xref: /openbmc/linux/drivers/usb/gadget/function/f_fs.c (revision 799a545b)
1 /*
2  * f_fs.c -- user mode file system API for USB composite function controllers
3  *
4  * Copyright (C) 2010 Samsung Electronics
5  * Author: Michal Nazarewicz <mina86@mina86.com>
6  *
7  * Based on inode.c (GadgetFS) which was:
8  * Copyright (C) 2003-2004 David Brownell
9  * Copyright (C) 2003 Agilent Technologies
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  */
16 
17 
18 /* #define DEBUG */
19 /* #define VERBOSE_DEBUG */
20 
21 #include <linux/blkdev.h>
22 #include <linux/pagemap.h>
23 #include <linux/export.h>
24 #include <linux/hid.h>
25 #include <linux/module.h>
26 #include <linux/uio.h>
27 #include <asm/unaligned.h>
28 
29 #include <linux/usb/composite.h>
30 #include <linux/usb/functionfs.h>
31 
32 #include <linux/aio.h>
33 #include <linux/mmu_context.h>
34 #include <linux/poll.h>
35 #include <linux/eventfd.h>
36 
37 #include "u_fs.h"
38 #include "u_f.h"
39 #include "u_os_desc.h"
40 #include "configfs.h"
41 
42 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
43 
44 /* Reference counter handling */
45 static void ffs_data_get(struct ffs_data *ffs);
46 static void ffs_data_put(struct ffs_data *ffs);
47 /* Creates new ffs_data object. */
48 static struct ffs_data *__must_check ffs_data_new(void) __attribute__((malloc));
49 
50 /* Opened counter handling. */
51 static void ffs_data_opened(struct ffs_data *ffs);
52 static void ffs_data_closed(struct ffs_data *ffs);
53 
54 /* Called with ffs->mutex held; take over ownership of data. */
55 static int __must_check
56 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
57 static int __must_check
58 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
59 
60 
61 /* The function structure ***************************************************/
62 
63 struct ffs_ep;
64 
65 struct ffs_function {
66 	struct usb_configuration	*conf;
67 	struct usb_gadget		*gadget;
68 	struct ffs_data			*ffs;
69 
70 	struct ffs_ep			*eps;
71 	u8				eps_revmap[16];
72 	short				*interfaces_nums;
73 
74 	struct usb_function		function;
75 };
76 
77 
78 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
79 {
80 	return container_of(f, struct ffs_function, function);
81 }
82 
83 
84 static inline enum ffs_setup_state
85 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
86 {
87 	return (enum ffs_setup_state)
88 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
89 }
90 
91 
92 static void ffs_func_eps_disable(struct ffs_function *func);
93 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
94 
95 static int ffs_func_bind(struct usb_configuration *,
96 			 struct usb_function *);
97 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
98 static void ffs_func_disable(struct usb_function *);
99 static int ffs_func_setup(struct usb_function *,
100 			  const struct usb_ctrlrequest *);
101 static void ffs_func_suspend(struct usb_function *);
102 static void ffs_func_resume(struct usb_function *);
103 
104 
105 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
106 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
107 
108 
109 /* The endpoints structures *************************************************/
110 
111 struct ffs_ep {
112 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
113 	struct usb_request		*req;	/* P: epfile->mutex */
114 
115 	/* [0]: full speed, [1]: high speed, [2]: super speed */
116 	struct usb_endpoint_descriptor	*descs[3];
117 
118 	u8				num;
119 
120 	int				status;	/* P: epfile->mutex */
121 };
122 
123 struct ffs_epfile {
124 	/* Protects ep->ep and ep->req. */
125 	struct mutex			mutex;
126 	wait_queue_head_t		wait;
127 
128 	struct ffs_data			*ffs;
129 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
130 
131 	struct dentry			*dentry;
132 
133 	/*
134 	 * Buffer for holding data from partial reads which may happen since
135 	 * we’re rounding user read requests to a multiple of a max packet size.
136 	 */
137 	struct ffs_buffer		*read_buffer;	/* P: epfile->mutex */
138 
139 	char				name[5];
140 
141 	unsigned char			in;	/* P: ffs->eps_lock */
142 	unsigned char			isoc;	/* P: ffs->eps_lock */
143 
144 	unsigned char			_pad;
145 };
146 
147 struct ffs_buffer {
148 	size_t length;
149 	char *data;
150 	char storage[];
151 };
152 
153 /*  ffs_io_data structure ***************************************************/
154 
155 struct ffs_io_data {
156 	bool aio;
157 	bool read;
158 
159 	struct kiocb *kiocb;
160 	struct iov_iter data;
161 	const void *to_free;
162 	char *buf;
163 
164 	struct mm_struct *mm;
165 	struct work_struct work;
166 
167 	struct usb_ep *ep;
168 	struct usb_request *req;
169 
170 	struct ffs_data *ffs;
171 };
172 
173 struct ffs_desc_helper {
174 	struct ffs_data *ffs;
175 	unsigned interfaces_count;
176 	unsigned eps_count;
177 };
178 
179 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
180 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
181 
182 static struct dentry *
183 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
184 		   const struct file_operations *fops);
185 
186 /* Devices management *******************************************************/
187 
188 DEFINE_MUTEX(ffs_lock);
189 EXPORT_SYMBOL_GPL(ffs_lock);
190 
191 static struct ffs_dev *_ffs_find_dev(const char *name);
192 static struct ffs_dev *_ffs_alloc_dev(void);
193 static int _ffs_name_dev(struct ffs_dev *dev, const char *name);
194 static void _ffs_free_dev(struct ffs_dev *dev);
195 static void *ffs_acquire_dev(const char *dev_name);
196 static void ffs_release_dev(struct ffs_data *ffs_data);
197 static int ffs_ready(struct ffs_data *ffs);
198 static void ffs_closed(struct ffs_data *ffs);
199 
200 /* Misc helper functions ****************************************************/
201 
202 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
203 	__attribute__((warn_unused_result, nonnull));
204 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
205 	__attribute__((warn_unused_result, nonnull));
206 
207 
208 /* Control file aka ep0 *****************************************************/
209 
210 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
211 {
212 	struct ffs_data *ffs = req->context;
213 
214 	complete_all(&ffs->ep0req_completion);
215 }
216 
217 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
218 {
219 	struct usb_request *req = ffs->ep0req;
220 	int ret;
221 
222 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
223 
224 	spin_unlock_irq(&ffs->ev.waitq.lock);
225 
226 	req->buf      = data;
227 	req->length   = len;
228 
229 	/*
230 	 * UDC layer requires to provide a buffer even for ZLP, but should
231 	 * not use it at all. Let's provide some poisoned pointer to catch
232 	 * possible bug in the driver.
233 	 */
234 	if (req->buf == NULL)
235 		req->buf = (void *)0xDEADBABE;
236 
237 	reinit_completion(&ffs->ep0req_completion);
238 
239 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
240 	if (unlikely(ret < 0))
241 		return ret;
242 
243 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
244 	if (unlikely(ret)) {
245 		usb_ep_dequeue(ffs->gadget->ep0, req);
246 		return -EINTR;
247 	}
248 
249 	ffs->setup_state = FFS_NO_SETUP;
250 	return req->status ? req->status : req->actual;
251 }
252 
253 static int __ffs_ep0_stall(struct ffs_data *ffs)
254 {
255 	if (ffs->ev.can_stall) {
256 		pr_vdebug("ep0 stall\n");
257 		usb_ep_set_halt(ffs->gadget->ep0);
258 		ffs->setup_state = FFS_NO_SETUP;
259 		return -EL2HLT;
260 	} else {
261 		pr_debug("bogus ep0 stall!\n");
262 		return -ESRCH;
263 	}
264 }
265 
266 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
267 			     size_t len, loff_t *ptr)
268 {
269 	struct ffs_data *ffs = file->private_data;
270 	ssize_t ret;
271 	char *data;
272 
273 	ENTER();
274 
275 	/* Fast check if setup was canceled */
276 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
277 		return -EIDRM;
278 
279 	/* Acquire mutex */
280 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
281 	if (unlikely(ret < 0))
282 		return ret;
283 
284 	/* Check state */
285 	switch (ffs->state) {
286 	case FFS_READ_DESCRIPTORS:
287 	case FFS_READ_STRINGS:
288 		/* Copy data */
289 		if (unlikely(len < 16)) {
290 			ret = -EINVAL;
291 			break;
292 		}
293 
294 		data = ffs_prepare_buffer(buf, len);
295 		if (IS_ERR(data)) {
296 			ret = PTR_ERR(data);
297 			break;
298 		}
299 
300 		/* Handle data */
301 		if (ffs->state == FFS_READ_DESCRIPTORS) {
302 			pr_info("read descriptors\n");
303 			ret = __ffs_data_got_descs(ffs, data, len);
304 			if (unlikely(ret < 0))
305 				break;
306 
307 			ffs->state = FFS_READ_STRINGS;
308 			ret = len;
309 		} else {
310 			pr_info("read strings\n");
311 			ret = __ffs_data_got_strings(ffs, data, len);
312 			if (unlikely(ret < 0))
313 				break;
314 
315 			ret = ffs_epfiles_create(ffs);
316 			if (unlikely(ret)) {
317 				ffs->state = FFS_CLOSING;
318 				break;
319 			}
320 
321 			ffs->state = FFS_ACTIVE;
322 			mutex_unlock(&ffs->mutex);
323 
324 			ret = ffs_ready(ffs);
325 			if (unlikely(ret < 0)) {
326 				ffs->state = FFS_CLOSING;
327 				return ret;
328 			}
329 
330 			return len;
331 		}
332 		break;
333 
334 	case FFS_ACTIVE:
335 		data = NULL;
336 		/*
337 		 * We're called from user space, we can use _irq
338 		 * rather then _irqsave
339 		 */
340 		spin_lock_irq(&ffs->ev.waitq.lock);
341 		switch (ffs_setup_state_clear_cancelled(ffs)) {
342 		case FFS_SETUP_CANCELLED:
343 			ret = -EIDRM;
344 			goto done_spin;
345 
346 		case FFS_NO_SETUP:
347 			ret = -ESRCH;
348 			goto done_spin;
349 
350 		case FFS_SETUP_PENDING:
351 			break;
352 		}
353 
354 		/* FFS_SETUP_PENDING */
355 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
356 			spin_unlock_irq(&ffs->ev.waitq.lock);
357 			ret = __ffs_ep0_stall(ffs);
358 			break;
359 		}
360 
361 		/* FFS_SETUP_PENDING and not stall */
362 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
363 
364 		spin_unlock_irq(&ffs->ev.waitq.lock);
365 
366 		data = ffs_prepare_buffer(buf, len);
367 		if (IS_ERR(data)) {
368 			ret = PTR_ERR(data);
369 			break;
370 		}
371 
372 		spin_lock_irq(&ffs->ev.waitq.lock);
373 
374 		/*
375 		 * We are guaranteed to be still in FFS_ACTIVE state
376 		 * but the state of setup could have changed from
377 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
378 		 * to check for that.  If that happened we copied data
379 		 * from user space in vain but it's unlikely.
380 		 *
381 		 * For sure we are not in FFS_NO_SETUP since this is
382 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
383 		 * transition can be performed and it's protected by
384 		 * mutex.
385 		 */
386 		if (ffs_setup_state_clear_cancelled(ffs) ==
387 		    FFS_SETUP_CANCELLED) {
388 			ret = -EIDRM;
389 done_spin:
390 			spin_unlock_irq(&ffs->ev.waitq.lock);
391 		} else {
392 			/* unlocks spinlock */
393 			ret = __ffs_ep0_queue_wait(ffs, data, len);
394 		}
395 		kfree(data);
396 		break;
397 
398 	default:
399 		ret = -EBADFD;
400 		break;
401 	}
402 
403 	mutex_unlock(&ffs->mutex);
404 	return ret;
405 }
406 
407 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
408 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
409 				     size_t n)
410 {
411 	/*
412 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
413 	 * size of ffs->ev.types array (which is four) so that's how much space
414 	 * we reserve.
