xref: /openbmc/linux/drivers/usb/gadget/function/f_fs.c (revision 92a2c6b2)
1 /*
2  * f_fs.c -- user mode file system API for USB composite function controllers
3  *
4  * Copyright (C) 2010 Samsung Electronics
5  * Author: Michal Nazarewicz <mina86@mina86.com>
6  *
7  * Based on inode.c (GadgetFS) which was:
8  * Copyright (C) 2003-2004 David Brownell
9  * Copyright (C) 2003 Agilent Technologies
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  */
16 
17 
18 /* #define DEBUG */
19 /* #define VERBOSE_DEBUG */
20 
21 #include <linux/blkdev.h>
22 #include <linux/pagemap.h>
23 #include <linux/export.h>
24 #include <linux/hid.h>
25 #include <linux/module.h>
26 #include <asm/unaligned.h>
27 
28 #include <linux/usb/composite.h>
29 #include <linux/usb/functionfs.h>
30 
31 #include <linux/aio.h>
32 #include <linux/mmu_context.h>
33 #include <linux/poll.h>
34 #include <linux/eventfd.h>
35 
36 #include "u_fs.h"
37 #include "u_f.h"
38 #include "u_os_desc.h"
39 #include "configfs.h"
40 
41 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
42 
43 /* Reference counter handling */
44 static void ffs_data_get(struct ffs_data *ffs);
45 static void ffs_data_put(struct ffs_data *ffs);
46 /* Creates new ffs_data object. */
47 static struct ffs_data *__must_check ffs_data_new(void) __attribute__((malloc));
48 
49 /* Opened counter handling. */
50 static void ffs_data_opened(struct ffs_data *ffs);
51 static void ffs_data_closed(struct ffs_data *ffs);
52 
53 /* Called with ffs->mutex held; take over ownership of data. */
54 static int __must_check
55 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
56 static int __must_check
57 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
58 
59 
60 /* The function structure ***************************************************/
61 
62 struct ffs_ep;
63 
64 struct ffs_function {
65 	struct usb_configuration	*conf;
66 	struct usb_gadget		*gadget;
67 	struct ffs_data			*ffs;
68 
69 	struct ffs_ep			*eps;
70 	u8				eps_revmap[16];
71 	short				*interfaces_nums;
72 
73 	struct usb_function		function;
74 };
75 
76 
77 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
78 {
79 	return container_of(f, struct ffs_function, function);
80 }
81 
82 
83 static inline enum ffs_setup_state
84 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
85 {
86 	return (enum ffs_setup_state)
87 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
88 }
89 
90 
91 static void ffs_func_eps_disable(struct ffs_function *func);
92 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
93 
94 static int ffs_func_bind(struct usb_configuration *,
95 			 struct usb_function *);
96 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
97 static void ffs_func_disable(struct usb_function *);
98 static int ffs_func_setup(struct usb_function *,
99 			  const struct usb_ctrlrequest *);
100 static void ffs_func_suspend(struct usb_function *);
101 static void ffs_func_resume(struct usb_function *);
102 
103 
104 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
105 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
106 
107 
108 /* The endpoints structures *************************************************/
109 
110 struct ffs_ep {
111 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
112 	struct usb_request		*req;	/* P: epfile->mutex */
113 
114 	/* [0]: full speed, [1]: high speed, [2]: super speed */
115 	struct usb_endpoint_descriptor	*descs[3];
116 
117 	u8				num;
118 
119 	int				status;	/* P: epfile->mutex */
120 };
121 
122 struct ffs_epfile {
123 	/* Protects ep->ep and ep->req. */
124 	struct mutex			mutex;
125 	wait_queue_head_t		wait;
126 
127 	struct ffs_data			*ffs;
128 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
129 
130 	struct dentry			*dentry;
131 
132 	char				name[5];
133 
134 	unsigned char			in;	/* P: ffs->eps_lock */
135 	unsigned char			isoc;	/* P: ffs->eps_lock */
136 
137 	unsigned char			_pad;
138 };
139 
140 /*  ffs_io_data structure ***************************************************/
141 
142 struct ffs_io_data {
143 	bool aio;
144 	bool read;
145 
146 	struct kiocb *kiocb;
147 	const struct iovec *iovec;
148 	unsigned long nr_segs;
149 	char __user *buf;
150 	size_t len;
151 
152 	struct mm_struct *mm;
153 	struct work_struct work;
154 
155 	struct usb_ep *ep;
156 	struct usb_request *req;
157 
158 	struct ffs_data *ffs;
159 };
160 
161 struct ffs_desc_helper {
162 	struct ffs_data *ffs;
163 	unsigned interfaces_count;
164 	unsigned eps_count;
165 };
166 
167 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
168 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
169 
170 static struct dentry *
171 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
172 		   const struct file_operations *fops);
173 
174 /* Devices management *******************************************************/
175 
176 DEFINE_MUTEX(ffs_lock);
177 EXPORT_SYMBOL_GPL(ffs_lock);
178 
179 static struct ffs_dev *_ffs_find_dev(const char *name);
180 static struct ffs_dev *_ffs_alloc_dev(void);
181 static int _ffs_name_dev(struct ffs_dev *dev, const char *name);
182 static void _ffs_free_dev(struct ffs_dev *dev);
183 static void *ffs_acquire_dev(const char *dev_name);
184 static void ffs_release_dev(struct ffs_data *ffs_data);
185 static int ffs_ready(struct ffs_data *ffs);
186 static void ffs_closed(struct ffs_data *ffs);
187 
188 /* Misc helper functions ****************************************************/
189 
190 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
191 	__attribute__((warn_unused_result, nonnull));
192 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
193 	__attribute__((warn_unused_result, nonnull));
194 
195 
196 /* Control file aka ep0 *****************************************************/
197 
198 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
199 {
200 	struct ffs_data *ffs = req->context;
201 
202 	complete_all(&ffs->ep0req_completion);
203 }
204 
205 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
206 {
207 	struct usb_request *req = ffs->ep0req;
208 	int ret;
209 
210 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
211 
212 	spin_unlock_irq(&ffs->ev.waitq.lock);
213 
214 	req->buf      = data;
215 	req->length   = len;
216 
217 	/*
218 	 * UDC layer requires to provide a buffer even for ZLP, but should
219 	 * not use it at all. Let's provide some poisoned pointer to catch
220 	 * possible bug in the driver.
221 	 */
222 	if (req->buf == NULL)
223 		req->buf = (void *)0xDEADBABE;
224 
225 	reinit_completion(&ffs->ep0req_completion);
226 
227 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
228 	if (unlikely(ret < 0))
229 		return ret;
230 
231 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
232 	if (unlikely(ret)) {
233 		usb_ep_dequeue(ffs->gadget->ep0, req);
234 		return -EINTR;
235 	}
236 
237 	ffs->setup_state = FFS_NO_SETUP;
238 	return req->status ? req->status : req->actual;
239 }
240 
241 static int __ffs_ep0_stall(struct ffs_data *ffs)
242 {
243 	if (ffs->ev.can_stall) {
244 		pr_vdebug("ep0 stall\n");
245 		usb_ep_set_halt(ffs->gadget->ep0);
246 		ffs->setup_state = FFS_NO_SETUP;
247 		return -EL2HLT;
248 	} else {
249 		pr_debug("bogus ep0 stall!\n");
250 		return -ESRCH;
251 	}
252 }
253 
254 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
255 			     size_t len, loff_t *ptr)
256 {
257 	struct ffs_data *ffs = file->private_data;
258 	ssize_t ret;
259 	char *data;
260 
261 	ENTER();
262 
263 	/* Fast check if setup was canceled */
264 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
265 		return -EIDRM;
266 
267 	/* Acquire mutex */
268 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
269 	if (unlikely(ret < 0))
270 		return ret;
271 
272 	/* Check state */
273 	switch (ffs->state) {
274 	case FFS_READ_DESCRIPTORS:
275 	case FFS_READ_STRINGS:
276 		/* Copy data */
277 		if (unlikely(len < 16)) {
278 			ret = -EINVAL;
279 			break;
280 		}
281 
282 		data = ffs_prepare_buffer(buf, len);
283 		if (IS_ERR(data)) {
284 			ret = PTR_ERR(data);
285 			break;
286 		}
287 
288 		/* Handle data */
289 		if (ffs->state == FFS_READ_DESCRIPTORS) {
290 			pr_info("read descriptors\n");
291 			ret = __ffs_data_got_descs(ffs, data, len);
292 			if (unlikely(ret < 0))
293 				break;
294 
295 			ffs->state = FFS_READ_STRINGS;
296 			ret = len;
297 		} else {
298 			pr_info("read strings\n");
299 			ret = __ffs_data_got_strings(ffs, data, len);
300 			if (unlikely(ret < 0))
301 				break;
302 
303 			ret = ffs_epfiles_create(ffs);
304 			if (unlikely(ret)) {
305 				ffs->state = FFS_CLOSING;
306 				break;
307 			}
308 
309 			ffs->state = FFS_ACTIVE;
310 			mutex_unlock(&ffs->mutex);
311 
312 			ret = ffs_ready(ffs);
313 			if (unlikely(ret < 0)) {
314 				ffs->state = FFS_CLOSING;
315 				return ret;
316 			}
317 
318 			set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
319 			return len;
320 		}
321 		break;
322 
323 	case FFS_ACTIVE:
324 		data = NULL;
325 		/*
326 		 * We're called from user space, we can use _irq
327 		 * rather then _irqsave
328 		 */
329 		spin_lock_irq(&ffs->ev.waitq.lock);
330 		switch (ffs_setup_state_clear_cancelled(ffs)) {
331 		case FFS_SETUP_CANCELLED:
332 			ret = -EIDRM;
333 			goto done_spin;
334 
335 		case FFS_NO_SETUP:
336 			ret = -ESRCH;
337 			goto done_spin;
338 
339 		case FFS_SETUP_PENDING:
340 			break;
341 		}
342 
343 		/* FFS_SETUP_PENDING */
344 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
345 			spin_unlock_irq(&ffs->ev.waitq.lock);
346 			ret = __ffs_ep0_stall(ffs);
347 			break;
348 		}
349 
350 		/* FFS_SETUP_PENDING and not stall */
351 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
352 
353 		spin_unlock_irq(&ffs->ev.waitq.lock);
354 
355 		data = ffs_prepare_buffer(buf, len);
356 		if (IS_ERR(data)) {
357 			ret = PTR_ERR(data);
358 			break;
359 		}
360 
361 		spin_lock_irq(&ffs->ev.waitq.lock);
362 
363 		/*
364 		 * We are guaranteed to be still in FFS_ACTIVE state
365 		 * but the state of setup could have changed from
366 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
367 		 * to check for that.  If that happened we copied data
368 		 * from user space in vain but it's unlikely.
369 		 *
370 		 * For sure we are not in FFS_NO_SETUP since this is
371 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
372 		 * transition can be performed and it's protected by
373 		 * mutex.
374 		 */
375 		if (ffs_setup_state_clear_cancelled(ffs) ==
376 		    FFS_SETUP_CANCELLED) {
377 			ret = -EIDRM;
378 done_spin:
379 			spin_unlock_irq(&ffs->ev.waitq.lock);
380 		} else {
381 			/* unlocks spinlock */
382 			ret = __ffs_ep0_queue_wait(ffs, data, len);
383 		}
384 		kfree(data);
385 		break;
386 
387 	default:
388 		ret = -EBADFD;
389 		break;
390 	}
391 
392 	mutex_unlock(&ffs->mutex);
393 	return ret;
394 }
395 
396 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
397 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
398 				     size_t n)
399 {
400 	/*
401 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
402 	 * size of ffs->ev.types array (which is four) so that's how much space
403 	 * we reserve.
