xref: /openbmc/linux/drivers/usb/gadget/function/f_fs.c (revision 74ce1896)
1 /*
2  * f_fs.c -- user mode file system API for USB composite function controllers
3  *
4  * Copyright (C) 2010 Samsung Electronics
5  * Author: Michal Nazarewicz <mina86@mina86.com>
6  *
7  * Based on inode.c (GadgetFS) which was:
8  * Copyright (C) 2003-2004 David Brownell
9  * Copyright (C) 2003 Agilent Technologies
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  */
16 
17 
18 /* #define DEBUG */
19 /* #define VERBOSE_DEBUG */
20 
21 #include <linux/blkdev.h>
22 #include <linux/pagemap.h>
23 #include <linux/export.h>
24 #include <linux/hid.h>
25 #include <linux/module.h>
26 #include <linux/sched/signal.h>
27 #include <linux/uio.h>
28 #include <asm/unaligned.h>
29 
30 #include <linux/usb/composite.h>
31 #include <linux/usb/functionfs.h>
32 
33 #include <linux/aio.h>
34 #include <linux/mmu_context.h>
35 #include <linux/poll.h>
36 #include <linux/eventfd.h>
37 
38 #include "u_fs.h"
39 #include "u_f.h"
40 #include "u_os_desc.h"
41 #include "configfs.h"
42 
43 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
44 
45 /* Reference counter handling */
46 static void ffs_data_get(struct ffs_data *ffs);
47 static void ffs_data_put(struct ffs_data *ffs);
48 /* Creates new ffs_data object. */
49 static struct ffs_data *__must_check ffs_data_new(void) __attribute__((malloc));
50 
51 /* Opened counter handling. */
52 static void ffs_data_opened(struct ffs_data *ffs);
53 static void ffs_data_closed(struct ffs_data *ffs);
54 
55 /* Called with ffs->mutex held; take over ownership of data. */
56 static int __must_check
57 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
58 static int __must_check
59 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
60 
61 
62 /* The function structure ***************************************************/
63 
64 struct ffs_ep;
65 
66 struct ffs_function {
67 	struct usb_configuration	*conf;
68 	struct usb_gadget		*gadget;
69 	struct ffs_data			*ffs;
70 
71 	struct ffs_ep			*eps;
72 	u8				eps_revmap[16];
73 	short				*interfaces_nums;
74 
75 	struct usb_function		function;
76 };
77 
78 
79 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
80 {
81 	return container_of(f, struct ffs_function, function);
82 }
83 
84 
85 static inline enum ffs_setup_state
86 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
87 {
88 	return (enum ffs_setup_state)
89 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
90 }
91 
92 
93 static void ffs_func_eps_disable(struct ffs_function *func);
94 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
95 
96 static int ffs_func_bind(struct usb_configuration *,
97 			 struct usb_function *);
98 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
99 static void ffs_func_disable(struct usb_function *);
100 static int ffs_func_setup(struct usb_function *,
101 			  const struct usb_ctrlrequest *);
102 static bool ffs_func_req_match(struct usb_function *,
103 			       const struct usb_ctrlrequest *,
104 			       bool config0);
105 static void ffs_func_suspend(struct usb_function *);
106 static void ffs_func_resume(struct usb_function *);
107 
108 
109 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
110 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
111 
112 
113 /* The endpoints structures *************************************************/
114 
115 struct ffs_ep {
116 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
117 	struct usb_request		*req;	/* P: epfile->mutex */
118 
119 	/* [0]: full speed, [1]: high speed, [2]: super speed */
120 	struct usb_endpoint_descriptor	*descs[3];
121 
122 	u8				num;
123 
124 	int				status;	/* P: epfile->mutex */
125 };
126 
127 struct ffs_epfile {
128 	/* Protects ep->ep and ep->req. */
129 	struct mutex			mutex;
130 
131 	struct ffs_data			*ffs;
132 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
133 
134 	struct dentry			*dentry;
135 
136 	/*
137 	 * Buffer for holding data from partial reads which may happen since
138 	 * we’re rounding user read requests to a multiple of a max packet size.
139 	 *
140 	 * The pointer is initialised with NULL value and may be set by
141 	 * __ffs_epfile_read_data function to point to a temporary buffer.
142 	 *
143 	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
144 	 * data from said buffer and eventually free it.  Importantly, while the
145 	 * function is using the buffer, it sets the pointer to NULL.  This is
146 	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
147 	 * can never run concurrently (they are synchronised by epfile->mutex)
148 	 * so the latter will not assign a new value to the pointer.
149 	 *
150 	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
151 	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
152 	 * value is crux of the synchronisation between ffs_func_eps_disable and
153 	 * __ffs_epfile_read_data.
154 	 *
155 	 * Once __ffs_epfile_read_data is about to finish it will try to set the
156 	 * pointer back to its old value (as described above), but seeing as the
157 	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
158 	 * the buffer.
159 	 *
160 	 * == State transitions ==
161 	 *
162 	 * • ptr == NULL:  (initial state)
163 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
164 	 *   ◦ __ffs_epfile_read_buffered:    nop
165 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
166 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
167 	 * • ptr == DROP:
168 	 *   ◦ __ffs_epfile_read_buffer_free: nop
169 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
170 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
171 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
172 	 * • ptr == buf:
173 	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
174 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
175 	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
176 	 *                                    is always called first
177 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
178 	 * • ptr == NULL and reading:
179 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
180 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
181 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
182 	 *   ◦ reading finishes and …
183 	 *     … all data read:               free buf, go to ptr == NULL
184 	 *     … otherwise:                   go to ptr == buf and reading
185 	 * • ptr == DROP and reading:
186 	 *   ◦ __ffs_epfile_read_buffer_free: nop
187 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
188 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
189 	 *   ◦ reading finishes:              free buf, go to ptr == DROP
190 	 */
191 	struct ffs_buffer		*read_buffer;
192 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
193 
194 	char				name[5];
195 
196 	unsigned char			in;	/* P: ffs->eps_lock */
197 	unsigned char			isoc;	/* P: ffs->eps_lock */
198 
199 	unsigned char			_pad;
200 };
201 
202 struct ffs_buffer {
203 	size_t length;
204 	char *data;
205 	char storage[];
206 };
207 
208 /*  ffs_io_data structure ***************************************************/
209 
210 struct ffs_io_data {
211 	bool aio;
212 	bool read;
213 
214 	struct kiocb *kiocb;
215 	struct iov_iter data;
216 	const void *to_free;
217 	char *buf;
218 
219 	struct mm_struct *mm;
220 	struct work_struct work;
221 
222 	struct usb_ep *ep;
223 	struct usb_request *req;
224 
225 	struct ffs_data *ffs;
226 };
227 
228 struct ffs_desc_helper {
229 	struct ffs_data *ffs;
230 	unsigned interfaces_count;
231 	unsigned eps_count;
232 };
233 
234 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
235 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
236 
237 static struct dentry *
238 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
239 		   const struct file_operations *fops);
240 
241 /* Devices management *******************************************************/
242 
243 DEFINE_MUTEX(ffs_lock);
244 EXPORT_SYMBOL_GPL(ffs_lock);
245 
246 static struct ffs_dev *_ffs_find_dev(const char *name);
247 static struct ffs_dev *_ffs_alloc_dev(void);
248 static void _ffs_free_dev(struct ffs_dev *dev);
249 static void *ffs_acquire_dev(const char *dev_name);
250 static void ffs_release_dev(struct ffs_data *ffs_data);
251 static int ffs_ready(struct ffs_data *ffs);
252 static void ffs_closed(struct ffs_data *ffs);
253 
254 /* Misc helper functions ****************************************************/
255 
256 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
257 	__attribute__((warn_unused_result, nonnull));
258 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
259 	__attribute__((warn_unused_result, nonnull));
260 
261 
262 /* Control file aka ep0 *****************************************************/
263 
264 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
265 {
266 	struct ffs_data *ffs = req->context;
267 
268 	complete(&ffs->ep0req_completion);
269 }
270 
271 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
272 {
273 	struct usb_request *req = ffs->ep0req;
274 	int ret;
275 
276 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
277 
278 	spin_unlock_irq(&ffs->ev.waitq.lock);
279 
280 	req->buf      = data;
281 	req->length   = len;
282 
283 	/*
284 	 * UDC layer requires to provide a buffer even for ZLP, but should
285 	 * not use it at all. Let's provide some poisoned pointer to catch
286 	 * possible bug in the driver.
287 	 */
288 	if (req->buf == NULL)
289 		req->buf = (void *)0xDEADBABE;
290 
291 	reinit_completion(&ffs->ep0req_completion);
292 
293 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
294 	if (unlikely(ret < 0))
295 		return ret;
296 
297 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
298 	if (unlikely(ret)) {
299 		usb_ep_dequeue(ffs->gadget->ep0, req);
300 		return -EINTR;
301 	}
302 
303 	ffs->setup_state = FFS_NO_SETUP;
304 	return req->status ? req->status : req->actual;
305 }
306 
307 static int __ffs_ep0_stall(struct ffs_data *ffs)
308 {
309 	if (ffs->ev.can_stall) {
310 		pr_vdebug("ep0 stall\n");
311 		usb_ep_set_halt(ffs->gadget->ep0);
312 		ffs->setup_state = FFS_NO_SETUP;
313 		return -EL2HLT;
314 	} else {
315 		pr_debug("bogus ep0 stall!\n");
316 		return -ESRCH;
317 	}
318 }
319 
320 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
321 			     size_t len, loff_t *ptr)
322 {
323 	struct ffs_data *ffs = file->private_data;
324 	ssize_t ret;
325 	char *data;
326 
327 	ENTER();
328 
329 	/* Fast check if setup was canceled */
330 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
331 		return -EIDRM;
332 
333 	/* Acquire mutex */
334 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
335 	if (unlikely(ret < 0))
336 		return ret;
337 
338 	/* Check state */
339 	switch (ffs->state) {
340 	case FFS_READ_DESCRIPTORS:
341 	case FFS_READ_STRINGS:
342 		/* Copy data */
343 		if (unlikely(len < 16)) {
344 			ret = -EINVAL;
345 			break;
346 		}
347 
348 		data = ffs_prepare_buffer(buf, len);
349 		if (IS_ERR(data)) {
350 			ret = PTR_ERR(data);
351 			break;
352 		}
353 
354 		/* Handle data */
355 		if (ffs->state == FFS_READ_DESCRIPTORS) {
356 			pr_info("read descriptors\n");
357 			ret = __ffs_data_got_descs(ffs, data, len);
358 			if (unlikely(ret < 0))
359 				break;
360 
361 			ffs->state = FFS_READ_STRINGS;
362 			ret = len;
363 		} else {
364 			pr_info("read strings\n");
365 			ret = __ffs_data_got_strings(ffs, data, len);
366 			if (unlikely(ret < 0))
367 				break;
368 
369 			ret = ffs_epfiles_create(ffs);
370 			if (unlikely(ret)) {
371 				ffs->state = FFS_CLOSING;
372 				break;
373 			}
374 
375 			ffs->state = FFS_ACTIVE;
376 			mutex_unlock(&ffs->mutex);
377 
378 			ret = ffs_ready(ffs);
379 			if (unlikely(ret < 0)) {
380 				ffs->state = FFS_CLOSING;
381 				return ret;
382 			}
383 
384 			return len;
385 		}
386 		break;
387 
388 	case FFS_ACTIVE:
389 		data = NULL;
390 		/*
391 		 * We're called from user space, we can use _irq
392 		 * rather then _irqsave
393 		 */
394 		spin_lock_irq(&ffs->ev.waitq.lock);
395 		switch (ffs_setup_state_clear_cancelled(ffs)) {
396 		case FFS_SETUP_CANCELLED:
397 			ret = -EIDRM;
398 			goto done_spin;
399 
400 		case FFS_NO_SETUP:
401 			ret = -ESRCH;
402 			goto done_spin;
403 
404 		case FFS_SETUP_PENDING:
405 			break;
406 		}
407 
408 		/* FFS_SETUP_PENDING */
409 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
410 			spin_unlock_irq(&ffs->ev.waitq.lock);
411 			ret = __ffs_ep0_stall(ffs);
412 			break;
413 		}
414 
415 		/* FFS_SETUP_PENDING and not stall */
416 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
417 
418 		spin_unlock_irq(&ffs->ev.waitq.lock);
419 
420 		data = ffs_prepare_buffer(buf, len);
421 		if (IS_ERR(data)) {
422 			ret = PTR_ERR(data);
423 			break;
424 		}
425 
426 		spin_lock_irq(&ffs->ev.waitq.lock);
427 
428 		/*
429 		 * We are guaranteed to be still in FFS_ACTIVE state
430 		 * but the state of setup could have changed from
431 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
432 		 * to check for that.  If that happened we copied data
433 		 * from user space in vain but it's unlikely.
434 		 *
435 		 * For sure we are not in FFS_NO_SETUP since this is
436 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
437 		 * transition can be performed and it's protected by
438 		 * mutex.
439 		 */
440 		if (ffs_setup_state_clear_cancelled(ffs) ==
441 		    FFS_SETUP_CANCELLED) {
442 			ret = -EIDRM;
443 done_spin:
444 			spin_unlock_irq(&ffs->ev.waitq.lock);
445 		} else {
446 			/* unlocks spinlock */
447 			ret = __ffs_ep0_queue_wait(ffs, data, len);
448 		}
449 		kfree(data);
450 		break;
451 
452 	default:
453 		ret = -EBADFD;
454 		break;
455 	}
456 
457 	mutex_unlock(&ffs->mutex);
458 	return ret;
459 }
460 
461 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
462 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
463 				     size_t n)
464 {
465 	/*
466 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
467 	 * size of ffs->ev.types array (which is four) so that's how much space
468 	 * we reserve.
