1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * f_fs.c -- user mode file system API for USB composite function controllers 4 * 5 * Copyright (C) 2010 Samsung Electronics 6 * Author: Michal Nazarewicz <mina86@mina86.com> 7 * 8 * Based on inode.c (GadgetFS) which was: 9 * Copyright (C) 2003-2004 David Brownell 10 * Copyright (C) 2003 Agilent Technologies 11 */ 12 13 14 /* #define DEBUG */ 15 /* #define VERBOSE_DEBUG */ 16 17 #include <linux/blkdev.h> 18 #include <linux/pagemap.h> 19 #include <linux/export.h> 20 #include <linux/fs_parser.h> 21 #include <linux/hid.h> 22 #include <linux/mm.h> 23 #include <linux/module.h> 24 #include <linux/scatterlist.h> 25 #include <linux/sched/signal.h> 26 #include <linux/uio.h> 27 #include <linux/vmalloc.h> 28 #include <asm/unaligned.h> 29 30 #include <linux/usb/ccid.h> 31 #include <linux/usb/composite.h> 32 #include <linux/usb/functionfs.h> 33 34 #include <linux/aio.h> 35 #include <linux/kthread.h> 36 #include <linux/poll.h> 37 #include <linux/eventfd.h> 38 39 #include "u_fs.h" 40 #include "u_f.h" 41 #include "u_os_desc.h" 42 #include "configfs.h" 43 44 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ 45 46 /* Reference counter handling */ 47 static void ffs_data_get(struct ffs_data *ffs); 48 static void ffs_data_put(struct ffs_data *ffs); 49 /* Creates new ffs_data object. */ 50 static struct ffs_data *__must_check ffs_data_new(const char *dev_name) 51 __attribute__((malloc)); 52 53 /* Opened counter handling. */ 54 static void ffs_data_opened(struct ffs_data *ffs); 55 static void ffs_data_closed(struct ffs_data *ffs); 56 57 /* Called with ffs->mutex held; take over ownership of data. */ 58 static int __must_check 59 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); 60 static int __must_check 61 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); 62 63 64 /* The function structure ***************************************************/ 65 66 struct ffs_ep; 67 68 struct ffs_function { 69 struct usb_configuration *conf; 70 struct usb_gadget *gadget; 71 struct ffs_data *ffs; 72 73 struct ffs_ep *eps; 74 u8 eps_revmap[16]; 75 short *interfaces_nums; 76 77 struct usb_function function; 78 }; 79 80 81 static struct ffs_function *ffs_func_from_usb(struct usb_function *f) 82 { 83 return container_of(f, struct ffs_function, function); 84 } 85 86 87 static inline enum ffs_setup_state 88 ffs_setup_state_clear_cancelled(struct ffs_data *ffs) 89 { 90 return (enum ffs_setup_state) 91 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); 92 } 93 94 95 static void ffs_func_eps_disable(struct ffs_function *func); 96 static int __must_check ffs_func_eps_enable(struct ffs_function *func); 97 98 static int ffs_func_bind(struct usb_configuration *, 99 struct usb_function *); 100 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); 101 static void ffs_func_disable(struct usb_function *); 102 static int ffs_func_setup(struct usb_function *, 103 const struct usb_ctrlrequest *); 104 static bool ffs_func_req_match(struct usb_function *, 105 const struct usb_ctrlrequest *, 106 bool config0); 107 static void ffs_func_suspend(struct usb_function *); 108 static void ffs_func_resume(struct usb_function *); 109 110 111 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); 112 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); 113 114 115 /* The endpoints structures *************************************************/ 116 117 struct ffs_ep { 118 struct usb_ep *ep; /* P: ffs->eps_lock */ 119 struct usb_request *req; /* P: epfile->mutex */ 120 121 /* [0]: full speed, [1]: high speed, [2]: super speed */ 122 struct usb_endpoint_descriptor *descs[3]; 123 124 u8 num; 125 }; 126 127 struct ffs_epfile { 128 /* Protects ep->ep and ep->req. */ 129 struct mutex mutex; 130 131 struct ffs_data *ffs; 132 struct ffs_ep *ep; /* P: ffs->eps_lock */ 133 134 struct dentry *dentry; 135 136 /* 137 * Buffer for holding data from partial reads which may happen since 138 * we’re rounding user read requests to a multiple of a max packet size. 139 * 140 * The pointer is initialised with NULL value and may be set by 141 * __ffs_epfile_read_data function to point to a temporary buffer. 142 * 143 * In normal operation, calls to __ffs_epfile_read_buffered will consume 144 * data from said buffer and eventually free it. Importantly, while the 145 * function is using the buffer, it sets the pointer to NULL. This is 146 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered 147 * can never run concurrently (they are synchronised by epfile->mutex) 148 * so the latter will not assign a new value to the pointer. 149 * 150 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is 151 * valid) and sets the pointer to READ_BUFFER_DROP value. This special 152 * value is crux of the synchronisation between ffs_func_eps_disable and 153 * __ffs_epfile_read_data. 154 * 155 * Once __ffs_epfile_read_data is about to finish it will try to set the 156 * pointer back to its old value (as described above), but seeing as the 157 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free 158 * the buffer. 159 * 160 * == State transitions == 161 * 162 * • ptr == NULL: (initial state) 163 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP 164 * ◦ __ffs_epfile_read_buffered: nop 165 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf 166 * ◦ reading finishes: n/a, not in ‘and reading’ state 167 * • ptr == DROP: 168 * ◦ __ffs_epfile_read_buffer_free: nop 169 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL 170 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop 171 * ◦ reading finishes: n/a, not in ‘and reading’ state 172 * • ptr == buf: 173 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP 174 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading 175 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered 176 * is always called first 177 * ◦ reading finishes: n/a, not in ‘and reading’ state 178 * • ptr == NULL and reading: 179 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading 180 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 181 * ◦ __ffs_epfile_read_data: n/a, mutex is held 182 * ◦ reading finishes and … 183 * … all data read: free buf, go to ptr == NULL 184 * … otherwise: go to ptr == buf and reading 185 * • ptr == DROP and reading: 186 * ◦ __ffs_epfile_read_buffer_free: nop 187 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 188 * ◦ __ffs_epfile_read_data: n/a, mutex is held 189 * ◦ reading finishes: free buf, go to ptr == DROP 190 */ 191 struct ffs_buffer *read_buffer; 192 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN)) 193 194 char name[5]; 195 196 unsigned char in; /* P: ffs->eps_lock */ 197 unsigned char isoc; /* P: ffs->eps_lock */ 198 199 unsigned char _pad; 200 }; 201 202 struct ffs_buffer { 203 size_t length; 204 char *data; 205 char storage[]; 206 }; 207 208 /* ffs_io_data structure ***************************************************/ 209 210 struct ffs_io_data { 211 bool aio; 212 bool read; 213 214 struct kiocb *kiocb; 215 struct iov_iter data; 216 const void *to_free; 217 char *buf; 218 219 struct mm_struct *mm; 220 struct work_struct work; 221 222 struct usb_ep *ep; 223 struct usb_request *req; 224 struct sg_table sgt; 225 bool use_sg; 226 227 struct ffs_data *ffs; 228 229 int status; 230 struct completion done; 231 }; 232 233 struct ffs_desc_helper { 234 struct ffs_data *ffs; 235 unsigned interfaces_count; 236 unsigned eps_count; 237 }; 238 239 static int __must_check ffs_epfiles_create(struct ffs_data *ffs); 240 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count); 241 242 static struct dentry * 243 ffs_sb_create_file(struct super_block *sb, const char *name, void *data, 244 const struct file_operations *fops); 245 246 /* Devices management *******************************************************/ 247 248 DEFINE_MUTEX(ffs_lock); 249 EXPORT_SYMBOL_GPL(ffs_lock); 250 251 static struct ffs_dev *_ffs_find_dev(const char *name); 252 static struct ffs_dev *_ffs_alloc_dev(void); 253 static void _ffs_free_dev(struct ffs_dev *dev); 254 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data); 255 static void ffs_release_dev(struct ffs_dev *ffs_dev); 256 static int ffs_ready(struct ffs_data *ffs); 257 static void ffs_closed(struct ffs_data *ffs); 258 259 /* Misc helper functions ****************************************************/ 260 261 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 262 __attribute__((warn_unused_result, nonnull)); 263 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 264 __attribute__((warn_unused_result, nonnull)); 265 266 267 /* Control file aka ep0 *****************************************************/ 268 269 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) 270 { 271 struct ffs_data *ffs = req->context; 272 273 complete(&ffs->ep0req_completion); 274 } 275 276 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) 277 __releases(&ffs->ev.waitq.lock) 278 { 279 struct usb_request *req = ffs->ep0req; 280 int ret; 281 282 if (!req) { 283 spin_unlock_irq(&ffs->ev.waitq.lock); 284 return -EINVAL; 285 } 286 287 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); 288 289 spin_unlock_irq(&ffs->ev.waitq.lock); 290 291 req->buf = data; 292 req->length = len; 293 294 /* 295 * UDC layer requires to provide a buffer even for ZLP, but should 296 * not use it at all. Let's provide some poisoned pointer to catch 297 * possible bug in the driver. 298 */ 299 if (req->buf == NULL) 300 req->buf = (void *)0xDEADBABE; 301 302 reinit_completion(&ffs->ep0req_completion); 303 304 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); 305 if (ret < 0) 306 return ret; 307 308 ret = wait_for_completion_interruptible(&ffs->ep0req_completion); 309 if (ret) { 310 usb_ep_dequeue(ffs->gadget->ep0, req); 311 return -EINTR; 312 } 313 314 ffs->setup_state = FFS_NO_SETUP; 315 return req->status ? req->status : req->actual; 316 } 317 318 static int __ffs_ep0_stall(struct ffs_data *ffs) 319 { 320 if (ffs->ev.can_stall) { 321 pr_vdebug("ep0 stall\n"); 322 usb_ep_set_halt(ffs->gadget->ep0); 323 ffs->setup_state = FFS_NO_SETUP; 324 return -EL2HLT; 325 } else { 326 pr_debug("bogus ep0 stall!\n"); 327 return -ESRCH; 328 } 329 } 330 331 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, 332 size_t len, loff_t *ptr) 333 { 334 struct ffs_data *ffs = file->private_data; 335 ssize_t ret; 336 char *data; 337 338 /* Fast check if setup was canceled */ 339 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 340 return -EIDRM; 341 342 /* Acquire mutex */ 343 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 344 if (ret < 0) 345 return ret; 346 347 /* Check state */ 348 switch (ffs->state) { 349 case FFS_READ_DESCRIPTORS: 350 case FFS_READ_STRINGS: 351 /* Copy data */ 352 if (len < 16) { 353 ret = -EINVAL; 354 break; 355 } 356 357 data = ffs_prepare_buffer(buf, len); 358 if (IS_ERR(data)) { 359 ret = PTR_ERR(data); 360 break; 361 } 362 363 /* Handle data */ 364 if (ffs->state == FFS_READ_DESCRIPTORS) { 365 pr_info("read descriptors\n"); 366 ret = __ffs_data_got_descs(ffs, data, len); 367 if (ret < 0) 368 break; 369 370 ffs->state = FFS_READ_STRINGS; 371 ret = len; 372 } else { 373 pr_info("read strings\n"); 374 ret = __ffs_data_got_strings(ffs, data, len); 375 if (ret < 0) 376 break; 377 378 ret = ffs_epfiles_create(ffs); 379 if (ret) { 380 ffs->state = FFS_CLOSING; 381 break; 382 } 383 384 ffs->state = FFS_ACTIVE; 385 mutex_unlock(&ffs->mutex); 386 387 ret = ffs_ready(ffs); 388 if (ret < 0) { 389 ffs->state = FFS_CLOSING; 390 return ret; 391 } 392 393 return len; 394 } 395 break; 396 397 case FFS_ACTIVE: 398 data = NULL; 399 /* 400 * We're called from user space, we can use _irq 401 * rather then _irqsave 402 */ 403 spin_lock_irq(&ffs->ev.waitq.lock); 404 switch (ffs_setup_state_clear_cancelled(ffs)) { 405 case FFS_SETUP_CANCELLED: 406 ret = -EIDRM; 407 goto done_spin; 408 409 case FFS_NO_SETUP: 410 ret = -ESRCH; 411 goto done_spin; 412 413 case FFS_SETUP_PENDING: 414 break; 415 } 416 417 /* FFS_SETUP_PENDING */ 418 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { 419 spin_unlock_irq(&ffs->ev.waitq.lock); 420 ret = __ffs_ep0_stall(ffs); 421 break; 422 } 423 424 /* FFS_SETUP_PENDING and not stall */ 425 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 426 427 spin_unlock_irq(&ffs->ev.waitq.lock); 428 429 data = ffs_prepare_buffer(buf, len); 430 if (IS_ERR(data)) { 431 ret = PTR_ERR(data); 432 break; 433 } 434 435 spin_lock_irq(&ffs->ev.waitq.lock); 436 437 /* 438 * We are guaranteed to be still in FFS_ACTIVE state 439 * but the state of setup could have changed from 440 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need 441 * to check for that. If that happened we copied data 442 * from user space in vain but it's unlikely. 443 * 444 * For sure we are not in FFS_NO_SETUP since this is 445 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP 446 * transition can be performed and it's protected by 447 * mutex. 