->kiocb = kiocb;
1109 	p->data = *from;
1110 	p->mm = current->mm;
1111 
1112 	kiocb->private = p;
1113 
1114 	if (p->aio)
1115 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1116 
1117 	res = ffs_epfile_io(kiocb->ki_filp, p);
1118 	if (res == -EIOCBQUEUED)
1119 		return res;
1120 	if (p->aio)
1121 		kfree(p);
1122 	else
1123 		*from = p->data;
1124 	return res;
1125 }
1126 
1127 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1128 {
1129 	struct ffs_io_data io_data, *p = &io_data;
1130 	ssize_t res;
1131 
1132 	ENTER();
1133 
1134 	if (!is_sync_kiocb(kiocb)) {
1135 		p = kmalloc(sizeof(io_data), GFP_KERNEL);
1136 		if (unlikely(!p))
1137 			return -ENOMEM;
1138 		p->aio = true;
1139 	} else {
1140 		p->aio = false;
1141 	}
1142 
1143 	p->read = true;
1144 	p->kiocb = kiocb;
1145 	if (p->aio) {
1146 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1147 		if (!p->to_free) {
1148 			kfree(p);
1149 			return -ENOMEM;
1150 		}
1151 	} else {
1152 		p->data = *to;
1153 		p->to_free = NULL;
1154 	}
1155 	p->mm = current->mm;
1156 
1157 	kiocb->private = p;
1158 
1159 	if (p->aio)
1160 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1161 
1162 	res = ffs_epfile_io(kiocb->ki_filp, p);
1163 	if (res == -EIOCBQUEUED)
1164 		return res;
1165 
1166 	if (p->aio) {
1167 		kfree(p->to_free);
1168 		kfree(p);
1169 	} else {
1170 		*to = p->data;
1171 	}
1172 	return res;
1173 }
1174 
1175 static int
1176 ffs_epfile_release(struct inode *inode, struct file *file)
1177 {
1178 	struct ffs_epfile *epfile = inode->i_private;
1179 
1180 	ENTER();
1181 
1182 	__ffs_epfile_read_buffer_free(epfile);
1183 	ffs_data_closed(epfile->ffs);
1184 
1185 	return 0;
1186 }
1187 
1188 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1189 			     unsigned long value)
1190 {
1191 	struct ffs_epfile *epfile = file->private_data;
1192 	int ret;
1193 
1194 	ENTER();
1195 
1196 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1197 		return -ENODEV;
1198 
1199 	spin_lock_irq(&epfile->ffs->eps_lock);
1200 	if (likely(epfile->ep)) {
1201 		switch (code) {
1202 		case FUNCTIONFS_FIFO_STATUS:
1203 			ret = usb_ep_fifo_status(epfile->ep->ep);
1204 			break;
1205 		case FUNCTIONFS_FIFO_FLUSH:
1206 			usb_ep_fifo_flush(epfile->ep->ep);
1207 			ret = 0;
1208 			break;
1209 		case FUNCTIONFS_CLEAR_HALT:
1210 			ret = usb_ep_clear_halt(epfile->ep->ep);
1211 			break;
1212 		case FUNCTIONFS_ENDPOINT_REVMAP:
1213 			ret = epfile->ep->num;
1214 			break;
1215 		case FUNCTIONFS_ENDPOINT_DESC:
1216 		{
1217 			int desc_idx;
1218 			struct usb_endpoint_descriptor *desc;
1219 
1220 			switch (epfile->ffs->gadget->speed) {
1221 			case USB_SPEED_SUPER:
1222 				desc_idx = 2;
1223 				break;
1224 			case USB_SPEED_HIGH:
1225 				desc_idx = 1;
1226 				break;
1227 			default:
1228 				desc_idx = 0;
1229 			}
1230 			desc = epfile->ep->descs[desc_idx];
1231 
1232 			spin_unlock_irq(&epfile->ffs->eps_lock);
1233 			ret = copy_to_user((void *)value, desc, desc->bLength);
1234 			if (ret)
1235 				ret = -EFAULT;
1236 			return ret;
1237 		}
1238 		default:
1239 			ret = -ENOTTY;
1240 		}
1241 	} else {
1242 		ret = -ENODEV;
1243 	}
1244 	spin_unlock_irq(&epfile->ffs->eps_lock);
1245 
1246 	return ret;
1247 }
1248 
1249 static const struct file_operations ffs_epfile_operations = {
1250 	.llseek =	no_llseek,
1251 
1252 	.open =		ffs_epfile_open,
1253 	.write_iter =	ffs_epfile_write_iter,
1254 	.read_iter =	ffs_epfile_read_iter,
1255 	.release =	ffs_epfile_release,
1256 	.unlocked_ioctl =	ffs_epfile_ioctl,
1257 };
1258 
1259 
1260 /* File system and super block operations ***********************************/
1261 
1262 /*
1263  * Mounting the file system creates a controller file, used first for
1264  * function configuration then later for event monitoring.
1265  */
1266 
1267 static struct inode *__must_check
1268 ffs_sb_make_inode(struct super_block *sb, void *data,
1269 		  const struct file_operations *fops,
1270 		  const struct inode_operations *iops,
1271 		  struct ffs_file_perms *perms)
1272 {
1273 	struct inode *inode;
1274 
1275 	ENTER();
1276 
1277 	inode = new_inode(sb);
1278 
1279 	if (likely(inode)) {
1280 		struct timespec ts = current_time(inode);
1281 
1282 		inode->i_ino	 = get_next_ino();
1283 		inode->i_mode    = perms->mode;
1284 		inode->i_uid     = perms->uid;
1285 		inode->i_gid     = perms->gid;
1286 		inode->i_atime   = ts;
1287 		inode->i_mtime   = ts;
1288 		inode->i_ctime   = ts;
1289 		inode->i_private = data;
1290 		if (fops)
1291 			inode->i_fop = fops;
1292 		if (iops)
1293 			inode->i_op  = iops;
1294 	}
1295 
1296 	return inode;
1297 }
1298 
1299 /* Create "regular" file */
1300 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1301 					const char *name, void *data,
1302 					const struct file_operations *fops)
1303 {
1304 	struct ffs_data	*ffs = sb->s_fs_info;
1305 	struct dentry	*dentry;
1306 	struct inode	*inode;
1307 
1308 	ENTER();
1309 
1310 	dentry = d_alloc_name(sb->s_root, name);
1311 	if (unlikely(!dentry))
1312 		return NULL;
1313 
1314 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1315 	if (unlikely(!inode)) {
1316 		dput(dentry);
1317 		return NULL;
1318 	}
1319 
1320 	d_add(dentry, inode);
1321 	return dentry;
1322 }
1323 
1324 /* Super block */
1325 static const struct super_operations ffs_sb_operations = {
1326 	.statfs =	simple_statfs,
1327 	.drop_inode =	generic_delete_inode,
1328 };
1329 
1330 struct ffs_sb_fill_data {
1331 	struct ffs_file_perms perms;
1332 	umode_t root_mode;
1333 	const char *dev_name;
1334 	bool no_disconnect;
1335 	struct ffs_data *ffs_data;
1336 };
1337 
1338 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1339 {
1340 	struct ffs_sb_fill_data *data = _data;
1341 	struct inode	*inode;
1342 	struct ffs_data	*ffs = data->ffs_data;
1343 
1344 	ENTER();
1345 
1346 	ffs->sb              = sb;
1347 	data->ffs_data       = NULL;
1348 	sb->s_fs_info        = ffs;
1349 	sb->s_blocksize      = PAGE_SIZE;
1350 	sb->s_blocksize_bits = PAGE_SHIFT;
1351 	sb->s_magic          = FUNCTIONFS_MAGIC;
1352 	sb->s_op             = &ffs_sb_operations;
1353 	sb->s_time_gran      = 1;
1354 
1355 	/* Root inode */
1356 	data->perms.mode = data->root_mode;
1357 	inode = ffs_sb_make_inode(sb, NULL,
1358 				  &simple_dir_operations,
1359 				  &simple_dir_inode_operations,
1360 				  &data->perms);
1361 	sb->s_root = d_make_root(inode);
1362 	if (unlikely(!sb->s_root))
1363 		return -ENOMEM;
1364 
1365 	/* EP0 file */
1366 	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1367 					 &ffs_ep0_operations)))
1368 		return -ENOMEM;
1369 
1370 	return 0;
1371 }
1372 
1373 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1374 {
1375 	ENTER();
1376 
1377 	if (!opts || !*opts)
1378 		return 0;
1379 
1380 	for (;;) {
1381 		unsigned long value;
1382 		char *eq, *comma;
1383 
1384 		/* Option limit */
1385 		comma = strchr(opts, ',');
1386 		if (comma)
1387 			*comma = 0;
1388 
1389 		/* Value limit */
1390 		eq = strchr(opts, '=');
1391 		if (unlikely(!eq)) {
1392 			pr_err("'=' missing in %s\n", opts);
1393 			return -EINVAL;
1394 		}
1395 		*eq = 0;
1396 
1397 		/* Parse value */
1398 		if (kstrtoul(eq + 1, 0, &value)) {
1399 			pr_err("%s: invalid value: %s\n", opts, eq + 1);
1400 			return -EINVAL;
1401 		}
1402 
1403 		/* Interpret option */
1404 		switch (eq - opts) {
1405 		case 13:
1406 			if (!memcmp(opts, "no_disconnect", 13))
1407 				data->no_disconnect = !!value;
1408 			else
1409 				goto invalid;
1410 			break;
1411 		case 5:
1412 			if (!memcmp(opts, "rmode", 5))
1413 				data->root_mode  = (value & 0555) | S_IFDIR;
1414 			else if (!memcmp(opts, "fmode", 5))
1415 				data->perms.mode = (value & 0666) | S_IFREG;
1416 			else
1417 				goto invalid;
1418 			break;
1419 
1420 		case 4:
1421 			if (!memcmp(opts, "mode", 4)) {
1422 				data->root_mode  = (value & 0555) | S_IFDIR;
1423 				data->perms.mode = (value & 0666) | S_IFREG;
1424 			} else {
1425 				goto invalid;
1426 			}
1427 			break;
1428 
1429 		case 3:
1430 			if (!memcmp(opts, "uid", 3)) {
1431 				data->perms.uid = make_kuid(current_user_ns(), value);
1432 				if (!uid_valid(data->perms.uid)) {
1433 					pr_err("%s: unmapped value: %lu\n", opts, value);
1434 					return -EINVAL;
1435 				}
1436 			} else if (!memcmp(opts, "gid", 3)) {
1437 				data->perms.gid = make_kgid(current_user_ns(), value);
1438 				if (!gid_valid(data->perms.gid)) {
1439 					pr_err("%s: unmapped value: %lu\n", opts, value);
1440 					return -EINVAL;
1441 				}
1442 			} else {
1443 				goto invalid;
1444 			}
1445 			break;
1446 
1447 		default:
1448 invalid:
1449 			pr_err("%s: invalid option\n", opts);