415 	 */
416 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
417 	const size_t size = n * sizeof *events;
418 	unsigned i = 0;
419 
420 	memset(events, 0, size);
421 
422 	do {
423 		events[i].type = ffs->ev.types[i];
424 		if (events[i].type == FUNCTIONFS_SETUP) {
425 			events[i].u.setup = ffs->ev.setup;
426 			ffs->setup_state = FFS_SETUP_PENDING;
427 		}
428 	} while (++i < n);
429 
430 	ffs->ev.count -= n;
431 	if (ffs->ev.count)
432 		memmove(ffs->ev.types, ffs->ev.types + n,
433 			ffs->ev.count * sizeof *ffs->ev.types);
434 
435 	spin_unlock_irq(&ffs->ev.waitq.lock);
436 	mutex_unlock(&ffs->mutex);
437 
438 	return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
439 }
440 
441 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
442 			    size_t len, loff_t *ptr)
443 {
444 	struct ffs_data *ffs = file->private_data;
445 	char *data = NULL;
446 	size_t n;
447 	int ret;
448 
449 	ENTER();
450 
451 	/* Fast check if setup was canceled */
452 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
453 		return -EIDRM;
454 
455 	/* Acquire mutex */
456 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
457 	if (unlikely(ret < 0))
458 		return ret;
459 
460 	/* Check state */
461 	if (ffs->state != FFS_ACTIVE) {
462 		ret = -EBADFD;
463 		goto done_mutex;
464 	}
465 
466 	/*
467 	 * We're called from user space, we can use _irq rather then
468 	 * _irqsave
469 	 */
470 	spin_lock_irq(&ffs->ev.waitq.lock);
471 
472 	switch (ffs_setup_state_clear_cancelled(ffs)) {
473 	case FFS_SETUP_CANCELLED:
474 		ret = -EIDRM;
475 		break;
476 
477 	case FFS_NO_SETUP:
478 		n = len / sizeof(struct usb_functionfs_event);
479 		if (unlikely(!n)) {
480 			ret = -EINVAL;
481 			break;
482 		}
483 
484 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
485 			ret = -EAGAIN;
486 			break;
487 		}
488 
489 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
490 							ffs->ev.count)) {
491 			ret = -EINTR;
492 			break;
493 		}
494 
495 		return __ffs_ep0_read_events(ffs, buf,
496 					     min(n, (size_t)ffs->ev.count));
497 
498 	case FFS_SETUP_PENDING:
499 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
500 			spin_unlock_irq(&ffs->ev.waitq.lock);
501 			ret = __ffs_ep0_stall(ffs);
502 			goto done_mutex;
503 		}
504 
505 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
506 
507 		spin_unlock_irq(&ffs->ev.waitq.lock);
508 
509 		if (likely(len)) {
510 			data = kmalloc(len, GFP_KERNEL);
511 			if (unlikely(!data)) {
512 				ret = -ENOMEM;
513 				goto done_mutex;
514 			}
515 		}
516 
517 		spin_lock_irq(&ffs->ev.waitq.lock);
518 
519 		/* See ffs_ep0_write() */
520 		if (ffs_setup_state_clear_cancelled(ffs) ==
521 		    FFS_SETUP_CANCELLED) {
522 			ret = -EIDRM;
523 			break;
524 		}
525 
526 		/* unlocks spinlock */
527 		ret = __ffs_ep0_queue_wait(ffs, data, len);
528 		if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
529 			ret = -EFAULT;
530 		goto done_mutex;
531 
532 	default:
533 		ret = -EBADFD;
534 		break;
535 	}
536 
537 	spin_unlock_irq(&ffs->ev.waitq.lock);
538 done_mutex:
539 	mutex_unlock(&ffs->mutex);
540 	kfree(data);
541 	return ret;
542 }
543 
544 static int ffs_ep0_open(struct inode *inode, struct file *file)
545 {
546 	struct ffs_data *ffs = inode->i_private;
547 
548 	ENTER();
549 
550 	if (unlikely(ffs->state == FFS_CLOSING))
551 		return -EBUSY;
552 
553 	file->private_data = ffs;
554 	ffs_data_opened(ffs);
555 
556 	return 0;
557 }
558 
559 static int ffs_ep0_release(struct inode *inode, struct file *file)
560 {
561 	struct ffs_data *ffs = file->private_data;
562 
563 	ENTER();
564 
565 	ffs_data_closed(ffs);
566 
567 	return 0;
568 }
569 
570 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
571 {
572 	struct ffs_data *ffs = file->private_data;
573 	struct usb_gadget *gadget = ffs->gadget;
574 	long ret;
575 
576 	ENTER();
577 
578 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
579 		struct ffs_function *func = ffs->func;
580 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
581 	} else if (gadget && gadget->ops->ioctl) {
582 		ret = gadget->ops->ioctl(gadget, code, value);
583 	} else {
584 		ret = -ENOTTY;
585 	}
586 
587 	return ret;
588 }
589 
590 static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait)
591 {
592 	struct ffs_data *ffs = file->private_data;
593 	unsigned int mask = POLLWRNORM;
594 	int ret;
595 
596 	poll_wait(file, &ffs->ev.waitq, wait);
597 
598 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
599 	if (unlikely(ret < 0))
600 		return mask;
601 
602 	switch (ffs->state) {
603 	case FFS_READ_DESCRIPTORS:
604 	case FFS_READ_STRINGS:
605 		mask |= POLLOUT;
606 		break;
607 
608 	case FFS_ACTIVE:
609 		switch (ffs->setup_state) {
610 		case FFS_NO_SETUP:
611 			if (ffs->ev.count)
612 				mask |= POLLIN;
613 			break;
614 
615 		case FFS_SETUP_PENDING:
616 		case FFS_SETUP_CANCELLED:
617 			mask |= (POLLIN | POLLOUT);
618 			break;
619 		}
620 	case FFS_CLOSING:
621 		break;
622 	case FFS_DEACTIVATED:
623 		break;
624 	}
625 
626 	mutex_unlock(&ffs->mutex);
627 
628 	return mask;
629 }
630 
631 static const struct file_operations ffs_ep0_operations = {
632 	.llseek =	no_llseek,
633 
634 	.open =		ffs_ep0_open,
635 	.write =	ffs_ep0_write,
636 	.read =		ffs_ep0_read,
637 	.release =	ffs_ep0_release,
638 	.unlocked_ioctl =	ffs_ep0_ioctl,
639 	.poll =		ffs_ep0_poll,
640 };
641 
642 
643 /* "Normal" endpoints operations ********************************************/
644 
645 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
646 {
647 	ENTER();
648 	if (likely(req->context)) {
649 		struct ffs_ep *ep = _ep->driver_data;
650 		ep->status = req->status ? req->status : req->actual;
651 		complete(req->context);
652 	}
653 }
654 
655 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
656 {
657 	ssize_t ret = copy_to_iter(data, data_len, iter);
658 	if (likely(ret == data_len))
659 		return ret;
660 
661 	if (unlikely(iov_iter_count(iter)))
662 		return -EFAULT;
663 
664 	/*
665 	 * Dear user space developer!
666 	 *
667 	 * TL;DR: To stop getting below error message in your kernel log, change
668 	 * user space code using functionfs to align read buffers to a max
669 	 * packet size.
670 	 *
671 	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
672 	 * packet size.  When unaligned buffer is passed to functionfs, it
673 	 * internally uses a larger, aligned buffer so that such UDCs are happy.
674 	 *
675 	 * Unfortunately, this means that host may send more data than was
676 	 * requested in read(2) system call.  f_fs doesn’t know what to do with
677 	 * that excess data so it simply drops it.
678 	 *
679 	 * Was the buffer aligned in the first place, no such problem would
680 	 * happen.
681 	 *
682 	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
683 	 * by splitting a request into multiple parts.  This splitting may still
684 	 * be a problem though so it’s likely best to align the buffer
685 	 * regardless of it being AIO or not..
686 	 *
687 	 * This only affects OUT endpoints, i.e. reading data with a read(2),
688 	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
689 	 * affected.
690 	 */
691 	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
692 	       "Align read buffer size to max packet size to avoid the problem.\n",
693 	       data_len, ret);
694 
695 	return ret;
696 }
697 
698 static void ffs_user_copy_worker(struct work_struct *work)
699 {
700 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
701 						   work);
702 	int ret = io_data->req->status ? io_data->req->status :
703 					 io_data->req->actual;
704 	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
705 
706 	if (io_data->read && ret > 0) {
707 		use_mm(io_data->mm);
708 		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
709 		unuse_mm(io_data->mm);
710 	}
711 
712 	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
713 
714 	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
715 		eventfd_signal(io_data->ffs->ffs_eventfd, 1);
716 
717 	usb_ep_free_request(io_data->ep, io_data->req);
718 
719 	if (io_data->read)
720 		kfree(io_data->to_free);
721 	kfree(io_data->buf);
722 	kfree(io_data);
723 }
724 
725 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
726 					 struct usb_request *req)
727 {
728 	struct ffs_io_data *io_data = req->context;
729 
730 	ENTER();
731 
732 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
733 	schedule_work(&io_data->work);
734 }
735 
736 /* Assumes epfile->mutex is held. */
737 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
738 					  struct iov_iter *iter)
739 {
740 	struct ffs_buffer *buf = epfile->read_buffer;
741 	ssize_t ret;
742 	if (!buf)
743 		return 0;
744 
745 	ret = copy_to_iter(buf->data, buf->length, iter);
746 	if (buf->length == ret) {
747 		kfree(buf);
748 		epfile->read_buffer = NULL;
749 	} else if (unlikely(iov_iter_count(iter))) {
750 		ret = -EFAULT;
751 	} else {
752 		buf->length -= ret;
753 		buf->data += ret;
754 	}
755 	return ret;
756 }
757 
758 /* Assumes epfile->mutex is held. */
759 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
760 				      void *data, int data_len,
761 				      struct iov_iter *iter)
762 {
763 	struct ffs_buffer *buf;
764 
765 	ssize_t ret = copy_to_iter(data, data_len, iter);
766 	if (likely(data_len == ret))
767 		return ret;
768 
769 	if (unlikely(iov_iter_count(iter)))
770 		return -EFAULT;
771 
772 	/* See ffs_copy_to_iter for more context. */
773 	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
774 		data_len, ret);
775 
776 	data_len -= ret;
777 	buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
778 	if (!buf)
779 		return -ENOMEM;
780 	buf->length = data_len;
781 	buf->data = buf->storage;
782 	memcpy(buf->storage, data + ret, data_len);
783 	epfile->read_buffer = buf;
784 
785 	return ret;
786 }
787 
788 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
789 {
790 	struct ffs_epfile *epfile = file->private_data;
791 	struct usb_request *req;
792 	struct ffs_ep *ep;
793 	char *data = NULL;
794 	ssize_t ret, data_len = -EINVAL;
795 	int halt;
796 
797 	/* Are we still active? */
798 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
799 		return -ENODEV;
800 
801 	/* Wait for endpoint to be enabled */
802 	ep = epfile->ep;
803 	if (!ep) {
804 		if (file->f_flags & O_NONBLOCK)
805 			return -EAGAIN;
806 
807 		ret = wait_event_interruptible(epfile->wait, (ep = epfile->ep));
808 		if (ret)
809 			return -EINTR;
810 	}
811 
812 	/* Do we halt? */
813 	halt = (!io_data->read == !epfile->in);
814 	if (halt && epfile->isoc)
815 		return -EINVAL;
816 
817 	/* We will be using request and read_buffer */
818 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
819 	if (unlikely(ret))
820 		goto error;
821 
822 	/* Allocate & copy */
823 	if (!halt) {
824 		struct usb_gadget *gadget;
825 
826 		/*
827 		 * Do we have buffered data from previous partial read?  Check
828 		 * that for synchronous case only because we do not have
829 		 * facility to ‘wake up’ a pending asynchronous read and push
830 		 * buffered data to it which we would need to make things behave
831 		 * consistently.
832 		 */
833 		if (!io_data->aio && io_data->read) {
834 			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
835 			if (ret)
836 				goto error_mutex;
837 		}
838 
839 		/*
840 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
841 		 * before the waiting completes, so do not assign to 'gadget'
842 		 * earlier
843 		 */
844 		gadget = epfile->ffs->gadget;
845 
846 		spin_lock_irq(&epfile->ffs->eps_lock);
847 		/* In the meantime, endpoint got disabled or changed. */
848 		if (epfile->ep != ep) {
849 			ret = -ESHUTDOWN;
850 			goto error_lock;
851 		}
852 		data_len = iov_iter_count(&io_data->data);
853 		/*
854 		 * Controller may require buffer size to be aligned to
855 		 * maxpacketsize of an out endpoint.
856 		 */
857 		if (io_data->read)
858 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
859 		spin_unlock_irq(&epfile->ffs->eps_lock);
860 
861 		data = kmalloc(data_len, GFP_KERNEL);
862 		if (unlikely(!data)) {
863 			ret = -ENOMEM;
864 			goto error_mutex;
865 		}
866 		if (!io_data->read &&
867 		    copy_from_iter(data, data_len, &io_data->data) != data_len) {
868 			ret = -EFAULT;
869 			goto error_mutex;
870 		}
871 	}
872 
873 	spin_lock_irq(&epfile->ffs->eps_lock);
874 
875 	if (epfile->ep != ep) {
876 		/* In the meantime, endpoint got disabled or changed. */
877 		ret = -ESHUTDOWN;
878 	} else if (halt) {
879 		/* Halt */
880 		if (likely(epfile->ep == ep) && !WARN_ON(!ep->ep))
881 			usb_ep_set_halt(ep->ep);
882 		ret = -EBADMSG;
883 	} else if (unlikely(data_len == -EINVAL)) {
884 		/*
885 		 * Sanity Check: even though data_len can't be used
886 		 * uninitialized at the time I write this comment, some
887 		 * compilers complain about this situation.
888 		 * In order to keep the code clean from warnings, data_len is
889 		 * being initialized to -EINVAL during its declaration, which
890 		 * means we can't rely on compiler anymore to warn no future
891 		 * changes won't result in data_len being used uninitialized.
892 		 * For such reason, we're adding this redundant sanity check
893 		 * here.
894 		 */
895 		WARN(1, "%s: data_len == -EINVAL\n", __func__);
896 		ret = -EINVAL;
897 	} else if (!io_data->aio) {
898 		DECLARE_COMPLETION_ONSTACK(done);
899 		bool interrupted = false;
900 
901 		req = ep->req;
902 		req->buf      = data;
903 		req->length   = data_len;
904 
905 		req->context  = &done;
906 		req->complete = ffs_epfile_io_complete;
907 
908 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
909 		if (unlikely(ret < 0))
910 			goto error_lock;
911 
912 		spin_unlock_irq(&epfile->ffs->eps_lock);
913 
914 		if (unlikely(wait_for_completion_interruptible(&done))) {
915 			/*
916 			 * To avoid race condition with ffs_epfile_io_complete,
917 			 * dequeue the request first then check
918 			 * status. usb_ep_dequeue API should guarantee no race
919 			 * condition with req->complete callback.
920 			 */
921 			usb_ep_dequeue(ep->ep, req);
922 			interrupted = ep->status < 0;
923 		}
924 
925 		if (interrupted)
926 			ret = -EINTR;
927 		else if (io_data->read && ep->status > 0)
928 			ret = __ffs_epfile_read_data(epfile, data, ep->status,
929 						     &io_data->data);
930 		else
931 			ret = ep->status;
932 		goto error_mutex;
933 	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_KERNEL))) {
934 		ret = -ENOMEM;
935 	} else {
936 		req->buf      = data;
937 		req->length   = data_len;
938 
939 		io_data->buf = data;
940 		io_data->ep = ep->ep;
941 		io_data->req = req;
942 		io_data->ffs = epfile->ffs;
943 
944 		req->context  = io_data;
945 		req->complete = ffs_epfile_async_io_complete;
946 
947 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
948 		if (unlikely(ret)) {
949 			usb_ep_free_request(ep->ep, req);
950 			goto error_lock;
951 		}
952 
953 		ret = -EIOCBQUEUED;
954 		/*
955 		 * Do not kfree the buffer in this function.  It will be freed
956 		 * by ffs_user_copy_worker.