448 */ 449 if (ffs_setup_state_clear_cancelled(ffs) == 450 FFS_SETUP_CANCELLED) { 451 ret = -EIDRM; 452 done_spin: 453 spin_unlock_irq(&ffs->ev.waitq.lock); 454 } else { 455 /* unlocks spinlock */ 456 ret = __ffs_ep0_queue_wait(ffs, data, len); 457 } 458 kfree(data); 459 break; 460 461 default: 462 ret = -EBADFD; 463 break; 464 } 465 466 mutex_unlock(&ffs->mutex); 467 return ret; 468 } 469 470 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */ 471 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, 472 size_t n) 473 __releases(&ffs->ev.waitq.lock) 474 { 475 /* 476 * n cannot be bigger than ffs->ev.count, which cannot be bigger than 477 * size of ffs->ev.types array (which is four) so that's how much space 478 * we reserve. 479 */ 480 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)]; 481 const size_t size = n * sizeof *events; 482 unsigned i = 0; 483 484 memset(events, 0, size); 485 486 do { 487 events[i].type = ffs->ev.types[i]; 488 if (events[i].type == FUNCTIONFS_SETUP) { 489 events[i].u.setup = ffs->ev.setup; 490 ffs->setup_state = FFS_SETUP_PENDING; 491 } 492 } while (++i < n); 493 494 ffs->ev.count -= n; 495 if (ffs->ev.count) 496 memmove(ffs->ev.types, ffs->ev.types + n, 497 ffs->ev.count * sizeof *ffs->ev.types); 498 499 spin_unlock_irq(&ffs->ev.waitq.lock); 500 mutex_unlock(&ffs->mutex); 501 502 return copy_to_user(buf, events, size) ? -EFAULT : size; 503 } 504 505 static ssize_t ffs_ep0_read(struct file *file, char __user *buf, 506 size_t len, loff_t *ptr) 507 { 508 struct ffs_data *ffs = file->private_data; 509 char *data = NULL; 510 size_t n; 511 int ret; 512 513 /* Fast check if setup was canceled */ 514 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 515 return -EIDRM; 516 517 /* Acquire mutex */ 518 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 519 if (ret < 0) 520 return ret; 521 522 /* Check state */ 523 if (ffs->state != FFS_ACTIVE) { 524 ret = -EBADFD; 525 goto done_mutex; 526 } 527 528 /* 529 * We're called from user space, we can use _irq rather then 530 * _irqsave 531 */ 532 spin_lock_irq(&ffs->ev.waitq.lock); 533 534 switch (ffs_setup_state_clear_cancelled(ffs)) { 535 case FFS_SETUP_CANCELLED: 536 ret = -EIDRM; 537 break; 538 539 case FFS_NO_SETUP: 540 n = len / sizeof(struct usb_functionfs_event); 541 if (!n) { 542 ret = -EINVAL; 543 break; 544 } 545 546 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { 547 ret = -EAGAIN; 548 break; 549 } 550 551 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, 552 ffs->ev.count)) { 553 ret = -EINTR; 554 break; 555 } 556 557 /* unlocks spinlock */ 558 return __ffs_ep0_read_events(ffs, buf, 559 min(n, (size_t)ffs->ev.count)); 560 561 case FFS_SETUP_PENDING: 562 if (ffs->ev.setup.bRequestType & USB_DIR_IN) { 563 spin_unlock_irq(&ffs->ev.waitq.lock); 564 ret = __ffs_ep0_stall(ffs); 565 goto done_mutex; 566 } 567 568 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 569 570 spin_unlock_irq(&ffs->ev.waitq.lock); 571 572 if (len) { 573 data = kmalloc(len, GFP_KERNEL); 574 if (!data) { 575 ret = -ENOMEM; 576 goto done_mutex; 577 } 578 } 579 580 spin_lock_irq(&ffs->ev.waitq.lock); 581 582 /* See ffs_ep0_write() */ 583 if (ffs_setup_state_clear_cancelled(ffs) == 584 FFS_SETUP_CANCELLED) { 585 ret = -EIDRM; 586 break; 587 } 588 589 /* unlocks spinlock */ 590 ret = __ffs_ep0_queue_wait(ffs, data, len); 591 if ((ret > 0) && (copy_to_user(buf, data, len))) 592 ret = -EFAULT; 593 goto done_mutex; 594 595 default: 596 ret = -EBADFD; 597 break; 598 } 599 600 spin_unlock_irq(&ffs->ev.waitq.lock); 601 done_mutex: 602 mutex_unlock(&ffs->mutex); 603 kfree(data); 604 return ret; 605 } 606 607 static int ffs_ep0_open(struct inode *inode, struct file *file) 608 { 609 struct ffs_data *ffs = inode->i_private; 610 611 if (ffs->state == FFS_CLOSING) 612 return -EBUSY; 613 614 file->private_data = ffs; 615 ffs_data_opened(ffs); 616 617 return stream_open(inode, file); 618 } 619 620 static int ffs_ep0_release(struct inode *inode, struct file *file) 621 { 622 struct ffs_data *ffs = file->private_data; 623 624 ffs_data_closed(ffs); 625 626 return 0; 627 } 628 629 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) 630 { 631 struct ffs_data *ffs = file->private_data; 632 struct usb_gadget *gadget = ffs->gadget; 633 long ret; 634 635 if (code == FUNCTIONFS_INTERFACE_REVMAP) { 636 struct ffs_function *func = ffs->func; 637 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; 638 } else if (gadget && gadget->ops->ioctl) { 639 ret = gadget->ops->ioctl(gadget, code, value); 640 } else { 641 ret = -ENOTTY; 642 } 643 644 return ret; 645 } 646 647 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait) 648 { 649 struct ffs_data *ffs = file->private_data; 650 __poll_t mask = EPOLLWRNORM; 651 int ret; 652 653 poll_wait(file, &ffs->ev.waitq, wait); 654 655 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 656 if (ret < 0) 657 return mask; 658 659 switch (ffs->state) { 660 case FFS_READ_DESCRIPTORS: 661 case FFS_READ_STRINGS: 662 mask |= EPOLLOUT; 663 break; 664 665 case FFS_ACTIVE: 666 switch (ffs->setup_state) { 667 case FFS_NO_SETUP: 668 if (ffs->ev.count) 669 mask |= EPOLLIN; 670 break; 671 672 case FFS_SETUP_PENDING: 673 case FFS_SETUP_CANCELLED: 674 mask |= (EPOLLIN | EPOLLOUT); 675 break; 676 } 677 break; 678 679 case FFS_CLOSING: 680 break; 681 case FFS_DEACTIVATED: 682 break; 683 } 684 685 mutex_unlock(&ffs->mutex); 686 687 return mask; 688 } 689 690 static const struct file_operations ffs_ep0_operations = { 691 .llseek = no_llseek, 692 693 .open = ffs_ep0_open, 694 .write = ffs_ep0_write, 695 .read = ffs_ep0_read, 696 .release = ffs_ep0_release, 697 .unlocked_ioctl = ffs_ep0_ioctl, 698 .poll = ffs_ep0_poll, 699 }; 700 701 702 /* "Normal" endpoints operations ********************************************/ 703 704 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) 705 { 706 struct ffs_io_data *io_data = req->context; 707 708 if (req->status) 709 io_data->status = req->status; 710 else 711 io_data->status = req->actual; 712 713 complete(&io_data->done); 714 } 715 716 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter) 717 { 718 ssize_t ret = copy_to_iter(data, data_len, iter); 719 if (ret == data_len) 720 return ret; 721 722 if (iov_iter_count(iter)) 723 return -EFAULT; 724 725 /* 726 * Dear user space developer! 727 * 728 * TL;DR: To stop getting below error message in your kernel log, change 729 * user space code using functionfs to align read buffers to a max 730 * packet size. 731 * 732 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max 733 * packet size. When unaligned buffer is passed to functionfs, it 734 * internally uses a larger, aligned buffer so that such UDCs are happy. 735 * 736 * Unfortunately, this means that host may send more data than was 737 * requested in read(2) system call. f_fs doesn’t know what to do with 738 * that excess data so it simply drops it. 739 * 740 * Was the buffer aligned in the first place, no such problem would 741 * happen. 742 * 743 * Data may be dropped only in AIO reads. Synchronous reads are handled 744 * by splitting a request into multiple parts. This splitting may still 745 * be a problem though so it’s likely best to align the buffer 746 * regardless of it being AIO or not.. 747 * 748 * This only affects OUT endpoints, i.e. reading data with a read(2), 749 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not 750 * affected. 751 */ 752 pr_err("functionfs read size %d > requested size %zd, dropping excess data. " 753 "Align read buffer size to max packet size to avoid the problem.\n", 754 data_len, ret); 755 756 return ret; 757 } 758 759 /* 760 * allocate a virtually contiguous buffer and create a scatterlist describing it 761 * @sg_table - pointer to a place to be filled with sg_table contents 762 * @size - required buffer size 763 */ 764 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz) 765 { 766 struct page **pages; 767 void *vaddr, *ptr; 768 unsigned int n_pages; 769 int i; 770 771 vaddr = vmalloc(sz); 772 if (!vaddr) 773 return NULL; 774 775 n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT; 776 pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL); 777 if (!pages) { 778 vfree(vaddr); 779 780 return NULL; 781 } 782 for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE) 783 pages[i] = vmalloc_to_page(ptr); 784 785 if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) { 786 kvfree(pages); 787 vfree(vaddr); 788 789 return NULL; 790 } 791 kvfree(pages); 792 793 return vaddr; 794 } 795 796 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data, 797 size_t data_len) 798 { 799 if (io_data->use_sg) 800 return ffs_build_sg_list(&io_data->sgt, data_len); 801 802 return kmalloc(data_len, GFP_KERNEL); 803 } 804 805 static inline void ffs_free_buffer(struct ffs_io_data *io_data) 806 { 807 if (!io_data->buf) 808 return; 809 810 if (io_data->use_sg) { 811 sg_free_table(&io_data->sgt); 812 vfree(io_data->buf); 813 } else { 814 kfree(io_data->buf); 815 } 816 } 817 818 static void ffs_user_copy_worker(struct work_struct *work) 819 { 820 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 821 work); 822 int ret = io_data->status; 823 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD; 824 unsigned long flags; 825 826 if (io_data->read && ret > 0) { 827 kthread_use_mm(io_data->mm); 828 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data); 829 kthread_unuse_mm(io_data->mm); 830 } 831 832 io_data->kiocb->ki_complete(io_data->kiocb, ret); 833 834 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd) 835 eventfd_signal(io_data->ffs->ffs_eventfd, 1); 836 837 spin_lock_irqsave(&io_data->ffs->eps_lock, flags); 838 usb_ep_free_request(io_data->ep, io_data->req); 839 io_data->req = NULL; 840 spin_unlock_irqrestore(&io_data->ffs->eps_lock, flags); 841 842 if (io_data->read) 843 kfree(io_data->to_free); 844 ffs_free_buffer(io_data); 845 kfree(io_data); 846 } 847 848 static void ffs_epfile_async_io_complete(struct usb_ep *_ep, 849 struct usb_request *req) 850 { 851 struct ffs_io_data *io_data = req->context; 852 struct ffs_data *ffs = io_data->ffs; 853 854 io_data->status = req->status ? req->status : req->actual; 855 856 INIT_WORK(&io_data->work, ffs_user_copy_worker); 857 queue_work(ffs->io_completion_wq, &io_data->work); 858 } 859 860 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile) 861 { 862 /* 863 * See comment in struct ffs_epfile for full read_buffer pointer 864 * synchronisation story. 865 */ 866 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP); 867 if (buf && buf != READ_BUFFER_DROP) 868 kfree(buf); 869 } 870 871 /* Assumes epfile->mutex is held. */ 872 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile, 873 struct iov_iter *iter) 874 { 875 /* 876 * Null out epfile->read_buffer so ffs_func_eps_disable does not free 877 * the buffer while we are using it. See comment in struct ffs_epfile 878 * for full read_buffer pointer synchronisation story. 879 */ 880 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL); 881 ssize_t ret; 882 if (!buf || buf == READ_BUFFER_DROP) 883 return 0; 884 885 ret = copy_to_iter(buf->data, buf->length, iter); 886 if (buf->length == ret) { 887 kfree(buf); 888 return ret; 889 } 890 891 if (iov_iter_count(iter)) { 892 ret = -EFAULT; 893 } else { 894 buf->length -= ret; 895 buf->data += ret; 896 } 897 898 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 899 kfree(buf); 900 901 return ret; 902 } 903 904 /* Assumes epfile->mutex is held. */ 905 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile, 906 void *data, int data_len, 907 struct iov_iter *iter) 908 { 909 struct ffs_buffer *buf; 910 911 ssize_t ret = copy_to_iter(data, data_len, iter); 912 if (data_len == ret) 913 return ret; 914 915 if (iov_iter_count(iter)) 916 return -EFAULT; 917 918 /* See ffs_copy_to_iter for more context. */ 919 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.", 920 data_len, ret); 921 922 data_len -= ret; 923 buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL); 924 if (!buf) 925 return -ENOMEM; 926 buf->length = data_len; 927 buf->data = buf->storage; 928 memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len)); 929 930 /* 931 * At this point read_buffer is NULL or READ_BUFFER_DROP (if 932 * ffs_func_eps_disable has been called in the meanwhile). See comment 933 * in struct ffs_epfile for full read_buffer pointer synchronisation 934 * story. 