1450 			return -EINVAL;
1451 		}
1452 
1453 		/* Next iteration */
1454 		if (!comma)
1455 			break;
1456 		opts = comma + 1;
1457 	}
1458 
1459 	return 0;
1460 }
1461 
1462 /* "mount -t functionfs dev_name /dev/function" ends up here */
1463 
1464 static struct dentry *
1465 ffs_fs_mount(struct file_system_type *t, int flags,
1466 	      const char *dev_name, void *opts)
1467 {
1468 	struct ffs_sb_fill_data data = {
1469 		.perms = {
1470 			.mode = S_IFREG | 0600,
1471 			.uid = GLOBAL_ROOT_UID,
1472 			.gid = GLOBAL_ROOT_GID,
1473 		},
1474 		.root_mode = S_IFDIR | 0500,
1475 		.no_disconnect = false,
1476 	};
1477 	struct dentry *rv;
1478 	int ret;
1479 	void *ffs_dev;
1480 	struct ffs_data	*ffs;
1481 
1482 	ENTER();
1483 
1484 	ret = ffs_fs_parse_opts(&data, opts);
1485 	if (unlikely(ret < 0))
1486 		return ERR_PTR(ret);
1487 
1488 	ffs = ffs_data_new();
1489 	if (unlikely(!ffs))
1490 		return ERR_PTR(-ENOMEM);
1491 	ffs->file_perms = data.perms;
1492 	ffs->no_disconnect = data.no_disconnect;
1493 
1494 	ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1495 	if (unlikely(!ffs->dev_name)) {
1496 		ffs_data_put(ffs);
1497 		return ERR_PTR(-ENOMEM);
1498 	}
1499 
1500 	ffs_dev = ffs_acquire_dev(dev_name);
1501 	if (IS_ERR(ffs_dev)) {
1502 		ffs_data_put(ffs);
1503 		return ERR_CAST(ffs_dev);
1504 	}
1505 	ffs->private_data = ffs_dev;
1506 	data.ffs_data = ffs;
1507 
1508 	rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1509 	if (IS_ERR(rv) && data.ffs_data) {
1510 		ffs_release_dev(data.ffs_data);
1511 		ffs_data_put(data.ffs_data);
1512 	}
1513 	return rv;
1514 }
1515 
1516 static void
1517 ffs_fs_kill_sb(struct super_block *sb)
1518 {
1519 	ENTER();
1520 
1521 	kill_litter_super(sb);
1522 	if (sb->s_fs_info) {
1523 		ffs_release_dev(sb->s_fs_info);
1524 		ffs_data_closed(sb->s_fs_info);
1525 		ffs_data_put(sb->s_fs_info);
1526 	}
1527 }
1528 
1529 static struct file_system_type ffs_fs_type = {
1530 	.owner		= THIS_MODULE,
1531 	.name		= "functionfs",
1532 	.mount		= ffs_fs_mount,
1533 	.kill_sb	= ffs_fs_kill_sb,
1534 };
1535 MODULE_ALIAS_FS("functionfs");
1536 
1537 
1538 /* Driver's main init/cleanup functions *************************************/
1539 
1540 static int functionfs_init(void)
1541 {
1542 	int ret;
1543 
1544 	ENTER();
1545 
1546 	ret = register_filesystem(&ffs_fs_type);
1547 	if (likely(!ret))
1548 		pr_info("file system registered\n");
1549 	else
1550 		pr_err("failed registering file system (%d)\n", ret);
1551 
1552 	return ret;
1553 }
1554 
1555 static void functionfs_cleanup(void)
1556 {
1557 	ENTER();
1558 
1559 	pr_info("unloading\n");
1560 	unregister_filesystem(&ffs_fs_type);
1561 }
1562 
1563 
1564 /* ffs_data and ffs_function construction and destruction code **************/
1565 
1566 static void ffs_data_clear(struct ffs_data *ffs);
1567 static void ffs_data_reset(struct ffs_data *ffs);
1568 
1569 static void ffs_data_get(struct ffs_data *ffs)
1570 {
1571 	ENTER();
1572 
1573 	refcount_inc(&ffs->ref);
1574 }
1575 
1576 static void ffs_data_opened(struct ffs_data *ffs)
1577 {
1578 	ENTER();
1579 
1580 	refcount_inc(&ffs->ref);
1581 	if (atomic_add_return(1, &ffs->opened) == 1 &&
1582 			ffs->state == FFS_DEACTIVATED) {
1583 		ffs->state = FFS_CLOSING;
1584 		ffs_data_reset(ffs);
1585 	}
1586 }
1587 
1588 static void ffs_data_put(struct ffs_data *ffs)
1589 {
1590 	ENTER();
1591 
1592 	if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1593 		pr_info("%s(): freeing\n", __func__);
1594 		ffs_data_clear(ffs);
1595 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1596 		       waitqueue_active(&ffs->ep0req_completion.wait));
1597 		kfree(ffs->dev_name);
1598 		kfree(ffs);
1599 	}
1600 }
1601 
1602 static void ffs_data_closed(struct ffs_data *ffs)
1603 {
1604 	ENTER();
1605 
1606 	if (atomic_dec_and_test(&ffs->opened)) {
1607 		if (ffs->no_disconnect) {
1608 			ffs->state = FFS_DEACTIVATED;
1609 			if (ffs->epfiles) {
1610 				ffs_epfiles_destroy(ffs->epfiles,
1611 						   ffs->eps_count);
1612 				ffs->epfiles = NULL;
1613 			}
1614 			if (ffs->setup_state == FFS_SETUP_PENDING)
1615 				__ffs_ep0_stall(ffs);
1616 		} else {
1617 			ffs->state = FFS_CLOSING;
1618 			ffs_data_reset(ffs);
1619 		}
1620 	}
1621 	if (atomic_read(&ffs->opened) < 0) {
1622 		ffs->state = FFS_CLOSING;
1623 		ffs_data_reset(ffs);
1624 	}
1625 
1626 	ffs_data_put(ffs);
1627 }
1628 
1629 static struct ffs_data *ffs_data_new(void)
1630 {
1631 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1632 	if (unlikely(!ffs))
1633 		return NULL;
1634 
1635 	ENTER();
1636 
1637 	refcount_set(&ffs->ref, 1);
1638 	atomic_set(&ffs->opened, 0);
1639 	ffs->state = FFS_READ_DESCRIPTORS;
1640 	mutex_init(&ffs->mutex);
1641 	spin_lock_init(&ffs->eps_lock);
1642 	init_waitqueue_head(&ffs->ev.waitq);
1643 	init_completion(&ffs->ep0req_completion);
1644 
1645 	/* XXX REVISIT need to update it in some places, or do we? */
1646 	ffs->ev.can_stall = 1;
1647 
1648 	return ffs;
1649 }
1650 
1651 static void ffs_data_clear(struct ffs_data *ffs)
1652 {
1653 	ENTER();
1654 
1655 	ffs_closed(ffs);
1656 
1657 	BUG_ON(ffs->gadget);
1658 
1659 	if (ffs->epfiles)
1660 		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1661 
1662 	if (ffs->ffs_eventfd)
1663 		eventfd_ctx_put(ffs->ffs_eventfd);
1664 
1665 	kfree(ffs->raw_descs_data);
1666 	kfree(ffs->raw_strings);
1667 	kfree(ffs->stringtabs);
1668 }
1669 
1670 static void ffs_data_reset(struct ffs_data *ffs)
1671 {
1672 	ENTER();
1673 
1674 	ffs_data_clear(ffs);
1675 
1676 	ffs->epfiles = NULL;
1677 	ffs->raw_descs_data = NULL;
1678 	ffs->raw_descs = NULL;
1679 	ffs->raw_strings = NULL;
1680 	ffs->stringtabs = NULL;
1681 
1682 	ffs->raw_descs_length = 0;
1683 	ffs->fs_descs_count = 0;
1684 	ffs->hs_descs_count = 0;
1685 	ffs->ss_descs_count = 0;
1686 
1687 	ffs->strings_count = 0;
1688 	ffs->interfaces_count = 0;
1689 	ffs->eps_count = 0;
1690 
1691 	ffs->ev.count = 0;
1692 
1693 	ffs->state = FFS_READ_DESCRIPTORS;
1694 	ffs->setup_state = FFS_NO_SETUP;
1695 	ffs->flags = 0;
1696 }
1697 
1698 
1699 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1700 {
1701 	struct usb_gadget_strings **lang;
1702 	int first_id;
1703 
1704 	ENTER();
1705 
1706 	if (WARN_ON(ffs->state != FFS_ACTIVE
1707 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1708 		return -EBADFD;
1709 
1710 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1711 	if (unlikely(first_id < 0))
1712 		return first_id;
1713 
1714 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1715 	if (unlikely(!ffs->ep0req))
1716 		return -ENOMEM;
1717 	ffs->ep0req->complete = ffs_ep0_complete;
1718 	ffs->ep0req->context = ffs;
1719 
1720 	lang = ffs->stringtabs;
1721 	if (lang) {
1722 		for (; *lang; ++lang) {
1723 			struct usb_string *str = (*lang)->strings;
1724 			int id = first_id;
1725 			for (; str->s; ++id, ++str)
1726 				str->id = id;
1727 		}
1728 	}
1729 
1730 	ffs->gadget = cdev->gadget;
1731 	ffs_data_get(ffs);
1732 	return 0;
1733 }
1734 
1735 static void functionfs_unbind(struct ffs_data *ffs)
1736 {
1737 	ENTER();
1738 
1739 	if (!WARN_ON(!ffs->gadget)) {
1740 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1741 		ffs->ep0req = NULL;
1742 		ffs->gadget = NULL;
1743 		clear_bit(FFS_FL_BOUND, &ffs->flags);
1744 		ffs_data_put(ffs);
1745 	}
1746 }
1747 
1748 static int ffs_epfiles_create(struct ffs_data *ffs)
1749 {
1750 	struct ffs_epfile *epfile, *epfiles;
1751 	unsigned i, count;
1752 
1753 	ENTER();
1754 
1755 	count = ffs->eps_count;
1756 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1757 	if (!epfiles)
1758 		return -ENOMEM;
1759 
1760 	epfile = epfiles;
1761 	for (i = 1; i <= count; ++i, ++epfile) {
1762 		epfile->ffs = ffs;
1763 		mutex_init(&epfile->mutex);
1764 		init_waitqueue_head(&epfile->wait);
1765 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1766 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1767 		else
1768 			sprintf(epfile->name, "ep%u", i);
1769 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1770 						 epfile,
1771 						 &ffs_epfile_operations);
1772 		if (unlikely(!epfile->dentry)) {
1773 			ffs_epfiles_destroy(epfiles, i - 1);
1774 			return -ENOMEM;
1775 		}
1776 	}
1777 
1778 	ffs->epfiles = epfiles;
1779 	return 0;
1780 }
1781 
1782 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1783 {
1784 	struct ffs_epfile *epfile = epfiles;
1785 
1786 	ENTER();
1787 
1788 	for (; count; --count, ++epfile) {
1789 		BUG_ON(mutex_is_locked(&epfile->mutex) ||
1790 		       waitqueue_active(&epfile->wait));
1791 		if (epfile->dentry) {
1792 			d_delete(epfile->dentry);
1793 			dput(epfile->dentry);
