1 /* 2 * f_fs.c -- user mode file system API for USB composite function controllers 3 * 4 * Copyright (C) 2010 Samsung Electronics 5 * Author: Michal Nazarewicz <mina86@mina86.com> 6 * 7 * Based on inode.c (GadgetFS) which was: 8 * Copyright (C) 2003-2004 David Brownell 9 * Copyright (C) 2003 Agilent Technologies 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2 of the License, or 14 * (at your option) any later version. 15 */ 16 17 18 /* #define DEBUG */ 19 /* #define VERBOSE_DEBUG */ 20 21 #include <linux/blkdev.h> 22 #include <linux/pagemap.h> 23 #include <linux/export.h> 24 #include <linux/hid.h> 25 #include <linux/module.h> 26 #include <linux/uio.h> 27 #include <asm/unaligned.h> 28 29 #include <linux/usb/composite.h> 30 #include <linux/usb/functionfs.h> 31 32 #include <linux/aio.h> 33 #include <linux/mmu_context.h> 34 #include <linux/poll.h> 35 #include <linux/eventfd.h> 36 37 #include "u_fs.h" 38 #include "u_f.h" 39 #include "u_os_desc.h" 40 #include "configfs.h" 41 42 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ 43 44 /* Reference counter handling */ 45 static void ffs_data_get(struct ffs_data *ffs); 46 static void ffs_data_put(struct ffs_data *ffs); 47 /* Creates new ffs_data object. */ 48 static struct ffs_data *__must_check ffs_data_new(void) __attribute__((malloc)); 49 50 /* Opened counter handling. */ 51 static void ffs_data_opened(struct ffs_data *ffs); 52 static void ffs_data_closed(struct ffs_data *ffs); 53 54 /* Called with ffs->mutex held; take over ownership of data. */ 55 static int __must_check 56 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); 57 static int __must_check 58 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); 59 60 61 /* The function structure ***************************************************/ 62 63 struct ffs_ep; 64 65 struct ffs_function { 66 struct usb_configuration *conf; 67 struct usb_gadget *gadget; 68 struct ffs_data *ffs; 69 70 struct ffs_ep *eps; 71 u8 eps_revmap[16]; 72 short *interfaces_nums; 73 74 struct usb_function function; 75 }; 76 77 78 static struct ffs_function *ffs_func_from_usb(struct usb_function *f) 79 { 80 return container_of(f, struct ffs_function, function); 81 } 82 83 84 static inline enum ffs_setup_state 85 ffs_setup_state_clear_cancelled(struct ffs_data *ffs) 86 { 87 return (enum ffs_setup_state) 88 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); 89 } 90 91 92 static void ffs_func_eps_disable(struct ffs_function *func); 93 static int __must_check ffs_func_eps_enable(struct ffs_function *func); 94 95 static int ffs_func_bind(struct usb_configuration *, 96 struct usb_function *); 97 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); 98 static void ffs_func_disable(struct usb_function *); 99 static int ffs_func_setup(struct usb_function *, 100 const struct usb_ctrlrequest *); 101 static bool ffs_func_req_match(struct usb_function *, 102 const struct usb_ctrlrequest *, 103 bool config0); 104 static void ffs_func_suspend(struct usb_function *); 105 static void ffs_func_resume(struct usb_function *); 106 107 108 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); 109 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); 110 111 112 /* The endpoints structures *************************************************/ 113 114 struct ffs_ep { 115 struct usb_ep *ep; /* P: ffs->eps_lock */ 116 struct usb_request *req; /* P: epfile->mutex */ 117 118 /* [0]: full speed, [1]: high speed, [2]: super speed */ 119 struct usb_endpoint_descriptor *descs[3]; 120 121 u8 num; 122 123 int status; /* P: epfile->mutex */ 124 }; 125 126 struct ffs_epfile { 127 /* Protects ep->ep and ep->req. */ 128 struct mutex mutex; 129 wait_queue_head_t wait; 130 131 struct ffs_data *ffs; 132 struct ffs_ep *ep; /* P: ffs->eps_lock */ 133 134 struct dentry *dentry; 135 136 /* 137 * Buffer for holding data from partial reads which may happen since 138 * we’re rounding user read requests to a multiple of a max packet size. 139 */ 140 struct ffs_buffer *read_buffer; /* P: epfile->mutex */ 141 142 char name[5]; 143 144 unsigned char in; /* P: ffs->eps_lock */ 145 unsigned char isoc; /* P: ffs->eps_lock */ 146 147 unsigned char _pad; 148 }; 149 150 struct ffs_buffer { 151 size_t length; 152 char *data; 153 char storage[]; 154 }; 155 156 /* ffs_io_data structure ***************************************************/ 157 158 struct ffs_io_data { 159 bool aio; 160 bool read; 161 162 struct kiocb *kiocb; 163 struct