1 /* 2 * f_fs.c -- user mode file system API for USB composite function controllers 3 * 4 * Copyright (C) 2010 Samsung Electronics 5 * Author: Michal Nazarewicz <mina86@mina86.com> 6 * 7 * Based on inode.c (GadgetFS) which was: 8 * Copyright (C) 2003-2004 David Brownell 9 * Copyright (C) 2003 Agilent Technologies 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2 of the License, or 14 * (at your option) any later version. 15 */ 16 17 18 /* #define DEBUG */ 19 /* #define VERBOSE_DEBUG */ 20 21 #include <linux/blkdev.h> 22 #include <linux/pagemap.h> 23 #include <linux/export.h> 24 #include <linux/hid.h> 25 #include <linux/module.h> 26 #include <linux/sched/signal.h> 27 #include <linux/uio.h> 28 #include <asm/unaligned.h> 29 30 #include <linux/usb/composite.h> 31 #include <linux/usb/functionfs.h> 32 33 #include <linux/aio.h> 34 #include <linux/mmu_context.h> 35 #include <linux/poll.h> 36 #include <linux/eventfd.h> 37 38 #include "u_fs.h" 39 #include "u_f.h" 40 #include "u_os_desc.h" 41 #include "configfs.h" 42 43 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ 44 45 /* Reference counter handling */ 46 static void ffs_data_get(struct ffs_data *ffs); 47 static void ffs_data_put(struct ffs_data *ffs); 48 /* Creates new ffs_data object. */ 49 static struct ffs_data *__must_check ffs_data_new(void) __attribute__((malloc)); 50 51 /* Opened counter handling. */ 52 static void ffs_data_opened(struct ffs_data *ffs); 53 static void ffs_data_closed(struct ffs_data *ffs); 54 55 /* Called with ffs->mutex held; take over ownership of data. */ 56 static int __must_check 57 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); 58 static int __must_check 59 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); 60 61 62 /* The function structure ***************************************************/ 63 64 struct ffs_ep; 65 66 struct ffs_function { 67 struct usb_configuration *conf; 68 struct usb_gadget *gadget; 69 struct ffs_data *ffs; 70 71 struct ffs_ep *eps; 72 u8 eps_revmap[16]; 73 short *interfaces_nums; 74 75 struct usb_function function; 76 }; 77 78 79 static struct ffs_function *ffs_func_from_usb(struct usb_function *f) 80 { 81 return container_of(f, struct ffs_function, function); 82 } 83 84 85 static inline enum ffs_setup_state 86 ffs_setup_state_clear_cancelled(struct ffs_data *ffs) 87 { 88 return (enum ffs_setup_state) 89 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); 90 } 91 92 93 static void ffs_func_eps_disable(struct ffs_function *func); 94 static int __must_check ffs_func_eps_enable(struct ffs_function *func); 95 96 static int ffs_func_bind(struct usb_configuration *, 97 struct usb_function *); 98 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); 99 static void ffs_func_disable(struct usb_function *); 100 static int ffs_func_setup(struct usb_function *, 101 const struct usb_ctrlrequest *); 102 static bool ffs_func_req_match(struct usb_function *, 103 const struct usb_ctrlrequest *, 104 bool config0); 105 static void ffs_func_suspend(struct usb_function *); 106 static void ffs_func_resume(struct usb_function *); 107 108 109 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); 110 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); 111 112 113 /* The endpoints structures *************************************************/ 114 115 struct ffs_ep { 116 struct usb_ep *ep; /* P: ffs->eps_lock */ 117 struct usb_request *req; /* P: epfile->mutex */ 118 119 /* [0]: full speed, [1]: high speed, [2]: super speed */ 120 struct usb_endpoint_descriptor *descs[3]; 121 122 u8 num; 123 124 int status; /* P: epfile->mutex */ 125 }; 126 127 struct ffs_epfile { 128 /* Protects ep->ep and ep->req. */ 129 struct mutex mutex; 130 wait_queue_head_t wait; 131 132 struct ffs_data *ffs; 133 struct ffs_ep *ep; /* P: ffs->eps_lock */ 134 135 struct dentry *dentry; 136 137 /* 138 * Buffer for holding data from partial reads which may happen since 139 * we’re rounding user read requests to a multiple of a max packet size. 140 * 141 * The pointer is initialised with NULL value and may be set by 142 * __ffs_epfile_read_data function to point to a temporary buffer. 143 * 144 * In normal operation, calls to __ffs_epfile_read_buffered will consume 145 * data from said buffer and eventually free it. Importantly, while the 146 * function is using the buffer, it sets the pointer to NULL. This is 147 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered 148 * can never run concurrently (they are synchronised by epfile->mutex) 149 * so the latter will not assign a new value to the pointer. 150 * 151 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is 152 * valid) and sets the pointer to READ_BUFFER_DROP value. This special 153 * value is crux of the synchronisation between ffs_func_eps_disable and 154 * __ffs_epfile_read_data. 155 * 156 * Once __ffs_epfile_read_data is about to finish it will try to set the 157 * pointer back to its old value (as described above), but seeing as the 158 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free 159 * the buffer. 160 * 161 * == State transitions == 162 * 163 * • ptr == NULL: (initial state) 164 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP 165 * ◦ __ffs_epfile_read_buffered: nop 166 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf 167 * ◦ reading finishes: n/a, not in ‘and reading’ state 168 * • ptr == DROP: 169 * ◦ __ffs_epfile_read_buffer_free: nop 170 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL 171 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop 172 * ◦ reading finishes: n/a, not in ‘and reading’ state 173 * • ptr == buf: 174 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP 175 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading 176 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered 177 * is always called first 178 * ◦ reading finishes: n/a, not in ‘and reading’ state 179 * • ptr == NULL and reading: 180 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading 181 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 182 * ◦ __ffs_epfile_read_data: n/a, mutex is held 183 * ◦ reading finishes and … 184 * … all data read: free buf, go to ptr == NULL 185 * … otherwise: go to ptr == buf and reading 186 * • ptr == DROP and reading: 187 * ◦ __ffs_epfile_read_buffer_free: nop 188 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 189 * ◦ __ffs_epfile_read_data: n/a, mutex is held 190 * ◦ reading finishes: free buf, go to ptr == DROP 191 */ 192 struct ffs_buffer *read_buffer; 193 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN)) 194 195 char name[5]; 196 197 unsigned char in; /* P: ffs->eps_lock */ 198 unsigned char isoc; /* P: ffs->eps_lock */ 199 200 unsigned char _pad; 201 }; 202 203 struct ffs_buffer { 204 size_t length; 205 char *data; 206 char storage[]; 207 }; 208 209 /* ffs_io_data structure ***************************************************/ 210 211 struct ffs_io_data { 212 bool aio; 213 bool read; 214 215 struct kiocb *kiocb; 216 struct iov_iter data; 217 const void *to_free; 218 char *buf; 219 220 struct mm_struct *mm; 221 struct work_struct work; 222 223 struct usb_ep *ep; 224 struct usb_request *req; 225 226 struct ffs_data *ffs; 227 }; 228 229 struct ffs_desc_helper { 230 struct ffs_data *ffs; 231 unsigned interfaces_count; 232 unsigned eps_count; 233 }; 234 235 static int __must_check ffs_epfiles_create(struct ffs_data *ffs); 236 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count); 237 238 static struct dentry * 239 ffs_sb_create_file(struct super_block *sb, const char *name, void *data, 240 const struct file_operations *fops); 241 242 /* Devices management *******************************************************/ 243 244 DEFINE_MUTEX(ffs_lock); 245 EXPORT_SYMBOL_GPL(ffs_lock); 246 247 static struct ffs_dev *_ffs_find_dev(const char *name); 248 static struct ffs_dev *_ffs_alloc_dev(void); 249 static void _ffs_free_dev(struct ffs_dev *dev); 250 static void *ffs_acquire_dev(const char *dev_name); 251 static void ffs_release_dev(struct ffs_data *ffs_data); 252 static int ffs_ready(struct ffs_data *ffs); 253 static void ffs_closed(struct ffs_data *ffs); 254 255 /* Misc helper functions ****************************************************/ 256 257 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 258 __attribute__((warn_unused_result, nonnull)); 259 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 260 __attribute__((warn_unused_result, nonnull)); 261 262 263 /* Control file aka ep0 *****************************************************/ 264 265 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) 266 { 267 struct ffs_data *ffs = req->context; 268 269 complete(&ffs->ep0req_completion); 270 } 271 272 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) 273 { 274 struct usb_request *req = ffs->ep0req; 275 int ret; 276 277 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); 278 279 spin_unlock_irq(&ffs->ev.waitq.lock); 280 281 req->buf = data; 282 req->length = len; 283 284 /* 285 * UDC layer requires to provide a buffer even for ZLP, but should 286 * not use it at all. Let's provide some poisoned pointer to catch 287 * possible bug in the driver. 288 */ 289 if (req->buf == NULL) 290 req->buf = (void *)0xDEADBABE; 291 292 reinit_completion(&ffs->ep0req_completion); 293 294 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); 295 if (unlikely(ret < 0)) 296 return ret; 297 298 ret = wait_for_completion_interruptible(&ffs->ep0req_completion); 299 if (unlikely(ret)) { 300 usb_ep_dequeue(ffs->gadget->ep0, req); 301 return -EINTR; 302 } 303 304 ffs->setup_state = FFS_NO_SETUP; 305 return req->status ? req->status : req->actual; 306 } 307 308 static int __ffs_ep0_stall(struct ffs_data *ffs) 309 { 310 if (ffs->ev.can_stall) { 311 pr_vdebug("ep0 stall\n"); 312 usb_ep_set_halt(ffs->gadget->ep0); 313 ffs->setup_state = FFS_NO_SETUP; 314 return -EL2HLT; 315 } else { 316 pr_debug("bogus ep0 stall!\n"); 317 return -ESRCH; 318 } 319 } 320 321 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, 322 size_t len, loff_t *ptr) 323 { 324 struct ffs_data *ffs = file->private_data; 325 ssize_t ret; 326 char *data; 327 328 ENTER(); 329 330 /* Fast check if setup was canceled */ 331 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 332 return -EIDRM; 333 334 /* Acquire mutex */ 335 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 336 if (unlikely(ret < 0)) 337 return ret; 338 339 /* Check state */ 340 switch (ffs->state) { 341 case FFS_READ_DESCRIPTORS: 342 case FFS_READ_STRINGS: 343 /* Copy data */ 344 if (unlikely(len < 16)) { 345 ret = -EINVAL; 346 break; 347 } 348 349 data = ffs_prepare_buffer(buf, len); 350 if (IS_ERR(data)) { 351 ret = PTR_ERR(data); 352 break; 353 } 354 355 /* Handle data */ 356 if (ffs->state == FFS_READ_DESCRIPTORS) { 357 pr_info("read descriptors\n"); 358 ret = __ffs_data_got_descs(ffs, data, len); 359 if (unlikely(ret < 0)) 360 break; 361 362 ffs->state = FFS_READ_STRINGS; 363 ret = len; 364 } else { 365 pr_info("read strings\n"); 366 ret = __ffs_data_got_strings(ffs, data, len); 367 if (unlikely(ret < 0)) 368 break; 369 370 ret = ffs_epfiles_create(ffs); 371 if (unlikely(ret)) { 372 ffs->state = FFS_CLOSING; 373 break; 374 } 375 376 ffs->state = FFS_ACTIVE; 377 mutex_unlock(&ffs->mutex); 378 379 ret = ffs_ready(ffs); 380 if (unlikely(ret < 0)) { 381 ffs->state = FFS_CLOSING; 382 return ret; 383 } 384 385 return len; 386 } 387 break; 388 389 case FFS_ACTIVE: 390 data = NULL; 391 /* 392 * We're called from user space, we can use _irq 393 * rather then _irqsave 394 */ 395 spin_lock_irq(&ffs->ev.waitq.lock); 396 switch (ffs_setup_state_clear_cancelled(ffs)) { 397 case FFS_SETUP_CANCELLED: 398 ret = -EIDRM; 399 goto done_spin; 400 401 case FFS_NO_SETUP: 402 ret = -ESRCH; 403 goto done_spin; 404 405 case FFS_SETUP_PENDING: 406 break; 407 } 408 409 /* FFS_SETUP_PENDING */ 410 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { 411 spin_unlock_irq(&ffs->ev.waitq.lock); 412 ret = __ffs_ep0_stall(ffs); 413 break; 414 } 415 416 /* FFS_SETUP_PENDING and not stall */ 417 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 418 419 spin_unlock_irq(&ffs->ev.waitq.lock); 420 421 data = ffs_prepare_buffer(buf, len); 422 if (IS_ERR(data)) { 423 ret = PTR_ERR(data); 424 break; 425 } 426 427 spin_lock_irq(&ffs->ev.waitq.lock); 428 429 /* 430 * We are guaranteed to be still in FFS_ACTIVE state 431 * but the state of setup could have changed from 432 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need 433 * to check for that. If that happened we copied data 434 * from user space in vain but it's unlikely. 