1794 			epfile->dentry = NULL;
1795 		}
1796 	}
1797 
1798 	kfree(epfiles);
1799 }
1800 
1801 static void ffs_func_eps_disable(struct ffs_function *func)
1802 {
1803 	struct ffs_ep *ep         = func->eps;
1804 	struct ffs_epfile *epfile = func->ffs->epfiles;
1805 	unsigned count            = func->ffs->eps_count;
1806 	unsigned long flags;
1807 
1808 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1809 	while (count--) {
1810 		/* pending requests get nuked */
1811 		if (likely(ep->ep))
1812 			usb_ep_disable(ep->ep);
1813 		++ep;
1814 
1815 		if (epfile) {
1816 			epfile->ep = NULL;
1817 			__ffs_epfile_read_buffer_free(epfile);
1818 			++epfile;
1819 		}
1820 	}
1821 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1822 }
1823 
1824 static int ffs_func_eps_enable(struct ffs_function *func)
1825 {
1826 	struct ffs_data *ffs      = func->ffs;
1827 	struct ffs_ep *ep         = func->eps;
1828 	struct ffs_epfile *epfile = ffs->epfiles;
1829 	unsigned count            = ffs->eps_count;
1830 	unsigned long flags;
1831 	int ret = 0;
1832 
1833 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1834 	while(count--) {
1835 		struct usb_endpoint_descriptor *ds;
1836 		struct usb_ss_ep_comp_descriptor *comp_desc = NULL;
1837 		int needs_comp_desc = false;
1838 		int desc_idx;
1839 
1840 		if (ffs->gadget->speed == USB_SPEED_SUPER) {
1841 			desc_idx = 2;
1842 			needs_comp_desc = true;
1843 		} else if (ffs->gadget->speed == USB_SPEED_HIGH)
1844 			desc_idx = 1;
1845 		else
1846 			desc_idx = 0;
1847 
1848 		/* fall-back to lower speed if desc missing for current speed */
1849 		do {
1850 			ds = ep->descs[desc_idx];
1851 		} while (!ds && --desc_idx >= 0);
1852 
1853 		if (!ds) {
1854 			ret = -EINVAL;
1855 			break;
1856 		}
1857 
1858 		ep->ep->driver_data = ep;
1859 		ep->ep->desc = ds;
1860 
1861 		if (needs_comp_desc) {
1862 			comp_desc = (struct usb_ss_ep_comp_descriptor *)(ds +
1863 					USB_DT_ENDPOINT_SIZE);
1864 			ep->ep->maxburst = comp_desc->bMaxBurst + 1;
1865 			ep->ep->comp_desc = comp_desc;
1866 		}
1867 
1868 		ret = usb_ep_enable(ep->ep);
1869 		if (likely(!ret)) {
1870 			epfile->ep = ep;
1871 			epfile->in = usb_endpoint_dir_in(ds);
1872 			epfile->isoc = usb_endpoint_xfer_isoc(ds);
1873 		} else {
1874 			break;
1875 		}
1876 
1877 		wake_up(&epfile->wait);
1878 
1879 		++ep;
1880 		++epfile;
1881 	}
1882 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1883 
1884 	return ret;
1885 }
1886 
1887 
1888 /* Parsing and building descriptors and strings *****************************/
1889 
1890 /*
1891  * This validates if data pointed by data is a valid USB descriptor as
1892  * well as record how many interfaces, endpoints and strings are
1893  * required by given configuration.  Returns address after the
1894  * descriptor or NULL if data is invalid.
1895  */
1896 
1897 enum ffs_entity_type {
1898 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1899 };
1900 
1901 enum ffs_os_desc_type {
1902 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1903 };
1904 
1905 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1906 				   u8 *valuep,
1907 				   struct usb_descriptor_header *desc,
1908 				   void *priv);
1909 
1910 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1911 				    struct usb_os_desc_header *h, void *data,
1912 				    unsigned len, void *priv);
1913 
1914 static int __must_check ffs_do_single_desc(char *data, unsigned len,
1915 					   ffs_entity_callback entity,
1916 					   void *priv)
1917 {
1918 	struct usb_descriptor_header *_ds = (void *)data;
1919 	u8 length;
1920 	int ret;
1921 
1922 	ENTER();
1923 
1924 	/* At least two bytes are required: length and type */
1925 	if (len < 2) {
1926 		pr_vdebug("descriptor too short\n");
1927 		return -EINVAL;
1928 	}
1929 
1930 	/* If we have at least as many bytes as the descriptor takes? */
1931 	length = _ds->bLength;
1932 	if (len < length) {
1933 		pr_vdebug("descriptor longer then available data\n");
1934 		return -EINVAL;
1935 	}
1936 
1937 #define __entity_check_INTERFACE(val)  1
1938 #define __entity_check_STRING(val)     (val)
1939 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
1940 #define __entity(type, val) do {					\
1941 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
1942 		if (unlikely(!__entity_check_ ##type(val))) {		\
1943 			pr_vdebug("invalid entity's value\n");		\
1944 			return -EINVAL;					\
1945 		}							\
1946 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
1947 		if (unlikely(ret < 0)) {				\
1948 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
1949 				 (val), ret);				\
1950 			return ret;					\
1951 		}							\
1952 	} while (0)
1953 
1954 	/* Parse descriptor depending on type. */
1955 	switch (_ds->bDescriptorType) {
1956 	case USB_DT_DEVICE:
1957 	case USB_DT_CONFIG:
1958 	case USB_DT_STRING:
1959 	case USB_DT_DEVICE_QUALIFIER:
1960 		/* function can't have any of those */
1961 		pr_vdebug("descriptor reserved for gadget: %d\n",
1962 		      _ds->bDescriptorType);
1963 		return -EINVAL;
1964 
1965 	case USB_DT_INTERFACE: {
1966 		struct usb_interface_descriptor *ds = (void *)_ds;
1967 		pr_vdebug("interface descriptor\n");
1968 		if (length != sizeof *ds)
1969 			goto inv_length;
1970 
1971 		__entity(INTERFACE, ds->bInterfaceNumber);
1972 		if (ds->iInterface)
1973 			__entity(STRING, ds->iInterface);
1974 	}
1975 		break;
1976 
1977 	case USB_DT_ENDPOINT: {
1978 		struct usb_endpoint_descriptor *ds = (void *)_ds;
1979 		pr_vdebug("endpoint descriptor\n");
1980 		if (length != USB_DT_ENDPOINT_SIZE &&
1981 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
1982 			goto inv_length;
1983 		__entity(ENDPOINT, ds->bEndpointAddress);
1984 	}
1985 		break;
1986 
1987 	case HID_DT_HID:
1988 		pr_vdebug("hid descriptor\n");
1989 		if (length != sizeof(struct hid_descriptor))
1990 			goto inv_length;
1991 		break;
1992 
1993 	case USB_DT_OTG:
1994 		if (length != sizeof(struct usb_otg_descriptor))
1995 			goto inv_length;
1996 		break;
1997 
1998 	case USB_DT_INTERFACE_ASSOCIATION: {
1999 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2000 		pr_vdebug("interface association descriptor\n");
2001 		if (length != sizeof *ds)
2002 			goto inv_length;
2003 		if (ds->iFunction)
2004 			__entity(STRING, ds->iFunction);
2005 	}
2006 		break;
2007 
2008 	case USB_DT_SS_ENDPOINT_COMP:
2009 		pr_vdebug("EP SS companion descriptor\n");
2010 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2011 			goto inv_length;
2012 		break;
2013 
2014 	case USB_DT_OTHER_SPEED_CONFIG:
2015 	case USB_DT_INTERFACE_POWER:
2016 	case USB_DT_DEBUG:
2017 	case USB_DT_SECURITY:
2018 	case USB_DT_CS_RADIO_CONTROL:
2019 		/* TODO */
2020 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2021 		return -EINVAL;
2022 
2023 	default:
2024 		/* We should never be here */
2025 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2026 		return -EINVAL;
2027 
2028 inv_length:
2029 		pr_vdebug("invalid length: %d (descriptor %d)\n",
2030 			  _ds->bLength, _ds->bDescriptorType);
2031 		return -EINVAL;
2032 	}
2033 
2034 #undef __entity
2035 #undef __entity_check_DESCRIPTOR
2036 #undef __entity_check_INTERFACE
2037 #undef __entity_check_STRING
2038 #undef __entity_check_ENDPOINT
2039 
2040 	return length;
2041 }
2042 
2043 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2044 				     ffs_entity_callback entity, void *priv)
2045 {
2046 	const unsigned _len = len;
2047 	unsigned long num = 0;
2048 
2049 	ENTER();
2050 
2051 	for (;;) {
2052 		int ret;
2053 
2054 		if (num == count)
2055 			data = NULL;
2056 
2057 		/* Record "descriptor" entity */
2058 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2059 		if (unlikely(ret < 0)) {
2060 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2061 				 num, ret);
2062 			return ret;
2063 		}
2064 
2065 		if (!data)
2066 			return _len - len;
2067 
2068 		ret = ffs_do_single_desc(data, len, entity, priv);
2069 		if (unlikely(ret < 0)) {
2070 			pr_debug("%s returns %d\n", __func__, ret);
2071 			return ret;
2072 		}
2073 
2074 		len -= ret;
2075 		data += ret;
2076 		++num;
2077 	}
2078 }
2079 
2080 static int __ffs_data_do_entity(enum ffs_entity_type type,
2081 				u8 *valuep, struct usb_descriptor_header *desc,
2082 				void *priv)
2083 {
2084 	struct ffs_desc_helper *helper = priv;
2085 	struct usb_endpoint_descriptor *d;
2086 
2087 	ENTER();
2088 
2089 	switch (type) {
2090 	case FFS_DESCRIPTOR:
2091 		break;
2092 
2093 	case FFS_INTERFACE:
2094 		/*
2095 		 * Interfaces are indexed from zero so if we
2096 		 * encountered interface "n" then there are at least
2097 		 * "n+1" interfaces.