935 */ 936 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 937 kfree(buf); 938 939 return ret; 940 } 941 942 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) 943 { 944 struct ffs_epfile *epfile = file->private_data; 945 struct usb_request *req; 946 struct ffs_ep *ep; 947 char *data = NULL; 948 ssize_t ret, data_len = -EINVAL; 949 int halt; 950 951 /* Are we still active? */ 952 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 953 return -ENODEV; 954 955 /* Wait for endpoint to be enabled */ 956 ep = epfile->ep; 957 if (!ep) { 958 if (file->f_flags & O_NONBLOCK) 959 return -EAGAIN; 960 961 ret = wait_event_interruptible( 962 epfile->ffs->wait, (ep = epfile->ep)); 963 if (ret) 964 return -EINTR; 965 } 966 967 /* Do we halt? */ 968 halt = (!io_data->read == !epfile->in); 969 if (halt && epfile->isoc) 970 return -EINVAL; 971 972 /* We will be using request and read_buffer */ 973 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); 974 if (ret) 975 goto error; 976 977 /* Allocate & copy */ 978 if (!halt) { 979 struct usb_gadget *gadget; 980 981 /* 982 * Do we have buffered data from previous partial read? Check 983 * that for synchronous case only because we do not have 984 * facility to ‘wake up’ a pending asynchronous read and push 985 * buffered data to it which we would need to make things behave 986 * consistently. 987 */ 988 if (!io_data->aio && io_data->read) { 989 ret = __ffs_epfile_read_buffered(epfile, &io_data->data); 990 if (ret) 991 goto error_mutex; 992 } 993 994 /* 995 * if we _do_ wait above, the epfile->ffs->gadget might be NULL 996 * before the waiting completes, so do not assign to 'gadget' 997 * earlier 998 */ 999 gadget = epfile->ffs->gadget; 1000 1001 spin_lock_irq(&epfile->ffs->eps_lock); 1002 /* In the meantime, endpoint got disabled or changed. */ 1003 if (epfile->ep != ep) { 1004 ret = -ESHUTDOWN; 1005 goto error_lock; 1006 } 1007 data_len = iov_iter_count(&io_data->data); 1008 /* 1009 * Controller may require buffer size to be aligned to 1010 * maxpacketsize of an out endpoint. 1011 */ 1012 if (io_data->read) 1013 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len); 1014 1015 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE; 1016 spin_unlock_irq(&epfile->ffs->eps_lock); 1017 1018 data = ffs_alloc_buffer(io_data, data_len); 1019 if (!data) { 1020 ret = -ENOMEM; 1021 goto error_mutex; 1022 } 1023 if (!io_data->read && 1024 !copy_from_iter_full(data, data_len, &io_data->data)) { 1025 ret = -EFAULT; 1026 goto error_mutex; 1027 } 1028 } 1029 1030 spin_lock_irq(&epfile->ffs->eps_lock); 1031 1032 if (epfile->ep != ep) { 1033 /* In the meantime, endpoint got disabled or changed. */ 1034 ret = -ESHUTDOWN; 1035 } else if (halt) { 1036 ret = usb_ep_set_halt(ep->ep); 1037 if (!ret) 1038 ret = -EBADMSG; 1039 } else if (data_len == -EINVAL) { 1040 /* 1041 * Sanity Check: even though data_len can't be used 1042 * uninitialized at the time I write this comment, some 1043 * compilers complain about this situation. 1044 * In order to keep the code clean from warnings, data_len is 1045 * being initialized to -EINVAL during its declaration, which 1046 * means we can't rely on compiler anymore to warn no future 1047 * changes won't result in data_len being used uninitialized. 1048 * For such reason, we're adding this redundant sanity check 1049 * here. 1050 */ 1051 WARN(1, "%s: data_len == -EINVAL\n", __func__); 1052 ret = -EINVAL; 1053 } else if (!io_data->aio) { 1054 bool interrupted = false; 1055 1056 req = ep->req; 1057 if (io_data->use_sg) { 1058 req->buf = NULL; 1059 req->sg = io_data->sgt.sgl; 1060 req->num_sgs = io_data->sgt.nents; 1061 } else { 1062 req->buf = data; 1063 req->num_sgs = 0; 1064 } 1065 req->length = data_len; 1066 1067 io_data->buf = data; 1068 1069 init_completion(&io_data->done); 1070 req->context = io_data; 1071 req->complete = ffs_epfile_io_complete; 1072 1073 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1074 if (ret < 0) 1075 goto error_lock; 1076 1077 spin_unlock_irq(&epfile->ffs->eps_lock); 1078 1079 if (wait_for_completion_interruptible(&io_data->done)) { 1080 spin_lock_irq(&epfile->ffs->eps_lock); 1081 if (epfile->ep != ep) { 1082 ret = -ESHUTDOWN; 1083 goto error_lock; 1084 } 1085 /* 1086 * To avoid race condition with ffs_epfile_io_complete, 1087 * dequeue the request first then check 1088 * status. usb_ep_dequeue API should guarantee no race 1089 * condition with req->complete callback. 1090 */ 1091 usb_ep_dequeue(ep->ep, req); 1092 spin_unlock_irq(&epfile->ffs->eps_lock); 1093 wait_for_completion(&io_data->done); 1094 interrupted = io_data->status < 0; 1095 } 1096 1097 if (interrupted) 1098 ret = -EINTR; 1099 else if (io_data->read && io_data->status > 0) 1100 ret = __ffs_epfile_read_data(epfile, data, io_data->status, 1101 &io_data->data); 1102 else 1103 ret = io_data->status; 1104 goto error_mutex; 1105 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) { 1106 ret = -ENOMEM; 1107 } else { 1108 if (io_data->use_sg) { 1109 req->buf = NULL; 1110 req->sg = io_data->sgt.sgl; 1111 req->num_sgs = io_data->sgt.nents; 1112 } else { 1113 req->buf = data; 1114 req->num_sgs = 0; 1115 } 1116 req->length = data_len; 1117 1118 io_data->buf = data; 1119 io_data->ep = ep->ep; 1120 io_data->req = req; 1121 io_data->ffs = epfile->ffs; 1122 1123 req->context = io_data; 1124 req->complete = ffs_epfile_async_io_complete; 1125 1126 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1127 if (ret) { 1128 io_data->req = NULL; 1129 usb_ep_free_request(ep->ep, req); 1130 goto error_lock; 1131 } 1132 1133 ret = -EIOCBQUEUED; 1134 /* 1135 * Do not kfree the buffer in this function. It will be freed 1136 * by ffs_user_copy_worker. 1137 */ 1138 data = NULL; 1139 } 1140 1141 error_lock: 1142 spin_unlock_irq(&epfile->ffs->eps_lock); 1143 error_mutex: 1144 mutex_unlock(&epfile->mutex); 1145 error: 1146 if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */ 1147 ffs_free_buffer(io_data); 1148 return ret; 1149 } 1150 1151 static int 1152 ffs_epfile_open(struct inode *inode, struct file *file) 1153 { 1154 struct ffs_epfile *epfile = inode->i_private; 1155 1156 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1157 return -ENODEV; 1158 1159 file->private_data = epfile; 1160 ffs_data_opened(epfile->ffs); 1161 1162 return stream_open(inode, file); 1163 } 1164 1165 static int ffs_aio_cancel(struct kiocb *kiocb) 1166 { 1167 struct ffs_io_data *io_data = kiocb->private; 1168 struct ffs_epfile *epfile = kiocb->ki_filp->private_data; 1169 unsigned long flags; 1170 int value; 1171 1172 spin_lock_irqsave(&epfile->ffs->eps_lock, flags); 1173 1174 if (io_data && io_data->ep && io_data->req) 1175 value = usb_ep_dequeue(io_data->ep, io_data->req); 1176 else 1177 value = -EINVAL; 1178 1179 spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags); 1180 1181 return value; 1182 } 1183 1184 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from) 1185 { 1186 struct ffs_io_data io_data, *p = &io_data; 1187 ssize_t res; 1188 1189 if (!is_sync_kiocb(kiocb)) { 1190 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1191 if (!p) 1192 return -ENOMEM; 1193 p->aio = true; 1194 } else { 1195 memset(p, 0, sizeof(*p)); 1196 p->aio = false; 1197 } 1198 1199 p->read = false; 1200 p->kiocb = kiocb; 1201 p->data = *from; 1202 p->mm = current->mm; 1203 1204 kiocb->private = p; 1205 1206 if (p->aio) 1207 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1208 1209 res = ffs_epfile_io(kiocb->ki_filp, p); 1210 if (res == -EIOCBQUEUED) 1211 return res; 1212 if (p->aio) 1213 kfree(p); 1214 else 1215 *from = p->data; 1216 return res; 1217 } 1218 1219 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to) 1220 { 1221 struct ffs_io_data io_data, *p = &io_data; 1222 ssize_t res; 1223 1224 if (!is_sync_kiocb(kiocb)) { 1225 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1226 if (!p) 1227 return -ENOMEM; 1228 p->aio = true; 1229 } else { 1230 memset(p, 0, sizeof(*p)); 1231 p->aio = false; 1232 } 1233 1234 p->read = true; 1235 p->kiocb = kiocb; 1236 if (p->aio) { 1237 p->to_free = dup_iter(&p->data, to, GFP_KERNEL); 1238 if (!iter_is_ubuf(&p->data) && !p->to_free) { 1239 kfree(p); 1240 return -ENOMEM; 1241 } 1242 } else { 1243 p->data = *to; 1244 p->to_free = NULL; 1245 } 1246 p->mm = current->mm; 1247 1248 kiocb->private = p; 1249 1250 if (p->aio) 1251 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1252 1253 res = ffs_epfile_io(kiocb->ki_filp, p); 1254 if (res == -EIOCBQUEUED) 1255 return res; 1256 1257 if (p->aio) { 1258 kfree(p->to_free); 1259 kfree(p); 1260 } else { 1261 *to = p->data; 1262 } 1263 return res; 1264 } 1265 1266 static int 1267 ffs_epfile_release(struct inode *inode, struct file *file) 1268 { 1269 struct ffs_epfile *epfile = inode->i_private; 1270 1271 __ffs_epfile_read_buffer_free(epfile); 1272 ffs_data_closed(epfile->ffs); 1273 1274 return 0; 1275 } 1276 1277 static long ffs_epfile_ioctl(struct file *file, unsigned code, 1278 unsigned long value) 1279 { 1280 struct ffs_epfile *epfile = file->private_data; 1281 struct ffs_ep *ep; 1282 int ret; 1283 1284 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1285 return -ENODEV; 1286 1287 /* Wait for endpoint to be enabled */ 1288 ep = epfile->ep; 1289 if (!ep) { 1290 if (file->f_flags & O_NONBLOCK) 1291 return -EAGAIN; 1292 1293 ret = wait_event_interruptible( 1294 epfile->ffs->wait, (ep = epfile->ep)); 1295 if (ret) 1296 return -EINTR; 1297 } 1298 1299 spin_lock_irq(&epfile->ffs->eps_lock); 1300 1301 /* In the meantime, endpoint got disabled or changed. */ 1302 if (epfile->ep != ep) { 1303 spin_unlock_irq(&epfile->ffs->eps_lock); 1304 return -ESHUTDOWN; 1305 } 1306 1307 switch (code) { 1308 case FUNCTIONFS_FIFO_STATUS: 1309 ret = usb_ep_fifo_status(epfile->ep->ep); 1310 break; 1311 case FUNCTIONFS_FIFO_FLUSH: 1312 usb_ep_fifo_flush(epfile->ep->ep); 1313 ret = 0; 1314 break; 1315 case FUNCTIONFS_CLEAR_HALT: 1316 ret = usb_ep_clear_halt(epfile->ep->ep); 1317 break; 1318 case FUNCTIONFS_ENDPOINT_REVMAP: 1319 ret = epfile->ep->num; 1320 break; 1321 case FUNCTIONFS_ENDPOINT_DESC: 1322 { 1323 int desc_idx; 1324 struct usb_endpoint_descriptor desc1, *desc; 1325 1326 switch (epfile->ffs->gadget->speed) { 1327 case USB_SPEED_SUPER: 1328 case USB_SPEED_SUPER_PLUS: 1329 desc_idx = 2; 1330 break; 1331 case USB_SPEED_HIGH: 1332 desc_idx = 1; 1333 break; 1334 default: 1335 desc_idx = 0; 1336 } 1337 1338 desc = epfile->ep->descs[desc_idx]; 1339 memcpy(&desc1, desc, desc->bLength); 1340 1341 spin_unlock_irq(&epfile->ffs->eps_lock); 1342 ret = copy_to_user((void __user *)value, &desc1, desc1.bLength); 1343 if (ret) 1344 ret = -EFAULT; 1345 return ret; 1346 } 1347 default: 1348 ret = -ENOTTY; 1349 } 1350 spin_unlock_irq(&epfile->ffs->eps_lock); 1351 1352 return ret; 1353 } 1354 1355 static const struct file_operations ffs_epfile_operations = { 1356 .llseek = no_llseek, 1357 1358 .open = ffs_epfile_open, 1359 .write_iter = ffs_epfile_write_iter, 1360 .read_iter = ffs_epfile_read_iter, 1361 .release = ffs_epfile_release, 1362 .unlocked_ioctl = ffs_epfile_ioctl, 1363 .compat_ioctl = compat_ptr_ioctl, 1364 }; 1365 1366 1367 /* File system and super block operations ***********************************/ 1368 1369 /* 1370 * Mounting the file system creates a controller file, used first for 1371 * function configuration then later for event monitoring. 