1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * f_fs.c -- user mode file system API for USB composite function controllers 4 * 5 * Copyright (C) 2010 Samsung Electronics 6 * Author: Michal Nazarewicz <mina86@mina86.com> 7 * 8 * Based on inode.c (GadgetFS) which was: 9 * Copyright (C) 2003-2004 David Brownell 10 * Copyright (C) 2003 Agilent Technologies 11 */ 12 13 14 /* #define DEBUG */ 15 /* #define VERBOSE_DEBUG */ 16 17 #include <linux/blkdev.h> 18 #include <linux/pagemap.h> 19 #include <linux/export.h> 20 #include <linux/hid.h> 21 #include <linux/module.h> 22 #include <linux/sched/signal.h> 23 #include <linux/uio.h> 24 #include <asm/unaligned.h> 25 26 #include <linux/usb/composite.h> 27 #include <linux/usb/functionfs.h> 28 29 #include <linux/aio.h> 30 #include <linux/mmu_context.h> 31 #include <linux/poll.h> 32 #include <linux/eventfd.h> 33 34 #include "u_fs.h" 35 #include "u_f.h" 36 #include "u_os_desc.h" 37 #include "configfs.h" 38 39 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ 40 41 /* Reference counter handling */ 42 static void ffs_data_get(struct ffs_data *ffs); 43 static void ffs_data_put(struct ffs_data *ffs); 44 /* Creates new ffs_data object. */ 45 static struct ffs_data *__must_check ffs_data_new(const char *dev_name) 46 __attribute__((malloc)); 47 48 /* Opened counter handling. */ 49 static void ffs_data_opened(struct ffs_data *ffs); 50 static void ffs_data_closed(struct ffs_data *ffs); 51 52 /* Called with ffs->mutex held; take over ownership of data. */ 53 static int __must_check 54 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); 55 static int __must_check 56 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); 57 58 59 /* The function structure ***************************************************/ 60 61 struct ffs_ep; 62 63 struct ffs_function { 64 struct usb_configuration *conf; 65 struct usb_gadget *gadget; 66 struct ffs_data *ffs; 67 68 struct ffs_ep *eps; 69 u8 eps_revmap[16]; 70 short *interfaces_nums; 71 72 struct usb_function function; 73 }; 74 75 76 static struct ffs_function *ffs_func_from_usb(struct usb_function *f) 77 { 78 return container_of(f, struct ffs_function, function); 79 } 80 81 82 static inline enum ffs_setup_state 83 ffs_setup_state_clear_cancelled(struct ffs_data *ffs) 84 { 85 return (enum ffs_setup_state) 86 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); 87 } 88 89 90 static void ffs_func_eps_disable(struct ffs_function *func); 91 static int __must_check ffs_func_eps_enable(struct ffs_function *func); 92 93 static int ffs_func_bind(struct usb_configuration *, 94 struct usb_function *); 95 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); 96 static void ffs_func_disable(struct usb_function *); 97 static int ffs_func_setup(struct usb_function *, 98 const struct usb_ctrlrequest *); 99 static bool ffs_func_req_match(struct usb_function *, 100 const struct usb_ctrlrequest *, 101 bool config0); 102 static void ffs_func_suspend(struct usb_function *); 103 static void ffs_func_resume(struct usb_function *); 104 105 106 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); 107 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); 108 109 110 /* The endpoints structures *************************************************/ 111 112 struct ffs_ep { 113 struct usb_ep *ep; /* P: ffs->eps_lock */ 114 struct usb_request *req; /* P: epfile->mutex */ 115 116 /* [0]: full speed, [1]: high speed, [2]: super speed */ 117 struct usb_endpoint_descriptor *descs[3]; 118 119 u8 num; 120 121 int status; /* P: epfile->mutex */ 122 }; 123 124 struct ffs_epfile { 125 /* Protects ep->ep and ep->req. */ 126 struct mutex mutex; 127 128 struct ffs_data *ffs; 129 struct ffs_ep *ep; /* P: ffs->eps_lock */ 130 131 struct dentry *dentry; 132 133 /* 134 * Buffer for holding data from partial reads which may happen since 135 * we’re rounding user read requests to a multiple of a max packet size. 136 * 137 * The pointer is initialised with NULL value and may be set by 138 * __ffs_epfile_read_data function to point to a temporary buffer. 139 * 140 * In normal operation, calls to __ffs_epfile_read_buffered will consume 141 * data from said buffer and eventually free it. Importantly, while the 142 * function is using the buffer, it sets the pointer to NULL. This is 143 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered 144 * can never run concurrently (they are synchronised by epfile->mutex) 145 * so the latter will not assign a new value to the pointer. 146 * 147 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is 148 * valid) and sets the pointer to READ_BUFFER_DROP value. This special 149 * value is crux of the synchronisation between ffs_func_eps_disable and 150 * __ffs_epfile_read_data. 151 * 152 * Once __ffs_epfile_read_data is about to finish it will try to set the 153 * pointer back to its old value (as described above), but seeing as the 154 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free 155 * the buffer. 156 * 157 * == State transitions == 158 * 159 * • ptr == NULL: (initial state) 160 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP 161 * ◦ __ffs_epfile_read_buffered: nop 162 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf 163 * ◦ reading finishes: n/a, not in ‘and reading’ state 164 * • ptr == DROP: 165 * ◦ __ffs_epfile_read_buffer_free: nop 166 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL 167 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop 168 * ◦ reading finishes: n/a, not in ‘and reading’ state 169 * • ptr == buf: 170 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP 171 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading 172 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered 173 * is always called first 174 * ◦ reading finishes: n/a, not in ‘and reading’ state 175 * • ptr == NULL and reading: 176 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading 177 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 178 * ◦ __ffs_epfile_read_data: n/a, mutex is held 179 * ◦ reading finishes and … 180 * … all data read: free buf, go to ptr == NULL 181 * … otherwise: go to ptr == buf and reading 182 * • ptr == DROP and reading: 183 * ◦ __ffs_epfile_read_buffer_free: nop 184 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 185 * ◦ __ffs_epfile_read_data: n/a, mutex is held 186 * ◦ reading finishes: free buf, go to ptr == DROP 187 */ 188 struct ffs_buffer *read_buffer; 189 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN)) 190 191 char name[5]; 192 193 unsigned char in; /* P: ffs->eps_lock */ 194 unsigned char isoc; /* P: ffs->eps_lock */ 195 196 unsigned char _pad; 197 }; 198 199 struct ffs_buffer { 200 size_t length; 201 char *data; 202 char storage[]; 203 }; 204 205 /* ffs_io_data structure ***************************************************/ 206 207 struct ffs_io_data { 208 bool aio; 209 bool read; 210 211 struct kiocb *kiocb; 212 struct iov_iter data; 213 const void *to_free; 214 char *buf; 215 216 struct mm_struct *mm; 217 struct work_struct work; 218 219 struct usb_ep *ep; 220 struct usb_request *req; 221 222 struct ffs_data *ffs; 223 }; 224 225 struct ffs_desc_helper { 226 struct ffs_data *ffs; 227 unsigned interfaces_count; 228 unsigned eps_count; 229 }; 230 231 static int __must_check ffs_epfiles_create(struct ffs_data *ffs); 232 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count); 233 234 static struct dentry * 235 ffs_sb_create_file(struct super_block *sb, const char *name, void *data, 236 const struct file_operations *fops); 237 238 /* Devices management *******************************************************/ 239 240 DEFINE_MUTEX(ffs_lock); 241 EXPORT_SYMBOL_GPL(ffs_lock); 242 243 static struct ffs_dev *_ffs_find_dev(const char *name); 244 static struct ffs_dev *_ffs_alloc_dev(void); 245 static void _ffs_free_dev(struct ffs_dev *dev); 246 static void *ffs_acquire_dev(const char *dev_name); 247 static void ffs_release_dev(struct ffs_data *ffs_data); 248 static int ffs_ready(struct ffs_data *ffs); 249 static void ffs_closed(struct ffs_data *ffs); 250 251 /* Misc helper functions ****************************************************/ 252 253 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 254 __attribute__((warn_unused_result, nonnull)); 255 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 256 __attribute__((warn_unused_result, nonnull)); 257 258 259 /* Control file aka ep0 *****************************************************/ 260 261 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) 262 { 263 struct ffs_data *ffs = req->context; 264 265 complete(&ffs->ep0req_completion); 266 } 267 268 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) 269 __releases(&ffs->ev.waitq.lock) 270 { 271 struct usb_request *req = ffs->ep0req; 272 int ret; 273 274 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); 275 276 spin_unlock_irq(&ffs->ev.waitq.lock); 277 278 req->buf = data; 279 req->length = len; 280 281 /* 282 * UDC layer requires to provide a buffer even for ZLP, but should 283 * not use it at all. Let's provide some poisoned pointer to catch 284 * possible bug in the driver. 285 */ 286 if (req->buf == NULL) 287 req->buf = (void *)0xDEADBABE; 288 289 reinit_completion(&ffs->ep0req_completion); 290 291 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); 292 if (unlikely(ret < 0)) 293 return ret; 294 295 ret = wait_for_completion_interruptible(&ffs->ep0req_completion); 296 if (unlikely(ret)) { 297 usb_ep_dequeue(ffs->gadget->ep0, req); 298 return -EINTR; 299 } 300 301 ffs->setup_state = FFS_NO_SETUP; 302 return req->status ? req->status : req->actual; 303 } 304 305 static int __ffs_ep0_stall(struct ffs_data *ffs) 306 { 307 if (ffs->ev.can_stall) { 308 pr_vdebug("ep0 stall\n"); 309 usb_ep_set_halt(ffs->gadget->ep0); 310 ffs->setup_state = FFS_NO_SETUP; 311 return -EL2HLT; 312 } else { 313 pr_debug("bogus ep0 stall!\n"); 314 return -ESRCH; 315 } 316 } 317 318 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, 319 size_t len, loff_t *ptr) 320 { 321 struct ffs_data *ffs = file->private_data; 322 ssize_t ret; 323 char *data; 324 325 ENTER(); 326 327 /* Fast check if setup was canceled */ 328 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 329 return -EIDRM; 330 331 /* Acquire mutex */ 332 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 333 if (unlikely(ret < 0)) 334 return ret; 335 336 /* Check state */ 337 switch (ffs->state) { 338 case FFS_READ_DESCRIPTORS: 339 case FFS_READ_STRINGS: 340 /* Copy data */ 341 if (unlikely(len < 16)) { 342 ret = -EINVAL; 343 break; 344 } 345 346 data = ffs_prepare_buffer(buf, len); 347 if (IS_ERR(data)) { 348 ret = PTR_ERR(data); 349 break; 350 } 351 352 /* Handle data */ 353 if (ffs->state == FFS_READ_DESCRIPTORS) { 354 pr_info("read descriptors\n"); 355 ret = __ffs_data_got_descs(ffs, data, len); 356 if (unlikely(ret < 0)) 357 break; 358 359 ffs->state = FFS_READ_STRINGS; 360 ret = len; 361 } else { 362 pr_info("read strings\n"); 363 ret = __ffs_data_got_strings(ffs, data, len); 364 if (unlikely(ret < 0)) 365 break; 366 367 ret = ffs_epfiles_create(ffs); 368 if (unlikely(ret)) { 369 ffs->state = FFS_CLOSING; 370 break; 371 } 372 373 ffs->state = FFS_ACTIVE; 374 mutex_unlock(&ffs->mutex); 375 376 ret = ffs_ready(ffs); 377 if (unlikely(ret < 0)) { 378 ffs->state = FFS_CLOSING; 379 return ret; 380 } 381 382 return len; 383 } 384 break; 385 386 case FFS_ACTIVE: 387 data = NULL; 388 /* 389 * We're called from user space, we can use _irq 390 * rather then _irqsave 391 */ 392 spin_lock_irq(&ffs->ev.waitq.lock); 393 switch (ffs_setup_state_clear_cancelled(ffs)) { 394 case FFS_SETUP_CANCELLED: 395 ret = -EIDRM; 396 goto done_spin; 397 398 case FFS_NO_SETUP: 399 ret = -ESRCH; 400 goto done_spin; 401 402 case FFS_SETUP_PENDING: 403 break; 404 } 405 406 /* FFS_SETUP_PENDING */ 407 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { 408 spin_unlock_irq(&ffs->ev.waitq.lock); 409 ret = __ffs_ep0_stall(ffs); 410 break; 411 } 412 413 /* FFS_SETUP_PENDING and not stall */ 414 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 415 416 spin_unlock_irq(&ffs->ev.waitq.lock); 417 418 data = ffs_prepare_buffer(buf, len); 419 if (IS_ERR(data)) { 420 ret = PTR_ERR(data); 421 break; 422 } 423 424 spin_lock_irq(&ffs->ev.waitq.lock); 425 426 /* 427 * We are guaranteed to be still in FFS_ACTIVE state 428 * but the state of setup could have changed from 429 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need 430 * to check for that. If that happened we copied data 431 * from user space in vain but it's unlikely. 