404 	 */
405 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
406 	const size_t size = n * sizeof *events;
407 	unsigned i = 0;
408 
409 	memset(events, 0, size);
410 
411 	do {
412 		events[i].type = ffs->ev.types[i];
413 		if (events[i].type == FUNCTIONFS_SETUP) {
414 			events[i].u.setup = ffs->ev.setup;
415 			ffs->setup_state = FFS_SETUP_PENDING;
416 		}
417 	} while (++i < n);
418 
419 	ffs->ev.count -= n;
420 	if (ffs->ev.count)
421 		memmove(ffs->ev.types, ffs->ev.types + n,
422 			ffs->ev.count * sizeof *ffs->ev.types);
423 
424 	spin_unlock_irq(&ffs->ev.waitq.lock);
425 	mutex_unlock(&ffs->mutex);
426 
427 	return unlikely(__copy_to_user(buf, events, size)) ? -EFAULT : size;
428 }
429 
430 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
431 			    size_t len, loff_t *ptr)
432 {
433 	struct ffs_data *ffs = file->private_data;
434 	char *data = NULL;
435 	size_t n;
436 	int ret;
437 
438 	ENTER();
439 
440 	/* Fast check if setup was canceled */
441 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
442 		return -EIDRM;
443 
444 	/* Acquire mutex */
445 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
446 	if (unlikely(ret < 0))
447 		return ret;
448 
449 	/* Check state */
450 	if (ffs->state != FFS_ACTIVE) {
451 		ret = -EBADFD;
452 		goto done_mutex;
453 	}
454 
455 	/*
456 	 * We're called from user space, we can use _irq rather then
457 	 * _irqsave
458 	 */
459 	spin_lock_irq(&ffs->ev.waitq.lock);
460 
461 	switch (ffs_setup_state_clear_cancelled(ffs)) {
462 	case FFS_SETUP_CANCELLED:
463 		ret = -EIDRM;
464 		break;
465 
466 	case FFS_NO_SETUP:
467 		n = len / sizeof(struct usb_functionfs_event);
468 		if (unlikely(!n)) {
469 			ret = -EINVAL;
470 			break;
471 		}
472 
473 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
474 			ret = -EAGAIN;
475 			break;
476 		}
477 
478 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
479 							ffs->ev.count)) {
480 			ret = -EINTR;
481 			break;
482 		}
483 
484 		return __ffs_ep0_read_events(ffs, buf,
485 					     min(n, (size_t)ffs->ev.count));
486 
487 	case FFS_SETUP_PENDING:
488 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
489 			spin_unlock_irq(&ffs->ev.waitq.lock);
490 			ret = __ffs_ep0_stall(ffs);
491 			goto done_mutex;
492 		}
493 
494 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
495 
496 		spin_unlock_irq(&ffs->ev.waitq.lock);
497 
498 		if (likely(len)) {
499 			data = kmalloc(len, GFP_KERNEL);
500 			if (unlikely(!data)) {
501 				ret = -ENOMEM;
502 				goto done_mutex;
503 			}
504 		}
505 
506 		spin_lock_irq(&ffs->ev.waitq.lock);
507 
508 		/* See ffs_ep0_write() */
509 		if (ffs_setup_state_clear_cancelled(ffs) ==
510 		    FFS_SETUP_CANCELLED) {
511 			ret = -EIDRM;
512 			break;
513 		}
514 
515 		/* unlocks spinlock */
516 		ret = __ffs_ep0_queue_wait(ffs, data, len);
517 		if (likely(ret > 0) && unlikely(__copy_to_user(buf, data, len)))
518 			ret = -EFAULT;
519 		goto done_mutex;
520 
521 	default:
522 		ret = -EBADFD;
523 		break;
524 	}
525 
526 	spin_unlock_irq(&ffs->ev.waitq.lock);
527 done_mutex:
528 	mutex_unlock(&ffs->mutex);
529 	kfree(data);
530 	return ret;
531 }
532 
533 static int ffs_ep0_open(struct inode *inode, struct file *file)
534 {
535 	struct ffs_data *ffs = inode->i_private;
536 
537 	ENTER();
538 
539 	if (unlikely(ffs->state == FFS_CLOSING))
540 		return -EBUSY;
541 
542 	file->private_data = ffs;
543 	ffs_data_opened(ffs);
544 
545 	return 0;
546 }
547 
548 static int ffs_ep0_release(struct inode *inode, struct file *file)
549 {
550 	struct ffs_data *ffs = file->private_data;
551 
552 	ENTER();
553 
554 	ffs_data_closed(ffs);
555 
556 	return 0;
557 }
558 
559 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
560 {
561 	struct ffs_data *ffs = file->private_data;
562 	struct usb_gadget *gadget = ffs->gadget;
563 	long ret;
564 
565 	ENTER();
566 
567 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
568 		struct ffs_function *func = ffs->func;
569 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
570 	} else if (gadget && gadget->ops->ioctl) {
571 		ret = gadget->ops->ioctl(gadget, code, value);
572 	} else {
573 		ret = -ENOTTY;
574 	}
575 
576 	return ret;
577 }
578 
579 static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait)
580 {
581 	struct ffs_data *ffs = file->private_data;
582 	unsigned int mask = POLLWRNORM;
583 	int ret;
584 
585 	poll_wait(file, &ffs->ev.waitq, wait);
586 
587 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
588 	if (unlikely(ret < 0))
589 		return mask;
590 
591 	switch (ffs->state) {
592 	case FFS_READ_DESCRIPTORS:
593 	case FFS_READ_STRINGS:
594 		mask |= POLLOUT;
595 		break;
596 
597 	case FFS_ACTIVE:
598 		switch (ffs->setup_state) {
599 		case FFS_NO_SETUP:
600 			if (ffs->ev.count)
601 				mask |= POLLIN;
602 			break;
603 
604 		case FFS_SETUP_PENDING:
605 		case FFS_SETUP_CANCELLED:
606 			mask |= (POLLIN | POLLOUT);
607 			break;
608 		}
609 	case FFS_CLOSING:
610 		break;
611 	case FFS_DEACTIVATED:
612 		break;
613 	}
614 
615 	mutex_unlock(&ffs->mutex);
616 
617 	return mask;
618 }
619 
620 static const struct file_operations ffs_ep0_operations = {
621 	.llseek =	no_llseek,
622 
623 	.open =		ffs_ep0_open,
624 	.write =	ffs_ep0_write,
625 	.read =		ffs_ep0_read,
626 	.release =	ffs_ep0_release,
627 	.unlocked_ioctl =	ffs_ep0_ioctl,
628 	.poll =		ffs_ep0_poll,
629 };
630 
631 
632 /* "Normal" endpoints operations ********************************************/
633 
634 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
635 {
636 	ENTER();
637 	if (likely(req->context)) {
638 		struct ffs_ep *ep = _ep->driver_data;
639 		ep->status = req->status ? req->status : req->actual;
640 		complete(req->context);
641 	}
642 }
643 
644 static void ffs_user_copy_worker(struct work_struct *work)
645 {
646 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
647 						   work);
648 	int ret = io_data->req->status ? io_data->req->status :
649 					 io_data->req->actual;
650 
651 	if (io_data->read && ret > 0) {
652 		int i;
653 		size_t pos = 0;
654 
655 		/*
656 		 * Since req->length may be bigger than io_data->len (after
657 		 * being rounded up to maxpacketsize), we may end up with more
658 		 * data then user space has space for.
659 		 */
660 		ret = min_t(int, ret, io_data->len);
661 
662 		use_mm(io_data->mm);
663 		for (i = 0; i < io_data->nr_segs; i++) {
664 			size_t len = min_t(size_t, ret - pos,
665 					io_data->iovec[i].iov_len);
666 			if (!len)
667 				break;
668 			if (unlikely(copy_to_user(io_data->iovec[i].iov_base,
669 						 &io_data->buf[pos], len))) {
670 				ret = -EFAULT;
671 				break;
672 			}
673 			pos += len;
674 		}
675 		unuse_mm(io_data->mm);
676 	}
677 
678 	aio_complete(io_data->kiocb, ret, ret);
679 
680 	if (io_data->ffs->ffs_eventfd && !io_data->kiocb->ki_eventfd)
681 		eventfd_signal(io_data->ffs->ffs_eventfd, 1);
682 
683 	usb_ep_free_request(io_data->ep, io_data->req);
684 
685 	io_data->kiocb->private = NULL;
686 	if (io_data->read)
687 		kfree(io_data->iovec);
688 	kfree(io_data->buf);
689 	kfree(io_data);
690 }
691 
692 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
693 					 struct usb_request *req)
694 {
695 	struct ffs_io_data *io_data = req->context;
696 
697 	ENTER();
698 
699 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
700 	schedule_work(&io_data->work);
701 }
702 
703 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
704 {
705 	struct ffs_epfile *epfile = file->private_data;
706 	struct ffs_ep *ep;
707 	char *data = NULL;
708 	ssize_t ret, data_len = -EINVAL;
709 	int halt;
710 
711 	/* Are we still active? */
712 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) {
713 		ret = -ENODEV;
714 		goto error;
715 	}
716 
717 	/* Wait for endpoint to be enabled */
718 	ep = epfile->ep;
719 	if (!ep) {
720 		if (file->f_flags & O_NONBLOCK) {
721 			ret = -EAGAIN;
722 			goto error;
723 		}
724 
725 		ret = wait_event_interruptible(epfile->wait, (ep = epfile->ep));
726 		if (ret) {
727 			ret = -EINTR;
728 			goto error;
729 		}
730 	}
731 
732 	/* Do we halt? */
733 	halt = (!io_data->read == !epfile->in);
734 	if (halt && epfile->isoc) {
735 		ret = -EINVAL;
736 		goto error;
737 	}
738 
739 	/* Allocate & copy */
740 	if (!halt) {
741 		/*
742 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
743 		 * before the waiting completes, so do not assign to 'gadget' earlier
744 		 */
745 		struct usb_gadget *gadget = epfile->ffs->gadget;
746 
747 		spin_lock_irq(&epfile->ffs->eps_lock);
748 		/* In the meantime, endpoint got disabled or changed. */
749 		if (epfile->ep != ep) {
750 			spin_unlock_irq(&epfile->ffs->eps_lock);
751 			return -ESHUTDOWN;
752 		}
753 		/*
754 		 * Controller may require buffer size to be aligned to
755 		 * maxpacketsize of an out endpoint.
756 		 */
757 		data_len = io_data->read ?
758 			   usb_ep_align_maybe(gadget, ep->ep, io_data->len) :
759 			   io_data->len;
760 		spin_unlock_irq(&epfile->ffs->eps_lock);
761 
762 		data = kmalloc(data_len, GFP_KERNEL);
763 		if (unlikely(!data))
764 			return -ENOMEM;
765 		if (io_data->aio && !io_data->read) {
766 			int i;
767 			size_t pos = 0;
768 			for (i = 0; i < io_data->nr_segs; i++) {
769 				if (unlikely(copy_from_user(&data[pos],
770 					     io_data->iovec[i].iov_base,
771 					     io_data->iovec[i].iov_len))) {
772 					ret = -EFAULT;
773 					goto error;
774 				}
775 				pos += io_data->iovec[i].iov_len;
776 			}
777 		} else {
778 			if (!io_data->read &&
779 			    unlikely(__copy_from_user(data, io_data->buf,
780 						      io_data->len))) {
781 				ret = -EFAULT;
782 				goto error;
783 			}
784 		}
785 	}
786 
787 	/* We will be using request */
788 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
789 	if (unlikely(ret))
790 		goto error;
791 
792 	spin_lock_irq(&epfile->ffs->eps_lock);
793 
794 	if (epfile->ep != ep) {
795 		/* In the meantime, endpoint got disabled or changed. */
796 		ret = -ESHUTDOWN;
797 		spin_unlock_irq(&epfile->ffs->eps_lock);
798 	} else if (halt) {
799 		/* Halt */
800 		if (likely(epfile->ep == ep) && !WARN_ON(!ep->ep))
801 			usb_ep_set_halt(ep->ep);
802 		spin_unlock_irq(&epfile->ffs->eps_lock);
803 		ret = -EBADMSG;
804 	} else {
805 		/* Fire the request */
806 		struct usb_request *req;
807 
808 		/*
809 		 * Sanity Check: even though data_len can't be used
810 		 * uninitialized at the time I write this comment, some
811 		 * compilers complain about this situation.
812 		 * In order to keep the code clean from warnings, data_len is
813 		 * being initialized to -EINVAL during its declaration, which
814 		 * means we can't rely on compiler anymore to warn no future
815 		 * changes won't result in data_len being used uninitialized.
816 		 * For such reason, we're adding this redundant sanity check
817 		 * here.
818 		 */
819 		if (unlikely(data_len == -EINVAL)) {
820 			WARN(1, "%s: data_len == -EINVAL\n", __func__);
821 			ret = -EINVAL;
822 			goto error_lock;
823 		}
824 
825 		if (io_data->aio) {
826 			req = usb_ep_alloc_request(ep->ep, GFP_KERNEL);
827 			if (unlikely(!req))
828 				goto error_lock;
829 
830 			req->buf      = data;
831 			req->length   = data_len;
832 
833 			io_data->buf = data;
834 			io_data->ep = ep->ep;
835 			io_data->req = req;
836 			io_data->ffs = epfile->ffs;
837 
838 			req->context  = io_data;
839 			req->complete = ffs_epfile_async_io_complete;
840 
841 			ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
842 			if (unlikely(ret)) {
843 				usb_ep_free_request(ep->ep, req);
844 				goto error_lock;
845 			}
846 			ret = -EIOCBQUEUED;
847 
848 			spin_unlock_irq(&epfile->ffs->eps_lock);
849 		} else {
850 			DECLARE_COMPLETION_ONSTACK(done);
851 
852 			req = ep->req;
853 			req->buf      = data;
854 			req->length   = data_len;
855 
856 			req->context  = &done;
857 			req->complete = ffs_epfile_io_complete;
858 
859 			ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
860 
861 			spin_unlock_irq(&epfile->ffs->eps_lock);
862 
863 			if (unlikely(ret < 0)) {
864 				/* nop */
865 			} else if (unlikely(
866 				   wait_for_completion_interruptible(&done))) {
867 				ret = -EINTR;
868 				usb_ep_dequeue(ep->ep, req);
869 			} else {
870 				/*
871 				 * XXX We may end up silently droping data
872 				 * here.  Since data_len (i.e. req->length) may
873 				 * be bigger than len (after being rounded up
874 				 * to maxpacketsize), we may end up with more
875 				 * data then user space has space for.