1372 */ 1373 1374 static struct inode *__must_check 1375 ffs_sb_make_inode(struct super_block *sb, void *data, 1376 const struct file_operations *fops, 1377 const struct inode_operations *iops, 1378 struct ffs_file_perms *perms) 1379 { 1380 struct inode *inode; 1381 1382 inode = new_inode(sb); 1383 1384 if (inode) { 1385 struct timespec64 ts = inode_set_ctime_current(inode); 1386 1387 inode->i_ino = get_next_ino(); 1388 inode->i_mode = perms->mode; 1389 inode->i_uid = perms->uid; 1390 inode->i_gid = perms->gid; 1391 inode->i_atime = ts; 1392 inode->i_mtime = ts; 1393 inode->i_private = data; 1394 if (fops) 1395 inode->i_fop = fops; 1396 if (iops) 1397 inode->i_op = iops; 1398 } 1399 1400 return inode; 1401 } 1402 1403 /* Create "regular" file */ 1404 static struct dentry *ffs_sb_create_file(struct super_block *sb, 1405 const char *name, void *data, 1406 const struct file_operations *fops) 1407 { 1408 struct ffs_data *ffs = sb->s_fs_info; 1409 struct dentry *dentry; 1410 struct inode *inode; 1411 1412 dentry = d_alloc_name(sb->s_root, name); 1413 if (!dentry) 1414 return NULL; 1415 1416 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); 1417 if (!inode) { 1418 dput(dentry); 1419 return NULL; 1420 } 1421 1422 d_add(dentry, inode); 1423 return dentry; 1424 } 1425 1426 /* Super block */ 1427 static const struct super_operations ffs_sb_operations = { 1428 .statfs = simple_statfs, 1429 .drop_inode = generic_delete_inode, 1430 }; 1431 1432 struct ffs_sb_fill_data { 1433 struct ffs_file_perms perms; 1434 umode_t root_mode; 1435 const char *dev_name; 1436 bool no_disconnect; 1437 struct ffs_data *ffs_data; 1438 }; 1439 1440 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc) 1441 { 1442 struct ffs_sb_fill_data *data = fc->fs_private; 1443 struct inode *inode; 1444 struct ffs_data *ffs = data->ffs_data; 1445 1446 ffs->sb = sb; 1447 data->ffs_data = NULL; 1448 sb->s_fs_info = ffs; 1449 sb->s_blocksize = PAGE_SIZE; 1450 sb->s_blocksize_bits = PAGE_SHIFT; 1451 sb->s_magic = FUNCTIONFS_MAGIC; 1452 sb->s_op = &ffs_sb_operations; 1453 sb->s_time_gran = 1; 1454 1455 /* Root inode */ 1456 data->perms.mode = data->root_mode; 1457 inode = ffs_sb_make_inode(sb, NULL, 1458 &simple_dir_operations, 1459 &simple_dir_inode_operations, 1460 &data->perms); 1461 sb->s_root = d_make_root(inode); 1462 if (!sb->s_root) 1463 return -ENOMEM; 1464 1465 /* EP0 file */ 1466 if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations)) 1467 return -ENOMEM; 1468 1469 return 0; 1470 } 1471 1472 enum { 1473 Opt_no_disconnect, 1474 Opt_rmode, 1475 Opt_fmode, 1476 Opt_mode, 1477 Opt_uid, 1478 Opt_gid, 1479 }; 1480 1481 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = { 1482 fsparam_bool ("no_disconnect", Opt_no_disconnect), 1483 fsparam_u32 ("rmode", Opt_rmode), 1484 fsparam_u32 ("fmode", Opt_fmode), 1485 fsparam_u32 ("mode", Opt_mode), 1486 fsparam_u32 ("uid", Opt_uid), 1487 fsparam_u32 ("gid", Opt_gid), 1488 {} 1489 }; 1490 1491 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1492 { 1493 struct ffs_sb_fill_data *data = fc->fs_private; 1494 struct fs_parse_result result; 1495 int opt; 1496 1497 opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result); 1498 if (opt < 0) 1499 return opt; 1500 1501 switch (opt) { 1502 case Opt_no_disconnect: 1503 data->no_disconnect = result.boolean; 1504 break; 1505 case Opt_rmode: 1506 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1507 break; 1508 case Opt_fmode: 1509 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 1510 break; 1511 case Opt_mode: 1512 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1513 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 1514 break; 1515 1516 case Opt_uid: 1517 data->perms.uid = make_kuid(current_user_ns(), result.uint_32); 1518 if (!uid_valid(data->perms.uid)) 1519 goto unmapped_value; 1520 break; 1521 case Opt_gid: 1522 data->perms.gid = make_kgid(current_user_ns(), result.uint_32); 1523 if (!gid_valid(data->perms.gid)) 1524 goto unmapped_value; 1525 break; 1526 1527 default: 1528 return -ENOPARAM; 1529 } 1530 1531 return 0; 1532 1533 unmapped_value: 1534 return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32); 1535 } 1536 1537 /* 1538 * Set up the superblock for a mount. 1539 */ 1540 static int ffs_fs_get_tree(struct fs_context *fc) 1541 { 1542 struct ffs_sb_fill_data *ctx = fc->fs_private; 1543 struct ffs_data *ffs; 1544 int ret; 1545 1546 if (!fc->source) 1547 return invalf(fc, "No source specified"); 1548 1549 ffs = ffs_data_new(fc->source); 1550 if (!ffs) 1551 return -ENOMEM; 1552 ffs->file_perms = ctx->perms; 1553 ffs->no_disconnect = ctx->no_disconnect; 1554 1555 ffs->dev_name = kstrdup(fc->source, GFP_KERNEL); 1556 if (!ffs->dev_name) { 1557 ffs_data_put(ffs); 1558 return -ENOMEM; 1559 } 1560 1561 ret = ffs_acquire_dev(ffs->dev_name, ffs); 1562 if (ret) { 1563 ffs_data_put(ffs); 1564 return ret; 1565 } 1566 1567 ctx->ffs_data = ffs; 1568 return get_tree_nodev(fc, ffs_sb_fill); 1569 } 1570 1571 static void ffs_fs_free_fc(struct fs_context *fc) 1572 { 1573 struct ffs_sb_fill_data *ctx = fc->fs_private; 1574 1575 if (ctx) { 1576 if (ctx->ffs_data) { 1577 ffs_data_put(ctx->ffs_data); 1578 } 1579 1580 kfree(ctx); 1581 } 1582 } 1583 1584 static const struct fs_context_operations ffs_fs_context_ops = { 1585 .free = ffs_fs_free_fc, 1586 .parse_param = ffs_fs_parse_param, 1587 .get_tree = ffs_fs_get_tree, 1588 }; 1589 1590 static int ffs_fs_init_fs_context(struct fs_context *fc) 1591 { 1592 struct ffs_sb_fill_data *ctx; 1593 1594 ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL); 1595 if (!ctx) 1596 return -ENOMEM; 1597 1598 ctx->perms.mode = S_IFREG | 0600; 1599 ctx->perms.uid = GLOBAL_ROOT_UID; 1600 ctx->perms.gid = GLOBAL_ROOT_GID; 1601 ctx->root_mode = S_IFDIR | 0500; 1602 ctx->no_disconnect = false; 1603 1604 fc->fs_private = ctx; 1605 fc->ops = &ffs_fs_context_ops; 1606 return 0; 1607 } 1608 1609 static void 1610 ffs_fs_kill_sb(struct super_block *sb) 1611 { 1612 kill_litter_super(sb); 1613 if (sb->s_fs_info) 1614 ffs_data_closed(sb->s_fs_info); 1615 } 1616 1617 static struct file_system_type ffs_fs_type = { 1618 .owner = THIS_MODULE, 1619 .name = "functionfs", 1620 .init_fs_context = ffs_fs_init_fs_context, 1621 .parameters = ffs_fs_fs_parameters, 1622 .kill_sb = ffs_fs_kill_sb, 1623 }; 1624 MODULE_ALIAS_FS("functionfs"); 1625 1626 1627 /* Driver's main init/cleanup functions *************************************/ 1628 1629 static int functionfs_init(void) 1630 { 1631 int ret; 1632 1633 ret = register_filesystem(&ffs_fs_type); 1634 if (!ret) 1635 pr_info("file system registered\n"); 1636 else 1637 pr_err("failed registering file system (%d)\n", ret); 1638 1639 return ret; 1640 } 1641 1642 static void functionfs_cleanup(void) 1643 { 1644 pr_info("unloading\n"); 1645 unregister_filesystem(&ffs_fs_type); 1646 } 1647 1648 1649 /* ffs_data and ffs_function construction and destruction code **************/ 1650 1651 static void ffs_data_clear(struct ffs_data *ffs); 1652 static void ffs_data_reset(struct ffs_data *ffs); 1653 1654 static void ffs_data_get(struct ffs_data *ffs) 1655 { 1656 refcount_inc(&ffs->ref); 1657 } 1658 1659 static void ffs_data_opened(struct ffs_data *ffs) 1660 { 1661 refcount_inc(&ffs->ref); 1662 if (atomic_add_return(1, &ffs->opened) == 1 && 1663 ffs->state == FFS_DEACTIVATED) { 1664 ffs->state = FFS_CLOSING; 1665 ffs_data_reset(ffs); 1666 } 1667 } 1668 1669 static void ffs_data_put(struct ffs_data *ffs) 1670 { 1671 if (refcount_dec_and_test(&ffs->ref)) { 1672 pr_info("%s(): freeing\n", __func__); 1673 ffs_data_clear(ffs); 1674 ffs_release_dev(ffs->private_data); 1675 BUG_ON(waitqueue_active(&ffs->ev.waitq) || 1676 swait_active(&ffs->ep0req_completion.wait) || 1677 waitqueue_active(&ffs->wait)); 1678 destroy_workqueue(ffs->io_completion_wq); 1679 kfree(ffs->dev_name); 1680 kfree(ffs); 1681 } 1682 } 1683 1684 static void ffs_data_closed(struct ffs_data *ffs) 1685 { 1686 struct ffs_epfile *epfiles; 1687 unsigned long flags; 1688 1689 if (atomic_dec_and_test(&ffs->opened)) { 1690 if (ffs->no_disconnect) { 1691 ffs->state = FFS_DEACTIVATED; 1692 spin_lock_irqsave(&ffs->eps_lock, flags); 1693 epfiles = ffs->epfiles; 1694 ffs->epfiles = NULL; 1695 spin_unlock_irqrestore(&ffs->eps_lock, 1696 flags); 1697 1698 if (epfiles) 1699 ffs_epfiles_destroy(epfiles, 1700 ffs->eps_count); 1701 1702 if (ffs->setup_state == FFS_SETUP_PENDING) 1703 __ffs_ep0_stall(ffs); 1704 } else { 1705 ffs->state = FFS_CLOSING; 1706 ffs_data_reset(ffs); 1707 } 1708 } 1709 if (atomic_read(&ffs->opened) < 0) { 1710 ffs->state = FFS_CLOSING; 1711 ffs_data_reset(ffs); 1712 } 1713 1714 ffs_data_put(ffs); 1715 } 1716 1717 static struct ffs_data *ffs_data_new(const char *dev_name) 1718 { 1719 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); 1720 if (!ffs) 1721 return NULL; 1722 1723 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name); 1724 if (!ffs->io_completion_wq) { 1725 kfree(ffs); 1726 return NULL; 1727 } 1728 1729 refcount_set(&ffs->ref, 1); 1730 atomic_set(&ffs->opened, 0); 1731 ffs->state = FFS_READ_DESCRIPTORS; 1732 mutex_init(&ffs->mutex); 1733 spin_lock_init(&ffs->eps_lock); 1734 init_waitqueue_head(&ffs->ev.waitq); 1735 init_waitqueue_head(&ffs->wait); 1736 init_completion(&ffs->ep0req_completion); 1737 1738 /* XXX REVISIT need to update it in some places, or do we? */ 1739 ffs->ev.can_stall = 1; 1740 1741 return ffs; 1742 } 1743 1744 static void ffs_data_clear(struct ffs_data *ffs) 1745 { 1746 struct ffs_epfile *epfiles; 1747 unsigned long flags; 1748 1749 ffs_closed(ffs); 1750 1751 BUG_ON(ffs->gadget); 1752 1753 spin_lock_irqsave(&ffs->eps_lock, flags); 1754 epfiles = ffs->epfiles; 1755 ffs->epfiles = NULL; 1756 spin_unlock_irqrestore(&ffs->eps_lock, flags); 1757 1758 /* 1759 * potential race possible between ffs_func_eps_disable 1760 * & ffs_epfile_release therefore maintaining a local 1761 * copy of epfile will save us from use-after-free. 1762 */ 1763 if (epfiles) { 1764 ffs_epfiles_destroy(epfiles, ffs->eps_count); 1765 ffs->epfiles = NULL; 1766 } 1767 1768 if (ffs->ffs_eventfd) { 1769 eventfd_ctx_put(ffs->ffs_eventfd); 1770 ffs->ffs_eventfd = NULL; 1771 } 1772 1773 kfree(ffs->raw_descs_data); 1774 kfree(ffs->raw_strings); 1775 kfree(ffs->stringtabs); 1776 } 1777 1778 static void ffs_data_reset(struct ffs_data *ffs) 1779 { 1780 ffs_data_clear(ffs); 1781 1782 ffs->raw_descs_data = NULL; 1783 ffs->raw_descs = NULL; 1784 ffs->raw_strings = NULL; 1785 ffs->stringtabs = NULL; 1786 1787 ffs->raw_descs_length = 0; 1788 ffs->fs_descs_count = 0; 1789 ffs->hs_descs_count = 0; 1790 ffs->ss_descs_count = 0; 1791 1792 ffs->strings_count = 0; 1793 ffs->interfaces_count = 0; 1794 ffs->eps_count = 0; 1795 1796 ffs->ev.count = 0; 1797 1798 ffs->state = FFS_READ_DESCRIPTORS; 1799 ffs->setup_state = FFS_NO_SETUP; 1800 ffs->flags = 0; 1801 1802 ffs->ms_os_descs_ext_prop_count = 0; 1803 ffs->ms_os_descs_ext_prop_name_len = 0; 1804 ffs->ms_os_descs_ext_prop_data_len = 0; 1805 } 1806 1807 1808 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) 1809 { 1810 struct usb_gadget_strings **lang; 1811 int first_id; 1812 1813 if (WARN_ON(ffs->state != FFS_ACTIVE 1814 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) 1815 return -EBADFD; 1816 1817 first_id = usb_string_ids_n(cdev, ffs->strings_count); 1818 if (first_id < 0) 1819 return first_id; 1820 1821 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); 1822 if (!ffs->ep0req) 1823 return -ENOMEM; 1824 ffs->ep0req->complete = ffs_ep0_complete; 1825 ffs->ep0req->context = ffs; 1826 1827 lang = ffs->stringtabs; 1828 if (lang) { 1829 for (; *lang; ++lang) { 1830 struct usb_string *str = (*lang)->strings; 1831 int id = first_id; 1832 for (; str->s; ++id, ++str) 1833 str->id = id; 1834 } 1835 } 1836 1837 ffs->gadget = cdev->gadget; 1838 ffs_data_get(ffs); 1839 return 0; 1840 } 1841 1842 static void functionfs_unbind(struct ffs_data *ffs) 1843 { 1844 if (!WARN_ON(!ffs->gadget)) { 1845 /* dequeue before freeing ep0req */ 1846 usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req); 1847 mutex_lock(&ffs->mutex); 1848 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); 1849 ffs->ep0req = NULL; 1850 ffs->gadget = NULL; 1851 clear_bit(FFS_FL_BOUND, &ffs->flags); 1852 mutex_unlock(&ffs->mutex); 1853 ffs_data_put(ffs); 1854 } 1855 } 1856 1857 static int ffs_epfiles_create(struct ffs_data *ffs) 1858 { 1859 struct ffs_epfile *epfile, *epfiles; 1860 unsigned i, count; 1861 1862 count = ffs->eps_count; 1863 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); 1864 if (!epfiles) 1865 return -ENOMEM; 1866 1867 epfile = epfiles; 1868 for (i = 1; i <= count; ++i, ++epfile) { 1869 epfile->ffs = ffs; 1870 mutex_init(&epfile->mutex); 1871 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 1872 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]); 1873 else 1874 sprintf(epfile->name, "ep%u", i); 1875 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name, 1876 epfile, 1877 &ffs_epfile_operations); 1878 if (!epfile->dentry) { 1879 ffs_epfiles_destroy(epfiles, i - 1); 1880 return -ENOMEM; 1881 } 1882 } 1883 1884 ffs->epfiles = epfiles; 1885 return 0; 1886 } 1887 1888 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count) 1889 { 1890 struct ffs_epfile *epfile = epfiles; 1891 1892 for (; count; --count, ++epfile) { 1893 BUG_ON(mutex_is_locked(&epfile->mutex)); 1894 if (epfile->dentry) { 1895 d_delete(epfile->dentry); 1896 dput(epfile->dentry); 1897 epfile->dentry = NULL; 1898 } 1899 } 1900 1901 kfree(epfiles); 1902 } 1903 1904 static void ffs_func_eps_disable(struct ffs_function *func) 1905 { 1906 struct ffs_ep *ep; 1907 struct ffs_epfile *epfile; 1908 unsigned short count; 1909 unsigned long flags; 1910 1911 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1912 count = func->ffs->eps_count; 1913 epfile = func->ffs->epfiles; 1914 ep = func->eps; 1915 while (count--) { 1916 /* pending requests get nuked */ 1917 if (ep->ep) 1918 usb_ep_disable(ep->ep); 1919 ++ep; 1920 1921 if (epfile) { 1922 epfile->ep = NULL; 1923 __ffs_epfile_read_buffer_free(epfile); 1924 ++epfile; 1925 } 1926 } 1927 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1928 } 1929 1930 static int ffs_func_eps_enable(struct ffs_function *func) 1931 { 1932 struct ffs_data *ffs; 1933 struct ffs_ep *ep; 1934 struct ffs_epfile *epfile; 1935 unsigned short count; 1936 unsigned long flags; 1937 int ret = 0; 1938 1939 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1940 ffs = func->ffs; 1941 ep = func->eps; 1942 epfile = ffs->epfiles; 1943 count = ffs->eps_count; 1944 while(count--) { 1945 ep->ep->driver_data = ep; 1946 1947 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep); 1948 if (ret) { 1949 pr_err("%s: config_ep_by_speed(%s) returned %d\n", 1950 __func__, ep->ep->name, ret); 1951 break; 1952 } 1953 1954 ret = usb_ep_enable(ep->ep); 1955 if (!ret) { 1956 epfile->ep = ep; 1957 epfile->in = usb_endpoint_dir_in(ep->ep->desc); 1958 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc); 1959 } else { 1960 break; 1961 } 1962 1963 ++ep; 1964 ++epfile; 1965 } 1966 1967 wake_up_interruptible(&ffs->wait); 1968 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1969 1970 return ret; 1971 } 1972 1973 1974 /* Parsing and building descriptors and strings *****************************/ 1975 1976 /* 1977 * This validates if data pointed by data is a valid USB descriptor as 1978 * well as record how many interfaces, endpoints and strings are 1979 * required by given configuration. Returns address after the 1980 * descriptor or NULL if data is invalid. 