957 		 */
958 		data = NULL;
959 	}
960 
961 error_lock:
962 	spin_unlock_irq(&epfile->ffs->eps_lock);
963 error_mutex:
964 	mutex_unlock(&epfile->mutex);
965 error:
966 	kfree(data);
967 	return ret;
968 }
969 
970 static int
971 ffs_epfile_open(struct inode *inode, struct file *file)
972 {
973 	struct ffs_epfile *epfile = inode->i_private;
974 
975 	ENTER();
976 
977 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
978 		return -ENODEV;
979 
980 	file->private_data = epfile;
981 	ffs_data_opened(epfile->ffs);
982 
983 	return 0;
984 }
985 
986 static int ffs_aio_cancel(struct kiocb *kiocb)
987 {
988 	struct ffs_io_data *io_data = kiocb->private;
989 	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
990 	int value;
991 
992 	ENTER();
993 
994 	spin_lock_irq(&epfile->ffs->eps_lock);
995 
996 	if (likely(io_data && io_data->ep && io_data->req))
997 		value = usb_ep_dequeue(io_data->ep, io_data->req);
998 	else
999 		value = -EINVAL;
1000 
1001 	spin_unlock_irq(&epfile->ffs->eps_lock);
1002 
1003 	return value;
1004 }
1005 
1006 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1007 {
1008 	struct ffs_io_data io_data, *p = &io_data;
1009 	ssize_t res;
1010 
1011 	ENTER();
1012 
1013 	if (!is_sync_kiocb(kiocb)) {
1014 		p = kmalloc(sizeof(io_data), GFP_KERNEL);
1015 		if (unlikely(!p))
1016 			return -ENOMEM;
1017 		p->aio = true;
1018 	} else {
1019 		p->aio = false;
1020 	}
1021 
1022 	p->read = false;
1023 	p->kiocb = kiocb;
1024 	p->data = *from;
1025 	p->mm = current->mm;
1026 
1027 	kiocb->private = p;
1028 
1029 	if (p->aio)
1030 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1031 
1032 	res = ffs_epfile_io(kiocb->ki_filp, p);
1033 	if (res == -EIOCBQUEUED)
1034 		return res;
1035 	if (p->aio)
1036 		kfree(p);
1037 	else
1038 		*from = p->data;
1039 	return res;
1040 }
1041 
1042 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1043 {
1044 	struct ffs_io_data io_data, *p = &io_data;
1045 	ssize_t res;
1046 
1047 	ENTER();
1048 
1049 	if (!is_sync_kiocb(kiocb)) {
1050 		p = kmalloc(sizeof(io_data), GFP_KERNEL);
1051 		if (unlikely(!p))
1052 			return -ENOMEM;
1053 		p->aio = true;
1054 	} else {
1055 		p->aio = false;
1056 	}
1057 
1058 	p->read = true;
1059 	p->kiocb = kiocb;
1060 	if (p->aio) {
1061 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1062 		if (!p->to_free) {
1063 			kfree(p);
1064 			return -ENOMEM;
1065 		}
1066 	} else {
1067 		p->data = *to;
1068 		p->to_free = NULL;
1069 	}
1070 	p->mm = current->mm;
1071 
1072 	kiocb->private = p;
1073 
1074 	if (p->aio)
1075 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1076 
1077 	res = ffs_epfile_io(kiocb->ki_filp, p);
1078 	if (res == -EIOCBQUEUED)
1079 		return res;
1080 
1081 	if (p->aio) {
1082 		kfree(p->to_free);
1083 		kfree(p);
1084 	} else {
1085 		*to = p->data;
1086 	}
1087 	return res;
1088 }
1089 
1090 static int
1091 ffs_epfile_release(struct inode *inode, struct file *file)
1092 {
1093 	struct ffs_epfile *epfile = inode->i_private;
1094 
1095 	ENTER();
1096 
1097 	kfree(epfile->read_buffer);
1098 	epfile->read_buffer = NULL;
1099 	ffs_data_closed(epfile->ffs);
1100 
1101 	return 0;
1102 }
1103 
1104 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1105 			     unsigned long value)
1106 {
1107 	struct ffs_epfile *epfile = file->private_data;
1108 	int ret;
1109 
1110 	ENTER();
1111 
1112 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1113 		return -ENODEV;
1114 
1115 	spin_lock_irq(&epfile->ffs->eps_lock);
1116 	if (likely(epfile->ep)) {
1117 		switch (code) {
1118 		case FUNCTIONFS_FIFO_STATUS:
1119 			ret = usb_ep_fifo_status(epfile->ep->ep);
1120 			break;
1121 		case FUNCTIONFS_FIFO_FLUSH:
1122 			usb_ep_fifo_flush(epfile->ep->ep);
1123 			ret = 0;
1124 			break;
1125 		case FUNCTIONFS_CLEAR_HALT:
1126 			ret = usb_ep_clear_halt(epfile->ep->ep);
1127 			break;
1128 		case FUNCTIONFS_ENDPOINT_REVMAP:
1129 			ret = epfile->ep->num;
1130 			break;
1131 		case FUNCTIONFS_ENDPOINT_DESC:
1132 		{
1133 			int desc_idx;
1134 			struct usb_endpoint_descriptor *desc;
1135 
1136 			switch (epfile->ffs->gadget->speed) {
1137 			case USB_SPEED_SUPER:
1138 				desc_idx = 2;
1139 				break;
1140 			case USB_SPEED_HIGH:
1141 				desc_idx = 1;
1142 				break;
1143 			default:
1144 				desc_idx = 0;
1145 			}
1146 			desc = epfile->ep->descs[desc_idx];
1147 
1148 			spin_unlock_irq(&epfile->ffs->eps_lock);
1149 			ret = copy_to_user((void *)value, desc, sizeof(*desc));
1150 			if (ret)
1151 				ret = -EFAULT;
1152 			return ret;
1153 		}
1154 		default:
1155 			ret = -ENOTTY;
1156 		}
1157 	} else {
1158 		ret = -ENODEV;
1159 	}
1160 	spin_unlock_irq(&epfile->ffs->eps_lock);
1161 
1162 	return ret;
1163 }
1164 
1165 static const struct file_operations ffs_epfile_operations = {
1166 	.llseek =	no_llseek,
1167 
1168 	.open =		ffs_epfile_open,
1169 	.write_iter =	ffs_epfile_write_iter,
1170 	.read_iter =	ffs_epfile_read_iter,
1171 	.release =	ffs_epfile_release,
1172 	.unlocked_ioctl =	ffs_epfile_ioctl,
1173 };
1174 
1175 
1176 /* File system and super block operations ***********************************/
1177 
1178 /*
1179  * Mounting the file system creates a controller file, used first for
1180  * function configuration then later for event monitoring.
1181  */
1182 
1183 static struct inode *__must_check
1184 ffs_sb_make_inode(struct super_block *sb, void *data,
1185 		  const struct file_operations *fops,
1186 		  const struct inode_operations *iops,
1187 		  struct ffs_file_perms *perms)
1188 {
1189 	struct inode *inode;
1190 
1191 	ENTER();
1192 
1193 	inode = new_inode(sb);
1194 
1195 	if (likely(inode)) {
1196 		struct timespec current_time = CURRENT_TIME;
1197 
1198 		inode->i_ino	 = get_next_ino();
1199 		inode->i_mode    = perms->mode;
1200 		inode->i_uid     = perms->uid;
1201 		inode->i_gid     = perms->gid;
1202 		inode->i_atime   = current_time;
1203 		inode->i_mtime   = current_time;
1204 		inode->i_ctime   = current_time;
1205 		inode->i_private = data;
1206 		if (fops)
1207 			inode->i_fop = fops;
1208 		if (iops)
1209 			inode->i_op  = iops;
1210 	}
1211 
1212 	return inode;
1213 }
1214 
1215 /* Create "regular" file */
1216 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1217 					const char *name, void *data,
1218 					const struct file_operations *fops)
1219 {
1220 	struct ffs_data	*ffs = sb->s_fs_info;
1221 	struct dentry	*dentry;
1222 	struct inode	*inode;
1223 
1224 	ENTER();
1225 
1226 	dentry = d_alloc_name(sb->s_root, name);
1227 	if (unlikely(!dentry))
1228 		return NULL;
1229 
1230 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1231 	if (unlikely(!inode)) {
1232 		dput(dentry);
1233 		return NULL;
1234 	}
1235 
1236 	d_add(dentry, inode);
1237 	return dentry;
1238 }
1239 
1240 /* Super block */
1241 static const struct super_operations ffs_sb_operations = {
1242 	.statfs =	simple_statfs,
1243 	.drop_inode =	generic_delete_inode,
1244 };
1245 
1246 struct ffs_sb_fill_data {
1247 	struct ffs_file_perms perms;
1248 	umode_t root_mode;
1249 	const char *dev_name;
1250 	bool no_disconnect;
1251 	struct ffs_data *ffs_data;
1252 };
1253 
1254 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1255 {
1256 	struct ffs_sb_fill_data *data = _data;
1257 	struct inode	*inode;
1258 	struct ffs_data	*ffs = data->ffs_data;
1259 
1260 	ENTER();
1261 
1262 	ffs->sb              = sb;
1263 	data->ffs_data       = NULL;
1264 	sb->s_fs_info        = ffs;
1265 	sb->s_blocksize      = PAGE_SIZE;
1266 	sb->s_blocksize_bits = PAGE_SHIFT;
1267 	sb->s_magic          = FUNCTIONFS_MAGIC;
1268 	sb->s_op             = &ffs_sb_operations;
1269 	sb->s_time_gran      = 1;
1270 
1271 	/* Root inode */
1272 	data->perms.mode = data->root_mode;
1273 	inode = ffs_sb_make_inode(sb, NULL,
1274 				  &simple_dir_operations,
1275 				  &simple_dir_inode_operations,
1276 				  &data->perms);
1277 	sb->s_root = d_make_root(inode);
1278 	if (unlikely(!sb->s_root))
1279 		return -ENOMEM;
1280 
1281 	/* EP0 file */
1282 	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1283 					 &ffs_ep0_operations)))
1284 		return -ENOMEM;
1285 
1286 	return 0;
1287 }
1288 
1289 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1290 {
1291 	ENTER();
1292 
1293 	if (!opts || !*opts)
1294 		return 0;
1295 
1296 	for (;;) {
1297 		unsigned long value;
1298 		char *eq, *comma;
1299 
1300 		/* Option limit */
1301 		comma = strchr(opts, ',');
1302 		if (comma)
1303 			*comma = 0;
1304 
1305 		/* Value limit */
1306 		eq = strchr(opts, '=');
1307 		if (unlikely(!eq)) {
1308 			pr_err("'=' missing in %s\n", opts);
1309 			return -EINVAL;
1310 		}
1311 		*eq = 0;
1312 
1313 		/* Parse value */
1314 		if (kstrtoul(eq + 1, 0, &value)) {
1315 			pr_err("%s: invalid value: %s\n", opts, eq + 1);
1316 			return -EINVAL;
1317 		}
1318 
1319 		/* Interpret option */
1320 		switch (eq - opts) {
1321 		case 13:
1322 			if (!memcmp(opts, "no_disconnect", 13))
1323 				data->no_disconnect = !!value;
1324 			else
1325 				goto invalid;
1326 			break;
1327 		case 5:
1328 			if (!memcmp(opts, "rmode", 5))
1329 				data->root_mode  = (value & 0555) | S_IFDIR;
1330 			else if (!memcmp(opts, "fmode", 5))
1331 				data->perms.mode = (value & 0666) | S_IFREG;
1332 			else
1333 				goto invalid;
1334 			break;
1335 
1336 		case 4:
1337 			if (!memcmp(opts, "mode", 4)) {
1338 				data->root_mode  = (value & 0555) | S_IFDIR;
1339 				data->perms.mode = (value & 0666) | S_IFREG;
1340 			} else {
1341 				goto invalid;
1342 			}
1343 			break;
1344 
1345 		case 3:
1346 			if (!memcmp(opts, "uid", 3)) {
1347 				data->perms.uid = make_kuid(current_user_ns(), value);
1348 				if (!uid_valid(data->perms.uid)) {
1349 					pr_err("%s: unmapped value: %lu\n", opts, value);
1350 					return -EINVAL;
1351 				}
1352 			} else if (!memcmp(opts, "gid", 3)) {
1353 				data->perms.gid = make_kgid(current_user_ns(), value);
1354 				if (!gid_valid(data->perms.gid)) {
1355 					pr_err("%s: unmapped value: %lu\n", opts, value);
1356 					return -EINVAL;
1357 				}
1358 			} else {
1359 				goto invalid;
1360 			}
1361 			break;
1362 
1363 		default:
1364 invalid:
1365 			pr_err("%s: invalid option\n", opts);
1366 			return -EINVAL;
1367 		}
1368 
1369 		/* Next iteration */
1370 		if (!comma)
1371 			break;
1372 		opts = comma + 1;
1373 	}
1374 
1375 	return 0;
1376 }
1377 
1378 /* "mount -t functionfs dev_name /dev/function" ends up here */
1379 
1380 static struct dentry *
1381 ffs_fs_mount(struct file_system_type *t, int flags,
1382 	      const char *dev_name, void *opts)
1383 {
1384 	struct ffs_sb_fill_data data = {
1385 		.perms = {
1386 			.mode = S_IFREG | 0600,
1387 			.uid = GLOBAL_ROOT_UID,
1388 			.gid = GLOBAL_ROOT_GID,