876 				 */
877 				ret = ep->status;
878 				if (io_data->read && ret > 0) {
879 					ret = min_t(size_t, ret, io_data->len);
880 
881 					if (unlikely(copy_to_user(io_data->buf,
882 						data, ret)))
883 						ret = -EFAULT;
884 				}
885 			}
886 			kfree(data);
887 		}
888 	}
889 
890 	mutex_unlock(&epfile->mutex);
891 	return ret;
892 
893 error_lock:
894 	spin_unlock_irq(&epfile->ffs->eps_lock);
895 	mutex_unlock(&epfile->mutex);
896 error:
897 	kfree(data);
898 	return ret;
899 }
900 
901 static ssize_t
902 ffs_epfile_write(struct file *file, const char __user *buf, size_t len,
903 		 loff_t *ptr)
904 {
905 	struct ffs_io_data io_data;
906 
907 	ENTER();
908 
909 	io_data.aio = false;
910 	io_data.read = false;
911 	io_data.buf = (char * __user)buf;
912 	io_data.len = len;
913 
914 	return ffs_epfile_io(file, &io_data);
915 }
916 
917 static ssize_t
918 ffs_epfile_read(struct file *file, char __user *buf, size_t len, loff_t *ptr)
919 {
920 	struct ffs_io_data io_data;
921 
922 	ENTER();
923 
924 	io_data.aio = false;
925 	io_data.read = true;
926 	io_data.buf = buf;
927 	io_data.len = len;
928 
929 	return ffs_epfile_io(file, &io_data);
930 }
931 
932 static int
933 ffs_epfile_open(struct inode *inode, struct file *file)
934 {
935 	struct ffs_epfile *epfile = inode->i_private;
936 
937 	ENTER();
938 
939 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
940 		return -ENODEV;
941 
942 	file->private_data = epfile;
943 	ffs_data_opened(epfile->ffs);
944 
945 	return 0;
946 }
947 
948 static int ffs_aio_cancel(struct kiocb *kiocb)
949 {
950 	struct ffs_io_data *io_data = kiocb->private;
951 	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
952 	int value;
953 
954 	ENTER();
955 
956 	spin_lock_irq(&epfile->ffs->eps_lock);
957 
958 	if (likely(io_data && io_data->ep && io_data->req))
959 		value = usb_ep_dequeue(io_data->ep, io_data->req);
960 	else
961 		value = -EINVAL;
962 
963 	spin_unlock_irq(&epfile->ffs->eps_lock);
964 
965 	return value;
966 }
967 
968 static ssize_t ffs_epfile_aio_write(struct kiocb *kiocb,
969 				    const struct iovec *iovec,
970 				    unsigned long nr_segs, loff_t loff)
971 {
972 	struct ffs_io_data *io_data;
973 
974 	ENTER();
975 
976 	io_data = kmalloc(sizeof(*io_data), GFP_KERNEL);
977 	if (unlikely(!io_data))
978 		return -ENOMEM;
979 
980 	io_data->aio = true;
981 	io_data->read = false;
982 	io_data->kiocb = kiocb;
983 	io_data->iovec = iovec;
984 	io_data->nr_segs = nr_segs;
985 	io_data->len = kiocb->ki_nbytes;
986 	io_data->mm = current->mm;
987 
988 	kiocb->private = io_data;
989 
990 	kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
991 
992 	return ffs_epfile_io(kiocb->ki_filp, io_data);
993 }
994 
995 static ssize_t ffs_epfile_aio_read(struct kiocb *kiocb,
996 				   const struct iovec *iovec,
997 				   unsigned long nr_segs, loff_t loff)
998 {
999 	struct ffs_io_data *io_data;
1000 	struct iovec *iovec_copy;
1001 
1002 	ENTER();
1003 
1004 	iovec_copy = kmalloc_array(nr_segs, sizeof(*iovec_copy), GFP_KERNEL);
1005 	if (unlikely(!iovec_copy))
1006 		return -ENOMEM;
1007 
1008 	memcpy(iovec_copy, iovec, sizeof(struct iovec)*nr_segs);
1009 
1010 	io_data = kmalloc(sizeof(*io_data), GFP_KERNEL);
1011 	if (unlikely(!io_data)) {
1012 		kfree(iovec_copy);
1013 		return -ENOMEM;
1014 	}
1015 
1016 	io_data->aio = true;
1017 	io_data->read = true;
1018 	io_data->kiocb = kiocb;
1019 	io_data->iovec = iovec_copy;
1020 	io_data->nr_segs = nr_segs;
1021 	io_data->len = kiocb->ki_nbytes;
1022 	io_data->mm = current->mm;
1023 
1024 	kiocb->private = io_data;
1025 
1026 	kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1027 
1028 	return ffs_epfile_io(kiocb->ki_filp, io_data);
1029 }
1030 
1031 static int
1032 ffs_epfile_release(struct inode *inode, struct file *file)
1033 {
1034 	struct ffs_epfile *epfile = inode->i_private;
1035 
1036 	ENTER();
1037 
1038 	ffs_data_closed(epfile->ffs);
1039 
1040 	return 0;
1041 }
1042 
1043 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1044 			     unsigned long value)
1045 {
1046 	struct ffs_epfile *epfile = file->private_data;
1047 	int ret;
1048 
1049 	ENTER();
1050 
1051 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1052 		return -ENODEV;
1053 
1054 	spin_lock_irq(&epfile->ffs->eps_lock);
1055 	if (likely(epfile->ep)) {
1056 		switch (code) {
1057 		case FUNCTIONFS_FIFO_STATUS:
1058 			ret = usb_ep_fifo_status(epfile->ep->ep);
1059 			break;
1060 		case FUNCTIONFS_FIFO_FLUSH:
1061 			usb_ep_fifo_flush(epfile->ep->ep);
1062 			ret = 0;
1063 			break;
1064 		case FUNCTIONFS_CLEAR_HALT:
1065 			ret = usb_ep_clear_halt(epfile->ep->ep);
1066 			break;
1067 		case FUNCTIONFS_ENDPOINT_REVMAP:
1068 			ret = epfile->ep->num;
1069 			break;
1070 		case FUNCTIONFS_ENDPOINT_DESC:
1071 		{
1072 			int desc_idx;
1073 			struct usb_endpoint_descriptor *desc;
1074 
1075 			switch (epfile->ffs->gadget->speed) {
1076 			case USB_SPEED_SUPER:
1077 				desc_idx = 2;
1078 				break;
1079 			case USB_SPEED_HIGH:
1080 				desc_idx = 1;
1081 				break;
1082 			default:
1083 				desc_idx = 0;
1084 			}
1085 			desc = epfile->ep->descs[desc_idx];
1086 
1087 			spin_unlock_irq(&epfile->ffs->eps_lock);
1088 			ret = copy_to_user((void *)value, desc, sizeof(*desc));
1089 			if (ret)
1090 				ret = -EFAULT;
1091 			return ret;
1092 		}
1093 		default:
1094 			ret = -ENOTTY;
1095 		}
1096 	} else {
1097 		ret = -ENODEV;
1098 	}
1099 	spin_unlock_irq(&epfile->ffs->eps_lock);
1100 
1101 	return ret;
1102 }
1103 
1104 static const struct file_operations ffs_epfile_operations = {
1105 	.llseek =	no_llseek,
1106 
1107 	.open =		ffs_epfile_open,
1108 	.write =	ffs_epfile_write,
1109 	.read =		ffs_epfile_read,
1110 	.aio_write =	ffs_epfile_aio_write,
1111 	.aio_read =	ffs_epfile_aio_read,
1112 	.release =	ffs_epfile_release,
1113 	.unlocked_ioctl =	ffs_epfile_ioctl,
1114 };
1115 
1116 
1117 /* File system and super block operations ***********************************/
1118 
1119 /*
1120  * Mounting the file system creates a controller file, used first for
1121  * function configuration then later for event monitoring.
1122  */
1123 
1124 static struct inode *__must_check
1125 ffs_sb_make_inode(struct super_block *sb, void *data,
1126 		  const struct file_operations *fops,
1127 		  const struct inode_operations *iops,
1128 		  struct ffs_file_perms *perms)
1129 {
1130 	struct inode *inode;
1131 
1132 	ENTER();
1133 
1134 	inode = new_inode(sb);
1135 
1136 	if (likely(inode)) {
1137 		struct timespec current_time = CURRENT_TIME;
1138 
1139 		inode->i_ino	 = get_next_ino();
1140 		inode->i_mode    = perms->mode;
1141 		inode->i_uid     = perms->uid;
1142 		inode->i_gid     = perms->gid;
1143 		inode->i_atime   = current_time;
1144 		inode->i_mtime   = current_time;
1145 		inode->i_ctime   = current_time;
1146 		inode->i_private = data;
1147 		if (fops)
1148 			inode->i_fop = fops;
1149 		if (iops)
1150 			inode->i_op  = iops;
1151 	}
1152 
1153 	return inode;
1154 }
1155 
1156 /* Create "regular" file */
1157 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1158 					const char *name, void *data,
1159 					const struct file_operations *fops)
1160 {
1161 	struct ffs_data	*ffs = sb->s_fs_info;
1162 	struct dentry	*dentry;
1163 	struct inode	*inode;
1164 
1165 	ENTER();
1166 
1167 	dentry = d_alloc_name(sb->s_root, name);
1168 	if (unlikely(!dentry))
1169 		return NULL;
1170 
1171 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1172 	if (unlikely(!inode)) {
1173 		dput(dentry);
1174 		return NULL;
1175 	}
1176 
1177 	d_add(dentry, inode);
1178 	return dentry;
1179 }
1180 
1181 /* Super block */
1182 static const struct super_operations ffs_sb_operations = {
1183 	.statfs =	simple_statfs,
1184 	.drop_inode =	generic_delete_inode,
1185 };
1186 
1187 struct ffs_sb_fill_data {
1188 	struct ffs_file_perms perms;
1189 	umode_t root_mode;
1190 	const char *dev_name;
1191 	bool no_disconnect;
1192 	struct ffs_data *ffs_data;
1193 };
1194 
1195 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1196 {
1197 	struct ffs_sb_fill_data *data = _data;
1198 	struct inode	*inode;
1199 	struct ffs_data	*ffs = data->ffs_data;
1200 
1201 	ENTER();
1202 
1203 	ffs->sb              = sb;
1204 	data->ffs_data       = NULL;
1205 	sb->s_fs_info        = ffs;
1206 	sb->s_blocksize      = PAGE_CACHE_SIZE;
1207 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1208 	sb->s_magic          = FUNCTIONFS_MAGIC;
1209 	sb->s_op             = &ffs_sb_operations;
1210 	sb->s_time_gran      = 1;
1211 
1212 	/* Root inode */
1213 	data->perms.mode = data->root_mode;
1214 	inode = ffs_sb_make_inode(sb, NULL,
1215 				  &simple_dir_operations,
1216 				  &simple_dir_inode_operations,
1217 				  &data->perms);
1218 	sb->s_root = d_make_root(inode);
1219 	if (unlikely(!sb->s_root))
1220 		return -ENOMEM;
1221 
1222 	/* EP0 file */
1223 	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1224 					 &ffs_ep0_operations)))
1225 		return -ENOMEM;
1226 
1227 	return 0;
1228 }
1229 
1230 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1231 {
1232 	ENTER();
1233 
1234 	if (!opts || !*opts)
1235 		return 0;
1236 
1237 	for (;;) {
1238 		unsigned long value;
1239 		char *eq, *comma;
1240 
1241 		/* Option limit */
1242 		comma = strchr(opts, ',');
1243 		if (comma)
1244 			*comma = 0;
1245 
1246 		/* Value limit */
1247 		eq = strchr(opts, '=');
1248 		if (unlikely(!eq)) {
1249 			pr_err("'=' missing in %s\n", opts);
1250 			return -EINVAL;
1251 		}
1252 		*eq = 0;
1253 
1254 		/* Parse value */
1255 		if (kstrtoul(eq + 1, 0, &value)) {
1256 			pr_err("%s: invalid value: %s\n", opts, eq + 1);
1257 			return -EINVAL;
1258 		}
1259 
1260 		/* Interpret option */
1261 		switch (eq - opts) {
1262 		case 13:
1263 			if (!memcmp(opts, "no_disconnect", 13))
1264 				data->no_disconnect = !!value;
1265 			else
1266 				goto invalid;
1267 			break;
1268 		case 5:
1269 			if (!memcmp(opts, "rmode", 5))
1270 				data->root_mode  = (value & 0555) | S_IFDIR;
1271 			else if (!memcmp(opts, "fmode", 5))
1272 				data->perms.mode = (value & 0666) | S_IFREG;
1273 			else
1274 				goto invalid;
1275 			break;
1276 
1277 		case 4:
1278 			if (!memcmp(opts, "mode", 4)) {
1279 				data->root_mode  = (value & 0555) | S_IFDIR;
1280 				data->perms.mode = (value & 0666) | S_IFREG;
1281 			} else {
1282 				goto invalid;
1283 			}
1284 			break;
1285 
1286 		case 3:
1287 			if (!memcmp(opts, "uid", 3)) {
1288 				data->perms.uid = make_kuid(current_user_ns(), value);
1289 				if (!uid_valid(data->perms.uid)) {
1290 					pr_err("%s: unmapped value: %lu\n", opts, value);
1291 					return -EINVAL;
1292 				}
1293 			} else if (!memcmp(opts, "gid", 3)) {
1294 				data->perms.gid = make_kgid(current_user_ns(), value);
1295 				if (!gid_valid(data->perms.gid)) {
1296 					pr_err("%s: unmapped value: %lu\n", opts, value);
1297 					return -EINVAL;
1298 				}
1299 			} else {
1300 				goto invalid;
1301 			}
1302 			break;
1303 
1304 		default:
1305 invalid:
1306 			pr_err("%s: invalid option\n", opts);
1307 			return -EINVAL;
1308 		}
1309 