1981 */ 1982 1983 enum ffs_entity_type { 1984 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT 1985 }; 1986 1987 enum ffs_os_desc_type { 1988 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP 1989 }; 1990 1991 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, 1992 u8 *valuep, 1993 struct usb_descriptor_header *desc, 1994 void *priv); 1995 1996 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, 1997 struct usb_os_desc_header *h, void *data, 1998 unsigned len, void *priv); 1999 2000 static int __must_check ffs_do_single_desc(char *data, unsigned len, 2001 ffs_entity_callback entity, 2002 void *priv, int *current_class) 2003 { 2004 struct usb_descriptor_header *_ds = (void *)data; 2005 u8 length; 2006 int ret; 2007 2008 /* At least two bytes are required: length and type */ 2009 if (len < 2) { 2010 pr_vdebug("descriptor too short\n"); 2011 return -EINVAL; 2012 } 2013 2014 /* If we have at least as many bytes as the descriptor takes? */ 2015 length = _ds->bLength; 2016 if (len < length) { 2017 pr_vdebug("descriptor longer then available data\n"); 2018 return -EINVAL; 2019 } 2020 2021 #define __entity_check_INTERFACE(val) 1 2022 #define __entity_check_STRING(val) (val) 2023 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) 2024 #define __entity(type, val) do { \ 2025 pr_vdebug("entity " #type "(%02x)\n", (val)); \ 2026 if (!__entity_check_ ##type(val)) { \ 2027 pr_vdebug("invalid entity's value\n"); \ 2028 return -EINVAL; \ 2029 } \ 2030 ret = entity(FFS_ ##type, &val, _ds, priv); \ 2031 if (ret < 0) { \ 2032 pr_debug("entity " #type "(%02x); ret = %d\n", \ 2033 (val), ret); \ 2034 return ret; \ 2035 } \ 2036 } while (0) 2037 2038 /* Parse descriptor depending on type. */ 2039 switch (_ds->bDescriptorType) { 2040 case USB_DT_DEVICE: 2041 case USB_DT_CONFIG: 2042 case USB_DT_STRING: 2043 case USB_DT_DEVICE_QUALIFIER: 2044 /* function can't have any of those */ 2045 pr_vdebug("descriptor reserved for gadget: %d\n", 2046 _ds->bDescriptorType); 2047 return -EINVAL; 2048 2049 case USB_DT_INTERFACE: { 2050 struct usb_interface_descriptor *ds = (void *)_ds; 2051 pr_vdebug("interface descriptor\n"); 2052 if (length != sizeof *ds) 2053 goto inv_length; 2054 2055 __entity(INTERFACE, ds->bInterfaceNumber); 2056 if (ds->iInterface) 2057 __entity(STRING, ds->iInterface); 2058 *current_class = ds->bInterfaceClass; 2059 } 2060 break; 2061 2062 case USB_DT_ENDPOINT: { 2063 struct usb_endpoint_descriptor *ds = (void *)_ds; 2064 pr_vdebug("endpoint descriptor\n"); 2065 if (length != USB_DT_ENDPOINT_SIZE && 2066 length != USB_DT_ENDPOINT_AUDIO_SIZE) 2067 goto inv_length; 2068 __entity(ENDPOINT, ds->bEndpointAddress); 2069 } 2070 break; 2071 2072 case USB_TYPE_CLASS | 0x01: 2073 if (*current_class == USB_INTERFACE_CLASS_HID) { 2074 pr_vdebug("hid descriptor\n"); 2075 if (length != sizeof(struct hid_descriptor)) 2076 goto inv_length; 2077 break; 2078 } else if (*current_class == USB_INTERFACE_CLASS_CCID) { 2079 pr_vdebug("ccid descriptor\n"); 2080 if (length != sizeof(struct ccid_descriptor)) 2081 goto inv_length; 2082 break; 2083 } else { 2084 pr_vdebug("unknown descriptor: %d for class %d\n", 2085 _ds->bDescriptorType, *current_class); 2086 return -EINVAL; 2087 } 2088 2089 case USB_DT_OTG: 2090 if (length != sizeof(struct usb_otg_descriptor)) 2091 goto inv_length; 2092 break; 2093 2094 case USB_DT_INTERFACE_ASSOCIATION: { 2095 struct usb_interface_assoc_descriptor *ds = (void *)_ds; 2096 pr_vdebug("interface association descriptor\n"); 2097 if (length != sizeof *ds) 2098 goto inv_length; 2099 if (ds->iFunction) 2100 __entity(STRING, ds->iFunction); 2101 } 2102 break; 2103 2104 case USB_DT_SS_ENDPOINT_COMP: 2105 pr_vdebug("EP SS companion descriptor\n"); 2106 if (length != sizeof(struct usb_ss_ep_comp_descriptor)) 2107 goto inv_length; 2108 break; 2109 2110 case USB_DT_OTHER_SPEED_CONFIG: 2111 case USB_DT_INTERFACE_POWER: 2112 case USB_DT_DEBUG: 2113 case USB_DT_SECURITY: 2114 case USB_DT_CS_RADIO_CONTROL: 2115 /* TODO */ 2116 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); 2117 return -EINVAL; 2118 2119 default: 2120 /* We should never be here */ 2121 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); 2122 return -EINVAL; 2123 2124 inv_length: 2125 pr_vdebug("invalid length: %d (descriptor %d)\n", 2126 _ds->bLength, _ds->bDescriptorType); 2127 return -EINVAL; 2128 } 2129 2130 #undef __entity 2131 #undef __entity_check_DESCRIPTOR 2132 #undef __entity_check_INTERFACE 2133 #undef __entity_check_STRING 2134 #undef __entity_check_ENDPOINT 2135 2136 return length; 2137 } 2138 2139 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, 2140 ffs_entity_callback entity, void *priv) 2141 { 2142 const unsigned _len = len; 2143 unsigned long num = 0; 2144 int current_class = -1; 2145 2146 for (;;) { 2147 int ret; 2148 2149 if (num == count) 2150 data = NULL; 2151 2152 /* Record "descriptor" entity */ 2153 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); 2154 if (ret < 0) { 2155 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", 2156 num, ret); 2157 return ret; 2158 } 2159 2160 if (!data) 2161 return _len - len; 2162 2163 ret = ffs_do_single_desc(data, len, entity, priv, 2164 ¤t_class); 2165 if (ret < 0) { 2166 pr_debug("%s returns %d\n", __func__, ret); 2167 return ret; 2168 } 2169 2170 len -= ret; 2171 data += ret; 2172 ++num; 2173 } 2174 } 2175 2176 static int __ffs_data_do_entity(enum ffs_entity_type type, 2177 u8 *valuep, struct usb_descriptor_header *desc, 2178 void *priv) 2179 { 2180 struct ffs_desc_helper *helper = priv; 2181 struct usb_endpoint_descriptor *d; 2182 2183 switch (type) { 2184 case FFS_DESCRIPTOR: 2185 break; 2186 2187 case FFS_INTERFACE: 2188 /* 2189 * Interfaces are indexed from zero so if we 2190 * encountered interface "n" then there are at least 2191 * "n+1" interfaces. 2192 */ 2193 if (*valuep >= helper->interfaces_count) 2194 helper->interfaces_count = *valuep + 1; 2195 break; 2196 2197 case FFS_STRING: 2198 /* 2199 * Strings are indexed from 1 (0 is reserved 2200 * for languages list) 2201 */ 2202 if (*valuep > helper->ffs->strings_count) 2203 helper->ffs->strings_count = *valuep; 2204 break; 2205 2206 case FFS_ENDPOINT: 2207 d = (void *)desc; 2208 helper->eps_count++; 2209 if (helper->eps_count >= FFS_MAX_EPS_COUNT) 2210 return -EINVAL; 2211 /* Check if descriptors for any speed were already parsed */ 2212 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count) 2213 helper->ffs->eps_addrmap[helper->eps_count] = 2214 d->bEndpointAddress; 2215 else if (helper->ffs->eps_addrmap[helper->eps_count] != 2216 d->bEndpointAddress) 2217 return -EINVAL; 2218 break; 2219 } 2220 2221 return 0; 2222 } 2223 2224 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, 2225 struct usb_os_desc_header *desc) 2226 { 2227 u16 bcd_version = le16_to_cpu(desc->bcdVersion); 2228 u16 w_index = le16_to_cpu(desc->wIndex); 2229 2230 if (bcd_version == 0x1) { 2231 pr_warn("bcdVersion must be 0x0100, stored in Little Endian order. " 2232 "Userspace driver should be fixed, accepting 0x0001 for compatibility.\n"); 2233 } else if (bcd_version != 0x100) { 2234 pr_vdebug("unsupported os descriptors version: 0x%x\n", 2235 bcd_version); 2236 return -EINVAL; 2237 } 2238 switch (w_index) { 2239 case 0x4: 2240 *next_type = FFS_OS_DESC_EXT_COMPAT; 2241 break; 2242 case 0x5: 2243 *next_type = FFS_OS_DESC_EXT_PROP; 2244 break; 2245 default: 2246 pr_vdebug("unsupported os descriptor type: %d", w_index); 2247 return -EINVAL; 2248 } 2249 2250 return sizeof(*desc); 2251 } 2252 2253 /* 2254 * Process all extended compatibility/extended property descriptors 2255 * of a feature descriptor 2256 */ 2257 static int __must_check ffs_do_single_os_desc(char *data, unsigned len, 2258 enum ffs_os_desc_type type, 2259 u16 feature_count, 2260 ffs_os_desc_callback entity, 2261 void *priv, 2262 struct usb_os_desc_header *h) 2263 { 2264 int ret; 2265 const unsigned _len = len; 2266 2267 /* loop over all ext compat/ext prop descriptors */ 2268 while (feature_count--) { 2269 ret = entity(type, h, data, len, priv); 2270 if (ret < 0) { 2271 pr_debug("bad OS descriptor, type: %d\n", type); 2272 return ret; 2273 } 2274 data += ret; 2275 len -= ret; 2276 } 2277 return _len - len; 2278 } 2279 2280 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ 2281 static int __must_check ffs_do_os_descs(unsigned count, 2282 char *data, unsigned len, 2283 ffs_os_desc_callback entity, void *priv) 2284 { 2285 const unsigned _len = len; 2286 unsigned long num = 0; 2287 2288 for (num = 0; num < count; ++num) { 2289 int ret; 2290 enum ffs_os_desc_type type; 2291 u16 feature_count; 2292 struct usb_os_desc_header *desc = (void *)data; 2293 2294 if (len < sizeof(*desc)) 2295 return -EINVAL; 2296 2297 /* 2298 * Record "descriptor" entity. 2299 * Process dwLength, bcdVersion, wIndex, get b/wCount. 2300 * Move the data pointer to the beginning of extended 2301 * compatibilities proper or extended properties proper 2302 * portions of the data 2303 */ 2304 if (le32_to_cpu(desc->dwLength) > len) 2305 return -EINVAL; 2306 2307 ret = __ffs_do_os_desc_header(&type, desc); 2308 if (ret < 0) { 2309 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", 2310 num, ret); 2311 return ret; 2312 } 2313 /* 2314 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" 2315 */ 2316 feature_count = le16_to_cpu(desc->wCount); 2317 if (type == FFS_OS_DESC_EXT_COMPAT && 2318 (feature_count > 255 || desc->Reserved)) 2319 return -EINVAL; 2320 len -= ret; 2321 data += ret; 2322 2323 /* 2324 * Process all function/property descriptors 2325 * of this Feature Descriptor 2326 */ 2327 ret = ffs_do_single_os_desc(data, len, type, 2328 feature_count, entity, priv, desc); 2329 if (ret < 0) { 2330 pr_debug("%s returns %d\n", __func__, ret); 2331 return ret; 2332 } 2333 2334 len -= ret; 2335 data += ret; 2336 } 2337 return _len - len; 2338 } 2339 2340 /* 2341 * Validate contents of the buffer from userspace related to OS descriptors. 2342 */ 2343 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, 2344 struct usb_os_desc_header *h, void *data, 2345 unsigned len, void *priv) 2346 { 2347 struct ffs_data *ffs = priv; 2348 u8 length; 2349 2350 switch (type) { 2351 case FFS_OS_DESC_EXT_COMPAT: { 2352 struct usb_ext_compat_desc *d = data; 2353 int i; 2354 2355 if (len < sizeof(*d) || 2356 d->bFirstInterfaceNumber >= ffs->interfaces_count) 2357 return -EINVAL; 2358 if (d->Reserved1 != 1) { 2359 /* 2360 * According to the spec, Reserved1 must be set to 1 2361 * but older kernels incorrectly rejected non-zero 2362 * values. We fix it here to avoid returning EINVAL 2363 * in response to values we used to accept. 