435 * 436 * For sure we are not in FFS_NO_SETUP since this is 437 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP 438 * transition can be performed and it's protected by 439 * mutex. 440 */ 441 if (ffs_setup_state_clear_cancelled(ffs) == 442 FFS_SETUP_CANCELLED) { 443 ret = -EIDRM; 444 done_spin: 445 spin_unlock_irq(&ffs->ev.waitq.lock); 446 } else { 447 /* unlocks spinlock */ 448 ret = __ffs_ep0_queue_wait(ffs, data, len); 449 } 450 kfree(data); 451 break; 452 453 default: 454 ret = -EBADFD; 455 break; 456 } 457 458 mutex_unlock(&ffs->mutex); 459 return ret; 460 } 461 462 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */ 463 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, 464 size_t n) 465 { 466 /* 467 * n cannot be bigger than ffs->ev.count, which cannot be bigger than 468 * size of ffs->ev.types array (which is four) so that's how much space 469 * we reserve. 470 */ 471 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)]; 472 const size_t size = n * sizeof *events; 473 unsigned i = 0; 474 475 memset(events, 0, size); 476 477 do { 478 events[i].type = ffs->ev.types[i]; 479 if (events[i].type == FUNCTIONFS_SETUP) { 480 events[i].u.setup = ffs->ev.setup; 481 ffs->setup_state = FFS_SETUP_PENDING; 482 } 483 } while (++i < n); 484 485 ffs->ev.count -= n; 486 if (ffs->ev.count) 487 memmove(ffs->ev.types, ffs->ev.types + n, 488 ffs->ev.count * sizeof *ffs->ev.types); 489 490 spin_unlock_irq(&ffs->ev.waitq.lock); 491 mutex_unlock(&ffs->mutex); 492 493 return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size; 494 } 495 496 static ssize_t ffs_ep0_read(struct file *file, char __user *buf, 497 size_t len, loff_t *ptr) 498 { 499 struct ffs_data *ffs = file->private_data; 500 char *data = NULL; 501 size_t n; 502 int ret; 503 504 ENTER(); 505 506 /* Fast check if setup was canceled */ 507 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 508 return -EIDRM; 509 510 /* Acquire mutex */ 511 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 512 if (unlikely(ret < 0)) 513 return ret; 514 515 /* Check state */ 516 if (ffs->state != FFS_ACTIVE) { 517 ret = -EBADFD; 518 goto done_mutex; 519 } 520 521 /* 522 * We're called from user space, we can use _irq rather then 523 * _irqsave 524 */ 525 spin_lock_irq(&ffs->ev.waitq.lock); 526 527 switch (ffs_setup_state_clear_cancelled(ffs)) { 528 case FFS_SETUP_CANCELLED: 529 ret = -EIDRM; 530 break; 531 532 case FFS_NO_SETUP: 533 n = len / sizeof(struct usb_functionfs_event); 534 if (unlikely(!n)) { 535 ret = -EINVAL; 536 break; 537 } 538 539 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { 540 ret = -EAGAIN; 541 break; 542 } 543 544 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, 545 ffs->ev.count)) { 546 ret = -EINTR; 547 break; 548 } 549 550 return __ffs_ep0_read_events(ffs, buf, 551 min(n, (size_t)ffs->ev.count)); 552 553 case FFS_SETUP_PENDING: 554 if (ffs->ev.setup.bRequestType & USB_DIR_IN) { 555 spin_unlock_irq(&ffs->ev.waitq.lock); 556 ret = __ffs_ep0_stall(ffs); 557 goto done_mutex; 558 } 559 560 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 561 562 spin_unlock_irq(&ffs->ev.waitq.lock); 563 564 if (likely(len)) { 565 data = kmalloc(len, GFP_KERNEL); 566 if (unlikely(!data)) { 567 ret = -ENOMEM; 568 goto done_mutex; 569 } 570 } 571 572 spin_lock_irq(&ffs->ev.waitq.lock); 573 574 /* See ffs_ep0_write() */ 575 if (ffs_setup_state_clear_cancelled(ffs) == 576 FFS_SETUP_CANCELLED) { 577 ret = -EIDRM; 578 break; 579 } 580 581 /* unlocks spinlock */ 582 ret = __ffs_ep0_queue_wait(ffs, data, len); 583 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len))) 584 ret = -EFAULT; 585 goto done_mutex; 586 587 default: 588 ret = -EBADFD; 589 break; 590 } 591 592 spin_unlock_irq(&ffs->ev.waitq.lock); 593 done_mutex: 594 mutex_unlock(&ffs->mutex); 595 kfree(data); 596 return ret; 597 } 598 599 static int ffs_ep0_open(struct inode *inode, struct file *file) 600 { 601 struct ffs_data *ffs = inode->i_private; 602 603 ENTER(); 604 605 if (unlikely(ffs->state == FFS_CLOSING)) 606 return -EBUSY; 607 608 file->private_data = ffs; 609 ffs_data_opened(ffs); 610 611 return 0; 612 } 613 614 static int ffs_ep0_release(struct inode *inode, struct file *file) 615 { 616 struct ffs_data *ffs = file->private_data; 617 618 ENTER(); 619 620 ffs_data_closed(ffs); 621 622 return 0; 623 } 624 625 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) 626 { 627 struct ffs_data *ffs = file->private_data; 628 struct usb_gadget *gadget = ffs->gadget; 629 long ret; 630 631 ENTER(); 632 633 if (code == FUNCTIONFS_INTERFACE_REVMAP) { 634 struct ffs_function *func = ffs->func; 635 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; 636 } else if (gadget && gadget->ops->ioctl) { 637 ret = gadget->ops->ioctl(gadget, code, value); 638 } else { 639 ret = -ENOTTY; 640 } 641 642 return ret; 643 } 644 645 static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait) 646 { 647 struct ffs_data *ffs = file->private_data; 648 unsigned int mask = POLLWRNORM; 649 int ret; 650 651 poll_wait(file, &ffs->ev.waitq, wait); 652 653 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 654 if (unlikely(ret < 0)) 655 return mask; 656 657 switch (ffs->state) { 658 case FFS_READ_DESCRIPTORS: 659 case FFS_READ_STRINGS: 660 mask |= POLLOUT; 661 break; 662 663 case FFS_ACTIVE: 664 switch (ffs->setup_state) { 665 case FFS_NO_SETUP: 666 if (ffs->ev.count) 667 mask |= POLLIN; 668 break; 669 670 case FFS_SETUP_PENDING: 671 case FFS_SETUP_CANCELLED: 672 mask |= (POLLIN | POLLOUT); 673 break; 674 } 675 case FFS_CLOSING: 676 break; 677 case FFS_DEACTIVATED: 678 break; 679 } 680 681 mutex_unlock(&ffs->mutex); 682 683 return mask; 684 } 685 686 static const struct file_operations ffs_ep0_operations = { 687 .llseek = no_llseek, 688 689 .open = ffs_ep0_open, 690 .write = ffs_ep0_write, 691 .read = ffs_ep0_read, 692 .release = ffs_ep0_release, 693 .unlocked_ioctl = ffs_ep0_ioctl, 694 .poll = ffs_ep0_poll, 695 }; 696 697 698 /* "Normal" endpoints operations ********************************************/ 699 700 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) 701 { 702 ENTER(); 703 if (likely(req->context)) { 704 struct ffs_ep *ep = _ep->driver_data; 705 ep->status = req->status ? req->status : req->actual; 706 complete(req->context); 707 } 708 } 709 710 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter) 711 { 712 ssize_t ret = copy_to_iter(data, data_len, iter); 713 if (likely(ret == data_len)) 714 return ret; 715 716 if (unlikely(iov_iter_count(iter))) 717 return -EFAULT; 718 719 /* 720 * Dear user space developer! 721 * 722 * TL;DR: To stop getting below error message in your kernel log, change 723 * user space code using functionfs to align read buffers to a max 724 * packet size. 725 * 726 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max 727 * packet size. When unaligned buffer is passed to functionfs, it 728 * internally uses a larger, aligned buffer so that such UDCs are happy. 729 * 730 * Unfortunately, this means that host may send more data than was 731 * requested in read(2) system call. f_fs doesn’t know what to do with 732 * that excess data so it simply drops it. 733 * 734 * Was the buffer aligned in the first place, no such problem would 735 * happen. 736 * 737 * Data may be dropped only in AIO reads. Synchronous reads are handled 738 * by splitting a request into multiple parts. This splitting may still 739 * be a problem though so it’s likely best to align the buffer 740 * regardless of it being AIO or not.. 741 * 742 * This only affects OUT endpoints, i.e. reading data with a read(2), 743 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not 744 * affected. 745 */ 746 pr_err("functionfs read size %d > requested size %zd, dropping excess data. " 747 "Align read buffer size to max packet size to avoid the problem.\n", 748 data_len, ret); 749 750 return ret; 751 } 752 753 static void ffs_user_copy_worker(struct work_struct *work) 754 { 755 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 756 work); 757 int ret = io_data->req->status ? io_data->req->status : 758 io_data->req->actual; 759 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD; 760 761 if (io_data->read && ret > 0) { 762 use_mm(io_data->mm); 763 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data); 764 unuse_mm(io_data->mm); 765 } 766 767 io_data->kiocb->ki_complete(io_data->kiocb, ret, ret); 768 769 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd) 770 eventfd_signal(io_data->ffs->ffs_eventfd, 1); 771 772 usb_ep_free_request(io_data->ep, io_data->req); 773 774 if (io_data->read) 775 kfree(io_data->to_free); 776 kfree(io_data->buf); 777 kfree(io_data); 778 } 779 780 static void ffs_epfile_async_io_complete(struct usb_ep *_ep, 781 struct usb_request *req) 782 { 783 struct ffs_io_data *io_data = req->context; 784 785 ENTER(); 786 787 INIT_WORK(&io_data->work, ffs_user_copy_worker); 788 schedule_work(&io_data->work); 789 } 790 791 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile) 792 { 793 /* 794 * See comment in struct ffs_epfile for full read_buffer pointer 795 * synchronisation story. 796 */ 797 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP); 798 if (buf && buf != READ_BUFFER_DROP) 799 kfree(buf); 800 } 801 802 /* Assumes epfile->mutex is held. */ 803 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile, 804 struct iov_iter *iter) 805 { 806 /* 807 * Null out epfile->read_buffer so ffs_func_eps_disable does not free 808 * the buffer while we are using it. See comment in struct ffs_epfile 809 * for full read_buffer pointer synchronisation story. 810 */ 811 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL); 812 ssize_t ret; 813 if (!buf || buf == READ_BUFFER_DROP) 814 return 0; 815 816 ret = copy_to_iter(buf->data, buf->length, iter); 817 if (buf->length == ret) { 818 kfree(buf); 819 return ret; 820 } 821 822 if (unlikely(iov_iter_count(iter))) { 823 ret = -EFAULT; 824 } else { 825 buf->length -= ret; 826 buf->data += ret; 827 } 828 829 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 830 kfree(buf); 831 832 return ret; 833 } 834 835 /* Assumes epfile->mutex is held. */ 836 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile, 837 void *data, int data_len, 838 struct iov_iter *iter) 839 { 840 struct ffs_buffer *buf; 841 842 ssize_t ret = copy_to_iter(data, data_len, iter); 843 if (likely(data_len == ret)) 844 return ret; 845 846 if (unlikely(iov_iter_count(iter))) 847 return -EFAULT; 848 849 /* See ffs_copy_to_iter for more context. */ 850 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.", 851 data_len, ret); 852 853 data_len -= ret; 854 buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL); 855 if (!buf) 856 return -ENOMEM; 857 buf->length = data_len; 858 buf->data = buf->storage; 859 memcpy(buf->storage, data + ret, data_len); 860 861 /* 862 * At this point read_buffer is NULL or READ_BUFFER_DROP (if 863 * ffs_func_eps_disable has been called in the meanwhile). See comment 864 * in struct ffs_epfile for full read_buffer pointer synchronisation 865 * story. 866 */ 867 if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf))) 868 kfree(buf); 869 870 return ret; 871 } 872 873 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) 874 { 875 struct ffs_epfile *epfile = file->private_data; 876 struct usb_request *req; 877 struct ffs_ep *ep; 878 char *data = NULL; 879 ssize_t ret, data_len = -EINVAL; 880 int halt; 881 882 /* Are we still active? */ 883 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 884 return -ENODEV; 885 886 /* Wait for endpoint to be enabled */ 887 ep = epfile->ep; 888 if (!ep) { 889 if (file->f_flags & O_NONBLOCK) 890 return -EAGAIN; 891 892 ret = wait_event_interruptible(epfile->wait, (ep = epfile->ep)); 893 if (ret) 894 return -EINTR; 895 } 896 897 /* Do we halt? */ 898 halt = (!io_data->read == !epfile->in); 899 if (halt && epfile->isoc) 900 return -EINVAL; 901 902 /* We will be using request and read_buffer */ 903 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); 904 if (unlikely(ret)) 905 goto error; 906 907 /* Allocate & copy */ 908 if (!halt) { 909 struct usb_gadget *gadget; 910 911 /* 912 * Do we have buffered data from previous partial read? Check 913 * that for synchronous case only because we do not have 914 * facility to ‘wake up’ a pending asynchronous read and push 915 * buffered data to it which we would need to make things behave 916 * consistently. 