1310 		/* Next iteration */
1311 		if (!comma)
1312 			break;
1313 		opts = comma + 1;
1314 	}
1315 
1316 	return 0;
1317 }
1318 
1319 /* "mount -t functionfs dev_name /dev/function" ends up here */
1320 
1321 static struct dentry *
1322 ffs_fs_mount(struct file_system_type *t, int flags,
1323 	      const char *dev_name, void *opts)
1324 {
1325 	struct ffs_sb_fill_data data = {
1326 		.perms = {
1327 			.mode = S_IFREG | 0600,
1328 			.uid = GLOBAL_ROOT_UID,
1329 			.gid = GLOBAL_ROOT_GID,
1330 		},
1331 		.root_mode = S_IFDIR | 0500,
1332 		.no_disconnect = false,
1333 	};
1334 	struct dentry *rv;
1335 	int ret;
1336 	void *ffs_dev;
1337 	struct ffs_data	*ffs;
1338 
1339 	ENTER();
1340 
1341 	ret = ffs_fs_parse_opts(&data, opts);
1342 	if (unlikely(ret < 0))
1343 		return ERR_PTR(ret);
1344 
1345 	ffs = ffs_data_new();
1346 	if (unlikely(!ffs))
1347 		return ERR_PTR(-ENOMEM);
1348 	ffs->file_perms = data.perms;
1349 	ffs->no_disconnect = data.no_disconnect;
1350 
1351 	ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1352 	if (unlikely(!ffs->dev_name)) {
1353 		ffs_data_put(ffs);
1354 		return ERR_PTR(-ENOMEM);
1355 	}
1356 
1357 	ffs_dev = ffs_acquire_dev(dev_name);
1358 	if (IS_ERR(ffs_dev)) {
1359 		ffs_data_put(ffs);
1360 		return ERR_CAST(ffs_dev);
1361 	}
1362 	ffs->private_data = ffs_dev;
1363 	data.ffs_data = ffs;
1364 
1365 	rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1366 	if (IS_ERR(rv) && data.ffs_data) {
1367 		ffs_release_dev(data.ffs_data);
1368 		ffs_data_put(data.ffs_data);
1369 	}
1370 	return rv;
1371 }
1372 
1373 static void
1374 ffs_fs_kill_sb(struct super_block *sb)
1375 {
1376 	ENTER();
1377 
1378 	kill_litter_super(sb);
1379 	if (sb->s_fs_info) {
1380 		ffs_release_dev(sb->s_fs_info);
1381 		ffs_data_closed(sb->s_fs_info);
1382 		ffs_data_put(sb->s_fs_info);
1383 	}
1384 }
1385 
1386 static struct file_system_type ffs_fs_type = {
1387 	.owner		= THIS_MODULE,
1388 	.name		= "functionfs",
1389 	.mount		= ffs_fs_mount,
1390 	.kill_sb	= ffs_fs_kill_sb,
1391 };
1392 MODULE_ALIAS_FS("functionfs");
1393 
1394 
1395 /* Driver's main init/cleanup functions *************************************/
1396 
1397 static int functionfs_init(void)
1398 {
1399 	int ret;
1400 
1401 	ENTER();
1402 
1403 	ret = register_filesystem(&ffs_fs_type);
1404 	if (likely(!ret))
1405 		pr_info("file system registered\n");
1406 	else
1407 		pr_err("failed registering file system (%d)\n", ret);
1408 
1409 	return ret;
1410 }
1411 
1412 static void functionfs_cleanup(void)
1413 {
1414 	ENTER();
1415 
1416 	pr_info("unloading\n");
1417 	unregister_filesystem(&ffs_fs_type);
1418 }
1419 
1420 
1421 /* ffs_data and ffs_function construction and destruction code **************/
1422 
1423 static void ffs_data_clear(struct ffs_data *ffs);
1424 static void ffs_data_reset(struct ffs_data *ffs);
1425 
1426 static void ffs_data_get(struct ffs_data *ffs)
1427 {
1428 	ENTER();
1429 
1430 	atomic_inc(&ffs->ref);
1431 }
1432 
1433 static void ffs_data_opened(struct ffs_data *ffs)
1434 {
1435 	ENTER();
1436 
1437 	atomic_inc(&ffs->ref);
1438 	if (atomic_add_return(1, &ffs->opened) == 1 &&
1439 			ffs->state == FFS_DEACTIVATED) {
1440 		ffs->state = FFS_CLOSING;
1441 		ffs_data_reset(ffs);
1442 	}
1443 }
1444 
1445 static void ffs_data_put(struct ffs_data *ffs)
1446 {
1447 	ENTER();
1448 
1449 	if (unlikely(atomic_dec_and_test(&ffs->ref))) {
1450 		pr_info("%s(): freeing\n", __func__);
1451 		ffs_data_clear(ffs);
1452 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1453 		       waitqueue_active(&ffs->ep0req_completion.wait));
1454 		kfree(ffs->dev_name);
1455 		kfree(ffs);
1456 	}
1457 }
1458 
1459 static void ffs_data_closed(struct ffs_data *ffs)
1460 {
1461 	ENTER();
1462 
1463 	if (atomic_dec_and_test(&ffs->opened)) {
1464 		if (ffs->no_disconnect) {
1465 			ffs->state = FFS_DEACTIVATED;
1466 			if (ffs->epfiles) {
1467 				ffs_epfiles_destroy(ffs->epfiles,
1468 						   ffs->eps_count);
1469 				ffs->epfiles = NULL;
1470 			}
1471 			if (ffs->setup_state == FFS_SETUP_PENDING)
1472 				__ffs_ep0_stall(ffs);
1473 		} else {
1474 			ffs->state = FFS_CLOSING;
1475 			ffs_data_reset(ffs);
1476 		}
1477 	}
1478 	if (atomic_read(&ffs->opened) < 0) {
1479 		ffs->state = FFS_CLOSING;
1480 		ffs_data_reset(ffs);
1481 	}
1482 
1483 	ffs_data_put(ffs);
1484 }
1485 
1486 static struct ffs_data *ffs_data_new(void)
1487 {
1488 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1489 	if (unlikely(!ffs))
1490 		return NULL;
1491 
1492 	ENTER();
1493 
1494 	atomic_set(&ffs->ref, 1);
1495 	atomic_set(&ffs->opened, 0);
1496 	ffs->state = FFS_READ_DESCRIPTORS;
1497 	mutex_init(&ffs->mutex);
1498 	spin_lock_init(&ffs->eps_lock);
1499 	init_waitqueue_head(&ffs->ev.waitq);
1500 	init_completion(&ffs->ep0req_completion);
1501 
1502 	/* XXX REVISIT need to update it in some places, or do we? */
1503 	ffs->ev.can_stall = 1;
1504 
1505 	return ffs;
1506 }
1507 
1508 static void ffs_data_clear(struct ffs_data *ffs)
1509 {
1510 	ENTER();
1511 
1512 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags))
1513 		ffs_closed(ffs);
1514 
1515 	BUG_ON(ffs->gadget);
1516 
1517 	if (ffs->epfiles)
1518 		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1519 
1520 	if (ffs->ffs_eventfd)
1521 		eventfd_ctx_put(ffs->ffs_eventfd);
1522 
1523 	kfree(ffs->raw_descs_data);
1524 	kfree(ffs->raw_strings);
1525 	kfree(ffs->stringtabs);
1526 }
1527 
1528 static void ffs_data_reset(struct ffs_data *ffs)
1529 {
1530 	ENTER();
1531 
1532 	ffs_data_clear(ffs);
1533 
1534 	ffs->epfiles = NULL;
1535 	ffs->raw_descs_data = NULL;
1536 	ffs->raw_descs = NULL;
1537 	ffs->raw_strings = NULL;
1538 	ffs->stringtabs = NULL;
1539 
1540 	ffs->raw_descs_length = 0;
1541 	ffs->fs_descs_count = 0;
1542 	ffs->hs_descs_count = 0;
1543 	ffs->ss_descs_count = 0;
1544 
1545 	ffs->strings_count = 0;
1546 	ffs->interfaces_count = 0;
1547 	ffs->eps_count = 0;
1548 
1549 	ffs->ev.count = 0;
1550 
1551 	ffs->state = FFS_READ_DESCRIPTORS;
1552 	ffs->setup_state = FFS_NO_SETUP;
1553 	ffs->flags = 0;
1554 }
1555 
1556 
1557 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1558 {
1559 	struct usb_gadget_strings **lang;
1560 	int first_id;
1561 
1562 	ENTER();
1563 
1564 	if (WARN_ON(ffs->state != FFS_ACTIVE
1565 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1566 		return -EBADFD;
1567 
1568 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1569 	if (unlikely(first_id < 0))
1570 		return first_id;
1571 
1572 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1573 	if (unlikely(!ffs->ep0req))
1574 		return -ENOMEM;
1575 	ffs->ep0req->complete = ffs_ep0_complete;
1576 	ffs->ep0req->context = ffs;
1577 
1578 	lang = ffs->stringtabs;
1579 	if (lang) {
1580 		for (; *lang; ++lang) {
1581 			struct usb_string *str = (*lang)->strings;
1582 			int id = first_id;
1583 			for (; str->s; ++id, ++str)
1584 				str->id = id;
1585 		}
1586 	}
1587 
1588 	ffs->gadget = cdev->gadget;
1589 	ffs_data_get(ffs);
1590 	return 0;
1591 }
1592 
1593 static void functionfs_unbind(struct ffs_data *ffs)
1594 {
1595 	ENTER();
1596 
1597 	if (!WARN_ON(!ffs->gadget)) {
1598 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1599 		ffs->ep0req = NULL;
1600 		ffs->gadget = NULL;
1601 		clear_bit(FFS_FL_BOUND, &ffs->flags);
1602 		ffs_data_put(ffs);
1603 	}
1604 }
1605 
1606 static int ffs_epfiles_create(struct ffs_data *ffs)
1607 {
1608 	struct ffs_epfile *epfile, *epfiles;
1609 	unsigned i, count;
1610 
1611 	ENTER();
1612 
1613 	count = ffs->eps_count;
1614 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1615 	if (!epfiles)
1616 		return -ENOMEM;
1617 
1618 	epfile = epfiles;
1619 	for (i = 1; i <= count; ++i, ++epfile) {
1620 		epfile->ffs = ffs;
1621 		mutex_init(&epfile->mutex);
1622 		init_waitqueue_head(&epfile->wait);
1623 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1624 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1625 		else
1626 			sprintf(epfile->name, "ep%u", i);
1627 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1628 						 epfile,
1629 						 &ffs_epfile_operations);
1630 		if (unlikely(!epfile->dentry)) {
1631 			ffs_epfiles_destroy(epfiles, i - 1);
1632 			return -ENOMEM;
1633 		}
1634 	}
1635 
1636 	ffs->epfiles = epfiles;
1637 	return 0;
1638 }
1639 
1640 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1641 {
1642 	struct ffs_epfile *epfile = epfiles;
1643 
1644 	ENTER();
1645 
1646 	for (; count; --count, ++epfile) {
1647 		BUG_ON(mutex_is_locked(&epfile->mutex) ||
1648 		       waitqueue_active(&epfile->wait));
1649 		if (epfile->dentry) {
1650 			d_delete(epfile->dentry);
1651 			dput(epfile->dentry);
1652 			epfile->dentry = NULL;
1653 		}
1654 	}
1655 
1656 	kfree(epfiles);
1657 }
1658 
1659 static void ffs_func_eps_disable(struct ffs_function *func)
1660 {
1661 	struct ffs_ep *ep         = func->eps;
1662 	struct ffs_epfile *epfile = func->ffs->epfiles;
1663 	unsigned count            = func->ffs->eps_count;
1664 	unsigned long flags;
1665 
1666 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1667 	do {
1668 		/* pending requests get nuked */
1669 		if (likely(ep->ep))
1670 			usb_ep_disable(ep->ep);
1671 		++ep;
1672 
1673 		if (epfile) {
1674 			epfile->ep = NULL;
1675 			++epfile;
1676 		}
1677 	} while (--count);
1678 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1679 }
1680 
1681 static int ffs_func_eps_enable(struct ffs_function *func)
1682 {
1683 	struct ffs_data *ffs      = func->ffs;
1684 	struct ffs_ep *ep         = func->eps;
1685 	struct ffs_epfile *epfile = ffs->epfiles;
1686 	unsigned count            = ffs->eps_count;
1687 	unsigned long flags;
1688 	int ret = 0;
1689 
1690 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1691 	do {
1692 		struct usb_endpoint_descriptor *ds;
1693 		int desc_idx;
1694 
1695 		if (ffs->gadget->speed == USB_SPEED_SUPER)
1696 			desc_idx = 2;
1697 		else if (ffs->gadget->speed == USB_SPEED_HIGH)
1698 			desc_idx = 1;
1699 		else
1700 			desc_idx = 0;
1701 
1702 		/* fall-back to lower speed if desc missing for current speed */
1703 		do {
1704 			ds = ep->descs[desc_idx];
1705 		} while (!ds && --desc_idx >= 0);
1706 
1707 		if (!ds) {
1708 			ret = -EINVAL;
1709 			break;
1710 		}
1711 
1712 		ep->ep->driver_data = ep;
1713 		ep->ep->desc = ds;
1714 		ret = usb_ep_enable(ep->ep);
1715 		if (likely(!ret)) {
1716 			epfile->ep = ep;
1717 			epfile->in = usb_endpoint_dir_in(ds);
1718 			epfile->isoc = usb_endpoint_xfer_isoc(ds);
1719 		} else {
1720 			break;
1721 		}
1722 
1723 		wake_up(&epfile->wait);
1724 
1725 		++ep;
1726 		++epfile;
1727 	} while (--count);
1728 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1729 
1730 	return ret;
1731 }
1732 
1733 
1734 /* Parsing and building descriptors and strings *****************************/
1735 
1736 /*
1737  * This validates if data pointed by data is a valid USB descriptor as
1738  * well as record how many interfaces, endpoints and strings are
1739  * required by given configuration.  Returns address after the
1740  * descriptor or NULL if data is invalid.