2364 */ 2365 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n"); 2366 d->Reserved1 = 1; 2367 } 2368 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) 2369 if (d->Reserved2[i]) 2370 return -EINVAL; 2371 2372 length = sizeof(struct usb_ext_compat_desc); 2373 } 2374 break; 2375 case FFS_OS_DESC_EXT_PROP: { 2376 struct usb_ext_prop_desc *d = data; 2377 u32 type, pdl; 2378 u16 pnl; 2379 2380 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) 2381 return -EINVAL; 2382 length = le32_to_cpu(d->dwSize); 2383 if (len < length) 2384 return -EINVAL; 2385 type = le32_to_cpu(d->dwPropertyDataType); 2386 if (type < USB_EXT_PROP_UNICODE || 2387 type > USB_EXT_PROP_UNICODE_MULTI) { 2388 pr_vdebug("unsupported os descriptor property type: %d", 2389 type); 2390 return -EINVAL; 2391 } 2392 pnl = le16_to_cpu(d->wPropertyNameLength); 2393 if (length < 14 + pnl) { 2394 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n", 2395 length, pnl, type); 2396 return -EINVAL; 2397 } 2398 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl)); 2399 if (length != 14 + pnl + pdl) { 2400 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", 2401 length, pnl, pdl, type); 2402 return -EINVAL; 2403 } 2404 ++ffs->ms_os_descs_ext_prop_count; 2405 /* property name reported to the host as "WCHAR"s */ 2406 ffs->ms_os_descs_ext_prop_name_len += pnl * 2; 2407 ffs->ms_os_descs_ext_prop_data_len += pdl; 2408 } 2409 break; 2410 default: 2411 pr_vdebug("unknown descriptor: %d\n", type); 2412 return -EINVAL; 2413 } 2414 return length; 2415 } 2416 2417 static int __ffs_data_got_descs(struct ffs_data *ffs, 2418 char *const _data, size_t len) 2419 { 2420 char *data = _data, *raw_descs; 2421 unsigned os_descs_count = 0, counts[3], flags; 2422 int ret = -EINVAL, i; 2423 struct ffs_desc_helper helper; 2424 2425 if (get_unaligned_le32(data + 4) != len) 2426 goto error; 2427 2428 switch (get_unaligned_le32(data)) { 2429 case FUNCTIONFS_DESCRIPTORS_MAGIC: 2430 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; 2431 data += 8; 2432 len -= 8; 2433 break; 2434 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: 2435 flags = get_unaligned_le32(data + 8); 2436 ffs->user_flags = flags; 2437 if (flags & ~(FUNCTIONFS_HAS_FS_DESC | 2438 FUNCTIONFS_HAS_HS_DESC | 2439 FUNCTIONFS_HAS_SS_DESC | 2440 FUNCTIONFS_HAS_MS_OS_DESC | 2441 FUNCTIONFS_VIRTUAL_ADDR | 2442 FUNCTIONFS_EVENTFD | 2443 FUNCTIONFS_ALL_CTRL_RECIP | 2444 FUNCTIONFS_CONFIG0_SETUP)) { 2445 ret = -ENOSYS; 2446 goto error; 2447 } 2448 data += 12; 2449 len -= 12; 2450 break; 2451 default: 2452 goto error; 2453 } 2454 2455 if (flags & FUNCTIONFS_EVENTFD) { 2456 if (len < 4) 2457 goto error; 2458 ffs->ffs_eventfd = 2459 eventfd_ctx_fdget((int)get_unaligned_le32(data)); 2460 if (IS_ERR(ffs->ffs_eventfd)) { 2461 ret = PTR_ERR(ffs->ffs_eventfd); 2462 ffs->ffs_eventfd = NULL; 2463 goto error; 2464 } 2465 data += 4; 2466 len -= 4; 2467 } 2468 2469 /* Read fs_count, hs_count and ss_count (if present) */ 2470 for (i = 0; i < 3; ++i) { 2471 if (!(flags & (1 << i))) { 2472 counts[i] = 0; 2473 } else if (len < 4) { 2474 goto error; 2475 } else { 2476 counts[i] = get_unaligned_le32(data); 2477 data += 4; 2478 len -= 4; 2479 } 2480 } 2481 if (flags & (1 << i)) { 2482 if (len < 4) { 2483 goto error; 2484 } 2485 os_descs_count = get_unaligned_le32(data); 2486 data += 4; 2487 len -= 4; 2488 } 2489 2490 /* Read descriptors */ 2491 raw_descs = data; 2492 helper.ffs = ffs; 2493 for (i = 0; i < 3; ++i) { 2494 if (!counts[i]) 2495 continue; 2496 helper.interfaces_count = 0; 2497 helper.eps_count = 0; 2498 ret = ffs_do_descs(counts[i], data, len, 2499 __ffs_data_do_entity, &helper); 2500 if (ret < 0) 2501 goto error; 2502 if (!ffs->eps_count && !ffs->interfaces_count) { 2503 ffs->eps_count = helper.eps_count; 2504 ffs->interfaces_count = helper.interfaces_count; 2505 } else { 2506 if (ffs->eps_count != helper.eps_count) { 2507 ret = -EINVAL; 2508 goto error; 2509 } 2510 if (ffs->interfaces_count != helper.interfaces_count) { 2511 ret = -EINVAL; 2512 goto error; 2513 } 2514 } 2515 data += ret; 2516 len -= ret; 2517 } 2518 if (os_descs_count) { 2519 ret = ffs_do_os_descs(os_descs_count, data, len, 2520 __ffs_data_do_os_desc, ffs); 2521 if (ret < 0) 2522 goto error; 2523 data += ret; 2524 len -= ret; 2525 } 2526 2527 if (raw_descs == data || len) { 2528 ret = -EINVAL; 2529 goto error; 2530 } 2531 2532 ffs->raw_descs_data = _data; 2533 ffs->raw_descs = raw_descs; 2534 ffs->raw_descs_length = data - raw_descs; 2535 ffs->fs_descs_count = counts[0]; 2536 ffs->hs_descs_count = counts[1]; 2537 ffs->ss_descs_count = counts[2]; 2538 ffs->ms_os_descs_count = os_descs_count; 2539 2540 return 0; 2541 2542 error: 2543 kfree(_data); 2544 return ret; 2545 } 2546 2547 static int __ffs_data_got_strings(struct ffs_data *ffs, 2548 char *const _data, size_t len) 2549 { 2550 u32 str_count, needed_count, lang_count; 2551 struct usb_gadget_strings **stringtabs, *t; 2552 const char *data = _data; 2553 struct usb_string *s; 2554 2555 if (len < 16 || 2556 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || 2557 get_unaligned_le32(data + 4) != len) 2558 goto error; 2559 str_count = get_unaligned_le32(data + 8); 2560 lang_count = get_unaligned_le32(data + 12); 2561 2562 /* if one is zero the other must be zero */ 2563 if (!str_count != !lang_count) 2564 goto error; 2565 2566 /* Do we have at least as many strings as descriptors need? */ 2567 needed_count = ffs->strings_count; 2568 if (str_count < needed_count) 2569 goto error; 2570 2571 /* 2572 * If we don't need any strings just return and free all 2573 * memory. 2574 */ 2575 if (!needed_count) { 2576 kfree(_data); 2577 return 0; 2578 } 2579 2580 /* Allocate everything in one chunk so there's less maintenance. */ 2581 { 2582 unsigned i = 0; 2583 vla_group(d); 2584 vla_item(d, struct usb_gadget_strings *, stringtabs, 2585 size_add(lang_count, 1)); 2586 vla_item(d, struct usb_gadget_strings, stringtab, lang_count); 2587 vla_item(d, struct usb_string, strings, 2588 size_mul(lang_count, (needed_count + 1))); 2589 2590 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); 2591 2592 if (!vlabuf) { 2593 kfree(_data); 2594 return -ENOMEM; 2595 } 2596 2597 /* Initialize the VLA pointers */ 2598 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2599 t = vla_ptr(vlabuf, d, stringtab); 2600 i = lang_count; 2601 do { 2602 *stringtabs++ = t++; 2603 } while (--i); 2604 *stringtabs = NULL; 2605 2606 /* stringtabs = vlabuf = d_stringtabs for later kfree */ 2607 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2608 t = vla_ptr(vlabuf, d, stringtab); 2609 s = vla_ptr(vlabuf, d, strings); 2610 } 2611 2612 /* For each language */ 2613 data += 16; 2614 len -= 16; 2615 2616 do { /* lang_count > 0 so we can use do-while */ 2617 unsigned needed = needed_count; 2618 u32 str_per_lang = str_count; 2619 2620 if (len < 3) 2621 goto error_free; 2622 t->language = get_unaligned_le16(data); 2623 t->strings = s; 2624 ++t; 2625 2626 data += 2; 2627 len -= 2; 2628 2629 /* For each string */ 2630 do { /* str_count > 0 so we can use do-while */ 2631 size_t length = strnlen(data, len); 2632 2633 if (length == len) 2634 goto error_free; 2635 2636 /* 2637 * User may provide more strings then we need, 2638 * if that's the case we simply ignore the 2639 * rest 2640 */ 2641 if (needed) { 2642 /* 2643 * s->id will be set while adding 2644 * function to configuration so for 2645 * now just leave garbage here. 2646 */ 2647 s->s = data; 2648 --needed; 2649 ++s; 2650 } 2651 2652 data += length + 1; 2653 len -= length + 1; 2654 } while (--str_per_lang); 2655 2656 s->id = 0; /* terminator */ 2657 s->s = NULL; 2658 ++s; 2659 2660 } while (--lang_count); 2661 2662 /* Some garbage left? */ 2663 if (len) 2664 goto error_free; 2665 2666 /* Done! */ 2667 ffs->stringtabs = stringtabs; 2668 ffs->raw_strings = _data; 2669 2670 return 0; 2671 2672 error_free: 2673 kfree(stringtabs); 2674 error: 2675 kfree(_data); 2676 return -EINVAL; 2677 } 2678 2679 2680 /* Events handling and management *******************************************/ 2681 2682 static void __ffs_event_add(struct ffs_data *ffs, 2683 enum usb_functionfs_event_type type) 2684 { 2685 enum usb_functionfs_event_type rem_type1, rem_type2 = type; 2686 int neg = 0; 2687 2688 /* 2689 * Abort any unhandled setup 2690 * 2691 * We do not need to worry about some cmpxchg() changing value 2692 * of ffs->setup_state without holding the lock because when 2693 * state is FFS_SETUP_PENDING cmpxchg() in several places in 2694 * the source does nothing. 2695 */ 2696 if (ffs->setup_state == FFS_SETUP_PENDING) 2697 ffs->setup_state = FFS_SETUP_CANCELLED; 2698 2699 /* 2700 * Logic of this function guarantees that there are at most four pending 2701 * evens on ffs->ev.types queue. This is important because the queue 2702 * has space for four elements only and __ffs_ep0_read_events function 2703 * depends on that limit as well. If more event types are added, those 2704 * limits have to be revisited or guaranteed to still hold. 2705 */ 2706 switch (type) { 2707 case FUNCTIONFS_RESUME: 2708 rem_type2 = FUNCTIONFS_SUSPEND; 2709 fallthrough; 2710 case FUNCTIONFS_SUSPEND: 2711 case FUNCTIONFS_SETUP: 2712 rem_type1 = type; 2713 /* Discard all similar events */ 2714 break; 2715 2716 case FUNCTIONFS_BIND: 2717 case FUNCTIONFS_UNBIND: 2718 case FUNCTIONFS_DISABLE: 2719 case FUNCTIONFS_ENABLE: 2720 /* Discard everything other then power management. */ 2721 rem_type1 = FUNCTIONFS_SUSPEND; 2722 rem_type2 = FUNCTIONFS_RESUME; 2723 neg = 1; 2724 break; 2725 2726 default: 2727 WARN(1, "%d: unknown event, this should not happen\n", type); 2728 return; 2729 } 2730 2731 { 2732 u8 *ev = ffs->ev.types, *out = ev; 2733 unsigned n = ffs->ev.count; 2734 for (; n; --n, ++ev) 2735 if ((*ev == rem_type1 || *ev == rem_type2) == neg) 2736 *out++ = *ev; 2737 else 2738 pr_vdebug("purging event %d\n", *ev); 2739 ffs->ev.count = out - ffs->ev.types; 2740 } 2741 2742 pr_vdebug("adding event %d\n", type); 2743 ffs->ev.types[ffs->ev.count++] = type; 2744 wake_up_locked(&ffs->ev.waitq); 2745 if (ffs->ffs_eventfd) 2746 eventfd_signal(ffs->ffs_eventfd, 1); 2747 } 2748 2749 static void ffs_event_add(struct ffs_data *ffs, 2750 enum usb_functionfs_event_type type) 2751 { 2752 unsigned long flags; 2753 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 2754 __ffs_event_add(ffs, type); 2755 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 2756 } 2757 2758 /* Bind/unbind USB function hooks *******************************************/ 2759 2760 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address) 2761 { 2762 int i; 2763 2764 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i) 2765 if (ffs->eps_addrmap[i] == endpoint_address) 2766 return i; 2767 return -ENOENT; 2768 } 2769 2770 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, 2771 struct usb_descriptor_header *desc, 2772 void *priv) 2773 { 2774 struct usb_endpoint_descriptor *ds = (void *)desc; 2775 struct ffs_function *func = priv; 2776 struct ffs_ep *ffs_ep; 2777 unsigned ep_desc_id; 2778 int idx; 2779 static const char *speed_names[] = { "full", "high", "super" }; 2780 2781 if (type != FFS_DESCRIPTOR) 2782 return 0; 2783 2784 /* 2785 * If ss_descriptors is not NULL, we are reading super speed 2786 * descriptors; if hs_descriptors is not NULL, we are reading high 2787 * speed descriptors; otherwise, we are reading full speed 2788 * descriptors. 2789 */ 2790 if (func->function.ss_descriptors) { 2791 ep_desc_id = 2; 2792 func->function.ss_descriptors[(long)valuep] = desc; 2793 } else if (func->function.hs_descriptors) { 2794 ep_desc_id = 1; 2795 func->function.hs_descriptors[(long)valuep] = desc; 2796 } else { 2797 ep_desc_id = 0; 2798 func->function.fs_descriptors[(long)valuep] = desc; 2799 } 2800 2801 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) 2802 return 0; 2803 2804 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1; 2805 if (idx < 0) 2806 return idx; 2807 2808 ffs_ep = func->eps + idx; 2809 2810 if (ffs_ep->descs[ep_desc_id]) { 2811 pr_err("two %sspeed descriptors for EP %d\n", 2812 speed_names[ep_desc_id], 2813 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); 2814 return -EINVAL; 2815 } 2816 ffs_ep->descs[ep_desc_id] = ds; 2817 2818 ffs_dump_mem(": Original ep desc", ds, ds->bLength); 2819 if (ffs_ep->ep) { 2820 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; 2821 if (!ds->wMaxPacketSize) 2822 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; 2823 } else { 2824 struct usb_request *req; 2825 struct usb_ep *ep; 2826 u8 bEndpointAddress; 2827 u16 wMaxPacketSize; 2828 2829 /* 2830 * We back up bEndpointAddress because autoconfig overwrites 2831 * it with physical endpoint address. 2832 */ 2833 bEndpointAddress = ds->bEndpointAddress; 2834 /* 2835 * We back up wMaxPacketSize because autoconfig treats 2836 * endpoint descriptors as if they were full speed. 2837 */ 2838 wMaxPacketSize = ds->wMaxPacketSize; 2839 pr_vdebug("autoconfig\n"); 2840 ep = usb_ep_autoconfig(func->gadget, ds); 2841 if (!ep) 2842 return -ENOTSUPP; 2843 ep->driver_data = func->eps + idx; 2844 2845 req = usb_ep_alloc_request(ep, GFP_KERNEL); 2846 if (!req) 2847 return -ENOMEM; 2848 2849 ffs_ep->ep = ep; 2850 ffs_ep->req = req; 2851 func->eps_revmap[ds->bEndpointAddress & 2852 USB_ENDPOINT_NUMBER_MASK] = idx + 1; 2853 /* 2854 * If we use virtual address mapping, we restore 2855 * original bEndpointAddress value. 2856 */ 2857 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 2858 ds->bEndpointAddress = bEndpointAddress; 2859 /* 2860 * Restore wMaxPacketSize which was potentially 2861 * overwritten by autoconfig. 2862 */ 2863 ds->wMaxPacketSize = wMaxPacketSize; 2864 } 2865 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); 2866 2867 return 0; 2868 } 2869 2870 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, 2871 struct usb_descriptor_header *desc, 2872 void *priv) 2873 { 2874 struct ffs_function *func = priv; 2875 unsigned idx; 2876 u8 newValue; 2877 2878 switch (type) { 2879 default: 2880 case FFS_DESCRIPTOR: 2881 /* Handled in previous pass by __ffs_func_bind_do_descs() */ 2882 return 0; 2883 2884 case FFS_INTERFACE: 2885 idx = *valuep; 2886 if (func->interfaces_nums[idx] < 0) { 2887 int id = usb_interface_id(func->conf, &func->function); 2888 if (id < 0) 2889 return id; 2890 func->interfaces_nums[idx] = id; 2891 } 2892 newValue = func->interfaces_nums[idx]; 2893 break; 2894 2895 case FFS_STRING: 2896 /* String' IDs are allocated when fsf_data is bound to cdev */ 2897 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; 2898 break; 2899 2900 case FFS_ENDPOINT: 2901 /* 2902 * USB_DT_ENDPOINT are handled in 2903 * __ffs_func_bind_do_descs(). 