432 * 433 * For sure we are not in FFS_NO_SETUP since this is 434 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP 435 * transition can be performed and it's protected by 436 * mutex. 437 */ 438 if (ffs_setup_state_clear_cancelled(ffs) == 439 FFS_SETUP_CANCELLED) { 440 ret = -EIDRM; 441 done_spin: 442 spin_unlock_irq(&ffs->ev.waitq.lock); 443 } else { 444 /* unlocks spinlock */ 445 ret = __ffs_ep0_queue_wait(ffs, data, len); 446 } 447 kfree(data); 448 break; 449 450 default: 451 ret = -EBADFD; 452 break; 453 } 454 455 mutex_unlock(&ffs->mutex); 456 return ret; 457 } 458 459 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */ 460 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, 461 size_t n) 462 __releases(&ffs->ev.waitq.lock) 463 { 464 /* 465 * n cannot be bigger than ffs->ev.count, which cannot be bigger than 466 * size of ffs->ev.types array (which is four) so that's how much space 467 * we reserve. 468 */ 469 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)]; 470 const size_t size = n * sizeof *events; 471 unsigned i = 0; 472 473 memset(events, 0, size); 474 475 do { 476 events[i].type = ffs->ev.types[i]; 477 if (events[i].type == FUNCTIONFS_SETUP) { 478 events[i].u.setup = ffs->ev.setup; 479 ffs->setup_state = FFS_SETUP_PENDING; 480 } 481 } while (++i < n); 482 483 ffs->ev.count -= n; 484 if (ffs->ev.count) 485 memmove(ffs->ev.types, ffs->ev.types + n, 486 ffs->ev.count * sizeof *ffs->ev.types); 487 488 spin_unlock_irq(&ffs->ev.waitq.lock); 489 mutex_unlock(&ffs->mutex); 490 491 return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size; 492 } 493 494 static ssize_t ffs_ep0_read(struct file *file, char __user *buf, 495 size_t len, loff_t *ptr) 496 { 497 struct ffs_data *ffs = file->private_data; 498 char *data = NULL; 499 size_t n; 500 int ret; 501 502 ENTER(); 503 504 /* Fast check if setup was canceled */ 505 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 506 return -EIDRM; 507 508 /* Acquire mutex */ 509 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 510 if (unlikely(ret < 0)) 511 return ret; 512 513 /* Check state */ 514 if (ffs->state != FFS_ACTIVE) { 515 ret = -EBADFD; 516 goto done_mutex; 517 } 518 519 /* 520 * We're called from user space, we can use _irq rather then 521 * _irqsave 522 */ 523 spin_lock_irq(&ffs->ev.waitq.lock); 524 525 switch (ffs_setup_state_clear_cancelled(ffs)) { 526 case FFS_SETUP_CANCELLED: 527 ret = -EIDRM; 528 break; 529 530 case FFS_NO_SETUP: 531 n = len / sizeof(struct usb_functionfs_event); 532 if (unlikely(!n)) { 533 ret = -EINVAL; 534 break; 535 } 536 537 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { 538 ret = -EAGAIN; 539 break; 540 } 541 542 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, 543 ffs->ev.count)) { 544 ret = -EINTR; 545 break; 546 } 547 548 /* unlocks spinlock */ 549 return __ffs_ep0_read_events(ffs, buf, 550 min(n, (size_t)ffs->ev.count)); 551 552 case FFS_SETUP_PENDING: 553 if (ffs->ev.setup.bRequestType & USB_DIR_IN) { 554 spin_unlock_irq(&ffs->ev.waitq.lock); 555 ret = __ffs_ep0_stall(ffs); 556 goto done_mutex; 557 } 558 559 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 560 561 spin_unlock_irq(&ffs->ev.waitq.lock); 562 563 if (likely(len)) { 564 data = kmalloc(len, GFP_KERNEL); 565 if (unlikely(!data)) { 566 ret = -ENOMEM; 567 goto done_mutex; 568 } 569 } 570 571 spin_lock_irq(&ffs->ev.waitq.lock); 572 573 /* See ffs_ep0_write() */ 574 if (ffs_setup_state_clear_cancelled(ffs) == 575 FFS_SETUP_CANCELLED) { 576 ret = -EIDRM; 577 break; 578 } 579 580 /* unlocks spinlock */ 581 ret = __ffs_ep0_queue_wait(ffs, data, len); 582 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len))) 583 ret = -EFAULT; 584 goto done_mutex; 585 586 default: 587 ret = -EBADFD; 588 break; 589 } 590 591 spin_unlock_irq(&ffs->ev.waitq.lock); 592 done_mutex: 593 mutex_unlock(&ffs->mutex); 594 kfree(data); 595 return ret; 596 } 597 598 static int ffs_ep0_open(struct inode *inode, struct file *file) 599 { 600 struct ffs_data *ffs = inode->i_private; 601 602 ENTER(); 603 604 if (unlikely(ffs->state == FFS_CLOSING)) 605 return -EBUSY; 606 607 file->private_data = ffs; 608 ffs_data_opened(ffs); 609 610 return 0; 611 } 612 613 static int ffs_ep0_release(struct inode *inode, struct file *file) 614 { 615 struct ffs_data *ffs = file->private_data; 616 617 ENTER(); 618 619 ffs_data_closed(ffs); 620 621 return 0; 622 } 623 624 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) 625 { 626 struct ffs_data *ffs = file->private_data; 627 struct usb_gadget *gadget = ffs->gadget; 628 long ret; 629 630 ENTER(); 631 632 if (code == FUNCTIONFS_INTERFACE_REVMAP) { 633 struct ffs_function *func = ffs->func; 634 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; 635 } else if (gadget && gadget->ops->ioctl) { 636 ret = gadget->ops->ioctl(gadget, code, value); 637 } else { 638 ret = -ENOTTY; 639 } 640 641 return ret; 642 } 643 644 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait) 645 { 646 struct ffs_data *ffs = file->private_data; 647 __poll_t mask = EPOLLWRNORM; 648 int ret; 649 650 poll_wait(file, &ffs->ev.waitq, wait); 651 652 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 653 if (unlikely(ret < 0)) 654 return mask; 655 656 switch (ffs->state) { 657 case FFS_READ_DESCRIPTORS: 658 case FFS_READ_STRINGS: 659 mask |= EPOLLOUT; 660 break; 661 662 case FFS_ACTIVE: 663 switch (ffs->setup_state) { 664 case FFS_NO_SETUP: 665 if (ffs->ev.count) 666 mask |= EPOLLIN; 667 break; 668 669 case FFS_SETUP_PENDING: 670 case FFS_SETUP_CANCELLED: 671 mask |= (EPOLLIN | EPOLLOUT); 672 break; 673 } 674 case FFS_CLOSING: 675 break; 676 case FFS_DEACTIVATED: 677 break; 678 } 679 680 mutex_unlock(&ffs->mutex); 681 682 return mask; 683 } 684 685 static const struct file_operations ffs_ep0_operations = { 686 .llseek = no_llseek, 687 688 .open = ffs_ep0_open, 689 .write = ffs_ep0_write, 690 .read = ffs_ep0_read, 691 .release = ffs_ep0_release, 692 .unlocked_ioctl = ffs_ep0_ioctl, 693 .poll = ffs_ep0_poll, 694 }; 695 696 697 /* "Normal" endpoints operations ********************************************/ 698 699 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) 700 { 701 ENTER(); 702 if (likely(req->context)) { 703 struct ffs_ep *ep = _ep->driver_data; 704 ep->status = req->status ? req->status : req->actual; 705 complete(req->context); 706 } 707 } 708 709 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter) 710 { 711 ssize_t ret = copy_to_iter(data, data_len, iter); 712 if (likely(ret == data_len)) 713 return ret; 714 715 if (unlikely(iov_iter_count(iter))) 716 return -EFAULT; 717 718 /* 719 * Dear user space developer! 720 * 721 * TL;DR: To stop getting below error message in your kernel log, change 722 * user space code using functionfs to align read buffers to a max 723 * packet size. 724 * 725 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max 726 * packet size. When unaligned buffer is passed to functionfs, it 727 * internally uses a larger, aligned buffer so that such UDCs are happy. 728 * 729 * Unfortunately, this means that host may send more data than was 730 * requested in read(2) system call. f_fs doesn’t know what to do with 731 * that excess data so it simply drops it. 732 * 733 * Was the buffer aligned in the first place, no such problem would 734 * happen. 735 * 736 * Data may be dropped only in AIO reads. Synchronous reads are handled 737 * by splitting a request into multiple parts. This splitting may still 738 * be a problem though so it’s likely best to align the buffer 739 * regardless of it being AIO or not.. 740 * 741 * This only affects OUT endpoints, i.e. reading data with a read(2), 742 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not 743 * affected. 744 */ 745 pr_err("functionfs read size %d > requested size %zd, dropping excess data. " 746 "Align read buffer size to max packet size to avoid the problem.\n", 747 data_len, ret); 748 749 return ret; 750 } 751 752 static void ffs_user_copy_worker(struct work_struct *work) 753 { 754 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 755 work); 756 int ret = io_data->req->status ? io_data->req->status : 757 io_data->req->actual; 758 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD; 759 760 if (io_data->read && ret > 0) { 761 mm_segment_t oldfs = get_fs(); 762 763 set_fs(USER_DS); 764 use_mm(io_data->mm); 765 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data); 766 unuse_mm(io_data->mm); 767 set_fs(oldfs); 768 } 769 770 io_data->kiocb->ki_complete(io_data->kiocb, ret, ret); 771 772 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd) 773 eventfd_signal(io_data->ffs->ffs_eventfd, 1); 774 775 usb_ep_free_request(io_data->ep, io_data->req); 776 777 if (io_data->read) 778 kfree(io_data->to_free); 779 kfree(io_data->buf); 780 kfree(io_data); 781 } 782 783 static void ffs_epfile_async_io_complete(struct usb_ep *_ep, 784 struct usb_request *req) 785 { 786 struct ffs_io_data *io_data = req->context; 787 struct ffs_data *ffs = io_data->ffs; 788 789 ENTER(); 790 791 INIT_WORK(&io_data->work, ffs_user_copy_worker); 792 queue_work(ffs->io_completion_wq, &io_data->work); 793 } 794 795 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile) 796 { 797 /* 798 * See comment in struct ffs_epfile for full read_buffer pointer 799 * synchronisation story. 800 */ 801 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP); 802 if (buf && buf != READ_BUFFER_DROP) 803 kfree(buf); 804 } 805 806 /* Assumes epfile->mutex is held. */ 807 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile, 808 struct iov_iter *iter) 809 { 810 /* 811 * Null out epfile->read_buffer so ffs_func_eps_disable does not free 812 * the buffer while we are using it. See comment in struct ffs_epfile 813 * for full read_buffer pointer synchronisation story. 814 */ 815 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL); 816 ssize_t ret; 817 if (!buf || buf == READ_BUFFER_DROP) 818 return 0; 819 820 ret = copy_to_iter(buf->data, buf->length, iter); 821 if (buf->length == ret) { 822 kfree(buf); 823 return ret; 824 } 825 826 if (unlikely(iov_iter_count(iter))) { 827 ret = -EFAULT; 828 } else { 829 buf->length -= ret; 830 buf->data += ret; 831 } 832 833 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 834 kfree(buf); 835 836 return ret; 837 } 838 839 /* Assumes epfile->mutex is held. */ 840 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile, 841 void *data, int data_len, 842 struct iov_iter *iter) 843 { 844 struct ffs_buffer *buf; 845 846 ssize_t ret = copy_to_iter(data, data_len, iter); 847 if (likely(data_len == ret)) 848 return ret; 849 850 if (unlikely(iov_iter_count(iter))) 851 return -EFAULT; 852 853 /* See ffs_copy_to_iter for more context. */ 854 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.", 855 data_len, ret); 856 857 data_len -= ret; 858 buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL); 859 if (!buf) 860 return -ENOMEM; 861 buf->length = data_len; 862 buf->data = buf->storage; 863 memcpy(buf->storage, data + ret, data_len); 864 865 /* 866 * At this point read_buffer is NULL or READ_BUFFER_DROP (if 867 * ffs_func_eps_disable has been called in the meanwhile). See comment 868 * in struct ffs_epfile for full read_buffer pointer synchronisation 869 * story. 870 */ 871 if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf))) 872 kfree(buf); 873 874 return ret; 875 } 876 877 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) 878 { 879 struct ffs_epfile *epfile = file->private_data; 880 struct usb_request *req; 881 struct ffs_ep *ep; 882 char *data = NULL; 883 ssize_t ret, data_len = -EINVAL; 884 int halt; 885 886 /* Are we still active? */ 887 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 888 return -ENODEV; 889 890 /* Wait for endpoint to be enabled */ 891 ep = epfile->ep; 892 if (!ep) { 893 if (file->f_flags & O_NONBLOCK) 894 return -EAGAIN; 895 896 ret = wait_event_interruptible( 897 epfile->ffs->wait, (ep = epfile->ep)); 898 if (ret) 899 return -EINTR; 900 } 901 902 /* Do we halt? */ 903 halt = (!io_data->read == !epfile->in); 904 if (halt && epfile->isoc) 905 return -EINVAL; 906 907 /* We will be using request and read_buffer */ 908 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); 909 if (unlikely(ret)) 910 goto error; 911 912 /* Allocate & copy */ 913 if (!halt) { 914 struct usb_gadget *gadget; 915 916 /* 917 * Do we have buffered data from previous partial read? Check 918 * that for synchronous case only because we do not have 919 * facility to ‘wake up’ a pending asynchronous read and push 920 * buffered data to it which we would need to make things behave 921 * consistently. 