1389 		},
1390 		.root_mode = S_IFDIR | 0500,
1391 		.no_disconnect = false,
1392 	};
1393 	struct dentry *rv;
1394 	int ret;
1395 	void *ffs_dev;
1396 	struct ffs_data	*ffs;
1397 
1398 	ENTER();
1399 
1400 	ret = ffs_fs_parse_opts(&data, opts);
1401 	if (unlikely(ret < 0))
1402 		return ERR_PTR(ret);
1403 
1404 	ffs = ffs_data_new();
1405 	if (unlikely(!ffs))
1406 		return ERR_PTR(-ENOMEM);
1407 	ffs->file_perms = data.perms;
1408 	ffs->no_disconnect = data.no_disconnect;
1409 
1410 	ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1411 	if (unlikely(!ffs->dev_name)) {
1412 		ffs_data_put(ffs);
1413 		return ERR_PTR(-ENOMEM);
1414 	}
1415 
1416 	ffs_dev = ffs_acquire_dev(dev_name);
1417 	if (IS_ERR(ffs_dev)) {
1418 		ffs_data_put(ffs);
1419 		return ERR_CAST(ffs_dev);
1420 	}
1421 	ffs->private_data = ffs_dev;
1422 	data.ffs_data = ffs;
1423 
1424 	rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1425 	if (IS_ERR(rv) && data.ffs_data) {
1426 		ffs_release_dev(data.ffs_data);
1427 		ffs_data_put(data.ffs_data);
1428 	}
1429 	return rv;
1430 }
1431 
1432 static void
1433 ffs_fs_kill_sb(struct super_block *sb)
1434 {
1435 	ENTER();
1436 
1437 	kill_litter_super(sb);
1438 	if (sb->s_fs_info) {
1439 		ffs_release_dev(sb->s_fs_info);
1440 		ffs_data_closed(sb->s_fs_info);
1441 		ffs_data_put(sb->s_fs_info);
1442 	}
1443 }
1444 
1445 static struct file_system_type ffs_fs_type = {
1446 	.owner		= THIS_MODULE,
1447 	.name		= "functionfs",
1448 	.mount		= ffs_fs_mount,
1449 	.kill_sb	= ffs_fs_kill_sb,
1450 };
1451 MODULE_ALIAS_FS("functionfs");
1452 
1453 
1454 /* Driver's main init/cleanup functions *************************************/
1455 
1456 static int functionfs_init(void)
1457 {
1458 	int ret;
1459 
1460 	ENTER();
1461 
1462 	ret = register_filesystem(&ffs_fs_type);
1463 	if (likely(!ret))
1464 		pr_info("file system registered\n");
1465 	else
1466 		pr_err("failed registering file system (%d)\n", ret);
1467 
1468 	return ret;
1469 }
1470 
1471 static void functionfs_cleanup(void)
1472 {
1473 	ENTER();
1474 
1475 	pr_info("unloading\n");
1476 	unregister_filesystem(&ffs_fs_type);
1477 }
1478 
1479 
1480 /* ffs_data and ffs_function construction and destruction code **************/
1481 
1482 static void ffs_data_clear(struct ffs_data *ffs);
1483 static void ffs_data_reset(struct ffs_data *ffs);
1484 
1485 static void ffs_data_get(struct ffs_data *ffs)
1486 {
1487 	ENTER();
1488 
1489 	atomic_inc(&ffs->ref);
1490 }
1491 
1492 static void ffs_data_opened(struct ffs_data *ffs)
1493 {
1494 	ENTER();
1495 
1496 	atomic_inc(&ffs->ref);
1497 	if (atomic_add_return(1, &ffs->opened) == 1 &&
1498 			ffs->state == FFS_DEACTIVATED) {
1499 		ffs->state = FFS_CLOSING;
1500 		ffs_data_reset(ffs);
1501 	}
1502 }
1503 
1504 static void ffs_data_put(struct ffs_data *ffs)
1505 {
1506 	ENTER();
1507 
1508 	if (unlikely(atomic_dec_and_test(&ffs->ref))) {
1509 		pr_info("%s(): freeing\n", __func__);
1510 		ffs_data_clear(ffs);
1511 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1512 		       waitqueue_active(&ffs->ep0req_completion.wait));
1513 		kfree(ffs->dev_name);
1514 		kfree(ffs);
1515 	}
1516 }
1517 
1518 static void ffs_data_closed(struct ffs_data *ffs)
1519 {
1520 	ENTER();
1521 
1522 	if (atomic_dec_and_test(&ffs->opened)) {
1523 		if (ffs->no_disconnect) {
1524 			ffs->state = FFS_DEACTIVATED;
1525 			if (ffs->epfiles) {
1526 				ffs_epfiles_destroy(ffs->epfiles,
1527 						   ffs->eps_count);
1528 				ffs->epfiles = NULL;
1529 			}
1530 			if (ffs->setup_state == FFS_SETUP_PENDING)
1531 				__ffs_ep0_stall(ffs);
1532 		} else {
1533 			ffs->state = FFS_CLOSING;
1534 			ffs_data_reset(ffs);
1535 		}
1536 	}
1537 	if (atomic_read(&ffs->opened) < 0) {
1538 		ffs->state = FFS_CLOSING;
1539 		ffs_data_reset(ffs);
1540 	}
1541 
1542 	ffs_data_put(ffs);
1543 }
1544 
1545 static struct ffs_data *ffs_data_new(void)
1546 {
1547 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1548 	if (unlikely(!ffs))
1549 		return NULL;
1550 
1551 	ENTER();
1552 
1553 	atomic_set(&ffs->ref, 1);
1554 	atomic_set(&ffs->opened, 0);
1555 	ffs->state = FFS_READ_DESCRIPTORS;
1556 	mutex_init(&ffs->mutex);
1557 	spin_lock_init(&ffs->eps_lock);
1558 	init_waitqueue_head(&ffs->ev.waitq);
1559 	init_completion(&ffs->ep0req_completion);
1560 
1561 	/* XXX REVISIT need to update it in some places, or do we? */
1562 	ffs->ev.can_stall = 1;
1563 
1564 	return ffs;
1565 }
1566 
1567 static void ffs_data_clear(struct ffs_data *ffs)
1568 {
1569 	ENTER();
1570 
1571 	ffs_closed(ffs);
1572 
1573 	BUG_ON(ffs->gadget);
1574 
1575 	if (ffs->epfiles)
1576 		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1577 
1578 	if (ffs->ffs_eventfd)
1579 		eventfd_ctx_put(ffs->ffs_eventfd);
1580 
1581 	kfree(ffs->raw_descs_data);
1582 	kfree(ffs->raw_strings);
1583 	kfree(ffs->stringtabs);
1584 }
1585 
1586 static void ffs_data_reset(struct ffs_data *ffs)
1587 {
1588 	ENTER();
1589 
1590 	ffs_data_clear(ffs);
1591 
1592 	ffs->epfiles = NULL;
1593 	ffs->raw_descs_data = NULL;
1594 	ffs->raw_descs = NULL;
1595 	ffs->raw_strings = NULL;
1596 	ffs->stringtabs = NULL;
1597 
1598 	ffs->raw_descs_length = 0;
1599 	ffs->fs_descs_count = 0;
1600 	ffs->hs_descs_count = 0;
1601 	ffs->ss_descs_count = 0;
1602 
1603 	ffs->strings_count = 0;
1604 	ffs->interfaces_count = 0;
1605 	ffs->eps_count = 0;
1606 
1607 	ffs->ev.count = 0;
1608 
1609 	ffs->state = FFS_READ_DESCRIPTORS;
1610 	ffs->setup_state = FFS_NO_SETUP;
1611 	ffs->flags = 0;
1612 }
1613 
1614 
1615 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1616 {
1617 	struct usb_gadget_strings **lang;
1618 	int first_id;
1619 
1620 	ENTER();
1621 
1622 	if (WARN_ON(ffs->state != FFS_ACTIVE
1623 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1624 		return -EBADFD;
1625 
1626 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1627 	if (unlikely(first_id < 0))
1628 		return first_id;
1629 
1630 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1631 	if (unlikely(!ffs->ep0req))
1632 		return -ENOMEM;
1633 	ffs->ep0req->complete = ffs_ep0_complete;
1634 	ffs->ep0req->context = ffs;
1635 
1636 	lang = ffs->stringtabs;
1637 	if (lang) {
1638 		for (; *lang; ++lang) {
1639 			struct usb_string *str = (*lang)->strings;
1640 			int id = first_id;
1641 			for (; str->s; ++id, ++str)
1642 				str->id = id;
1643 		}
1644 	}
1645 
1646 	ffs->gadget = cdev->gadget;
1647 	ffs_data_get(ffs);
1648 	return 0;
1649 }
1650 
1651 static void functionfs_unbind(struct ffs_data *ffs)
1652 {
1653 	ENTER();
1654 
1655 	if (!WARN_ON(!ffs->gadget)) {
1656 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1657 		ffs->ep0req = NULL;
1658 		ffs->gadget = NULL;
1659 		clear_bit(FFS_FL_BOUND, &ffs->flags);
1660 		ffs_data_put(ffs);
1661 	}
1662 }
1663 
1664 static int ffs_epfiles_create(struct ffs_data *ffs)
1665 {
1666 	struct ffs_epfile *epfile, *epfiles;
1667 	unsigned i, count;
1668 
1669 	ENTER();
1670 
1671 	count = ffs->eps_count;
1672 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1673 	if (!epfiles)
1674 		return -ENOMEM;
1675 
1676 	epfile = epfiles;
1677 	for (i = 1; i <= count; ++i, ++epfile) {
1678 		epfile->ffs = ffs;
1679 		mutex_init(&epfile->mutex);
1680 		init_waitqueue_head(&epfile->wait);
1681 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1682 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1683 		else
1684 			sprintf(epfile->name, "ep%u", i);
1685 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1686 						 epfile,
1687 						 &ffs_epfile_operations);
1688 		if (unlikely(!epfile->dentry)) {
1689 			ffs_epfiles_destroy(epfiles, i - 1);
1690 			return -ENOMEM;
1691 		}
1692 	}
1693 
1694 	ffs->epfiles = epfiles;
1695 	return 0;
1696 }
1697 
1698 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1699 {
1700 	struct ffs_epfile *epfile = epfiles;
1701 
1702 	ENTER();
1703 
1704 	for (; count; --count, ++epfile) {
1705 		BUG_ON(mutex_is_locked(&epfile->mutex) ||
1706 		       waitqueue_active(&epfile->wait));
1707 		if (epfile->dentry) {
1708 			d_delete(epfile->dentry);
1709 			dput(epfile->dentry);
1710 			epfile->dentry = NULL;
1711 		}
1712 	}
1713 
1714 	kfree(epfiles);
1715 }
1716 
1717 static void ffs_func_eps_disable(struct ffs_function *func)
1718 {
1719 	struct ffs_ep *ep         = func->eps;
1720 	struct ffs_epfile *epfile = func->ffs->epfiles;
1721 	unsigned count            = func->ffs->eps_count;
1722 	unsigned long flags;
1723 
1724 	do {
1725 		if (epfile)
1726 			mutex_lock(&epfile->mutex);
1727 		spin_lock_irqsave(&func->ffs->eps_lock, flags);
1728 		/* pending requests get nuked */
1729 		if (likely(ep->ep))
1730 			usb_ep_disable(ep->ep);
1731 		++ep;
1732 		spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1733 
1734 		if (epfile) {
1735 			epfile->ep = NULL;
1736 			kfree(epfile->read_buffer);
1737 			epfile->read_buffer = NULL;
1738 			mutex_unlock(&epfile->mutex);
1739 			++epfile;
1740 		}
1741 	} while (--count);
1742 }
1743 
1744 static int ffs_func_eps_enable(struct ffs_function *func)
1745 {
1746 	struct ffs_data *ffs      = func->ffs;
1747 	struct ffs_ep *ep         = func->eps;
1748 	struct ffs_epfile *epfile = ffs->epfiles;
1749 	unsigned count            = ffs->eps_count;
1750 	unsigned long flags;
1751 	int ret = 0;
1752 
1753 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1754 	do {
1755 		struct usb_endpoint_descriptor *ds;
1756 		int desc_idx;
1757 
1758 		if (ffs->gadget->speed == USB_SPEED_SUPER)
1759 			desc_idx = 2;
1760 		else if (ffs->gadget->speed == USB_SPEED_HIGH)
1761 			desc_idx = 1;
1762 		else
1763 			desc_idx = 0;
1764 
1765 		/* fall-back to lower speed if desc missing for current speed */
1766 		do {
1767 			ds = ep->descs[desc_idx];
1768 		} while (!ds && --desc_idx >= 0);
1769 
1770 		if (!ds) {
1771 			ret = -EINVAL;
1772 			break;
1773 		}
1774 
1775 		ep->ep->driver_data = ep;
1776 		ep->ep->desc = ds;
1777 		ret = usb_ep_enable(ep->ep);
1778 		if (likely(!ret)) {
1779 			epfile->ep = ep;
1780 			epfile->in = usb_endpoint_dir_in(ds);
1781 			epfile->isoc = usb_endpoint_xfer_isoc(ds);
1782 		} else {
1783 			break;
1784 		}
1785 
1786 		wake_up(&epfile->wait);
1787 
1788 		++ep;
1789 		++epfile;
1790 	} while (--count);
1791 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1792 
1793 	return ret;
1794 }
1795 
1796 
1797 /* Parsing and building descriptors and strings *****************************/
1798 
1799 /*
1800  * This validates if data pointed by data is a valid USB descriptor as
1801  * well as record how many interfaces, endpoints and strings are
1802  * required by given configuration.  Returns address after the
1803  * descriptor or NULL if data is invalid.