2904 */ 2905 if (desc->bDescriptorType == USB_DT_ENDPOINT) 2906 return 0; 2907 2908 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; 2909 if (!func->eps[idx].ep) 2910 return -EINVAL; 2911 2912 { 2913 struct usb_endpoint_descriptor **descs; 2914 descs = func->eps[idx].descs; 2915 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; 2916 } 2917 break; 2918 } 2919 2920 pr_vdebug("%02x -> %02x\n", *valuep, newValue); 2921 *valuep = newValue; 2922 return 0; 2923 } 2924 2925 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, 2926 struct usb_os_desc_header *h, void *data, 2927 unsigned len, void *priv) 2928 { 2929 struct ffs_function *func = priv; 2930 u8 length = 0; 2931 2932 switch (type) { 2933 case FFS_OS_DESC_EXT_COMPAT: { 2934 struct usb_ext_compat_desc *desc = data; 2935 struct usb_os_desc_table *t; 2936 2937 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; 2938 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; 2939 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID, 2940 ARRAY_SIZE(desc->CompatibleID) + 2941 ARRAY_SIZE(desc->SubCompatibleID)); 2942 length = sizeof(*desc); 2943 } 2944 break; 2945 case FFS_OS_DESC_EXT_PROP: { 2946 struct usb_ext_prop_desc *desc = data; 2947 struct usb_os_desc_table *t; 2948 struct usb_os_desc_ext_prop *ext_prop; 2949 char *ext_prop_name; 2950 char *ext_prop_data; 2951 2952 t = &func->function.os_desc_table[h->interface]; 2953 t->if_id = func->interfaces_nums[h->interface]; 2954 2955 ext_prop = func->ffs->ms_os_descs_ext_prop_avail; 2956 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); 2957 2958 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); 2959 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); 2960 ext_prop->data_len = le32_to_cpu(*(__le32 *) 2961 usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); 2962 length = ext_prop->name_len + ext_prop->data_len + 14; 2963 2964 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; 2965 func->ffs->ms_os_descs_ext_prop_name_avail += 2966 ext_prop->name_len; 2967 2968 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; 2969 func->ffs->ms_os_descs_ext_prop_data_avail += 2970 ext_prop->data_len; 2971 memcpy(ext_prop_data, 2972 usb_ext_prop_data_ptr(data, ext_prop->name_len), 2973 ext_prop->data_len); 2974 /* unicode data reported to the host as "WCHAR"s */ 2975 switch (ext_prop->type) { 2976 case USB_EXT_PROP_UNICODE: 2977 case USB_EXT_PROP_UNICODE_ENV: 2978 case USB_EXT_PROP_UNICODE_LINK: 2979 case USB_EXT_PROP_UNICODE_MULTI: 2980 ext_prop->data_len *= 2; 2981 break; 2982 } 2983 ext_prop->data = ext_prop_data; 2984 2985 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), 2986 ext_prop->name_len); 2987 /* property name reported to the host as "WCHAR"s */ 2988 ext_prop->name_len *= 2; 2989 ext_prop->name = ext_prop_name; 2990 2991 t->os_desc->ext_prop_len += 2992 ext_prop->name_len + ext_prop->data_len + 14; 2993 ++t->os_desc->ext_prop_count; 2994 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); 2995 } 2996 break; 2997 default: 2998 pr_vdebug("unknown descriptor: %d\n", type); 2999 } 3000 3001 return length; 3002 } 3003 3004 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, 3005 struct usb_configuration *c) 3006 { 3007 struct ffs_function *func = ffs_func_from_usb(f); 3008 struct f_fs_opts *ffs_opts = 3009 container_of(f->fi, struct f_fs_opts, func_inst); 3010 struct ffs_data *ffs_data; 3011 int ret; 3012 3013 /* 3014 * Legacy gadget triggers binding in functionfs_ready_callback, 3015 * which already uses locking; taking the same lock here would 3016 * cause a deadlock. 3017 * 3018 * Configfs-enabled gadgets however do need ffs_dev_lock. 3019 */ 3020 if (!ffs_opts->no_configfs) 3021 ffs_dev_lock(); 3022 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; 3023 ffs_data = ffs_opts->dev->ffs_data; 3024 if (!ffs_opts->no_configfs) 3025 ffs_dev_unlock(); 3026 if (ret) 3027 return ERR_PTR(ret); 3028 3029 func->ffs = ffs_data; 3030 func->conf = c; 3031 func->gadget = c->cdev->gadget; 3032 3033 /* 3034 * in drivers/usb/gadget/configfs.c:configfs_composite_bind() 3035 * configurations are bound in sequence with list_for_each_entry, 3036 * in each configuration its functions are bound in sequence 3037 * with list_for_each_entry, so we assume no race condition 3038 * with regard to ffs_opts->bound access 3039 */ 3040 if (!ffs_opts->refcnt) { 3041 ret = functionfs_bind(func->ffs, c->cdev); 3042 if (ret) 3043 return ERR_PTR(ret); 3044 } 3045 ffs_opts->refcnt++; 3046 func->function.strings = func->ffs->stringtabs; 3047 3048 return ffs_opts; 3049 } 3050 3051 static int _ffs_func_bind(struct usb_configuration *c, 3052 struct usb_function *f) 3053 { 3054 struct ffs_function *func = ffs_func_from_usb(f); 3055 struct ffs_data *ffs = func->ffs; 3056 3057 const int full = !!func->ffs->fs_descs_count; 3058 const int high = !!func->ffs->hs_descs_count; 3059 const int super = !!func->ffs->ss_descs_count; 3060 3061 int fs_len, hs_len, ss_len, ret, i; 3062 struct ffs_ep *eps_ptr; 3063 3064 /* Make it a single chunk, less management later on */ 3065 vla_group(d); 3066 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); 3067 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, 3068 full ? ffs->fs_descs_count + 1 : 0); 3069 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, 3070 high ? ffs->hs_descs_count + 1 : 0); 3071 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, 3072 super ? ffs->ss_descs_count + 1 : 0); 3073 vla_item_with_sz(d, short, inums, ffs->interfaces_count); 3074 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, 3075 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3076 vla_item_with_sz(d, char[16], ext_compat, 3077 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3078 vla_item_with_sz(d, struct usb_os_desc, os_desc, 3079 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3080 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, 3081 ffs->ms_os_descs_ext_prop_count); 3082 vla_item_with_sz(d, char, ext_prop_name, 3083 ffs->ms_os_descs_ext_prop_name_len); 3084 vla_item_with_sz(d, char, ext_prop_data, 3085 ffs->ms_os_descs_ext_prop_data_len); 3086 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); 3087 char *vlabuf; 3088 3089 /* Has descriptors only for speeds gadget does not support */ 3090 if (!(full | high | super)) 3091 return -ENOTSUPP; 3092 3093 /* Allocate a single chunk, less management later on */ 3094 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); 3095 if (!vlabuf) 3096 return -ENOMEM; 3097 3098 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); 3099 ffs->ms_os_descs_ext_prop_name_avail = 3100 vla_ptr(vlabuf, d, ext_prop_name); 3101 ffs->ms_os_descs_ext_prop_data_avail = 3102 vla_ptr(vlabuf, d, ext_prop_data); 3103 3104 /* Copy descriptors */ 3105 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, 3106 ffs->raw_descs_length); 3107 3108 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); 3109 eps_ptr = vla_ptr(vlabuf, d, eps); 3110 for (i = 0; i < ffs->eps_count; i++) 3111 eps_ptr[i].num = -1; 3112 3113 /* Save pointers 3114 * d_eps == vlabuf, func->eps used to kfree vlabuf later 3115 */ 3116 func->eps = vla_ptr(vlabuf, d, eps); 3117 func->interfaces_nums = vla_ptr(vlabuf, d, inums); 3118 3119 /* 3120 * Go through all the endpoint descriptors and allocate 3121 * endpoints first, so that later we can rewrite the endpoint 3122 * numbers without worrying that it may be described later on. 3123 */ 3124 if (full) { 3125 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); 3126 fs_len = ffs_do_descs(ffs->fs_descs_count, 3127 vla_ptr(vlabuf, d, raw_descs), 3128 d_raw_descs__sz, 3129 __ffs_func_bind_do_descs, func); 3130 if (fs_len < 0) { 3131 ret = fs_len; 3132 goto error; 3133 } 3134 } else { 3135 fs_len = 0; 3136 } 3137 3138 if (high) { 3139 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); 3140 hs_len = ffs_do_descs(ffs->hs_descs_count, 3141 vla_ptr(vlabuf, d, raw_descs) + fs_len, 3142 d_raw_descs__sz - fs_len, 3143 __ffs_func_bind_do_descs, func); 3144 if (hs_len < 0) { 3145 ret = hs_len; 3146 goto error; 3147 } 3148 } else { 3149 hs_len = 0; 3150 } 3151 3152 if (super) { 3153 func->function.ss_descriptors = func->function.ssp_descriptors = 3154 vla_ptr(vlabuf, d, ss_descs); 3155 ss_len = ffs_do_descs(ffs->ss_descs_count, 3156 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, 3157 d_raw_descs__sz - fs_len - hs_len, 3158 __ffs_func_bind_do_descs, func); 3159 if (ss_len < 0) { 3160 ret = ss_len; 3161 goto error; 3162 } 3163 } else { 3164 ss_len = 0; 3165 } 3166 3167 /* 3168 * Now handle interface numbers allocation and interface and 3169 * endpoint numbers rewriting. We can do that in one go 3170 * now. 3171 */ 3172 ret = ffs_do_descs(ffs->fs_descs_count + 3173 (high ? ffs->hs_descs_count : 0) + 3174 (super ? ffs->ss_descs_count : 0), 3175 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, 3176 __ffs_func_bind_do_nums, func); 3177 if (ret < 0) 3178 goto error; 3179 3180 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); 3181 if (c->cdev->use_os_string) { 3182 for (i = 0; i < ffs->interfaces_count; ++i) { 3183 struct usb_os_desc *desc; 3184 3185 desc = func->function.os_desc_table[i].os_desc = 3186 vla_ptr(vlabuf, d, os_desc) + 3187 i * sizeof(struct usb_os_desc); 3188 desc->ext_compat_id = 3189 vla_ptr(vlabuf, d, ext_compat) + i * 16; 3190 INIT_LIST_HEAD(&desc->ext_prop); 3191 } 3192 ret = ffs_do_os_descs(ffs->ms_os_descs_count, 3193 vla_ptr(vlabuf, d, raw_descs) + 3194 fs_len + hs_len + ss_len, 3195 d_raw_descs__sz - fs_len - hs_len - 3196 ss_len, 3197 __ffs_func_bind_do_os_desc, func); 3198 if (ret < 0) 3199 goto error; 3200 } 3201 func->function.os_desc_n = 3202 c->cdev->use_os_string ? ffs->interfaces_count : 0; 3203 3204 /* And we're done */ 3205 ffs_event_add(ffs, FUNCTIONFS_BIND); 3206 return 0; 3207 3208 error: 3209 /* XXX Do we need to release all claimed endpoints here? */ 3210 return ret; 3211 } 3212 3213 static int ffs_func_bind(struct usb_configuration *c, 3214 struct usb_function *f) 3215 { 3216 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); 3217 struct ffs_function *func = ffs_func_from_usb(f); 3218 int ret; 3219 3220 if (IS_ERR(ffs_opts)) 3221 return PTR_ERR(ffs_opts); 3222 3223 ret = _ffs_func_bind(c, f); 3224 if (ret && !--ffs_opts->refcnt) 3225 functionfs_unbind(func->ffs); 3226 3227 return ret; 3228 } 3229 3230 3231 /* Other USB function hooks *************************************************/ 3232 3233 static void ffs_reset_work(struct work_struct *work) 3234 { 3235 struct ffs_data *ffs = container_of(work, 3236 struct ffs_data, reset_work); 3237 ffs_data_reset(ffs); 3238 } 3239 3240 static int ffs_func_set_alt(struct usb_function *f, 3241 unsigned interface, unsigned alt) 3242 { 3243 struct ffs_function *func = ffs_func_from_usb(f); 3244 struct ffs_data *ffs = func->ffs; 3245 int ret = 0, intf; 3246 3247 if (alt != (unsigned)-1) { 3248 intf = ffs_func_revmap_intf(func, interface); 3249 if (intf < 0) 3250 return intf; 3251 } 3252 3253 if (ffs->func) 3254 ffs_func_eps_disable(ffs->func); 3255 3256 if (ffs->state == FFS_DEACTIVATED) { 3257 ffs->state = FFS_CLOSING; 3258 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3259 schedule_work(&ffs->reset_work); 3260 return -ENODEV; 3261 } 3262 3263 if (ffs->state != FFS_ACTIVE) 3264 return -ENODEV; 3265 3266 if (alt == (unsigned)-1) { 3267 ffs->func = NULL; 3268 ffs_event_add(ffs, FUNCTIONFS_DISABLE); 3269 return 0; 3270 } 3271 3272 ffs->func = func; 3273 ret = ffs_func_eps_enable(func); 3274 if (ret >= 0) 3275 ffs_event_add(ffs, FUNCTIONFS_ENABLE); 3276 return ret; 3277 } 3278 3279 static void ffs_func_disable(struct usb_function *f) 3280 { 3281 ffs_func_set_alt(f, 0, (unsigned)-1); 3282 } 3283 3284 static int ffs_func_setup(struct usb_function *f, 3285 const struct usb_ctrlrequest *creq) 3286 { 3287 struct ffs_function *func = ffs_func_from_usb(f); 3288 struct ffs_data *ffs = func->ffs; 3289 unsigned long flags; 3290 int ret; 3291 3292 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); 3293 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); 3294 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); 3295 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); 3296 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); 3297 3298 /* 3299 * Most requests directed to interface go through here 3300 * (notable exceptions are set/get interface) so we need to 3301 * handle them. All