2098 		 */
2099 		if (*valuep >= helper->interfaces_count)
2100 			helper->interfaces_count = *valuep + 1;
2101 		break;
2102 
2103 	case FFS_STRING:
2104 		/*
2105 		 * Strings are indexed from 1 (0 is reserved
2106 		 * for languages list)
2107 		 */
2108 		if (*valuep > helper->ffs->strings_count)
2109 			helper->ffs->strings_count = *valuep;
2110 		break;
2111 
2112 	case FFS_ENDPOINT:
2113 		d = (void *)desc;
2114 		helper->eps_count++;
2115 		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2116 			return -EINVAL;
2117 		/* Check if descriptors for any speed were already parsed */
2118 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2119 			helper->ffs->eps_addrmap[helper->eps_count] =
2120 				d->bEndpointAddress;
2121 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2122 				d->bEndpointAddress)
2123 			return -EINVAL;
2124 		break;
2125 	}
2126 
2127 	return 0;
2128 }
2129 
2130 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2131 				   struct usb_os_desc_header *desc)
2132 {
2133 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2134 	u16 w_index = le16_to_cpu(desc->wIndex);
2135 
2136 	if (bcd_version != 1) {
2137 		pr_vdebug("unsupported os descriptors version: %d",
2138 			  bcd_version);
2139 		return -EINVAL;
2140 	}
2141 	switch (w_index) {
2142 	case 0x4:
2143 		*next_type = FFS_OS_DESC_EXT_COMPAT;
2144 		break;
2145 	case 0x5:
2146 		*next_type = FFS_OS_DESC_EXT_PROP;
2147 		break;
2148 	default:
2149 		pr_vdebug("unsupported os descriptor type: %d", w_index);
2150 		return -EINVAL;
2151 	}
2152 
2153 	return sizeof(*desc);
2154 }
2155 
2156 /*
2157  * Process all extended compatibility/extended property descriptors
2158  * of a feature descriptor
2159  */
2160 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2161 					      enum ffs_os_desc_type type,
2162 					      u16 feature_count,
2163 					      ffs_os_desc_callback entity,
2164 					      void *priv,
2165 					      struct usb_os_desc_header *h)
2166 {
2167 	int ret;
2168 	const unsigned _len = len;
2169 
2170 	ENTER();
2171 
2172 	/* loop over all ext compat/ext prop descriptors */
2173 	while (feature_count--) {
2174 		ret = entity(type, h, data, len, priv);
2175 		if (unlikely(ret < 0)) {
2176 			pr_debug("bad OS descriptor, type: %d\n", type);
2177 			return ret;
2178 		}
2179 		data += ret;
2180 		len -= ret;
2181 	}
2182 	return _len - len;
2183 }
2184 
2185 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2186 static int __must_check ffs_do_os_descs(unsigned count,
2187 					char *data, unsigned len,
2188 					ffs_os_desc_callback entity, void *priv)
2189 {
2190 	const unsigned _len = len;
2191 	unsigned long num = 0;
2192 
2193 	ENTER();
2194 
2195 	for (num = 0; num < count; ++num) {
2196 		int ret;
2197 		enum ffs_os_desc_type type;
2198 		u16 feature_count;
2199 		struct usb_os_desc_header *desc = (void *)data;
2200 
2201 		if (len < sizeof(*desc))
2202 			return -EINVAL;
2203 
2204 		/*
2205 		 * Record "descriptor" entity.
2206 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2207 		 * Move the data pointer to the beginning of extended
2208 		 * compatibilities proper or extended properties proper
2209 		 * portions of the data
2210 		 */
2211 		if (le32_to_cpu(desc->dwLength) > len)
2212 			return -EINVAL;
2213 
2214 		ret = __ffs_do_os_desc_header(&type, desc);
2215 		if (unlikely(ret < 0)) {
2216 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2217 				 num, ret);
2218 			return ret;
2219 		}
2220 		/*
2221 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2222 		 */
2223 		feature_count = le16_to_cpu(desc->wCount);
2224 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2225 		    (feature_count > 255 || desc->Reserved))
2226 				return -EINVAL;
2227 		len -= ret;
2228 		data += ret;
2229 
2230 		/*
2231 		 * Process all function/property descriptors
2232 		 * of this Feature Descriptor
2233 		 */
2234 		ret = ffs_do_single_os_desc(data, len, type,
2235 					    feature_count, entity, priv, desc);
2236 		if (unlikely(ret < 0)) {
2237 			pr_debug("%s returns %d\n", __func__, ret);
2238 			return ret;
2239 		}
2240 
2241 		len -= ret;
2242 		data += ret;
2243 	}
2244 	return _len - len;
2245 }
2246 
2247 /**
2248  * Validate contents of the buffer from userspace related to OS descriptors.
2249  */
2250 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2251 				 struct usb_os_desc_header *h, void *data,
2252 				 unsigned len, void *priv)
2253 {
2254 	struct ffs_data *ffs = priv;
2255 	u8 length;
2256 
2257 	ENTER();
2258 
2259 	switch (type) {
2260 	case FFS_OS_DESC_EXT_COMPAT: {
2261 		struct usb_ext_compat_desc *d = data;
2262 		int i;
2263 
2264 		if (len < sizeof(*d) ||
2265 		    d->bFirstInterfaceNumber >= ffs->interfaces_count ||
2266 		    !d->Reserved1)
2267 			return -EINVAL;
2268 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2269 			if (d->Reserved2[i])
2270 				return -EINVAL;
2271 
2272 		length = sizeof(struct usb_ext_compat_desc);
2273 	}
2274 		break;
2275 	case FFS_OS_DESC_EXT_PROP: {
2276 		struct usb_ext_prop_desc *d = data;
2277 		u32 type, pdl;
2278 		u16 pnl;
2279 
2280 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2281 			return -EINVAL;
2282 		length = le32_to_cpu(d->dwSize);
2283 		if (len < length)
2284 			return -EINVAL;
2285 		type = le32_to_cpu(d->dwPropertyDataType);
2286 		if (type < USB_EXT_PROP_UNICODE ||
2287 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2288 			pr_vdebug("unsupported os descriptor property type: %d",
2289 				  type);
2290 			return -EINVAL;
2291 		}
2292 		pnl = le16_to_cpu(d->wPropertyNameLength);
2293 		if (length < 14 + pnl) {
2294 			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2295 				  length, pnl, type);
2296 			return -EINVAL;
2297 		}
2298 		pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl));
2299 		if (length != 14 + pnl + pdl) {
2300 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2301 				  length, pnl, pdl, type);
2302 			return -EINVAL;
2303 		}
2304 		++ffs->ms_os_descs_ext_prop_count;
2305 		/* property name reported to the host as "WCHAR"s */
2306 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2307 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2308 	}
2309 		break;
2310 	default:
2311 		pr_vdebug("unknown descriptor: %d\n", type);
2312 		return -EINVAL;
2313 	}
2314 	return length;
2315 }
2316 
2317 static int __ffs_data_got_descs(struct ffs_data *ffs,
2318 				char *const _data, size_t len)
2319 {
2320 	char *data = _data, *raw_descs;
2321 	unsigned os_descs_count = 0, counts[3], flags;
2322 	int ret = -EINVAL, i;
2323 	struct ffs_desc_helper helper;
2324 
2325 	ENTER();
2326 
2327 	if (get_unaligned_le32(data + 4) != len)
2328 		goto error;
2329 
2330 	switch (get_unaligned_le32(data)) {
2331 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2332 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2333 		data += 8;
2334 		len  -= 8;
2335 		break;
2336 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2337 		flags = get_unaligned_le32(data + 8);
2338 		ffs->user_flags = flags;
2339 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2340 			      FUNCTIONFS_HAS_HS_DESC |
2341 			      FUNCTIONFS_HAS_SS_DESC |
2342 			      FUNCTIONFS_HAS_MS_OS_DESC |
2343 			      FUNCTIONFS_VIRTUAL_ADDR |
2344 			      FUNCTIONFS_EVENTFD |
2345 			      FUNCTIONFS_ALL_CTRL_RECIP |
2346 			      FUNCTIONFS_CONFIG0_SETUP)) {
2347 			ret = -ENOSYS;
2348 			goto error;
2349 		}
2350 		data += 12;
2351 		len  -= 12;
2352 		break;
2353 	default:
2354 		goto error;
2355 	}
2356 
2357 	if (flags & FUNCTIONFS_EVENTFD) {
2358 		if (len < 4)
2359 			goto error;
2360 		ffs->ffs_eventfd =
2361 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2362 		if (IS_ERR(ffs->ffs_eventfd)) {
2363 			ret = PTR_ERR(ffs->ffs_eventfd);
2364 			ffs->ffs_eventfd = NULL;
2365 			goto error;
2366 		}
2367 		data += 4;
2368 		len  -= 4;
2369 	}
2370 
2371 	/* Read fs_count, hs_count and ss_count (if present) */
2372 	for (i = 0; i < 3; ++i) {
2373 		if (!(flags & (1 << i))) {
2374 			counts[i] = 0;
2375 		} else if (len < 4) {
2376 			goto error;
2377 		} else {
2378 			counts[i] = get_unaligned_le32(data);
2379 			data += 4;
2380 			len  -= 4;
2381 		}
2382 	}
2383 	if (flags & (1 << i)) {
2384 		if (len < 4) {
2385 			goto error;
2386 		}
2387 		os_descs_count = get_unaligned_le32(data);
2388 		data += 4;
2389 		len -= 4;
2390 	};
2391 
2392 	/* Read descriptors */
2393 	raw_descs = data;
2394 	helper.ffs = ffs;
2395 	for (i = 0; i < 3; ++i) {
2396 		if (!counts[i])
2397 			continue;
2398 		helper.interfaces_count = 0;
2399 		helper.eps_count = 0;
2400 		ret = ffs_do_descs(counts[i], data, len,
2401 				   __ffs_data_do_entity, &helper);
2402 		if (ret < 0)
2403 			goto error;
2404 		if (!ffs->eps_count && !ffs->interfaces_count) {
2405 			ffs->eps_count = helper.eps_count;
2406 			ffs->interfaces_count = helper.interfaces_count;
2407 		} else {
2408 			if (ffs->eps_count != helper.eps_count) {
2409 				ret = -EINVAL;
2410 				goto error;
2411 			}
2412 			if (ffs->interfaces_count != helper.interfaces_count) {
2413 				ret = -EINVAL;
2414 				goto error;
2415 			}
2416 		}
2417 		data += ret;
2418 		len  -= ret;
2419 	}
2420 	if (os_descs_count) {
2421 		ret = ffs_do_os_descs(os_descs_count, data, len,
2422 				      __ffs_data_do_os_desc, ffs);
2423 		if (ret < 0)
2424 			goto error;
2425 		data += ret;
2426 		len -= ret;
2427 	}
2428 
2429 	if (raw_descs == data || len) {
2430 		ret = -EINVAL;
2431 		goto error;
2432 	}
2433 
2434 	ffs->raw_descs_data	= _data;
2435 	ffs->raw_descs		= raw_descs;
2436 	ffs->raw_descs_length	= data - raw_descs;
2437 	ffs->fs_descs_count	= counts[0];
2438 	ffs->hs_descs_count	= counts[1];
2439 	ffs->ss_descs_count	= counts[2];
2440 	ffs->ms_os_descs_count	= os_descs_count;
2441 
2442 	return 0;
2443 
2444 error:
2445 	kfree(_data);
2446 	return ret;
2447 }
2448 
2449 static int __ffs_data_got_strings(struct ffs_data *ffs,
2450 				  char *const _data, size_t len)
2451 {
2452 	u32 str_count, needed_count, lang_count;
2453 	struct usb_gadget_strings **stringtabs, *t;
2454 	const char *data = _data;
2455 	struct usb_string *s;
2456 
2457 	ENTER();
2458 
2459 	if (unlikely(len < 16 ||
2460 		     get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2461 		     get_unaligned_le32(data + 4) != len))
2462 		goto error;
2463 	str_count  = get_unaligned_le32(data + 8);
2464 	lang_count = get_unaligned_le32(data + 12);
2465 
2466 	/* if one is zero the other must be zero */
2467 	if (unlikely(!str_count != !lang_count))
2468 		goto error;
2469 
2470 	/* Do we have at least as many strings as descriptors need? */
2471 	needed_count = ffs->strings_count;
2472 	if (unlikely(str_count < needed_count))
2473 		goto error;
2474 
2475 	/*
2476 	 * If we don't need any strings just return and free all
2477 	 * memory.