469 	 */
470 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
471 	const size_t size = n * sizeof *events;
472 	unsigned i = 0;
473 
474 	memset(events, 0, size);
475 
476 	do {
477 		events[i].type = ffs->ev.types[i];
478 		if (events[i].type == FUNCTIONFS_SETUP) {
479 			events[i].u.setup = ffs->ev.setup;
480 			ffs->setup_state = FFS_SETUP_PENDING;
481 		}
482 	} while (++i < n);
483 
484 	ffs->ev.count -= n;
485 	if (ffs->ev.count)
486 		memmove(ffs->ev.types, ffs->ev.types + n,
487 			ffs->ev.count * sizeof *ffs->ev.types);
488 
489 	spin_unlock_irq(&ffs->ev.waitq.lock);
490 	mutex_unlock(&ffs->mutex);
491 
492 	return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
493 }
494 
495 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
496 			    size_t len, loff_t *ptr)
497 {
498 	struct ffs_data *ffs = file->private_data;
499 	char *data = NULL;
500 	size_t n;
501 	int ret;
502 
503 	ENTER();
504 
505 	/* Fast check if setup was canceled */
506 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
507 		return -EIDRM;
508 
509 	/* Acquire mutex */
510 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
511 	if (unlikely(ret < 0))
512 		return ret;
513 
514 	/* Check state */
515 	if (ffs->state != FFS_ACTIVE) {
516 		ret = -EBADFD;
517 		goto done_mutex;
518 	}
519 
520 	/*
521 	 * We're called from user space, we can use _irq rather then
522 	 * _irqsave
523 	 */
524 	spin_lock_irq(&ffs->ev.waitq.lock);
525 
526 	switch (ffs_setup_state_clear_cancelled(ffs)) {
527 	case FFS_SETUP_CANCELLED:
528 		ret = -EIDRM;
529 		break;
530 
531 	case FFS_NO_SETUP:
532 		n = len / sizeof(struct usb_functionfs_event);
533 		if (unlikely(!n)) {
534 			ret = -EINVAL;
535 			break;
536 		}
537 
538 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
539 			ret = -EAGAIN;
540 			break;
541 		}
542 
543 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
544 							ffs->ev.count)) {
545 			ret = -EINTR;
546 			break;
547 		}
548 
549 		return __ffs_ep0_read_events(ffs, buf,
550 					     min(n, (size_t)ffs->ev.count));
551 
552 	case FFS_SETUP_PENDING:
553 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
554 			spin_unlock_irq(&ffs->ev.waitq.lock);
555 			ret = __ffs_ep0_stall(ffs);
556 			goto done_mutex;
557 		}
558 
559 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
560 
561 		spin_unlock_irq(&ffs->ev.waitq.lock);
562 
563 		if (likely(len)) {
564 			data = kmalloc(len, GFP_KERNEL);
565 			if (unlikely(!data)) {
566 				ret = -ENOMEM;
567 				goto done_mutex;
568 			}
569 		}
570 
571 		spin_lock_irq(&ffs->ev.waitq.lock);
572 
573 		/* See ffs_ep0_write() */
574 		if (ffs_setup_state_clear_cancelled(ffs) ==
575 		    FFS_SETUP_CANCELLED) {
576 			ret = -EIDRM;
577 			break;
578 		}
579 
580 		/* unlocks spinlock */
581 		ret = __ffs_ep0_queue_wait(ffs, data, len);
582 		if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
583 			ret = -EFAULT;
584 		goto done_mutex;
585 
586 	default:
587 		ret = -EBADFD;
588 		break;
589 	}
590 
591 	spin_unlock_irq(&ffs->ev.waitq.lock);
592 done_mutex:
593 	mutex_unlock(&ffs->mutex);
594 	kfree(data);
595 	return ret;
596 }
597 
598 static int ffs_ep0_open(struct inode *inode, struct file *file)
599 {
600 	struct ffs_data *ffs = inode->i_private;
601 
602 	ENTER();
603 
604 	if (unlikely(ffs->state == FFS_CLOSING))
605 		return -EBUSY;
606 
607 	file->private_data = ffs;
608 	ffs_data_opened(ffs);
609 
610 	return 0;
611 }
612 
613 static int ffs_ep0_release(struct inode *inode, struct file *file)
614 {
615 	struct ffs_data *ffs = file->private_data;
616 
617 	ENTER();
618 
619 	ffs_data_closed(ffs);
620 
621 	return 0;
622 }
623 
624 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
625 {
626 	struct ffs_data *ffs = file->private_data;
627 	struct usb_gadget *gadget = ffs->gadget;
628 	long ret;
629 
630 	ENTER();
631 
632 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
633 		struct ffs_function *func = ffs->func;
634 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
635 	} else if (gadget && gadget->ops->ioctl) {
636 		ret = gadget->ops->ioctl(gadget, code, value);
637 	} else {
638 		ret = -ENOTTY;
639 	}
640 
641 	return ret;
642 }
643 
644 static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait)
645 {
646 	struct ffs_data *ffs = file->private_data;
647 	unsigned int mask = POLLWRNORM;
648 	int ret;
649 
650 	poll_wait(file, &ffs->ev.waitq, wait);
651 
652 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
653 	if (unlikely(ret < 0))
654 		return mask;
655 
656 	switch (ffs->state) {
657 	case FFS_READ_DESCRIPTORS:
658 	case FFS_READ_STRINGS:
659 		mask |= POLLOUT;
660 		break;
661 
662 	case FFS_ACTIVE:
663 		switch (ffs->setup_state) {
664 		case FFS_NO_SETUP:
665 			if (ffs->ev.count)
666 				mask |= POLLIN;
667 			break;
668 
669 		case FFS_SETUP_PENDING:
670 		case FFS_SETUP_CANCELLED:
671 			mask |= (POLLIN | POLLOUT);
672 			break;
673 		}
674 	case FFS_CLOSING:
675 		break;
676 	case FFS_DEACTIVATED:
677 		break;
678 	}
679 
680 	mutex_unlock(&ffs->mutex);
681 
682 	return mask;
683 }
684 
685 static const struct file_operations ffs_ep0_operations = {
686 	.llseek =	no_llseek,
687 
688 	.open =		ffs_ep0_open,
689 	.write =	ffs_ep0_write,
690 	.read =		ffs_ep0_read,
691 	.release =	ffs_ep0_release,
692 	.unlocked_ioctl =	ffs_ep0_ioctl,
693 	.poll =		ffs_ep0_poll,
694 };
695 
696 
697 /* "Normal" endpoints operations ********************************************/
698 
699 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
700 {
701 	ENTER();
702 	if (likely(req->context)) {
703 		struct ffs_ep *ep = _ep->driver_data;
704 		ep->status = req->status ? req->status : req->actual;
705 		complete(req->context);
706 	}
707 }
708 
709 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
710 {
711 	ssize_t ret = copy_to_iter(data, data_len, iter);
712 	if (likely(ret == data_len))
713 		return ret;
714 
715 	if (unlikely(iov_iter_count(iter)))
716 		return -EFAULT;
717 
718 	/*
719 	 * Dear user space developer!
720 	 *
721 	 * TL;DR: To stop getting below error message in your kernel log, change
722 	 * user space code using functionfs to align read buffers to a max
723 	 * packet size.
724 	 *
725 	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
726 	 * packet size.  When unaligned buffer is passed to functionfs, it
727 	 * internally uses a larger, aligned buffer so that such UDCs are happy.
728 	 *
729 	 * Unfortunately, this means that host may send more data than was
730 	 * requested in read(2) system call.  f_fs doesn’t know what to do with
731 	 * that excess data so it simply drops it.
732 	 *
733 	 * Was the buffer aligned in the first place, no such problem would
734 	 * happen.
735 	 *
736 	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
737 	 * by splitting a request into multiple parts.  This splitting may still
738 	 * be a problem though so it’s likely best to align the buffer
739 	 * regardless of it being AIO or not..
740 	 *
741 	 * This only affects OUT endpoints, i.e. reading data with a read(2),
742 	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
743 	 * affected.
744 	 */
745 	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
746 	       "Align read buffer size to max packet size to avoid the problem.\n",
747 	       data_len, ret);
748 
749 	return ret;
750 }
751 
752 static void ffs_user_copy_worker(struct work_struct *work)
753 {
754 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
755 						   work);
756 	int ret = io_data->req->status ? io_data->req->status :
757 					 io_data->req->actual;
758 	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
759 
760 	if (io_data->read && ret > 0) {
761 		use_mm(io_data->mm);
762 		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
763 		unuse_mm(io_data->mm);
764 	}
765 
766 	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
767 
768 	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
769 		eventfd_signal(io_data->ffs->ffs_eventfd, 1);
770 
771 	usb_ep_free_request(io_data->ep, io_data->req);
772 
773 	if (io_data->read)
774 		kfree(io_data->to_free);
775 	kfree(io_data->buf);
776 	kfree(io_data);
777 }
778 
779 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
780 					 struct usb_request *req)
781 {
782 	struct ffs_io_data *io_data = req->context;
783 
784 	ENTER();
785 
786 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
787 	schedule_work(&io_data->work);
788 }
789 
790 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
791 {
792 	/*
793 	 * See comment in struct ffs_epfile for full read_buffer pointer
794 	 * synchronisation story.
795 	 */
796 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
797 	if (buf && buf != READ_BUFFER_DROP)
798 		kfree(buf);
799 }
800 
801 /* Assumes epfile->mutex is held. */
802 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
803 					  struct iov_iter *iter)
804 {
805 	/*
806 	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
807 	 * the buffer while we are using it.  See comment in struct ffs_epfile
808 	 * for full read_buffer pointer synchronisation story.
809 	 */
810 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
811 	ssize_t ret;
812 	if (!buf || buf == READ_BUFFER_DROP)
813 		return 0;
814 
815 	ret = copy_to_iter(buf->data, buf->length, iter);
816 	if (buf->length == ret) {
817 		kfree(buf);
818 		return ret;
819 	}
820 
821 	if (unlikely(iov_iter_count(iter))) {
822 		ret = -EFAULT;
823 	} else {
824 		buf->length -= ret;
825 		buf->data += ret;
826 	}
827 
828 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
829 		kfree(buf);
830 
831 	return ret;
832 }
833 
834 /* Assumes epfile->mutex is held. */
835 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
836 				      void *data, int data_len,
837 				      struct iov_iter *iter)
838 {
839 	struct ffs_buffer *buf;
840 
841 	ssize_t ret = copy_to_iter(data, data_len, iter);
842 	if (likely(data_len == ret))
843 		return ret;
844 
845 	if (unlikely(iov_iter_count(iter)))
846 		return -EFAULT;
847 
848 	/* See ffs_copy_to_iter for more context. */
849 	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
850 		data_len, ret);
851 
852 	data_len -= ret;
853 	buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
854 	if (!buf)
855 		return -ENOMEM;
856 	buf->length = data_len;
857 	buf->data = buf->storage;
858 	memcpy(buf->storage, data + ret, data_len);
859 
860 	/*
861 	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
862 	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
863 	 * in struct ffs_epfile for full read_buffer pointer synchronisation
864 	 * story.
865 	 */
866 	if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
867 		kfree(buf);
868 
869 	return ret;
870 }
871 
872 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
873 {
874 	struct ffs_epfile *epfile = file->private_data;
875 	struct usb_request *req;
876 	struct ffs_ep *ep;
877 	char *data = NULL;
878 	ssize_t ret, data_len = -EINVAL;
879 	int halt;
880 
881 	/* Are we still active? */
882 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
883 		return -ENODEV;
884 
885 	/* Wait for endpoint to be enabled */
886 	ep = epfile->ep;
887 	if (!ep) {
888 		if (file->f_flags & O_NONBLOCK)
889 			return -EAGAIN;
890 
891 		ret = wait_event_interruptible(
892 				epfile->ffs->wait, (ep = epfile->ep));
893 		if (ret)
894 			return -EINTR;
895 	}
896 
897 	/* Do we halt? */
898 	halt = (!io_data->read == !epfile->in);
899 	if (halt && epfile->isoc)
900 		return -EINVAL;
901 
902 	/* We will be using request and read_buffer */
903 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
904 	if (unlikely(ret))
905 		goto error;
906 
907 	/* Allocate & copy */
908 	if (!halt) {
909 		struct usb_gadget *gadget;
910 
911 		/*
912 		 * Do we have buffered data from previous partial read?  Check
913 		 * that for synchronous case only because we do not have
914 		 * facility to ‘wake up’ a pending asynchronous read and push
915 		 * buffered data to it which we would need to make things behave
916 		 * consistently.
917 		 */
918 		if (!io_data->aio && io_data->read) {
919 			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
920 			if (ret)
921 				goto error_mutex;
922 		}
923 
924 		/*
925 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
926 		 * before the waiting completes, so do not assign to 'gadget'
927 		 * earlier
928 		 */
929 		gadget = epfile->ffs->gadget;
930 
931 		spin_lock_irq(&epfile->ffs->eps_lock);
932 		/* In the meantime, endpoint got disabled or changed. */
933 		if (epfile->ep != ep) {
934 			ret = -ESHUTDOWN;
935 			goto error_lock;
936 		}
937 		data_len = iov_iter_count(&io_data->data);
938 		/*
939 		 * Controller may require buffer size to be aligned to
940 		 * maxpacketsize of an out endpoint.
941 		 */
942 		if (io_data->read)
943 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
944 		spin_unlock_irq(&epfile->ffs->eps_lock);
945 
946 		data = kmalloc(data_len, GFP_KERNEL);
947 		if (unlikely(!data)) {
948 			ret = -ENOMEM;
949 			goto error_mutex;
950 		}
951 		if (!io_data->read &&
952 		    !copy_from_iter_full(data, data_len, &io_data->data)) {
953 			ret = -EFAULT;
954 			goto error_mutex;
955 		}
956 	}
957 
958 	spin_lock_irq(&epfile->ffs->eps_lock);
959 
960 	if (epfile->ep != ep) {
961 		/* In the meantime, endpoint got disabled or changed. */
962 		ret = -ESHUTDOWN;
963 	} else if (halt) {
964 		ret = usb_ep_set_halt(ep->ep);
965 		if (!ret)
966 			ret = -EBADMSG;
967 	} else if (unlikely(data_len == -EINVAL)) {
968 		/*
969 		 * Sanity Check: even though data_len can't be used
970 		 * uninitialized at the time I write this comment, some
971 		 * compilers complain about this situation.
972 		 * In order to keep the code clean from warnings, data_len is
973 		 * being initialized to -EINVAL during its declaration, which
974 		 * means we can't rely on compiler anymore to warn no future
975 		 * changes won't result in data_len being used uninitialized.
976 		 * For such reason, we're adding this redundant sanity check
977 		 * here.
978 		 */
979 		WARN(1, "%s: data_len == -EINVAL\n", __func__);
980 		ret = -EINVAL;
981 	} else if (!io_data->aio) {
982 		DECLARE_COMPLETION_ONSTACK(done);
983 		bool interrupted = false;
984 
985 		req = ep->req;
986 		req->buf      = data;
987 		req->length   = data_len;
988 
989 		req->context  = &done;
990 		req->complete = ffs_epfile_io_complete;
991 
992 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
993 		if (unlikely(ret < 0))
994 			goto error_lock;
995 
996 		spin_unlock_irq(&epfile->ffs->eps_lock);
997 
998 		if (unlikely(wait_for_completion_interruptible(&done))) {
999 			/*
1000 			 * To avoid race condition with ffs_epfile_io_complete,
1001 			 * dequeue the request first then check
1002 			 * status. usb_ep_dequeue API should guarantee no race
1003 			 * condition with req->complete callback.