other either handled by composite or 3302 * passed to usb_configuration->setup() (if one is set). No 3303 * matter, we will handle requests directed to endpoint here 3304 * as well (as it's straightforward). Other request recipient 3305 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP 3306 * is being used. 3307 */ 3308 if (ffs->state != FFS_ACTIVE) 3309 return -ENODEV; 3310 3311 switch (creq->bRequestType & USB_RECIP_MASK) { 3312 case USB_RECIP_INTERFACE: 3313 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); 3314 if (ret < 0) 3315 return ret; 3316 break; 3317 3318 case USB_RECIP_ENDPOINT: 3319 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); 3320 if (ret < 0) 3321 return ret; 3322 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3323 ret = func->ffs->eps_addrmap[ret]; 3324 break; 3325 3326 default: 3327 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP) 3328 ret = le16_to_cpu(creq->wIndex); 3329 else 3330 return -EOPNOTSUPP; 3331 } 3332 3333 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3334 ffs->ev.setup = *creq; 3335 ffs->ev.setup.wIndex = cpu_to_le16(ret); 3336 __ffs_event_add(ffs, FUNCTIONFS_SETUP); 3337 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3338 3339 return ffs->ev.setup.wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0; 3340 } 3341 3342 static bool ffs_func_req_match(struct usb_function *f, 3343 const struct usb_ctrlrequest *creq, 3344 bool config0) 3345 { 3346 struct ffs_function *func = ffs_func_from_usb(f); 3347 3348 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP)) 3349 return false; 3350 3351 switch (creq->bRequestType & USB_RECIP_MASK) { 3352 case USB_RECIP_INTERFACE: 3353 return (ffs_func_revmap_intf(func, 3354 le16_to_cpu(creq->wIndex)) >= 0); 3355 case USB_RECIP_ENDPOINT: 3356 return (ffs_func_revmap_ep(func, 3357 le16_to_cpu(creq->wIndex)) >= 0); 3358 default: 3359 return (bool) (func->ffs->user_flags & 3360 FUNCTIONFS_ALL_CTRL_RECIP); 3361 } 3362 } 3363 3364 static void ffs_func_suspend(struct usb_function *f) 3365 { 3366 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); 3367 } 3368 3369 static void ffs_func_resume(struct usb_function *f) 3370 { 3371 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); 3372 } 3373 3374 3375 /* Endpoint and interface numbers reverse mapping ***************************/ 3376 3377 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) 3378 { 3379 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; 3380 return num ? num : -EDOM; 3381 } 3382 3383 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) 3384 { 3385 short *nums = func->interfaces_nums; 3386 unsigned count = func->ffs->interfaces_count; 3387 3388 for (; count; --count, ++nums) { 3389 if (*nums >= 0 && *nums == intf) 3390 return nums - func->interfaces_nums; 3391 } 3392 3393 return -EDOM; 3394 } 3395 3396 3397 /* Devices management *******************************************************/ 3398 3399 static LIST_HEAD(ffs_devices); 3400 3401 static struct ffs_dev *_ffs_do_find_dev(const char *name) 3402 { 3403 struct ffs_dev *dev; 3404 3405 if (!name) 3406 return NULL; 3407 3408 list_for_each_entry(dev, &ffs_devices, entry) { 3409 if (strcmp(dev->name, name) == 0) 3410 return dev; 3411 } 3412 3413 return NULL; 3414 } 3415 3416 /* 3417 * ffs_lock must be taken by the caller of this function 3418 */ 3419 static struct ffs_dev *_ffs_get_single_dev(void) 3420 { 3421 struct ffs_dev *dev; 3422 3423 if (list_is_singular(&ffs_devices)) { 3424 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); 3425 if (dev->single) 3426 return dev; 3427 } 3428 3429 return NULL; 3430 } 3431 3432 /* 3433 * ffs_lock must be taken by the caller of this function 3434 */ 3435 static struct ffs_dev *_ffs_find_dev(const char *name) 3436 { 3437 struct ffs_dev *dev; 3438 3439 dev = _ffs_get_single_dev(); 3440 if (dev) 3441 return dev; 3442 3443 return _ffs_do_find_dev(name); 3444 } 3445 3446 /* Configfs support *********************************************************/ 3447 3448 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) 3449 { 3450 return container_of(to_config_group(item), struct f_fs_opts, 3451 func_inst.group); 3452 } 3453 3454 static void ffs_attr_release(struct config_item *item) 3455 { 3456 struct f_fs_opts *opts = to_ffs_opts(item); 3457 3458 usb_put_function_instance(&opts->func_inst); 3459 } 3460 3461 static struct configfs_item_operations ffs_item_ops = { 3462 .release = ffs_attr_release, 3463 }; 3464 3465 static const struct config_item_type ffs_func_type = { 3466 .ct_item_ops = &ffs_item_ops, 3467 .ct_owner = THIS_MODULE, 3468 }; 3469 3470 3471 /* Function registration interface ******************************************/ 3472 3473 static void ffs_free_inst(struct usb_function_instance *f) 3474 { 3475 struct f_fs_opts *opts; 3476 3477 opts = to_f_fs_opts(f); 3478 ffs_release_dev(opts->dev); 3479 ffs_dev_lock(); 3480 _ffs_free_dev(opts->dev); 3481 ffs_dev_unlock(); 3482 kfree(opts); 3483 } 3484 3485 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) 3486 { 3487 if (strlen(name) >= sizeof_field(struct ffs_dev, name)) 3488 return -ENAMETOOLONG; 3489 return ffs_name_dev(to_f_fs_opts(fi)->dev, name); 3490 } 3491 3492 static struct usb_function_instance *ffs_alloc_inst(void) 3493 { 3494 struct f_fs_opts *opts; 3495 struct ffs_dev *dev; 3496 3497 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 3498 if (!opts) 3499 return ERR_PTR(-ENOMEM); 3500 3501 opts->func_inst.set_inst_name = ffs_set_inst_name; 3502 opts->func_inst.free_func_inst = ffs_free_inst; 3503 ffs_dev_lock(); 3504 dev = _ffs_alloc_dev(); 3505 ffs_dev_unlock(); 3506 if (IS_ERR(dev)) { 3507 kfree(opts); 3508 return ERR_CAST(dev); 3509 } 3510 opts->dev = dev; 3511 dev->opts = opts; 3512 3513 config_group_init_type_name(&opts->func_inst.group, "", 3514 &ffs_func_type); 3515 return &opts->func_inst; 3516 } 3517 3518 static void ffs_free(struct usb_function *f) 3519 { 3520 kfree(ffs_func_from_usb(f)); 3521 } 3522 3523 static void ffs_func_unbind(struct usb_configuration *c, 3524 struct usb_function *f) 3525 { 3526 struct ffs_function *func = ffs_func_from_usb(f); 3527 struct ffs_data *ffs = func->ffs; 3528 struct f_fs_opts *opts = 3529 container_of(f->fi, struct f_fs_opts, func_inst); 3530 struct ffs_ep *ep = func->eps; 3531 unsigned count = ffs->eps_count; 3532 unsigned long flags; 3533 3534 if (ffs->func == func) { 3535 ffs_func_eps_disable(func); 3536 ffs->func = NULL; 3537 } 3538 3539 /* Drain any pending AIO completions */ 3540 drain_workqueue(ffs->io_completion_wq); 3541 3542 ffs_event_add(ffs, FUNCTIONFS_UNBIND); 3543 if (!--opts->refcnt) 3544 functionfs_unbind(ffs); 3545 3546 /* cleanup after autoconfig */ 3547 spin_lock_irqsave(&func->ffs->eps_lock, flags); 3548 while (count--) { 3549 if (ep->ep && ep->req) 3550 usb_ep_free_request(ep->ep, ep->req); 3551 ep->req = NULL; 3552 ++ep; 3553 } 3554 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 3555 kfree(func->eps); 3556 func->eps = NULL; 3557 /* 3558 * eps, descriptors and interfaces_nums are allocated in the 3559 * same chunk so only one free is required. 3560 */ 3561 func->function.fs_descriptors = NULL; 3562 func->function.hs_descriptors = NULL; 3563 func->function.ss_descriptors = NULL; 3564 func->function.ssp_descriptors = NULL; 3565 func->interfaces_nums = NULL; 3566 3567 } 3568 3569 static struct usb_function *ffs_alloc(struct usb_function_instance *fi) 3570 { 3571 struct ffs_function *func; 3572 3573 func = kzalloc(sizeof(*func), GFP_KERNEL); 3574 if (!func) 3575 return ERR_PTR(-ENOMEM); 3576 3577 func->function.name = "Function FS Gadget"; 3578 3579 func->function.bind = ffs_func_bind; 3580 func->function.unbind = ffs_func_unbind; 3581 func->function.set_alt = ffs_func_set_alt; 3582 func->function.disable = ffs_func_disable; 3583 func->function.setup = ffs_func_setup; 3584 func->function.req_match = ffs_func_req_match; 3585 func->function.suspend = ffs_func_suspend; 3586 func->function.resume = ffs_func_resume; 3587 func->function.free_func = ffs_free; 3588 3589 return &func->function; 3590 } 3591 3592 /* 3593 * ffs_lock must be taken by the caller of this function 3594 */ 3595 static struct ffs_dev *_ffs_alloc_dev(void) 3596 { 3597 struct ffs_dev *dev; 3598 int ret; 3599 3600 if (_ffs_get_single_dev()) 3601 return ERR_PTR(-EBUSY); 3602 3603 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3604 if (!dev) 3605 return ERR_PTR(-ENOMEM); 3606 3607 if (list_empty(&ffs_devices)) { 3608 ret = functionfs_init(); 3609 if (ret) { 3610 kfree(dev); 3611 return ERR_PTR(ret); 3612 } 3613 } 3614 3615 list_add(&dev->entry, &ffs_devices); 3616 3617 return dev; 3618 } 3619 3620 int ffs_name_dev(struct ffs_dev *dev, const char *name) 3621 { 3622 struct ffs_dev *existing; 3623 int ret = 0; 3624 3625 ffs_dev_lock(); 3626 3627 existing = _ffs_do_find_dev(name); 3628 if (!existing) 3629 strscpy(dev->name, name, ARRAY_SIZE(dev->name)); 3630 else if (existing != dev) 3631 ret = -EBUSY; 3632 3633 ffs_dev_unlock(); 3634 3635 return ret; 3636 } 3637 EXPORT_SYMBOL_GPL(ffs_name_dev); 3638 3639 int ffs_single_dev(struct ffs_dev *dev) 3640 { 3641 int ret; 3642 3643 ret = 0; 3644 ffs_dev_lock(); 3645 3646 if (!list_is_singular(&ffs_devices)) 3647 ret = -EBUSY; 3648 else 3649 dev->single = true; 3650 3651 ffs_dev_unlock(); 3652 return ret; 3653 } 3654 EXPORT_SYMBOL_GPL(ffs_single_dev); 3655 3656 /* 3657 * ffs_lock must be taken by the caller of this function 3658 */ 3659 static void _ffs_free_dev(struct ffs_dev *dev) 3660 { 3661 list_del(&dev->entry); 3662 3663 kfree(dev); 3664 if (list_empty(&ffs_devices)) 3665 functionfs_cleanup(); 3666 } 3667 3668 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data) 3669 { 3670 int ret = 0; 3671 struct ffs_dev *ffs_dev; 3672 3673 ffs_dev_lock(); 3674 3675 ffs_dev = _ffs_find_dev(dev_name); 3676 if (!ffs_dev) { 3677 ret = -ENOENT; 3678 } else if (ffs_dev->mounted) { 3679 ret = -EBUSY; 3680 } else if (ffs_dev->ffs_acquire_dev_callback && 3681 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) { 3682 ret = -ENOENT; 3683 } else { 3684 ffs_dev->mounted = true; 3685 ffs_dev->ffs_data = ffs_data; 3686 ffs_data->private_data = ffs_dev; 3687 } 3688 3689 ffs_dev_unlock(); 3690 return ret; 3691 } 3692 3693 static void ffs_release_dev(struct ffs_dev *ffs_dev) 3694 { 3695 ffs_dev_lock(); 3696 3697 if (ffs_dev && ffs_dev->mounted) { 3698 ffs_dev->mounted = false; 3699 if (ffs_dev->ffs_data) { 3700 ffs_dev->ffs_data->private_data = NULL; 3701 ffs_dev->ffs_data = NULL; 3702 } 3703 3704 if (ffs_dev->ffs_release_dev_callback) 3705 ffs_dev->ffs_release_dev_callback(ffs_dev); 3706 } 3707 3708 ffs_dev_unlock(); 3709 } 3710 3711 static int ffs_ready(struct ffs_data *ffs) 3712 { 3713 struct ffs_dev *ffs_obj; 3714 int ret = 0; 3715 3716 ffs_dev_lock(); 3717 3718 ffs_obj = ffs->private_data; 3719 if (!ffs_obj) { 3720 ret = -EINVAL; 3721 goto done; 3722 } 3723 if (WARN_ON(ffs_obj->desc_ready)) { 3724 ret = -EBUSY; 3725 goto done; 3726 } 3727 3728 ffs_obj->desc_ready = true; 3729 3730 if (ffs_obj->ffs_ready_callback) { 3731 ret = ffs_obj->ffs_ready_callback(ffs); 3732 if (ret) 3733 goto done; 3734 } 3735 3736 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); 3737 done: 3738 ffs_dev_unlock(); 3739 return ret; 3740 } 3741 3742 static void ffs_closed(struct ffs_data *ffs) 3743 { 3744 struct ffs_dev *ffs_obj; 3745 struct f_fs_opts *opts; 3746 struct config_item *ci; 3747 3748 ffs_dev_lock(); 3749 3750 ffs_obj = ffs->private_data; 3751 if (!ffs_obj) 3752 goto done; 3753 3754 ffs_obj->desc_ready = false; 3755 3756 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) && 3757 ffs_obj->ffs_closed_callback) 3758 ffs_obj->ffs_closed_callback(ffs); 3759 3760 if (ffs_obj->opts) 3761 opts = ffs_obj->opts; 3762 else 3763 goto done; 3764 3765 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent 3766 || !kref_read(&opts->func_inst.group.cg_item.ci_kref)) 3767 goto done; 3768 3769 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent; 3770 ffs_dev_unlock(); 3771 3772 if (test_bit(FFS_FL_BOUND, &ffs->flags)) 3773 unregister_gadget_item(ci); 3774 return; 3775 done: 3776 ffs_dev_unlock(); 3777 } 3778 3779 /* Misc helper functions ****************************************************/ 3780 3781 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 3782 { 3783 return nonblock 3784 ? mutex_trylock(mutex) ? 0 : -EAGAIN 3785 : mutex_lock_interruptible(mutex); 3786 } 3787 3788 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 3789 { 3790 char *data; 3791 3792 if (!len) 3793 return NULL; 3794 3795 data = memdup_user(buf, len); 3796 if (IS_ERR(data)) 3797 return data; 3798 3799 pr_vdebug("Buffer from user space:\n"); 3800 ffs_dump_mem("", data, len); 3801 3802 return data; 3803 } 3804 3805 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); 3806 MODULE_LICENSE("GPL"); 3807 MODULE_AUTHOR("Michal Nazarewicz"); 3808