2478 	 */
2479 	if (!needed_count) {
2480 		kfree(_data);
2481 		return 0;
2482 	}
2483 
2484 	/* Allocate everything in one chunk so there's less maintenance. */
2485 	{
2486 		unsigned i = 0;
2487 		vla_group(d);
2488 		vla_item(d, struct usb_gadget_strings *, stringtabs,
2489 			lang_count + 1);
2490 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2491 		vla_item(d, struct usb_string, strings,
2492 			lang_count*(needed_count+1));
2493 
2494 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2495 
2496 		if (unlikely(!vlabuf)) {
2497 			kfree(_data);
2498 			return -ENOMEM;
2499 		}
2500 
2501 		/* Initialize the VLA pointers */
2502 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2503 		t = vla_ptr(vlabuf, d, stringtab);
2504 		i = lang_count;
2505 		do {
2506 			*stringtabs++ = t++;
2507 		} while (--i);
2508 		*stringtabs = NULL;
2509 
2510 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2511 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2512 		t = vla_ptr(vlabuf, d, stringtab);
2513 		s = vla_ptr(vlabuf, d, strings);
2514 	}
2515 
2516 	/* For each language */
2517 	data += 16;
2518 	len -= 16;
2519 
2520 	do { /* lang_count > 0 so we can use do-while */
2521 		unsigned needed = needed_count;
2522 
2523 		if (unlikely(len < 3))
2524 			goto error_free;
2525 		t->language = get_unaligned_le16(data);
2526 		t->strings  = s;
2527 		++t;
2528 
2529 		data += 2;
2530 		len -= 2;
2531 
2532 		/* For each string */
2533 		do { /* str_count > 0 so we can use do-while */
2534 			size_t length = strnlen(data, len);
2535 
2536 			if (unlikely(length == len))
2537 				goto error_free;
2538 
2539 			/*
2540 			 * User may provide more strings then we need,
2541 			 * if that's the case we simply ignore the
2542 			 * rest
2543 			 */
2544 			if (likely(needed)) {
2545 				/*
2546 				 * s->id will be set while adding
2547 				 * function to configuration so for
2548 				 * now just leave garbage here.
2549 				 */
2550 				s->s = data;
2551 				--needed;
2552 				++s;
2553 			}
2554 
2555 			data += length + 1;
2556 			len -= length + 1;
2557 		} while (--str_count);
2558 
2559 		s->id = 0;   /* terminator */
2560 		s->s = NULL;
2561 		++s;
2562 
2563 	} while (--lang_count);
2564 
2565 	/* Some garbage left? */
2566 	if (unlikely(len))
2567 		goto error_free;
2568 
2569 	/* Done! */
2570 	ffs->stringtabs = stringtabs;
2571 	ffs->raw_strings = _data;
2572 
2573 	return 0;
2574 
2575 error_free:
2576 	kfree(stringtabs);
2577 error:
2578 	kfree(_data);
2579 	return -EINVAL;
2580 }
2581 
2582 
2583 /* Events handling and management *******************************************/
2584 
2585 static void __ffs_event_add(struct ffs_data *ffs,
2586 			    enum usb_functionfs_event_type type)
2587 {
2588 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2589 	int neg = 0;
2590 
2591 	/*
2592 	 * Abort any unhandled setup
2593 	 *
2594 	 * We do not need to worry about some cmpxchg() changing value
2595 	 * of ffs->setup_state without holding the lock because when
2596 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2597 	 * the source does nothing.
2598 	 */
2599 	if (ffs->setup_state == FFS_SETUP_PENDING)
2600 		ffs->setup_state = FFS_SETUP_CANCELLED;
2601 
2602 	/*
2603 	 * Logic of this function guarantees that there are at most four pending
2604 	 * evens on ffs->ev.types queue.  This is important because the queue
2605 	 * has space for four elements only and __ffs_ep0_read_events function
2606 	 * depends on that limit as well.  If more event types are added, those
2607 	 * limits have to be revisited or guaranteed to still hold.
2608 	 */
2609 	switch (type) {
2610 	case FUNCTIONFS_RESUME:
2611 		rem_type2 = FUNCTIONFS_SUSPEND;
2612 		/* FALL THROUGH */
2613 	case FUNCTIONFS_SUSPEND:
2614 	case FUNCTIONFS_SETUP:
2615 		rem_type1 = type;
2616 		/* Discard all similar events */
2617 		break;
2618 
2619 	case FUNCTIONFS_BIND:
2620 	case FUNCTIONFS_UNBIND:
2621 	case FUNCTIONFS_DISABLE:
2622 	case FUNCTIONFS_ENABLE:
2623 		/* Discard everything other then power management. */
2624 		rem_type1 = FUNCTIONFS_SUSPEND;
2625 		rem_type2 = FUNCTIONFS_RESUME;
2626 		neg = 1;
2627 		break;
2628 
2629 	default:
2630 		WARN(1, "%d: unknown event, this should not happen\n", type);
2631 		return;
2632 	}
2633 
2634 	{
2635 		u8 *ev  = ffs->ev.types, *out = ev;
2636 		unsigned n = ffs->ev.count;
2637 		for (; n; --n, ++ev)
2638 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2639 				*out++ = *ev;
2640 			else
2641 				pr_vdebug("purging event %d\n", *ev);
2642 		ffs->ev.count = out - ffs->ev.types;
2643 	}
2644 
2645 	pr_vdebug("adding event %d\n", type);
2646 	ffs->ev.types[ffs->ev.count++] = type;
2647 	wake_up_locked(&ffs->ev.waitq);
2648 	if (ffs->ffs_eventfd)
2649 		eventfd_signal(ffs->ffs_eventfd, 1);
2650 }
2651 
2652 static void ffs_event_add(struct ffs_data *ffs,
2653 			  enum usb_functionfs_event_type type)
2654 {
2655 	unsigned long flags;
2656 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2657 	__ffs_event_add(ffs, type);
2658 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2659 }
2660 
2661 /* Bind/unbind USB function hooks *******************************************/
2662 
2663 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2664 {
2665 	int i;
2666 
2667 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2668 		if (ffs->eps_addrmap[i] == endpoint_address)
2669 			return i;
2670 	return -ENOENT;
2671 }
2672 
2673 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2674 				    struct usb_descriptor_header *desc,
2675 				    void *priv)
2676 {
2677 	struct usb_endpoint_descriptor *ds = (void *)desc;
2678 	struct ffs_function *func = priv;
2679 	struct ffs_ep *ffs_ep;
2680 	unsigned ep_desc_id;
2681 	int idx;
2682 	static const char *speed_names[] = { "full", "high", "super" };
2683 
2684 	if (type != FFS_DESCRIPTOR)
2685 		return 0;
2686 
2687 	/*
2688 	 * If ss_descriptors is not NULL, we are reading super speed
2689 	 * descriptors; if hs_descriptors is not NULL, we are reading high
2690 	 * speed descriptors; otherwise, we are reading full speed
2691 	 * descriptors.
2692 	 */
2693 	if (func->function.ss_descriptors) {
2694 		ep_desc_id = 2;
2695 		func->function.ss_descriptors[(long)valuep] = desc;
2696 	} else if (func->function.hs_descriptors) {
2697 		ep_desc_id = 1;
2698 		func->function.hs_descriptors[(long)valuep] = desc;
2699 	} else {
2700 		ep_desc_id = 0;
2701 		func->function.fs_descriptors[(long)valuep]    = desc;
2702 	}
2703 
2704 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2705 		return 0;
2706 
2707 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2708 	if (idx < 0)
2709 		return idx;
2710 
2711 	ffs_ep = func->eps + idx;
2712 
2713 	if (unlikely(ffs_ep->descs[ep_desc_id])) {
2714 		pr_err("two %sspeed descriptors for EP %d\n",
2715 			  speed_names[ep_desc_id],
2716 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2717 		return -EINVAL;
2718 	}
2719 	ffs_ep->descs[ep_desc_id] = ds;
2720 
2721 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2722 	if (ffs_ep->ep) {
2723 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2724 		if (!ds->wMaxPacketSize)
2725 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2726 	} else {
2727 		struct usb_request *req;
2728 		struct usb_ep *ep;
2729 		u8 bEndpointAddress;
2730 
2731 		/*
2732 		 * We back up bEndpointAddress because autoconfig overwrites
2733 		 * it with physical endpoint address.