922 */ 923 if (!io_data->aio && io_data->read) { 924 ret = __ffs_epfile_read_buffered(epfile, &io_data->data); 925 if (ret) 926 goto error_mutex; 927 } 928 929 /* 930 * if we _do_ wait above, the epfile->ffs->gadget might be NULL 931 * before the waiting completes, so do not assign to 'gadget' 932 * earlier 933 */ 934 gadget = epfile->ffs->gadget; 935 936 spin_lock_irq(&epfile->ffs->eps_lock); 937 /* In the meantime, endpoint got disabled or changed. */ 938 if (epfile->ep != ep) { 939 ret = -ESHUTDOWN; 940 goto error_lock; 941 } 942 data_len = iov_iter_count(&io_data->data); 943 /* 944 * Controller may require buffer size to be aligned to 945 * maxpacketsize of an out endpoint. 946 */ 947 if (io_data->read) 948 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len); 949 spin_unlock_irq(&epfile->ffs->eps_lock); 950 951 data = kmalloc(data_len, GFP_KERNEL); 952 if (unlikely(!data)) { 953 ret = -ENOMEM; 954 goto error_mutex; 955 } 956 if (!io_data->read && 957 !copy_from_iter_full(data, data_len, &io_data->data)) { 958 ret = -EFAULT; 959 goto error_mutex; 960 } 961 } 962 963 spin_lock_irq(&epfile->ffs->eps_lock); 964 965 if (epfile->ep != ep) { 966 /* In the meantime, endpoint got disabled or changed. */ 967 ret = -ESHUTDOWN; 968 } else if (halt) { 969 ret = usb_ep_set_halt(ep->ep); 970 if (!ret) 971 ret = -EBADMSG; 972 } else if (unlikely(data_len == -EINVAL)) { 973 /* 974 * Sanity Check: even though data_len can't be used 975 * uninitialized at the time I write this comment, some 976 * compilers complain about this situation. 977 * In order to keep the code clean from warnings, data_len is 978 * being initialized to -EINVAL during its declaration, which 979 * means we can't rely on compiler anymore to warn no future 980 * changes won't result in data_len being used uninitialized. 981 * For such reason, we're adding this redundant sanity check 982 * here. 983 */ 984 WARN(1, "%s: data_len == -EINVAL\n", __func__); 985 ret = -EINVAL; 986 } else if (!io_data->aio) { 987 DECLARE_COMPLETION_ONSTACK(done); 988 bool interrupted = false; 989 990 req = ep->req; 991 req->buf = data; 992 req->length = data_len; 993 994 req->context = &done; 995 req->complete = ffs_epfile_io_complete; 996 997 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 998 if (unlikely(ret < 0)) 999 goto error_lock; 1000 1001 spin_unlock_irq(&epfile->ffs->eps_lock); 1002 1003 if (unlikely(wait_for_completion_interruptible(&done))) { 1004 /* 1005 * To avoid race condition with ffs_epfile_io_complete, 1006 * dequeue the request first then check 1007 * status. usb_ep_dequeue API should guarantee no race 1008 * condition with req->complete callback. 1009 */ 1010 usb_ep_dequeue(ep->ep, req); 1011 interrupted = ep->status < 0; 1012 } 1013 1014 if (interrupted) 1015 ret = -EINTR; 1016 else if (io_data->read && ep->status > 0) 1017 ret = __ffs_epfile_read_data(epfile, data, ep->status, 1018 &io_data->data); 1019 else 1020 ret = ep->status; 1021 goto error_mutex; 1022 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) { 1023 ret = -ENOMEM; 1024 } else { 1025 req->buf = data; 1026 req->length = data_len; 1027 1028 io_data->buf = data; 1029 io_data->ep = ep->ep; 1030 io_data->req = req; 1031 io_data->ffs = epfile->ffs; 1032 1033 req->context = io_data; 1034 req->complete = ffs_epfile_async_io_complete; 1035 1036 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1037 if (unlikely(ret)) { 1038 usb_ep_free_request(ep->ep, req); 1039 goto error_lock; 1040 } 1041 1042 ret = -EIOCBQUEUED; 1043 /* 1044 * Do not kfree the buffer in this function. It will be freed 1045 * by ffs_user_copy_worker. 1046 */ 1047 data = NULL; 1048 } 1049 1050 error_lock: 1051 spin_unlock_irq(&epfile->ffs->eps_lock); 1052 error_mutex: 1053 mutex_unlock(&epfile->mutex); 1054 error: 1055 kfree(data); 1056 return ret; 1057 } 1058 1059 static int 1060 ffs_epfile_open(struct inode *inode, struct file *file) 1061 { 1062 struct ffs_epfile *epfile = inode->i_private; 1063 1064 ENTER(); 1065 1066 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1067 return -ENODEV; 1068 1069 file->private_data = epfile; 1070 ffs_data_opened(epfile->ffs); 1071 1072 return 0; 1073 } 1074 1075 static int ffs_aio_cancel(struct kiocb *kiocb) 1076 { 1077 struct ffs_io_data *io_data = kiocb->private; 1078 struct ffs_epfile *epfile = kiocb->ki_filp->private_data; 1079 int value; 1080 1081 ENTER(); 1082 1083 spin_lock_irq(&epfile->ffs->eps_lock); 1084 1085 if (likely(io_data && io_data->ep && io_data->req)) 1086 value = usb_ep_dequeue(io_data->ep, io_data->req); 1087 else 1088 value = -EINVAL; 1089 1090 spin_unlock_irq(&epfile->ffs->eps_lock); 1091 1092 return value; 1093 } 1094 1095 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from) 1096 { 1097 struct ffs_io_data io_data, *p = &io_data; 1098 ssize_t res; 1099 1100 ENTER(); 1101 1102 if (!is_sync_kiocb(kiocb)) { 1103 p = kmalloc(sizeof(io_data), GFP_KERNEL); 1104 if (unlikely(!p)) 1105 return -ENOMEM; 1106 p->aio = true; 1107 } else { 1108 p->aio = false; 1109 } 1110 1111 p->read = false; 1112 p->kiocb = kiocb; 1113 p->data = *from; 1114 p->mm = current->mm; 1115 1116 kiocb->private = p; 1117 1118 if (p->aio) 1119 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1120 1121 res = ffs_epfile_io(kiocb->ki_filp, p); 1122 if (res == -EIOCBQUEUED) 1123 return res; 1124 if (p->aio) 1125 kfree(p); 1126 else 1127 *from = p->data; 1128 return res; 1129 } 1130 1131 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to) 1132 { 1133 struct ffs_io_data io_data, *p = &io_data; 1134 ssize_t res; 1135 1136 ENTER(); 1137 1138 if (!is_sync_kiocb(kiocb)) { 1139 p = kmalloc(sizeof(io_data), GFP_KERNEL); 1140 if (unlikely(!p)) 1141 return -ENOMEM; 1142 p->aio = true; 1143 } else { 1144 p->aio = false; 1145 } 1146 1147 p->read = true; 1148 p->kiocb = kiocb; 1149 if (p->aio) { 1150 p->to_free = dup_iter(&p->data, to, GFP_KERNEL); 1151 if (!p->to_free) { 1152 kfree(p); 1153 return -ENOMEM; 1154 } 1155 } else { 1156 p->data = *to; 1157 p->to_free = NULL; 1158 } 1159 p->mm = current->mm; 1160 1161 kiocb->private = p; 1162 1163 if (p->aio) 1164 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1165 1166 res = ffs_epfile_io(kiocb->ki_filp, p); 1167 if (res == -EIOCBQUEUED) 1168 return res; 1169 1170 if (p->aio) { 1171 kfree(p->to_free); 1172 kfree(p); 1173 } else { 1174 *to = p->data; 1175 } 1176 return res; 1177 } 1178 1179 static int 1180 ffs_epfile_release(struct inode *inode, struct file *file) 1181 { 1182 struct ffs_epfile *epfile = inode->i_private; 1183 1184 ENTER(); 1185 1186 __ffs_epfile_read_buffer_free(epfile); 1187 ffs_data_closed(epfile->ffs); 1188 1189 return 0; 1190 } 1191 1192 static long ffs_epfile_ioctl(struct file *file, unsigned code, 1193 unsigned long value) 1194 { 1195 struct ffs_epfile *epfile = file->private_data; 1196 struct ffs_ep *ep; 1197 int ret; 1198 1199 ENTER(); 1200 1201 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1202 return -ENODEV; 1203 1204 /* Wait for endpoint to be enabled */ 1205 ep = epfile->ep; 1206 if (!ep) { 1207 if (file->f_flags & O_NONBLOCK) 1208 return -EAGAIN; 1209 1210 ret = wait_event_interruptible( 1211 epfile->ffs->wait, (ep = epfile->ep)); 1212 if (ret) 1213 return -EINTR; 1214 } 1215 1216 spin_lock_irq(&epfile->ffs->eps_lock); 1217 1218 /* In the meantime, endpoint got disabled or changed. */ 1219 if (epfile->ep != ep) { 1220 spin_unlock_irq(&epfile->ffs->eps_lock); 1221 return -ESHUTDOWN; 1222 } 1223 1224 switch (code) { 1225 case FUNCTIONFS_FIFO_STATUS: 1226 ret = usb_ep_fifo_status(epfile->ep->ep); 1227 break; 1228 case FUNCTIONFS_FIFO_FLUSH: 1229 usb_ep_fifo_flush(epfile->ep->ep); 1230 ret = 0; 1231 break; 1232 case FUNCTIONFS_CLEAR_HALT: 1233 ret = usb_ep_clear_halt(epfile->ep->ep); 1234 break; 1235 case FUNCTIONFS_ENDPOINT_REVMAP: 1236 ret = epfile->ep->num; 1237 break; 1238 case FUNCTIONFS_ENDPOINT_DESC: 1239 { 1240 int desc_idx; 1241 struct usb_endpoint_descriptor *desc; 1242 1243 switch (epfile->ffs->gadget->speed) { 1244 case USB_SPEED_SUPER: 1245 desc_idx = 2; 1246 break; 1247 case USB_SPEED_HIGH: 1248 desc_idx = 1; 1249 break; 1250 default: 1251 desc_idx = 0; 1252 } 1253 desc = epfile->ep->descs[desc_idx]; 1254 1255 spin_unlock_irq(&epfile->ffs->eps_lock); 1256 ret = copy_to_user((void __user *)value, desc, desc->bLength); 1257 if (ret) 1258 ret = -EFAULT; 1259 return ret; 1260 } 1261 default: 1262 ret = -ENOTTY; 1263 } 1264 spin_unlock_irq(&epfile->ffs->eps_lock); 1265 1266 return ret; 1267 } 1268 1269 #ifdef CONFIG_COMPAT 1270 static long ffs_epfile_compat_ioctl(struct file *file, unsigned code, 1271 unsigned long value) 1272 { 1273 return ffs_epfile_ioctl(file, code, value); 1274 } 1275 #endif 1276 1277 static const struct file_operations ffs_epfile_operations = { 1278 .llseek = no_llseek, 1279 1280 .open = ffs_epfile_open, 1281 .write_iter = ffs_epfile_write_iter, 1282 .read_iter = ffs_epfile_read_iter, 1283 .release = ffs_epfile_release, 1284 .unlocked_ioctl = ffs_epfile_ioctl, 1285 #ifdef CONFIG_COMPAT 1286 .compat_ioctl = ffs_epfile_compat_ioctl, 1287 #endif 1288 }; 1289 1290 1291 /* File system and super block operations ***********************************/ 1292 1293 /* 1294 * Mounting the file system creates a controller file, used first for 1295 * function configuration then later for event monitoring. 1296 */ 1297 1298 static struct inode *__must_check 1299 ffs_sb_make_inode(struct super_block *sb, void *data, 1300 const struct file_operations *fops, 1301 const struct inode_operations *iops, 1302 struct ffs_file_perms *perms) 1303 { 1304 struct inode *inode; 1305 1306 ENTER(); 1307 1308 inode = new_inode(sb); 1309 1310 if (likely(inode)) { 1311 struct timespec64 ts = current_time(inode); 1312 1313 inode->i_ino = get_next_ino(); 1314 inode->i_mode = perms->mode; 1315 inode->i_uid = perms->uid; 1316 inode->i_gid = perms->gid; 1317 inode->i_atime = ts; 1318 inode->i_mtime = ts; 1319 inode->i_ctime = ts; 1320 inode->i_private = data; 1321 if (fops) 1322 inode->i_fop = fops; 1323 if (iops) 1324 inode->i_op = iops; 1325 } 1326 1327 return inode; 1328 } 1329 1330 /* Create "regular" file */ 1331 static struct dentry *ffs_sb_create_file(struct super_block *sb, 1332 const char *name, void *data, 1333 const struct file_operations *fops) 1334 { 1335 struct ffs_data *ffs = sb->s_fs_info; 1336 struct dentry *dentry; 1337 struct inode *inode; 1338 1339 ENTER(); 1340 1341 dentry = d_alloc_name(sb->s_root, name); 1342 if (unlikely(!dentry)) 1343 return NULL; 1344 1345 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); 1346 if (unlikely(!inode)) { 1347 dput(dentry); 1348 return NULL; 1349 } 1350 1351 d_add(dentry, inode); 1352 return dentry; 1353 } 1354 1355 /* Super block */ 1356 static const struct super_operations ffs_sb_operations = { 1357 .statfs = simple_statfs, 1358 .drop_inode = generic_delete_inode, 1359 }; 1360 1361 struct ffs_sb_fill_data { 1362 struct ffs_file_perms perms; 1363 umode_t root_mode; 1364 const char *dev_name; 1365 bool no_disconnect; 1366 struct ffs_data *ffs_data; 1367 }; 1368 1369 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent) 1370 { 1371 struct ffs_sb_fill_data *data = _data; 1372 struct inode *inode; 1373 struct ffs_data *ffs = data->ffs_data; 1374 1375 ENTER(); 1376 1377 ffs->sb = sb; 1378 data->ffs_data = NULL; 1379 sb->s_fs_info = ffs; 1380 sb->s_blocksize = PAGE_SIZE; 1381 sb->s_blocksize_bits = PAGE_SHIFT; 1382 sb->s_magic = FUNCTIONFS_MAGIC; 1383 sb->s_op = &ffs_sb_operations; 1384 sb->s_time_gran = 1; 1385 1386 /* Root inode */ 1387 data->perms.mode = data->root_mode; 1388 inode = ffs_sb_make_inode(sb, NULL, 1389 &simple_dir_operations, 1390 &simple_dir_inode_operations, 1391 &data->perms); 1392 sb->s_root = d_make_root(inode); 1393 if (unlikely(!sb->s_root)) 1394 return -ENOMEM; 1395 1396 /* EP0 file */ 1397 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs, 1398 &ffs_ep0_operations))) 1399 return -ENOMEM; 1400 1401 return 0; 1402 } 1403 1404 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts) 1405 { 1406 ENTER(); 1407 1408 if (!opts || !