1804  */
1805 
1806 enum ffs_entity_type {
1807 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1808 };
1809 
1810 enum ffs_os_desc_type {
1811 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1812 };
1813 
1814 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1815 				   u8 *valuep,
1816 				   struct usb_descriptor_header *desc,
1817 				   void *priv);
1818 
1819 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1820 				    struct usb_os_desc_header *h, void *data,
1821 				    unsigned len, void *priv);
1822 
1823 static int __must_check ffs_do_single_desc(char *data, unsigned len,
1824 					   ffs_entity_callback entity,
1825 					   void *priv)
1826 {
1827 	struct usb_descriptor_header *_ds = (void *)data;
1828 	u8 length;
1829 	int ret;
1830 
1831 	ENTER();
1832 
1833 	/* At least two bytes are required: length and type */
1834 	if (len < 2) {
1835 		pr_vdebug("descriptor too short\n");
1836 		return -EINVAL;
1837 	}
1838 
1839 	/* If we have at least as many bytes as the descriptor takes? */
1840 	length = _ds->bLength;
1841 	if (len < length) {
1842 		pr_vdebug("descriptor longer then available data\n");
1843 		return -EINVAL;
1844 	}
1845 
1846 #define __entity_check_INTERFACE(val)  1
1847 #define __entity_check_STRING(val)     (val)
1848 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
1849 #define __entity(type, val) do {					\
1850 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
1851 		if (unlikely(!__entity_check_ ##type(val))) {		\
1852 			pr_vdebug("invalid entity's value\n");		\
1853 			return -EINVAL;					\
1854 		}							\
1855 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
1856 		if (unlikely(ret < 0)) {				\
1857 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
1858 				 (val), ret);				\
1859 			return ret;					\
1860 		}							\
1861 	} while (0)
1862 
1863 	/* Parse descriptor depending on type. */
1864 	switch (_ds->bDescriptorType) {
1865 	case USB_DT_DEVICE:
1866 	case USB_DT_CONFIG:
1867 	case USB_DT_STRING:
1868 	case USB_DT_DEVICE_QUALIFIER:
1869 		/* function can't have any of those */
1870 		pr_vdebug("descriptor reserved for gadget: %d\n",
1871 		      _ds->bDescriptorType);
1872 		return -EINVAL;
1873 
1874 	case USB_DT_INTERFACE: {
1875 		struct usb_interface_descriptor *ds = (void *)_ds;
1876 		pr_vdebug("interface descriptor\n");
1877 		if (length != sizeof *ds)
1878 			goto inv_length;
1879 
1880 		__entity(INTERFACE, ds->bInterfaceNumber);
1881 		if (ds->iInterface)
1882 			__entity(STRING, ds->iInterface);
1883 	}
1884 		break;
1885 
1886 	case USB_DT_ENDPOINT: {
1887 		struct usb_endpoint_descriptor *ds = (void *)_ds;
1888 		pr_vdebug("endpoint descriptor\n");
1889 		if (length != USB_DT_ENDPOINT_SIZE &&
1890 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
1891 			goto inv_length;
1892 		__entity(ENDPOINT, ds->bEndpointAddress);
1893 	}
1894 		break;
1895 
1896 	case HID_DT_HID:
1897 		pr_vdebug("hid descriptor\n");
1898 		if (length != sizeof(struct hid_descriptor))
1899 			goto inv_length;
1900 		break;
1901 
1902 	case USB_DT_OTG:
1903 		if (length != sizeof(struct usb_otg_descriptor))
1904 			goto inv_length;
1905 		break;
1906 
1907 	case USB_DT_INTERFACE_ASSOCIATION: {
1908 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
1909 		pr_vdebug("interface association descriptor\n");
1910 		if (length != sizeof *ds)
1911 			goto inv_length;
1912 		if (ds->iFunction)
1913 			__entity(STRING, ds->iFunction);
1914 	}
1915 		break;
1916 
1917 	case USB_DT_SS_ENDPOINT_COMP:
1918 		pr_vdebug("EP SS companion descriptor\n");
1919 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
1920 			goto inv_length;
1921 		break;
1922 
1923 	case USB_DT_OTHER_SPEED_CONFIG:
1924 	case USB_DT_INTERFACE_POWER:
1925 	case USB_DT_DEBUG:
1926 	case USB_DT_SECURITY:
1927 	case USB_DT_CS_RADIO_CONTROL:
1928 		/* TODO */
1929 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
1930 		return -EINVAL;
1931 
1932 	default:
1933 		/* We should never be here */
1934 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
1935 		return -EINVAL;
1936 
1937 inv_length:
1938 		pr_vdebug("invalid length: %d (descriptor %d)\n",
1939 			  _ds->bLength, _ds->bDescriptorType);
1940 		return -EINVAL;
1941 	}
1942 
1943 #undef __entity
1944 #undef __entity_check_DESCRIPTOR
1945 #undef __entity_check_INTERFACE
1946 #undef __entity_check_STRING
1947 #undef __entity_check_ENDPOINT
1948 
1949 	return length;
1950 }
1951 
1952 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
1953 				     ffs_entity_callback entity, void *priv)
1954 {
1955 	const unsigned _len = len;
1956 	unsigned long num = 0;
1957 
1958 	ENTER();
1959 
1960 	for (;;) {
1961 		int ret;
1962 
1963 		if (num == count)
1964 			data = NULL;
1965 
1966 		/* Record "descriptor" entity */
1967 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
1968 		if (unlikely(ret < 0)) {
1969 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
1970 				 num, ret);
1971 			return ret;
1972 		}
1973 
1974 		if (!data)
1975 			return _len - len;
1976 
1977 		ret = ffs_do_single_desc(data, len, entity, priv);
1978 		if (unlikely(ret < 0)) {
1979 			pr_debug("%s returns %d\n", __func__, ret);
1980 			return ret;
1981 		}
1982 
1983 		len -= ret;
1984 		data += ret;
1985 		++num;
1986 	}
1987 }
1988 
1989 static int __ffs_data_do_entity(enum ffs_entity_type type,
1990 				u8 *valuep, struct usb_descriptor_header *desc,
1991 				void *priv)
1992 {
1993 	struct ffs_desc_helper *helper = priv;
1994 	struct usb_endpoint_descriptor *d;
1995 
1996 	ENTER();
1997 
1998 	switch (type) {
1999 	case FFS_DESCRIPTOR:
2000 		break;
2001 
2002 	case FFS_INTERFACE:
2003 		/*
2004 		 * Interfaces are indexed from zero so if we
2005 		 * encountered interface "n" then there are at least
2006 		 * "n+1" interfaces.
2007 		 */
2008 		if (*valuep >= helper->interfaces_count)
2009 			helper->interfaces_count = *valuep + 1;
2010 		break;
2011 
2012 	case FFS_STRING:
2013 		/*
2014 		 * Strings are indexed from 1 (0 is magic ;) reserved
2015 		 * for languages list or some such)
2016 		 */
2017 		if (*valuep > helper->ffs->strings_count)
2018 			helper->ffs->strings_count = *valuep;
2019 		break;
2020 
2021 	case FFS_ENDPOINT:
2022 		d = (void *)desc;
2023 		helper->eps_count++;
2024 		if (helper->eps_count >= 15)
2025 			return -EINVAL;
2026 		/* Check if descriptors for any speed were already parsed */
2027 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2028 			helper->ffs->eps_addrmap[helper->eps_count] =
2029 				d->bEndpointAddress;
2030 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2031 				d->bEndpointAddress)
2032 			return -EINVAL;
2033 		break;
2034 	}
2035 
2036 	return 0;
2037 }
2038 
2039 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2040 				   struct usb_os_desc_header *desc)
2041 {
2042 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2043 	u16 w_index = le16_to_cpu(desc->wIndex);
2044 
2045 	if (bcd_version != 1) {
2046 		pr_vdebug("unsupported os descriptors version: %d",
2047 			  bcd_version);
2048 		return -EINVAL;
2049 	}
2050 	switch (w_index) {
2051 	case 0x4:
2052 		*next_type = FFS_OS_DESC_EXT_COMPAT;
2053 		break;
2054 	case 0x5:
2055 		*next_type = FFS_OS_DESC_EXT_PROP;
2056 		break;
2057 	default:
2058 		pr_vdebug("unsupported os descriptor type: %d", w_index);
2059 		return -EINVAL;
2060 	}
2061 
2062 	return sizeof(*desc);
2063 }
2064 
2065 /*
2066  * Process all extended compatibility/extended property descriptors
2067  * of a feature descriptor
2068  */
2069 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2070 					      enum ffs_os_desc_type type,
2071 					      u16 feature_count,
2072 					      ffs_os_desc_callback entity,
2073 					      void *priv,
2074 					      struct usb_os_desc_header *h)
2075 {
2076 	int ret;
2077 	const unsigned _len = len;
2078 
2079 	ENTER();
2080 
2081 	/* loop over all ext compat/ext prop descriptors */
2082 	while (feature_count--) {
2083 		ret = entity(type, h, data, len, priv);
2084 		if (unlikely(ret < 0)) {
2085 			pr_debug("bad OS descriptor, type: %d\n", type);
2086 			return ret;
2087 		}
2088 		data += ret;
2089 		len -= ret;
2090 	}
2091 	return _len - len;
2092 }
2093 
2094 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2095 static int __must_check ffs_do_os_descs(unsigned count,
2096 					char *data, unsigned len,
2097 					ffs_os_desc_callback entity, void *priv)
2098 {
2099 	const unsigned _len = len;
2100 	unsigned long num = 0;
2101 
2102 	ENTER();
2103 
2104 	for (num = 0; num < count; ++num) {
2105 		int ret;
2106 		enum ffs_os_desc_type type;
2107 		u16 feature_count;
2108 		struct usb_os_desc_header *desc = (void *)data;
2109 
2110 		if (len < sizeof(*desc))
2111 			return -EINVAL;
2112 
2113 		/*
2114 		 * Record "descriptor" entity.
2115 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2116 		 * Move the data pointer to the beginning of extended
2117 		 * compatibilities proper or extended properties proper
2118 		 * portions of the data
2119 		 */
2120 		if (le32_to_cpu(desc->dwLength) > len)
2121 			return -EINVAL;
2122 
2123 		ret = __ffs_do_os_desc_header(&type, desc);
2124 		if (unlikely(ret < 0)) {
2125 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2126 				 num, ret);
2127 			return ret;
2128 		}
2129 		/*
2130 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2131 		 */
2132 		feature_count = le16_to_cpu(desc->wCount);
2133 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2134 		    (feature_count > 255 || desc->Reserved))
2135 				return -EINVAL;
2136 		len -= ret;
2137 		data += ret;
2138 
2139 		/*
2140 		 * Process all function/property descriptors
2141 		 * of this Feature Descriptor
2142 		 */
2143 		ret = ffs_do_single_os_desc(data, len, type,
2144 					    feature_count, entity, priv, desc);
2145 		if (unlikely(ret < 0)) {
2146 			pr_debug("%s returns %d\n", __func__, ret);
2147 			return ret;
2148 		}
2149 
2150 		len -= ret;
2151 		data += ret;
2152 	}
2153 	return _len - len;
2154 }
2155 
2156 /**
2157  * Validate contents of the buffer from userspace related to OS descriptors.
2158  */
2159 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2160 				 struct usb_os_desc_header *h, void *data,
2161 				 unsigned len, void *priv)
2162 {
2163 	struct ffs_data *ffs = priv;
2164 	u8 length;
2165 
2166 	ENTER();
2167 
2168 	switch (type) {
2169 	case FFS_OS_DESC_EXT_COMPAT: {
2170 		struct usb_ext_compat_desc *d = data;
2171 		int i;
2172 
2173 		if (len < sizeof(*d) ||
2174 		    d->bFirstInterfaceNumber >= ffs->interfaces_count ||
2175 		    !d->Reserved1)
2176 			return -EINVAL;
2177 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2178 			if (d->Reserved2[i])
2179 				return -EINVAL;
2180 
2181 		length = sizeof(struct usb_ext_compat_desc);
2182 	}
2183 		break;
2184 	case FFS_OS_DESC_EXT_PROP: {
2185 		struct usb_ext_prop_desc *d = data;
2186 		u32 type, pdl;
2187 		u16 pnl;
2188 
2189 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2190 			return -EINVAL;
2191 		length = le32_to_cpu(d->dwSize);
2192 		type = le32_to_cpu(d->dwPropertyDataType);
2193 		if (type < USB_EXT_PROP_UNICODE ||
2194 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2195 			pr_vdebug("unsupported os descriptor property type: %d",
2196 				  type);
2197 			return -EINVAL;
2198 		}
2199 		pnl = le16_to_cpu(d->wPropertyNameLength);
2200 		pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl));
2201 		if (length != 14 + pnl + pdl) {
2202 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2203 				  length, pnl, pdl, type);
2204 			return -EINVAL;
2205 		}
2206 		++ffs->ms_os_descs_ext_prop_count;
2207 		/* property name reported to the host as "WCHAR"s */
2208 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2209 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2210 	}
2211 		break;
2212 	default:
2213 		pr_vdebug("unknown descriptor: %d\n", type);
2214 		return -EINVAL;
2215 	}
2216 	return length;
2217 }
2218 
2219 static int __ffs_data_got_descs(struct ffs_data *ffs,
2220 				char *const _data, size_t len)
2221 {
2222 	char *data = _data, *raw_descs;
2223 	unsigned os_descs_count = 0, counts[3], flags;
2224 	int ret = -EINVAL, i;
2225 	struct ffs_desc_helper helper;
2226 
2227 	ENTER();
2228 
2229 	if (get_unaligned_le32(data + 4) != len)
2230 		goto error;
2231 
2232 	switch (get_unaligned_le32(data)) {
2233 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2234 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2235 		data += 8;
2236 		len  -= 8;
2237 		break;
2238 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2239 		flags = get_unaligned_le32(data + 8);
2240 		ffs->user_flags = flags;
2241 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2242 			      FUNCTIONFS_HAS_HS_DESC |
2243 			      FUNCTIONFS_HAS_SS_DESC |
2244 			      FUNCTIONFS_HAS_MS_OS_DESC |
2245 			      FUNCTIONFS_VIRTUAL_ADDR |
2246 			      FUNCTIONFS_EVENTFD)) {
2247 			ret = -ENOSYS;
2248 			goto error;
2249 		}
2250 		data += 12;
2251 		len  -= 12;
2252 		break;
2253 	default:
2254 		goto error;
2255 	}
2256 
2257 	if (flags & FUNCTIONFS_EVENTFD) {
2258 		if (len < 4)
2259 			goto error;
2260 		ffs->ffs_eventfd =
2261 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2262 		if (IS_ERR(ffs->ffs_eventfd)) {
2263 			ret = PTR_ERR(ffs->ffs_eventfd);
2264 			ffs->ffs_eventfd = NULL;
2265 			goto error;
2266 		}
2267 		data += 4;
2268 		len  -= 4;
2269 	}
2270 
2271 	/* Read fs_count, hs_count and ss_count (if present) */
2272 	for (i = 0; i < 3; ++i) {
2273 		if (!(flags & (1 << i))) {
2274 			counts[i] = 0;
2275 		} else if (len < 4) {
2276 			goto error;
2277 		} else {
2278 			counts[i] = get_unaligned_le32(data);
2279 			data += 4;
2280 			len  -= 4;
2281 		}
2282 	}
2283 	if (flags & (1 << i)) {
2284 		os_descs_count = get_unaligned_le32(data);
2285 		data += 4;
2286 		len -= 4;
2287 	};
2288 
2289 	/* Read descriptors */
2290 	raw_descs = data;
2291 	helper.ffs = ffs;
2292 	for (i = 0; i < 3; ++i) {
2293 		if (!counts[i])
2294 			continue;
2295 		helper.interfaces_count = 0;
2296 		helper.eps_count = 0;
2297 		ret = ffs_do_descs(counts[i], data, len,
2298 				   __ffs_data_do_entity, &helper);
2299 		if (ret < 0)
2300 			goto error;
2301 		if (!ffs->eps_count && !ffs->interfaces_count) {
2302 			ffs->eps_count = helper.eps_count;
2303 			ffs->interfaces_count = helper.interfaces_count;
2304 		} else {
2305 			if (ffs->eps_count != helper.eps_count) {
2306 				ret = -EINVAL;
2307 				goto error;
2308 			}
2309 			if (ffs->interfaces_count != helper.interfaces_count) {
2310 				ret = -EINVAL;
2311 				goto error;
2312 			}
2313 		}
2314 		data += ret;
2315 		len  -= ret;
2316 	}
2317 	if (os_descs_count) {
2318 		ret = ffs_do_os_descs(os_descs_count, data, len,
2319 				      __ffs_data_do_os_desc, ffs);
2320 		if (ret < 0)
2321 			goto error;
2322 		data += ret;
2323 		len -= ret;
2324 	}
2325 
2326 	if (raw_descs == data || len) {
2327 		ret = -EINVAL;
2328 		goto error;
2329 	}
2330 
2331 	ffs->raw_descs_data	= _data;
2332 	ffs->raw_descs		= raw_descs;
2333 	ffs->raw_descs_length	= data - raw_descs;
2334 	ffs->fs_descs_count	= counts[0];
2335 	ffs->hs_descs_count	= counts[1];
2336 	ffs->ss_descs_count	= counts[2];
2337 	ffs->ms_os_descs_count	= os_descs_count;
2338 
2339 	return 0;
2340 
2341 error:
2342 	kfree(_data);
2343 	return ret;
2344 }
2345 
2346 static int __ffs_data_got_strings(struct ffs_data *ffs,
2347 				  char *const _data, size_t len)
2348 {
2349 	u32 str_count, needed_count, lang_count;
2350 	struct usb_gadget_strings **stringtabs, *t;
2351 	const char *data = _data;
2352 	struct usb_string *s;
2353 
2354 	ENTER();
2355 
2356 	if (unlikely(get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2357 		     get_unaligned_le32(data + 4) != len))
2358 		goto error;
2359 	str_count  = get_unaligned_le32(data + 8);
2360 	lang_count = get_unaligned_le32(data + 12);
2361 
2362 	/* if one is zero the other must be zero */
2363 	if (unlikely(!str_count != !lang_count))
2364 		goto error;
2365 
2366 	/* Do we have at least as many strings as descriptors need? */
2367 	needed_count = ffs->strings_count;
2368 	if (unlikely(str_count < needed_count))
2369 		goto error;
2370 
2371 	/*
2372 	 * If we don't need any strings just return and free all
2373 	 * memory.