1004 			 */
1005 			usb_ep_dequeue(ep->ep, req);
1006 			interrupted = ep->status < 0;
1007 		}
1008 
1009 		if (interrupted)
1010 			ret = -EINTR;
1011 		else if (io_data->read && ep->status > 0)
1012 			ret = __ffs_epfile_read_data(epfile, data, ep->status,
1013 						     &io_data->data);
1014 		else
1015 			ret = ep->status;
1016 		goto error_mutex;
1017 	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_KERNEL))) {
1018 		ret = -ENOMEM;
1019 	} else {
1020 		req->buf      = data;
1021 		req->length   = data_len;
1022 
1023 		io_data->buf = data;
1024 		io_data->ep = ep->ep;
1025 		io_data->req = req;
1026 		io_data->ffs = epfile->ffs;
1027 
1028 		req->context  = io_data;
1029 		req->complete = ffs_epfile_async_io_complete;
1030 
1031 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1032 		if (unlikely(ret)) {
1033 			usb_ep_free_request(ep->ep, req);
1034 			goto error_lock;
1035 		}
1036 
1037 		ret = -EIOCBQUEUED;
1038 		/*
1039 		 * Do not kfree the buffer in this function.  It will be freed
1040 		 * by ffs_user_copy_worker.
1041 		 */
1042 		data = NULL;
1043 	}
1044 
1045 error_lock:
1046 	spin_unlock_irq(&epfile->ffs->eps_lock);
1047 error_mutex:
1048 	mutex_unlock(&epfile->mutex);
1049 error:
1050 	kfree(data);
1051 	return ret;
1052 }
1053 
1054 static int
1055 ffs_epfile_open(struct inode *inode, struct file *file)
1056 {
1057 	struct ffs_epfile *epfile = inode->i_private;
1058 
1059 	ENTER();
1060 
1061 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1062 		return -ENODEV;
1063 
1064 	file->private_data = epfile;
1065 	ffs_data_opened(epfile->ffs);
1066 
1067 	return 0;
1068 }
1069 
1070 static int ffs_aio_cancel(struct kiocb *kiocb)
1071 {
1072 	struct ffs_io_data *io_data = kiocb->private;
1073 	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1074 	int value;
1075 
1076 	ENTER();
1077 
1078 	spin_lock_irq(&epfile->ffs->eps_lock);
1079 
1080 	if (likely(io_data && io_data->ep && io_data->req))
1081 		value = usb_ep_dequeue(io_data->ep, io_data->req);
1082 	else
1083 		value = -EINVAL;
1084 
1085 	spin_unlock_irq(&epfile->ffs->eps_lock);
1086 
1087 	return value;
1088 }
1089 
1090 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1091 {
1092 	struct ffs_io_data io_data, *p = &io_data;
1093 	ssize_t res;
1094 
1095 	ENTER();
1096 
1097 	if (!is_sync_kiocb(kiocb)) {
1098 		p = kmalloc(sizeof(io_data), GFP_KERNEL);
1099 		if (unlikely(!p))
1100 			return -ENOMEM;
1101 		p->aio = true;
1102 	} else {
1103 		p->aio = false;
1104 	}
1105 
1106 	p->read = false;
1107 	p->kiocb = kiocb;
1108 	p->data = *from;
1109 	p->mm = current->mm;
1110 
1111 	kiocb->private = p;
1112 
1113 	if (p->aio)
1114 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1115 
1116 	res = ffs_epfile_io(kiocb->ki_filp, p);
1117 	if (res == -EIOCBQUEUED)
1118 		return res;
1119 	if (p->aio)
1120 		kfree(p);
1121 	else
1122 		*from = p->data;
1123 	return res;
1124 }
1125 
1126 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1127 {
1128 	struct ffs_io_data io_data, *p = &io_data;
1129 	ssize_t res;
1130 
1131 	ENTER();
1132 
1133 	if (!is_sync_kiocb(kiocb)) {
1134 		p = kmalloc(sizeof(io_data), GFP_KERNEL);
1135 		if (unlikely(!p))
1136 			return -ENOMEM;
1137 		p->aio = true;
1138 	} else {
1139 		p->aio = false;
1140 	}
1141 
1142 	p->read = true;
1143 	p->kiocb = kiocb;
1144 	if (p->aio) {
1145 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1146 		if (!p->to_free) {
1147 			kfree(p);
1148 			return -ENOMEM;
1149 		}
1150 	} else {
1151 		p->data = *to;
1152 		p->to_free = NULL;
1153 	}
1154 	p->mm = current->mm;
1155 
1156 	kiocb->private = p;
1157 
1158 	if (p->aio)
1159 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1160 
1161 	res = ffs_epfile_io(kiocb->ki_filp, p);
1162 	if (res == -EIOCBQUEUED)
1163 		return res;
1164 
1165 	if (p->aio) {
1166 		kfree(p->to_free);
1167 		kfree(p);
1168 	} else {
1169 		*to = p->data;
1170 	}
1171 	return res;
1172 }
1173 
1174 static int
1175 ffs_epfile_release(struct inode *inode, struct file *file)
1176 {
1177 	struct ffs_epfile *epfile = inode->i_private;
1178 
1179 	ENTER();
1180 
1181 	__ffs_epfile_read_buffer_free(epfile);
1182 	ffs_data_closed(epfile->ffs);
1183 
1184 	return 0;
1185 }
1186 
1187 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1188 			     unsigned long value)
1189 {
1190 	struct ffs_epfile *epfile = file->private_data;
1191 	struct ffs_ep *ep;
1192 	int ret;
1193 
1194 	ENTER();
1195 
1196 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1197 		return -ENODEV;
1198 
1199 	/* Wait for endpoint to be enabled */
1200 	ep = epfile->ep;
1201 	if (!ep) {
1202 		if (file->f_flags & O_NONBLOCK)
1203 			return -EAGAIN;
1204 
1205 		ret = wait_event_interruptible(
1206 				epfile->ffs->wait, (ep = epfile->ep));
1207 		if (ret)
1208 			return -EINTR;
1209 	}
1210 
1211 	spin_lock_irq(&epfile->ffs->eps_lock);
1212 
1213 	/* In the meantime, endpoint got disabled or changed. */
1214 	if (epfile->ep != ep) {
1215 		spin_unlock_irq(&epfile->ffs->eps_lock);
1216 		return -ESHUTDOWN;
1217 	}
1218 
1219 	switch (code) {
1220 	case FUNCTIONFS_FIFO_STATUS:
1221 		ret = usb_ep_fifo_status(epfile->ep->ep);
1222 		break;
1223 	case FUNCTIONFS_FIFO_FLUSH:
1224 		usb_ep_fifo_flush(epfile->ep->ep);
1225 		ret = 0;
1226 		break;
1227 	case FUNCTIONFS_CLEAR_HALT:
1228 		ret = usb_ep_clear_halt(epfile->ep->ep);
1229 		break;
1230 	case FUNCTIONFS_ENDPOINT_REVMAP:
1231 		ret = epfile->ep->num;
1232 		break;
1233 	case FUNCTIONFS_ENDPOINT_DESC:
1234 	{
1235 		int desc_idx;
1236 		struct usb_endpoint_descriptor *desc;
1237 
1238 		switch (epfile->ffs->gadget->speed) {
1239 		case USB_SPEED_SUPER:
1240 			desc_idx = 2;
1241 			break;
1242 		case USB_SPEED_HIGH:
1243 			desc_idx = 1;
1244 			break;
1245 		default:
1246 			desc_idx = 0;
1247 		}
1248 		desc = epfile->ep->descs[desc_idx];
1249 
1250 		spin_unlock_irq(&epfile->ffs->eps_lock);
1251 		ret = copy_to_user((void *)value, desc, desc->bLength);
1252 		if (ret)
1253 			ret = -EFAULT;
1254 		return ret;
1255 	}
1256 	default:
1257 		ret = -ENOTTY;
1258 	}
1259 	spin_unlock_irq(&epfile->ffs->eps_lock);
1260 
1261 	return ret;
1262 }
1263 
1264 static const struct file_operations ffs_epfile_operations = {
1265 	.llseek =	no_llseek,
1266 
1267 	.open =		ffs_epfile_open,
1268 	.write_iter =	ffs_epfile_write_iter,
1269 	.read_iter =	ffs_epfile_read_iter,
1270 	.release =	ffs_epfile_release,
1271 	.unlocked_ioctl =	ffs_epfile_ioctl,
1272 };
1273 
1274 
1275 /* File system and super block operations ***********************************/
1276 
1277 /*
1278  * Mounting the file system creates a controller file, used first for
1279  * function configuration then later for event monitoring.
1280  */
1281 
1282 static struct inode *__must_check
1283 ffs_sb_make_inode(struct super_block *sb, void *data,
1284 		  const struct file_operations *fops,
1285 		  const struct inode_operations *iops,
1286 		  struct ffs_file_perms *perms)
1287 {
1288 	struct inode *inode;
1289 
1290 	ENTER();
1291 
1292 	inode = new_inode(sb);
1293 
1294 	if (likely(inode)) {
1295 		struct timespec ts = current_time(inode);
1296 
1297 		inode->i_ino	 = get_next_ino();
1298 		inode->i_mode    = perms->mode;
1299 		inode->i_uid     = perms->uid;
1300 		inode->i_gid     = perms->gid;
1301 		inode->i_atime   = ts;
1302 		inode->i_mtime   = ts;
1303 		inode->i_ctime   = ts;
1304 		inode->i_private = data;
1305 		if (fops)
1306 			inode->i_fop = fops;
1307 		if (iops)
1308 			inode->i_op  = iops;
1309 	}
1310 
1311 	return inode;
1312 }
1313 
1314 /* Create "regular" file */
1315 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1316 					const char *name, void *data,
1317 					const struct file_operations *fops)
1318 {
1319 	struct ffs_data	*ffs = sb->s_fs_info;
1320 	struct dentry	*dentry;
1321 	struct inode	*inode;
1322 
1323 	ENTER();
1324 
1325 	dentry = d_alloc_name(sb->s_root, name);
1326 	if (unlikely(!dentry))
1327 		return NULL;
1328 
1329 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1330 	if (unlikely(!inode)) {
1331 		dput(dentry);
1332 		return NULL;
1333 	}
1334 
1335 	d_add(dentry, inode);
1336 	return dentry;
1337 }
1338 
1339 /* Super block */
1340 static const struct super_operations ffs_sb_operations = {
1341 	.statfs =	simple_statfs,
1342 	.drop_inode =	generic_delete_inode,
1343 };
1344 
1345 struct ffs_sb_fill_data {
1346 	struct ffs_file_perms perms;
1347 	umode_t root_mode;
1348 	const char *dev_name;
1349 	bool no_disconnect;
1350 	struct ffs_data *ffs_data;
1351 };
1352 
1353 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1354 {
1355 	struct ffs_sb_fill_data *data = _data;
1356 	struct inode	*inode;
1357 	struct ffs_data	*ffs = data->ffs_data;
1358 
1359 	ENTER();
1360 
1361 	ffs->sb              = sb;
1362 	data->ffs_data       = NULL;
1363 	sb->s_fs_info        = ffs;
1364 	sb->s_blocksize      = PAGE_SIZE;
1365 	sb->s_blocksize_bits = PAGE_SHIFT;
1366 	sb->s_magic          = FUNCTIONFS_MAGIC;
1367 	sb->s_op             = &ffs_sb_operations;
1368 	sb->s_time_gran      = 1;
1369 
1370 	/* Root inode */
1371 	data->perms.mode = data->root_mode;
1372 	inode = ffs_sb_make_inode(sb, NULL,
1373 				  &simple_dir_operations,
1374 				  &simple_dir_inode_operations,
1375 				  &data->perms);
1376 	sb->s_root = d_make_root(inode);
1377 	if (unlikely(!sb->s_root))
1378 		return -ENOMEM;
1379 
1380 	/* EP0 file */
1381 	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1382 					 &ffs_ep0_operations)))
1383 		return -ENOMEM;
1384 
1385 	return 0;
1386 }
1387 
1388 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1389 {
1390 	ENTER();
1391 
1392 	if (!opts || !*opts)
1393 		return 0;
1394 
1395 	for (;;) {
1396 		unsigned long value;
1397 		char *eq, *comma;
1398 
1399 		/* Option limit */
1400 		comma = strchr(opts, ',');
1401 		if (comma)
1402 			*comma = 0;
1403 
1404 		/* Value limit */
1405 		eq = strchr(opts, '=');
1406 		if (unlikely(!eq)) {
1407 			pr_err("'=' missing in %s\n", opts);
1408 			return -EINVAL;
1409 		}
1410 		*eq = 0;
1411 
1412 		/* Parse value */
1413 		if (kstrtoul(eq + 1, 0, &value)) {
1414 			pr_err("%s: invalid value: %s\n", opts, eq + 1);
1415 			return -EINVAL;
1416 		}
1417 
1418 		/* Interpret option */
1419 		switch (eq - opts) {
1420 		case 13:
1421 			if (!memcmp(opts, "no_disconnect", 13))
1422 				data->no_disconnect = !!value;
1423 			else
1424 				goto invalid;
1425 			break;
1426 		case 5:
1427 			if (!memcmp(opts, "rmode", 5))
1428 				data->root_mode  = (value & 0555) | S_IFDIR;
1429 			else if (!memcmp(opts, "fmode", 5))
1430 				data->perms.mode = (value & 0666) | S_IFREG;
1431 			else
1432 				goto invalid;
1433 			break;
1434 
1435 		case 4:
1436 			if (!memcmp(opts, "mode", 4)) {
1437 				data->root_mode  = (value & 0555) | S_IFDIR;
1438 				data->perms.mode = (value & 0666) | S_IFREG;
1439 			} else {
1440 				goto invalid;
1441 			}
1442 			break;
1443 
1444 		case 3:
1445 			if (!memcmp(opts, "uid", 3)) {
1446 				data->perms.uid = make_kuid(current_user_ns(), value);
1447 				if (!uid_valid(data->perms.uid)) {
1448 					pr_err("%s: unmapped value: %lu\n", opts, value);
1449 					return -EINVAL;
1450 				}
1451 			} else if (!memcmp(opts, "gid", 3)) {
1452 				data->perms.gid = make_kgid(current_user_ns(), value);
1453 				if (!gid_valid(data->perms.gid)) {
1454 					pr_err("%s: unmapped value: %lu\n", opts, value);
1455 					return -EINVAL;
1456 				}
1457 			} else {
1458 				goto invalid;
1459 			}
1460 			break;
1461 
1462 		default:
1463 invalid:
1464 			pr_err("%s: invalid option\n", opts);
1465 			return -EINVAL;
1466 		}
1467 
1468 		/* Next iteration */
1469 		if (!comma)
1470 			break;
1471 		opts = comma + 1;
1472 	}
1473 
1474 	return 0;
1475 }
1476 
1477 /* "mount -t functionfs dev_name /dev/function" ends up here */
1478 
1479 static struct dentry *
1480 ffs_fs_mount(struct file_system_type *t, int flags,
1481 	      const char *dev_name, void *opts)
1482 {
1483 	struct ffs_sb_fill_data data = {
1484 		.perms = {
1485 			.mode = S_IFREG | 0600,
1486 			.uid = GLOBAL_ROOT_UID,
1487 			.gid = GLOBAL_ROOT_GID,
1488 		},
1489 		.root_mode = S_IFDIR | 0500,
1490 		.no_disconnect = false,
1491 	};
1492 	struct dentry *rv;
1493 	int ret;
1494 	void *ffs_dev;
1495 	struct ffs_data	*ffs;
1496 
1497 	ENTER();
1498 
1499 	ret = ffs_fs_parse_opts(&data, opts);
1500 	if (unlikely(ret < 0))
1501 		return ERR_PTR(ret);
1502 
1503 	ffs = ffs_data_new();
1504 	if (unlikely(!ffs))
1505 		return ERR_PTR(-ENOMEM);
1506 	ffs->file_perms = data.perms;
1507 	ffs->no_disconnect = data.no_disconnect;
1508 
1509 	ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1510 	if (unlikely(!ffs->dev_name)) {
1511 		ffs_data_put(ffs);
1512 		return ERR_PTR(-ENOMEM);
1513 	}
1514 
1515 	ffs_dev = ffs_acquire_dev(dev_name);
1516 	if (IS_ERR(ffs_dev)) {
1517 		ffs_data_put(ffs);
1518 		return ERR_CAST(ffs_dev);
1519 	}
1520 	ffs->private_data = ffs_dev;
1521 	data.ffs_data = ffs;
1522 
1523 	rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1524 	if (IS_ERR(rv) && data.ffs_data) {
1525 		ffs_release_dev(data.ffs_data);
1526 		ffs_data_put(data.ffs_data);
1527 	}
1528 	return rv;
1529 }
1530 
1531 static void
1532 ffs_fs_kill_sb(struct super_block *sb)
1533 {
1534 	ENTER();
1535 
1536 	kill_litter_super(sb);
1537 	if (sb->s_fs_info) {
1538 		ffs_release_dev(sb->s_fs_info);
1539 		ffs_data_closed(sb->s_fs_info);
1540 		ffs_data_put(sb->s_fs_info);
1541 	}
1542 }
1543 
1544 static struct file_system_type ffs_fs_type = {
1545 	.owner		= THIS_MODULE,
1546 	.name		= "functionfs",
1547 	.mount		= ffs_fs_mount,
1548 	.kill_sb	= ffs_fs_kill_sb,
1549 };
1550 MODULE_ALIAS_FS("functionfs");
1551 
1552 
1553 /* Driver's main init/cleanup functions *************************************/
1554 
1555 static int functionfs_init(void)
1556 {
1557 	int ret;
1558 
1559 	ENTER();
1560 
1561 	ret = register_filesystem(&ffs_fs_type);
1562 	if (likely(!ret))
1563 		pr_info("file system registered\n");
1564 	else
1565 		pr_err("failed registering file system (%d)\n", ret);
1566 
1567 	return ret;
1568 }
1569 
1570 static void functionfs_cleanup(void)
1571 {
1572 	ENTER();
1573 
1574 	pr_info("unloading\n");
1575 	unregister_filesystem(&ffs_fs_type);
1576 }
1577 
1578 
1579 /* ffs_data and ffs_function construction and destruction code **************/
1580 
1581 static void ffs_data_clear(struct ffs_data *ffs);
1582 static void ffs_data_reset(struct ffs_data *ffs);
1583 
1584 static void ffs_data_get(struct ffs_data *ffs)
1585 {
1586 	ENTER();
1587 
1588 	refcount_inc(&ffs->ref);
1589 }
1590 
1591 static void ffs_data_opened(struct ffs_data *ffs)
1592 {
1593 	ENTER();
1594 
1595 	refcount_inc(&ffs->ref);
1596 	if (atomic_add_return(1, &ffs->opened) == 1 &&
1597 			ffs->state == FFS_DEACTIVATED) {
1598 		ffs->state = FFS_CLOSING;
1599 		ffs_data_reset(ffs);
1600 	}
1601 }
1602 
1603 static void ffs_data_put(struct ffs_data *ffs)
1604 {
1605 	ENTER();
1606 
1607 	if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1608 		pr_info("%s(): freeing\n", __func__);
1609 		ffs_data_clear(ffs);
1610 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1611 		       waitqueue_active(&ffs->ep0req_completion.wait) ||
1612 		       waitqueue_active(&ffs->wait));
1613 		kfree(ffs->dev_name);
1614 		kfree(ffs);
1615 	}
1616 }
1617 
1618 static void ffs_data_closed(struct ffs_data *ffs)
1619 {
1620 	ENTER();
1621 
1622 	if (atomic_dec_and_test(&ffs->opened)) {
1623 		if (ffs->no_disconnect) {
1624 			ffs->state = FFS_DEACTIVATED;
1625 			if (ffs->epfiles) {
1626 				ffs_epfiles_destroy(ffs->epfiles,
1627 						   ffs->eps_count);
1628 				ffs->epfiles = NULL;
1629 			}
1630 			if (ffs->setup_state == FFS_SETUP_PENDING)
1631 				__ffs_ep0_stall(ffs);
1632 		} else {
1633 			ffs->state = FFS_CLOSING;
1634 			ffs_data_reset(ffs);
1635 		}
1636 	}
1637 	if (atomic_read(&ffs->opened) < 0) {
1638 		ffs->state = FFS_CLOSING;
1639 		ffs_data_reset(ffs);
1640 	}
1641 
1642 	ffs_data_put(ffs);
1643 }
1644 
1645 static struct ffs_data *ffs_data_new(void)
1646 {
1647 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1648 	if (unlikely(!ffs))
1649 		return NULL;
1650 
1651 	ENTER();
1652 
1653 	refcount_set(&ffs->ref, 1);
1654 	atomic_set(&ffs->opened, 0);
1655 	ffs->state = FFS_READ_DESCRIPTORS;
1656 	mutex_init(&ffs->mutex);
1657 	spin_lock_init(&ffs->eps_lock);
1658 	init_waitqueue_head(&ffs->ev.waitq);
1659 	init_waitqueue_head(&ffs->wait);
1660 	init_completion(&ffs->ep0req_completion);
1661 
1662 	/* XXX REVISIT need to update it in some places, or do we? */
1663 	ffs->ev.can_stall = 1;
1664 
1665 	return ffs;
1666 }
1667 
1668 static void ffs_data_clear(struct ffs_data *ffs)
1669 {
1670 	ENTER();
1671 
1672 	ffs_closed(ffs);
1673 
1674 	BUG_ON(ffs->gadget);
1675 
1676 	if (ffs->epfiles)
1677 		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1678 
1679 	if (ffs->ffs_eventfd)
1680 		eventfd_ctx_put(ffs->ffs_eventfd);
1681 
1682 	kfree(ffs->raw_descs_data);
1683 	kfree(ffs->raw_strings);
1684 	kfree(ffs->stringtabs);
1685 }
1686 
1687 static void ffs_data_reset(struct ffs_data *ffs)
1688 {
1689 	ENTER();
1690 
1691 	ffs_data_clear(ffs);
1692 
1693 	ffs->epfiles = NULL;
1694 	ffs->raw_descs_data = NULL;
1695 	ffs->raw_descs = NULL;
1696 	ffs->raw_strings = NULL;
1697 	ffs->stringtabs = NULL;
1698 
1699 	ffs->raw_descs_length = 0;
1700 	ffs->fs_descs_count = 0;
1701 	ffs->hs_descs_count = 0;
1702 	ffs->ss_descs_count = 0;
1703 
1704 	ffs->strings_count = 0;
1705 	ffs->interfaces_count = 0;
1706 	ffs->eps_count = 0;
1707 
1708 	ffs->ev.count = 0;
1709 
1710 	ffs->state = FFS_READ_DESCRIPTORS;
1711 	ffs->setup_state = FFS_NO_SETUP;
1712 	ffs->flags = 0;
1713 }
1714 
1715 
1716 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1717 {
1718 	struct usb_gadget_strings **lang;
1719 	int first_id;
1720 
1721 	ENTER();
1722 
1723 	if (WARN_ON(ffs->state != FFS_ACTIVE
1724 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1725 		return -EBADFD;
1726 
1727 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1728 	if (unlikely(first_id < 0))
1729 		return first_id;
1730 
1731 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1732 	if (unlikely(!ffs->ep0req))
1733 		return -ENOMEM;
1734 	ffs->ep0req->complete = ffs_ep0_complete;
1735 	ffs->ep0req->context = ffs;
1736 
1737 	lang = ffs->stringtabs;
1738 	if (lang) {
1739 		for (; *lang; ++lang) {
1740 			struct usb_string *str = (*lang)->strings;
1741 			int id = first_id;
1742 			for (; str->s; ++id, ++str)
1743 				str->id = id;
1744 		}
1745 	}
1746 
1747 	ffs->gadget = cdev->gadget;
1748 	ffs_data_get(ffs);
1749 	return 0;
1750 }
1751 
1752 static void functionfs_unbind(struct ffs_data *ffs)
1753 {
1754 	ENTER();
1755 
1756 	if (!WARN_ON(!ffs->gadget)) {
1757 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1758 		ffs->ep0req = NULL;
1759 		ffs->gadget = NULL;
1760 		clear_bit(FFS_FL_BOUND, &ffs->flags);
1761 		ffs_data_put(ffs);
1762 	}
1763 }
1764 
1765 static int ffs_epfiles_create(struct ffs_data *ffs)
1766 {
1767 	struct ffs_epfile *epfile, *epfiles;
1768 	unsigned i, count;
1769 
1770 	ENTER();
1771 
1772 	count = ffs->eps_count;
1773 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1774 	if (!epfiles)
1775 		return -ENOMEM;
1776 
1777 	epfile = epfiles;
1778 	for (i = 1; i <= count; ++i, ++epfile) {
1779 		epfile->ffs = ffs;
1780 		mutex_init(&epfile->mutex);
1781 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1782 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1783 		else
1784 			sprintf(epfile->name, "ep%u", i);
1785 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1786 						 epfile,
1787 						 &ffs_epfile_operations);
1788 		if (unlikely(!epfile->dentry)) {
1789 			ffs_epfiles_destroy(epfiles, i - 1);
1790 			return -ENOMEM;
1791 		}
1792 	}
1793 
1794 	ffs->epfiles = epfiles;
1795 	return 0;
1796 }
1797 
1798 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1799 {
1800 	struct ffs_epfile *epfile = epfiles;
1801 
1802 	ENTER();
1803 
1804 	for (; count; --count, ++epfile) {
1805 		BUG_ON(mutex_is_locked(&epfile->mutex));
1806 		if (epfile->dentry) {
1807 			d_delete(epfile->dentry);
1808 			dput(epfile->dentry);
1809 			epfile->dentry = NULL;
1810 		}
1811 	}
1812 
1813 	kfree(epfiles);
1814 }
1815 
1816 static void ffs_func_eps_disable(struct ffs_function *func)
1817 {
1818 	struct ffs_ep *ep         = func->eps;
1819 	struct ffs_epfile *epfile = func->ffs->epfiles;
1820 	unsigned count            = func->ffs->eps_count;
1821 	unsigned long flags;
1822 
1823 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1824 	while (count--) {
1825 		/* pending requests get nuked */
1826 		if (likely(ep->ep))
1827 			usb_ep_disable(ep->ep);
1828 		++ep;
1829 
1830 		if (epfile) {
1831 			epfile->ep = NULL;
1832 			__ffs_epfile_read_buffer_free(epfile);
1833 			++epfile;
1834 		}
1835 	}
1836 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1837 }
1838 
1839 static int ffs_func_eps_enable(struct ffs_function *func)
1840 {
1841 	struct ffs_data *ffs      = func->ffs;
1842 	struct ffs_ep *ep         = func->eps;
1843 	struct ffs_epfile *epfile = ffs->epfiles;
1844 	unsigned count            = ffs->eps_count;
1845 	unsigned long flags;
1846 	int ret = 0;
1847 
1848 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1849 	while(count--) {
1850 		struct usb_endpoint_descriptor *ds;
1851 		struct usb_ss_ep_comp_descriptor *comp_desc = NULL;
1852 		int needs_comp_desc = false;
1853 		int desc_idx;
1854 
1855 		if (ffs->gadget->speed == USB_SPEED_SUPER) {
1856 			desc_idx = 2;
1857 			needs_comp_desc = true;
1858 		} else if (ffs->gadget->speed == USB_SPEED_HIGH)
1859 			desc_idx = 1;
1860 		else
1861 			desc_idx = 0;
1862 
1863 		/* fall-back to lower speed if desc missing for current speed */
1864 		do {
1865 			ds = ep->descs[desc_idx];
1866 		} while (!ds && --desc_idx >= 0);
1867 
1868 		if (!ds) {
1869 			ret = -EINVAL;
1870 			break;
1871 		}
1872 
1873 		ep->ep->driver_data = ep;
1874 		ep->ep->desc = ds;
1875 
1876 		if (needs_comp_desc) {
1877 			comp_desc = (struct usb_ss_ep_comp_descriptor *)(ds +
1878 					USB_DT_ENDPOINT_SIZE);
1879 			ep->ep->maxburst = comp_desc->bMaxBurst + 1;
1880 			ep->ep->comp_desc = comp_desc;
1881 		}
1882 
1883 		ret = usb_ep_enable(ep->ep);
1884 		if (likely(!ret)) {
1885 			epfile->ep = ep;
1886 			epfile->in = usb_endpoint_dir_in(ds);
1887 			epfile->isoc = usb_endpoint_xfer_isoc(ds);
1888 		} else {
1889 			break;
1890 		}
1891 
1892 		++ep;
1893 		++epfile;
1894 	}
1895 
1896 	wake_up_interruptible(&ffs->wait);
1897 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1898 
1899 	return ret;
1900 }
1901 
1902 
1903 /* Parsing and building descriptors and strings *****************************/
1904 
1905 /*
1906  * This validates if data pointed by data is a valid USB descriptor as
1907  * well as record how many interfaces, endpoints and strings are
1908  * required by given configuration.  Returns address after the
1909  * descriptor or NULL if data is invalid.