917 */ 918 if (!io_data->aio && io_data->read) { 919 ret = __ffs_epfile_read_buffered(epfile, &io_data->data); 920 if (ret) 921 goto error_mutex; 922 } 923 924 /* 925 * if we _do_ wait above, the epfile->ffs->gadget might be NULL 926 * before the waiting completes, so do not assign to 'gadget' 927 * earlier 928 */ 929 gadget = epfile->ffs->gadget; 930 931 spin_lock_irq(&epfile->ffs->eps_lock); 932 /* In the meantime, endpoint got disabled or changed. */ 933 if (epfile->ep != ep) { 934 ret = -ESHUTDOWN; 935 goto error_lock; 936 } 937 data_len = iov_iter_count(&io_data->data); 938 /* 939 * Controller may require buffer size to be aligned to 940 * maxpacketsize of an out endpoint. 941 */ 942 if (io_data->read) 943 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len); 944 spin_unlock_irq(&epfile->ffs->eps_lock); 945 946 data = kmalloc(data_len, GFP_KERNEL); 947 if (unlikely(!data)) { 948 ret = -ENOMEM; 949 goto error_mutex; 950 } 951 if (!io_data->read && 952 !copy_from_iter_full(data, data_len, &io_data->data)) { 953 ret = -EFAULT; 954 goto error_mutex; 955 } 956 } 957 958 spin_lock_irq(&epfile->ffs->eps_lock); 959 960 if (epfile->ep != ep) { 961 /* In the meantime, endpoint got disabled or changed. */ 962 ret = -ESHUTDOWN; 963 } else if (halt) { 964 /* Halt */ 965 if (likely(epfile->ep == ep) && !WARN_ON(!ep->ep)) 966 usb_ep_set_halt(ep->ep); 967 ret = -EBADMSG; 968 } else if (unlikely(data_len == -EINVAL)) { 969 /* 970 * Sanity Check: even though data_len can't be used 971 * uninitialized at the time I write this comment, some 972 * compilers complain about this situation. 973 * In order to keep the code clean from warnings, data_len is 974 * being initialized to -EINVAL during its declaration, which 975 * means we can't rely on compiler anymore to warn no future 976 * changes won't result in data_len being used uninitialized. 977 * For such reason, we're adding this redundant sanity check 978 * here. 979 */ 980 WARN(1, "%s: data_len == -EINVAL\n", __func__); 981 ret = -EINVAL; 982 } else if (!io_data->aio) { 983 DECLARE_COMPLETION_ONSTACK(done); 984 bool interrupted = false; 985 986 req = ep->req; 987 req->buf = data; 988 req->length = data_len; 989 990 req->context = &done; 991 req->complete = ffs_epfile_io_complete; 992 993 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 994 if (unlikely(ret < 0)) 995 goto error_lock; 996 997 spin_unlock_irq(&epfile->ffs->eps_lock); 998 999 if (unlikely(wait_for_completion_interruptible(&done))) { 1000 /* 1001 * To avoid race condition with ffs_epfile_io_complete, 1002 * dequeue the request first then check 1003 * status. usb_ep_dequeue API should guarantee no race 1004 * condition with req->complete callback. 1005 */ 1006 usb_ep_dequeue(ep->ep, req); 1007 interrupted = ep->status < 0; 1008 } 1009 1010 if (interrupted) 1011 ret = -EINTR; 1012 else if (io_data->read && ep->status > 0) 1013 ret = __ffs_epfile_read_data(epfile, data, ep->status, 1014 &io_data->data); 1015 else 1016 ret = ep->status; 1017 goto error_mutex; 1018 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_KERNEL))) { 1019 ret = -ENOMEM; 1020 } else { 1021 req->buf = data; 1022 req->length = data_len; 1023 1024 io_data->buf = data; 1025 io_data->ep = ep->ep; 1026 io_data->req = req; 1027 io_data->ffs = epfile->ffs; 1028 1029 req->context = io_data; 1030 req->complete = ffs_epfile_async_io_complete; 1031 1032 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1033 if (unlikely(ret)) { 1034 usb_ep_free_request(ep->ep, req); 1035 goto error_lock; 1036 } 1037 1038 ret = -EIOCBQUEUED; 1039 /* 1040 * Do not kfree the buffer in this function. It will be freed 1041 * by ffs_user_copy_worker. 1042 */ 1043 data = NULL; 1044 } 1045 1046 error_lock: 1047 spin_unlock_irq(&epfile->ffs->eps_lock); 1048 error_mutex: 1049 mutex_unlock(&epfile->mutex); 1050 error: 1051 kfree(data); 1052 return ret; 1053 } 1054 1055 static int 1056 ffs_epfile_open(struct inode *inode, struct file *file) 1057 { 1058 struct ffs_epfile *epfile = inode->i_private; 1059 1060 ENTER(); 1061 1062 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1063 return -ENODEV; 1064 1065 file->private_data = epfile; 1066 ffs_data_opened(epfile->ffs); 1067 1068 return 0; 1069 } 1070 1071 static int ffs_aio_cancel(struct kiocb *kiocb) 1072 { 1073 struct ffs_io_data *io_data = kiocb->private; 1074 struct ffs_epfile *epfile = kiocb->ki_filp->private_data; 1075 int value; 1076 1077 ENTER(); 1078 1079 spin_lock_irq(&epfile->ffs->eps_lock); 1080 1081 if (likely(io_data && io_data->ep && io_data->req)) 1082 value = usb_ep_dequeue(io_data->ep, io_data->req); 1083 else 1084 value = -EINVAL; 1085 1086 spin_unlock_irq(&epfile->ffs->eps_lock); 1087 1088 return value; 1089 } 1090 1091 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from) 1092 { 1093 struct ffs_io_data io_data, *p = &io_data; 1094 ssize_t res; 1095 1096 ENTER(); 1097 1098 if (!is_sync_kiocb(kiocb)) { 1099 p = kmalloc(sizeof(io_data), GFP_KERNEL); 1100 if (unlikely(!p)) 1101 return -ENOMEM; 1102 p->aio = true; 1103 } else { 1104 p->aio = false; 1105 } 1106 1107 p->read = false; 1108 p->kiocb = kiocb; 1109 p->data = *from; 1110 p->mm = current->mm; 1111 1112 kiocb->private = p; 1113 1114 if (p->aio) 1115 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1116 1117 res = ffs_epfile_io(kiocb->ki_filp, p); 1118 if (res == -EIOCBQUEUED) 1119 return res; 1120 if (p->aio) 1121 kfree(p); 1122 else 1123 *from = p->data; 1124 return res; 1125 } 1126 1127 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to) 1128 { 1129 struct ffs_io_data io_data, *p = &io_data; 1130 ssize_t res; 1131 1132 ENTER(); 1133 1134 if (!is_sync_kiocb(kiocb)) { 1135 p = kmalloc(sizeof(io_data), GFP_KERNEL); 1136 if (unlikely(!p)) 1137 return -ENOMEM; 1138 p->aio = true; 1139 } else { 1140 p->aio = false; 1141 } 1142 1143 p->read = true; 1144 p->kiocb = kiocb; 1145 if (p->aio) { 1146 p->to_free = dup_iter(&p->data, to, GFP_KERNEL); 1147 if (!p->to_free) { 1148 kfree(p); 1149 return -ENOMEM; 1150 } 1151 } else { 1152 p->data = *to; 1153 p->to_free = NULL; 1154 } 1155 p->mm = current->mm; 1156 1157 kiocb->private = p; 1158 1159 if (p->aio) 1160 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1161 1162 res = ffs_epfile_io(kiocb->ki_filp, p); 1163 if (res == -EIOCBQUEUED) 1164 return res; 1165 1166 if (p->aio) { 1167 kfree(p->to_free); 1168 kfree(p); 1169 } else { 1170 *to = p->data; 1171 } 1172 return res; 1173 } 1174 1175 static int 1176 ffs_epfile_release(struct inode *inode, struct file *file) 1177 { 1178 struct ffs_epfile *epfile = inode->i_private; 1179 1180 ENTER(); 1181 1182 __ffs_epfile_read_buffer_free(epfile); 1183 ffs_data_closed(epfile->ffs); 1184 1185 return 0; 1186 } 1187 1188 static long ffs_epfile_ioctl(struct file *file, unsigned code, 1189 unsigned long value) 1190 { 1191 struct ffs_epfile *epfile = file->private_data; 1192 int ret; 1193 1194 ENTER(); 1195 1196 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1197 return -ENODEV; 1198 1199 spin_lock_irq(&epfile->ffs->eps_lock); 1200 if (likely(epfile->ep)) { 1201 switch (code) { 1202 case FUNCTIONFS_FIFO_STATUS: 1203 ret = usb_ep_fifo_status(epfile->ep->ep); 1204 break; 1205 case FUNCTIONFS_FIFO_FLUSH: 1206 usb_ep_fifo_flush(epfile->ep->ep); 1207 ret = 0; 1208 break; 1209 case FUNCTIONFS_CLEAR_HALT: 1210 ret = usb_ep_clear_halt(epfile->ep->ep); 1211 break; 1212 case FUNCTIONFS_ENDPOINT_REVMAP: 1213 ret = epfile->ep->num; 1214 break; 1215 case FUNCTIONFS_ENDPOINT_DESC: 1216 { 1217 int desc_idx; 1218 struct usb_endpoint_descriptor *desc; 1219 1220 switch (epfile->ffs->gadget->speed) { 1221 case USB_SPEED_SUPER: 1222 desc_idx = 2; 1223 break; 1224 case USB_SPEED_HIGH: 1225 desc_idx = 1; 1226 break; 1227 default: 1228 desc_idx = 0; 1229 } 1230 desc = epfile->ep->descs[desc_idx]; 1231 1232 spin_unlock_irq(&epfile->ffs->eps_lock); 1233 ret = copy_to_user((void *)value, desc, desc->bLength); 1234 if (ret) 1235 ret = -EFAULT; 1236 return ret; 1237 } 1238 default: 1239 ret = -ENOTTY; 1240 } 1241 } else { 1242 ret = -ENODEV; 1243 } 1244 spin_unlock_irq(&epfile->ffs->eps_lock); 1245 1246 return ret; 1247 } 1248 1249 static const struct file_operations ffs_epfile_operations = { 1250 .llseek = no_llseek, 1251 1252 .open = ffs_epfile_open, 1253 .write_iter = ffs_epfile_write_iter, 1254 .read_iter = ffs_epfile_read_iter, 1255 .release = ffs_epfile_release, 1256 .unlocked_ioctl = ffs_epfile_ioctl, 1257 }; 1258 1259 1260 /* File system and super block operations ***********************************/ 1261 1262 /* 1263 * Mounting the file system creates a controller file, used first for 1264 * function configuration then later for event monitoring. 1265 */ 1266 1267 static struct inode *__must_check 1268 ffs_sb_make_inode(struct super_block *sb, void *data, 1269 const struct file_operations *fops, 1270 const struct inode_operations *iops, 1271 struct ffs_file_perms *perms) 1272 { 1273 struct inode *inode; 1274 1275 ENTER(); 1276 1277 inode = new_inode(sb); 1278 1279 if (likely(inode)) { 1280 struct timespec ts = current_time(inode); 1281 1282 inode->i_ino = get_next_ino(); 1283 inode->i_mode = perms->mode; 1284 inode->i_uid = perms->uid; 1285 inode->i_gid = perms->gid; 1286 inode->i_atime = ts; 1287 inode->i_mtime = ts; 1288 inode->i_ctime = ts; 1289 inode->i_private = data; 1290 if (fops) 1291 inode->i_fop = fops; 1292 if (iops) 1293 inode->i_op = iops; 1294 } 1295 1296 return inode; 1297 } 1298 1299 /* Create "regular" file */ 1300 static struct dentry *ffs_sb_create_file(struct super_block *sb, 1301 const char *name, void *data, 1302 const struct file_operations *fops) 1303 { 1304 struct ffs_data *ffs = sb->s_fs_info; 1305 struct dentry *dentry; 1306 struct inode *inode; 1307 1308 ENTER(); 1309 1310 dentry = d_alloc_name(sb->s_root, name); 1311 if (unlikely(!dentry)) 1312 return NULL; 1313 1314 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); 1315 if (unlikely(!inode)) { 1316 dput(dentry); 1317 return NULL; 1318 } 1319 1320 d_add(dentry, inode); 1321 return dentry; 1322 } 1323 1324 /* Super block */ 1325 static const struct super_operations ffs_sb_operations = { 1326 .statfs = simple_statfs, 1327 .drop_inode = generic_delete_inode, 1328 }; 1329 1330 struct ffs_sb_fill_data { 1331 struct ffs_file_perms perms; 1332 umode_t root_mode; 1333 const char *dev_name; 1334 bool no_disconnect; 1335 struct ffs_data *ffs_data; 1336 }; 1337 1338 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent) 1339 { 1340 struct ffs_sb_fill_data *data = _data; 1341 struct inode *inode; 1342 struct ffs_data *ffs = data->ffs_data; 1343 1344 ENTER(); 1345 1346 ffs->sb = sb; 1347 data->ffs_data = NULL; 1348 sb->s_fs_info = ffs; 1349 sb->s_blocksize = PAGE_SIZE; 1350 sb->s_blocksize_bits = PAGE_SHIFT; 1351 sb->s_magic = FUNCTIONFS_MAGIC; 1352 sb->s_op = &ffs_sb_operations; 1353 sb->s_time_gran = 1; 1354 1355 /* Root inode */ 1356 data->perms.mode = data->root_mode; 1357 inode = ffs_sb_make_inode(sb, NULL, 1358 &simple_dir_operations, 1359 &simple_dir_inode_operations, 1360 &data->perms); 1361 sb->s_root = d_make_root(inode); 1362 if (unlikely(!sb->s_root)) 1363 return -ENOMEM; 1364 1365 /* EP0 file */ 1366 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs, 1367 &ffs_ep0_operations))) 1368 return -ENOMEM; 1369 1370 return 0; 1371 } 1372 1373 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts) 1374 { 1375 ENTER(); 1376 1377 if (!opts || !