1741  */
1742 
1743 enum ffs_entity_type {
1744 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1745 };
1746 
1747 enum ffs_os_desc_type {
1748 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1749 };
1750 
1751 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1752 				   u8 *valuep,
1753 				   struct usb_descriptor_header *desc,
1754 				   void *priv);
1755 
1756 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1757 				    struct usb_os_desc_header *h, void *data,
1758 				    unsigned len, void *priv);
1759 
1760 static int __must_check ffs_do_single_desc(char *data, unsigned len,
1761 					   ffs_entity_callback entity,
1762 					   void *priv)
1763 {
1764 	struct usb_descriptor_header *_ds = (void *)data;
1765 	u8 length;
1766 	int ret;
1767 
1768 	ENTER();
1769 
1770 	/* At least two bytes are required: length and type */
1771 	if (len < 2) {
1772 		pr_vdebug("descriptor too short\n");
1773 		return -EINVAL;
1774 	}
1775 
1776 	/* If we have at least as many bytes as the descriptor takes? */
1777 	length = _ds->bLength;
1778 	if (len < length) {
1779 		pr_vdebug("descriptor longer then available data\n");
1780 		return -EINVAL;
1781 	}
1782 
1783 #define __entity_check_INTERFACE(val)  1
1784 #define __entity_check_STRING(val)     (val)
1785 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
1786 #define __entity(type, val) do {					\
1787 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
1788 		if (unlikely(!__entity_check_ ##type(val))) {		\
1789 			pr_vdebug("invalid entity's value\n");		\
1790 			return -EINVAL;					\
1791 		}							\
1792 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
1793 		if (unlikely(ret < 0)) {				\
1794 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
1795 				 (val), ret);				\
1796 			return ret;					\
1797 		}							\
1798 	} while (0)
1799 
1800 	/* Parse descriptor depending on type. */
1801 	switch (_ds->bDescriptorType) {
1802 	case USB_DT_DEVICE:
1803 	case USB_DT_CONFIG:
1804 	case USB_DT_STRING:
1805 	case USB_DT_DEVICE_QUALIFIER:
1806 		/* function can't have any of those */
1807 		pr_vdebug("descriptor reserved for gadget: %d\n",
1808 		      _ds->bDescriptorType);
1809 		return -EINVAL;
1810 
1811 	case USB_DT_INTERFACE: {
1812 		struct usb_interface_descriptor *ds = (void *)_ds;
1813 		pr_vdebug("interface descriptor\n");
1814 		if (length != sizeof *ds)
1815 			goto inv_length;
1816 
1817 		__entity(INTERFACE, ds->bInterfaceNumber);
1818 		if (ds->iInterface)
1819 			__entity(STRING, ds->iInterface);
1820 	}
1821 		break;
1822 
1823 	case USB_DT_ENDPOINT: {
1824 		struct usb_endpoint_descriptor *ds = (void *)_ds;
1825 		pr_vdebug("endpoint descriptor\n");
1826 		if (length != USB_DT_ENDPOINT_SIZE &&
1827 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
1828 			goto inv_length;
1829 		__entity(ENDPOINT, ds->bEndpointAddress);
1830 	}
1831 		break;
1832 
1833 	case HID_DT_HID:
1834 		pr_vdebug("hid descriptor\n");
1835 		if (length != sizeof(struct hid_descriptor))
1836 			goto inv_length;
1837 		break;
1838 
1839 	case USB_DT_OTG:
1840 		if (length != sizeof(struct usb_otg_descriptor))
1841 			goto inv_length;
1842 		break;
1843 
1844 	case USB_DT_INTERFACE_ASSOCIATION: {
1845 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
1846 		pr_vdebug("interface association descriptor\n");
1847 		if (length != sizeof *ds)
1848 			goto inv_length;
1849 		if (ds->iFunction)
1850 			__entity(STRING, ds->iFunction);
1851 	}
1852 		break;
1853 
1854 	case USB_DT_SS_ENDPOINT_COMP:
1855 		pr_vdebug("EP SS companion descriptor\n");
1856 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
1857 			goto inv_length;
1858 		break;
1859 
1860 	case USB_DT_OTHER_SPEED_CONFIG:
1861 	case USB_DT_INTERFACE_POWER:
1862 	case USB_DT_DEBUG:
1863 	case USB_DT_SECURITY:
1864 	case USB_DT_CS_RADIO_CONTROL:
1865 		/* TODO */
1866 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
1867 		return -EINVAL;
1868 
1869 	default:
1870 		/* We should never be here */
1871 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
1872 		return -EINVAL;
1873 
1874 inv_length:
1875 		pr_vdebug("invalid length: %d (descriptor %d)\n",
1876 			  _ds->bLength, _ds->bDescriptorType);
1877 		return -EINVAL;
1878 	}
1879 
1880 #undef __entity
1881 #undef __entity_check_DESCRIPTOR
1882 #undef __entity_check_INTERFACE
1883 #undef __entity_check_STRING
1884 #undef __entity_check_ENDPOINT
1885 
1886 	return length;
1887 }
1888 
1889 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
1890 				     ffs_entity_callback entity, void *priv)
1891 {
1892 	const unsigned _len = len;
1893 	unsigned long num = 0;
1894 
1895 	ENTER();
1896 
1897 	for (;;) {
1898 		int ret;
1899 
1900 		if (num == count)
1901 			data = NULL;
1902 
1903 		/* Record "descriptor" entity */
1904 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
1905 		if (unlikely(ret < 0)) {
1906 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
1907 				 num, ret);
1908 			return ret;
1909 		}
1910 
1911 		if (!data)
1912 			return _len - len;
1913 
1914 		ret = ffs_do_single_desc(data, len, entity, priv);
1915 		if (unlikely(ret < 0)) {
1916 			pr_debug("%s returns %d\n", __func__, ret);
1917 			return ret;
1918 		}
1919 
1920 		len -= ret;
1921 		data += ret;
1922 		++num;
1923 	}
1924 }
1925 
1926 static int __ffs_data_do_entity(enum ffs_entity_type type,
1927 				u8 *valuep, struct usb_descriptor_header *desc,
1928 				void *priv)
1929 {
1930 	struct ffs_desc_helper *helper = priv;
1931 	struct usb_endpoint_descriptor *d;
1932 
1933 	ENTER();
1934 
1935 	switch (type) {
1936 	case FFS_DESCRIPTOR:
1937 		break;
1938 
1939 	case FFS_INTERFACE:
1940 		/*
1941 		 * Interfaces are indexed from zero so if we
1942 		 * encountered interface "n" then there are at least
1943 		 * "n+1" interfaces.
1944 		 */
1945 		if (*valuep >= helper->interfaces_count)
1946 			helper->interfaces_count = *valuep + 1;
1947 		break;
1948 
1949 	case FFS_STRING:
1950 		/*
1951 		 * Strings are indexed from 1 (0 is magic ;) reserved
1952 		 * for languages list or some such)
1953 		 */
1954 		if (*valuep > helper->ffs->strings_count)
1955 			helper->ffs->strings_count = *valuep;
1956 		break;
1957 
1958 	case FFS_ENDPOINT:
1959 		d = (void *)desc;
1960 		helper->eps_count++;
1961 		if (helper->eps_count >= 15)
1962 			return -EINVAL;
1963 		/* Check if descriptors for any speed were already parsed */
1964 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
1965 			helper->ffs->eps_addrmap[helper->eps_count] =
1966 				d->bEndpointAddress;
1967 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
1968 				d->bEndpointAddress)
1969 			return -EINVAL;
1970 		break;
1971 	}
1972 
1973 	return 0;
1974 }
1975 
1976 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
1977 				   struct usb_os_desc_header *desc)
1978 {
1979 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
1980 	u16 w_index = le16_to_cpu(desc->wIndex);
1981 
1982 	if (bcd_version != 1) {
1983 		pr_vdebug("unsupported os descriptors version: %d",
1984 			  bcd_version);
1985 		return -EINVAL;
1986 	}
1987 	switch (w_index) {
1988 	case 0x4:
1989 		*next_type = FFS_OS_DESC_EXT_COMPAT;
1990 		break;
1991 	case 0x5:
1992 		*next_type = FFS_OS_DESC_EXT_PROP;
1993 		break;
1994 	default:
1995 		pr_vdebug("unsupported os descriptor type: %d", w_index);
1996 		return -EINVAL;
1997 	}
1998 
1999 	return sizeof(*desc);
2000 }
2001 
2002 /*
2003  * Process all extended compatibility/extended property descriptors
2004  * of a feature descriptor
2005  */
2006 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2007 					      enum ffs_os_desc_type type,
2008 					      u16 feature_count,
2009 					      ffs_os_desc_callback entity,
2010 					      void *priv,
2011 					      struct usb_os_desc_header *h)
2012 {
2013 	int ret;
2014 	const unsigned _len = len;
2015 
2016 	ENTER();
2017 
2018 	/* loop over all ext compat/ext prop descriptors */
2019 	while (feature_count--) {
2020 		ret = entity(type, h, data, len, priv);
2021 		if (unlikely(ret < 0)) {
2022 			pr_debug("bad OS descriptor, type: %d\n", type);
2023 			return ret;
2024 		}
2025 		data += ret;
2026 		len -= ret;
2027 	}
2028 	return _len - len;
2029 }
2030 
2031 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2032 static int __must_check ffs_do_os_descs(unsigned count,
2033 					char *data, unsigned len,
2034 					ffs_os_desc_callback entity, void *priv)
2035 {
2036 	const unsigned _len = len;
2037 	unsigned long num = 0;
2038 
2039 	ENTER();
2040 
2041 	for (num = 0; num < count; ++num) {
2042 		int ret;
2043 		enum ffs_os_desc_type type;
2044 		u16 feature_count;
2045 		struct usb_os_desc_header *desc = (void *)data;
2046 
2047 		if (len < sizeof(*desc))
2048 			return -EINVAL;
2049 
2050 		/*
2051 		 * Record "descriptor" entity.
2052 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2053 		 * Move the data pointer to the beginning of extended
2054 		 * compatibilities proper or extended properties proper
2055 		 * portions of the data
2056 		 */
2057 		if (le32_to_cpu(desc->dwLength) > len)
2058 			return -EINVAL;
2059 
2060 		ret = __ffs_do_os_desc_header(&type, desc);
2061 		if (unlikely(ret < 0)) {
2062 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2063 				 num, ret);
2064 			return ret;
2065 		}
2066 		/*
2067 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2068 		 */
2069 		feature_count = le16_to_cpu(desc->wCount);
2070 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2071 		    (feature_count > 255 || desc->Reserved))
2072 				return -EINVAL;
2073 		len -= ret;
2074 		data += ret;
2075 
2076 		/*
2077 		 * Process all function/property descriptors
2078 		 * of this Feature Descriptor
2079 		 */
2080 		ret = ffs_do_single_os_desc(data, len, type,
2081 					    feature_count, entity, priv, desc);
2082 		if (unlikely(ret < 0)) {
2083 			pr_debug("%s returns %d\n", __func__, ret);
2084 			return ret;
2085 		}
2086 
2087 		len -= ret;
2088 		data += ret;
2089 	}
2090 	return _len - len;
2091 }
2092 
2093 /**
2094  * Validate contents of the buffer from userspace related to OS descriptors.
2095  */
2096 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2097 				 struct usb_os_desc_header *h, void *data,
2098 				 unsigned len, void *priv)
2099 {
2100 	struct ffs_data *ffs = priv;
2101 	u8 length;
2102 
2103 	ENTER();
2104 
2105 	switch (type) {
2106 	case FFS_OS_DESC_EXT_COMPAT: {
2107 		struct usb_ext_compat_desc *d = data;
2108 		int i;
2109 
2110 		if (len < sizeof(*d) ||
2111 		    d->bFirstInterfaceNumber >= ffs->interfaces_count ||
2112 		    d->Reserved1)
2113 			return -EINVAL;
2114 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2115 			if (d->Reserved2[i])
2116 				return -EINVAL;
2117 
2118 		length = sizeof(struct usb_ext_compat_desc);
2119 	}
2120 		break;
2121 	case FFS_OS_DESC_EXT_PROP: {
2122 		struct usb_ext_prop_desc *d = data;
2123 		u32 type, pdl;
2124 		u16 pnl;
2125 
2126 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2127 			return -EINVAL;
2128 		length = le32_to_cpu(d->dwSize);
2129 		type = le32_to_cpu(d->dwPropertyDataType);
2130 		if (type < USB_EXT_PROP_UNICODE ||
2131 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2132 			pr_vdebug("unsupported os descriptor property type: %d",
2133 				  type);
2134 			return -EINVAL;
2135 		}
2136 		pnl = le16_to_cpu(d->wPropertyNameLength);
2137 		pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl));
2138 		if (length != 14 + pnl + pdl) {
2139 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2140 				  length, pnl, pdl, type);
2141 			return -EINVAL;
2142 		}
2143 		++ffs->ms_os_descs_ext_prop_count;
2144 		/* property name reported to the host as "WCHAR"s */
2145 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2146 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2147 	}
2148 		break;
2149 	default:
2150 		pr_vdebug("unknown descriptor: %d\n", type);
2151 		return -EINVAL;
2152 	}
2153 	return length;
2154 }
2155 
2156 static int __ffs_data_got_descs(struct ffs_data *ffs,
2157 				char *const _data, size_t len)
2158 {
2159 	char *data = _data, *raw_descs;
2160 	unsigned os_descs_count = 0, counts[3], flags;
2161 	int ret = -EINVAL, i;
2162 	struct ffs_desc_helper helper;
2163 
2164 	ENTER();
2165 
2166 	if (get_unaligned_le32(data + 4) != len)
2167 		goto error;
2168 
2169 	switch (get_unaligned_le32(data)) {
2170 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2171 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2172 		data += 8;
2173 		len  -= 8;
2174 		break;
2175 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2176 		flags = get_unaligned_le32(data + 8);
2177 		ffs->user_flags = flags;
2178 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2179 			      FUNCTIONFS_HAS_HS_DESC |
2180 			      FUNCTIONFS_HAS_SS_DESC |
2181 			      FUNCTIONFS_HAS_MS_OS_DESC |
2182 			      FUNCTIONFS_VIRTUAL_ADDR |
2183 			      FUNCTIONFS_EVENTFD)) {
2184 			ret = -ENOSYS;
2185 			goto error;
2186 		}
2187 		data += 12;
2188 		len  -= 12;
2189 		break;
2190 	default:
2191 		goto error;
2192 	}
2193 
2194 	if (flags & FUNCTIONFS_EVENTFD) {
2195 		if (len < 4)
2196 			goto error;
2197 		ffs->ffs_eventfd =
2198 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2199 		if (IS_ERR(ffs->ffs_eventfd)) {
2200 			ret = PTR_ERR(ffs->ffs_eventfd);
2201 			ffs->ffs_eventfd = NULL;
2202 			goto error;
2203 		}
2204 		data += 4;
2205 		len  -= 4;
2206 	}
2207 
2208 	/* Read fs_count, hs_count and ss_count (if present) */
2209 	for (i = 0; i < 3; ++i) {
2210 		if (!(flags & (1 << i))) {
2211 			counts[i] = 0;
2212 		} else if (len < 4) {
2213 			goto error;
2214 		} else {
2215 			counts[i] = get_unaligned_le32(data);
2216 			data += 4;
2217 			len  -= 4;
2218 		}
2219 	}
2220 	if (flags & (1 << i)) {
2221 		os_descs_count = get_unaligned_le32(data);
2222 		data += 4;
2223 		len -= 4;
2224 	};
2225 
2226 	/* Read descriptors */
2227 	raw_descs = data;
2228 	helper.ffs = ffs;
2229 	for (i = 0; i < 3; ++i) {
2230 		if (!counts[i])
2231 			continue;
2232 		helper.interfaces_count = 0;
2233 		helper.eps_count = 0;
2234 		ret = ffs_do_descs(counts[i], data, len,
2235 				   __ffs_data_do_entity, &helper);
2236 		if (ret < 0)
2237 			goto error;
2238 		if (!ffs->eps_count && !ffs->interfaces_count) {
2239 			ffs->eps_count = helper.eps_count;
2240 			ffs->interfaces_count = helper.interfaces_count;
2241 		} else {
2242 			if (ffs->eps_count != helper.eps_count) {
2243 				ret = -EINVAL;
2244 				goto error;
2245 			}
2246 			if (ffs->interfaces_count != helper.interfaces_count) {
2247 				ret = -EINVAL;
2248 				goto error;
2249 			}
2250 		}
2251 		data += ret;
2252 		len  -= ret;
2253 	}
2254 	if (os_descs_count) {
2255 		ret = ffs_do_os_descs(os_descs_count, data, len,
2256 				      __ffs_data_do_os_desc, ffs);
2257 		if (ret < 0)
2258 			goto error;
2259 		data += ret;
2260 		len -= ret;
2261 	}
2262 
2263 	if (raw_descs == data || len) {
2264 		ret = -EINVAL;
2265 		goto error;
2266 	}
2267 
2268 	ffs->raw_descs_data	= _data;
2269 	ffs->raw_descs		= raw_descs;
2270 	ffs->raw_descs_length	= data - raw_descs;
2271 	ffs->fs_descs_count	= counts[0];
2272 	ffs->hs_descs_count	= counts[1];
2273 	ffs->ss_descs_count	= counts[2];
2274 	ffs->ms_os_descs_count	= os_descs_count;
2275 
2276 	return 0;
2277 
2278 error:
2279 	kfree(_data);
2280 	return ret;
2281 }
2282 
2283 static int __ffs_data_got_strings(struct ffs_data *ffs,
2284 				  char *const _data, size_t len)
2285 {
2286 	u32 str_count, needed_count, lang_count;
2287 	struct usb_gadget_strings **stringtabs, *t;
2288 	struct usb_string *strings, *s;
2289 	const char *data = _data;
2290 
2291 	ENTER();
2292 
2293 	if (unlikely(get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2294 		     get_unaligned_le32(data + 4) != len))
2295 		goto error;
2296 	str_count  = get_unaligned_le32(data + 8);
2297 	lang_count = get_unaligned_le32(data + 12);
2298 
2299 	/* if one is zero the other must be zero */
2300 	if (unlikely(!str_count != !lang_count))
2301 		goto error;
2302 
2303 	/* Do we have at least as many strings as descriptors need? */
2304 	needed_count = ffs->strings_count;
2305 	if (unlikely(str_count < needed_count))
2306 		goto error;
2307 
2308 	/*
2309 	 * If we don't need any strings just return and free all
2310 	 * memory.