1910  */
1911 
1912 enum ffs_entity_type {
1913 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1914 };
1915 
1916 enum ffs_os_desc_type {
1917 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1918 };
1919 
1920 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1921 				   u8 *valuep,
1922 				   struct usb_descriptor_header *desc,
1923 				   void *priv);
1924 
1925 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1926 				    struct usb_os_desc_header *h, void *data,
1927 				    unsigned len, void *priv);
1928 
1929 static int __must_check ffs_do_single_desc(char *data, unsigned len,
1930 					   ffs_entity_callback entity,
1931 					   void *priv)
1932 {
1933 	struct usb_descriptor_header *_ds = (void *)data;
1934 	u8 length;
1935 	int ret;
1936 
1937 	ENTER();
1938 
1939 	/* At least two bytes are required: length and type */
1940 	if (len < 2) {
1941 		pr_vdebug("descriptor too short\n");
1942 		return -EINVAL;
1943 	}
1944 
1945 	/* If we have at least as many bytes as the descriptor takes? */
1946 	length = _ds->bLength;
1947 	if (len < length) {
1948 		pr_vdebug("descriptor longer then available data\n");
1949 		return -EINVAL;
1950 	}
1951 
1952 #define __entity_check_INTERFACE(val)  1
1953 #define __entity_check_STRING(val)     (val)
1954 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
1955 #define __entity(type, val) do {					\
1956 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
1957 		if (unlikely(!__entity_check_ ##type(val))) {		\
1958 			pr_vdebug("invalid entity's value\n");		\
1959 			return -EINVAL;					\
1960 		}							\
1961 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
1962 		if (unlikely(ret < 0)) {				\
1963 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
1964 				 (val), ret);				\
1965 			return ret;					\
1966 		}							\
1967 	} while (0)
1968 
1969 	/* Parse descriptor depending on type. */
1970 	switch (_ds->bDescriptorType) {
1971 	case USB_DT_DEVICE:
1972 	case USB_DT_CONFIG:
1973 	case USB_DT_STRING:
1974 	case USB_DT_DEVICE_QUALIFIER:
1975 		/* function can't have any of those */
1976 		pr_vdebug("descriptor reserved for gadget: %d\n",
1977 		      _ds->bDescriptorType);
1978 		return -EINVAL;
1979 
1980 	case USB_DT_INTERFACE: {
1981 		struct usb_interface_descriptor *ds = (void *)_ds;
1982 		pr_vdebug("interface descriptor\n");
1983 		if (length != sizeof *ds)
1984 			goto inv_length;
1985 
1986 		__entity(INTERFACE, ds->bInterfaceNumber);
1987 		if (ds->iInterface)
1988 			__entity(STRING, ds->iInterface);
1989 	}
1990 		break;
1991 
1992 	case USB_DT_ENDPOINT: {
1993 		struct usb_endpoint_descriptor *ds = (void *)_ds;
1994 		pr_vdebug("endpoint descriptor\n");
1995 		if (length != USB_DT_ENDPOINT_SIZE &&
1996 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
1997 			goto inv_length;
1998 		__entity(ENDPOINT, ds->bEndpointAddress);
1999 	}
2000 		break;
2001 
2002 	case HID_DT_HID:
2003 		pr_vdebug("hid descriptor\n");
2004 		if (length != sizeof(struct hid_descriptor))
2005 			goto inv_length;
2006 		break;
2007 
2008 	case USB_DT_OTG:
2009 		if (length != sizeof(struct usb_otg_descriptor))
2010 			goto inv_length;
2011 		break;
2012 
2013 	case USB_DT_INTERFACE_ASSOCIATION: {
2014 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2015 		pr_vdebug("interface association descriptor\n");
2016 		if (length != sizeof *ds)
2017 			goto inv_length;
2018 		if (ds->iFunction)
2019 			__entity(STRING, ds->iFunction);
2020 	}
2021 		break;
2022 
2023 	case USB_DT_SS_ENDPOINT_COMP:
2024 		pr_vdebug("EP SS companion descriptor\n");
2025 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2026 			goto inv_length;
2027 		break;
2028 
2029 	case USB_DT_OTHER_SPEED_CONFIG:
2030 	case USB_DT_INTERFACE_POWER:
2031 	case USB_DT_DEBUG:
2032 	case USB_DT_SECURITY:
2033 	case USB_DT_CS_RADIO_CONTROL:
2034 		/* TODO */
2035 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2036 		return -EINVAL;
2037 
2038 	default:
2039 		/* We should never be here */
2040 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2041 		return -EINVAL;
2042 
2043 inv_length:
2044 		pr_vdebug("invalid length: %d (descriptor %d)\n",
2045 			  _ds->bLength, _ds->bDescriptorType);
2046 		return -EINVAL;
2047 	}
2048 
2049 #undef __entity
2050 #undef __entity_check_DESCRIPTOR
2051 #undef __entity_check_INTERFACE
2052 #undef __entity_check_STRING
2053 #undef __entity_check_ENDPOINT
2054 
2055 	return length;
2056 }
2057 
2058 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2059 				     ffs_entity_callback entity, void *priv)
2060 {
2061 	const unsigned _len = len;
2062 	unsigned long num = 0;
2063 
2064 	ENTER();
2065 
2066 	for (;;) {
2067 		int ret;
2068 
2069 		if (num == count)
2070 			data = NULL;
2071 
2072 		/* Record "descriptor" entity */
2073 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2074 		if (unlikely(ret < 0)) {
2075 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2076 				 num, ret);
2077 			return ret;
2078 		}
2079 
2080 		if (!data)
2081 			return _len - len;
2082 
2083 		ret = ffs_do_single_desc(data, len, entity, priv);
2084 		if (unlikely(ret < 0)) {
2085 			pr_debug("%s returns %d\n", __func__, ret);
2086 			return ret;
2087 		}
2088 
2089 		len -= ret;
2090 		data += ret;
2091 		++num;
2092 	}
2093 }
2094 
2095 static int __ffs_data_do_entity(enum ffs_entity_type type,
2096 				u8 *valuep, struct usb_descriptor_header *desc,
2097 				void *priv)
2098 {
2099 	struct ffs_desc_helper *helper = priv;
2100 	struct usb_endpoint_descriptor *d;
2101 
2102 	ENTER();
2103 
2104 	switch (type) {
2105 	case FFS_DESCRIPTOR:
2106 		break;
2107 
2108 	case FFS_INTERFACE:
2109 		/*
2110 		 * Interfaces are indexed from zero so if we
2111 		 * encountered interface "n" then there are at least
2112 		 * "n+1" interfaces.
2113 		 */
2114 		if (*valuep >= helper->interfaces_count)
2115 			helper->interfaces_count = *valuep + 1;
2116 		break;
2117 
2118 	case FFS_STRING:
2119 		/*
2120 		 * Strings are indexed from 1 (0 is reserved
2121 		 * for languages list)
2122 		 */
2123 		if (*valuep > helper->ffs->strings_count)
2124 			helper->ffs->strings_count = *valuep;
2125 		break;
2126 
2127 	case FFS_ENDPOINT:
2128 		d = (void *)desc;
2129 		helper->eps_count++;
2130 		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2131 			return -EINVAL;
2132 		/* Check if descriptors for any speed were already parsed */
2133 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2134 			helper->ffs->eps_addrmap[helper->eps_count] =
2135 				d->bEndpointAddress;
2136 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2137 				d->bEndpointAddress)
2138 			return -EINVAL;
2139 		break;
2140 	}
2141 
2142 	return 0;
2143 }
2144 
2145 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2146 				   struct usb_os_desc_header *desc)
2147 {
2148 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2149 	u16 w_index = le16_to_cpu(desc->wIndex);
2150 
2151 	if (bcd_version != 1) {
2152 		pr_vdebug("unsupported os descriptors version: %d",
2153 			  bcd_version);
2154 		return -EINVAL;
2155 	}
2156 	switch (w_index) {
2157 	case 0x4:
2158 		*next_type = FFS_OS_DESC_EXT_COMPAT;
2159 		break;
2160 	case 0x5:
2161 		*next_type = FFS_OS_DESC_EXT_PROP;
2162 		break;
2163 	default:
2164 		pr_vdebug("unsupported os descriptor type: %d", w_index);
2165 		return -EINVAL;
2166 	}
2167 
2168 	return sizeof(*desc);
2169 }
2170 
2171 /*
2172  * Process all extended compatibility/extended property descriptors
2173  * of a feature descriptor
2174  */
2175 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2176 					      enum ffs_os_desc_type type,
2177 					      u16 feature_count,
2178 					      ffs_os_desc_callback entity,
2179 					      void *priv,
2180 					      struct usb_os_desc_header *h)
2181 {
2182 	int ret;
2183 	const unsigned _len = len;
2184 
2185 	ENTER();
2186 
2187 	/* loop over all ext compat/ext prop descriptors */
2188 	while (feature_count--) {
2189 		ret = entity(type, h, data, len, priv);
2190 		if (unlikely(ret < 0)) {
2191 			pr_debug("bad OS descriptor, type: %d\n", type);
2192 			return ret;
2193 		}
2194 		data += ret;
2195 		len -= ret;
2196 	}
2197 	return _len - len;
2198 }
2199 
2200 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2201 static int __must_check ffs_do_os_descs(unsigned count,
2202 					char *data, unsigned len,
2203 					ffs_os_desc_callback entity, void *priv)
2204 {
2205 	const unsigned _len = len;
2206 	unsigned long num = 0;
2207 
2208 	ENTER();
2209 
2210 	for (num = 0; num < count; ++num) {
2211 		int ret;
2212 		enum ffs_os_desc_type type;
2213 		u16 feature_count;
2214 		struct usb_os_desc_header *desc = (void *)data;
2215 
2216 		if (len < sizeof(*desc))
2217 			return -EINVAL;
2218 
2219 		/*
2220 		 * Record "descriptor" entity.
2221 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2222 		 * Move the data pointer to the beginning of extended
2223 		 * compatibilities proper or extended properties proper
2224 		 * portions of the data
2225 		 */
2226 		if (le32_to_cpu(desc->dwLength) > len)
2227 			return -EINVAL;
2228 
2229 		ret = __ffs_do_os_desc_header(&type, desc);
2230 		if (unlikely(ret < 0)) {
2231 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2232 				 num, ret);
2233 			return ret;
2234 		}
2235 		/*
2236 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2237 		 */
2238 		feature_count = le16_to_cpu(desc->wCount);
2239 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2240 		    (feature_count > 255 || desc->Reserved))
2241 				return -EINVAL;
2242 		len -= ret;
2243 		data += ret;
2244 
2245 		/*
2246 		 * Process all function/property descriptors
2247 		 * of this Feature Descriptor
2248 		 */
2249 		ret = ffs_do_single_os_desc(data, len, type,
2250 					    feature_count, entity, priv, desc);
2251 		if (unlikely(ret < 0)) {
2252 			pr_debug("%s returns %d\n", __func__, ret);
2253 			return ret;
2254 		}
2255 
2256 		len -= ret;
2257 		data += ret;
2258 	}
2259 	return _len - len;
2260 }
2261 
2262 /**
2263  * Validate contents of the buffer from userspace related to OS descriptors.