*opts) 1378 return 0; 1379 1380 for (;;) { 1381 unsigned long value; 1382 char *eq, *comma; 1383 1384 /* Option limit */ 1385 comma = strchr(opts, ','); 1386 if (comma) 1387 *comma = 0; 1388 1389 /* Value limit */ 1390 eq = strchr(opts, '='); 1391 if (unlikely(!eq)) { 1392 pr_err("'=' missing in %s\n", opts); 1393 return -EINVAL; 1394 } 1395 *eq = 0; 1396 1397 /* Parse value */ 1398 if (kstrtoul(eq + 1, 0, &value)) { 1399 pr_err("%s: invalid value: %s\n", opts, eq + 1); 1400 return -EINVAL; 1401 } 1402 1403 /* Interpret option */ 1404 switch (eq - opts) { 1405 case 13: 1406 if (!memcmp(opts, "no_disconnect", 13)) 1407 data->no_disconnect = !!value; 1408 else 1409 goto invalid; 1410 break; 1411 case 5: 1412 if (!memcmp(opts, "rmode", 5)) 1413 data->root_mode = (value & 0555) | S_IFDIR; 1414 else if (!memcmp(opts, "fmode", 5)) 1415 data->perms.mode = (value & 0666) | S_IFREG; 1416 else 1417 goto invalid; 1418 break; 1419 1420 case 4: 1421 if (!memcmp(opts, "mode", 4)) { 1422 data->root_mode = (value & 0555) | S_IFDIR; 1423 data->perms.mode = (value & 0666) | S_IFREG; 1424 } else { 1425 goto invalid; 1426 } 1427 break; 1428 1429 case 3: 1430 if (!memcmp(opts, "uid", 3)) { 1431 data->perms.uid = make_kuid(current_user_ns(), value); 1432 if (!uid_valid(data->perms.uid)) { 1433 pr_err("%s: unmapped value: %lu\n", opts, value); 1434 return -EINVAL; 1435 } 1436 } else if (!memcmp(opts, "gid", 3)) { 1437 data->perms.gid = make_kgid(current_user_ns(), value); 1438 if (!gid_valid(data->perms.gid)) { 1439 pr_err("%s: unmapped value: %lu\n", opts, value); 1440 return -EINVAL; 1441 } 1442 } else { 1443 goto invalid; 1444 } 1445 break; 1446 1447 default: 1448 invalid: 1449 pr_err("%s: invalid option\n", opts); 1450 return -EINVAL; 1451 } 1452 1453 /* Next iteration */ 1454 if (!comma) 1455 break; 1456 opts = comma + 1; 1457 } 1458 1459 return 0; 1460 } 1461 1462 /* "mount -t functionfs dev_name /dev/function" ends up here */ 1463 1464 static struct dentry * 1465 ffs_fs_mount(struct file_system_type *t, int flags, 1466 const char *dev_name, void *opts) 1467 { 1468 struct ffs_sb_fill_data data = { 1469 .perms = { 1470 .mode = S_IFREG | 0600, 1471 .uid = GLOBAL_ROOT_UID, 1472 .gid = GLOBAL_ROOT_GID, 1473 }, 1474 .root_mode = S_IFDIR | 0500, 1475 .no_disconnect = false, 1476 }; 1477 struct dentry *rv; 1478 int ret; 1479 void *ffs_dev; 1480 struct ffs_data *ffs; 1481 1482 ENTER(); 1483 1484 ret = ffs_fs_parse_opts(&data, opts); 1485 if (unlikely(ret < 0)) 1486 return ERR_PTR(ret); 1487 1488 ffs = ffs_data_new(); 1489 if (unlikely(!ffs)) 1490 return ERR_PTR(-ENOMEM); 1491 ffs->file_perms = data.perms; 1492 ffs->no_disconnect = data.no_disconnect; 1493 1494 ffs->dev_name = kstrdup(dev_name, GFP_KERNEL); 1495 if (unlikely(!ffs->dev_name)) { 1496 ffs_data_put(ffs); 1497 return ERR_PTR(-ENOMEM); 1498 } 1499 1500 ffs_dev = ffs_acquire_dev(dev_name); 1501 if (IS_ERR(ffs_dev)) { 1502 ffs_data_put(ffs); 1503 return ERR_CAST(ffs_dev); 1504 } 1505 ffs->private_data = ffs_dev; 1506 data.ffs_data = ffs; 1507 1508 rv = mount_nodev(t, flags, &data, ffs_sb_fill); 1509 if (IS_ERR(rv) && data.ffs_data) { 1510 ffs_release_dev(data.ffs_data); 1511 ffs_data_put(data.ffs_data); 1512 } 1513 return rv; 1514 } 1515 1516 static void 1517 ffs_fs_kill_sb(struct super_block *sb) 1518 { 1519 ENTER(); 1520 1521 kill_litter_super(sb); 1522 if (sb->s_fs_info) { 1523 ffs_release_dev(sb->s_fs_info); 1524 ffs_data_closed(sb->s_fs_info); 1525 ffs_data_put(sb->s_fs_info); 1526 } 1527 } 1528 1529 static struct file_system_type ffs_fs_type = { 1530 .owner = THIS_MODULE, 1531 .name = "functionfs", 1532 .mount = ffs_fs_mount, 1533 .kill_sb = ffs_fs_kill_sb, 1534 }; 1535 MODULE_ALIAS_FS("functionfs"); 1536 1537 1538 /* Driver's main init/cleanup functions *************************************/ 1539 1540 static int functionfs_init(void) 1541 { 1542 int ret; 1543 1544 ENTER(); 1545 1546 ret = register_filesystem(&ffs_fs_type); 1547 if (likely(!ret)) 1548 pr_info("file system registered\n"); 1549 else 1550 pr_err("failed registering file system (%d)\n", ret); 1551 1552 return ret; 1553 } 1554 1555 static void functionfs_cleanup(void) 1556 { 1557 ENTER(); 1558 1559 pr_info("unloading\n"); 1560 unregister_filesystem(&ffs_fs_type); 1561 } 1562 1563 1564 /* ffs_data and ffs_function construction and destruction code **************/ 1565 1566 static void ffs_data_clear(struct ffs_data *ffs); 1567 static void ffs_data_reset(struct ffs_data *ffs); 1568 1569 static void ffs_data_get(struct ffs_data *ffs) 1570 { 1571 ENTER(); 1572 1573 refcount_inc(&ffs->ref); 1574 } 1575 1576 static void ffs_data_opened(struct ffs_data *ffs) 1577 { 1578 ENTER(); 1579 1580 refcount_inc(&ffs->ref); 1581 if (atomic_add_return(1, &ffs->opened) == 1 && 1582 ffs->state == FFS_DEACTIVATED) { 1583 ffs->state = FFS_CLOSING; 1584 ffs_data_reset(ffs); 1585 } 1586 } 1587 1588 static void ffs_data_put(struct ffs_data *ffs) 1589 { 1590 ENTER(); 1591 1592 if (unlikely(refcount_dec_and_test(&ffs->ref))) { 1593 pr_info("%s(): freeing\n", __func__); 1594 ffs_data_clear(ffs); 1595 BUG_ON(waitqueue_active(&ffs->ev.waitq) || 1596 waitqueue_active(&ffs->ep0req_completion.wait)); 1597 kfree(ffs->dev_name); 1598 kfree(ffs); 1599 } 1600 } 1601 1602 static void ffs_data_closed(struct ffs_data *ffs) 1603 { 1604 ENTER(); 1605 1606 if (atomic_dec_and_test(&ffs->opened)) { 1607 if (ffs->no_disconnect) { 1608 ffs->state = FFS_DEACTIVATED; 1609 if (ffs->epfiles) { 1610 ffs_epfiles_destroy(ffs->epfiles, 1611 ffs->eps_count); 1612 ffs->epfiles = NULL; 1613 } 1614 if (ffs->setup_state == FFS_SETUP_PENDING) 1615 __ffs_ep0_stall(ffs); 1616 } else { 1617 ffs->state = FFS_CLOSING; 1618 ffs_data_reset(ffs); 1619 } 1620 } 1621 if (atomic_read(&ffs->opened) < 0) { 1622 ffs->state = FFS_CLOSING; 1623 ffs_data_reset(ffs); 1624 } 1625 1626 ffs_data_put(ffs); 1627 } 1628 1629 static struct ffs_data *ffs_data_new(void) 1630 { 1631 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); 1632 if (unlikely(!ffs)) 1633 return NULL; 1634 1635 ENTER(); 1636 1637 refcount_set(&ffs->ref, 1); 1638 atomic_set(&ffs->opened, 0); 1639 ffs->state = FFS_READ_DESCRIPTORS; 1640 mutex_init(&ffs->mutex); 1641 spin_lock_init(&ffs->eps_lock); 1642 init_waitqueue_head(&ffs->ev.waitq); 1643 init_completion(&ffs->ep0req_completion); 1644 1645 /* XXX REVISIT need to update it in some places, or do we? */ 1646 ffs->ev.can_stall = 1; 1647 1648 return ffs; 1649 } 1650 1651 static void ffs_data_clear(struct ffs_data *ffs) 1652 { 1653 ENTER(); 1654 1655 ffs_closed(ffs); 1656 1657 BUG_ON(ffs->gadget); 1658 1659 if (ffs->epfiles) 1660 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count); 1661 1662 if (ffs->ffs_eventfd) 1663 eventfd_ctx_put(ffs->ffs_eventfd); 1664 1665 kfree(ffs->raw_descs_data); 1666 kfree(ffs->raw_strings); 1667 kfree(ffs->stringtabs); 1668 } 1669 1670 static void ffs_data_reset(struct ffs_data *ffs) 1671 { 1672 ENTER(); 1673 1674 ffs_data_clear(ffs); 1675 1676 ffs->epfiles = NULL; 1677 ffs->raw_descs_data = NULL; 1678 ffs->raw_descs = NULL; 1679 ffs->raw_strings = NULL; 1680 ffs->stringtabs = NULL; 1681 1682 ffs->raw_descs_length = 0; 1683 ffs->fs_descs_count = 0; 1684 ffs->hs_descs_count = 0; 1685 ffs->ss_descs_count = 0; 1686 1687 ffs->strings_count = 0; 1688 ffs->interfaces_count = 0; 1689 ffs->eps_count = 0; 1690 1691 ffs->ev.count = 0; 1692 1693 ffs->state = FFS_READ_DESCRIPTORS; 1694 ffs->setup_state = FFS_NO_SETUP; 1695 ffs->flags = 0; 1696 } 1697 1698 1699 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) 1700 { 1701 struct usb_gadget_strings **lang; 1702 int first_id; 1703 1704 ENTER(); 1705 1706 if (WARN_ON(ffs->state != FFS_ACTIVE 1707 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) 1708 return -EBADFD; 1709 1710 first_id = usb_string_ids_n(cdev, ffs->strings_count); 1711 if (unlikely(first_id < 0)) 1712 return first_id; 1713 1714 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); 1715 if (unlikely(!ffs->ep0req)) 1716 return -ENOMEM; 1717 ffs->ep0req->complete = ffs_ep0_complete; 1718 ffs->ep0req->context = ffs; 1719 1720 lang = ffs->stringtabs; 1721 if (lang) { 1722 for (; *lang; ++lang) { 1723 struct usb_string *str = (*lang)->strings; 1724 int id = first_id; 1725 for (; str->s; ++id, ++str) 1726 str->id = id; 1727 } 1728 } 1729 1730 ffs->gadget = cdev->gadget; 1731 ffs_data_get(ffs); 1732 return 0; 1733 } 1734 1735 static void functionfs_unbind(struct ffs_data *ffs) 1736 { 1737 ENTER(); 1738 1739 if (!WARN_ON(!ffs->gadget)) { 1740 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); 1741 ffs->ep0req = NULL; 1742 ffs->gadget = NULL; 1743 clear_bit(FFS_FL_BOUND, &ffs->flags); 1744 ffs_data_put(ffs); 1745 } 1746 } 1747 1748 static int ffs_epfiles_create(struct ffs_data *ffs) 1749 { 1750 struct ffs_epfile *epfile, *epfiles; 1751 unsigned i, count; 1752 1753 ENTER(); 1754 1755 count = ffs->eps_count; 1756 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); 1757 if (!epfiles) 1758 return -ENOMEM; 1759 1760 epfile = epfiles; 1761 for (i = 1; i <= count; ++i, ++epfile) { 1762 epfile->ffs = ffs; 1763 mutex_init(&epfile->mutex); 1764 init_waitqueue_head(&epfile->wait); 1765 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 1766 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]); 1767 else 1768 sprintf(epfile->name, "ep%u", i); 1769 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name, 1770 epfile, 1771 &ffs_epfile_operations); 1772 if (unlikely(!epfile->dentry)) { 1773 ffs_epfiles_destroy(epfiles, i - 1); 1774 return -ENOMEM; 1775 } 1776 } 1777 1778 ffs->epfiles = epfiles; 1779 return 0; 1780 } 1781 1782 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count) 1783 { 1784 struct ffs_epfile *epfile = epfiles; 1785 1786 ENTER(); 1787 1788 for (; count; --count, ++epfile) { 1789 BUG_ON(mutex_is_locked(&epfile->mutex) || 1790 waitqueue_active(&epfile->wait)); 1791 if (epfile->dentry) { 1792 d_delete(epfile->dentry); 1793 dput(epfile->dentry); 1794 epfile->dentry = NULL; 1795 } 1796 } 1797 1798 kfree(epfiles); 1799 } 1800 1801 static void ffs_func_eps_disable(struct ffs_function *func) 1802 { 1803 struct ffs_ep *ep = func->eps; 1804 struct ffs_epfile *epfile = func->ffs->epfiles; 1805 unsigned count = func->ffs->eps_count; 1806 unsigned long flags; 1807 1808 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1809 while (count--) { 1810 /* pending requests get nuked */ 1811 if (likely(ep->ep)) 1812 usb_ep_disable(ep->ep); 1813 ++ep; 1814 1815 if (epfile) { 1816 epfile->ep = NULL; 1817 __ffs_epfile_read_buffer_free(epfile); 1818 ++epfile; 1819 } 1820 } 1821 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1822 } 1823 1824 static int ffs_func_eps_enable(struct ffs_function *func) 1825 { 1826 struct ffs_data *ffs = func->ffs; 1827 struct ffs_ep *ep = func->eps; 1828 struct ffs_epfile *epfile = ffs->epfiles; 1829 unsigned count = ffs->eps_count; 1830 unsigned long flags; 1831 int ret = 0; 1832 1833 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1834 while(count--) { 1835 struct usb_endpoint_descriptor *ds; 1836 struct usb_ss_ep_comp_descriptor *comp_desc = NULL; 1837 int needs_comp_desc = false; 1838 int desc_idx; 1839 1840 if (ffs->gadget->speed == USB_SPEED_SUPER) { 1841 desc_idx = 2; 1842 needs_comp_desc = true; 1843 } else if (ffs->gadget->speed == USB_SPEED_HIGH) 1844 desc_idx = 1; 1845 else 1846 desc_idx = 0; 1847 1848 /* fall-back to lower speed if desc missing for current speed */ 1849 do { 1850 ds = ep->descs[desc_idx]; 1851 } while (!ds && --desc_idx >= 0); 1852 1853 if (!ds) { 1854 ret = -EINVAL; 1855 break; 1856 } 1857 1858 ep->ep->driver_data = ep; 1859 ep->ep->desc = ds; 1860 1861 if (needs_comp_desc) { 1862 comp_desc = (struct usb_ss_ep_comp_descriptor *)(ds + 1863 USB_DT_ENDPOINT_SIZE); 1864 ep->ep->maxburst = comp_desc->bMaxBurst + 1; 1865 ep->ep->comp_desc = comp_desc; 1866 } 1867 1868 ret = usb_ep_enable(ep->ep); 1869 if (likely(!ret)) { 1870 epfile->ep = ep; 1871 epfile->in = usb_endpoint_dir_in(ds); 1872 epfile->isoc = usb_endpoint_xfer_isoc(ds); 1873 } else { 1874 break; 1875 } 1876 1877 wake_up(&epfile->wait); 1878 1879 ++ep; 1880 ++epfile; 1881 } 1882 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1883 1884 return ret; 1885 } 1886 1887 1888 /* Parsing and building descriptors and strings *****************************/ 1889 1890 /* 1891 * This validates if data pointed by data is a valid USB descriptor as 1892 * well as record how many interfaces, endpoints and strings are 1893 * required by given configuration. Returns address after the 1894 * descriptor or NULL if data is invalid. 