2311 	 */
2312 	if (!needed_count) {
2313 		kfree(_data);
2314 		return 0;
2315 	}
2316 
2317 	/* Allocate everything in one chunk so there's less maintenance. */
2318 	{
2319 		unsigned i = 0;
2320 		vla_group(d);
2321 		vla_item(d, struct usb_gadget_strings *, stringtabs,
2322 			lang_count + 1);
2323 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2324 		vla_item(d, struct usb_string, strings,
2325 			lang_count*(needed_count+1));
2326 
2327 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2328 
2329 		if (unlikely(!vlabuf)) {
2330 			kfree(_data);
2331 			return -ENOMEM;
2332 		}
2333 
2334 		/* Initialize the VLA pointers */
2335 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2336 		t = vla_ptr(vlabuf, d, stringtab);
2337 		i = lang_count;
2338 		do {
2339 			*stringtabs++ = t++;
2340 		} while (--i);
2341 		*stringtabs = NULL;
2342 
2343 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2344 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2345 		t = vla_ptr(vlabuf, d, stringtab);
2346 		s = vla_ptr(vlabuf, d, strings);
2347 		strings = s;
2348 	}
2349 
2350 	/* For each language */
2351 	data += 16;
2352 	len -= 16;
2353 
2354 	do { /* lang_count > 0 so we can use do-while */
2355 		unsigned needed = needed_count;
2356 
2357 		if (unlikely(len < 3))
2358 			goto error_free;
2359 		t->language = get_unaligned_le16(data);
2360 		t->strings  = s;
2361 		++t;
2362 
2363 		data += 2;
2364 		len -= 2;
2365 
2366 		/* For each string */
2367 		do { /* str_count > 0 so we can use do-while */
2368 			size_t length = strnlen(data, len);
2369 
2370 			if (unlikely(length == len))
2371 				goto error_free;
2372 
2373 			/*
2374 			 * User may provide more strings then we need,
2375 			 * if that's the case we simply ignore the
2376 			 * rest
2377 			 */
2378 			if (likely(needed)) {
2379 				/*
2380 				 * s->id will be set while adding
2381 				 * function to configuration so for
2382 				 * now just leave garbage here.
2383 				 */
2384 				s->s = data;
2385 				--needed;
2386 				++s;
2387 			}
2388 
2389 			data += length + 1;
2390 			len -= length + 1;
2391 		} while (--str_count);
2392 
2393 		s->id = 0;   /* terminator */
2394 		s->s = NULL;
2395 		++s;
2396 
2397 	} while (--lang_count);
2398 
2399 	/* Some garbage left? */
2400 	if (unlikely(len))
2401 		goto error_free;
2402 
2403 	/* Done! */
2404 	ffs->stringtabs = stringtabs;
2405 	ffs->raw_strings = _data;
2406 
2407 	return 0;
2408 
2409 error_free:
2410 	kfree(stringtabs);
2411 error:
2412 	kfree(_data);
2413 	return -EINVAL;
2414 }
2415 
2416 
2417 /* Events handling and management *******************************************/
2418 
2419 static void __ffs_event_add(struct ffs_data *ffs,
2420 			    enum usb_functionfs_event_type type)
2421 {
2422 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2423 	int neg = 0;
2424 
2425 	/*
2426 	 * Abort any unhandled setup
2427 	 *
2428 	 * We do not need to worry about some cmpxchg() changing value
2429 	 * of ffs->setup_state without holding the lock because when
2430 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2431 	 * the source does nothing.
2432 	 */
2433 	if (ffs->setup_state == FFS_SETUP_PENDING)
2434 		ffs->setup_state = FFS_SETUP_CANCELLED;
2435 
2436 	/*
2437 	 * Logic of this function guarantees that there are at most four pending
2438 	 * evens on ffs->ev.types queue.  This is important because the queue
2439 	 * has space for four elements only and __ffs_ep0_read_events function
2440 	 * depends on that limit as well.  If more event types are added, those
2441 	 * limits have to be revisited or guaranteed to still hold.
2442 	 */
2443 	switch (type) {
2444 	case FUNCTIONFS_RESUME:
2445 		rem_type2 = FUNCTIONFS_SUSPEND;
2446 		/* FALL THROUGH */
2447 	case FUNCTIONFS_SUSPEND:
2448 	case FUNCTIONFS_SETUP:
2449 		rem_type1 = type;
2450 		/* Discard all similar events */
2451 		break;
2452 
2453 	case FUNCTIONFS_BIND:
2454 	case FUNCTIONFS_UNBIND:
2455 	case FUNCTIONFS_DISABLE:
2456 	case FUNCTIONFS_ENABLE:
2457 		/* Discard everything other then power management. */
2458 		rem_type1 = FUNCTIONFS_SUSPEND;
2459 		rem_type2 = FUNCTIONFS_RESUME;
2460 		neg = 1;
2461 		break;
2462 
2463 	default:
2464 		WARN(1, "%d: unknown event, this should not happen\n", type);
2465 		return;
2466 	}
2467 
2468 	{
2469 		u8 *ev  = ffs->ev.types, *out = ev;
2470 		unsigned n = ffs->ev.count;
2471 		for (; n; --n, ++ev)
2472 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2473 				*out++ = *ev;
2474 			else
2475 				pr_vdebug("purging event %d\n", *ev);
2476 		ffs->ev.count = out - ffs->ev.types;
2477 	}
2478 
2479 	pr_vdebug("adding event %d\n", type);
2480 	ffs->ev.types[ffs->ev.count++] = type;
2481 	wake_up_locked(&ffs->ev.waitq);
2482 	if (ffs->ffs_eventfd)
2483 		eventfd_signal(ffs->ffs_eventfd, 1);
2484 }
2485 
2486 static void ffs_event_add(struct ffs_data *ffs,
2487 			  enum usb_functionfs_event_type type)
2488 {
2489 	unsigned long flags;
2490 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2491 	__ffs_event_add(ffs, type);
2492 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2493 }
2494 
2495 /* Bind/unbind USB function hooks *******************************************/
2496 
2497 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2498 {
2499 	int i;
2500 
2501 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2502 		if (ffs->eps_addrmap[i] == endpoint_address)
2503 			return i;
2504 	return -ENOENT;
2505 }
2506 
2507 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2508 				    struct usb_descriptor_header *desc,
2509 				    void *priv)
2510 {
2511 	struct usb_endpoint_descriptor *ds = (void *)desc;
2512 	struct ffs_function *func = priv;
2513 	struct ffs_ep *ffs_ep;
2514 	unsigned ep_desc_id;
2515 	int idx;
2516 	static const char *speed_names[] = { "full", "high", "super" };
2517 
2518 	if (type != FFS_DESCRIPTOR)
2519 		return 0;
2520 
2521 	/*
2522 	 * If ss_descriptors is not NULL, we are reading super speed
2523 	 * descriptors; if hs_descriptors is not NULL, we are reading high
2524 	 * speed descriptors; otherwise, we are reading full speed
2525 	 * descriptors.
2526 	 */
2527 	if (func->function.ss_descriptors) {
2528 		ep_desc_id = 2;
2529 		func->function.ss_descriptors[(long)valuep] = desc;
2530 	} else if (func->function.hs_descriptors) {
2531 		ep_desc_id = 1;
2532 		func->function.hs_descriptors[(long)valuep] = desc;
2533 	} else {
2534 		ep_desc_id = 0;
2535 		func->function.fs_descriptors[(long)valuep]    = desc;
2536 	}
2537 
2538 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2539 		return 0;
2540 
2541 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2542 	if (idx < 0)
2543 		return idx;
2544 
2545 	ffs_ep = func->eps + idx;
2546 
2547 	if (unlikely(ffs_ep->descs[ep_desc_id])) {
2548 		pr_err("two %sspeed descriptors for EP %d\n",
2549 			  speed_names[ep_desc_id],
2550 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2551 		return -EINVAL;
2552 	}
2553 	ffs_ep->descs[ep_desc_id] = ds;
2554 
2555 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2556 	if (ffs_ep->ep) {
2557 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2558 		if (!ds->wMaxPacketSize)
2559 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2560 	} else {
2561 		struct usb_request *req;
2562 		struct usb_ep *ep;
2563 		u8 bEndpointAddress;
2564 
2565 		/*
2566 		 * We back up bEndpointAddress because autoconfig overwrites
2567 		 * it with physical endpoint address.
2568 		 */
2569 		bEndpointAddress = ds->bEndpointAddress;
2570 		pr_vdebug("autoconfig\n");
2571 		ep = usb_ep_autoconfig(func->gadget, ds);
2572 		if (unlikely(!ep))
2573 			return -ENOTSUPP;
2574 		ep->driver_data = func->eps + idx;
2575 
2576 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2577 		if (unlikely(!req))
2578 			return -ENOMEM;
2579 
2580 		ffs_ep->ep  = ep;
2581 		ffs_ep->req = req;
2582 		func->eps_revmap[ds->bEndpointAddress &
2583 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2584 		/*
2585 		 * If we use virtual address mapping, we restore
2586 		 * original bEndpointAddress value.
2587 		 */
2588 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2589 			ds->bEndpointAddress = bEndpointAddress;
2590 	}
2591 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2592 
2593 	return 0;
2594 }
2595 
2596 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2597 				   struct usb_descriptor_header *desc,
2598 				   void *priv)
2599 {
2600 	struct ffs_function *func = priv;
2601 	unsigned idx;
2602 	u8 newValue;
2603 
2604 	switch (type) {
2605 	default:
2606 	case FFS_DESCRIPTOR:
2607 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2608 		return 0;
2609 
2610 	case FFS_INTERFACE:
2611 		idx = *valuep;
2612 		if (func->interfaces_nums[idx] < 0) {
2613 			int id = usb_interface_id(func->conf, &func->function);
2614 			if (unlikely(id < 0))
2615 				return id;
2616 			func->interfaces_nums[idx] = id;
2617 		}
2618 		newValue = func->interfaces_nums[idx];
2619 		break;
2620 
2621 	case FFS_STRING:
2622 		/* String' IDs are allocated when fsf_data is bound to cdev */
2623 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2624 		break;
2625 
2626 	case FFS_ENDPOINT:
2627 		/*
2628 		 * USB_DT_ENDPOINT are handled in
2629 		 * __ffs_func_bind_do_descs().