*opts) 1409 return 0; 1410 1411 for (;;) { 1412 unsigned long value; 1413 char *eq, *comma; 1414 1415 /* Option limit */ 1416 comma = strchr(opts, ','); 1417 if (comma) 1418 *comma = 0; 1419 1420 /* Value limit */ 1421 eq = strchr(opts, '='); 1422 if (unlikely(!eq)) { 1423 pr_err("'=' missing in %s\n", opts); 1424 return -EINVAL; 1425 } 1426 *eq = 0; 1427 1428 /* Parse value */ 1429 if (kstrtoul(eq + 1, 0, &value)) { 1430 pr_err("%s: invalid value: %s\n", opts, eq + 1); 1431 return -EINVAL; 1432 } 1433 1434 /* Interpret option */ 1435 switch (eq - opts) { 1436 case 13: 1437 if (!memcmp(opts, "no_disconnect", 13)) 1438 data->no_disconnect = !!value; 1439 else 1440 goto invalid; 1441 break; 1442 case 5: 1443 if (!memcmp(opts, "rmode", 5)) 1444 data->root_mode = (value & 0555) | S_IFDIR; 1445 else if (!memcmp(opts, "fmode", 5)) 1446 data->perms.mode = (value & 0666) | S_IFREG; 1447 else 1448 goto invalid; 1449 break; 1450 1451 case 4: 1452 if (!memcmp(opts, "mode", 4)) { 1453 data->root_mode = (value & 0555) | S_IFDIR; 1454 data->perms.mode = (value & 0666) | S_IFREG; 1455 } else { 1456 goto invalid; 1457 } 1458 break; 1459 1460 case 3: 1461 if (!memcmp(opts, "uid", 3)) { 1462 data->perms.uid = make_kuid(current_user_ns(), value); 1463 if (!uid_valid(data->perms.uid)) { 1464 pr_err("%s: unmapped value: %lu\n", opts, value); 1465 return -EINVAL; 1466 } 1467 } else if (!memcmp(opts, "gid", 3)) { 1468 data->perms.gid = make_kgid(current_user_ns(), value); 1469 if (!gid_valid(data->perms.gid)) { 1470 pr_err("%s: unmapped value: %lu\n", opts, value); 1471 return -EINVAL; 1472 } 1473 } else { 1474 goto invalid; 1475 } 1476 break; 1477 1478 default: 1479 invalid: 1480 pr_err("%s: invalid option\n", opts); 1481 return -EINVAL; 1482 } 1483 1484 /* Next iteration */ 1485 if (!comma) 1486 break; 1487 opts = comma + 1; 1488 } 1489 1490 return 0; 1491 } 1492 1493 /* "mount -t functionfs dev_name /dev/function" ends up here */ 1494 1495 static struct dentry * 1496 ffs_fs_mount(struct file_system_type *t, int flags, 1497 const char *dev_name, void *opts) 1498 { 1499 struct ffs_sb_fill_data data = { 1500 .perms = { 1501 .mode = S_IFREG | 0600, 1502 .uid = GLOBAL_ROOT_UID, 1503 .gid = GLOBAL_ROOT_GID, 1504 }, 1505 .root_mode = S_IFDIR | 0500, 1506 .no_disconnect = false, 1507 }; 1508 struct dentry *rv; 1509 int ret; 1510 void *ffs_dev; 1511 struct ffs_data *ffs; 1512 1513 ENTER(); 1514 1515 ret = ffs_fs_parse_opts(&data, opts); 1516 if (unlikely(ret < 0)) 1517 return ERR_PTR(ret); 1518 1519 ffs = ffs_data_new(dev_name); 1520 if (unlikely(!ffs)) 1521 return ERR_PTR(-ENOMEM); 1522 ffs->file_perms = data.perms; 1523 ffs->no_disconnect = data.no_disconnect; 1524 1525 ffs->dev_name = kstrdup(dev_name, GFP_KERNEL); 1526 if (unlikely(!ffs->dev_name)) { 1527 ffs_data_put(ffs); 1528 return ERR_PTR(-ENOMEM); 1529 } 1530 1531 ffs_dev = ffs_acquire_dev(dev_name); 1532 if (IS_ERR(ffs_dev)) { 1533 ffs_data_put(ffs); 1534 return ERR_CAST(ffs_dev); 1535 } 1536 ffs->private_data = ffs_dev; 1537 data.ffs_data = ffs; 1538 1539 rv = mount_nodev(t, flags, &data, ffs_sb_fill); 1540 if (IS_ERR(rv) && data.ffs_data) { 1541 ffs_release_dev(data.ffs_data); 1542 ffs_data_put(data.ffs_data); 1543 } 1544 return rv; 1545 } 1546 1547 static void 1548 ffs_fs_kill_sb(struct super_block *sb) 1549 { 1550 ENTER(); 1551 1552 kill_litter_super(sb); 1553 if (sb->s_fs_info) { 1554 ffs_release_dev(sb->s_fs_info); 1555 ffs_data_closed(sb->s_fs_info); 1556 } 1557 } 1558 1559 static struct file_system_type ffs_fs_type = { 1560 .owner = THIS_MODULE, 1561 .name = "functionfs", 1562 .mount = ffs_fs_mount, 1563 .kill_sb = ffs_fs_kill_sb, 1564 }; 1565 MODULE_ALIAS_FS("functionfs"); 1566 1567 1568 /* Driver's main init/cleanup functions *************************************/ 1569 1570 static int functionfs_init(void) 1571 { 1572 int ret; 1573 1574 ENTER(); 1575 1576 ret = register_filesystem(&ffs_fs_type); 1577 if (likely(!ret)) 1578 pr_info("file system registered\n"); 1579 else 1580 pr_err("failed registering file system (%d)\n", ret); 1581 1582 return ret; 1583 } 1584 1585 static void functionfs_cleanup(void) 1586 { 1587 ENTER(); 1588 1589 pr_info("unloading\n"); 1590 unregister_filesystem(&ffs_fs_type); 1591 } 1592 1593 1594 /* ffs_data and ffs_function construction and destruction code **************/ 1595 1596 static void ffs_data_clear(struct ffs_data *ffs); 1597 static void ffs_data_reset(struct ffs_data *ffs); 1598 1599 static void ffs_data_get(struct ffs_data *ffs) 1600 { 1601 ENTER(); 1602 1603 refcount_inc(&ffs->ref); 1604 } 1605 1606 static void ffs_data_opened(struct ffs_data *ffs) 1607 { 1608 ENTER(); 1609 1610 refcount_inc(&ffs->ref); 1611 if (atomic_add_return(1, &ffs->opened) == 1 && 1612 ffs->state == FFS_DEACTIVATED) { 1613 ffs->state = FFS_CLOSING; 1614 ffs_data_reset(ffs); 1615 } 1616 } 1617 1618 static void ffs_data_put(struct ffs_data *ffs) 1619 { 1620 ENTER(); 1621 1622 if (unlikely(refcount_dec_and_test(&ffs->ref))) { 1623 pr_info("%s(): freeing\n", __func__); 1624 ffs_data_clear(ffs); 1625 BUG_ON(waitqueue_active(&ffs->ev.waitq) || 1626 waitqueue_active(&ffs->ep0req_completion.wait) || 1627 waitqueue_active(&ffs->wait)); 1628 destroy_workqueue(ffs->io_completion_wq); 1629 kfree(ffs->dev_name); 1630 kfree(ffs); 1631 } 1632 } 1633 1634 static void ffs_data_closed(struct ffs_data *ffs) 1635 { 1636 ENTER(); 1637 1638 if (atomic_dec_and_test(&ffs->opened)) { 1639 if (ffs->no_disconnect) { 1640 ffs->state = FFS_DEACTIVATED; 1641 if (ffs->epfiles) { 1642 ffs_epfiles_destroy(ffs->epfiles, 1643 ffs->eps_count); 1644 ffs->epfiles = NULL; 1645 } 1646 if (ffs->setup_state == FFS_SETUP_PENDING) 1647 __ffs_ep0_stall(ffs); 1648 } else { 1649 ffs->state = FFS_CLOSING; 1650 ffs_data_reset(ffs); 1651 } 1652 } 1653 if (atomic_read(&ffs->opened) < 0) { 1654 ffs->state = FFS_CLOSING; 1655 ffs_data_reset(ffs); 1656 } 1657 1658 ffs_data_put(ffs); 1659 } 1660 1661 static struct ffs_data *ffs_data_new(const char *dev_name) 1662 { 1663 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); 1664 if (unlikely(!ffs)) 1665 return NULL; 1666 1667 ENTER(); 1668 1669 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name); 1670 if (!ffs->io_completion_wq) { 1671 kfree(ffs); 1672 return NULL; 1673 } 1674 1675 refcount_set(&ffs->ref, 1); 1676 atomic_set(&ffs->opened, 0); 1677 ffs->state = FFS_READ_DESCRIPTORS; 1678 mutex_init(&ffs->mutex); 1679 spin_lock_init(&ffs->eps_lock); 1680 init_waitqueue_head(&ffs->ev.waitq); 1681 init_waitqueue_head(&ffs->wait); 1682 init_completion(&ffs->ep0req_completion); 1683 1684 /* XXX REVISIT need to update it in some places, or do we? */ 1685 ffs->ev.can_stall = 1; 1686 1687 return ffs; 1688 } 1689 1690 static void ffs_data_clear(struct ffs_data *ffs) 1691 { 1692 ENTER(); 1693 1694 ffs_closed(ffs); 1695 1696 BUG_ON(ffs->gadget); 1697 1698 if (ffs->epfiles) 1699 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count); 1700 1701 if (ffs->ffs_eventfd) 1702 eventfd_ctx_put(ffs->ffs_eventfd); 1703 1704 kfree(ffs->raw_descs_data); 1705 kfree(ffs->raw_strings); 1706 kfree(ffs->stringtabs); 1707 } 1708 1709 static void ffs_data_reset(struct ffs_data *ffs) 1710 { 1711 ENTER(); 1712 1713 ffs_data_clear(ffs); 1714 1715 ffs->epfiles = NULL; 1716 ffs->raw_descs_data = NULL; 1717 ffs->raw_descs = NULL; 1718 ffs->raw_strings = NULL; 1719 ffs->stringtabs = NULL; 1720 1721 ffs->raw_descs_length = 0; 1722 ffs->fs_descs_count = 0; 1723 ffs->hs_descs_count = 0; 1724 ffs->ss_descs_count = 0; 1725 1726 ffs->strings_count = 0; 1727 ffs->interfaces_count = 0; 1728 ffs->eps_count = 0; 1729 1730 ffs->ev.count = 0; 1731 1732 ffs->state = FFS_READ_DESCRIPTORS; 1733 ffs->setup_state = FFS_NO_SETUP; 1734 ffs->flags = 0; 1735 } 1736 1737 1738 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) 1739 { 1740 struct usb_gadget_strings **lang; 1741 int first_id; 1742 1743 ENTER(); 1744 1745 if (WARN_ON(ffs->state != FFS_ACTIVE 1746 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) 1747 return -EBADFD; 1748 1749 first_id = usb_string_ids_n(cdev, ffs->strings_count); 1750 if (unlikely(first_id < 0)) 1751 return first_id; 1752 1753 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); 1754 if (unlikely(!ffs->ep0req)) 1755 return -ENOMEM; 1756 ffs->ep0req->complete = ffs_ep0_complete; 1757 ffs->ep0req->context = ffs; 1758 1759 lang = ffs->stringtabs; 1760 if (lang) { 1761 for (; *lang; ++lang) { 1762 struct usb_string *str = (*lang)->strings; 1763 int id = first_id; 1764 for (; str->s; ++id, ++str) 1765 str->id = id; 1766 } 1767 } 1768 1769 ffs->gadget = cdev->gadget; 1770 ffs_data_get(ffs); 1771 return 0; 1772 } 1773 1774 static void functionfs_unbind(struct ffs_data *ffs) 1775 { 1776 ENTER(); 1777 1778 if (!WARN_ON(!ffs->gadget)) { 1779 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); 1780 ffs->ep0req = NULL; 1781 ffs->gadget = NULL; 1782 clear_bit(FFS_FL_BOUND, &ffs->flags); 1783 ffs_data_put(ffs); 1784 } 1785 } 1786 1787 static int ffs_epfiles_create(struct ffs_data *ffs) 1788 { 1789 struct ffs_epfile *epfile, *epfiles; 1790 unsigned i, count; 1791 1792 ENTER(); 1793 1794 count = ffs->eps_count; 1795 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); 1796 if (!epfiles) 1797 return -ENOMEM; 1798 1799 epfile = epfiles; 1800 for (i = 1; i <= count; ++i, ++epfile) { 1801 epfile->ffs = ffs; 1802 mutex_init(&epfile->mutex); 1803 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 1804 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]); 1805 else 1806 sprintf(epfile->name, "ep%u", i); 1807 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name, 1808 epfile, 1809 &ffs_epfile_operations); 1810 if (unlikely(!epfile->dentry)) { 1811 ffs_epfiles_destroy(epfiles, i - 1); 1812 return -ENOMEM; 1813 } 1814 } 1815 1816 ffs->epfiles = epfiles; 1817 return 0; 1818 } 1819 1820 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count) 1821 { 1822 struct ffs_epfile *epfile = epfiles; 1823 1824 ENTER(); 1825 1826 for (; count; --count, ++epfile) { 1827 BUG_ON(mutex_is_locked(&epfile->mutex)); 1828 if (epfile->dentry) { 1829 d_delete(epfile->dentry); 1830 dput(epfile->dentry); 1831 epfile->dentry = NULL; 1832 } 1833 } 1834 1835 kfree(epfiles); 1836 } 1837 1838 static void ffs_func_eps_disable(struct ffs_function *func) 1839 { 1840 struct ffs_ep *ep = func->eps; 1841 struct ffs_epfile *epfile = func->ffs->epfiles; 1842 unsigned count = func->ffs->eps_count; 1843 unsigned long flags; 1844 1845 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1846 while (count--) { 1847 /* pending requests get nuked */ 1848 if (likely(ep->ep)) 1849 usb_ep_disable(ep->ep); 1850 ++ep; 1851 1852 if (epfile) { 1853 epfile->ep = NULL; 1854 __ffs_epfile_read_buffer_free(epfile); 1855 ++epfile; 1856 } 1857 } 1858 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1859 } 1860 1861 static int ffs_func_eps_enable(struct ffs_function *func) 1862 { 1863 struct ffs_data *ffs = func->ffs; 1864 struct ffs_ep *ep = func->eps; 1865 struct ffs_epfile *epfile = ffs->epfiles; 1866 unsigned count = ffs->eps_count; 1867 unsigned long flags; 1868 int ret = 0; 1869 1870 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1871 while(count--) { 1872 ep->ep->driver_data = ep; 1873 1874 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep); 1875 if (ret) { 1876 pr_err("%s: config_ep_by_speed(%s) returned %d\n", 1877 __func__, ep->ep->name, ret); 1878 break; 1879 } 1880 1881 ret = usb_ep_enable(ep->ep); 1882 if (likely(!ret)) { 1883 epfile->ep = ep; 1884 epfile->in = usb_endpoint_dir_in(ep->ep->desc); 1885 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc); 1886 } else { 1887 break; 1888 } 1889 1890 ++ep; 1891 ++epfile; 1892 } 1893 1894 wake_up_interruptible(&ffs->wait); 1895 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1896 1897 return ret; 1898 } 1899 1900 1901 /* Parsing and building descriptors and strings *****************************/ 1902 1903 /* 1904 * This validates if data pointed by data is a valid USB descriptor as 1905 * well as record how many interfaces, endpoints and strings are 1906 * required by given configuration. Returns address after the 1907 * descriptor or NULL if data is invalid. 