1895 */ 1896 1897 enum ffs_entity_type { 1898 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT 1899 }; 1900 1901 enum ffs_os_desc_type { 1902 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP 1903 }; 1904 1905 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, 1906 u8 *valuep, 1907 struct usb_descriptor_header *desc, 1908 void *priv); 1909 1910 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, 1911 struct usb_os_desc_header *h, void *data, 1912 unsigned len, void *priv); 1913 1914 static int __must_check ffs_do_single_desc(char *data, unsigned len, 1915 ffs_entity_callback entity, 1916 void *priv) 1917 { 1918 struct usb_descriptor_header *_ds = (void *)data; 1919 u8 length; 1920 int ret; 1921 1922 ENTER(); 1923 1924 /* At least two bytes are required: length and type */ 1925 if (len < 2) { 1926 pr_vdebug("descriptor too short\n"); 1927 return -EINVAL; 1928 } 1929 1930 /* If we have at least as many bytes as the descriptor takes? */ 1931 length = _ds->bLength; 1932 if (len < length) { 1933 pr_vdebug("descriptor longer then available data\n"); 1934 return -EINVAL; 1935 } 1936 1937 #define __entity_check_INTERFACE(val) 1 1938 #define __entity_check_STRING(val) (val) 1939 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) 1940 #define __entity(type, val) do { \ 1941 pr_vdebug("entity " #type "(%02x)\n", (val)); \ 1942 if (unlikely(!__entity_check_ ##type(val))) { \ 1943 pr_vdebug("invalid entity's value\n"); \ 1944 return -EINVAL; \ 1945 } \ 1946 ret = entity(FFS_ ##type, &val, _ds, priv); \ 1947 if (unlikely(ret < 0)) { \ 1948 pr_debug("entity " #type "(%02x); ret = %d\n", \ 1949 (val), ret); \ 1950 return ret; \ 1951 } \ 1952 } while (0) 1953 1954 /* Parse descriptor depending on type. */ 1955 switch (_ds->bDescriptorType) { 1956 case USB_DT_DEVICE: 1957 case USB_DT_CONFIG: 1958 case USB_DT_STRING: 1959 case USB_DT_DEVICE_QUALIFIER: 1960 /* function can't have any of those */ 1961 pr_vdebug("descriptor reserved for gadget: %d\n", 1962 _ds->bDescriptorType); 1963 return -EINVAL; 1964 1965 case USB_DT_INTERFACE: { 1966 struct usb_interface_descriptor *ds = (void *)_ds; 1967 pr_vdebug("interface descriptor\n"); 1968 if (length != sizeof *ds) 1969 goto inv_length; 1970 1971 __entity(INTERFACE, ds->bInterfaceNumber); 1972 if (ds->iInterface) 1973 __entity(STRING, ds->iInterface); 1974 } 1975 break; 1976 1977 case USB_DT_ENDPOINT: { 1978 struct usb_endpoint_descriptor *ds = (void *)_ds; 1979 pr_vdebug("endpoint descriptor\n"); 1980 if (length != USB_DT_ENDPOINT_SIZE && 1981 length != USB_DT_ENDPOINT_AUDIO_SIZE) 1982 goto inv_length; 1983 __entity(ENDPOINT, ds->bEndpointAddress); 1984 } 1985 break; 1986 1987 case HID_DT_HID: 1988 pr_vdebug("hid descriptor\n"); 1989 if (length != sizeof(struct hid_descriptor)) 1990 goto inv_length; 1991 break; 1992 1993 case USB_DT_OTG: 1994 if (length != sizeof(struct usb_otg_descriptor)) 1995 goto inv_length; 1996 break; 1997 1998 case USB_DT_INTERFACE_ASSOCIATION: { 1999 struct usb_interface_assoc_descriptor *ds = (void *)_ds; 2000 pr_vdebug("interface association descriptor\n"); 2001 if (length != sizeof *ds) 2002 goto inv_length; 2003 if (ds->iFunction) 2004 __entity(STRING, ds->iFunction); 2005 } 2006 break; 2007 2008 case USB_DT_SS_ENDPOINT_COMP: 2009 pr_vdebug("EP SS companion descriptor\n"); 2010 if (length != sizeof(struct usb_ss_ep_comp_descriptor)) 2011 goto inv_length; 2012 break; 2013 2014 case USB_DT_OTHER_SPEED_CONFIG: 2015 case USB_DT_INTERFACE_POWER: 2016 case USB_DT_DEBUG: 2017 case USB_DT_SECURITY: 2018 case USB_DT_CS_RADIO_CONTROL: 2019 /* TODO */ 2020 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); 2021 return -EINVAL; 2022 2023 default: 2024 /* We should never be here */ 2025 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); 2026 return -EINVAL; 2027 2028 inv_length: 2029 pr_vdebug("invalid length: %d (descriptor %d)\n", 2030 _ds->bLength, _ds->bDescriptorType); 2031 return -EINVAL; 2032 } 2033 2034 #undef __entity 2035 #undef __entity_check_DESCRIPTOR 2036 #undef __entity_check_INTERFACE 2037 #undef __entity_check_STRING 2038 #undef __entity_check_ENDPOINT 2039 2040 return length; 2041 } 2042 2043 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, 2044 ffs_entity_callback entity, void *priv) 2045 { 2046 const unsigned _len = len; 2047 unsigned long num = 0; 2048 2049 ENTER(); 2050 2051 for (;;) { 2052 int ret; 2053 2054 if (num == count) 2055 data = NULL; 2056 2057 /* Record "descriptor" entity */ 2058 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); 2059 if (unlikely(ret < 0)) { 2060 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", 2061 num, ret); 2062 return ret; 2063 } 2064 2065 if (!data) 2066 return _len - len; 2067 2068 ret = ffs_do_single_desc(data, len, entity, priv); 2069 if (unlikely(ret < 0)) { 2070 pr_debug("%s returns %d\n", __func__, ret); 2071 return ret; 2072 } 2073 2074 len -= ret; 2075 data += ret; 2076 ++num; 2077 } 2078 } 2079 2080 static int __ffs_data_do_entity(enum ffs_entity_type type, 2081 u8 *valuep, struct usb_descriptor_header *desc, 2082 void *priv) 2083 { 2084 struct ffs_desc_helper *helper = priv; 2085 struct usb_endpoint_descriptor *d; 2086 2087 ENTER(); 2088 2089 switch (type) { 2090 case FFS_DESCRIPTOR: 2091 break; 2092 2093 case FFS_INTERFACE: 2094 /* 2095 * Interfaces are indexed from zero so if we 2096 * encountered interface "n" then there are at least 2097 * "n+1" interfaces. 2098 */ 2099 if (*valuep >= helper->interfaces_count) 2100 helper->interfaces_count = *valuep + 1; 2101 break; 2102 2103 case FFS_STRING: 2104 /* 2105 * Strings are indexed from 1 (0 is reserved 2106 * for languages list) 2107 */ 2108 if (*valuep > helper->ffs->strings_count) 2109 helper->ffs->strings_count = *valuep; 2110 break; 2111 2112 case FFS_ENDPOINT: 2113 d = (void *)desc; 2114 helper->eps_count++; 2115 if (helper->eps_count >= FFS_MAX_EPS_COUNT) 2116 return -EINVAL; 2117 /* Check if descriptors for any speed were already parsed */ 2118 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count) 2119 helper->ffs->eps_addrmap[helper->eps_count] = 2120 d->bEndpointAddress; 2121 else if (helper->ffs->eps_addrmap[helper->eps_count] != 2122 d->bEndpointAddress) 2123 return -EINVAL; 2124 break; 2125 } 2126 2127 return 0; 2128 } 2129 2130 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, 2131 struct usb_os_desc_header *desc) 2132 { 2133 u16 bcd_version = le16_to_cpu(desc->bcdVersion); 2134 u16 w_index = le16_to_cpu(desc->wIndex); 2135 2136 if (bcd_version != 1) { 2137 pr_vdebug("unsupported os descriptors version: %d", 2138 bcd_version); 2139 return -EINVAL; 2140 } 2141 switch (w_index) { 2142 case 0x4: 2143 *next_type = FFS_OS_DESC_EXT_COMPAT; 2144 break; 2145 case 0x5: 2146 *next_type = FFS_OS_DESC_EXT_PROP; 2147 break; 2148 default: 2149 pr_vdebug("unsupported os descriptor type: %d", w_index); 2150 return -EINVAL; 2151 } 2152 2153 return sizeof(*desc); 2154 } 2155 2156 /* 2157 * Process all extended compatibility/extended property descriptors 2158 * of a feature descriptor 2159 */ 2160 static int __must_check ffs_do_single_os_desc(char *data, unsigned len, 2161 enum ffs_os_desc_type type, 2162 u16 feature_count, 2163 ffs_os_desc_callback entity, 2164 void *priv, 2165 struct usb_os_desc_header *h) 2166 { 2167 int ret; 2168 const unsigned _len = len; 2169 2170 ENTER(); 2171 2172 /* loop over all ext compat/ext prop descriptors */ 2173 while (feature_count--) { 2174 ret = entity(type, h, data, len, priv); 2175 if (unlikely(ret < 0)) { 2176 pr_debug("bad OS descriptor, type: %d\n", type); 2177 return ret; 2178 } 2179 data += ret; 2180 len -= ret; 2181 } 2182 return _len - len; 2183 } 2184 2185 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ 2186 static int __must_check ffs_do_os_descs(unsigned count, 2187 char *data, unsigned len, 2188 ffs_os_desc_callback entity, void *priv) 2189 { 2190 const unsigned _len = len; 2191 unsigned long num = 0; 2192 2193 ENTER(); 2194 2195 for (num = 0; num < count; ++num) { 2196 int ret; 2197 enum ffs_os_desc_type type; 2198 u16 feature_count; 2199 struct usb_os_desc_header *desc = (void *)data; 2200 2201 if (len < sizeof(*desc)) 2202 return -EINVAL; 2203 2204 /* 2205 * Record "descriptor" entity. 2206 * Process dwLength, bcdVersion, wIndex, get b/wCount. 2207 * Move the data pointer to the beginning of extended 2208 * compatibilities proper or extended properties proper 2209 * portions of the data 2210 */ 2211 if (le32_to_cpu(desc->dwLength) > len) 2212 return -EINVAL; 2213 2214 ret = __ffs_do_os_desc_header(&type, desc); 2215 if (unlikely(ret < 0)) { 2216 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", 2217 num, ret); 2218 return ret; 2219 } 2220 /* 2221 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" 2222 */ 2223 feature_count = le16_to_cpu(desc->wCount); 2224 if (type == FFS_OS_DESC_EXT_COMPAT && 2225 (feature_count > 255 || desc->Reserved)) 2226 return -EINVAL; 2227 len -= ret; 2228 data += ret; 2229 2230 /* 2231 * Process all function/property descriptors 2232 * of this Feature Descriptor 2233 */ 2234 ret = ffs_do_single_os_desc(data, len, type, 2235 feature_count, entity, priv, desc); 2236 if (unlikely(ret < 0)) { 2237 pr_debug("%s returns %d\n", __func__, ret); 2238 return ret; 2239 } 2240 2241 len -= ret; 2242 data += ret; 2243 } 2244 return _len - len; 2245 } 2246 2247 /** 2248 * Validate contents of the buffer from userspace related to OS descriptors. 2249 */ 2250 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, 2251 struct usb_os_desc_header *h, void *data, 2252 unsigned len, void *priv) 2253 { 2254 struct ffs_data *ffs = priv; 2255 u8 length; 2256 2257 ENTER(); 2258 2259 switch (type) { 2260 case FFS_OS_DESC_EXT_COMPAT: { 2261 struct usb_ext_compat_desc *d = data; 2262 int i; 2263 2264 if (len < sizeof(*d) || 2265 d->bFirstInterfaceNumber >= ffs->interfaces_count || 2266 !d->Reserved1) 2267 return -EINVAL; 2268 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) 2269 if (d->Reserved2[i]) 2270 return -EINVAL; 2271 2272 length = sizeof(struct usb_ext_compat_desc); 2273 } 2274 break; 2275 case FFS_OS_DESC_EXT_PROP: { 2276 struct usb_ext_prop_desc *d = data; 2277 u32 type, pdl; 2278 u16 pnl; 2279 2280 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) 2281 return -EINVAL; 2282 length = le32_to_cpu(d->dwSize); 2283 if (len < length) 2284 return -EINVAL; 2285 type = le32_to_cpu(d->dwPropertyDataType); 2286 if (type < USB_EXT_PROP_UNICODE || 2287 type > USB_EXT_PROP_UNICODE_MULTI) { 2288 pr_vdebug("unsupported os descriptor property type: %d", 2289 type); 2290 return -EINVAL; 2291 } 2292 pnl = le16_to_cpu(d->wPropertyNameLength); 2293 if (length < 14 + pnl) { 2294 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n", 2295 length, pnl, type); 2296 return -EINVAL; 2297 } 2298 pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl)); 2299 if (length != 14 + pnl + pdl) { 2300 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", 2301 length, pnl, pdl, type); 2302 return -EINVAL; 2303 } 2304 ++ffs->ms_os_descs_ext_prop_count; 2305 /* property name reported to the host as "WCHAR"s */ 2306 ffs->ms_os_descs_ext_prop_name_len += pnl * 2; 2307 ffs->ms_os_descs_ext_prop_data_len += pdl; 2308 } 2309 break; 2310 default: 2311 pr_vdebug("unknown descriptor: %d\n", type); 2312 return -EINVAL; 2313 } 2314 return length; 2315 } 2316 2317 static int __ffs_data_got_descs(struct ffs_data *ffs, 2318 char *const _data, size_t len) 2319 { 2320 char *data = _data, *raw_descs; 2321 unsigned os_descs_count = 0, counts[3], flags; 2322 int ret = -EINVAL, i; 2323 struct ffs_desc_helper helper; 2324 2325 ENTER(); 2326 2327 if (get_unaligned_le32(data + 4) != len) 2328 goto error; 2329 2330 switch (get_unaligned_le32(data)) { 2331 case FUNCTIONFS_DESCRIPTORS_MAGIC: 2332 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; 2333 data += 8; 2334 len -= 8; 2335 break; 2336 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: 2337 flags = get_unaligned_le32(data + 8); 2338 ffs->user_flags = flags; 2339 if (flags & ~(FUNCTIONFS_HAS_FS_DESC | 2340 FUNCTIONFS_HAS_HS_DESC | 2341 FUNCTIONFS_HAS_SS_DESC | 2342 FUNCTIONFS_HAS_MS_OS_DESC | 2343 FUNCTIONFS_VIRTUAL_ADDR | 2344 FUNCTIONFS_EVENTFD | 2345 FUNCTIONFS_ALL_CTRL_RECIP | 2346 FUNCTIONFS_CONFIG0_SETUP)) { 2347 ret = -ENOSYS; 2348 goto error; 2349 } 2350 data += 12; 2351 len -= 12; 2352 break; 2353 default: 2354 goto error; 2355 } 2356 2357 if (flags & FUNCTIONFS_EVENTFD) { 2358 if (len < 4) 2359 goto error; 2360 ffs->ffs_eventfd = 2361 eventfd_ctx_fdget((int)get_unaligned_le32(data)); 2362 if (IS_ERR(ffs->ffs_eventfd)) { 2363 ret = PTR_ERR(ffs->ffs_eventfd); 2364 ffs->ffs_eventfd = NULL; 2365 goto error; 2366 } 2367 data += 4; 2368 len -= 4; 2369 } 2370 2371 /* Read fs_count, hs_count and ss_count (if present) */ 2372 for (i = 0; i < 3; ++i) { 2373 if (!