2374 	 */
2375 	if (!needed_count) {
2376 		kfree(_data);
2377 		return 0;
2378 	}
2379 
2380 	/* Allocate everything in one chunk so there's less maintenance. */
2381 	{
2382 		unsigned i = 0;
2383 		vla_group(d);
2384 		vla_item(d, struct usb_gadget_strings *, stringtabs,
2385 			lang_count + 1);
2386 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2387 		vla_item(d, struct usb_string, strings,
2388 			lang_count*(needed_count+1));
2389 
2390 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2391 
2392 		if (unlikely(!vlabuf)) {
2393 			kfree(_data);
2394 			return -ENOMEM;
2395 		}
2396 
2397 		/* Initialize the VLA pointers */
2398 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2399 		t = vla_ptr(vlabuf, d, stringtab);
2400 		i = lang_count;
2401 		do {
2402 			*stringtabs++ = t++;
2403 		} while (--i);
2404 		*stringtabs = NULL;
2405 
2406 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2407 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2408 		t = vla_ptr(vlabuf, d, stringtab);
2409 		s = vla_ptr(vlabuf, d, strings);
2410 	}
2411 
2412 	/* For each language */
2413 	data += 16;
2414 	len -= 16;
2415 
2416 	do { /* lang_count > 0 so we can use do-while */
2417 		unsigned needed = needed_count;
2418 
2419 		if (unlikely(len < 3))
2420 			goto error_free;
2421 		t->language = get_unaligned_le16(data);
2422 		t->strings  = s;
2423 		++t;
2424 
2425 		data += 2;
2426 		len -= 2;
2427 
2428 		/* For each string */
2429 		do { /* str_count > 0 so we can use do-while */
2430 			size_t length = strnlen(data, len);
2431 
2432 			if (unlikely(length == len))
2433 				goto error_free;
2434 
2435 			/*
2436 			 * User may provide more strings then we need,
2437 			 * if that's the case we simply ignore the
2438 			 * rest
2439 			 */
2440 			if (likely(needed)) {
2441 				/*
2442 				 * s->id will be set while adding
2443 				 * function to configuration so for
2444 				 * now just leave garbage here.
2445 				 */
2446 				s->s = data;
2447 				--needed;
2448 				++s;
2449 			}
2450 
2451 			data += length + 1;
2452 			len -= length + 1;
2453 		} while (--str_count);
2454 
2455 		s->id = 0;   /* terminator */
2456 		s->s = NULL;
2457 		++s;
2458 
2459 	} while (--lang_count);
2460 
2461 	/* Some garbage left? */
2462 	if (unlikely(len))
2463 		goto error_free;
2464 
2465 	/* Done! */
2466 	ffs->stringtabs = stringtabs;
2467 	ffs->raw_strings = _data;
2468 
2469 	return 0;
2470 
2471 error_free:
2472 	kfree(stringtabs);
2473 error:
2474 	kfree(_data);
2475 	return -EINVAL;
2476 }
2477 
2478 
2479 /* Events handling and management *******************************************/
2480 
2481 static void __ffs_event_add(struct ffs_data *ffs,
2482 			    enum usb_functionfs_event_type type)
2483 {
2484 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2485 	int neg = 0;
2486 
2487 	/*
2488 	 * Abort any unhandled setup
2489 	 *
2490 	 * We do not need to worry about some cmpxchg() changing value
2491 	 * of ffs->setup_state without holding the lock because when
2492 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2493 	 * the source does nothing.
2494 	 */
2495 	if (ffs->setup_state == FFS_SETUP_PENDING)
2496 		ffs->setup_state = FFS_SETUP_CANCELLED;
2497 
2498 	/*
2499 	 * Logic of this function guarantees that there are at most four pending
2500 	 * evens on ffs->ev.types queue.  This is important because the queue
2501 	 * has space for four elements only and __ffs_ep0_read_events function
2502 	 * depends on that limit as well.  If more event types are added, those
2503 	 * limits have to be revisited or guaranteed to still hold.
2504 	 */
2505 	switch (type) {
2506 	case FUNCTIONFS_RESUME:
2507 		rem_type2 = FUNCTIONFS_SUSPEND;
2508 		/* FALL THROUGH */
2509 	case FUNCTIONFS_SUSPEND:
2510 	case FUNCTIONFS_SETUP:
2511 		rem_type1 = type;
2512 		/* Discard all similar events */
2513 		break;
2514 
2515 	case FUNCTIONFS_BIND:
2516 	case FUNCTIONFS_UNBIND:
2517 	case FUNCTIONFS_DISABLE:
2518 	case FUNCTIONFS_ENABLE:
2519 		/* Discard everything other then power management. */
2520 		rem_type1 = FUNCTIONFS_SUSPEND;
2521 		rem_type2 = FUNCTIONFS_RESUME;
2522 		neg = 1;
2523 		break;
2524 
2525 	default:
2526 		WARN(1, "%d: unknown event, this should not happen\n", type);
2527 		return;
2528 	}
2529 
2530 	{
2531 		u8 *ev  = ffs->ev.types, *out = ev;
2532 		unsigned n = ffs->ev.count;
2533 		for (; n; --n, ++ev)
2534 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2535 				*out++ = *ev;
2536 			else
2537 				pr_vdebug("purging event %d\n", *ev);
2538 		ffs->ev.count = out - ffs->ev.types;
2539 	}
2540 
2541 	pr_vdebug("adding event %d\n", type);
2542 	ffs->ev.types[ffs->ev.count++] = type;
2543 	wake_up_locked(&ffs->ev.waitq);
2544 	if (ffs->ffs_eventfd)
2545 		eventfd_signal(ffs->ffs_eventfd, 1);
2546 }
2547 
2548 static void ffs_event_add(struct ffs_data *ffs,
2549 			  enum usb_functionfs_event_type type)
2550 {
2551 	unsigned long flags;
2552 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2553 	__ffs_event_add(ffs, type);
2554 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2555 }
2556 
2557 /* Bind/unbind USB function hooks *******************************************/
2558 
2559 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2560 {
2561 	int i;
2562 
2563 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2564 		if (ffs->eps_addrmap[i] == endpoint_address)
2565 			return i;
2566 	return -ENOENT;
2567 }
2568 
2569 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2570 				    struct usb_descriptor_header *desc,
2571 				    void *priv)
2572 {
2573 	struct usb_endpoint_descriptor *ds = (void *)desc;
2574 	struct ffs_function *func = priv;
2575 	struct ffs_ep *ffs_ep;
2576 	unsigned ep_desc_id;
2577 	int idx;
2578 	static const char *speed_names[] = { "full", "high", "super" };
2579 
2580 	if (type != FFS_DESCRIPTOR)
2581 		return 0;
2582 
2583 	/*
2584 	 * If ss_descriptors is not NULL, we are reading super speed
2585 	 * descriptors; if hs_descriptors is not NULL, we are reading high
2586 	 * speed descriptors; otherwise, we are reading full speed
2587 	 * descriptors.
2588 	 */
2589 	if (func->function.ss_descriptors) {
2590 		ep_desc_id = 2;
2591 		func->function.ss_descriptors[(long)valuep] = desc;
2592 	} else if (func->function.hs_descriptors) {
2593 		ep_desc_id = 1;
2594 		func->function.hs_descriptors[(long)valuep] = desc;
2595 	} else {
2596 		ep_desc_id = 0;
2597 		func->function.fs_descriptors[(long)valuep]    = desc;
2598 	}
2599 
2600 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2601 		return 0;
2602 
2603 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2604 	if (idx < 0)
2605 		return idx;
2606 
2607 	ffs_ep = func->eps + idx;
2608 
2609 	if (unlikely(ffs_ep->descs[ep_desc_id])) {
2610 		pr_err("two %sspeed descriptors for EP %d\n",
2611 			  speed_names[ep_desc_id],
2612 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2613 		return -EINVAL;
2614 	}
2615 	ffs_ep->descs[ep_desc_id] = ds;
2616 
2617 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2618 	if (ffs_ep->ep) {
2619 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2620 		if (!ds->wMaxPacketSize)
2621 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2622 	} else {
2623 		struct usb_request *req;
2624 		struct usb_ep *ep;
2625 		u8 bEndpointAddress;
2626 
2627 		/*
2628 		 * We back up bEndpointAddress because autoconfig overwrites
2629 		 * it with physical endpoint address.
2630 		 */
2631 		bEndpointAddress = ds->bEndpointAddress;
2632 		pr_vdebug("autoconfig\n");
2633 		ep = usb_ep_autoconfig(func->gadget, ds);
2634 		if (unlikely(!ep))
2635 			return -ENOTSUPP;
2636 		ep->driver_data = func->eps + idx;
2637 
2638 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2639 		if (unlikely(!req))
2640 			return -ENOMEM;
2641 
2642 		ffs_ep->ep  = ep;
2643 		ffs_ep->req = req;
2644 		func->eps_revmap[ds->bEndpointAddress &
2645 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2646 		/*
2647 		 * If we use virtual address mapping, we restore
2648 		 * original bEndpointAddress value.
2649 		 */
2650 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2651 			ds->bEndpointAddress = bEndpointAddress;
2652 	}
2653 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2654 
2655 	return 0;
2656 }
2657 
2658 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2659 				   struct usb_descriptor_header *desc,
2660 				   void *priv)
2661 {
2662 	struct ffs_function *func = priv;
2663 	unsigned idx;
2664 	u8 newValue;
2665 
2666 	switch (type) {
2667 	default:
2668 	case FFS_DESCRIPTOR:
2669 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2670 		return 0;
2671 
2672 	case FFS_INTERFACE:
2673 		idx = *valuep;
2674 		if (func->interfaces_nums[idx] < 0) {
2675 			int id = usb_interface_id(func->conf, &func->function);
2676 			if (unlikely(id < 0))
2677 				return id;
2678 			func->interfaces_nums[idx] = id;
2679 		}
2680 		newValue = func->interfaces_nums[idx];
2681 		break;
2682 
2683 	case FFS_STRING:
2684 		/* String' IDs are allocated when fsf_data is bound to cdev */
2685 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2686 		break;
2687 
2688 	case FFS_ENDPOINT:
2689 		/*
2690 		 * USB_DT_ENDPOINT are handled in
2691 		 * __ffs_func_bind_do_descs().