2630 		 */
2631 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2632 			return 0;
2633 
2634 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2635 		if (unlikely(!func->eps[idx].ep))
2636 			return -EINVAL;
2637 
2638 		{
2639 			struct usb_endpoint_descriptor **descs;
2640 			descs = func->eps[idx].descs;
2641 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2642 		}
2643 		break;
2644 	}
2645 
2646 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2647 	*valuep = newValue;
2648 	return 0;
2649 }
2650 
2651 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2652 				      struct usb_os_desc_header *h, void *data,
2653 				      unsigned len, void *priv)
2654 {
2655 	struct ffs_function *func = priv;
2656 	u8 length = 0;
2657 
2658 	switch (type) {
2659 	case FFS_OS_DESC_EXT_COMPAT: {
2660 		struct usb_ext_compat_desc *desc = data;
2661 		struct usb_os_desc_table *t;
2662 
2663 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2664 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2665 		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2666 		       ARRAY_SIZE(desc->CompatibleID) +
2667 		       ARRAY_SIZE(desc->SubCompatibleID));
2668 		length = sizeof(*desc);
2669 	}
2670 		break;
2671 	case FFS_OS_DESC_EXT_PROP: {
2672 		struct usb_ext_prop_desc *desc = data;
2673 		struct usb_os_desc_table *t;
2674 		struct usb_os_desc_ext_prop *ext_prop;
2675 		char *ext_prop_name;
2676 		char *ext_prop_data;
2677 
2678 		t = &func->function.os_desc_table[h->interface];
2679 		t->if_id = func->interfaces_nums[h->interface];
2680 
2681 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2682 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2683 
2684 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2685 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2686 		ext_prop->data_len = le32_to_cpu(*(u32 *)
2687 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2688 		length = ext_prop->name_len + ext_prop->data_len + 14;
2689 
2690 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2691 		func->ffs->ms_os_descs_ext_prop_name_avail +=
2692 			ext_prop->name_len;
2693 
2694 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2695 		func->ffs->ms_os_descs_ext_prop_data_avail +=
2696 			ext_prop->data_len;
2697 		memcpy(ext_prop_data,
2698 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2699 		       ext_prop->data_len);
2700 		/* unicode data reported to the host as "WCHAR"s */
2701 		switch (ext_prop->type) {
2702 		case USB_EXT_PROP_UNICODE:
2703 		case USB_EXT_PROP_UNICODE_ENV:
2704 		case USB_EXT_PROP_UNICODE_LINK:
2705 		case USB_EXT_PROP_UNICODE_MULTI:
2706 			ext_prop->data_len *= 2;
2707 			break;
2708 		}
2709 		ext_prop->data = ext_prop_data;
2710 
2711 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2712 		       ext_prop->name_len);
2713 		/* property name reported to the host as "WCHAR"s */
2714 		ext_prop->name_len *= 2;
2715 		ext_prop->name = ext_prop_name;
2716 
2717 		t->os_desc->ext_prop_len +=
2718 			ext_prop->name_len + ext_prop->data_len + 14;
2719 		++t->os_desc->ext_prop_count;
2720 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2721 	}
2722 		break;
2723 	default:
2724 		pr_vdebug("unknown descriptor: %d\n", type);
2725 	}
2726 
2727 	return length;
2728 }
2729 
2730 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2731 						struct usb_configuration *c)
2732 {
2733 	struct ffs_function *func = ffs_func_from_usb(f);
2734 	struct f_fs_opts *ffs_opts =
2735 		container_of(f->fi, struct f_fs_opts, func_inst);
2736 	int ret;
2737 
2738 	ENTER();
2739 
2740 	/*
2741 	 * Legacy gadget triggers binding in functionfs_ready_callback,
2742 	 * which already uses locking; taking the same lock here would
2743 	 * cause a deadlock.
2744 	 *
2745 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
2746 	 */
2747 	if (!ffs_opts->no_configfs)
2748 		ffs_dev_lock();
2749 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2750 	func->ffs = ffs_opts->dev->ffs_data;
2751 	if (!ffs_opts->no_configfs)
2752 		ffs_dev_unlock();
2753 	if (ret)
2754 		return ERR_PTR(ret);
2755 
2756 	func->conf = c;
2757 	func->gadget = c->cdev->gadget;
2758 
2759 	/*
2760 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2761 	 * configurations are bound in sequence with list_for_each_entry,
2762 	 * in each configuration its functions are bound in sequence
2763 	 * with list_for_each_entry, so we assume no race condition
2764 	 * with regard to ffs_opts->bound access
2765 	 */
2766 	if (!ffs_opts->refcnt) {
2767 		ret = functionfs_bind(func->ffs, c->cdev);
2768 		if (ret)
2769 			return ERR_PTR(ret);
2770 	}
2771 	ffs_opts->refcnt++;
2772 	func->function.strings = func->ffs->stringtabs;
2773 
2774 	return ffs_opts;
2775 }
2776 
2777 static int _ffs_func_bind(struct usb_configuration *c,
2778 			  struct usb_function *f)
2779 {
2780 	struct ffs_function *func = ffs_func_from_usb(f);
2781 	struct ffs_data *ffs = func->ffs;
2782 
2783 	const int full = !!func->ffs->fs_descs_count;
2784 	const int high = gadget_is_dualspeed(func->gadget) &&
2785 		func->ffs->hs_descs_count;
2786 	const int super = gadget_is_superspeed(func->gadget) &&
2787 		func->ffs->ss_descs_count;
2788 
2789 	int fs_len, hs_len, ss_len, ret, i;
2790 
2791 	/* Make it a single chunk, less management later on */
2792 	vla_group(d);
2793 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2794 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2795 		full ? ffs->fs_descs_count + 1 : 0);
2796 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2797 		high ? ffs->hs_descs_count + 1 : 0);
2798 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2799 		super ? ffs->ss_descs_count + 1 : 0);
2800 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2801 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2802 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2803 	vla_item_with_sz(d, char[16], ext_compat,
2804 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2805 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
2806 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2807 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
2808 			 ffs->ms_os_descs_ext_prop_count);
2809 	vla_item_with_sz(d, char, ext_prop_name,
2810 			 ffs->ms_os_descs_ext_prop_name_len);
2811 	vla_item_with_sz(d, char, ext_prop_data,
2812 			 ffs->ms_os_descs_ext_prop_data_len);
2813 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
2814 	char *vlabuf;
2815 
2816 	ENTER();
2817 
2818 	/* Has descriptors only for speeds gadget does not support */
2819 	if (unlikely(!(full | high | super)))
2820 		return -ENOTSUPP;
2821 
2822 	/* Allocate a single chunk, less management later on */
2823 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
2824 	if (unlikely(!vlabuf))
2825 		return -ENOMEM;
2826 
2827 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
2828 	ffs->ms_os_descs_ext_prop_name_avail =
2829 		vla_ptr(vlabuf, d, ext_prop_name);
2830 	ffs->ms_os_descs_ext_prop_data_avail =
2831 		vla_ptr(vlabuf, d, ext_prop_data);
2832 
2833 	/* Copy descriptors  */
2834 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
2835 	       ffs->raw_descs_length);
2836 
2837 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
2838 	for (ret = ffs->eps_count; ret; --ret) {
2839 		struct ffs_ep *ptr;
2840 
2841 		ptr = vla_ptr(vlabuf, d, eps);
2842 		ptr[ret].num = -1;
2843 	}
2844 
2845 	/* Save pointers
2846 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
2847 	*/
2848 	func->eps             = vla_ptr(vlabuf, d, eps);
2849 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
2850 
2851 	/*
2852 	 * Go through all the endpoint descriptors and allocate
2853 	 * endpoints first, so that later we can rewrite the endpoint
2854 	 * numbers without worrying that it may be described later on.
2855 	 */
2856 	if (likely(full)) {
2857 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
2858 		fs_len = ffs_do_descs(ffs->fs_descs_count,
2859 				      vla_ptr(vlabuf, d, raw_descs),
2860 				      d_raw_descs__sz,
2861 				      __ffs_func_bind_do_descs, func);
2862 		if (unlikely(fs_len < 0)) {
2863 			ret = fs_len;
2864 			goto error;
2865 		}
2866 	} else {
2867 		fs_len = 0;
2868 	}
2869 
2870 	if (likely(high)) {
2871 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
2872 		hs_len = ffs_do_descs(ffs->hs_descs_count,
2873 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
2874 				      d_raw_descs__sz - fs_len,
2875 				      __ffs_func_bind_do_descs, func);
2876 		if (unlikely(hs_len < 0)) {
2877 			ret = hs_len;
2878 			goto error;
2879 		}
2880 	} else {
2881 		hs_len = 0;
2882 	}
2883 
2884 	if (likely(super)) {
2885 		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
2886 		ss_len = ffs_do_descs(ffs->ss_descs_count,
2887 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
2888 				d_raw_descs__sz - fs_len - hs_len,
2889 				__ffs_func_bind_do_descs, func);
2890 		if (unlikely(ss_len < 0)) {
2891 			ret = ss_len;
2892 			goto error;
2893 		}
2894 	} else {
2895 		ss_len = 0;
2896 	}
2897 
2898 	/*
2899 	 * Now handle interface numbers allocation and interface and
2900 	 * endpoint numbers rewriting.  We can do that in one go
2901 	 * now.
2902 	 */
2903 	ret = ffs_do_descs(ffs->fs_descs_count +
2904 			   (high ? ffs->hs_descs_count : 0) +
2905 			   (super ? ffs->ss_descs_count : 0),
2906 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
2907 			   __ffs_func_bind_do_nums, func);
2908 	if (unlikely(ret < 0))
2909 		goto error;
2910 
2911 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
2912 	if (c->cdev->use_os_string)
2913 		for (i = 0; i < ffs->interfaces_count; ++i) {
2914 			struct usb_os_desc *desc;
2915 
2916 			desc = func->function.os_desc_table[i].os_desc =
2917 				vla_ptr(vlabuf, d, os_desc) +
2918 				i * sizeof(struct usb_os_desc);
2919 			desc->ext_compat_id =
2920 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
2921 			INIT_LIST_HEAD(&desc->ext_prop);
2922 		}
2923 	ret = ffs_do_os_descs(ffs->ms_os_descs_count,
2924 			      vla_ptr(vlabuf, d, raw_descs) +
2925 			      fs_len + hs_len + ss_len,
2926 			      d_raw_descs__sz - fs_len - hs_len - ss_len,
2927 			      __ffs_func_bind_do_os_desc, func);
2928 	if (unlikely(ret < 0))
2929 		goto error;
2930 	func->function.os_desc_n =
2931 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
2932 
2933 	/* And we're done */
2934 	ffs_event_add(ffs, FUNCTIONFS_BIND);
2935 	return 0;
2936 
2937 error:
2938 	/* XXX Do we need to release all claimed endpoints here? */
2939 	return ret;
2940 }
2941 
2942 static int ffs_func_bind(struct usb_configuration *c,
2943 			 struct usb_function *f)
2944 {
2945 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
2946 
2947 	if (IS_ERR(ffs_opts))
2948 		return PTR_ERR(ffs_opts);
2949 
2950 	return _ffs_func_bind(c, f);
2951 }
2952 
2953 
2954 /* Other USB function hooks *************************************************/
2955 
2956 static void ffs_reset_work(struct work_struct *work)
2957 {
2958 	struct ffs_data *ffs = container_of(work,
2959 		struct ffs_data, reset_work);
2960 	ffs_data_reset(ffs);
2961 }
2962 
2963 static int ffs_func_set_alt(struct usb_function *f,
2964 			    unsigned interface, unsigned alt)
2965 {
2966 	struct ffs_function *func = ffs_func_from_usb(f);
2967 	struct ffs_data *ffs = func->ffs;
2968 	int ret = 0, intf;
2969 
2970 	if (alt != (unsigned)-1) {
2971 		intf = ffs_func_revmap_intf(func, interface);
2972 		if (unlikely(intf < 0))
2973 			return intf;
2974 	}
2975 
2976 	if (ffs->func)
2977 		ffs_func_eps_disable(ffs->func);
2978 
2979 	if (ffs->state == FFS_DEACTIVATED) {
2980 		ffs->state = FFS_CLOSING;
2981 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
2982 		schedule_work(&ffs->reset_work);
2983 		return -ENODEV;
2984 	}
2985 
2986 	if (ffs->state != FFS_ACTIVE)
2987 		return -ENODEV;
2988 
2989 	if (alt == (unsigned)-1) {
2990 		ffs->func = NULL;
2991 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
2992 		return 0;
2993 	}
2994 
2995 	ffs->func = func;
2996 	ret = ffs_func_eps_enable(func);
2997 	if (likely(ret >= 0))
2998 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
2999 	return ret;
3000 }
3001 
3002 static void ffs_func_disable(struct usb_function *f)
3003 {
3004 	ffs_func_set_alt(f, 0, (unsigned)-1);
3005 }
3006 
3007 static int ffs_func_setup(struct usb_function *f,
3008 			  const struct usb_ctrlrequest *creq)
3009 {
3010 	struct ffs_function *func = ffs_func_from_usb(f);
3011 	struct ffs_data *ffs = func->ffs;
3012 	unsigned long flags;
3013 	int ret;
3014 
3015 	ENTER();
3016 
3017 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3018 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3019 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3020 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3021 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3022 
3023 	/*
3024 	 * Most requests directed to interface go through here
3025 	 * (notable exceptions are set/get interface) so we need to
3026 	 * handle them.  All other either handled by composite or
3027 	 * passed to usb_configuration->setup() (if one is set).  No
3028 	 * matter, we will handle requests directed to endpoint here
3029 	 * as well (as it's straightforward) but what to do with any
3030 	 * other request?