(flags & (1 << i))) { 2374 counts[i] = 0; 2375 } else if (len < 4) { 2376 goto error; 2377 } else { 2378 counts[i] = get_unaligned_le32(data); 2379 data += 4; 2380 len -= 4; 2381 } 2382 } 2383 if (flags & (1 << i)) { 2384 if (len < 4) { 2385 goto error; 2386 } 2387 os_descs_count = get_unaligned_le32(data); 2388 data += 4; 2389 len -= 4; 2390 }; 2391 2392 /* Read descriptors */ 2393 raw_descs = data; 2394 helper.ffs = ffs; 2395 for (i = 0; i < 3; ++i) { 2396 if (!counts[i]) 2397 continue; 2398 helper.interfaces_count = 0; 2399 helper.eps_count = 0; 2400 ret = ffs_do_descs(counts[i], data, len, 2401 __ffs_data_do_entity, &helper); 2402 if (ret < 0) 2403 goto error; 2404 if (!ffs->eps_count && !ffs->interfaces_count) { 2405 ffs->eps_count = helper.eps_count; 2406 ffs->interfaces_count = helper.interfaces_count; 2407 } else { 2408 if (ffs->eps_count != helper.eps_count) { 2409 ret = -EINVAL; 2410 goto error; 2411 } 2412 if (ffs->interfaces_count != helper.interfaces_count) { 2413 ret = -EINVAL; 2414 goto error; 2415 } 2416 } 2417 data += ret; 2418 len -= ret; 2419 } 2420 if (os_descs_count) { 2421 ret = ffs_do_os_descs(os_descs_count, data, len, 2422 __ffs_data_do_os_desc, ffs); 2423 if (ret < 0) 2424 goto error; 2425 data += ret; 2426 len -= ret; 2427 } 2428 2429 if (raw_descs == data || len) { 2430 ret = -EINVAL; 2431 goto error; 2432 } 2433 2434 ffs->raw_descs_data = _data; 2435 ffs->raw_descs = raw_descs; 2436 ffs->raw_descs_length = data - raw_descs; 2437 ffs->fs_descs_count = counts[0]; 2438 ffs->hs_descs_count = counts[1]; 2439 ffs->ss_descs_count = counts[2]; 2440 ffs->ms_os_descs_count = os_descs_count; 2441 2442 return 0; 2443 2444 error: 2445 kfree(_data); 2446 return ret; 2447 } 2448 2449 static int __ffs_data_got_strings(struct ffs_data *ffs, 2450 char *const _data, size_t len) 2451 { 2452 u32 str_count, needed_count, lang_count; 2453 struct usb_gadget_strings **stringtabs, *t; 2454 const char *data = _data; 2455 struct usb_string *s; 2456 2457 ENTER(); 2458 2459 if (unlikely(len < 16 || 2460 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || 2461 get_unaligned_le32(data + 4) != len)) 2462 goto error; 2463 str_count = get_unaligned_le32(data + 8); 2464 lang_count = get_unaligned_le32(data + 12); 2465 2466 /* if one is zero the other must be zero */ 2467 if (unlikely(!str_count != !lang_count)) 2468 goto error; 2469 2470 /* Do we have at least as many strings as descriptors need? */ 2471 needed_count = ffs->strings_count; 2472 if (unlikely(str_count < needed_count)) 2473 goto error; 2474 2475 /* 2476 * If we don't need any strings just return and free all 2477 * memory. 2478 */ 2479 if (!needed_count) { 2480 kfree(_data); 2481 return 0; 2482 } 2483 2484 /* Allocate everything in one chunk so there's less maintenance. */ 2485 { 2486 unsigned i = 0; 2487 vla_group(d); 2488 vla_item(d, struct usb_gadget_strings *, stringtabs, 2489 lang_count + 1); 2490 vla_item(d, struct usb_gadget_strings, stringtab, lang_count); 2491 vla_item(d, struct usb_string, strings, 2492 lang_count*(needed_count+1)); 2493 2494 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); 2495 2496 if (unlikely(!vlabuf)) { 2497 kfree(_data); 2498 return -ENOMEM; 2499 } 2500 2501 /* Initialize the VLA pointers */ 2502 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2503 t = vla_ptr(vlabuf, d, stringtab); 2504 i = lang_count; 2505 do { 2506 *stringtabs++ = t++; 2507 } while (--i); 2508 *stringtabs = NULL; 2509 2510 /* stringtabs = vlabuf = d_stringtabs for later kfree */ 2511 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2512 t = vla_ptr(vlabuf, d, stringtab); 2513 s = vla_ptr(vlabuf, d, strings); 2514 } 2515 2516 /* For each language */ 2517 data += 16; 2518 len -= 16; 2519 2520 do { /* lang_count > 0 so we can use do-while */ 2521 unsigned needed = needed_count; 2522 2523 if (unlikely(len < 3)) 2524 goto error_free; 2525 t->language = get_unaligned_le16(data); 2526 t->strings = s; 2527 ++t; 2528 2529 data += 2; 2530 len -= 2; 2531 2532 /* For each string */ 2533 do { /* str_count > 0 so we can use do-while */ 2534 size_t length = strnlen(data, len); 2535 2536 if (unlikely(length == len)) 2537 goto error_free; 2538 2539 /* 2540 * User may provide more strings then we need, 2541 * if that's the case we simply ignore the 2542 * rest 2543 */ 2544 if (likely(needed)) { 2545 /* 2546 * s->id will be set while adding 2547 * function to configuration so for 2548 * now just leave garbage here. 2549 */ 2550 s->s = data; 2551 --needed; 2552 ++s; 2553 } 2554 2555 data += length + 1; 2556 len -= length + 1; 2557 } while (--str_count); 2558 2559 s->id = 0; /* terminator */ 2560 s->s = NULL; 2561 ++s; 2562 2563 } while (--lang_count); 2564 2565 /* Some garbage left? */ 2566 if (unlikely(len)) 2567 goto error_free; 2568 2569 /* Done! */ 2570 ffs->stringtabs = stringtabs; 2571 ffs->raw_strings = _data; 2572 2573 return 0; 2574 2575 error_free: 2576 kfree(stringtabs); 2577 error: 2578 kfree(_data); 2579 return -EINVAL; 2580 } 2581 2582 2583 /* Events handling and management *******************************************/ 2584 2585 static void __ffs_event_add(struct ffs_data *ffs, 2586 enum usb_functionfs_event_type type) 2587 { 2588 enum usb_functionfs_event_type rem_type1, rem_type2 = type; 2589 int neg = 0; 2590 2591 /* 2592 * Abort any unhandled setup 2593 * 2594 * We do not need to worry about some cmpxchg() changing value 2595 * of ffs->setup_state without holding the lock because when 2596 * state is FFS_SETUP_PENDING cmpxchg() in several places in 2597 * the source does nothing. 2598 */ 2599 if (ffs->setup_state == FFS_SETUP_PENDING) 2600 ffs->setup_state = FFS_SETUP_CANCELLED; 2601 2602 /* 2603 * Logic of this function guarantees that there are at most four pending 2604 * evens on ffs->ev.types queue. This is important because the queue 2605 * has space for four elements only and __ffs_ep0_read_events function 2606 * depends on that limit as well. If more event types are added, those 2607 * limits have to be revisited or guaranteed to still hold. 2608 */ 2609 switch (type) { 2610 case FUNCTIONFS_RESUME: 2611 rem_type2 = FUNCTIONFS_SUSPEND; 2612 /* FALL THROUGH */ 2613 case FUNCTIONFS_SUSPEND: 2614 case FUNCTIONFS_SETUP: 2615 rem_type1 = type; 2616 /* Discard all similar events */ 2617 break; 2618 2619 case FUNCTIONFS_BIND: 2620 case FUNCTIONFS_UNBIND: 2621 case FUNCTIONFS_DISABLE: 2622 case FUNCTIONFS_ENABLE: 2623 /* Discard everything other then power management. */ 2624 rem_type1 = FUNCTIONFS_SUSPEND; 2625 rem_type2 = FUNCTIONFS_RESUME; 2626 neg = 1; 2627 break; 2628 2629 default: 2630 WARN(1, "%d: unknown event, this should not happen\n", type); 2631 return; 2632 } 2633 2634 { 2635 u8 *ev = ffs->ev.types, *out = ev; 2636 unsigned n = ffs->ev.count; 2637 for (; n; --n, ++ev) 2638 if ((*ev == rem_type1 || *ev == rem_type2) == neg) 2639 *out++ = *ev; 2640 else 2641 pr_vdebug("purging event %d\n", *ev); 2642 ffs->ev.count = out - ffs->ev.types; 2643 } 2644 2645 pr_vdebug("adding event %d\n", type); 2646 ffs->ev.types[ffs->ev.count++] = type; 2647 wake_up_locked(&ffs->ev.waitq); 2648 if (ffs->ffs_eventfd) 2649 eventfd_signal(ffs->ffs_eventfd, 1); 2650 } 2651 2652 static void ffs_event_add(struct ffs_data *ffs, 2653 enum usb_functionfs_event_type type) 2654 { 2655 unsigned long flags; 2656 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 2657 __ffs_event_add(ffs, type); 2658 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 2659 } 2660 2661 /* Bind/unbind USB function hooks *******************************************/ 2662 2663 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address) 2664 { 2665 int i; 2666 2667 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i) 2668 if (ffs->eps_addrmap[i] == endpoint_address) 2669 return i; 2670 return -ENOENT; 2671 } 2672 2673 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, 2674 struct usb_descriptor_header *desc, 2675 void *priv) 2676 { 2677 struct usb_endpoint_descriptor *ds = (void *)desc; 2678 struct ffs_function *func = priv; 2679 struct ffs_ep *ffs_ep; 2680 unsigned ep_desc_id; 2681 int idx; 2682 static const char *speed_names[] = { "full", "high", "super" }; 2683 2684 if (type != FFS_DESCRIPTOR) 2685 return 0; 2686 2687 /* 2688 * If ss_descriptors is not NULL, we are reading super speed 2689 * descriptors; if hs_descriptors is not NULL, we are reading high 2690 * speed descriptors; otherwise, we are reading full speed 2691 * descriptors. 2692 */ 2693 if (func->function.ss_descriptors) { 2694 ep_desc_id = 2; 2695 func->function.ss_descriptors[(long)valuep] = desc; 2696 } else if (func->function.hs_descriptors) { 2697 ep_desc_id = 1; 2698 func->function.hs_descriptors[(long)valuep] = desc; 2699 } else { 2700 ep_desc_id = 0; 2701 func->function.fs_descriptors[(long)valuep] = desc; 2702 } 2703 2704 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) 2705 return 0; 2706 2707 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1; 2708 if (idx < 0) 2709 return idx; 2710 2711 ffs_ep = func->eps + idx; 2712 2713 if (unlikely(ffs_ep->descs[ep_desc_id])) { 2714 pr_err("two %sspeed descriptors for EP %d\n", 2715 speed_names[ep_desc_id], 2716 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); 2717 return -EINVAL; 2718 } 2719 ffs_ep->descs[ep_desc_id] = ds; 2720 2721 ffs_dump_mem(": Original ep desc", ds, ds->bLength); 2722 if (ffs_ep->ep) { 2723 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; 2724 if (!ds->wMaxPacketSize) 2725 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; 2726 } else { 2727 struct usb_request *req; 2728 struct usb_ep *ep; 2729 u8 bEndpointAddress; 2730 2731 /* 2732 * We back up bEndpointAddress because autoconfig overwrites 2733 * it with physical endpoint address. 2734 */ 2735 bEndpointAddress = ds->bEndpointAddress; 2736 pr_vdebug("autoconfig\n"); 2737 ep = usb_ep_autoconfig(func->gadget, ds); 2738 if (unlikely(!ep)) 2739 return -ENOTSUPP; 2740 ep->driver_data = func->eps + idx; 2741 2742 req = usb_ep_alloc_request(ep, GFP_KERNEL); 2743 if (unlikely(!req)) 2744 return -ENOMEM; 2745 2746 ffs_ep->ep = ep; 2747 ffs_ep->req = req; 2748 func->eps_revmap[ds->bEndpointAddress & 2749 USB_ENDPOINT_NUMBER_MASK] = idx + 1; 2750 /* 2751 * If we use virtual address mapping, we restore 2752 * original bEndpointAddress value. 2753 */ 2754 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 2755 ds->bEndpointAddress = bEndpointAddress; 2756 } 2757 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); 2758 2759 return 0; 2760 } 2761 2762 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, 2763 struct usb_descriptor_header *desc, 2764 void *priv) 2765 { 2766 struct ffs_function *func = priv; 2767 unsigned idx; 2768 u8 newValue; 2769 2770 switch (type) { 2771 default: 2772 case FFS_DESCRIPTOR: 2773 /* Handled in previous pass by __ffs_func_bind_do_descs() */ 2774 return 0; 2775 2776 case FFS_INTERFACE: 2777 idx = *valuep; 2778 if (func->interfaces_nums[idx] < 0) { 2779 int id = usb_interface_id(func->conf, &func->function); 2780 if (unlikely(id < 0)) 2781 return id; 2782 func->interfaces_nums[idx] = id; 2783 } 2784 newValue = func->interfaces_nums[idx]; 2785 break; 2786 2787 case FFS_STRING: 2788 /* String' IDs are allocated when fsf_data is bound to cdev */ 2789 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; 2790 break; 2791 2792 case FFS_ENDPOINT: 2793 /* 2794 * USB_DT_ENDPOINT are handled in 2795 * __ffs_func_bind_do_descs(). 