2692 		 */
2693 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2694 			return 0;
2695 
2696 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2697 		if (unlikely(!func->eps[idx].ep))
2698 			return -EINVAL;
2699 
2700 		{
2701 			struct usb_endpoint_descriptor **descs;
2702 			descs = func->eps[idx].descs;
2703 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2704 		}
2705 		break;
2706 	}
2707 
2708 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2709 	*valuep = newValue;
2710 	return 0;
2711 }
2712 
2713 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2714 				      struct usb_os_desc_header *h, void *data,
2715 				      unsigned len, void *priv)
2716 {
2717 	struct ffs_function *func = priv;
2718 	u8 length = 0;
2719 
2720 	switch (type) {
2721 	case FFS_OS_DESC_EXT_COMPAT: {
2722 		struct usb_ext_compat_desc *desc = data;
2723 		struct usb_os_desc_table *t;
2724 
2725 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2726 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2727 		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2728 		       ARRAY_SIZE(desc->CompatibleID) +
2729 		       ARRAY_SIZE(desc->SubCompatibleID));
2730 		length = sizeof(*desc);
2731 	}
2732 		break;
2733 	case FFS_OS_DESC_EXT_PROP: {
2734 		struct usb_ext_prop_desc *desc = data;
2735 		struct usb_os_desc_table *t;
2736 		struct usb_os_desc_ext_prop *ext_prop;
2737 		char *ext_prop_name;
2738 		char *ext_prop_data;
2739 
2740 		t = &func->function.os_desc_table[h->interface];
2741 		t->if_id = func->interfaces_nums[h->interface];
2742 
2743 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2744 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2745 
2746 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2747 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2748 		ext_prop->data_len = le32_to_cpu(*(u32 *)
2749 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2750 		length = ext_prop->name_len + ext_prop->data_len + 14;
2751 
2752 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2753 		func->ffs->ms_os_descs_ext_prop_name_avail +=
2754 			ext_prop->name_len;
2755 
2756 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2757 		func->ffs->ms_os_descs_ext_prop_data_avail +=
2758 			ext_prop->data_len;
2759 		memcpy(ext_prop_data,
2760 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2761 		       ext_prop->data_len);
2762 		/* unicode data reported to the host as "WCHAR"s */
2763 		switch (ext_prop->type) {
2764 		case USB_EXT_PROP_UNICODE:
2765 		case USB_EXT_PROP_UNICODE_ENV:
2766 		case USB_EXT_PROP_UNICODE_LINK:
2767 		case USB_EXT_PROP_UNICODE_MULTI:
2768 			ext_prop->data_len *= 2;
2769 			break;
2770 		}
2771 		ext_prop->data = ext_prop_data;
2772 
2773 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2774 		       ext_prop->name_len);
2775 		/* property name reported to the host as "WCHAR"s */
2776 		ext_prop->name_len *= 2;
2777 		ext_prop->name = ext_prop_name;
2778 
2779 		t->os_desc->ext_prop_len +=
2780 			ext_prop->name_len + ext_prop->data_len + 14;
2781 		++t->os_desc->ext_prop_count;
2782 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2783 	}
2784 		break;
2785 	default:
2786 		pr_vdebug("unknown descriptor: %d\n", type);
2787 	}
2788 
2789 	return length;
2790 }
2791 
2792 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2793 						struct usb_configuration *c)
2794 {
2795 	struct ffs_function *func = ffs_func_from_usb(f);
2796 	struct f_fs_opts *ffs_opts =
2797 		container_of(f->fi, struct f_fs_opts, func_inst);
2798 	int ret;
2799 
2800 	ENTER();
2801 
2802 	/*
2803 	 * Legacy gadget triggers binding in functionfs_ready_callback,
2804 	 * which already uses locking; taking the same lock here would
2805 	 * cause a deadlock.
2806 	 *
2807 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
2808 	 */
2809 	if (!ffs_opts->no_configfs)
2810 		ffs_dev_lock();
2811 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2812 	func->ffs = ffs_opts->dev->ffs_data;
2813 	if (!ffs_opts->no_configfs)
2814 		ffs_dev_unlock();
2815 	if (ret)
2816 		return ERR_PTR(ret);
2817 
2818 	func->conf = c;
2819 	func->gadget = c->cdev->gadget;
2820 
2821 	/*
2822 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2823 	 * configurations are bound in sequence with list_for_each_entry,
2824 	 * in each configuration its functions are bound in sequence
2825 	 * with list_for_each_entry, so we assume no race condition
2826 	 * with regard to ffs_opts->bound access
2827 	 */
2828 	if (!ffs_opts->refcnt) {
2829 		ret = functionfs_bind(func->ffs, c->cdev);
2830 		if (ret)
2831 			return ERR_PTR(ret);
2832 	}
2833 	ffs_opts->refcnt++;
2834 	func->function.strings = func->ffs->stringtabs;
2835 
2836 	return ffs_opts;
2837 }
2838 
2839 static int _ffs_func_bind(struct usb_configuration *c,
2840 			  struct usb_function *f)
2841 {
2842 	struct ffs_function *func = ffs_func_from_usb(f);
2843 	struct ffs_data *ffs = func->ffs;
2844 
2845 	const int full = !!func->ffs->fs_descs_count;
2846 	const int high = gadget_is_dualspeed(func->gadget) &&
2847 		func->ffs->hs_descs_count;
2848 	const int super = gadget_is_superspeed(func->gadget) &&
2849 		func->ffs->ss_descs_count;
2850 
2851 	int fs_len, hs_len, ss_len, ret, i;
2852 	struct ffs_ep *eps_ptr;
2853 
2854 	/* Make it a single chunk, less management later on */
2855 	vla_group(d);
2856 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2857 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2858 		full ? ffs->fs_descs_count + 1 : 0);
2859 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2860 		high ? ffs->hs_descs_count + 1 : 0);
2861 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2862 		super ? ffs->ss_descs_count + 1 : 0);
2863 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2864 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2865 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2866 	vla_item_with_sz(d, char[16], ext_compat,
2867 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2868 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
2869 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2870 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
2871 			 ffs->ms_os_descs_ext_prop_count);
2872 	vla_item_with_sz(d, char, ext_prop_name,
2873 			 ffs->ms_os_descs_ext_prop_name_len);
2874 	vla_item_with_sz(d, char, ext_prop_data,
2875 			 ffs->ms_os_descs_ext_prop_data_len);
2876 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
2877 	char *vlabuf;
2878 
2879 	ENTER();
2880 
2881 	/* Has descriptors only for speeds gadget does not support */
2882 	if (unlikely(!(full | high | super)))
2883 		return -ENOTSUPP;
2884 
2885 	/* Allocate a single chunk, less management later on */
2886 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
2887 	if (unlikely(!vlabuf))
2888 		return -ENOMEM;
2889 
2890 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
2891 	ffs->ms_os_descs_ext_prop_name_avail =
2892 		vla_ptr(vlabuf, d, ext_prop_name);
2893 	ffs->ms_os_descs_ext_prop_data_avail =
2894 		vla_ptr(vlabuf, d, ext_prop_data);
2895 
2896 	/* Copy descriptors  */
2897 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
2898 	       ffs->raw_descs_length);
2899 
2900 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
2901 	eps_ptr = vla_ptr(vlabuf, d, eps);
2902 	for (i = 0; i < ffs->eps_count; i++)
2903 		eps_ptr[i].num = -1;
2904 
2905 	/* Save pointers
2906 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
2907 	*/
2908 	func->eps             = vla_ptr(vlabuf, d, eps);
2909 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
2910 
2911 	/*
2912 	 * Go through all the endpoint descriptors and allocate
2913 	 * endpoints first, so that later we can rewrite the endpoint
2914 	 * numbers without worrying that it may be described later on.
2915 	 */
2916 	if (likely(full)) {
2917 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
2918 		fs_len = ffs_do_descs(ffs->fs_descs_count,
2919 				      vla_ptr(vlabuf, d, raw_descs),
2920 				      d_raw_descs__sz,
2921 				      __ffs_func_bind_do_descs, func);
2922 		if (unlikely(fs_len < 0)) {
2923 			ret = fs_len;
2924 			goto error;
2925 		}
2926 	} else {
2927 		fs_len = 0;
2928 	}
2929 
2930 	if (likely(high)) {
2931 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
2932 		hs_len = ffs_do_descs(ffs->hs_descs_count,
2933 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
2934 				      d_raw_descs__sz - fs_len,
2935 				      __ffs_func_bind_do_descs, func);
2936 		if (unlikely(hs_len < 0)) {
2937 			ret = hs_len;
2938 			goto error;
2939 		}
2940 	} else {
2941 		hs_len = 0;
2942 	}
2943 
2944 	if (likely(super)) {
2945 		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
2946 		ss_len = ffs_do_descs(ffs->ss_descs_count,
2947 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
2948 				d_raw_descs__sz - fs_len - hs_len,
2949 				__ffs_func_bind_do_descs, func);
2950 		if (unlikely(ss_len < 0)) {
2951 			ret = ss_len;
2952 			goto error;
2953 		}
2954 	} else {
2955 		ss_len = 0;
2956 	}
2957 
2958 	/*
2959 	 * Now handle interface numbers allocation and interface and
2960 	 * endpoint numbers rewriting.  We can do that in one go
2961 	 * now.
2962 	 */
2963 	ret = ffs_do_descs(ffs->fs_descs_count +
2964 			   (high ? ffs->hs_descs_count : 0) +
2965 			   (super ? ffs->ss_descs_count : 0),
2966 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
2967 			   __ffs_func_bind_do_nums, func);
2968 	if (unlikely(ret < 0))
2969 		goto error;
2970 
2971 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
2972 	if (c->cdev->use_os_string) {
2973 		for (i = 0; i < ffs->interfaces_count; ++i) {
2974 			struct usb_os_desc *desc;
2975 
2976 			desc = func->function.os_desc_table[i].os_desc =
2977 				vla_ptr(vlabuf, d, os_desc) +
2978 				i * sizeof(struct usb_os_desc);
2979 			desc->ext_compat_id =
2980 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
2981 			INIT_LIST_HEAD(&desc->ext_prop);
2982 		}
2983 		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
2984 				      vla_ptr(vlabuf, d, raw_descs) +
2985 				      fs_len + hs_len + ss_len,
2986 				      d_raw_descs__sz - fs_len - hs_len -
2987 				      ss_len,
2988 				      __ffs_func_bind_do_os_desc, func);
2989 		if (unlikely(ret < 0))
2990 			goto error;
2991 	}
2992 	func->function.os_desc_n =
2993 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
2994 
2995 	/* And we're done */
2996 	ffs_event_add(ffs, FUNCTIONFS_BIND);
2997 	return 0;
2998 
2999 error:
3000 	/* XXX Do we need to release all claimed endpoints here? */
3001 	return ret;
3002 }
3003 
3004 static int ffs_func_bind(struct usb_configuration *c,
3005 			 struct usb_function *f)
3006 {
3007 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3008 	struct ffs_function *func = ffs_func_from_usb(f);
3009 	int ret;
3010 
3011 	if (IS_ERR(ffs_opts))
3012 		return PTR_ERR(ffs_opts);
3013 
3014 	ret = _ffs_func_bind(c, f);
3015 	if (ret && !--ffs_opts->refcnt)
3016 		functionfs_unbind(func->ffs);
3017 
3018 	return ret;
3019 }
3020 
3021 
3022 /* Other USB function hooks *************************************************/
3023 
3024 static void ffs_reset_work(struct work_struct *work)
3025 {
3026 	struct ffs_data *ffs = container_of(work,
3027 		struct ffs_data, reset_work);
3028 	ffs_data_reset(ffs);
3029 }
3030 
3031 static int ffs_func_set_alt(struct usb_function *f,
3032 			    unsigned interface, unsigned alt)
3033 {
3034 	struct ffs_function *func = ffs_func_from_usb(f);
3035 	struct ffs_data *ffs = func->ffs;
3036 	int ret = 0, intf;
3037 
3038 	if (alt != (unsigned)-1) {
3039 		intf = ffs_func_revmap_intf(func, interface);
3040 		if (unlikely(intf < 0))
3041 			return intf;
3042 	}
3043 
3044 	if (ffs->func)
3045 		ffs_func_eps_disable(ffs->func);
3046 
3047 	if (ffs->state == FFS_DEACTIVATED) {
3048 		ffs->state = FFS_CLOSING;
3049 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3050 		schedule_work(&ffs->reset_work);
3051 		return -ENODEV;
3052 	}
3053 
3054 	if (ffs->state != FFS_ACTIVE)
3055 		return -ENODEV;
3056 
3057 	if (alt == (unsigned)-1) {
3058 		ffs->func = NULL;
3059 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3060 		return 0;
3061 	}
3062 
3063 	ffs->func = func;
3064 	ret = ffs_func_eps_enable(func);
3065 	if (likely(ret >= 0))
3066 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3067 	return ret;
3068 }
3069 
3070 static void ffs_func_disable(struct usb_function *f)
3071 {
3072 	ffs_func_set_alt(f, 0, (unsigned)-1);
3073 }
3074 
3075 static int ffs_func_setup(struct usb_function *f,
3076 			  const struct usb_ctrlrequest *creq)
3077 {
3078 	struct ffs_function *func = ffs_func_from_usb(f);
3079 	struct ffs_data *ffs = func->ffs;
3080 	unsigned long flags;
3081 	int ret;
3082 
3083 	ENTER();
3084 
3085 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3086 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3087 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3088 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3089 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3090 
3091 	/*
3092 	 * Most requests directed to interface go through here
3093 	 * (notable exceptions are set/get interface) so we need to
3094 	 * handle them.  All other either handled by composite or
3095 	 * passed to usb_configuration->setup() (if one is set).  No
3096 	 * matter, we will handle requests directed to endpoint here
3097 	 * as well (as it's straightforward) but what to do with any
3098 	 * other request?