2264  */
2265 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2266 				 struct usb_os_desc_header *h, void *data,
2267 				 unsigned len, void *priv)
2268 {
2269 	struct ffs_data *ffs = priv;
2270 	u8 length;
2271 
2272 	ENTER();
2273 
2274 	switch (type) {
2275 	case FFS_OS_DESC_EXT_COMPAT: {
2276 		struct usb_ext_compat_desc *d = data;
2277 		int i;
2278 
2279 		if (len < sizeof(*d) ||
2280 		    d->bFirstInterfaceNumber >= ffs->interfaces_count ||
2281 		    !d->Reserved1)
2282 			return -EINVAL;
2283 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2284 			if (d->Reserved2[i])
2285 				return -EINVAL;
2286 
2287 		length = sizeof(struct usb_ext_compat_desc);
2288 	}
2289 		break;
2290 	case FFS_OS_DESC_EXT_PROP: {
2291 		struct usb_ext_prop_desc *d = data;
2292 		u32 type, pdl;
2293 		u16 pnl;
2294 
2295 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2296 			return -EINVAL;
2297 		length = le32_to_cpu(d->dwSize);
2298 		if (len < length)
2299 			return -EINVAL;
2300 		type = le32_to_cpu(d->dwPropertyDataType);
2301 		if (type < USB_EXT_PROP_UNICODE ||
2302 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2303 			pr_vdebug("unsupported os descriptor property type: %d",
2304 				  type);
2305 			return -EINVAL;
2306 		}
2307 		pnl = le16_to_cpu(d->wPropertyNameLength);
2308 		if (length < 14 + pnl) {
2309 			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2310 				  length, pnl, type);
2311 			return -EINVAL;
2312 		}
2313 		pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl));
2314 		if (length != 14 + pnl + pdl) {
2315 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2316 				  length, pnl, pdl, type);
2317 			return -EINVAL;
2318 		}
2319 		++ffs->ms_os_descs_ext_prop_count;
2320 		/* property name reported to the host as "WCHAR"s */
2321 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2322 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2323 	}
2324 		break;
2325 	default:
2326 		pr_vdebug("unknown descriptor: %d\n", type);
2327 		return -EINVAL;
2328 	}
2329 	return length;
2330 }
2331 
2332 static int __ffs_data_got_descs(struct ffs_data *ffs,
2333 				char *const _data, size_t len)
2334 {
2335 	char *data = _data, *raw_descs;
2336 	unsigned os_descs_count = 0, counts[3], flags;
2337 	int ret = -EINVAL, i;
2338 	struct ffs_desc_helper helper;
2339 
2340 	ENTER();
2341 
2342 	if (get_unaligned_le32(data + 4) != len)
2343 		goto error;
2344 
2345 	switch (get_unaligned_le32(data)) {
2346 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2347 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2348 		data += 8;
2349 		len  -= 8;
2350 		break;
2351 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2352 		flags = get_unaligned_le32(data + 8);
2353 		ffs->user_flags = flags;
2354 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2355 			      FUNCTIONFS_HAS_HS_DESC |
2356 			      FUNCTIONFS_HAS_SS_DESC |
2357 			      FUNCTIONFS_HAS_MS_OS_DESC |
2358 			      FUNCTIONFS_VIRTUAL_ADDR |
2359 			      FUNCTIONFS_EVENTFD |
2360 			      FUNCTIONFS_ALL_CTRL_RECIP |
2361 			      FUNCTIONFS_CONFIG0_SETUP)) {
2362 			ret = -ENOSYS;
2363 			goto error;
2364 		}
2365 		data += 12;
2366 		len  -= 12;
2367 		break;
2368 	default:
2369 		goto error;
2370 	}
2371 
2372 	if (flags & FUNCTIONFS_EVENTFD) {
2373 		if (len < 4)
2374 			goto error;
2375 		ffs->ffs_eventfd =
2376 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2377 		if (IS_ERR(ffs->ffs_eventfd)) {
2378 			ret = PTR_ERR(ffs->ffs_eventfd);
2379 			ffs->ffs_eventfd = NULL;
2380 			goto error;
2381 		}
2382 		data += 4;
2383 		len  -= 4;
2384 	}
2385 
2386 	/* Read fs_count, hs_count and ss_count (if present) */
2387 	for (i = 0; i < 3; ++i) {
2388 		if (!(flags & (1 << i))) {
2389 			counts[i] = 0;
2390 		} else if (len < 4) {
2391 			goto error;
2392 		} else {
2393 			counts[i] = get_unaligned_le32(data);
2394 			data += 4;
2395 			len  -= 4;
2396 		}
2397 	}
2398 	if (flags & (1 << i)) {
2399 		if (len < 4) {
2400 			goto error;
2401 		}
2402 		os_descs_count = get_unaligned_le32(data);
2403 		data += 4;
2404 		len -= 4;
2405 	};
2406 
2407 	/* Read descriptors */
2408 	raw_descs = data;
2409 	helper.ffs = ffs;
2410 	for (i = 0; i < 3; ++i) {
2411 		if (!counts[i])
2412 			continue;
2413 		helper.interfaces_count = 0;
2414 		helper.eps_count = 0;
2415 		ret = ffs_do_descs(counts[i], data, len,
2416 				   __ffs_data_do_entity, &helper);
2417 		if (ret < 0)
2418 			goto error;
2419 		if (!ffs->eps_count && !ffs->interfaces_count) {
2420 			ffs->eps_count = helper.eps_count;
2421 			ffs->interfaces_count = helper.interfaces_count;
2422 		} else {
2423 			if (ffs->eps_count != helper.eps_count) {
2424 				ret = -EINVAL;
2425 				goto error;
2426 			}
2427 			if (ffs->interfaces_count != helper.interfaces_count) {
2428 				ret = -EINVAL;
2429 				goto error;
2430 			}
2431 		}
2432 		data += ret;
2433 		len  -= ret;
2434 	}
2435 	if (os_descs_count) {
2436 		ret = ffs_do_os_descs(os_descs_count, data, len,
2437 				      __ffs_data_do_os_desc, ffs);
2438 		if (ret < 0)
2439 			goto error;
2440 		data += ret;
2441 		len -= ret;
2442 	}
2443 
2444 	if (raw_descs == data || len) {
2445 		ret = -EINVAL;
2446 		goto error;
2447 	}
2448 
2449 	ffs->raw_descs_data	= _data;
2450 	ffs->raw_descs		= raw_descs;
2451 	ffs->raw_descs_length	= data - raw_descs;
2452 	ffs->fs_descs_count	= counts[0];
2453 	ffs->hs_descs_count	= counts[1];
2454 	ffs->ss_descs_count	= counts[2];
2455 	ffs->ms_os_descs_count	= os_descs_count;
2456 
2457 	return 0;
2458 
2459 error:
2460 	kfree(_data);
2461 	return ret;
2462 }
2463 
2464 static int __ffs_data_got_strings(struct ffs_data *ffs,
2465 				  char *const _data, size_t len)
2466 {
2467 	u32 str_count, needed_count, lang_count;
2468 	struct usb_gadget_strings **stringtabs, *t;
2469 	const char *data = _data;
2470 	struct usb_string *s;
2471 
2472 	ENTER();
2473 
2474 	if (unlikely(len < 16 ||
2475 		     get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2476 		     get_unaligned_le32(data + 4) != len))
2477 		goto error;
2478 	str_count  = get_unaligned_le32(data + 8);
2479 	lang_count = get_unaligned_le32(data + 12);
2480 
2481 	/* if one is zero the other must be zero */
2482 	if (unlikely(!str_count != !lang_count))
2483 		goto error;
2484 
2485 	/* Do we have at least as many strings as descriptors need? */
2486 	needed_count = ffs->strings_count;
2487 	if (unlikely(str_count < needed_count))
2488 		goto error;
2489 
2490 	/*
2491 	 * If we don't need any strings just return and free all
2492 	 * memory.
2493 	 */
2494 	if (!needed_count) {
2495 		kfree(_data);
2496 		return 0;
2497 	}
2498 
2499 	/* Allocate everything in one chunk so there's less maintenance. */
2500 	{
2501 		unsigned i = 0;
2502 		vla_group(d);
2503 		vla_item(d, struct usb_gadget_strings *, stringtabs,
2504 			lang_count + 1);
2505 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2506 		vla_item(d, struct usb_string, strings,
2507 			lang_count*(needed_count+1));
2508 
2509 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2510 
2511 		if (unlikely(!vlabuf)) {
2512 			kfree(_data);
2513 			return -ENOMEM;
2514 		}
2515 
2516 		/* Initialize the VLA pointers */
2517 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2518 		t = vla_ptr(vlabuf, d, stringtab);
2519 		i = lang_count;
2520 		do {
2521 			*stringtabs++ = t++;
2522 		} while (--i);
2523 		*stringtabs = NULL;
2524 
2525 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2526 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2527 		t = vla_ptr(vlabuf, d, stringtab);
2528 		s = vla_ptr(vlabuf, d, strings);
2529 	}
2530 
2531 	/* For each language */
2532 	data += 16;
2533 	len -= 16;
2534 
2535 	do { /* lang_count > 0 so we can use do-while */
2536 		unsigned needed = needed_count;
2537 
2538 		if (unlikely(len < 3))
2539 			goto error_free;
2540 		t->language = get_unaligned_le16(data);
2541 		t->strings  = s;
2542 		++t;
2543 
2544 		data += 2;
2545 		len -= 2;
2546 
2547 		/* For each string */
2548 		do { /* str_count > 0 so we can use do-while */
2549 			size_t length = strnlen(data, len);
2550 
2551 			if (unlikely(length == len))
2552 				goto error_free;
2553 
2554 			/*
2555 			 * User may provide more strings then we need,
2556 			 * if that's the case we simply ignore the
2557 			 * rest
2558 			 */
2559 			if (likely(needed)) {
2560 				/*
2561 				 * s->id will be set while adding
2562 				 * function to configuration so for
2563 				 * now just leave garbage here.
2564 				 */
2565 				s->s = data;
2566 				--needed;
2567 				++s;
2568 			}
2569 
2570 			data += length + 1;
2571 			len -= length + 1;
2572 		} while (--str_count);
2573 
2574 		s->id = 0;   /* terminator */
2575 		s->s = NULL;
2576 		++s;
2577 
2578 	} while (--lang_count);
2579 
2580 	/* Some garbage left? */
2581 	if (unlikely(len))
2582 		goto error_free;
2583 
2584 	/* Done! */
2585 	ffs->stringtabs = stringtabs;
2586 	ffs->raw_strings = _data;
2587 
2588 	return 0;
2589 
2590 error_free:
2591 	kfree(stringtabs);
2592 error:
2593 	kfree(_data);
2594 	return -EINVAL;
2595 }
2596 
2597 
2598 /* Events handling and management *******************************************/
2599 
2600 static void __ffs_event_add(struct ffs_data *ffs,
2601 			    enum usb_functionfs_event_type type)
2602 {
2603 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2604 	int neg = 0;
2605 
2606 	/*
2607 	 * Abort any unhandled setup
2608 	 *
2609 	 * We do not need to worry about some cmpxchg() changing value
2610 	 * of ffs->setup_state without holding the lock because when
2611 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2612 	 * the source does nothing.
2613 	 */
2614 	if (ffs->setup_state == FFS_SETUP_PENDING)
2615 		ffs->setup_state = FFS_SETUP_CANCELLED;
2616 
2617 	/*
2618 	 * Logic of this function guarantees that there are at most four pending
2619 	 * evens on ffs->ev.types queue.  This is important because the queue
2620 	 * has space for four elements only and __ffs_ep0_read_events function
2621 	 * depends on that limit as well.  If more event types are added, those
2622 	 * limits have to be revisited or guaranteed to still hold.
2623 	 */
2624 	switch (type) {
2625 	case FUNCTIONFS_RESUME:
2626 		rem_type2 = FUNCTIONFS_SUSPEND;
2627 		/* FALL THROUGH */
2628 	case FUNCTIONFS_SUSPEND:
2629 	case FUNCTIONFS_SETUP:
2630 		rem_type1 = type;
2631 		/* Discard all similar events */
2632 		break;
2633 
2634 	case FUNCTIONFS_BIND:
2635 	case FUNCTIONFS_UNBIND:
2636 	case FUNCTIONFS_DISABLE:
2637 	case FUNCTIONFS_ENABLE:
2638 		/* Discard everything other then power management. */
2639 		rem_type1 = FUNCTIONFS_SUSPEND;
2640 		rem_type2 = FUNCTIONFS_RESUME;
2641 		neg = 1;
2642 		break;
2643 
2644 	default:
2645 		WARN(1, "%d: unknown event, this should not happen\n", type);
2646 		return;
2647 	}
2648 
2649 	{
2650 		u8 *ev  = ffs->ev.types, *out = ev;
2651 		unsigned n = ffs->ev.count;
2652 		for (; n; --n, ++ev)
2653 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2654 				*out++ = *ev;
2655 			else
2656 				pr_vdebug("purging event %d\n", *ev);
2657 		ffs->ev.count = out - ffs->ev.types;
2658 	}
2659 
2660 	pr_vdebug("adding event %d\n", type);
2661 	ffs->ev.types[ffs->ev.count++] = type;
2662 	wake_up_locked(&ffs->ev.waitq);
2663 	if (ffs->ffs_eventfd)
2664 		eventfd_signal(ffs->ffs_eventfd, 1);
2665 }
2666 
2667 static void ffs_event_add(struct ffs_data *ffs,
2668 			  enum usb_functionfs_event_type type)
2669 {
2670 	unsigned long flags;
2671 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2672 	__ffs_event_add(ffs, type);
2673 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2674 }
2675 
2676 /* Bind/unbind USB function hooks *******************************************/
2677 
2678 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2679 {
2680 	int i;
2681 
2682 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2683 		if (ffs->eps_addrmap[i] == endpoint_address)
2684 			return i;
2685 	return -ENOENT;
2686 }
2687 
2688 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2689 				    struct usb_descriptor_header *desc,
2690 				    void *priv)
2691 {
2692 	struct usb_endpoint_descriptor *ds = (void *)desc;
2693 	struct ffs_function *func = priv;
2694 	struct ffs_ep *ffs_ep;
2695 	unsigned ep_desc_id;
2696 	int idx;
2697 	static const char *speed_names[] = { "full", "high", "super" };
2698 
2699 	if (type != FFS_DESCRIPTOR)
2700 		return 0;
2701 
2702 	/*
2703 	 * If ss_descriptors is not NULL, we are reading super speed
2704 	 * descriptors; if hs_descriptors is not NULL, we are reading high
2705 	 * speed descriptors; otherwise, we are reading full speed
2706 	 * descriptors.
2707 	 */
2708 	if (func->function.ss_descriptors) {
2709 		ep_desc_id = 2;
2710 		func->function.ss_descriptors[(long)valuep] = desc;
2711 	} else if (func->function.hs_descriptors) {
2712 		ep_desc_id = 1;
2713 		func->function.hs_descriptors[(long)valuep] = desc;
2714 	} else {
2715 		ep_desc_id = 0;
2716 		func->function.fs_descriptors[(long)valuep]    = desc;
2717 	}
2718 
2719 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2720 		return 0;
2721 
2722 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2723 	if (idx < 0)
2724 		return idx;
2725 
2726 	ffs_ep = func->eps + idx;
2727 
2728 	if (unlikely(ffs_ep->descs[ep_desc_id])) {
2729 		pr_err("two %sspeed descriptors for EP %d\n",
2730 			  speed_names[ep_desc_id],
2731 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2732 		return -EINVAL;
2733 	}
2734 	ffs_ep->descs[ep_desc_id] = ds;
2735 
2736 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2737 	if (ffs_ep->ep) {
2738 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2739 		if (!ds->wMaxPacketSize)
2740 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2741 	} else {
2742 		struct usb_request *req;
2743 		struct usb_ep *ep;
2744 		u8 bEndpointAddress;
2745 
2746 		/*
2747 		 * We back up bEndpointAddress because autoconfig overwrites
2748 		 * it with physical endpoint address.
2749 		 */
2750 		bEndpointAddress = ds->bEndpointAddress;
2751 		pr_vdebug("autoconfig\n");
2752 		ep = usb_ep_autoconfig(func->gadget, ds);
2753 		if (unlikely(!ep))
2754 			return -ENOTSUPP;
2755 		ep->driver_data = func->eps + idx;
2756 
2757 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2758 		if (unlikely(!req))
2759 			return -ENOMEM;
2760 
2761 		ffs_ep->ep  = ep;
2762 		ffs_ep->req = req;
2763 		func->eps_revmap[ds->bEndpointAddress &
2764 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2765 		/*
2766 		 * If we use virtual address mapping, we restore
2767 		 * original bEndpointAddress value.
2768 		 */
2769 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2770 			ds->bEndpointAddress = bEndpointAddress;
2771 	}
2772 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2773 
2774 	return 0;
2775 }
2776 
2777 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2778 				   struct usb_descriptor_header *desc,
2779 				   void *priv)
2780 {
2781 	struct ffs_function *func = priv;
2782 	unsigned idx;
2783 	u8 newValue;
2784 
2785 	switch (type) {
2786 	default:
2787 	case FFS_DESCRIPTOR:
2788 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2789 		return 0;
2790 
2791 	case FFS_INTERFACE:
2792 		idx = *valuep;
2793 		if (func->interfaces_nums[idx] < 0) {
2794 			int id = usb_interface_id(func->conf, &func->function);
2795 			if (unlikely(id < 0))
2796 				return id;
2797 			func->interfaces_nums[idx] = id;
2798 		}
2799 		newValue = func->interfaces_nums[idx];
2800 		break;
2801 
2802 	case FFS_STRING:
2803 		/* String' IDs are allocated when fsf_data is bound to cdev */
2804 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2805 		break;
2806 
2807 	case FFS_ENDPOINT:
2808 		/*
2809 		 * USB_DT_ENDPOINT are handled in
2810 		 * __ffs_func_bind_do_descs().