1908 */ 1909 1910 enum ffs_entity_type { 1911 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT 1912 }; 1913 1914 enum ffs_os_desc_type { 1915 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP 1916 }; 1917 1918 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, 1919 u8 *valuep, 1920 struct usb_descriptor_header *desc, 1921 void *priv); 1922 1923 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, 1924 struct usb_os_desc_header *h, void *data, 1925 unsigned len, void *priv); 1926 1927 static int __must_check ffs_do_single_desc(char *data, unsigned len, 1928 ffs_entity_callback entity, 1929 void *priv) 1930 { 1931 struct usb_descriptor_header *_ds = (void *)data; 1932 u8 length; 1933 int ret; 1934 1935 ENTER(); 1936 1937 /* At least two bytes are required: length and type */ 1938 if (len < 2) { 1939 pr_vdebug("descriptor too short\n"); 1940 return -EINVAL; 1941 } 1942 1943 /* If we have at least as many bytes as the descriptor takes? */ 1944 length = _ds->bLength; 1945 if (len < length) { 1946 pr_vdebug("descriptor longer then available data\n"); 1947 return -EINVAL; 1948 } 1949 1950 #define __entity_check_INTERFACE(val) 1 1951 #define __entity_check_STRING(val) (val) 1952 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) 1953 #define __entity(type, val) do { \ 1954 pr_vdebug("entity " #type "(%02x)\n", (val)); \ 1955 if (unlikely(!__entity_check_ ##type(val))) { \ 1956 pr_vdebug("invalid entity's value\n"); \ 1957 return -EINVAL; \ 1958 } \ 1959 ret = entity(FFS_ ##type, &val, _ds, priv); \ 1960 if (unlikely(ret < 0)) { \ 1961 pr_debug("entity " #type "(%02x); ret = %d\n", \ 1962 (val), ret); \ 1963 return ret; \ 1964 } \ 1965 } while (0) 1966 1967 /* Parse descriptor depending on type. */ 1968 switch (_ds->bDescriptorType) { 1969 case USB_DT_DEVICE: 1970 case USB_DT_CONFIG: 1971 case USB_DT_STRING: 1972 case USB_DT_DEVICE_QUALIFIER: 1973 /* function can't have any of those */ 1974 pr_vdebug("descriptor reserved for gadget: %d\n", 1975 _ds->bDescriptorType); 1976 return -EINVAL; 1977 1978 case USB_DT_INTERFACE: { 1979 struct usb_interface_descriptor *ds = (void *)_ds; 1980 pr_vdebug("interface descriptor\n"); 1981 if (length != sizeof *ds) 1982 goto inv_length; 1983 1984 __entity(INTERFACE, ds->bInterfaceNumber); 1985 if (ds->iInterface) 1986 __entity(STRING, ds->iInterface); 1987 } 1988 break; 1989 1990 case USB_DT_ENDPOINT: { 1991 struct usb_endpoint_descriptor *ds = (void *)_ds; 1992 pr_vdebug("endpoint descriptor\n"); 1993 if (length != USB_DT_ENDPOINT_SIZE && 1994 length != USB_DT_ENDPOINT_AUDIO_SIZE) 1995 goto inv_length; 1996 __entity(ENDPOINT, ds->bEndpointAddress); 1997 } 1998 break; 1999 2000 case HID_DT_HID: 2001 pr_vdebug("hid descriptor\n"); 2002 if (length != sizeof(struct hid_descriptor)) 2003 goto inv_length; 2004 break; 2005 2006 case USB_DT_OTG: 2007 if (length != sizeof(struct usb_otg_descriptor)) 2008 goto inv_length; 2009 break; 2010 2011 case USB_DT_INTERFACE_ASSOCIATION: { 2012 struct usb_interface_assoc_descriptor *ds = (void *)_ds; 2013 pr_vdebug("interface association descriptor\n"); 2014 if (length != sizeof *ds) 2015 goto inv_length; 2016 if (ds->iFunction) 2017 __entity(STRING, ds->iFunction); 2018 } 2019 break; 2020 2021 case USB_DT_SS_ENDPOINT_COMP: 2022 pr_vdebug("EP SS companion descriptor\n"); 2023 if (length != sizeof(struct usb_ss_ep_comp_descriptor)) 2024 goto inv_length; 2025 break; 2026 2027 case USB_DT_OTHER_SPEED_CONFIG: 2028 case USB_DT_INTERFACE_POWER: 2029 case USB_DT_DEBUG: 2030 case USB_DT_SECURITY: 2031 case USB_DT_CS_RADIO_CONTROL: 2032 /* TODO */ 2033 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); 2034 return -EINVAL; 2035 2036 default: 2037 /* We should never be here */ 2038 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); 2039 return -EINVAL; 2040 2041 inv_length: 2042 pr_vdebug("invalid length: %d (descriptor %d)\n", 2043 _ds->bLength, _ds->bDescriptorType); 2044 return -EINVAL; 2045 } 2046 2047 #undef __entity 2048 #undef __entity_check_DESCRIPTOR 2049 #undef __entity_check_INTERFACE 2050 #undef __entity_check_STRING 2051 #undef __entity_check_ENDPOINT 2052 2053 return length; 2054 } 2055 2056 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, 2057 ffs_entity_callback entity, void *priv) 2058 { 2059 const unsigned _len = len; 2060 unsigned long num = 0; 2061 2062 ENTER(); 2063 2064 for (;;) { 2065 int ret; 2066 2067 if (num == count) 2068 data = NULL; 2069 2070 /* Record "descriptor" entity */ 2071 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); 2072 if (unlikely(ret < 0)) { 2073 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", 2074 num, ret); 2075 return ret; 2076 } 2077 2078 if (!data) 2079 return _len - len; 2080 2081 ret = ffs_do_single_desc(data, len, entity, priv); 2082 if (unlikely(ret < 0)) { 2083 pr_debug("%s returns %d\n", __func__, ret); 2084 return ret; 2085 } 2086 2087 len -= ret; 2088 data += ret; 2089 ++num; 2090 } 2091 } 2092 2093 static int __ffs_data_do_entity(enum ffs_entity_type type, 2094 u8 *valuep, struct usb_descriptor_header *desc, 2095 void *priv) 2096 { 2097 struct ffs_desc_helper *helper = priv; 2098 struct usb_endpoint_descriptor *d; 2099 2100 ENTER(); 2101 2102 switch (type) { 2103 case FFS_DESCRIPTOR: 2104 break; 2105 2106 case FFS_INTERFACE: 2107 /* 2108 * Interfaces are indexed from zero so if we 2109 * encountered interface "n" then there are at least 2110 * "n+1" interfaces. 2111 */ 2112 if (*valuep >= helper->interfaces_count) 2113 helper->interfaces_count = *valuep + 1; 2114 break; 2115 2116 case FFS_STRING: 2117 /* 2118 * Strings are indexed from 1 (0 is reserved 2119 * for languages list) 2120 */ 2121 if (*valuep > helper->ffs->strings_count) 2122 helper->ffs->strings_count = *valuep; 2123 break; 2124 2125 case FFS_ENDPOINT: 2126 d = (void *)desc; 2127 helper->eps_count++; 2128 if (helper->eps_count >= FFS_MAX_EPS_COUNT) 2129 return -EINVAL; 2130 /* Check if descriptors for any speed were already parsed */ 2131 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count) 2132 helper->ffs->eps_addrmap[helper->eps_count] = 2133 d->bEndpointAddress; 2134 else if (helper->ffs->eps_addrmap[helper->eps_count] != 2135 d->bEndpointAddress) 2136 return -EINVAL; 2137 break; 2138 } 2139 2140 return 0; 2141 } 2142 2143 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, 2144 struct usb_os_desc_header *desc) 2145 { 2146 u16 bcd_version = le16_to_cpu(desc->bcdVersion); 2147 u16 w_index = le16_to_cpu(desc->wIndex); 2148 2149 if (bcd_version != 1) { 2150 pr_vdebug("unsupported os descriptors version: %d", 2151 bcd_version); 2152 return -EINVAL; 2153 } 2154 switch (w_index) { 2155 case 0x4: 2156 *next_type = FFS_OS_DESC_EXT_COMPAT; 2157 break; 2158 case 0x5: 2159 *next_type = FFS_OS_DESC_EXT_PROP; 2160 break; 2161 default: 2162 pr_vdebug("unsupported os descriptor type: %d", w_index); 2163 return -EINVAL; 2164 } 2165 2166 return sizeof(*desc); 2167 } 2168 2169 /* 2170 * Process all extended compatibility/extended property descriptors 2171 * of a feature descriptor 2172 */ 2173 static int __must_check ffs_do_single_os_desc(char *data, unsigned len, 2174 enum ffs_os_desc_type type, 2175 u16 feature_count, 2176 ffs_os_desc_callback entity, 2177 void *priv, 2178 struct usb_os_desc_header *h) 2179 { 2180 int ret; 2181 const unsigned _len = len; 2182 2183 ENTER(); 2184 2185 /* loop over all ext compat/ext prop descriptors */ 2186 while (feature_count--) { 2187 ret = entity(type, h, data, len, priv); 2188 if (unlikely(ret < 0)) { 2189 pr_debug("bad OS descriptor, type: %d\n", type); 2190 return ret; 2191 } 2192 data += ret; 2193 len -= ret; 2194 } 2195 return _len - len; 2196 } 2197 2198 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ 2199 static int __must_check ffs_do_os_descs(unsigned count, 2200 char *data, unsigned len, 2201 ffs_os_desc_callback entity, void *priv) 2202 { 2203 const unsigned _len = len; 2204 unsigned long num = 0; 2205 2206 ENTER(); 2207 2208 for (num = 0; num < count; ++num) { 2209 int ret; 2210 enum ffs_os_desc_type type; 2211 u16 feature_count; 2212 struct usb_os_desc_header *desc = (void *)data; 2213 2214 if (len < sizeof(*desc)) 2215 return -EINVAL; 2216 2217 /* 2218 * Record "descriptor" entity. 2219 * Process dwLength, bcdVersion, wIndex, get b/wCount. 2220 * Move the data pointer to the beginning of extended 2221 * compatibilities proper or extended properties proper 2222 * portions of the data 2223 */ 2224 if (le32_to_cpu(desc->dwLength) > len) 2225 return -EINVAL; 2226 2227 ret = __ffs_do_os_desc_header(&type, desc); 2228 if (unlikely(ret < 0)) { 2229 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", 2230 num, ret); 2231 return ret; 2232 } 2233 /* 2234 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" 2235 */ 2236 feature_count = le16_to_cpu(desc->wCount); 2237 if (type == FFS_OS_DESC_EXT_COMPAT && 2238 (feature_count > 255 || desc->Reserved)) 2239 return -EINVAL; 2240 len -= ret; 2241 data += ret; 2242 2243 /* 2244 * Process all function/property descriptors 2245 * of this Feature Descriptor 2246 */ 2247 ret = ffs_do_single_os_desc(data, len, type, 2248 feature_count, entity, priv, desc); 2249 if (unlikely(ret < 0)) { 2250 pr_debug("%s returns %d\n", __func__, ret); 2251 return ret; 2252 } 2253 2254 len -= ret; 2255 data += ret; 2256 } 2257 return _len - len; 2258 } 2259 2260 /** 2261 * Validate contents of the buffer from userspace related to OS descriptors. 2262 */ 2263 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, 2264 struct usb_os_desc_header *h, void *data, 2265 unsigned len, void *priv) 2266 { 2267 struct ffs_data *ffs = priv; 2268 u8 length; 2269 2270 ENTER(); 2271 2272 switch (type) { 2273 case FFS_OS_DESC_EXT_COMPAT: { 2274 struct usb_ext_compat_desc *d = data; 2275 int i; 2276 2277 if (len < sizeof(*d) || 2278 d->bFirstInterfaceNumber >= ffs->interfaces_count) 2279 return -EINVAL; 2280 if (d->Reserved1 != 1) { 2281 /* 2282 * According to the spec, Reserved1 must be set to 1 2283 * but older kernels incorrectly rejected non-zero 2284 * values. We fix it here to avoid returning EINVAL 2285 * in response to values we used to accept. 2286 */ 2287 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n"); 2288 d->Reserved1 = 1; 2289 } 2290 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) 2291 if (d->Reserved2[i]) 2292 return -EINVAL; 2293 2294 length = sizeof(struct usb_ext_compat_desc); 2295 } 2296 break; 2297 case FFS_OS_DESC_EXT_PROP: { 2298 struct usb_ext_prop_desc *d = data; 2299 u32 type, pdl; 2300 u16 pnl; 2301 2302 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) 2303 return -EINVAL; 2304 length = le32_to_cpu(d->dwSize); 2305 if (len < length) 2306 return -EINVAL; 2307 type = le32_to_cpu(d->dwPropertyDataType); 2308 if (type < USB_EXT_PROP_UNICODE || 2309 type > USB_EXT_PROP_UNICODE_MULTI) { 2310 pr_vdebug("unsupported os descriptor property type: %d", 2311 type); 2312 return -EINVAL; 2313 } 2314 pnl = le16_to_cpu(d->wPropertyNameLength); 2315 if (length < 14 + pnl) { 2316 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n", 2317 length, pnl, type); 2318 return -EINVAL; 2319 } 2320 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl)); 2321 if (length != 14 + pnl + pdl) { 2322 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", 2323 length, pnl, pdl, type); 2324 return -EINVAL; 2325 } 2326 ++ffs->ms_os_descs_ext_prop_count; 2327 /* property name reported to the host as "WCHAR"s */ 2328 ffs->ms_os_descs_ext_prop_name_len += pnl * 2; 2329 ffs->ms_os_descs_ext_prop_data_len += pdl; 2330 } 2331 break; 2332 default: 2333 pr_vdebug("unknown descriptor: %d\n", type); 2334 return -EINVAL; 2335 } 2336 return length; 2337 } 2338 2339 static int __ffs_data_got_descs(struct ffs_data *ffs, 2340 char *const _data, size_t len) 2341 { 2342 char *data = _data, *raw_descs; 2343 unsigned os_descs_count = 0, counts[3], flags; 2344 int ret = -EINVAL, i; 2345 struct ffs_desc_helper helper; 2346 2347 ENTER(); 2348 2349 if (get_unaligned_le32(data + 4) != len) 2350 goto error; 2351 2352 switch (get_unaligned_le32(data)) { 2353 case FUNCTIONFS_DESCRIPTORS_MAGIC: 2354 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; 2355 data += 8; 2356 len -= 8; 2357 break; 2358 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: 2359 flags = get_unaligned_le32(data + 8); 2360 ffs->user_flags = flags; 2361 if (flags & ~(FUNCTIONFS_HAS_FS_DESC | 2362 FUNCTIONFS_HAS_HS_DESC | 2363 FUNCTIONFS_HAS_SS_DESC | 2364 FUNCTIONFS_HAS_MS_OS_DESC | 2365 FUNCTIONFS_VIRTUAL_ADDR | 2366 FUNCTIONFS_EVENTFD | 2367 FUNCTIONFS_ALL_CTRL_RECIP | 2368 FUNCTIONFS_CONFIG0_SETUP)) { 2369 ret = -ENOSYS; 2370 goto error; 2371 } 2372 data += 12; 2373 len -= 12; 2374 break; 2375 default: 2376 goto error; 2377 } 2378 2379 if (flags & FUNCTIONFS_EVENTFD) { 2380 if (len < 4) 2381 goto error; 2382 ffs->ffs_eventfd = 2383 eventfd_ctx_fdget((int)get_unaligned_le32(data)); 2384 if (IS_ERR(ffs->ffs_eventfd)) { 2385 ret = PTR_ERR(ffs->ffs_eventfd); 2386 ffs->ffs_eventfd = NULL; 2387 goto error; 2388 } 2389 data += 4; 2390 len -= 4; 2391 } 2392 2393 /* Read fs_count, hs_count and ss_count (if present) */ 2394 for (i = 0; i < 3; ++i) { 2395 if (!