2734 		 */
2735 		bEndpointAddress = ds->bEndpointAddress;
2736 		pr_vdebug("autoconfig\n");
2737 		ep = usb_ep_autoconfig(func->gadget, ds);
2738 		if (unlikely(!ep))
2739 			return -ENOTSUPP;
2740 		ep->driver_data = func->eps + idx;
2741 
2742 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2743 		if (unlikely(!req))
2744 			return -ENOMEM;
2745 
2746 		ffs_ep->ep  = ep;
2747 		ffs_ep->req = req;
2748 		func->eps_revmap[ds->bEndpointAddress &
2749 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2750 		/*
2751 		 * If we use virtual address mapping, we restore
2752 		 * original bEndpointAddress value.
2753 		 */
2754 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2755 			ds->bEndpointAddress = bEndpointAddress;
2756 	}
2757 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2758 
2759 	return 0;
2760 }
2761 
2762 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2763 				   struct usb_descriptor_header *desc,
2764 				   void *priv)
2765 {
2766 	struct ffs_function *func = priv;
2767 	unsigned idx;
2768 	u8 newValue;
2769 
2770 	switch (type) {
2771 	default:
2772 	case FFS_DESCRIPTOR:
2773 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2774 		return 0;
2775 
2776 	case FFS_INTERFACE:
2777 		idx = *valuep;
2778 		if (func->interfaces_nums[idx] < 0) {
2779 			int id = usb_interface_id(func->conf, &func->function);
2780 			if (unlikely(id < 0))
2781 				return id;
2782 			func->interfaces_nums[idx] = id;
2783 		}
2784 		newValue = func->interfaces_nums[idx];
2785 		break;
2786 
2787 	case FFS_STRING:
2788 		/* String' IDs are allocated when fsf_data is bound to cdev */
2789 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2790 		break;
2791 
2792 	case FFS_ENDPOINT:
2793 		/*
2794 		 * USB_DT_ENDPOINT are handled in
2795 		 * __ffs_func_bind_do_descs().
2796 		 */
2797 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2798 			return 0;
2799 
2800 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2801 		if (unlikely(!func->eps[idx].ep))
2802 			return -EINVAL;
2803 
2804 		{
2805 			struct usb_endpoint_descriptor **descs;
2806 			descs = func->eps[idx].descs;
2807 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2808 		}
2809 		break;
2810 	}
2811 
2812 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2813 	*valuep = newValue;
2814 	return 0;
2815 }
2816 
2817 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2818 				      struct usb_os_desc_header *h, void *data,
2819 				      unsigned len, void *priv)
2820 {
2821 	struct ffs_function *func = priv;
2822 	u8 length = 0;
2823 
2824 	switch (type) {
2825 	case FFS_OS_DESC_EXT_COMPAT: {
2826 		struct usb_ext_compat_desc *desc = data;
2827 		struct usb_os_desc_table *t;
2828 
2829 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2830 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2831 		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2832 		       ARRAY_SIZE(desc->CompatibleID) +
2833 		       ARRAY_SIZE(desc->SubCompatibleID));
2834 		length = sizeof(*desc);
2835 	}
2836 		break;
2837 	case FFS_OS_DESC_EXT_PROP: {
2838 		struct usb_ext_prop_desc *desc = data;
2839 		struct usb_os_desc_table *t;
2840 		struct usb_os_desc_ext_prop *ext_prop;
2841 		char *ext_prop_name;
2842 		char *ext_prop_data;
2843 
2844 		t = &func->function.os_desc_table[h->interface];
2845 		t->if_id = func->interfaces_nums[h->interface];
2846 
2847 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2848 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2849 
2850 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2851 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2852 		ext_prop->data_len = le32_to_cpu(*(u32 *)
2853 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2854 		length = ext_prop->name_len + ext_prop->data_len + 14;
2855 
2856 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2857 		func->ffs->ms_os_descs_ext_prop_name_avail +=
2858 			ext_prop->name_len;
2859 
2860 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2861 		func->ffs->ms_os_descs_ext_prop_data_avail +=
2862 			ext_prop->data_len;
2863 		memcpy(ext_prop_data,
2864 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2865 		       ext_prop->data_len);
2866 		/* unicode data reported to the host as "WCHAR"s */
2867 		switch (ext_prop->type) {
2868 		case USB_EXT_PROP_UNICODE:
2869 		case USB_EXT_PROP_UNICODE_ENV:
2870 		case USB_EXT_PROP_UNICODE_LINK:
2871 		case USB_EXT_PROP_UNICODE_MULTI:
2872 			ext_prop->data_len *= 2;
2873 			break;
2874 		}
2875 		ext_prop->data = ext_prop_data;
2876 
2877 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2878 		       ext_prop->name_len);
2879 		/* property name reported to the host as "WCHAR"s */
2880 		ext_prop->name_len *= 2;
2881 		ext_prop->name = ext_prop_name;
2882 
2883 		t->os_desc->ext_prop_len +=
2884 			ext_prop->name_len + ext_prop->data_len + 14;
2885 		++t->os_desc->ext_prop_count;
2886 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2887 	}
2888 		break;
2889 	default:
2890 		pr_vdebug("unknown descriptor: %d\n", type);
2891 	}
2892 
2893 	return length;
2894 }
2895 
2896 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2897 						struct usb_configuration *c)
2898 {
2899 	struct ffs_function *func = ffs_func_from_usb(f);
2900 	struct f_fs_opts *ffs_opts =
2901 		container_of(f->fi, struct f_fs_opts, func_inst);
2902 	int ret;
2903 
2904 	ENTER();
2905 
2906 	/*
2907 	 * Legacy gadget triggers binding in functionfs_ready_callback,
2908 	 * which already uses locking; taking the same lock here would
2909 	 * cause a deadlock.
2910 	 *
2911 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
2912 	 */
2913 	if (!ffs_opts->no_configfs)
2914 		ffs_dev_lock();
2915 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2916 	func->ffs = ffs_opts->dev->ffs_data;
2917 	if (!ffs_opts->no_configfs)
2918 		ffs_dev_unlock();
2919 	if (ret)
2920 		return ERR_PTR(ret);
2921 
2922 	func->conf = c;
2923 	func->gadget = c->cdev->gadget;
2924 
2925 	/*
2926 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2927 	 * configurations are bound in sequence with list_for_each_entry,
2928 	 * in each configuration its functions are bound in sequence
2929 	 * with list_for_each_entry, so we assume no race condition
2930 	 * with regard to ffs_opts->bound access
2931 	 */
2932 	if (!ffs_opts->refcnt) {
2933 		ret = functionfs_bind(func->ffs, c->cdev);
2934 		if (ret)
2935 			return ERR_PTR(ret);
2936 	}
2937 	ffs_opts->refcnt++;
2938 	func->function.strings = func->ffs->stringtabs;
2939 
2940 	return ffs_opts;
2941 }
2942 
2943 static int _ffs_func_bind(struct usb_configuration *c,
2944 			  struct usb_function *f)
2945 {
2946 	struct ffs_function *func = ffs_func_from_usb(f);
2947 	struct ffs_data *ffs = func->ffs;
2948 
2949 	const int full = !!func->ffs->fs_descs_count;
2950 	const int high = gadget_is_dualspeed(func->gadget) &&
2951 		func->ffs->hs_descs_count;
2952 	const int super = gadget_is_superspeed(func->gadget) &&
2953 		func->ffs->ss_descs_count;
2954 
2955 	int fs_len, hs_len, ss_len, ret, i;
2956 	struct ffs_ep *eps_ptr;
2957 
2958 	/* Make it a single chunk, less management later on */
2959 	vla_group(d);
2960 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2961 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2962 		full ? ffs->fs_descs_count + 1 : 0);
2963 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2964 		high ? ffs->hs_descs_count + 1 : 0);
2965 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2966 		super ? ffs->ss_descs_count + 1 : 0);
2967 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2968 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2969 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2970 	vla_item_with_sz(d, char[16], ext_compat,
2971 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2972 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
2973 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2974 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
2975 			 ffs->ms_os_descs_ext_prop_count);
2976 	vla_item_with_sz(d, char, ext_prop_name,
2977 			 ffs->ms_os_descs_ext_prop_name_len);
2978 	vla_item_with_sz(d, char, ext_prop_data,
2979 			 ffs->ms_os_descs_ext_prop_data_len);
2980 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
2981 	char *vlabuf;
2982 
2983 	ENTER();
2984 
2985 	/* Has descriptors only for speeds gadget does not support */
2986 	if (unlikely(!(full | high | super)))
2987 		return -ENOTSUPP;
2988 
2989 	/* Allocate a single chunk, less management later on */
2990 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
2991 	if (unlikely(!vlabuf))
2992 		return -ENOMEM;
2993 
2994 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
2995 	ffs->ms_os_descs_ext_prop_name_avail =
2996 		vla_ptr(vlabuf, d, ext_prop_name);
2997 	ffs->ms_os_descs_ext_prop_data_avail =
2998 		vla_ptr(vlabuf, d, ext_prop_data);
2999 
3000 	/* Copy descriptors  */
3001 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3002 	       ffs->raw_descs_length);
3003 
3004 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3005 	eps_ptr = vla_ptr(vlabuf, d, eps);
3006 	for (i = 0; i < ffs->eps_count; i++)
3007 		eps_ptr[i].num = -1;
3008 
3009 	/* Save pointers
3010 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3011 	*/
3012 	func->eps             = vla_ptr(vlabuf, d, eps);
3013 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3014 
3015 	/*
3016 	 * Go through all the endpoint descriptors and allocate
3017 	 * endpoints first, so that later we can rewrite the endpoint
3018 	 * numbers without worrying that it may be described later on.