2796 */ 2797 if (desc->bDescriptorType == USB_DT_ENDPOINT) 2798 return 0; 2799 2800 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; 2801 if (unlikely(!func->eps[idx].ep)) 2802 return -EINVAL; 2803 2804 { 2805 struct usb_endpoint_descriptor **descs; 2806 descs = func->eps[idx].descs; 2807 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; 2808 } 2809 break; 2810 } 2811 2812 pr_vdebug("%02x -> %02x\n", *valuep, newValue); 2813 *valuep = newValue; 2814 return 0; 2815 } 2816 2817 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, 2818 struct usb_os_desc_header *h, void *data, 2819 unsigned len, void *priv) 2820 { 2821 struct ffs_function *func = priv; 2822 u8 length = 0; 2823 2824 switch (type) { 2825 case FFS_OS_DESC_EXT_COMPAT: { 2826 struct usb_ext_compat_desc *desc = data; 2827 struct usb_os_desc_table *t; 2828 2829 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; 2830 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; 2831 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID, 2832 ARRAY_SIZE(desc->CompatibleID) + 2833 ARRAY_SIZE(desc->SubCompatibleID)); 2834 length = sizeof(*desc); 2835 } 2836 break; 2837 case FFS_OS_DESC_EXT_PROP: { 2838 struct usb_ext_prop_desc *desc = data; 2839 struct usb_os_desc_table *t; 2840 struct usb_os_desc_ext_prop *ext_prop; 2841 char *ext_prop_name; 2842 char *ext_prop_data; 2843 2844 t = &func->function.os_desc_table[h->interface]; 2845 t->if_id = func->interfaces_nums[h->interface]; 2846 2847 ext_prop = func->ffs->ms_os_descs_ext_prop_avail; 2848 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); 2849 2850 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); 2851 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); 2852 ext_prop->data_len = le32_to_cpu(*(u32 *) 2853 usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); 2854 length = ext_prop->name_len + ext_prop->data_len + 14; 2855 2856 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; 2857 func->ffs->ms_os_descs_ext_prop_name_avail += 2858 ext_prop->name_len; 2859 2860 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; 2861 func->ffs->ms_os_descs_ext_prop_data_avail += 2862 ext_prop->data_len; 2863 memcpy(ext_prop_data, 2864 usb_ext_prop_data_ptr(data, ext_prop->name_len), 2865 ext_prop->data_len); 2866 /* unicode data reported to the host as "WCHAR"s */ 2867 switch (ext_prop->type) { 2868 case USB_EXT_PROP_UNICODE: 2869 case USB_EXT_PROP_UNICODE_ENV: 2870 case USB_EXT_PROP_UNICODE_LINK: 2871 case USB_EXT_PROP_UNICODE_MULTI: 2872 ext_prop->data_len *= 2; 2873 break; 2874 } 2875 ext_prop->data = ext_prop_data; 2876 2877 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), 2878 ext_prop->name_len); 2879 /* property name reported to the host as "WCHAR"s */ 2880 ext_prop->name_len *= 2; 2881 ext_prop->name = ext_prop_name; 2882 2883 t->os_desc->ext_prop_len += 2884 ext_prop->name_len + ext_prop->data_len + 14; 2885 ++t->os_desc->ext_prop_count; 2886 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); 2887 } 2888 break; 2889 default: 2890 pr_vdebug("unknown descriptor: %d\n", type); 2891 } 2892 2893 return length; 2894 } 2895 2896 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, 2897 struct usb_configuration *c) 2898 { 2899 struct ffs_function *func = ffs_func_from_usb(f); 2900 struct f_fs_opts *ffs_opts = 2901 container_of(f->fi, struct f_fs_opts, func_inst); 2902 int ret; 2903 2904 ENTER(); 2905 2906 /* 2907 * Legacy gadget triggers binding in functionfs_ready_callback, 2908 * which already uses locking; taking the same lock here would 2909 * cause a deadlock. 2910 * 2911 * Configfs-enabled gadgets however do need ffs_dev_lock. 2912 */ 2913 if (!ffs_opts->no_configfs) 2914 ffs_dev_lock(); 2915 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; 2916 func->ffs = ffs_opts->dev->ffs_data; 2917 if (!ffs_opts->no_configfs) 2918 ffs_dev_unlock(); 2919 if (ret) 2920 return ERR_PTR(ret); 2921 2922 func->conf = c; 2923 func->gadget = c->cdev->gadget; 2924 2925 /* 2926 * in drivers/usb/gadget/configfs.c:configfs_composite_bind() 2927 * configurations are bound in sequence with list_for_each_entry, 2928 * in each configuration its functions are bound in sequence 2929 * with list_for_each_entry, so we assume no race condition 2930 * with regard to ffs_opts->bound access 2931 */ 2932 if (!ffs_opts->refcnt) { 2933 ret = functionfs_bind(func->ffs, c->cdev); 2934 if (ret) 2935 return ERR_PTR(ret); 2936 } 2937 ffs_opts->refcnt++; 2938 func->function.strings = func->ffs->stringtabs; 2939 2940 return ffs_opts; 2941 } 2942 2943 static int _ffs_func_bind(struct usb_configuration *c, 2944 struct usb_function *f) 2945 { 2946 struct ffs_function *func = ffs_func_from_usb(f); 2947 struct ffs_data *ffs = func->ffs; 2948 2949 const int full = !!func->ffs->fs_descs_count; 2950 const int high = gadget_is_dualspeed(func->gadget) && 2951 func->ffs->hs_descs_count; 2952 const int super = gadget_is_superspeed(func->gadget) && 2953 func->ffs->ss_descs_count; 2954 2955 int fs_len, hs_len, ss_len, ret, i; 2956 struct ffs_ep *eps_ptr; 2957 2958 /* Make it a single chunk, less management later on */ 2959 vla_group(d); 2960 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); 2961 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, 2962 full ? ffs->fs_descs_count + 1 : 0); 2963 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, 2964 high ? ffs->hs_descs_count + 1 : 0); 2965 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, 2966 super ? ffs->ss_descs_count + 1 : 0); 2967 vla_item_with_sz(d, short, inums, ffs->interfaces_count); 2968 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, 2969 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2970 vla_item_with_sz(d, char[16], ext_compat, 2971 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2972 vla_item_with_sz(d, struct usb_os_desc, os_desc, 2973 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2974 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, 2975 ffs->ms_os_descs_ext_prop_count); 2976 vla_item_with_sz(d, char, ext_prop_name, 2977 ffs->ms_os_descs_ext_prop_name_len); 2978 vla_item_with_sz(d, char, ext_prop_data, 2979 ffs->ms_os_descs_ext_prop_data_len); 2980 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); 2981 char *vlabuf; 2982 2983 ENTER(); 2984 2985 /* Has descriptors only for speeds gadget does not support */ 2986 if (unlikely(!(full | high | super))) 2987 return -ENOTSUPP; 2988 2989 /* Allocate a single chunk, less management later on */ 2990 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); 2991 if (unlikely(!vlabuf)) 2992 return -ENOMEM; 2993 2994 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); 2995 ffs->ms_os_descs_ext_prop_name_avail = 2996 vla_ptr(vlabuf, d, ext_prop_name); 2997 ffs->ms_os_descs_ext_prop_data_avail = 2998 vla_ptr(vlabuf, d, ext_prop_data); 2999 3000 /* Copy descriptors */ 3001 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, 3002 ffs->raw_descs_length); 3003 3004 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); 3005 eps_ptr = vla_ptr(vlabuf, d, eps); 3006 for (i = 0; i < ffs->eps_count; i++) 3007 eps_ptr[i].num = -1; 3008 3009 /* Save pointers 3010 * d_eps == vlabuf, func->eps used to kfree vlabuf later 3011 */ 3012 func->eps = vla_ptr(vlabuf, d, eps); 3013 func->interfaces_nums = vla_ptr(vlabuf, d, inums); 3014 3015 /* 3016 * Go through all the endpoint descriptors and allocate 3017 * endpoints first, so that later we can rewrite the endpoint 3018 * numbers without worrying that it may be described later on. 3019 */ 3020 if (likely(full)) { 3021 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); 3022 fs_len = ffs_do_descs(ffs->fs_descs_count, 3023 vla_ptr(vlabuf, d, raw_descs), 3024 d_raw_descs__sz, 3025 __ffs_func_bind_do_descs, func); 3026 if (unlikely(fs_len < 0)) { 3027 ret = fs_len; 3028 goto error; 3029 } 3030 } else { 3031 fs_len = 0; 3032 } 3033 3034 if (likely(high)) { 3035 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); 3036 hs_len = ffs_do_descs(ffs->hs_descs_count, 3037 vla_ptr(vlabuf, d, raw_descs) + fs_len, 3038 d_raw_descs__sz - fs_len, 3039 __ffs_func_bind_do_descs, func); 3040 if (unlikely(hs_len < 0)) { 3041 ret = hs_len; 3042 goto error; 3043 } 3044 } else { 3045 hs_len = 0; 3046 } 3047 3048 if (likely(super)) { 3049 func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs); 3050 ss_len = ffs_do_descs(ffs->ss_descs_count, 3051 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, 3052 d_raw_descs__sz - fs_len - hs_len, 3053 __ffs_func_bind_do_descs, func); 3054 if (unlikely(ss_len < 0)) { 3055 ret = ss_len; 3056 goto error; 3057 } 3058 } else { 3059 ss_len = 0; 3060 } 3061 3062 /* 3063 * Now handle interface numbers allocation and interface and 3064 * endpoint numbers rewriting. We can do that in one go 3065 * now. 3066 */ 3067 ret = ffs_do_descs(ffs->fs_descs_count + 3068 (high ? ffs->hs_descs_count : 0) + 3069 (super ? ffs->ss_descs_count : 0), 3070 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, 3071 __ffs_func_bind_do_nums, func); 3072 if (unlikely(ret < 0)) 3073 goto error; 3074 3075 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); 3076 if (c->cdev->use_os_string) { 3077 for (i = 0; i < ffs->interfaces_count; ++i) { 3078 struct usb_os_desc *desc; 3079 3080 desc = func->function.os_desc_table[i].os_desc = 3081 vla_ptr(vlabuf, d, os_desc) + 3082 i * sizeof(struct usb_os_desc); 3083 desc->ext_compat_id = 3084 vla_ptr(vlabuf, d, ext_compat) + i * 16; 3085 INIT_LIST_HEAD(&desc->ext_prop); 3086 } 3087 ret = ffs_do_os_descs(ffs->ms_os_descs_count, 3088 vla_ptr(vlabuf, d, raw_descs) + 3089 fs_len + hs_len + ss_len, 3090 d_raw_descs__sz - fs_len - hs_len - 3091 ss_len, 3092 __ffs_func_bind_do_os_desc, func); 3093 if (unlikely(ret < 0)) 3094 goto error; 3095 } 3096 func->function.os_desc_n = 3097 c->cdev->use_os_string ? ffs->interfaces_count : 0; 3098 3099 /* And we're done */ 3100 ffs_event_add(ffs, FUNCTIONFS_BIND); 3101 return 0; 3102 3103 error: 3104 /* XXX Do we need to release all claimed endpoints here? */ 3105 return ret; 3106 } 3107 3108 static int ffs_func_bind(struct usb_configuration *c, 3109 struct usb_function *f) 3110 { 3111 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); 3112 struct ffs_function *func = ffs_func_from_usb(f); 3113 int ret; 3114 3115 if (IS_ERR(ffs_opts)) 3116 return PTR_ERR(ffs_opts); 3117 3118 ret = _ffs_func_bind(c, f); 3119 if (ret && !--ffs_opts->refcnt) 3120 functionfs_unbind(func->ffs); 3121 3122 return ret; 3123 } 3124 3125 3126 /* Other USB function hooks *************************************************/ 3127 3128 static void ffs_reset_work(struct work_struct *work) 3129 { 3130 struct ffs_data *ffs = container_of(work, 3131 struct ffs_data, reset_work); 3132 ffs_data_reset(ffs); 3133 } 3134 3135 static int ffs_func_set_alt(struct usb_function *f, 3136 unsigned interface, unsigned alt) 3137 { 3138 struct ffs_function *func = ffs_func_from_usb(f); 3139 struct ffs_data *ffs = func->ffs; 3140 int ret = 0, intf; 3141 3142 if (alt != (unsigned)-1) { 3143 intf = ffs_func_revmap_intf(func, interface); 3144 if (unlikely(intf < 0)) 3145 return intf; 3146 } 3147 3148 if (ffs->func) 3149 ffs_func_eps_disable(ffs->func); 3150 3151 if (ffs->state == FFS_DEACTIVATED) { 3152 ffs->state = FFS_CLOSING; 3153 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3154 schedule_work(&ffs->reset_work); 3155 return -ENODEV; 3156 } 3157 3158 if (ffs->state != FFS_ACTIVE) 3159 return -ENODEV; 3160 3161 if (alt == (unsigned)-1) { 3162 ffs->func = NULL; 3163 ffs_event_add(ffs, FUNCTIONFS_DISABLE); 3164 return 0; 3165 } 3166 3167 ffs->func = func; 3168 ret = ffs_func_eps_enable(func); 3169 if (likely(ret >= 0)) 3170 ffs_event_add(ffs, FUNCTIONFS_ENABLE); 3171 return ret; 3172 } 3173 3174 static void ffs_func_disable(struct usb_function *f) 3175 { 3176 ffs_func_set_alt(f, 0, (unsigned)-1); 3177 } 3178 3179 static int ffs_func_setup(struct usb_function *f, 3180 const struct usb_ctrlrequest *creq) 3181 { 3182 struct ffs_function *func = ffs_func_from_usb(f); 3183 struct ffs_data *ffs = func->ffs; 3184 unsigned long flags; 3185 int ret; 3186 3187 ENTER(); 3188 3189 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); 3190 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); 3191 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); 3192 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); 3193 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); 3194 3195 /* 3196 * Most requests directed to interface go through here 3197 * (notable exceptions are set/get interface) so we need to 3198 * handle them. All other either handled by composite or 3199 * passed to usb_configuration->setup() (if one is set). No 3200 * matter, we will handle requests directed to endpoint here 3201 * as well (as it's straightforward). Other request recipient 3202 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP 3203 * is being used. 3204 */ 3205 if (ffs->state != FFS_ACTIVE) 3206 return -ENODEV; 3207 3208 switch (creq->bRequestType & USB_RECIP_MASK) { 3209 case USB_RECIP_INTERFACE: 3210 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); 3211 if (unlikely(ret < 0)) 3212 return