(flags & (1 << i))) { 2396 counts[i] = 0; 2397 } else if (len < 4) { 2398 goto error; 2399 } else { 2400 counts[i] = get_unaligned_le32(data); 2401 data += 4; 2402 len -= 4; 2403 } 2404 } 2405 if (flags & (1 << i)) { 2406 if (len < 4) { 2407 goto error; 2408 } 2409 os_descs_count = get_unaligned_le32(data); 2410 data += 4; 2411 len -= 4; 2412 }; 2413 2414 /* Read descriptors */ 2415 raw_descs = data; 2416 helper.ffs = ffs; 2417 for (i = 0; i < 3; ++i) { 2418 if (!counts[i]) 2419 continue; 2420 helper.interfaces_count = 0; 2421 helper.eps_count = 0; 2422 ret = ffs_do_descs(counts[i], data, len, 2423 __ffs_data_do_entity, &helper); 2424 if (ret < 0) 2425 goto error; 2426 if (!ffs->eps_count && !ffs->interfaces_count) { 2427 ffs->eps_count = helper.eps_count; 2428 ffs->interfaces_count = helper.interfaces_count; 2429 } else { 2430 if (ffs->eps_count != helper.eps_count) { 2431 ret = -EINVAL; 2432 goto error; 2433 } 2434 if (ffs->interfaces_count != helper.interfaces_count) { 2435 ret = -EINVAL; 2436 goto error; 2437 } 2438 } 2439 data += ret; 2440 len -= ret; 2441 } 2442 if (os_descs_count) { 2443 ret = ffs_do_os_descs(os_descs_count, data, len, 2444 __ffs_data_do_os_desc, ffs); 2445 if (ret < 0) 2446 goto error; 2447 data += ret; 2448 len -= ret; 2449 } 2450 2451 if (raw_descs == data || len) { 2452 ret = -EINVAL; 2453 goto error; 2454 } 2455 2456 ffs->raw_descs_data = _data; 2457 ffs->raw_descs = raw_descs; 2458 ffs->raw_descs_length = data - raw_descs; 2459 ffs->fs_descs_count = counts[0]; 2460 ffs->hs_descs_count = counts[1]; 2461 ffs->ss_descs_count = counts[2]; 2462 ffs->ms_os_descs_count = os_descs_count; 2463 2464 return 0; 2465 2466 error: 2467 kfree(_data); 2468 return ret; 2469 } 2470 2471 static int __ffs_data_got_strings(struct ffs_data *ffs, 2472 char *const _data, size_t len) 2473 { 2474 u32 str_count, needed_count, lang_count; 2475 struct usb_gadget_strings **stringtabs, *t; 2476 const char *data = _data; 2477 struct usb_string *s; 2478 2479 ENTER(); 2480 2481 if (unlikely(len < 16 || 2482 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || 2483 get_unaligned_le32(data + 4) != len)) 2484 goto error; 2485 str_count = get_unaligned_le32(data + 8); 2486 lang_count = get_unaligned_le32(data + 12); 2487 2488 /* if one is zero the other must be zero */ 2489 if (unlikely(!str_count != !lang_count)) 2490 goto error; 2491 2492 /* Do we have at least as many strings as descriptors need? */ 2493 needed_count = ffs->strings_count; 2494 if (unlikely(str_count < needed_count)) 2495 goto error; 2496 2497 /* 2498 * If we don't need any strings just return and free all 2499 * memory. 2500 */ 2501 if (!needed_count) { 2502 kfree(_data); 2503 return 0; 2504 } 2505 2506 /* Allocate everything in one chunk so there's less maintenance. */ 2507 { 2508 unsigned i = 0; 2509 vla_group(d); 2510 vla_item(d, struct usb_gadget_strings *, stringtabs, 2511 lang_count + 1); 2512 vla_item(d, struct usb_gadget_strings, stringtab, lang_count); 2513 vla_item(d, struct usb_string, strings, 2514 lang_count*(needed_count+1)); 2515 2516 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); 2517 2518 if (unlikely(!vlabuf)) { 2519 kfree(_data); 2520 return -ENOMEM; 2521 } 2522 2523 /* Initialize the VLA pointers */ 2524 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2525 t = vla_ptr(vlabuf, d, stringtab); 2526 i = lang_count; 2527 do { 2528 *stringtabs++ = t++; 2529 } while (--i); 2530 *stringtabs = NULL; 2531 2532 /* stringtabs = vlabuf = d_stringtabs for later kfree */ 2533 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2534 t = vla_ptr(vlabuf, d, stringtab); 2535 s = vla_ptr(vlabuf, d, strings); 2536 } 2537 2538 /* For each language */ 2539 data += 16; 2540 len -= 16; 2541 2542 do { /* lang_count > 0 so we can use do-while */ 2543 unsigned needed = needed_count; 2544 2545 if (unlikely(len < 3)) 2546 goto error_free; 2547 t->language = get_unaligned_le16(data); 2548 t->strings = s; 2549 ++t; 2550 2551 data += 2; 2552 len -= 2; 2553 2554 /* For each string */ 2555 do { /* str_count > 0 so we can use do-while */ 2556 size_t length = strnlen(data, len); 2557 2558 if (unlikely(length == len)) 2559 goto error_free; 2560 2561 /* 2562 * User may provide more strings then we need, 2563 * if that's the case we simply ignore the 2564 * rest 2565 */ 2566 if (likely(needed)) { 2567 /* 2568 * s->id will be set while adding 2569 * function to configuration so for 2570 * now just leave garbage here. 2571 */ 2572 s->s = data; 2573 --needed; 2574 ++s; 2575 } 2576 2577 data += length + 1; 2578 len -= length + 1; 2579 } while (--str_count); 2580 2581 s->id = 0; /* terminator */ 2582 s->s = NULL; 2583 ++s; 2584 2585 } while (--lang_count); 2586 2587 /* Some garbage left? */ 2588 if (unlikely(len)) 2589 goto error_free; 2590 2591 /* Done! */ 2592 ffs->stringtabs = stringtabs; 2593 ffs->raw_strings = _data; 2594 2595 return 0; 2596 2597 error_free: 2598 kfree(stringtabs); 2599 error: 2600 kfree(_data); 2601 return -EINVAL; 2602 } 2603 2604 2605 /* Events handling and management *******************************************/ 2606 2607 static void __ffs_event_add(struct ffs_data *ffs, 2608 enum usb_functionfs_event_type type) 2609 { 2610 enum usb_functionfs_event_type rem_type1, rem_type2 = type; 2611 int neg = 0; 2612 2613 /* 2614 * Abort any unhandled setup 2615 * 2616 * We do not need to worry about some cmpxchg() changing value 2617 * of ffs->setup_state without holding the lock because when 2618 * state is FFS_SETUP_PENDING cmpxchg() in several places in 2619 * the source does nothing. 2620 */ 2621 if (ffs->setup_state == FFS_SETUP_PENDING) 2622 ffs->setup_state = FFS_SETUP_CANCELLED; 2623 2624 /* 2625 * Logic of this function guarantees that there are at most four pending 2626 * evens on ffs->ev.types queue. This is important because the queue 2627 * has space for four elements only and __ffs_ep0_read_events function 2628 * depends on that limit as well. If more event types are added, those 2629 * limits have to be revisited or guaranteed to still hold. 2630 */ 2631 switch (type) { 2632 case FUNCTIONFS_RESUME: 2633 rem_type2 = FUNCTIONFS_SUSPEND; 2634 /* FALL THROUGH */ 2635 case FUNCTIONFS_SUSPEND: 2636 case FUNCTIONFS_SETUP: 2637 rem_type1 = type; 2638 /* Discard all similar events */ 2639 break; 2640 2641 case FUNCTIONFS_BIND: 2642 case FUNCTIONFS_UNBIND: 2643 case FUNCTIONFS_DISABLE: 2644 case FUNCTIONFS_ENABLE: 2645 /* Discard everything other then power management. */ 2646 rem_type1 = FUNCTIONFS_SUSPEND; 2647 rem_type2 = FUNCTIONFS_RESUME; 2648 neg = 1; 2649 break; 2650 2651 default: 2652 WARN(1, "%d: unknown event, this should not happen\n", type); 2653 return; 2654 } 2655 2656 { 2657 u8 *ev = ffs->ev.types, *out = ev; 2658 unsigned n = ffs->ev.count; 2659 for (; n; --n, ++ev) 2660 if ((*ev == rem_type1 || *ev == rem_type2) == neg) 2661 *out++ = *ev; 2662 else 2663 pr_vdebug("purging event %d\n", *ev); 2664 ffs->ev.count = out - ffs->ev.types; 2665 } 2666 2667 pr_vdebug("adding event %d\n", type); 2668 ffs->ev.types[ffs->ev.count++] = type; 2669 wake_up_locked(&ffs->ev.waitq); 2670 if (ffs->ffs_eventfd) 2671 eventfd_signal(ffs->ffs_eventfd, 1); 2672 } 2673 2674 static void ffs_event_add(struct ffs_data *ffs, 2675 enum usb_functionfs_event_type type) 2676 { 2677 unsigned long flags; 2678 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 2679 __ffs_event_add(ffs, type); 2680 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 2681 } 2682 2683 /* Bind/unbind USB function hooks *******************************************/ 2684 2685 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address) 2686 { 2687 int i; 2688 2689 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i) 2690 if (ffs->eps_addrmap[i] == endpoint_address) 2691 return i; 2692 return -ENOENT; 2693 } 2694 2695 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, 2696 struct usb_descriptor_header *desc, 2697 void *priv) 2698 { 2699 struct usb_endpoint_descriptor *ds = (void *)desc; 2700 struct ffs_function *func = priv; 2701 struct ffs_ep *ffs_ep; 2702 unsigned ep_desc_id; 2703 int idx; 2704 static const char *speed_names[] = { "full", "high", "super" }; 2705 2706 if (type != FFS_DESCRIPTOR) 2707 return 0; 2708 2709 /* 2710 * If ss_descriptors is not NULL, we are reading super speed 2711 * descriptors; if hs_descriptors is not NULL, we are reading high 2712 * speed descriptors; otherwise, we are reading full speed 2713 * descriptors. 2714 */ 2715 if (func->function.ss_descriptors) { 2716 ep_desc_id = 2; 2717 func->function.ss_descriptors[(long)valuep] = desc; 2718 } else if (func->function.hs_descriptors) { 2719 ep_desc_id = 1; 2720 func->function.hs_descriptors[(long)valuep] = desc; 2721 } else { 2722 ep_desc_id = 0; 2723 func->function.fs_descriptors[(long)valuep] = desc; 2724 } 2725 2726 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) 2727 return 0; 2728 2729 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1; 2730 if (idx < 0) 2731 return idx; 2732 2733 ffs_ep = func->eps + idx; 2734 2735 if (unlikely(ffs_ep->descs[ep_desc_id])) { 2736 pr_err("two %sspeed descriptors for EP %d\n", 2737 speed_names[ep_desc_id], 2738 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); 2739 return -EINVAL; 2740 } 2741 ffs_ep->descs[ep_desc_id] = ds; 2742 2743 ffs_dump_mem(": Original ep desc", ds, ds->bLength); 2744 if (ffs_ep->ep) { 2745 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; 2746 if (!ds->wMaxPacketSize) 2747 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; 2748 } else { 2749 struct usb_request *req; 2750 struct usb_ep *ep; 2751 u8 bEndpointAddress; 2752 2753 /* 2754 * We back up bEndpointAddress because autoconfig overwrites 2755 * it with physical endpoint address. 2756 */ 2757 bEndpointAddress = ds->bEndpointAddress; 2758 pr_vdebug("autoconfig\n"); 2759 ep = usb_ep_autoconfig(func->gadget, ds); 2760 if (unlikely(!ep)) 2761 return -ENOTSUPP; 2762 ep->driver_data = func->eps + idx; 2763 2764 req = usb_ep_alloc_request(ep, GFP_KERNEL); 2765 if (unlikely(!req)) 2766 return -ENOMEM; 2767 2768 ffs_ep->ep = ep; 2769 ffs_ep->req = req; 2770 func->eps_revmap[ds->bEndpointAddress & 2771 USB_ENDPOINT_NUMBER_MASK] = idx + 1; 2772 /* 2773 * If we use virtual address mapping, we restore 2774 * original bEndpointAddress value. 2775 */ 2776 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 2777 ds->bEndpointAddress = bEndpointAddress; 2778 } 2779 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); 2780 2781 return 0; 2782 } 2783 2784 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, 2785 struct usb_descriptor_header *desc, 2786 void *priv) 2787 { 2788 struct ffs_function *func = priv; 2789 unsigned idx; 2790 u8 newValue; 2791 2792 switch (type) { 2793 default: 2794 case FFS_DESCRIPTOR: 2795 /* Handled in previous pass by __ffs_func_bind_do_descs() */ 2796 return 0; 2797 2798 case FFS_INTERFACE: 2799 idx = *valuep; 2800 if (func->interfaces_nums[idx] < 0) { 2801 int id = usb_interface_id(func->conf, &func->function); 2802 if (unlikely(id < 0)) 2803 return id; 2804 func->interfaces_nums[idx] = id; 2805 } 2806 newValue = func->interfaces_nums[idx]; 2807 break; 2808 2809 case FFS_STRING: 2810 /* String' IDs are allocated when fsf_data is bound to cdev */ 2811 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; 2812 break; 2813 2814 case FFS_ENDPOINT: 2815 /* 2816 * USB_DT_ENDPOINT are handled in 2817 * __ffs_func_bind_do_descs(). 