3031 	 */
3032 	if (ffs->state != FFS_ACTIVE)
3033 		return -ENODEV;
3034 
3035 	switch (creq->bRequestType & USB_RECIP_MASK) {
3036 	case USB_RECIP_INTERFACE:
3037 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3038 		if (unlikely(ret < 0))
3039 			return ret;
3040 		break;
3041 
3042 	case USB_RECIP_ENDPOINT:
3043 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3044 		if (unlikely(ret < 0))
3045 			return ret;
3046 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3047 			ret = func->ffs->eps_addrmap[ret];
3048 		break;
3049 
3050 	default:
3051 		return -EOPNOTSUPP;
3052 	}
3053 
3054 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3055 	ffs->ev.setup = *creq;
3056 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3057 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3058 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3059 
3060 	return 0;
3061 }
3062 
3063 static void ffs_func_suspend(struct usb_function *f)
3064 {
3065 	ENTER();
3066 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3067 }
3068 
3069 static void ffs_func_resume(struct usb_function *f)
3070 {
3071 	ENTER();
3072 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3073 }
3074 
3075 
3076 /* Endpoint and interface numbers reverse mapping ***************************/
3077 
3078 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3079 {
3080 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3081 	return num ? num : -EDOM;
3082 }
3083 
3084 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3085 {
3086 	short *nums = func->interfaces_nums;
3087 	unsigned count = func->ffs->interfaces_count;
3088 
3089 	for (; count; --count, ++nums) {
3090 		if (*nums >= 0 && *nums == intf)
3091 			return nums - func->interfaces_nums;
3092 	}
3093 
3094 	return -EDOM;
3095 }
3096 
3097 
3098 /* Devices management *******************************************************/
3099 
3100 static LIST_HEAD(ffs_devices);
3101 
3102 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3103 {
3104 	struct ffs_dev *dev;
3105 
3106 	list_for_each_entry(dev, &ffs_devices, entry) {
3107 		if (!dev->name || !name)
3108 			continue;
3109 		if (strcmp(dev->name, name) == 0)
3110 			return dev;
3111 	}
3112 
3113 	return NULL;
3114 }
3115 
3116 /*
3117  * ffs_lock must be taken by the caller of this function
3118  */
3119 static struct ffs_dev *_ffs_get_single_dev(void)
3120 {
3121 	struct ffs_dev *dev;
3122 
3123 	if (list_is_singular(&ffs_devices)) {
3124 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3125 		if (dev->single)
3126 			return dev;
3127 	}
3128 
3129 	return NULL;
3130 }
3131 
3132 /*
3133  * ffs_lock must be taken by the caller of this function
3134  */
3135 static struct ffs_dev *_ffs_find_dev(const char *name)
3136 {
3137 	struct ffs_dev *dev;
3138 
3139 	dev = _ffs_get_single_dev();
3140 	if (dev)
3141 		return dev;
3142 
3143 	return _ffs_do_find_dev(name);
3144 }
3145 
3146 /* Configfs support *********************************************************/
3147 
3148 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3149 {
3150 	return container_of(to_config_group(item), struct f_fs_opts,
3151 			    func_inst.group);
3152 }
3153 
3154 static void ffs_attr_release(struct config_item *item)
3155 {
3156 	struct f_fs_opts *opts = to_ffs_opts(item);
3157 
3158 	usb_put_function_instance(&opts->func_inst);
3159 }
3160 
3161 static struct configfs_item_operations ffs_item_ops = {
3162 	.release	= ffs_attr_release,
3163 };
3164 
3165 static struct config_item_type ffs_func_type = {
3166 	.ct_item_ops	= &ffs_item_ops,
3167 	.ct_owner	= THIS_MODULE,
3168 };
3169 
3170 
3171 /* Function registration interface ******************************************/
3172 
3173 static void ffs_free_inst(struct usb_function_instance *f)
3174 {
3175 	struct f_fs_opts *opts;
3176 
3177 	opts = to_f_fs_opts(f);
3178 	ffs_dev_lock();
3179 	_ffs_free_dev(opts->dev);
3180 	ffs_dev_unlock();
3181 	kfree(opts);
3182 }
3183 
3184 #define MAX_INST_NAME_LEN	40
3185 
3186 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3187 {
3188 	struct f_fs_opts *opts;
3189 	char *ptr;
3190 	const char *tmp;
3191 	int name_len, ret;
3192 
3193 	name_len = strlen(name) + 1;
3194 	if (name_len > MAX_INST_NAME_LEN)
3195 		return -ENAMETOOLONG;
3196 
3197 	ptr = kstrndup(name, name_len, GFP_KERNEL);
3198 	if (!ptr)
3199 		return -ENOMEM;
3200 
3201 	opts = to_f_fs_opts(fi);
3202 	tmp = NULL;
3203 
3204 	ffs_dev_lock();
3205 
3206 	tmp = opts->dev->name_allocated ? opts->dev->name : NULL;
3207 	ret = _ffs_name_dev(opts->dev, ptr);
3208 	if (ret) {
3209 		kfree(ptr);
3210 		ffs_dev_unlock();
3211 		return ret;
3212 	}
3213 	opts->dev->name_allocated = true;
3214 
3215 	ffs_dev_unlock();
3216 
3217 	kfree(tmp);
3218 
3219 	return 0;
3220 }
3221 
3222 static struct usb_function_instance *ffs_alloc_inst(void)
3223 {
3224 	struct f_fs_opts *opts;
3225 	struct ffs_dev *dev;
3226 
3227 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3228 	if (!opts)
3229 		return ERR_PTR(-ENOMEM);
3230 
3231 	opts->func_inst.set_inst_name = ffs_set_inst_name;
3232 	opts->func_inst.free_func_inst = ffs_free_inst;
3233 	ffs_dev_lock();
3234 	dev = _ffs_alloc_dev();
3235 	ffs_dev_unlock();
3236 	if (IS_ERR(dev)) {
3237 		kfree(opts);
3238 		return ERR_CAST(dev);
3239 	}
3240 	opts->dev = dev;
3241 	dev->opts = opts;
3242 
3243 	config_group_init_type_name(&opts->func_inst.group, "",
3244 				    &ffs_func_type);
3245 	return &opts->func_inst;
3246 }
3247 
3248 static void ffs_free(struct usb_function *f)
3249 {
3250 	kfree(ffs_func_from_usb(f));
3251 }
3252 
3253 static void ffs_func_unbind(struct usb_configuration *c,
3254 			    struct usb_function *f)
3255 {
3256 	struct ffs_function *func = ffs_func_from_usb(f);
3257 	struct ffs_data *ffs = func->ffs;
3258 	struct f_fs_opts *opts =
3259 		container_of(f->fi, struct f_fs_opts, func_inst);
3260 	struct ffs_ep *ep = func->eps;
3261 	unsigned count = ffs->eps_count;
3262 	unsigned long flags;
3263 
3264 	ENTER();
3265 	if (ffs->func == func) {
3266 		ffs_func_eps_disable(func);
3267 		ffs->func = NULL;
3268 	}
3269 
3270 	if (!--opts->refcnt)
3271 		functionfs_unbind(ffs);
3272 
3273 	/* cleanup after autoconfig */
3274 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3275 	do {
3276 		if (ep->ep && ep->req)
3277 			usb_ep_free_request(ep->ep, ep->req);
3278 		ep->req = NULL;
3279 		++ep;
3280 	} while (--count);
3281 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3282 	kfree(func->eps);
3283 	func->eps = NULL;
3284 	/*
3285 	 * eps, descriptors and interfaces_nums are allocated in the
3286 	 * same chunk so only one free is required.
3287 	 */
3288 	func->function.fs_descriptors = NULL;
3289 	func->function.hs_descriptors = NULL;
3290 	func->function.ss_descriptors = NULL;
3291 	func->interfaces_nums = NULL;
3292 
3293 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3294 }
3295 
3296 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3297 {
3298 	struct ffs_function *func;
3299 
3300 	ENTER();
3301 
3302 	func = kzalloc(sizeof(*func), GFP_KERNEL);
3303 	if (unlikely(!func))
3304 		return ERR_PTR(-ENOMEM);
3305 
3306 	func->function.name    = "Function FS Gadget";
3307 
3308 	func->function.bind    = ffs_func_bind;
3309 	func->function.unbind  = ffs_func_unbind;
3310 	func->function.set_alt = ffs_func_set_alt;
3311 	func->function.disable = ffs_func_disable;
3312 	func->function.setup   = ffs_func_setup;
3313 	func->function.suspend = ffs_func_suspend;
3314 	func->function.resume  = ffs_func_resume;
3315 	func->function.free_func = ffs_free;
3316 
3317 	return &func->function;
3318 }
3319 
3320 /*
3321  * ffs_lock must be taken by the caller of this function
3322  */
3323 static struct ffs_dev *_ffs_alloc_dev(void)
3324 {
3325 	struct ffs_dev *dev;
3326 	int ret;
3327 
3328 	if (_ffs_get_single_dev())
3329 			return ERR_PTR(-EBUSY);
3330 
3331 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3332 	if (!dev)
3333 		return ERR_PTR(-ENOMEM);
3334 
3335 	if (list_empty(&ffs_devices)) {
3336 		ret = functionfs_init();
3337 		if (ret) {
3338 			kfree(dev);
3339 			return ERR_PTR(ret);
3340 		}
3341 	}
3342 
3343 	list_add(&dev->entry, &ffs_devices);
3344 
3345 	return dev;
3346 }
3347 
3348 /*
3349  * ffs_lock must be taken by the caller of this function
3350  * The caller is responsible for "name" being available whenever f_fs needs it
3351  */
3352 static int _ffs_name_dev(struct ffs_dev *dev, const char *name)
3353 {
3354 	struct ffs_dev *existing;
3355 
3356 	existing = _ffs_do_find_dev(name);
3357 	if (existing)
3358 		return -EBUSY;
3359 
3360 	dev->name = name;
3361 
3362 	return 0;
3363 }
3364 
3365 /*
3366  * The caller is responsible for "name" being available whenever f_fs needs it
3367  */
3368 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3369 {
3370 	int ret;
3371 
3372 	ffs_dev_lock();
3373 	ret = _ffs_name_dev(dev, name);
3374 	ffs_dev_unlock();
3375 
3376 	return ret;
3377 }
3378 EXPORT_SYMBOL_GPL(ffs_name_dev);
3379 
3380 int ffs_single_dev(struct ffs_dev *dev)
3381 {
3382 	int ret;
3383 
3384 	ret = 0;
3385 	ffs_dev_lock();
3386 
3387 	if (!list_is_singular(&ffs_devices))
3388 		ret = -EBUSY;
3389 	else
3390 		dev->single = true;
3391 
3392 	ffs_dev_unlock();
3393 	return ret;
3394 }
3395 EXPORT_SYMBOL_GPL(ffs_single_dev);
3396 
3397 /*
3398  * ffs_lock must be taken by the caller of this function
3399  */
3400 static void _ffs_free_dev(struct ffs_dev *dev)
3401 {
3402 	list_del(&dev->entry);
3403 	if (dev->name_allocated)
3404 		kfree(dev->name);
3405 	kfree(dev);
3406 	if (list_empty(&ffs_devices))
3407 		functionfs_cleanup();
3408 }
3409 
3410 static void *ffs_acquire_dev(const char *dev_name)
3411 {
3412 	struct ffs_dev *ffs_dev;
3413 
3414 	ENTER();
3415 	ffs_dev_lock();
3416 
3417 	ffs_dev = _ffs_find_dev(dev_name);
3418 	if (!ffs_dev)
3419 		ffs_dev = ERR_PTR(-ENOENT);
3420 	else if (ffs_dev->mounted)
3421 		ffs_dev = ERR_PTR(-EBUSY);
3422 	else if (ffs_dev->ffs_acquire_dev_callback &&
3423 	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3424 		ffs_dev = ERR_PTR(-ENOENT);
3425 	else
3426 		ffs_dev->mounted = true;
3427 
3428 	ffs_dev_unlock();
3429 	return ffs_dev;
3430 }
3431 
3432 static void ffs_release_dev(struct ffs_data *ffs_data)
3433 {
3434 	struct ffs_dev *ffs_dev;
3435 
3436 	ENTER();
3437 	ffs_dev_lock();
3438 
3439 	ffs_dev = ffs_data->private_data;
3440 	if (ffs_dev) {
3441 		ffs_dev->mounted = false;
3442 
3443 		if (ffs_dev->ffs_release_dev_callback)
3444 			ffs_dev->ffs_release_dev_callback(ffs_dev);
3445 	}
3446 
3447 	ffs_dev_unlock();
3448 }
3449 
3450 static int ffs_ready(struct ffs_data *ffs)
3451 {
3452 	struct ffs_dev *ffs_obj;
3453 	int ret = 0;
3454 
3455 	ENTER();
3456 	ffs_dev_lock();
3457 
3458 	ffs_obj = ffs->private_data;
3459 	if (!ffs_obj) {
3460 		ret = -EINVAL;
3461 		goto done;
3462 	}
3463 	if (WARN_ON(ffs_obj->desc_ready)) {
3464 		ret = -EBUSY;
3465 		goto done;
3466 	}
3467 
3468 	ffs_obj->desc_ready = true;
3469 	ffs_obj->ffs_data = ffs;
3470 
3471 	if (ffs_obj->ffs_ready_callback)
3472 		ret = ffs_obj->ffs_ready_callback(ffs);
3473 
3474 done:
3475 	ffs_dev_unlock();
3476 	return ret;
3477 }
3478 
3479 static void ffs_closed(struct ffs_data *ffs)
3480 {
3481 	struct ffs_dev *ffs_obj;
3482 
3483 	ENTER();
3484 	ffs_dev_lock();
3485 
3486 	ffs_obj = ffs->private_data;
3487 	if (!ffs_obj)
3488 		goto done;
3489 
3490 	ffs_obj->desc_ready = false;
3491 
3492 	if (ffs_obj->ffs_closed_callback)
3493 		ffs_obj->ffs_closed_callback(ffs);
3494 
3495 	if (!ffs_obj->opts || ffs_obj->opts->no_configfs
3496 	    || !ffs_obj->opts->func_inst.group.cg_item.ci_parent)
3497 		goto done;
3498 
3499 	unregister_gadget_item(ffs_obj->opts->
3500 			       func_inst.group.cg_item.ci_parent->ci_parent);
3501 done:
3502 	ffs_dev_unlock();
3503 }
3504 
3505 /* Misc helper functions ****************************************************/
3506 
3507 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3508 {
3509 	return nonblock
3510 		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3511 		: mutex_lock_interruptible(mutex);
3512 }
3513 
3514 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3515 {
3516 	char *data;
3517 
3518 	if (unlikely(!len))
3519 		return NULL;
3520 
3521 	data = kmalloc(len, GFP_KERNEL);
3522 	if (unlikely(!data))
3523 		return ERR_PTR(-ENOMEM);
3524 
3525 	if (unlikely(__copy_from_user(data, buf, len))) {
3526 		kfree(data);
3527 		return ERR_PTR(-EFAULT);
3528 	}
3529 
3530 	pr_vdebug("Buffer from user space:\n");
3531 	ffs_dump_mem("", data, len);
3532 
3533 	return data;
3534 }
3535 
3536 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3537 MODULE_LICENSE("GPL");
3538 MODULE_AUTHOR("Michal Nazarewicz");
3539