2811 		 */
2812 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2813 			return 0;
2814 
2815 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2816 		if (unlikely(!func->eps[idx].ep))
2817 			return -EINVAL;
2818 
2819 		{
2820 			struct usb_endpoint_descriptor **descs;
2821 			descs = func->eps[idx].descs;
2822 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2823 		}
2824 		break;
2825 	}
2826 
2827 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2828 	*valuep = newValue;
2829 	return 0;
2830 }
2831 
2832 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2833 				      struct usb_os_desc_header *h, void *data,
2834 				      unsigned len, void *priv)
2835 {
2836 	struct ffs_function *func = priv;
2837 	u8 length = 0;
2838 
2839 	switch (type) {
2840 	case FFS_OS_DESC_EXT_COMPAT: {
2841 		struct usb_ext_compat_desc *desc = data;
2842 		struct usb_os_desc_table *t;
2843 
2844 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2845 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2846 		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2847 		       ARRAY_SIZE(desc->CompatibleID) +
2848 		       ARRAY_SIZE(desc->SubCompatibleID));
2849 		length = sizeof(*desc);
2850 	}
2851 		break;
2852 	case FFS_OS_DESC_EXT_PROP: {
2853 		struct usb_ext_prop_desc *desc = data;
2854 		struct usb_os_desc_table *t;
2855 		struct usb_os_desc_ext_prop *ext_prop;
2856 		char *ext_prop_name;
2857 		char *ext_prop_data;
2858 
2859 		t = &func->function.os_desc_table[h->interface];
2860 		t->if_id = func->interfaces_nums[h->interface];
2861 
2862 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2863 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2864 
2865 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2866 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2867 		ext_prop->data_len = le32_to_cpu(*(u32 *)
2868 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2869 		length = ext_prop->name_len + ext_prop->data_len + 14;
2870 
2871 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2872 		func->ffs->ms_os_descs_ext_prop_name_avail +=
2873 			ext_prop->name_len;
2874 
2875 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2876 		func->ffs->ms_os_descs_ext_prop_data_avail +=
2877 			ext_prop->data_len;
2878 		memcpy(ext_prop_data,
2879 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2880 		       ext_prop->data_len);
2881 		/* unicode data reported to the host as "WCHAR"s */
2882 		switch (ext_prop->type) {
2883 		case USB_EXT_PROP_UNICODE:
2884 		case USB_EXT_PROP_UNICODE_ENV:
2885 		case USB_EXT_PROP_UNICODE_LINK:
2886 		case USB_EXT_PROP_UNICODE_MULTI:
2887 			ext_prop->data_len *= 2;
2888 			break;
2889 		}
2890 		ext_prop->data = ext_prop_data;
2891 
2892 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2893 		       ext_prop->name_len);
2894 		/* property name reported to the host as "WCHAR"s */
2895 		ext_prop->name_len *= 2;
2896 		ext_prop->name = ext_prop_name;
2897 
2898 		t->os_desc->ext_prop_len +=
2899 			ext_prop->name_len + ext_prop->data_len + 14;
2900 		++t->os_desc->ext_prop_count;
2901 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2902 	}
2903 		break;
2904 	default:
2905 		pr_vdebug("unknown descriptor: %d\n", type);
2906 	}
2907 
2908 	return length;
2909 }
2910 
2911 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2912 						struct usb_configuration *c)
2913 {
2914 	struct ffs_function *func = ffs_func_from_usb(f);
2915 	struct f_fs_opts *ffs_opts =
2916 		container_of(f->fi, struct f_fs_opts, func_inst);
2917 	int ret;
2918 
2919 	ENTER();
2920 
2921 	/*
2922 	 * Legacy gadget triggers binding in functionfs_ready_callback,
2923 	 * which already uses locking; taking the same lock here would
2924 	 * cause a deadlock.
2925 	 *
2926 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
2927 	 */
2928 	if (!ffs_opts->no_configfs)
2929 		ffs_dev_lock();
2930 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2931 	func->ffs = ffs_opts->dev->ffs_data;
2932 	if (!ffs_opts->no_configfs)
2933 		ffs_dev_unlock();
2934 	if (ret)
2935 		return ERR_PTR(ret);
2936 
2937 	func->conf = c;
2938 	func->gadget = c->cdev->gadget;
2939 
2940 	/*
2941 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2942 	 * configurations are bound in sequence with list_for_each_entry,
2943 	 * in each configuration its functions are bound in sequence
2944 	 * with list_for_each_entry, so we assume no race condition
2945 	 * with regard to ffs_opts->bound access
2946 	 */
2947 	if (!ffs_opts->refcnt) {
2948 		ret = functionfs_bind(func->ffs, c->cdev);
2949 		if (ret)
2950 			return ERR_PTR(ret);
2951 	}
2952 	ffs_opts->refcnt++;
2953 	func->function.strings = func->ffs->stringtabs;
2954 
2955 	return ffs_opts;
2956 }
2957 
2958 static int _ffs_func_bind(struct usb_configuration *c,
2959 			  struct usb_function *f)
2960 {
2961 	struct ffs_function *func = ffs_func_from_usb(f);
2962 	struct ffs_data *ffs = func->ffs;
2963 
2964 	const int full = !!func->ffs->fs_descs_count;
2965 	const int high = gadget_is_dualspeed(func->gadget) &&
2966 		func->ffs->hs_descs_count;
2967 	const int super = gadget_is_superspeed(func->gadget) &&
2968 		func->ffs->ss_descs_count;
2969 
2970 	int fs_len, hs_len, ss_len, ret, i;
2971 	struct ffs_ep *eps_ptr;
2972 
2973 	/* Make it a single chunk, less management later on */
2974 	vla_group(d);
2975 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2976 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2977 		full ? ffs->fs_descs_count + 1 : 0);
2978 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2979 		high ? ffs->hs_descs_count + 1 : 0);
2980 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2981 		super ? ffs->ss_descs_count + 1 : 0);
2982 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2983 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2984 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2985 	vla_item_with_sz(d, char[16], ext_compat,
2986 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2987 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
2988 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2989 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
2990 			 ffs->ms_os_descs_ext_prop_count);
2991 	vla_item_with_sz(d, char, ext_prop_name,
2992 			 ffs->ms_os_descs_ext_prop_name_len);
2993 	vla_item_with_sz(d, char, ext_prop_data,
2994 			 ffs->ms_os_descs_ext_prop_data_len);
2995 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
2996 	char *vlabuf;
2997 
2998 	ENTER();
2999 
3000 	/* Has descriptors only for speeds gadget does not support */
3001 	if (unlikely(!(full | high | super)))
3002 		return -ENOTSUPP;
3003 
3004 	/* Allocate a single chunk, less management later on */
3005 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3006 	if (unlikely(!vlabuf))
3007 		return -ENOMEM;
3008 
3009 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3010 	ffs->ms_os_descs_ext_prop_name_avail =
3011 		vla_ptr(vlabuf, d, ext_prop_name);
3012 	ffs->ms_os_descs_ext_prop_data_avail =
3013 		vla_ptr(vlabuf, d, ext_prop_data);
3014 
3015 	/* Copy descriptors  */
3016 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3017 	       ffs->raw_descs_length);
3018 
3019 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3020 	eps_ptr = vla_ptr(vlabuf, d, eps);
3021 	for (i = 0; i < ffs->eps_count; i++)
3022 		eps_ptr[i].num = -1;
3023 
3024 	/* Save pointers
3025 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3026 	*/
3027 	func->eps             = vla_ptr(vlabuf, d, eps);
3028 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3029 
3030 	/*
3031 	 * Go through all the endpoint descriptors and allocate
3032 	 * endpoints first, so that later we can rewrite the endpoint
3033 	 * numbers without worrying that it may be described later on.
3034 	 */
3035 	if (likely(full)) {
3036 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3037 		fs_len = ffs_do_descs(ffs->fs_descs_count,
3038 				      vla_ptr(vlabuf, d, raw_descs),
3039 				      d_raw_descs__sz,
3040 				      __ffs_func_bind_do_descs, func);
3041 		if (unlikely(fs_len < 0)) {
3042 			ret = fs_len;
3043 			goto error;
3044 		}
3045 	} else {
3046 		fs_len = 0;
3047 	}
3048 
3049 	if (likely(high)) {
3050 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3051 		hs_len = ffs_do_descs(ffs->hs_descs_count,
3052 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3053 				      d_raw_descs__sz - fs_len,
3054 				      __ffs_func_bind_do_descs, func);
3055 		if (unlikely(hs_len < 0)) {
3056 			ret = hs_len;
3057 			goto error;
3058 		}
3059 	} else {
3060 		hs_len = 0;
3061 	}
3062 
3063 	if (likely(super)) {
3064 		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3065 		ss_len = ffs_do_descs(ffs->ss_descs_count,
3066 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3067 				d_raw_descs__sz - fs_len - hs_len,
3068 				__ffs_func_bind_do_descs, func);
3069 		if (unlikely(ss_len < 0)) {
3070 			ret = ss_len;
3071 			goto error;
3072 		}
3073 	} else {
3074 		ss_len = 0;
3075 	}
3076 
3077 	/*
3078 	 * Now handle interface numbers allocation and interface and
3079 	 * endpoint numbers rewriting.  We can do that in one go
3080 	 * now.
3081 	 */
3082 	ret = ffs_do_descs(ffs->fs_descs_count +
3083 			   (high ? ffs->hs_descs_count : 0) +
3084 			   (super ? ffs->ss_descs_count : 0),
3085 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3086 			   __ffs_func_bind_do_nums, func);
3087 	if (unlikely(ret < 0))
3088 		goto error;
3089 
3090 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3091 	if (c->cdev->use_os_string) {
3092 		for (i = 0; i < ffs->interfaces_count; ++i) {
3093 			struct usb_os_desc *desc;
3094 
3095 			desc = func->function.os_desc_table[i].os_desc =
3096 				vla_ptr(vlabuf, d, os_desc) +
3097 				i * sizeof(struct usb_os_desc);
3098 			desc->ext_compat_id =
3099 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3100 			INIT_LIST_HEAD(&desc->ext_prop);
3101 		}
3102 		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3103 				      vla_ptr(vlabuf, d, raw_descs) +
3104 				      fs_len + hs_len + ss_len,
3105 				      d_raw_descs__sz - fs_len - hs_len -
3106 				      ss_len,
3107 				      __ffs_func_bind_do_os_desc, func);
3108 		if (unlikely(ret < 0))
3109 			goto error;
3110 	}
3111 	func->function.os_desc_n =
3112 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3113 
3114 	/* And we're done */
3115 	ffs_event_add(ffs, FUNCTIONFS_BIND);
3116 	return 0;
3117 
3118 error:
3119 	/* XXX Do we need to release all claimed endpoints here? */
3120 	return ret;
3121 }
3122 
3123 static int ffs_func_bind(struct usb_configuration *c,
3124 			 struct usb_function *f)
3125 {
3126 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3127 	struct ffs_function *func = ffs_func_from_usb(f);
3128 	int ret;
3129 
3130 	if (IS_ERR(ffs_opts))
3131 		return PTR_ERR(ffs_opts);
3132 
3133 	ret = _ffs_func_bind(c, f);
3134 	if (ret && !--ffs_opts->refcnt)
3135 		functionfs_unbind(func->ffs);
3136 
3137 	return ret;
3138 }
3139 
3140 
3141 /* Other USB function hooks *************************************************/
3142 
3143 static void ffs_reset_work(struct work_struct *work)
3144 {
3145 	struct ffs_data *ffs = container_of(work,
3146 		struct ffs_data, reset_work);
3147 	ffs_data_reset(ffs);
3148 }
3149 
3150 static int ffs_func_set_alt(struct usb_function *f,
3151 			    unsigned interface, unsigned alt)
3152 {
3153 	struct ffs_function *func = ffs_func_from_usb(f);
3154 	struct ffs_data *ffs = func->ffs;
3155 	int ret = 0, intf;
3156 
3157 	if (alt != (unsigned)-1) {
3158 		intf = ffs_func_revmap_intf(func, interface);
3159 		if (unlikely(intf < 0))
3160 			return intf;
3161 	}
3162 
3163 	if (ffs->func)
3164 		ffs_func_eps_disable(ffs->func);
3165 
3166 	if (ffs->state == FFS_DEACTIVATED) {
3167 		ffs->state = FFS_CLOSING;
3168 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3169 		schedule_work(&ffs->reset_work);
3170 		return -ENODEV;
3171 	}
3172 
3173 	if (ffs->state != FFS_ACTIVE)
3174 		return -ENODEV;
3175 
3176 	if (alt == (unsigned)-1) {
3177 		ffs->func = NULL;
3178 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3179 		return 0;
3180 	}
3181 
3182 	ffs->func = func;
3183 	ret = ffs_func_eps_enable(func);
3184 	if (likely(ret >= 0))
3185 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3186 	return ret;
3187 }
3188 
3189 static void ffs_func_disable(struct usb_function *f)
3190 {
3191 	ffs_func_set_alt(f, 0, (unsigned)-1);
3192 }
3193 
3194 static int ffs_func_setup(struct usb_function *f,
3195 			  const struct usb_ctrlrequest *creq)
3196 {
3197 	struct ffs_function *func = ffs_func_from_usb(f);
3198 	struct ffs_data *ffs = func->ffs;
3199 	unsigned long flags;
3200 	int ret;
3201 
3202 	ENTER();
3203 
3204 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3205 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3206 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3207 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3208 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3209 
3210 	/*
3211 	 * Most requests directed to interface go through here
3212 	 * (notable exceptions are set/get interface) so we need to
3213 	 * handle them.  All other either handled by composite or
3214 	 * passed to usb_configuration->setup() (if one is set).  No
3215 	 * matter, we will handle requests directed to endpoint here
3216 	 * as well (as it's straightforward).  Other request recipient
3217 	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3218 	 * is being used.