2818 */ 2819 if (desc->bDescriptorType == USB_DT_ENDPOINT) 2820 return 0; 2821 2822 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; 2823 if (unlikely(!func->eps[idx].ep)) 2824 return -EINVAL; 2825 2826 { 2827 struct usb_endpoint_descriptor **descs; 2828 descs = func->eps[idx].descs; 2829 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; 2830 } 2831 break; 2832 } 2833 2834 pr_vdebug("%02x -> %02x\n", *valuep, newValue); 2835 *valuep = newValue; 2836 return 0; 2837 } 2838 2839 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, 2840 struct usb_os_desc_header *h, void *data, 2841 unsigned len, void *priv) 2842 { 2843 struct ffs_function *func = priv; 2844 u8 length = 0; 2845 2846 switch (type) { 2847 case FFS_OS_DESC_EXT_COMPAT: { 2848 struct usb_ext_compat_desc *desc = data; 2849 struct usb_os_desc_table *t; 2850 2851 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; 2852 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; 2853 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID, 2854 ARRAY_SIZE(desc->CompatibleID) + 2855 ARRAY_SIZE(desc->SubCompatibleID)); 2856 length = sizeof(*desc); 2857 } 2858 break; 2859 case FFS_OS_DESC_EXT_PROP: { 2860 struct usb_ext_prop_desc *desc = data; 2861 struct usb_os_desc_table *t; 2862 struct usb_os_desc_ext_prop *ext_prop; 2863 char *ext_prop_name; 2864 char *ext_prop_data; 2865 2866 t = &func->function.os_desc_table[h->interface]; 2867 t->if_id = func->interfaces_nums[h->interface]; 2868 2869 ext_prop = func->ffs->ms_os_descs_ext_prop_avail; 2870 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); 2871 2872 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); 2873 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); 2874 ext_prop->data_len = le32_to_cpu(*(__le32 *) 2875 usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); 2876 length = ext_prop->name_len + ext_prop->data_len + 14; 2877 2878 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; 2879 func->ffs->ms_os_descs_ext_prop_name_avail += 2880 ext_prop->name_len; 2881 2882 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; 2883 func->ffs->ms_os_descs_ext_prop_data_avail += 2884 ext_prop->data_len; 2885 memcpy(ext_prop_data, 2886 usb_ext_prop_data_ptr(data, ext_prop->name_len), 2887 ext_prop->data_len); 2888 /* unicode data reported to the host as "WCHAR"s */ 2889 switch (ext_prop->type) { 2890 case USB_EXT_PROP_UNICODE: 2891 case USB_EXT_PROP_UNICODE_ENV: 2892 case USB_EXT_PROP_UNICODE_LINK: 2893 case USB_EXT_PROP_UNICODE_MULTI: 2894 ext_prop->data_len *= 2; 2895 break; 2896 } 2897 ext_prop->data = ext_prop_data; 2898 2899 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), 2900 ext_prop->name_len); 2901 /* property name reported to the host as "WCHAR"s */ 2902 ext_prop->name_len *= 2; 2903 ext_prop->name = ext_prop_name; 2904 2905 t->os_desc->ext_prop_len += 2906 ext_prop->name_len + ext_prop->data_len + 14; 2907 ++t->os_desc->ext_prop_count; 2908 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); 2909 } 2910 break; 2911 default: 2912 pr_vdebug("unknown descriptor: %d\n", type); 2913 } 2914 2915 return length; 2916 } 2917 2918 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, 2919 struct usb_configuration *c) 2920 { 2921 struct ffs_function *func = ffs_func_from_usb(f); 2922 struct f_fs_opts *ffs_opts = 2923 container_of(f->fi, struct f_fs_opts, func_inst); 2924 int ret; 2925 2926 ENTER(); 2927 2928 /* 2929 * Legacy gadget triggers binding in functionfs_ready_callback, 2930 * which already uses locking; taking the same lock here would 2931 * cause a deadlock. 2932 * 2933 * Configfs-enabled gadgets however do need ffs_dev_lock. 2934 */ 2935 if (!ffs_opts->no_configfs) 2936 ffs_dev_lock(); 2937 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; 2938 func->ffs = ffs_opts->dev->ffs_data; 2939 if (!ffs_opts->no_configfs) 2940 ffs_dev_unlock(); 2941 if (ret) 2942 return ERR_PTR(ret); 2943 2944 func->conf = c; 2945 func->gadget = c->cdev->gadget; 2946 2947 /* 2948 * in drivers/usb/gadget/configfs.c:configfs_composite_bind() 2949 * configurations are bound in sequence with list_for_each_entry, 2950 * in each configuration its functions are bound in sequence 2951 * with list_for_each_entry, so we assume no race condition 2952 * with regard to ffs_opts->bound access 2953 */ 2954 if (!ffs_opts->refcnt) { 2955 ret = functionfs_bind(func->ffs, c->cdev); 2956 if (ret) 2957 return ERR_PTR(ret); 2958 } 2959 ffs_opts->refcnt++; 2960 func->function.strings = func->ffs->stringtabs; 2961 2962 return ffs_opts; 2963 } 2964 2965 static int _ffs_func_bind(struct usb_configuration *c, 2966 struct usb_function *f) 2967 { 2968 struct ffs_function *func = ffs_func_from_usb(f); 2969 struct ffs_data *ffs = func->ffs; 2970 2971 const int full = !!func->ffs->fs_descs_count; 2972 const int high = !!func->ffs->hs_descs_count; 2973 const int super = !!func->ffs->ss_descs_count; 2974 2975 int fs_len, hs_len, ss_len, ret, i; 2976 struct ffs_ep *eps_ptr; 2977 2978 /* Make it a single chunk, less management later on */ 2979 vla_group(d); 2980 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); 2981 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, 2982 full ? ffs->fs_descs_count + 1 : 0); 2983 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, 2984 high ? ffs->hs_descs_count + 1 : 0); 2985 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, 2986 super ? ffs->ss_descs_count + 1 : 0); 2987 vla_item_with_sz(d, short, inums, ffs->interfaces_count); 2988 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, 2989 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2990 vla_item_with_sz(d, char[16], ext_compat, 2991 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2992 vla_item_with_sz(d, struct usb_os_desc, os_desc, 2993 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2994 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, 2995 ffs->ms_os_descs_ext_prop_count); 2996 vla_item_with_sz(d, char, ext_prop_name, 2997 ffs->ms_os_descs_ext_prop_name_len); 2998 vla_item_with_sz(d, char, ext_prop_data, 2999 ffs->ms_os_descs_ext_prop_data_len); 3000 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); 3001 char *vlabuf; 3002 3003 ENTER(); 3004 3005 /* Has descriptors only for speeds gadget does not support */ 3006 if (unlikely(!(full | high | super))) 3007 return -ENOTSUPP; 3008 3009 /* Allocate a single chunk, less management later on */ 3010 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); 3011 if (unlikely(!vlabuf)) 3012 return -ENOMEM; 3013 3014 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); 3015 ffs->ms_os_descs_ext_prop_name_avail = 3016 vla_ptr(vlabuf, d, ext_prop_name); 3017 ffs->ms_os_descs_ext_prop_data_avail = 3018 vla_ptr(vlabuf, d, ext_prop_data); 3019 3020 /* Copy descriptors */ 3021 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, 3022 ffs->raw_descs_length); 3023 3024 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); 3025 eps_ptr = vla_ptr(vlabuf, d, eps); 3026 for (i = 0; i < ffs->eps_count; i++) 3027 eps_ptr[i].num = -1; 3028 3029 /* Save pointers 3030 * d_eps == vlabuf, func->eps used to kfree vlabuf later 3031 */ 3032 func->eps = vla_ptr(vlabuf, d, eps); 3033 func->interfaces_nums = vla_ptr(vlabuf, d, inums); 3034 3035 /* 3036 * Go through all the endpoint descriptors and allocate 3037 * endpoints first, so that later we can rewrite the endpoint 3038 * numbers without worrying that it may be described later on. 3039 */ 3040 if (likely(full)) { 3041 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); 3042 fs_len = ffs_do_descs(ffs->fs_descs_count, 3043 vla_ptr(vlabuf, d, raw_descs), 3044 d_raw_descs__sz, 3045 __ffs_func_bind_do_descs, func); 3046 if (unlikely(fs_len < 0)) { 3047 ret = fs_len; 3048 goto error; 3049 } 3050 } else { 3051 fs_len = 0; 3052 } 3053 3054 if (likely(high)) { 3055 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); 3056 hs_len = ffs_do_descs(ffs->hs_descs_count, 3057 vla_ptr(vlabuf, d, raw_descs) + fs_len, 3058 d_raw_descs__sz - fs_len, 3059 __ffs_func_bind_do_descs, func); 3060 if (unlikely(hs_len < 0)) { 3061 ret = hs_len; 3062 goto error; 3063 } 3064 } else { 3065 hs_len = 0; 3066 } 3067 3068 if (likely(super)) { 3069 func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs); 3070 ss_len = ffs_do_descs(ffs->ss_descs_count, 3071 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, 3072 d_raw_descs__sz - fs_len - hs_len, 3073 __ffs_func_bind_do_descs, func); 3074 if (unlikely(ss_len < 0)) { 3075 ret = ss_len; 3076 goto error; 3077 } 3078 } else { 3079 ss_len = 0; 3080 } 3081 3082 /* 3083 * Now handle interface numbers allocation and interface and 3084 * endpoint numbers rewriting. We can do that in one go 3085 * now. 3086 */ 3087 ret = ffs_do_descs(ffs->fs_descs_count + 3088 (high ? ffs->hs_descs_count : 0) + 3089 (super ? ffs->ss_descs_count : 0), 3090 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, 3091 __ffs_func_bind_do_nums, func); 3092 if (unlikely(ret < 0)) 3093 goto error; 3094 3095 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); 3096 if (c->cdev->use_os_string) { 3097 for (i = 0; i < ffs->interfaces_count; ++i) { 3098 struct usb_os_desc *desc; 3099 3100 desc = func->function.os_desc_table[i].os_desc = 3101 vla_ptr(vlabuf, d, os_desc) + 3102 i * sizeof(struct usb_os_desc); 3103 desc->ext_compat_id = 3104 vla_ptr(vlabuf, d, ext_compat) + i * 16; 3105 INIT_LIST_HEAD(&desc->ext_prop); 3106 } 3107 ret = ffs_do_os_descs(ffs->ms_os_descs_count, 3108 vla_ptr(vlabuf, d, raw_descs) + 3109 fs_len + hs_len + ss_len, 3110 d_raw_descs__sz - fs_len - hs_len - 3111 ss_len, 3112 __ffs_func_bind_do_os_desc, func); 3113 if (unlikely(ret < 0)) 3114 goto error; 3115 } 3116 func->function.os_desc_n = 3117 c->cdev->use_os_string ? ffs->interfaces_count : 0; 3118 3119 /* And we're done */ 3120 ffs_event_add(ffs, FUNCTIONFS_BIND); 3121 return 0; 3122 3123 error: 3124 /* XXX Do we need to release all claimed endpoints here? */ 3125 return ret; 3126 } 3127 3128 static int ffs_func_bind(struct usb_configuration *c, 3129 struct usb_function *f) 3130 { 3131 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); 3132 struct ffs_function *func = ffs_func_from_usb(f); 3133 int ret; 3134 3135 if (IS_ERR(ffs_opts)) 3136 return PTR_ERR(ffs_opts); 3137 3138 ret = _ffs_func_bind(c, f); 3139 if (ret && !--ffs_opts->refcnt) 3140 functionfs_unbind(func->ffs); 3141 3142 return ret; 3143 } 3144 3145 3146 /* Other USB function hooks *************************************************/ 3147 3148 static void ffs_reset_work(struct work_struct *work) 3149 { 3150 struct ffs_data *ffs = container_of(work, 3151 struct ffs_data, reset_work); 3152 ffs_data_reset(ffs); 3153 } 3154 3155 static int ffs_func_set_alt(struct usb_function *f, 3156 unsigned interface, unsigned alt) 3157 { 3158 struct ffs_function *func = ffs_func_from_usb(f); 3159 struct ffs_data *ffs = func->ffs; 3160 int ret = 0, intf; 3161 3162 if (alt != (unsigned)-1) { 3163 intf = ffs_func_revmap_intf(func, interface); 3164 if (unlikely(intf < 0)) 3165 return intf; 3166 } 3167 3168 if (ffs->func) 3169 ffs_func_eps_disable(ffs->func); 3170 3171 if (ffs->state == FFS_DEACTIVATED) { 3172 ffs->state = FFS_CLOSING; 3173 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3174 schedule_work(&ffs->reset_work); 3175 return -ENODEV; 3176 } 3177 3178 if (ffs->state != FFS_ACTIVE) 3179 return -ENODEV; 3180 3181 if (alt == (unsigned)-1) { 3182 ffs->func = NULL; 3183 ffs_event_add(ffs, FUNCTIONFS_DISABLE); 3184 return 0; 3185 } 3186 3187 ffs->func = func; 3188 ret = ffs_func_eps_enable(func); 3189 if (likely(ret >= 0)) 3190 ffs_event_add(ffs, FUNCTIONFS_ENABLE); 3191 return ret; 3192 } 3193 3194 static void ffs_func_disable(struct usb_function *f) 3195 { 3196 ffs_func_set_alt(f, 0, (unsigned)-1); 3197 } 3198 3199 static int ffs_func_setup(struct usb_function *f, 3200 const struct usb_ctrlrequest *creq) 3201 { 3202 struct ffs_function *func = ffs_func_from_usb(f); 3203 struct ffs_data *ffs = func->ffs; 3204 unsigned long flags; 3205 int ret; 3206 3207 ENTER(); 3208 3209 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); 3210 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); 3211 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); 3212 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); 3213 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); 3214 3215 /* 3216 * Most requests directed to interface go through here 3217 * (notable exceptions are set/get interface) so we need to 3218 * handle them. All other either handled by composite or 3219 * passed to usb_configuration->setup() (if one is set). No 3220 * matter, we will handle requests directed to endpoint here 3221 * as well (as it's straightforward). Other request recipient 3222 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP 3223 * is being used. 3224 */ 3225 if (ffs->state != FFS_ACTIVE) 3226 return -ENODEV; 3227 3228 switch (creq->bRequestType & USB_RECIP_MASK) { 3229 case USB_RECIP_INTERFACE: 3230 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); 3231 if (unlikely(ret < 0)) 3232 return ret; 3233 