3019 	 */
3020 	if (likely(full)) {
3021 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3022 		fs_len = ffs_do_descs(ffs->fs_descs_count,
3023 				      vla_ptr(vlabuf, d, raw_descs),
3024 				      d_raw_descs__sz,
3025 				      __ffs_func_bind_do_descs, func);
3026 		if (unlikely(fs_len < 0)) {
3027 			ret = fs_len;
3028 			goto error;
3029 		}
3030 	} else {
3031 		fs_len = 0;
3032 	}
3033 
3034 	if (likely(high)) {
3035 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3036 		hs_len = ffs_do_descs(ffs->hs_descs_count,
3037 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3038 				      d_raw_descs__sz - fs_len,
3039 				      __ffs_func_bind_do_descs, func);
3040 		if (unlikely(hs_len < 0)) {
3041 			ret = hs_len;
3042 			goto error;
3043 		}
3044 	} else {
3045 		hs_len = 0;
3046 	}
3047 
3048 	if (likely(super)) {
3049 		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3050 		ss_len = ffs_do_descs(ffs->ss_descs_count,
3051 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3052 				d_raw_descs__sz - fs_len - hs_len,
3053 				__ffs_func_bind_do_descs, func);
3054 		if (unlikely(ss_len < 0)) {
3055 			ret = ss_len;
3056 			goto error;
3057 		}
3058 	} else {
3059 		ss_len = 0;
3060 	}
3061 
3062 	/*
3063 	 * Now handle interface numbers allocation and interface and
3064 	 * endpoint numbers rewriting.  We can do that in one go
3065 	 * now.
3066 	 */
3067 	ret = ffs_do_descs(ffs->fs_descs_count +
3068 			   (high ? ffs->hs_descs_count : 0) +
3069 			   (super ? ffs->ss_descs_count : 0),
3070 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3071 			   __ffs_func_bind_do_nums, func);
3072 	if (unlikely(ret < 0))
3073 		goto error;
3074 
3075 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3076 	if (c->cdev->use_os_string) {
3077 		for (i = 0; i < ffs->interfaces_count; ++i) {
3078 			struct usb_os_desc *desc;
3079 
3080 			desc = func->function.os_desc_table[i].os_desc =
3081 				vla_ptr(vlabuf, d, os_desc) +
3082 				i * sizeof(struct usb_os_desc);
3083 			desc->ext_compat_id =
3084 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3085 			INIT_LIST_HEAD(&desc->ext_prop);
3086 		}
3087 		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3088 				      vla_ptr(vlabuf, d, raw_descs) +
3089 				      fs_len + hs_len + ss_len,
3090 				      d_raw_descs__sz - fs_len - hs_len -
3091 				      ss_len,
3092 				      __ffs_func_bind_do_os_desc, func);
3093 		if (unlikely(ret < 0))
3094 			goto error;
3095 	}
3096 	func->function.os_desc_n =
3097 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3098 
3099 	/* And we're done */
3100 	ffs_event_add(ffs, FUNCTIONFS_BIND);
3101 	return 0;
3102 
3103 error:
3104 	/* XXX Do we need to release all claimed endpoints here? */
3105 	return ret;
3106 }
3107 
3108 static int ffs_func_bind(struct usb_configuration *c,
3109 			 struct usb_function *f)
3110 {
3111 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3112 	struct ffs_function *func = ffs_func_from_usb(f);
3113 	int ret;
3114 
3115 	if (IS_ERR(ffs_opts))
3116 		return PTR_ERR(ffs_opts);
3117 
3118 	ret = _ffs_func_bind(c, f);
3119 	if (ret && !--ffs_opts->refcnt)
3120 		functionfs_unbind(func->ffs);
3121 
3122 	return ret;
3123 }
3124 
3125 
3126 /* Other USB function hooks *************************************************/
3127 
3128 static void ffs_reset_work(struct work_struct *work)
3129 {
3130 	struct ffs_data *ffs = container_of(work,
3131 		struct ffs_data, reset_work);
3132 	ffs_data_reset(ffs);
3133 }
3134 
3135 static int ffs_func_set_alt(struct usb_function *f,
3136 			    unsigned interface, unsigned alt)
3137 {
3138 	struct ffs_function *func = ffs_func_from_usb(f);
3139 	struct ffs_data *ffs = func->ffs;
3140 	int ret = 0, intf;
3141 
3142 	if (alt != (unsigned)-1) {
3143 		intf = ffs_func_revmap_intf(func, interface);
3144 		if (unlikely(intf < 0))
3145 			return intf;
3146 	}
3147 
3148 	if (ffs->func)
3149 		ffs_func_eps_disable(ffs->func);
3150 
3151 	if (ffs->state == FFS_DEACTIVATED) {
3152 		ffs->state = FFS_CLOSING;
3153 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3154 		schedule_work(&ffs->reset_work);
3155 		return -ENODEV;
3156 	}
3157 
3158 	if (ffs->state != FFS_ACTIVE)
3159 		return -ENODEV;
3160 
3161 	if (alt == (unsigned)-1) {
3162 		ffs->func = NULL;
3163 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3164 		return 0;
3165 	}
3166 
3167 	ffs->func = func;
3168 	ret = ffs_func_eps_enable(func);
3169 	if (likely(ret >= 0))
3170 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3171 	return ret;
3172 }
3173 
3174 static void ffs_func_disable(struct usb_function *f)
3175 {
3176 	ffs_func_set_alt(f, 0, (unsigned)-1);
3177 }
3178 
3179 static int ffs_func_setup(struct usb_function *f,
3180 			  const struct usb_ctrlrequest *creq)
3181 {
3182 	struct ffs_function *func = ffs_func_from_usb(f);
3183 	struct ffs_data *ffs = func->ffs;
3184 	unsigned long flags;
3185 	int ret;
3186 
3187 	ENTER();
3188 
3189 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3190 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3191 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3192 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3193 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3194 
3195 	/*
3196 	 * Most requests directed to interface go through here
3197 	 * (notable exceptions are set/get interface) so we need to
3198 	 * handle them.  All other either handled by composite or
3199 	 * passed to usb_configuration->setup() (if one is set).  No
3200 	 * matter, we will handle requests directed to endpoint here
3201 	 * as well (as it's straightforward).  Other request recipient
3202 	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3203 	 * is being used.
3204 	 */
3205 	if (ffs->state != FFS_ACTIVE)
3206 		return -ENODEV;
3207 
3208 	switch (creq->bRequestType & USB_RECIP_MASK) {
3209 	case USB_RECIP_INTERFACE:
3210 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3211 		if (unlikely(ret < 0))
3212 			return ret;
3213 		break;
3214 
3215 	case USB_RECIP_ENDPOINT:
3216 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3217 		if (unlikely(ret < 0))
3218 			return ret;
3219 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3220 			ret = func->ffs->eps_addrmap[ret];
3221 		break;
3222 
3223 	default:
3224 		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3225 			ret = le16_to_cpu(creq->wIndex);
3226 		else
3227 			return -EOPNOTSUPP;
3228 	}
3229 
3230 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3231 	ffs->ev.setup = *creq;
3232 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3233 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3234 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3235 
3236 	return 0;
3237 }
3238 
3239 static bool ffs_func_req_match(struct usb_function *f,
3240 			       const struct usb_ctrlrequest *creq,
3241 			       bool config0)
3242 {
3243 	struct ffs_function *func = ffs_func_from_usb(f);
3244 
3245 	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3246 		return false;
3247 
3248 	switch (creq->bRequestType & USB_RECIP_MASK) {
3249 	case USB_RECIP_INTERFACE:
3250 		return (ffs_func_revmap_intf(func,
3251 					     le16_to_cpu(creq->wIndex)) >= 0);
3252 	case USB_RECIP_ENDPOINT:
3253 		return (ffs_func_revmap_ep(func,
3254 					   le16_to_cpu(creq->wIndex)) >= 0);
3255 	default:
3256 		return (bool) (func->ffs->user_flags &
3257 			       FUNCTIONFS_ALL_CTRL_RECIP);
3258 	}
3259 }
3260 
3261 static void ffs_func_suspend(struct usb_function *f)
3262 {
3263 	ENTER();
3264 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3265 }
3266 
3267 static void ffs_func_resume(struct usb_function *f)
3268 {
3269 	ENTER();
3270 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3271 }
3272 
3273 
3274 /* Endpoint and interface numbers reverse mapping ***************************/
3275 
3276 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3277 {
3278 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3279 	return num ? num : -EDOM;
3280 }
3281 
3282 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3283 {
3284 	short *nums = func->interfaces_nums;
3285 	unsigned count = func->ffs->interfaces_count;
3286 
3287 	for (; count; --count, ++nums) {
3288 		if (*nums >= 0 && *nums == intf)
3289 			return nums - func->interfaces_nums;
3290 	}
3291 
3292 	return -EDOM;
3293 }
3294 
3295 
3296 /* Devices management *******************************************************/
3297 
3298 static LIST_HEAD(ffs_devices);
3299 
3300 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3301 {
3302 	struct ffs_dev *dev;
3303 
3304 	if (!name)
3305 		return NULL;
3306 
3307 	list_for_each_entry(dev, &ffs_devices, entry) {
3308 		if (strcmp(dev->name, name) == 0)
3309 			return dev;
3310 	}
3311 
3312 	return NULL;
3313 }
3314 
3315 /*
3316  * ffs_lock must be taken by the caller of this function
3317  */
3318 static struct ffs_dev *_ffs_get_single_dev(void)
3319 {
3320 	struct ffs_dev *dev;
3321 
3322 	if (list_is_singular(&ffs_devices)) {
3323 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3324 		if (dev->single)
3325 			return dev;
3326 	}
3327 
3328 	return NULL;
3329 }
3330 
3331 /*
3332  * ffs_lock must be taken by the caller of this function
3333  */
3334 static struct ffs_dev *_ffs_find_dev(const char *name)
3335 {
3336 	struct ffs_dev *dev;
3337 
3338 	dev = _ffs_get_single_dev();
3339 	if (dev)
3340 		return dev;
3341 
3342 	return _ffs_do_find_dev(name);
3343 }
3344 
3345 /* Configfs support *********************************************************/
3346 
3347 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3348 {
3349 	return container_of(to_config_group(item), struct f_fs_opts,
3350 			    func_inst.group);
3351 }
3352 
3353 static void ffs_attr_release(struct config_item *item)
3354 {
3355 	struct f_fs_opts *opts = to_ffs_opts(item);
3356 
3357 	usb_put_function_instance(&opts->func_inst);
3358 }
3359 
3360 static struct configfs_item_operations ffs_item_ops = {
3361 	.release	= ffs_attr_release,
3362 };
3363 
3364 static struct config_item_type ffs_func_type = {
3365 	.ct_item_ops	= &ffs_item_ops,
3366 	.ct_owner	= THIS_MODULE,
3367 };
3368 
3369 
3370 /* Function registration interface ******************************************/
3371 
3372 static void ffs_free_inst(struct usb_function_instance *f)
3373 {
3374 	struct f_fs_opts *opts;
3375 
3376 	opts = to_f_fs_opts(f);
3377 	ffs_dev_lock();
3378 	_ffs_free_dev(opts->dev);
3379 	ffs_dev_unlock();
3380 	kfree(opts);
3381 }
3382 
3383 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3384 {
3385 	if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name))
3386 		return -ENAMETOOLONG;
3387 	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3388 }
3389 
3390 static struct usb_function_instance *ffs_alloc_inst(void)
3391 {
3392 	struct f_fs_opts *opts;
3393 	struct ffs_dev *dev;
3394 
3395 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3396 	if (!opts)
3397 		return ERR_PTR(-ENOMEM);
3398 
3399 	opts->func_inst.set_inst_name = ffs_set_inst_name;
3400 	opts->func_inst.free_func_inst = ffs_free_inst;
3401 	ffs_dev_lock();
3402 	dev = _ffs_alloc_dev();
3403 	ffs_dev_unlock();
3404 	if (IS_ERR(dev)) {
3405 		kfree(opts);
3406 		return ERR_CAST(dev);
3407 	}
3408 	opts->dev = dev;
3409 	dev->opts = opts;
3410 
3411 	config_group_init_type_name(&opts->func_inst.group, "",
3412 				    &ffs_func_type);
3413 	return &opts->func_inst;
3414 }
3415 
3416 static void ffs_free(struct usb_function *f)
3417 {
3418 	kfree(ffs_func_from_usb(f));
3419 }
3420 
3421 static void ffs_func_unbind(struct usb_configuration *c,
3422 			    struct usb_function *f)
3423 {
3424 	struct ffs_function *func = ffs_func_from_usb(f);
3425 	struct ffs_data *ffs = func->ffs;
3426 	struct f_fs_opts *opts =
3427 		container_of(f->fi, struct f_fs_opts, func_inst);
3428 	struct ffs_ep *ep = func->eps;
3429 	unsigned count = ffs->eps_count;
3430 	unsigned long flags;
3431 
3432 	ENTER();
3433 	if (ffs->func == func) {
3434 		ffs_func_eps_disable(func);
3435 		ffs->func = NULL;
3436 	}
3437 
3438 	if (!--opts->refcnt)
3439 		functionfs_unbind(ffs);
3440 
3441 	/* cleanup after autoconfig */
3442 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3443 	while (count--) {
3444 		if (ep->ep && ep->req)
3445 			usb_ep_free_request(ep->ep, ep->req);
3446 		ep->req = NULL;
3447 		++ep;
3448 	}
3449 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3450 	kfree(func->eps);
3451 	func->eps = NULL;
3452 	/*
3453 	 * eps, descriptors and interfaces_nums are allocated in the
3454 	 * same chunk so only one free is required.