ret; 3213 break; 3214 3215 case USB_RECIP_ENDPOINT: 3216 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); 3217 if (unlikely(ret < 0)) 3218 return ret; 3219 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3220 ret = func->ffs->eps_addrmap[ret]; 3221 break; 3222 3223 default: 3224 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP) 3225 ret = le16_to_cpu(creq->wIndex); 3226 else 3227 return -EOPNOTSUPP; 3228 } 3229 3230 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3231 ffs->ev.setup = *creq; 3232 ffs->ev.setup.wIndex = cpu_to_le16(ret); 3233 __ffs_event_add(ffs, FUNCTIONFS_SETUP); 3234 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3235 3236 return 0; 3237 } 3238 3239 static bool ffs_func_req_match(struct usb_function *f, 3240 const struct usb_ctrlrequest *creq, 3241 bool config0) 3242 { 3243 struct ffs_function *func = ffs_func_from_usb(f); 3244 3245 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP)) 3246 return false; 3247 3248 switch (creq->bRequestType & USB_RECIP_MASK) { 3249 case USB_RECIP_INTERFACE: 3250 return (ffs_func_revmap_intf(func, 3251 le16_to_cpu(creq->wIndex)) >= 0); 3252 case USB_RECIP_ENDPOINT: 3253 return (ffs_func_revmap_ep(func, 3254 le16_to_cpu(creq->wIndex)) >= 0); 3255 default: 3256 return (bool) (func->ffs->user_flags & 3257 FUNCTIONFS_ALL_CTRL_RECIP); 3258 } 3259 } 3260 3261 static void ffs_func_suspend(struct usb_function *f) 3262 { 3263 ENTER(); 3264 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); 3265 } 3266 3267 static void ffs_func_resume(struct usb_function *f) 3268 { 3269 ENTER(); 3270 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); 3271 } 3272 3273 3274 /* Endpoint and interface numbers reverse mapping ***************************/ 3275 3276 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) 3277 { 3278 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; 3279 return num ? num : -EDOM; 3280 } 3281 3282 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) 3283 { 3284 short *nums = func->interfaces_nums; 3285 unsigned count = func->ffs->interfaces_count; 3286 3287 for (; count; --count, ++nums) { 3288 if (*nums >= 0 && *nums == intf) 3289 return nums - func->interfaces_nums; 3290 } 3291 3292 return -EDOM; 3293 } 3294 3295 3296 /* Devices management *******************************************************/ 3297 3298 static LIST_HEAD(ffs_devices); 3299 3300 static struct ffs_dev *_ffs_do_find_dev(const char *name) 3301 { 3302 struct ffs_dev *dev; 3303 3304 if (!name) 3305 return NULL; 3306 3307 list_for_each_entry(dev, &ffs_devices, entry) { 3308 if (strcmp(dev->name, name) == 0) 3309 return dev; 3310 } 3311 3312 return NULL; 3313 } 3314 3315 /* 3316 * ffs_lock must be taken by the caller of this function 3317 */ 3318 static struct ffs_dev *_ffs_get_single_dev(void) 3319 { 3320 struct ffs_dev *dev; 3321 3322 if (list_is_singular(&ffs_devices)) { 3323 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); 3324 if (dev->single) 3325 return dev; 3326 } 3327 3328 return NULL; 3329 } 3330 3331 /* 3332 * ffs_lock must be taken by the caller of this function 3333 */ 3334 static struct ffs_dev *_ffs_find_dev(const char *name) 3335 { 3336 struct ffs_dev *dev; 3337 3338 dev = _ffs_get_single_dev(); 3339 if (dev) 3340 return dev; 3341 3342 return _ffs_do_find_dev(name); 3343 } 3344 3345 /* Configfs support *********************************************************/ 3346 3347 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) 3348 { 3349 return container_of(to_config_group(item), struct f_fs_opts, 3350 func_inst.group); 3351 } 3352 3353 static void ffs_attr_release(struct config_item *item) 3354 { 3355 struct f_fs_opts *opts = to_ffs_opts(item); 3356 3357 usb_put_function_instance(&opts->func_inst); 3358 } 3359 3360 static struct configfs_item_operations ffs_item_ops = { 3361 .release = ffs_attr_release, 3362 }; 3363 3364 static struct config_item_type ffs_func_type = { 3365 .ct_item_ops = &ffs_item_ops, 3366 .ct_owner = THIS_MODULE, 3367 }; 3368 3369 3370 /* Function registration interface ******************************************/ 3371 3372 static void ffs_free_inst(struct usb_function_instance *f) 3373 { 3374 struct f_fs_opts *opts; 3375 3376 opts = to_f_fs_opts(f); 3377 ffs_dev_lock(); 3378 _ffs_free_dev(opts->dev); 3379 ffs_dev_unlock(); 3380 kfree(opts); 3381 } 3382 3383 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) 3384 { 3385 if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name)) 3386 return -ENAMETOOLONG; 3387 return ffs_name_dev(to_f_fs_opts(fi)->dev, name); 3388 } 3389 3390 static struct usb_function_instance *ffs_alloc_inst(void) 3391 { 3392 struct f_fs_opts *opts; 3393 struct ffs_dev *dev; 3394 3395 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 3396 if (!opts) 3397 return ERR_PTR(-ENOMEM); 3398 3399 opts->func_inst.set_inst_name = ffs_set_inst_name; 3400 opts->func_inst.free_func_inst = ffs_free_inst; 3401 ffs_dev_lock(); 3402 dev = _ffs_alloc_dev(); 3403 ffs_dev_unlock(); 3404 if (IS_ERR(dev)) { 3405 kfree(opts); 3406 return ERR_CAST(dev); 3407 } 3408 opts->dev = dev; 3409 dev->opts = opts; 3410 3411 config_group_init_type_name(&opts->func_inst.group, "", 3412 &ffs_func_type); 3413 return &opts->func_inst; 3414 } 3415 3416 static void ffs_free(struct usb_function *f) 3417 { 3418 kfree(ffs_func_from_usb(f)); 3419 } 3420 3421 static void ffs_func_unbind(struct usb_configuration *c, 3422 struct usb_function *f) 3423 { 3424 struct ffs_function *func = ffs_func_from_usb(f); 3425 struct ffs_data *ffs = func->ffs; 3426 struct f_fs_opts *opts = 3427 container_of(f->fi, struct f_fs_opts, func_inst); 3428 struct ffs_ep *ep = func->eps; 3429 unsigned count = ffs->eps_count; 3430 unsigned long flags; 3431 3432 ENTER(); 3433 if (ffs->func == func) { 3434 ffs_func_eps_disable(func); 3435 ffs->func = NULL; 3436 } 3437 3438 if (!--opts->refcnt) 3439 functionfs_unbind(ffs); 3440 3441 /* cleanup after autoconfig */ 3442 spin_lock_irqsave(&func->ffs->eps_lock, flags); 3443 while (count--) { 3444 if (ep->ep && ep->req) 3445 usb_ep_free_request(ep->ep, ep->req); 3446 ep->req = NULL; 3447 ++ep; 3448 } 3449 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 3450 kfree(func->eps); 3451 func->eps = NULL; 3452 /* 3453 * eps, descriptors and interfaces_nums are allocated in the 3454 * same chunk so only one free is required. 3455 */ 3456 func->function.fs_descriptors = NULL; 3457 func->function.hs_descriptors = NULL; 3458 func->function.ss_descriptors = NULL; 3459 func->interfaces_nums = NULL; 3460 3461 ffs_event_add(ffs, FUNCTIONFS_UNBIND); 3462 } 3463 3464 static struct usb_function *ffs_alloc(struct usb_function_instance *fi) 3465 { 3466 struct ffs_function *func; 3467 3468 ENTER(); 3469 3470 func = kzalloc(sizeof(*func), GFP_KERNEL); 3471 if (unlikely(!func)) 3472 return ERR_PTR(-ENOMEM); 3473 3474 func->function.name = "Function FS Gadget"; 3475 3476 func->function.bind = ffs_func_bind; 3477 func->function.unbind = ffs_func_unbind; 3478 func->function.set_alt = ffs_func_set_alt; 3479 func->function.disable = ffs_func_disable; 3480 func->function.setup = ffs_func_setup; 3481 func->function.req_match = ffs_func_req_match; 3482 func->function.suspend = ffs_func_suspend; 3483 func->function.resume = ffs_func_resume; 3484 func->function.free_func = ffs_free; 3485 3486 return &func->function; 3487 } 3488 3489 /* 3490 * ffs_lock must be taken by the caller of this function 3491 */ 3492 static struct ffs_dev *_ffs_alloc_dev(void) 3493 { 3494 struct ffs_dev *dev; 3495 int ret; 3496 3497 if (_ffs_get_single_dev()) 3498 return ERR_PTR(-EBUSY); 3499 3500 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3501 if (!dev) 3502 return ERR_PTR(-ENOMEM); 3503 3504 if (list_empty(&ffs_devices)) { 3505 ret = functionfs_init(); 3506 if (ret) { 3507 kfree(dev); 3508 return ERR_PTR(ret); 3509 } 3510 } 3511 3512 list_add(&dev->entry, &ffs_devices); 3513 3514 return dev; 3515 } 3516 3517 int ffs_name_dev(struct ffs_dev *dev, const char *name) 3518 { 3519 struct ffs_dev *existing; 3520 int ret = 0; 3521 3522 ffs_dev_lock(); 3523 3524 existing = _ffs_do_find_dev(name); 3525 if (!existing) 3526 strlcpy(dev->name, name, ARRAY_SIZE(dev->name)); 3527 else if (existing != dev) 3528 ret = -EBUSY; 3529 3530 ffs_dev_unlock(); 3531 3532 return ret; 3533 } 3534 EXPORT_SYMBOL_GPL(ffs_name_dev); 3535 3536 int ffs_single_dev(struct ffs_dev *dev) 3537 { 3538 int ret; 3539 3540 ret = 0; 3541 ffs_dev_lock(); 3542 3543 if (!list_is_singular(&ffs_devices)) 3544 ret = -EBUSY; 3545 else 3546 dev->single = true; 3547 3548 ffs_dev_unlock(); 3549 return ret; 3550 } 3551 EXPORT_SYMBOL_GPL(ffs_single_dev); 3552 3553 /* 3554 * ffs_lock must be taken by the caller of this function 3555 */ 3556 static void _ffs_free_dev(struct ffs_dev *dev) 3557 { 3558 list_del(&dev->entry); 3559 3560 /* Clear the private_data pointer to stop incorrect dev access */ 3561 if (dev->ffs_data) 3562 dev->ffs_data->private_data = NULL; 3563 3564 kfree(dev); 3565 if (list_empty(&ffs_devices)) 3566 functionfs_cleanup(); 3567 } 3568 3569 static void *ffs_acquire_dev(const char *dev_name) 3570 { 3571 struct ffs_dev *ffs_dev; 3572 3573 ENTER(); 3574 ffs_dev_lock(); 3575 3576 ffs_dev = _ffs_find_dev(dev_name); 3577 if (!ffs_dev) 3578 ffs_dev = ERR_PTR(-ENOENT); 3579 else if (ffs_dev->mounted) 3580 ffs_dev = ERR_PTR(-EBUSY); 3581 else if (ffs_dev->ffs_acquire_dev_callback && 3582 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) 3583 ffs_dev = ERR_PTR(-ENOENT); 3584 else 3585 ffs_dev->mounted = true; 3586 3587 ffs_dev_unlock(); 3588 return ffs_dev; 3589 } 3590 3591 static void ffs_release_dev(struct ffs_data *ffs_data) 3592 { 3593 struct ffs_dev *ffs_dev; 3594 3595 ENTER(); 3596 ffs_dev_lock(); 3597 3598 ffs_dev = ffs_data->private_data; 3599 if (ffs_dev) { 3600 ffs_dev->mounted = false; 3601 3602 if (ffs_dev->ffs_release_dev_callback) 3603 ffs_dev->ffs_release_dev_callback(ffs_dev); 3604 } 3605 3606 ffs_dev_unlock(); 3607 } 3608 3609 static int ffs_ready(struct ffs_data *ffs) 3610 { 3611 struct ffs_dev *ffs_obj; 3612 int ret = 0; 3613 3614 ENTER(); 3615 ffs_dev_lock(); 3616 3617 ffs_obj = ffs->private_data; 3618 if (!ffs_obj) { 3619 ret = -EINVAL; 3620 goto done; 3621 } 3622 if (WARN_ON(ffs_obj->desc_ready)) { 3623 ret = -EBUSY; 3624 goto done; 3625 } 3626 3627 ffs_obj->desc_ready = true; 3628 ffs_obj->ffs_data = ffs; 3629 3630 if (ffs_obj->ffs_ready_callback) { 3631 ret = ffs_obj->ffs_ready_callback(ffs); 3632 if (ret) 3633 goto done; 3634 } 3635 3636 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); 3637 done: 3638 ffs_dev_unlock(); 3639 return ret; 3640 } 3641 3642 static void ffs_closed(struct ffs_data *ffs) 3643 { 3644 struct ffs_dev *ffs_obj; 3645 struct f_fs_opts *opts; 3646 struct config_item *ci; 3647 3648 ENTER(); 3649 ffs_dev_lock(); 3650 3651 ffs_obj = ffs->private_data; 3652 if (!ffs_obj) 3653 goto done; 3654 3655 ffs_obj->desc_ready = false; 3656 3657 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) && 3658 ffs_obj->ffs_closed_callback) 3659 ffs_obj->ffs_closed_callback(ffs); 3660 3661 if (ffs_obj->opts) 3662 opts = ffs_obj->opts; 3663 else 3664 goto done; 3665 3666 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent 3667 || !kref_read(&opts->func_inst.group.cg_item.ci_kref)) 3668 goto done; 3669 3670 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent; 3671 ffs_dev_unlock(); 3672 3673 unregister_gadget_item(ci); 3674 return; 3675 done: 3676 ffs_dev_unlock(); 3677 } 3678 3679 /* Misc helper functions ****************************************************/ 3680 3681 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 3682 { 3683 return nonblock 3684 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN 3685 : mutex_lock_interruptible(mutex); 3686 } 3687 3688 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 3689 { 3690 char *data; 3691 3692 if (unlikely(!len)) 3693 return NULL; 3694 3695 data = kmalloc(len, GFP_KERNEL); 3696 if (unlikely(!data)) 3697 return ERR_PTR(-ENOMEM); 3698 3699 if (unlikely(copy_from_user(data, buf, len))) { 3700 kfree(data); 3701 return ERR_PTR(-EFAULT); 3702 } 3703 3704 pr_vdebug("Buffer from user space:\n"); 3705 ffs_dump_mem("", data, len); 3706 3707 return data; 3708 } 3709 3710 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); 3711 MODULE_LICENSE("GPL"); 3712 MODULE_AUTHOR("Michal Nazarewicz"); 3713