break; 3234 3235 case USB_RECIP_ENDPOINT: 3236 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); 3237 if (unlikely(ret < 0)) 3238 return ret; 3239 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3240 ret = func->ffs->eps_addrmap[ret]; 3241 break; 3242 3243 default: 3244 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP) 3245 ret = le16_to_cpu(creq->wIndex); 3246 else 3247 return -EOPNOTSUPP; 3248 } 3249 3250 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3251 ffs->ev.setup = *creq; 3252 ffs->ev.setup.wIndex = cpu_to_le16(ret); 3253 __ffs_event_add(ffs, FUNCTIONFS_SETUP); 3254 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3255 3256 return USB_GADGET_DELAYED_STATUS; 3257 } 3258 3259 static bool ffs_func_req_match(struct usb_function *f, 3260 const struct usb_ctrlrequest *creq, 3261 bool config0) 3262 { 3263 struct ffs_function *func = ffs_func_from_usb(f); 3264 3265 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP)) 3266 return false; 3267 3268 switch (creq->bRequestType & USB_RECIP_MASK) { 3269 case USB_RECIP_INTERFACE: 3270 return (ffs_func_revmap_intf(func, 3271 le16_to_cpu(creq->wIndex)) >= 0); 3272 case USB_RECIP_ENDPOINT: 3273 return (ffs_func_revmap_ep(func, 3274 le16_to_cpu(creq->wIndex)) >= 0); 3275 default: 3276 return (bool) (func->ffs->user_flags & 3277 FUNCTIONFS_ALL_CTRL_RECIP); 3278 } 3279 } 3280 3281 static void ffs_func_suspend(struct usb_function *f) 3282 { 3283 ENTER(); 3284 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); 3285 } 3286 3287 static void ffs_func_resume(struct usb_function *f) 3288 { 3289 ENTER(); 3290 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); 3291 } 3292 3293 3294 /* Endpoint and interface numbers reverse mapping ***************************/ 3295 3296 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) 3297 { 3298 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; 3299 return num ? num : -EDOM; 3300 } 3301 3302 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) 3303 { 3304 short *nums = func->interfaces_nums; 3305 unsigned count = func->ffs->interfaces_count; 3306 3307 for (; count; --count, ++nums) { 3308 if (*nums >= 0 && *nums == intf) 3309 return nums - func->interfaces_nums; 3310 } 3311 3312 return -EDOM; 3313 } 3314 3315 3316 /* Devices management *******************************************************/ 3317 3318 static LIST_HEAD(ffs_devices); 3319 3320 static struct ffs_dev *_ffs_do_find_dev(const char *name) 3321 { 3322 struct ffs_dev *dev; 3323 3324 if (!name) 3325 return NULL; 3326 3327 list_for_each_entry(dev, &ffs_devices, entry) { 3328 if (strcmp(dev->name, name) == 0) 3329 return dev; 3330 } 3331 3332 return NULL; 3333 } 3334 3335 /* 3336 * ffs_lock must be taken by the caller of this function 3337 */ 3338 static struct ffs_dev *_ffs_get_single_dev(void) 3339 { 3340 struct ffs_dev *dev; 3341 3342 if (list_is_singular(&ffs_devices)) { 3343 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); 3344 if (dev->single) 3345 return dev; 3346 } 3347 3348 return NULL; 3349 } 3350 3351 /* 3352 * ffs_lock must be taken by the caller of this function 3353 */ 3354 static struct ffs_dev *_ffs_find_dev(const char *name) 3355 { 3356 struct ffs_dev *dev; 3357 3358 dev = _ffs_get_single_dev(); 3359 if (dev) 3360 return dev; 3361 3362 return _ffs_do_find_dev(name); 3363 } 3364 3365 /* Configfs support *********************************************************/ 3366 3367 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) 3368 { 3369 return container_of(to_config_group(item), struct f_fs_opts, 3370 func_inst.group); 3371 } 3372 3373 static void ffs_attr_release(struct config_item *item) 3374 { 3375 struct f_fs_opts *opts = to_ffs_opts(item); 3376 3377 usb_put_function_instance(&opts->func_inst); 3378 } 3379 3380 static struct configfs_item_operations ffs_item_ops = { 3381 .release = ffs_attr_release, 3382 }; 3383 3384 static const struct config_item_type ffs_func_type = { 3385 .ct_item_ops = &ffs_item_ops, 3386 .ct_owner = THIS_MODULE, 3387 }; 3388 3389 3390 /* Function registration interface ******************************************/ 3391 3392 static void ffs_free_inst(struct usb_function_instance *f) 3393 { 3394 struct f_fs_opts *opts; 3395 3396 opts = to_f_fs_opts(f); 3397 ffs_dev_lock(); 3398 _ffs_free_dev(opts->dev); 3399 ffs_dev_unlock(); 3400 kfree(opts); 3401 } 3402 3403 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) 3404 { 3405 if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name)) 3406 return -ENAMETOOLONG; 3407 return ffs_name_dev(to_f_fs_opts(fi)->dev, name); 3408 } 3409 3410 static struct usb_function_instance *ffs_alloc_inst(void) 3411 { 3412 struct f_fs_opts *opts; 3413 struct ffs_dev *dev; 3414 3415 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 3416 if (!opts) 3417 return ERR_PTR(-ENOMEM); 3418 3419 opts->func_inst.set_inst_name = ffs_set_inst_name; 3420 opts->func_inst.free_func_inst = ffs_free_inst; 3421 ffs_dev_lock(); 3422 dev = _ffs_alloc_dev(); 3423 ffs_dev_unlock(); 3424 if (IS_ERR(dev)) { 3425 kfree(opts); 3426 return ERR_CAST(dev); 3427 } 3428 opts->dev = dev; 3429 dev->opts = opts; 3430 3431 config_group_init_type_name(&opts->func_inst.group, "", 3432 &ffs_func_type); 3433 return &opts->func_inst; 3434 } 3435 3436 static void ffs_free(struct usb_function *f) 3437 { 3438 kfree(ffs_func_from_usb(f)); 3439 } 3440 3441 static void ffs_func_unbind(struct usb_configuration *c, 3442 struct usb_function *f) 3443 { 3444 struct ffs_function *func = ffs_func_from_usb(f); 3445 struct ffs_data *ffs = func->ffs; 3446 struct f_fs_opts *opts = 3447 container_of(f->fi, struct f_fs_opts, func_inst); 3448 struct ffs_ep *ep = func->eps; 3449 unsigned count = ffs->eps_count; 3450 unsigned long flags; 3451 3452 ENTER(); 3453 if (ffs->func == func) { 3454 ffs_func_eps_disable(func); 3455 ffs->func = NULL; 3456 } 3457 3458 if (!--opts->refcnt) 3459 functionfs_unbind(ffs); 3460 3461 /* cleanup after autoconfig */ 3462 spin_lock_irqsave(&func->ffs->eps_lock, flags); 3463 while (count--) { 3464 if (ep->ep && ep->req) 3465 usb_ep_free_request(ep->ep, ep->req); 3466 ep->req = NULL; 3467 ++ep; 3468 } 3469 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 3470 kfree(func->eps); 3471 func->eps = NULL; 3472 /* 3473 * eps, descriptors and interfaces_nums are allocated in the 3474 * same chunk so only one free is required. 3475 */ 3476 func->function.fs_descriptors = NULL; 3477 func->function.hs_descriptors = NULL; 3478 func->function.ss_descriptors = NULL; 3479 func->interfaces_nums = NULL; 3480 3481 ffs_event_add(ffs, FUNCTIONFS_UNBIND); 3482 } 3483 3484 static struct usb_function *ffs_alloc(struct usb_function_instance *fi) 3485 { 3486 struct ffs_function *func; 3487 3488 ENTER(); 3489 3490 func = kzalloc(sizeof(*func), GFP_KERNEL); 3491 if (unlikely(!func)) 3492 return ERR_PTR(-ENOMEM); 3493 3494 func->function.name = "Function FS Gadget"; 3495 3496 func->function.bind = ffs_func_bind; 3497 func->function.unbind = ffs_func_unbind; 3498 func->function.set_alt = ffs_func_set_alt; 3499 func->function.disable = ffs_func_disable; 3500 func->function.setup = ffs_func_setup; 3501 func->function.req_match = ffs_func_req_match; 3502 func->function.suspend = ffs_func_suspend; 3503 func->function.resume = ffs_func_resume; 3504 func->function.free_func = ffs_free; 3505 3506 return &func->function; 3507 } 3508 3509 /* 3510 * ffs_lock must be taken by the caller of this function 3511 */ 3512 static struct ffs_dev *_ffs_alloc_dev(void) 3513 { 3514 struct ffs_dev *dev; 3515 int ret; 3516 3517 if (_ffs_get_single_dev()) 3518 return ERR_PTR(-EBUSY); 3519 3520 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3521 if (!dev) 3522 return ERR_PTR(-ENOMEM); 3523 3524 if (list_empty(&ffs_devices)) { 3525 ret = functionfs_init(); 3526 if (ret) { 3527 kfree(dev); 3528 return ERR_PTR(ret); 3529 } 3530 } 3531 3532 list_add(&dev->entry, &ffs_devices); 3533 3534 return dev; 3535 } 3536 3537 int ffs_name_dev(struct ffs_dev *dev, const char *name) 3538 { 3539 struct ffs_dev *existing; 3540 int ret = 0; 3541 3542 ffs_dev_lock(); 3543 3544 existing = _ffs_do_find_dev(name); 3545 if (!existing) 3546 strlcpy(dev->name, name, ARRAY_SIZE(dev->name)); 3547 else if (existing != dev) 3548 ret = -EBUSY; 3549 3550 ffs_dev_unlock(); 3551 3552 return ret; 3553 } 3554 EXPORT_SYMBOL_GPL(ffs_name_dev); 3555 3556 int ffs_single_dev(struct ffs_dev *dev) 3557 { 3558 int ret; 3559 3560 ret = 0; 3561 ffs_dev_lock(); 3562 3563 if (!list_is_singular(&ffs_devices)) 3564 ret = -EBUSY; 3565 else 3566 dev->single = true; 3567 3568 ffs_dev_unlock(); 3569 return ret; 3570 } 3571 EXPORT_SYMBOL_GPL(ffs_single_dev); 3572 3573 /* 3574 * ffs_lock must be taken by the caller of this function 3575 */ 3576 static void _ffs_free_dev(struct ffs_dev *dev) 3577 { 3578 list_del(&dev->entry); 3579 3580 /* Clear the private_data pointer to stop incorrect dev access */ 3581 if (dev->ffs_data) 3582 dev->ffs_data->private_data = NULL; 3583 3584 kfree(dev); 3585 if (list_empty(&ffs_devices)) 3586 functionfs_cleanup(); 3587 } 3588 3589 static void *ffs_acquire_dev(const char *dev_name) 3590 { 3591 struct ffs_dev *ffs_dev; 3592 3593 ENTER(); 3594 ffs_dev_lock(); 3595 3596 ffs_dev = _ffs_find_dev(dev_name); 3597 if (!ffs_dev) 3598 ffs_dev = ERR_PTR(-ENOENT); 3599 else if (ffs_dev->mounted) 3600 ffs_dev = ERR_PTR(-EBUSY); 3601 else if (ffs_dev->ffs_acquire_dev_callback && 3602 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) 3603 ffs_dev = ERR_PTR(-ENOENT); 3604 else 3605 ffs_dev->mounted = true; 3606 3607 ffs_dev_unlock(); 3608 return ffs_dev; 3609 } 3610 3611 static void ffs_release_dev(struct ffs_data *ffs_data) 3612 { 3613 struct ffs_dev *ffs_dev; 3614 3615 ENTER(); 3616 ffs_dev_lock(); 3617 3618 ffs_dev = ffs_data->private_data; 3619 if (ffs_dev) { 3620 ffs_dev->mounted = false; 3621 3622 if (ffs_dev->ffs_release_dev_callback) 3623 ffs_dev->ffs_release_dev_callback(ffs_dev); 3624 } 3625 3626 ffs_dev_unlock(); 3627 } 3628 3629 static int ffs_ready(struct ffs_data *ffs) 3630 { 3631 struct ffs_dev *ffs_obj; 3632 int ret = 0; 3633 3634 ENTER(); 3635 ffs_dev_lock(); 3636 3637 ffs_obj = ffs->private_data; 3638 if (!ffs_obj) { 3639 ret = -EINVAL; 3640 goto done; 3641 } 3642 if (WARN_ON(ffs_obj->desc_ready)) { 3643 ret = -EBUSY; 3644 goto done; 3645 } 3646 3647 ffs_obj->desc_ready = true; 3648 ffs_obj->ffs_data = ffs; 3649 3650 if (ffs_obj->ffs_ready_callback) { 3651 ret = ffs_obj->ffs_ready_callback(ffs); 3652 if (ret) 3653 goto done; 3654 } 3655 3656 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); 3657 done: 3658 ffs_dev_unlock(); 3659 return ret; 3660 } 3661 3662 static void ffs_closed(struct ffs_data *ffs) 3663 { 3664 struct ffs_dev *ffs_obj; 3665 struct f_fs_opts *opts; 3666 struct config_item *ci; 3667 3668 ENTER(); 3669 ffs_dev_lock(); 3670 3671 ffs_obj = ffs->private_data; 3672 if (!ffs_obj) 3673 goto done; 3674 3675 ffs_obj->desc_ready = false; 3676 ffs_obj->ffs_data = NULL; 3677 3678 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) && 3679 ffs_obj->ffs_closed_callback) 3680 ffs_obj->ffs_closed_callback(ffs); 3681 3682 if (ffs_obj->opts) 3683 opts = ffs_obj->opts; 3684 else 3685 goto done; 3686 3687 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent 3688 || !kref_read(&opts->func_inst.group.cg_item.ci_kref)) 3689 goto done; 3690 3691 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent; 3692 ffs_dev_unlock(); 3693 3694 if (test_bit(FFS_FL_BOUND, &ffs->flags)) 3695 unregister_gadget_item(ci); 3696 return; 3697 done: 3698 ffs_dev_unlock(); 3699 } 3700 3701 /* Misc helper functions ****************************************************/ 3702 3703 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 3704 { 3705 return nonblock 3706 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN 3707 : mutex_lock_interruptible(mutex); 3708 } 3709 3710 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 3711 { 3712 char *data; 3713 3714 if (unlikely(!len)) 3715 return NULL; 3716 3717 data = kmalloc(len, GFP_KERNEL); 3718 if (unlikely(!data)) 3719 return ERR_PTR(-ENOMEM); 3720 3721 if (unlikely(copy_from_user(data, buf, len))) { 3722 kfree(data); 3723 return ERR_PTR(-EFAULT); 3724 } 3725 3726 pr_vdebug("Buffer from user space:\n"); 3727 ffs_dump_mem("", data, len); 3728 3729 return data; 3730 } 3731 3732 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); 3733 MODULE_LICENSE("GPL"); 3734 MODULE_AUTHOR("Michal Nazarewicz"); 3735