3455 	 */
3456 	func->function.fs_descriptors = NULL;
3457 	func->function.hs_descriptors = NULL;
3458 	func->function.ss_descriptors = NULL;
3459 	func->interfaces_nums = NULL;
3460 
3461 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3462 }
3463 
3464 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3465 {
3466 	struct ffs_function *func;
3467 
3468 	ENTER();
3469 
3470 	func = kzalloc(sizeof(*func), GFP_KERNEL);
3471 	if (unlikely(!func))
3472 		return ERR_PTR(-ENOMEM);
3473 
3474 	func->function.name    = "Function FS Gadget";
3475 
3476 	func->function.bind    = ffs_func_bind;
3477 	func->function.unbind  = ffs_func_unbind;
3478 	func->function.set_alt = ffs_func_set_alt;
3479 	func->function.disable = ffs_func_disable;
3480 	func->function.setup   = ffs_func_setup;
3481 	func->function.req_match = ffs_func_req_match;
3482 	func->function.suspend = ffs_func_suspend;
3483 	func->function.resume  = ffs_func_resume;
3484 	func->function.free_func = ffs_free;
3485 
3486 	return &func->function;
3487 }
3488 
3489 /*
3490  * ffs_lock must be taken by the caller of this function
3491  */
3492 static struct ffs_dev *_ffs_alloc_dev(void)
3493 {
3494 	struct ffs_dev *dev;
3495 	int ret;
3496 
3497 	if (_ffs_get_single_dev())
3498 			return ERR_PTR(-EBUSY);
3499 
3500 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3501 	if (!dev)
3502 		return ERR_PTR(-ENOMEM);
3503 
3504 	if (list_empty(&ffs_devices)) {
3505 		ret = functionfs_init();
3506 		if (ret) {
3507 			kfree(dev);
3508 			return ERR_PTR(ret);
3509 		}
3510 	}
3511 
3512 	list_add(&dev->entry, &ffs_devices);
3513 
3514 	return dev;
3515 }
3516 
3517 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3518 {
3519 	struct ffs_dev *existing;
3520 	int ret = 0;
3521 
3522 	ffs_dev_lock();
3523 
3524 	existing = _ffs_do_find_dev(name);
3525 	if (!existing)
3526 		strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3527 	else if (existing != dev)
3528 		ret = -EBUSY;
3529 
3530 	ffs_dev_unlock();
3531 
3532 	return ret;
3533 }
3534 EXPORT_SYMBOL_GPL(ffs_name_dev);
3535 
3536 int ffs_single_dev(struct ffs_dev *dev)
3537 {
3538 	int ret;
3539 
3540 	ret = 0;
3541 	ffs_dev_lock();
3542 
3543 	if (!list_is_singular(&ffs_devices))
3544 		ret = -EBUSY;
3545 	else
3546 		dev->single = true;
3547 
3548 	ffs_dev_unlock();
3549 	return ret;
3550 }
3551 EXPORT_SYMBOL_GPL(ffs_single_dev);
3552 
3553 /*
3554  * ffs_lock must be taken by the caller of this function
3555  */
3556 static void _ffs_free_dev(struct ffs_dev *dev)
3557 {
3558 	list_del(&dev->entry);
3559 
3560 	/* Clear the private_data pointer to stop incorrect dev access */
3561 	if (dev->ffs_data)
3562 		dev->ffs_data->private_data = NULL;
3563 
3564 	kfree(dev);
3565 	if (list_empty(&ffs_devices))
3566 		functionfs_cleanup();
3567 }
3568 
3569 static void *ffs_acquire_dev(const char *dev_name)
3570 {
3571 	struct ffs_dev *ffs_dev;
3572 
3573 	ENTER();
3574 	ffs_dev_lock();
3575 
3576 	ffs_dev = _ffs_find_dev(dev_name);
3577 	if (!ffs_dev)
3578 		ffs_dev = ERR_PTR(-ENOENT);
3579 	else if (ffs_dev->mounted)
3580 		ffs_dev = ERR_PTR(-EBUSY);
3581 	else if (ffs_dev->ffs_acquire_dev_callback &&
3582 	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3583 		ffs_dev = ERR_PTR(-ENOENT);
3584 	else
3585 		ffs_dev->mounted = true;
3586 
3587 	ffs_dev_unlock();
3588 	return ffs_dev;
3589 }
3590 
3591 static void ffs_release_dev(struct ffs_data *ffs_data)
3592 {
3593 	struct ffs_dev *ffs_dev;
3594 
3595 	ENTER();
3596 	ffs_dev_lock();
3597 
3598 	ffs_dev = ffs_data->private_data;
3599 	if (ffs_dev) {
3600 		ffs_dev->mounted = false;
3601 
3602 		if (ffs_dev->ffs_release_dev_callback)
3603 			ffs_dev->ffs_release_dev_callback(ffs_dev);
3604 	}
3605 
3606 	ffs_dev_unlock();
3607 }
3608 
3609 static int ffs_ready(struct ffs_data *ffs)
3610 {
3611 	struct ffs_dev *ffs_obj;
3612 	int ret = 0;
3613 
3614 	ENTER();
3615 	ffs_dev_lock();
3616 
3617 	ffs_obj = ffs->private_data;
3618 	if (!ffs_obj) {
3619 		ret = -EINVAL;
3620 		goto done;
3621 	}
3622 	if (WARN_ON(ffs_obj->desc_ready)) {
3623 		ret = -EBUSY;
3624 		goto done;
3625 	}
3626 
3627 	ffs_obj->desc_ready = true;
3628 	ffs_obj->ffs_data = ffs;
3629 
3630 	if (ffs_obj->ffs_ready_callback) {
3631 		ret = ffs_obj->ffs_ready_callback(ffs);
3632 		if (ret)
3633 			goto done;
3634 	}
3635 
3636 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3637 done:
3638 	ffs_dev_unlock();
3639 	return ret;
3640 }
3641 
3642 static void ffs_closed(struct ffs_data *ffs)
3643 {
3644 	struct ffs_dev *ffs_obj;
3645 	struct f_fs_opts *opts;
3646 	struct config_item *ci;
3647 
3648 	ENTER();
3649 	ffs_dev_lock();
3650 
3651 	ffs_obj = ffs->private_data;
3652 	if (!ffs_obj)
3653 		goto done;
3654 
3655 	ffs_obj->desc_ready = false;
3656 
3657 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3658 	    ffs_obj->ffs_closed_callback)
3659 		ffs_obj->ffs_closed_callback(ffs);
3660 
3661 	if (ffs_obj->opts)
3662 		opts = ffs_obj->opts;
3663 	else
3664 		goto done;
3665 
3666 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3667 	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3668 		goto done;
3669 
3670 	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3671 	ffs_dev_unlock();
3672 
3673 	unregister_gadget_item(ci);
3674 	return;
3675 done:
3676 	ffs_dev_unlock();
3677 }
3678 
3679 /* Misc helper functions ****************************************************/
3680 
3681 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3682 {
3683 	return nonblock
3684 		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3685 		: mutex_lock_interruptible(mutex);
3686 }
3687 
3688 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3689 {
3690 	char *data;
3691 
3692 	if (unlikely(!len))
3693 		return NULL;
3694 
3695 	data = kmalloc(len, GFP_KERNEL);
3696 	if (unlikely(!data))
3697 		return ERR_PTR(-ENOMEM);
3698 
3699 	if (unlikely(copy_from_user(data, buf, len))) {
3700 		kfree(data);
3701 		return ERR_PTR(-EFAULT);
3702 	}
3703 
3704 	pr_vdebug("Buffer from user space:\n");
3705 	ffs_dump_mem("", data, len);
3706 
3707 	return data;
3708 }
3709 
3710 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3711 MODULE_LICENSE("GPL");
3712 MODULE_AUTHOR("Michal Nazarewicz");
3713