3219 	 */
3220 	if (ffs->state != FFS_ACTIVE)
3221 		return -ENODEV;
3222 
3223 	switch (creq->bRequestType & USB_RECIP_MASK) {
3224 	case USB_RECIP_INTERFACE:
3225 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3226 		if (unlikely(ret < 0))
3227 			return ret;
3228 		break;
3229 
3230 	case USB_RECIP_ENDPOINT:
3231 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3232 		if (unlikely(ret < 0))
3233 			return ret;
3234 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3235 			ret = func->ffs->eps_addrmap[ret];
3236 		break;
3237 
3238 	default:
3239 		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3240 			ret = le16_to_cpu(creq->wIndex);
3241 		else
3242 			return -EOPNOTSUPP;
3243 	}
3244 
3245 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3246 	ffs->ev.setup = *creq;
3247 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3248 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3249 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3250 
3251 	return 0;
3252 }
3253 
3254 static bool ffs_func_req_match(struct usb_function *f,
3255 			       const struct usb_ctrlrequest *creq,
3256 			       bool config0)
3257 {
3258 	struct ffs_function *func = ffs_func_from_usb(f);
3259 
3260 	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3261 		return false;
3262 
3263 	switch (creq->bRequestType & USB_RECIP_MASK) {
3264 	case USB_RECIP_INTERFACE:
3265 		return (ffs_func_revmap_intf(func,
3266 					     le16_to_cpu(creq->wIndex)) >= 0);
3267 	case USB_RECIP_ENDPOINT:
3268 		return (ffs_func_revmap_ep(func,
3269 					   le16_to_cpu(creq->wIndex)) >= 0);
3270 	default:
3271 		return (bool) (func->ffs->user_flags &
3272 			       FUNCTIONFS_ALL_CTRL_RECIP);
3273 	}
3274 }
3275 
3276 static void ffs_func_suspend(struct usb_function *f)
3277 {
3278 	ENTER();
3279 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3280 }
3281 
3282 static void ffs_func_resume(struct usb_function *f)
3283 {
3284 	ENTER();
3285 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3286 }
3287 
3288 
3289 /* Endpoint and interface numbers reverse mapping ***************************/
3290 
3291 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3292 {
3293 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3294 	return num ? num : -EDOM;
3295 }
3296 
3297 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3298 {
3299 	short *nums = func->interfaces_nums;
3300 	unsigned count = func->ffs->interfaces_count;
3301 
3302 	for (; count; --count, ++nums) {
3303 		if (*nums >= 0 && *nums == intf)
3304 			return nums - func->interfaces_nums;
3305 	}
3306 
3307 	return -EDOM;
3308 }
3309 
3310 
3311 /* Devices management *******************************************************/
3312 
3313 static LIST_HEAD(ffs_devices);
3314 
3315 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3316 {
3317 	struct ffs_dev *dev;
3318 
3319 	if (!name)
3320 		return NULL;
3321 
3322 	list_for_each_entry(dev, &ffs_devices, entry) {
3323 		if (strcmp(dev->name, name) == 0)
3324 			return dev;
3325 	}
3326 
3327 	return NULL;
3328 }
3329 
3330 /*
3331  * ffs_lock must be taken by the caller of this function
3332  */
3333 static struct ffs_dev *_ffs_get_single_dev(void)
3334 {
3335 	struct ffs_dev *dev;
3336 
3337 	if (list_is_singular(&ffs_devices)) {
3338 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3339 		if (dev->single)
3340 			return dev;
3341 	}
3342 
3343 	return NULL;
3344 }
3345 
3346 /*
3347  * ffs_lock must be taken by the caller of this function
3348  */
3349 static struct ffs_dev *_ffs_find_dev(const char *name)
3350 {
3351 	struct ffs_dev *dev;
3352 
3353 	dev = _ffs_get_single_dev();
3354 	if (dev)
3355 		return dev;
3356 
3357 	return _ffs_do_find_dev(name);
3358 }
3359 
3360 /* Configfs support *********************************************************/
3361 
3362 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3363 {
3364 	return container_of(to_config_group(item), struct f_fs_opts,
3365 			    func_inst.group);
3366 }
3367 
3368 static void ffs_attr_release(struct config_item *item)
3369 {
3370 	struct f_fs_opts *opts = to_ffs_opts(item);
3371 
3372 	usb_put_function_instance(&opts->func_inst);
3373 }
3374 
3375 static struct configfs_item_operations ffs_item_ops = {
3376 	.release	= ffs_attr_release,
3377 };
3378 
3379 static struct config_item_type ffs_func_type = {
3380 	.ct_item_ops	= &ffs_item_ops,
3381 	.ct_owner	= THIS_MODULE,
3382 };
3383 
3384 
3385 /* Function registration interface ******************************************/
3386 
3387 static void ffs_free_inst(struct usb_function_instance *f)
3388 {
3389 	struct f_fs_opts *opts;
3390 
3391 	opts = to_f_fs_opts(f);
3392 	ffs_dev_lock();
3393 	_ffs_free_dev(opts->dev);
3394 	ffs_dev_unlock();
3395 	kfree(opts);
3396 }
3397 
3398 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3399 {
3400 	if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name))
3401 		return -ENAMETOOLONG;
3402 	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3403 }
3404 
3405 static struct usb_function_instance *ffs_alloc_inst(void)
3406 {
3407 	struct f_fs_opts *opts;
3408 	struct ffs_dev *dev;
3409 
3410 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3411 	if (!opts)
3412 		return ERR_PTR(-ENOMEM);
3413 
3414 	opts->func_inst.set_inst_name = ffs_set_inst_name;
3415 	opts->func_inst.free_func_inst = ffs_free_inst;
3416 	ffs_dev_lock();
3417 	dev = _ffs_alloc_dev();
3418 	ffs_dev_unlock();
3419 	if (IS_ERR(dev)) {
3420 		kfree(opts);
3421 		return ERR_CAST(dev);
3422 	}
3423 	opts->dev = dev;
3424 	dev->opts = opts;
3425 
3426 	config_group_init_type_name(&opts->func_inst.group, "",
3427 				    &ffs_func_type);
3428 	return &opts->func_inst;
3429 }
3430 
3431 static void ffs_free(struct usb_function *f)
3432 {
3433 	kfree(ffs_func_from_usb(f));
3434 }
3435 
3436 static void ffs_func_unbind(struct usb_configuration *c,
3437 			    struct usb_function *f)
3438 {
3439 	struct ffs_function *func = ffs_func_from_usb(f);
3440 	struct ffs_data *ffs = func->ffs;
3441 	struct f_fs_opts *opts =
3442 		container_of(f->fi, struct f_fs_opts, func_inst);
3443 	struct ffs_ep *ep = func->eps;
3444 	unsigned count = ffs->eps_count;
3445 	unsigned long flags;
3446 
3447 	ENTER();
3448 	if (ffs->func == func) {
3449 		ffs_func_eps_disable(func);
3450 		ffs->func = NULL;
3451 	}
3452 
3453 	if (!--opts->refcnt)
3454 		functionfs_unbind(ffs);
3455 
3456 	/* cleanup after autoconfig */
3457 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3458 	while (count--) {
3459 		if (ep->ep && ep->req)
3460 			usb_ep_free_request(ep->ep, ep->req);
3461 		ep->req = NULL;
3462 		++ep;
3463 	}
3464 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3465 	kfree(func->eps);
3466 	func->eps = NULL;
3467 	/*
3468 	 * eps, descriptors and interfaces_nums are allocated in the
3469 	 * same chunk so only one free is required.
3470 	 */
3471 	func->function.fs_descriptors = NULL;
3472 	func->function.hs_descriptors = NULL;
3473 	func->function.ss_descriptors = NULL;
3474 	func->interfaces_nums = NULL;
3475 
3476 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3477 }
3478 
3479 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3480 {
3481 	struct ffs_function *func;
3482 
3483 	ENTER();
3484 
3485 	func = kzalloc(sizeof(*func), GFP_KERNEL);
3486 	if (unlikely(!func))
3487 		return ERR_PTR(-ENOMEM);
3488 
3489 	func->function.name    = "Function FS Gadget";
3490 
3491 	func->function.bind    = ffs_func_bind;
3492 	func->function.unbind  = ffs_func_unbind;
3493 	func->function.set_alt = ffs_func_set_alt;
3494 	func->function.disable = ffs_func_disable;
3495 	func->function.setup   = ffs_func_setup;
3496 	func->function.req_match = ffs_func_req_match;
3497 	func->function.suspend = ffs_func_suspend;
3498 	func->function.resume  = ffs_func_resume;
3499 	func->function.free_func = ffs_free;
3500 
3501 	return &func->function;
3502 }
3503 
3504 /*
3505  * ffs_lock must be taken by the caller of this function
3506  */
3507 static struct ffs_dev *_ffs_alloc_dev(void)
3508 {
3509 	struct ffs_dev *dev;
3510 	int ret;
3511 
3512 	if (_ffs_get_single_dev())
3513 			return ERR_PTR(-EBUSY);
3514 
3515 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3516 	if (!dev)
3517 		return ERR_PTR(-ENOMEM);
3518 
3519 	if (list_empty(&ffs_devices)) {
3520 		ret = functionfs_init();
3521 		if (ret) {
3522 			kfree(dev);
3523 			return ERR_PTR(ret);
3524 		}
3525 	}
3526 
3527 	list_add(&dev->entry, &ffs_devices);
3528 
3529 	return dev;
3530 }
3531 
3532 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3533 {
3534 	struct ffs_dev *existing;
3535 	int ret = 0;
3536 
3537 	ffs_dev_lock();
3538 
3539 	existing = _ffs_do_find_dev(name);
3540 	if (!existing)
3541 		strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3542 	else if (existing != dev)
3543 		ret = -EBUSY;
3544 
3545 	ffs_dev_unlock();
3546 
3547 	return ret;
3548 }
3549 EXPORT_SYMBOL_GPL(ffs_name_dev);
3550 
3551 int ffs_single_dev(struct ffs_dev *dev)
3552 {
3553 	int ret;
3554 
3555 	ret = 0;
3556 	ffs_dev_lock();
3557 
3558 	if (!list_is_singular(&ffs_devices))
3559 		ret = -EBUSY;
3560 	else
3561 		dev->single = true;
3562 
3563 	ffs_dev_unlock();
3564 	return ret;
3565 }
3566 EXPORT_SYMBOL_GPL(ffs_single_dev);
3567 
3568 /*
3569  * ffs_lock must be taken by the caller of this function
3570  */
3571 static void _ffs_free_dev(struct ffs_dev *dev)
3572 {
3573 	list_del(&dev->entry);
3574 
3575 	/* Clear the private_data pointer to stop incorrect dev access */
3576 	if (dev->ffs_data)
3577 		dev->ffs_data->private_data = NULL;
3578 
3579 	kfree(dev);
3580 	if (list_empty(&ffs_devices))
3581 		functionfs_cleanup();
3582 }
3583 
3584 static void *ffs_acquire_dev(const char *dev_name)
3585 {
3586 	struct ffs_dev *ffs_dev;
3587 
3588 	ENTER();
3589 	ffs_dev_lock();
3590 
3591 	ffs_dev = _ffs_find_dev(dev_name);
3592 	if (!ffs_dev)
3593 		ffs_dev = ERR_PTR(-ENOENT);
3594 	else if (ffs_dev->mounted)
3595 		ffs_dev = ERR_PTR(-EBUSY);
3596 	else if (ffs_dev->ffs_acquire_dev_callback &&
3597 	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3598 		ffs_dev = ERR_PTR(-ENOENT);
3599 	else
3600 		ffs_dev->mounted = true;
3601 
3602 	ffs_dev_unlock();
3603 	return ffs_dev;
3604 }
3605 
3606 static void ffs_release_dev(struct ffs_data *ffs_data)
3607 {
3608 	struct ffs_dev *ffs_dev;
3609 
3610 	ENTER();
3611 	ffs_dev_lock();
3612 
3613 	ffs_dev = ffs_data->private_data;
3614 	if (ffs_dev) {
3615 		ffs_dev->mounted = false;
3616 
3617 		if (ffs_dev->ffs_release_dev_callback)
3618 			ffs_dev->ffs_release_dev_callback(ffs_dev);
3619 	}
3620 
3621 	ffs_dev_unlock();
3622 }
3623 
3624 static int ffs_ready(struct ffs_data *ffs)
3625 {
3626 	struct ffs_dev *ffs_obj;
3627 	int ret = 0;
3628 
3629 	ENTER();
3630 	ffs_dev_lock();
3631 
3632 	ffs_obj = ffs->private_data;
3633 	if (!ffs_obj) {
3634 		ret = -EINVAL;
3635 		goto done;
3636 	}
3637 	if (WARN_ON(ffs_obj->desc_ready)) {
3638 		ret = -EBUSY;
3639 		goto done;
3640 	}
3641 
3642 	ffs_obj->desc_ready = true;
3643 	ffs_obj->ffs_data = ffs;
3644 
3645 	if (ffs_obj->ffs_ready_callback) {
3646 		ret = ffs_obj->ffs_ready_callback(ffs);
3647 		if (ret)
3648 			goto done;
3649 	}
3650 
3651 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3652 done:
3653 	ffs_dev_unlock();
3654 	return ret;
3655 }
3656 
3657 static void ffs_closed(struct ffs_data *ffs)
3658 {
3659 	struct ffs_dev *ffs_obj;
3660 	struct f_fs_opts *opts;
3661 	struct config_item *ci;
3662 
3663 	ENTER();
3664 	ffs_dev_lock();
3665 
3666 	ffs_obj = ffs->private_data;
3667 	if (!ffs_obj)
3668 		goto done;
3669 
3670 	ffs_obj->desc_ready = false;
3671 
3672 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3673 	    ffs_obj->ffs_closed_callback)
3674 		ffs_obj->ffs_closed_callback(ffs);
3675 
3676 	if (ffs_obj->opts)
3677 		opts = ffs_obj->opts;
3678 	else
3679 		goto done;
3680 
3681 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3682 	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3683 		goto done;
3684 
3685 	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3686 	ffs_dev_unlock();
3687 
3688 	unregister_gadget_item(ci);
3689 	return;
3690 done:
3691 	ffs_dev_unlock();
3692 }
3693 
3694 /* Misc helper functions ****************************************************/
3695 
3696 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3697 {
3698 	return nonblock
3699 		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3700 		: mutex_lock_interruptible(mutex);
3701 }
3702 
3703 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3704 {
3705 	char *data;
3706 
3707 	if (unlikely(!len))
3708 		return NULL;
3709 
3710 	data = kmalloc(len, GFP_KERNEL);
3711 	if (unlikely(!data))
3712 		return ERR_PTR(-ENOMEM);
3713 
3714 	if (unlikely(copy_from_user(data, buf, len))) {
3715 		kfree(data);
3716 		return ERR_PTR(-EFAULT);
3717 	}
3718 
3719 	pr_vdebug("Buffer from user space:\n");
3720 	ffs_dump_mem("", data, len);
3721 
3722 	return data;
3723 }
3724 
3725 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3726 MODULE_LICENSE("GPL");
3727 MODULE_AUTHOR("Michal Nazarewicz");
3728