3099 	 */
3100 	if (ffs->state != FFS_ACTIVE)
3101 		return -ENODEV;
3102 
3103 	switch (creq->bRequestType & USB_RECIP_MASK) {
3104 	case USB_RECIP_INTERFACE:
3105 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3106 		if (unlikely(ret < 0))
3107 			return ret;
3108 		break;
3109 
3110 	case USB_RECIP_ENDPOINT:
3111 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3112 		if (unlikely(ret < 0))
3113 			return ret;
3114 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3115 			ret = func->ffs->eps_addrmap[ret];
3116 		break;
3117 
3118 	default:
3119 		return -EOPNOTSUPP;
3120 	}
3121 
3122 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3123 	ffs->ev.setup = *creq;
3124 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3125 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3126 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3127 
3128 	return 0;
3129 }
3130 
3131 static void ffs_func_suspend(struct usb_function *f)
3132 {
3133 	ENTER();
3134 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3135 }
3136 
3137 static void ffs_func_resume(struct usb_function *f)
3138 {
3139 	ENTER();
3140 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3141 }
3142 
3143 
3144 /* Endpoint and interface numbers reverse mapping ***************************/
3145 
3146 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3147 {
3148 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3149 	return num ? num : -EDOM;
3150 }
3151 
3152 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3153 {
3154 	short *nums = func->interfaces_nums;
3155 	unsigned count = func->ffs->interfaces_count;
3156 
3157 	for (; count; --count, ++nums) {
3158 		if (*nums >= 0 && *nums == intf)
3159 			return nums - func->interfaces_nums;
3160 	}
3161 
3162 	return -EDOM;
3163 }
3164 
3165 
3166 /* Devices management *******************************************************/
3167 
3168 static LIST_HEAD(ffs_devices);
3169 
3170 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3171 {
3172 	struct ffs_dev *dev;
3173 
3174 	list_for_each_entry(dev, &ffs_devices, entry) {
3175 		if (!dev->name || !name)
3176 			continue;
3177 		if (strcmp(dev->name, name) == 0)
3178 			return dev;
3179 	}
3180 
3181 	return NULL;
3182 }
3183 
3184 /*
3185  * ffs_lock must be taken by the caller of this function
3186  */
3187 static struct ffs_dev *_ffs_get_single_dev(void)
3188 {
3189 	struct ffs_dev *dev;
3190 
3191 	if (list_is_singular(&ffs_devices)) {
3192 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3193 		if (dev->single)
3194 			return dev;
3195 	}
3196 
3197 	return NULL;
3198 }
3199 
3200 /*
3201  * ffs_lock must be taken by the caller of this function
3202  */
3203 static struct ffs_dev *_ffs_find_dev(const char *name)
3204 {
3205 	struct ffs_dev *dev;
3206 
3207 	dev = _ffs_get_single_dev();
3208 	if (dev)
3209 		return dev;
3210 
3211 	return _ffs_do_find_dev(name);
3212 }
3213 
3214 /* Configfs support *********************************************************/
3215 
3216 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3217 {
3218 	return container_of(to_config_group(item), struct f_fs_opts,
3219 			    func_inst.group);
3220 }
3221 
3222 static void ffs_attr_release(struct config_item *item)
3223 {
3224 	struct f_fs_opts *opts = to_ffs_opts(item);
3225 
3226 	usb_put_function_instance(&opts->func_inst);
3227 }
3228 
3229 static struct configfs_item_operations ffs_item_ops = {
3230 	.release	= ffs_attr_release,
3231 };
3232 
3233 static struct config_item_type ffs_func_type = {
3234 	.ct_item_ops	= &ffs_item_ops,
3235 	.ct_owner	= THIS_MODULE,
3236 };
3237 
3238 
3239 /* Function registration interface ******************************************/
3240 
3241 static void ffs_free_inst(struct usb_function_instance *f)
3242 {
3243 	struct f_fs_opts *opts;
3244 
3245 	opts = to_f_fs_opts(f);
3246 	ffs_dev_lock();
3247 	_ffs_free_dev(opts->dev);
3248 	ffs_dev_unlock();
3249 	kfree(opts);
3250 }
3251 
3252 #define MAX_INST_NAME_LEN	40
3253 
3254 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3255 {
3256 	struct f_fs_opts *opts;
3257 	char *ptr;
3258 	const char *tmp;
3259 	int name_len, ret;
3260 
3261 	name_len = strlen(name) + 1;
3262 	if (name_len > MAX_INST_NAME_LEN)
3263 		return -ENAMETOOLONG;
3264 
3265 	ptr = kstrndup(name, name_len, GFP_KERNEL);
3266 	if (!ptr)
3267 		return -ENOMEM;
3268 
3269 	opts = to_f_fs_opts(fi);
3270 	tmp = NULL;
3271 
3272 	ffs_dev_lock();
3273 
3274 	tmp = opts->dev->name_allocated ? opts->dev->name : NULL;
3275 	ret = _ffs_name_dev(opts->dev, ptr);
3276 	if (ret) {
3277 		kfree(ptr);
3278 		ffs_dev_unlock();
3279 		return ret;
3280 	}
3281 	opts->dev->name_allocated = true;
3282 
3283 	ffs_dev_unlock();
3284 
3285 	kfree(tmp);
3286 
3287 	return 0;
3288 }
3289 
3290 static struct usb_function_instance *ffs_alloc_inst(void)
3291 {
3292 	struct f_fs_opts *opts;
3293 	struct ffs_dev *dev;
3294 
3295 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3296 	if (!opts)
3297 		return ERR_PTR(-ENOMEM);
3298 
3299 	opts->func_inst.set_inst_name = ffs_set_inst_name;
3300 	opts->func_inst.free_func_inst = ffs_free_inst;
3301 	ffs_dev_lock();
3302 	dev = _ffs_alloc_dev();
3303 	ffs_dev_unlock();
3304 	if (IS_ERR(dev)) {
3305 		kfree(opts);
3306 		return ERR_CAST(dev);
3307 	}
3308 	opts->dev = dev;
3309 	dev->opts = opts;
3310 
3311 	config_group_init_type_name(&opts->func_inst.group, "",
3312 				    &ffs_func_type);
3313 	return &opts->func_inst;
3314 }
3315 
3316 static void ffs_free(struct usb_function *f)
3317 {
3318 	kfree(ffs_func_from_usb(f));
3319 }
3320 
3321 static void ffs_func_unbind(struct usb_configuration *c,
3322 			    struct usb_function *f)
3323 {
3324 	struct ffs_function *func = ffs_func_from_usb(f);
3325 	struct ffs_data *ffs = func->ffs;
3326 	struct f_fs_opts *opts =
3327 		container_of(f->fi, struct f_fs_opts, func_inst);
3328 	struct ffs_ep *ep = func->eps;
3329 	unsigned count = ffs->eps_count;
3330 	unsigned long flags;
3331 
3332 	ENTER();
3333 	if (ffs->func == func) {
3334 		ffs_func_eps_disable(func);
3335 		ffs->func = NULL;
3336 	}
3337 
3338 	if (!--opts->refcnt)
3339 		functionfs_unbind(ffs);
3340 
3341 	/* cleanup after autoconfig */
3342 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3343 	do {
3344 		if (ep->ep && ep->req)
3345 			usb_ep_free_request(ep->ep, ep->req);
3346 		ep->req = NULL;
3347 		++ep;
3348 	} while (--count);
3349 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3350 	kfree(func->eps);
3351 	func->eps = NULL;
3352 	/*
3353 	 * eps, descriptors and interfaces_nums are allocated in the
3354 	 * same chunk so only one free is required.
3355 	 */
3356 	func->function.fs_descriptors = NULL;
3357 	func->function.hs_descriptors = NULL;
3358 	func->function.ss_descriptors = NULL;
3359 	func->interfaces_nums = NULL;
3360 
3361 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3362 }
3363 
3364 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3365 {
3366 	struct ffs_function *func;
3367 
3368 	ENTER();
3369 
3370 	func = kzalloc(sizeof(*func), GFP_KERNEL);
3371 	if (unlikely(!func))
3372 		return ERR_PTR(-ENOMEM);
3373 
3374 	func->function.name    = "Function FS Gadget";
3375 
3376 	func->function.bind    = ffs_func_bind;
3377 	func->function.unbind  = ffs_func_unbind;
3378 	func->function.set_alt = ffs_func_set_alt;
3379 	func->function.disable = ffs_func_disable;
3380 	func->function.setup   = ffs_func_setup;
3381 	func->function.suspend = ffs_func_suspend;
3382 	func->function.resume  = ffs_func_resume;
3383 	func->function.free_func = ffs_free;
3384 
3385 	return &func->function;
3386 }
3387 
3388 /*
3389  * ffs_lock must be taken by the caller of this function
3390  */
3391 static struct ffs_dev *_ffs_alloc_dev(void)
3392 {
3393 	struct ffs_dev *dev;
3394 	int ret;
3395 
3396 	if (_ffs_get_single_dev())
3397 			return ERR_PTR(-EBUSY);
3398 
3399 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3400 	if (!dev)
3401 		return ERR_PTR(-ENOMEM);
3402 
3403 	if (list_empty(&ffs_devices)) {
3404 		ret = functionfs_init();
3405 		if (ret) {
3406 			kfree(dev);
3407 			return ERR_PTR(ret);
3408 		}
3409 	}
3410 
3411 	list_add(&dev->entry, &ffs_devices);
3412 
3413 	return dev;
3414 }
3415 
3416 /*
3417  * ffs_lock must be taken by the caller of this function
3418  * The caller is responsible for "name" being available whenever f_fs needs it
3419  */
3420 static int _ffs_name_dev(struct ffs_dev *dev, const char *name)
3421 {
3422 	struct ffs_dev *existing;
3423 
3424 	existing = _ffs_do_find_dev(name);
3425 	if (existing)
3426 		return -EBUSY;
3427 
3428 	dev->name = name;
3429 
3430 	return 0;
3431 }
3432 
3433 /*
3434  * The caller is responsible for "name" being available whenever f_fs needs it
3435  */
3436 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3437 {
3438 	int ret;
3439 
3440 	ffs_dev_lock();
3441 	ret = _ffs_name_dev(dev, name);
3442 	ffs_dev_unlock();
3443 
3444 	return ret;
3445 }
3446 EXPORT_SYMBOL_GPL(ffs_name_dev);
3447 
3448 int ffs_single_dev(struct ffs_dev *dev)
3449 {
3450 	int ret;
3451 
3452 	ret = 0;
3453 	ffs_dev_lock();
3454 
3455 	if (!list_is_singular(&ffs_devices))
3456 		ret = -EBUSY;
3457 	else
3458 		dev->single = true;
3459 
3460 	ffs_dev_unlock();
3461 	return ret;
3462 }
3463 EXPORT_SYMBOL_GPL(ffs_single_dev);
3464 
3465 /*
3466  * ffs_lock must be taken by the caller of this function
3467  */
3468 static void _ffs_free_dev(struct ffs_dev *dev)
3469 {
3470 	list_del(&dev->entry);
3471 	if (dev->name_allocated)
3472 		kfree(dev->name);
3473 	kfree(dev);
3474 	if (list_empty(&ffs_devices))
3475 		functionfs_cleanup();
3476 }
3477 
3478 static void *ffs_acquire_dev(const char *dev_name)
3479 {
3480 	struct ffs_dev *ffs_dev;
3481 
3482 	ENTER();
3483 	ffs_dev_lock();
3484 
3485 	ffs_dev = _ffs_find_dev(dev_name);
3486 	if (!ffs_dev)
3487 		ffs_dev = ERR_PTR(-ENOENT);
3488 	else if (ffs_dev->mounted)
3489 		ffs_dev = ERR_PTR(-EBUSY);
3490 	else if (ffs_dev->ffs_acquire_dev_callback &&
3491 	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3492 		ffs_dev = ERR_PTR(-ENOENT);
3493 	else
3494 		ffs_dev->mounted = true;
3495 
3496 	ffs_dev_unlock();
3497 	return ffs_dev;
3498 }
3499 
3500 static void ffs_release_dev(struct ffs_data *ffs_data)
3501 {
3502 	struct ffs_dev *ffs_dev;
3503 
3504 	ENTER();
3505 	ffs_dev_lock();
3506 
3507 	ffs_dev = ffs_data->private_data;
3508 	if (ffs_dev) {
3509 		ffs_dev->mounted = false;
3510 
3511 		if (ffs_dev->ffs_release_dev_callback)
3512 			ffs_dev->ffs_release_dev_callback(ffs_dev);
3513 	}
3514 
3515 	ffs_dev_unlock();
3516 }
3517 
3518 static int ffs_ready(struct ffs_data *ffs)
3519 {
3520 	struct ffs_dev *ffs_obj;
3521 	int ret = 0;
3522 
3523 	ENTER();
3524 	ffs_dev_lock();
3525 
3526 	ffs_obj = ffs->private_data;
3527 	if (!ffs_obj) {
3528 		ret = -EINVAL;
3529 		goto done;
3530 	}
3531 	if (WARN_ON(ffs_obj->desc_ready)) {
3532 		ret = -EBUSY;
3533 		goto done;
3534 	}
3535 
3536 	ffs_obj->desc_ready = true;
3537 	ffs_obj->ffs_data = ffs;
3538 
3539 	if (ffs_obj->ffs_ready_callback) {
3540 		ret = ffs_obj->ffs_ready_callback(ffs);
3541 		if (ret)
3542 			goto done;
3543 	}
3544 
3545 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3546 done:
3547 	ffs_dev_unlock();
3548 	return ret;
3549 }
3550 
3551 static void ffs_closed(struct ffs_data *ffs)
3552 {
3553 	struct ffs_dev *ffs_obj;
3554 	struct f_fs_opts *opts;
3555 
3556 	ENTER();
3557 	ffs_dev_lock();
3558 
3559 	ffs_obj = ffs->private_data;
3560 	if (!ffs_obj)
3561 		goto done;
3562 
3563 	ffs_obj->desc_ready = false;
3564 
3565 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3566 	    ffs_obj->ffs_closed_callback)
3567 		ffs_obj->ffs_closed_callback(ffs);
3568 
3569 	if (ffs_obj->opts)
3570 		opts = ffs_obj->opts;
3571 	else
3572 		goto done;
3573 
3574 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3575 	    || !atomic_read(&opts->func_inst.group.cg_item.ci_kref.refcount))
3576 		goto done;
3577 
3578 	unregister_gadget_item(ffs_obj->opts->
3579 			       func_inst.group.cg_item.ci_parent->ci_parent);
3580 done:
3581 	ffs_dev_unlock();
3582 }
3583 
3584 /* Misc helper functions ****************************************************/
3585 
3586 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3587 {
3588 	return nonblock
3589 		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3590 		: mutex_lock_interruptible(mutex);
3591 }
3592 
3593 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3594 {
3595 	char *data;
3596 
3597 	if (unlikely(!len))
3598 		return NULL;
3599 
3600 	data = kmalloc(len, GFP_KERNEL);
3601 	if (unlikely(!data))
3602 		return ERR_PTR(-ENOMEM);
3603 
3604 	if (unlikely(copy_from_user(data, buf, len))) {
3605 		kfree(data);
3606 		return ERR_PTR(-EFAULT);
3607 	}
3608 
3609 	pr_vdebug("Buffer from user space:\n");
3610 	ffs_dump_mem("", data, len);
3611 
3612 	return data;
3613 }
3614 
3615 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3616 MODULE_LICENSE("GPL");
3617 MODULE_AUTHOR("Michal Nazarewicz");
3618