iov_iter data; 164 const void *to_free; 165 char *buf; 166 167 struct mm_struct *mm; 168 struct work_struct work; 169 170 struct usb_ep *ep; 171 struct usb_request *req; 172 173 struct ffs_data *ffs; 174 }; 175 176 struct ffs_desc_helper { 177 struct ffs_data *ffs; 178 unsigned interfaces_count; 179 unsigned eps_count; 180 }; 181 182 static int __must_check ffs_epfiles_create(struct ffs_data *ffs); 183 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count); 184 185 static struct dentry * 186 ffs_sb_create_file(struct super_block *sb, const char *name, void *data, 187 const struct file_operations *fops); 188 189 /* Devices management *******************************************************/ 190 191 DEFINE_MUTEX(ffs_lock); 192 EXPORT_SYMBOL_GPL(ffs_lock); 193 194 static struct ffs_dev *_ffs_find_dev(const char *name); 195 static struct ffs_dev *_ffs_alloc_dev(void); 196 static int _ffs_name_dev(struct ffs_dev *dev, const char *name); 197 static void _ffs_free_dev(struct ffs_dev *dev); 198 static void *ffs_acquire_dev(const char *dev_name); 199 static void ffs_release_dev(struct ffs_data *ffs_data); 200 static int ffs_ready(struct ffs_data *ffs); 201 static void ffs_closed(struct ffs_data *ffs); 202 203 /* Misc helper functions ****************************************************/ 204 205 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 206 __attribute__((warn_unused_result, nonnull)); 207 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 208 __attribute__((warn_unused_result, nonnull)); 209 210 211 /* Control file aka ep0 *****************************************************/ 212 213 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) 214 { 215 struct ffs_data *ffs = req->context; 216 217 complete_all(&ffs->ep0req_completion); 218 } 219 220 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) 221 { 222 struct usb_request *req = ffs->ep0req; 223 int ret; 224 225 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); 226 227 spin_unlock_irq(&ffs->ev.waitq.lock); 228 229 req->buf = data; 230 req->length = len; 231 232 /* 233 * UDC layer requires to provide a buffer even for ZLP, but should 234 * not use it at all. Let's provide some poisoned pointer to catch 235 * possible bug in the driver. 236 */ 237 if (req->buf == NULL) 238 req->buf = (void *)0xDEADBABE; 239 240 reinit_completion(&ffs->ep0req_completion); 241 242 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); 243 if (unlikely(ret < 0)) 244 return ret; 245 246 ret = wait_for_completion_interruptible(&ffs->ep0req_completion); 247 if (unlikely(ret)) { 248 usb_ep_dequeue(ffs->gadget->ep0, req); 249 return -EINTR; 250 } 251 252 ffs->setup_state = FFS_NO_SETUP; 253 return req->status ? req->status : req->actual; 254 } 255 256 static int __ffs_ep0_stall(struct ffs_data *ffs) 257 { 258 if (ffs->ev.can_stall) { 259 pr_vdebug("ep0 stall\n"); 260 usb_ep_set_halt(ffs->gadget->ep0); 261 ffs->setup_state = FFS_NO_SETUP; 262 return -EL2HLT; 263 } else { 264 pr_debug("bogus ep0 stall!\n"); 265 return -ESRCH; 266 } 267 } 268 269 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, 270 size_t len, loff_t *ptr) 271 { 272 struct ffs_data *ffs = file->private_data; 273 ssize_t ret; 274 char *data; 275 276 ENTER(); 277 278 /* Fast check if setup was canceled */ 279 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 280 return -EIDRM; 281 282 /* Acquire mutex */ 283 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 284 if (unlikely(ret < 0)) 285 return ret; 286 287 /* Check state */ 288 switch (ffs->state) { 289 case FFS_READ_DESCRIPTORS: 290 case FFS_READ_STRINGS: 291 /* Copy data */ 292 if (unlikely(len < 16)) { 293 ret = -EINVAL; 294 break; 295 } 296 297 data = ffs_prepare_buffer(buf, len); 298 if (IS_ERR(data)) { 299 ret = PTR_ERR(data); 300 break; 301 } 302 303 /* Handle data */ 304 if (ffs->state == FFS_READ_DESCRIPTORS) { 305 pr_info("read descriptors\n"); 306 ret = __ffs_data_got_descs(ffs, data, len); 307 if (unlikely(ret < 0)) 308 break; 309 310 ffs->state = FFS_READ_STRINGS; 311 ret = len; 312 } else { 313 pr_info("read strings\n"); 314 ret = __ffs_data_got_strings(ffs, data, len); 315 if (unlikely(ret < 0)) 316 break; 317 318 ret = ffs_epfiles_create(ffs); 319 if (unlikely(ret)) { 320 ffs->state = FFS_CLOSING; 321 break; 322 } 323 324 ffs->state = FFS_ACTIVE; 325 mutex_unlock(&ffs->mutex); 326 327 ret = ffs_ready(ffs); 328 if (unlikely(ret < 0)) { 329 ffs->state = FFS_CLOSING; 330 return ret; 331 } 332 333 return len; 334 } 335 break; 336 337 case FFS_ACTIVE: 338 data = NULL; 339 /* 340 * We're called from user space, we can use _irq 341 * rather then _irqsave 342 */ 343 spin_lock_irq(&ffs->ev.waitq.lock); 344 switch (ffs_setup_state_clear_cancelled(ffs)) { 345 case FFS_SETUP_CANCELLED: 346 ret = -EIDRM; 347 goto done_spin; 348 349 case FFS_NO_SETUP: 350 ret = -ESRCH; 351 goto done_spin; 352 353 case FFS_SETUP_PENDING: 354 break; 355 } 356 357 /* FFS_SETUP_PENDING */ 358 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { 359 spin_unlock_irq(&ffs->ev.waitq.lock); 360 ret = __ffs_ep0_stall(ffs); 361 break; 362 } 363 364 /* FFS_SETUP_PENDING and not stall */ 365 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 366 367 spin_unlock_irq(&ffs->ev.waitq.lock); 368 369 data = ffs_prepare_buffer(buf, len); 370 if (IS_ERR(data)) { 371 ret = PTR_ERR(data); 372 break; 373 } 374 375 spin_lock_irq(&ffs->ev.waitq.lock); 376 377 /* 378 * We are guaranteed to be still in FFS_ACTIVE state 379 * but the state of setup could have changed from 380 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need 381 * to check for that. If that happened we copied data 382 * from user space in vain but it's unlikely. 383 * 384 * For sure we are not in FFS_NO_SETUP since this is 385 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP 386 * transition can be performed and it's protected by 387 * mutex. 388 */ 389 if (ffs_setup_state_clear_cancelled(ffs) == 390 FFS_SETUP_CANCELLED) { 391 ret = -EIDRM; 392 done_spin: 393 spin_unlock_irq(&ffs->ev.waitq.lock); 394 } else { 395 /* unlocks spinlock */ 396 ret = __ffs_ep0_queue_wait(ffs, data, len); 397 } 398 kfree(data); 399 break; 400 401 default: 402 ret = -EBADFD; 403 break; 404 } 405 406 mutex_unlock(&ffs->mutex); 407 return ret; 408 } 409 410 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */ 411 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, 412 size_t n) 413 { 414 /* 415 * n cannot be bigger than ffs->ev.count, which cannot be bigger than 416 * size of ffs->ev.types array (which is four) so that's how much space 417 * we reserve. 418 */ 419 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)]; 420 const size_t size = n * sizeof *events; 421 unsigned i = 0; 422 423 memset(events, 0, size); 424 425 do { 426 events[i].type = ffs->ev.types[i]; 427 if (events[i].type == FUNCTIONFS_SETUP) { 428 events[i].u.setup = ffs->ev.setup; 429 ffs->setup_state = FFS_SETUP_PENDING; 430 } 431 } while (++i < n); 432 433 ffs->ev.count -= n; 434 if (ffs->ev.count) 435 memmove(ffs->ev.types, ffs->ev.types + n, 436 ffs->ev.count * sizeof *ffs->ev.types); 437 438 spin_unlock_irq(&ffs->ev.waitq.lock); 439 mutex_unlock(&ffs->mutex); 440 441 return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size; 442 } 443 444 static ssize_t ffs_ep0_read(struct file *file, char __user *buf, 445 size_t len, loff_t *ptr) 446 { 447 struct ffs_data *ffs = file->private_data; 448 char *data = NULL; 449 size_t n; 450 int ret; 451 452 ENTER(); 453 454 /* Fast check if setup was canceled */ 455 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 456 return -EIDRM; 457 458 /* Acquire mutex */ 459 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 460 if (unlikely(ret < 0)) 461 return ret; 462 463 /* Check state */ 464 if (ffs->state != FFS_ACTIVE) { 465 ret = -EBADFD; 466 goto done_mutex; 467 } 468 469 /* 470 * We're called from user space, we can use _irq rather then 471 * _irqsave 472 */ 473 spin_lock_irq(&ffs->ev.waitq.lock); 474 475 switch (ffs_setup_state_clear_cancelled(ffs)) { 476 case FFS_SETUP_CANCELLED: 477 ret = -EIDRM; 478 break; 479 480 case FFS_NO_SETUP: 481 n = len / sizeof(struct usb_functionfs_event); 482 if (unlikely(!n)) { 483 ret = -EINVAL; 484 break; 485 } 486 487 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { 488 ret = -EAGAIN; 489 break; 490 } 491 492 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, 493 ffs->ev.count)) { 494 ret = -EINTR; 495 break; 496 } 497 498 return __ffs_ep0_read_events(ffs, buf, 499 min(n, (size_t)ffs->ev.count)); 500 501 case FFS_SETUP_PENDING: 502 if (ffs->ev.setup.bRequestType & USB_DIR_IN) { 503 spin_unlock_irq(&ffs->ev.waitq.lock); 504 ret = __ffs_ep0_stall(ffs); 505 goto done_mutex; 506 } 507 508 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 509 510 spin_unlock_irq(&ffs->ev.waitq.lock); 511 512 if (likely(len)) { 513 data = kmalloc(len, GFP_KERNEL); 514 if (unlikely(!data)) { 515 ret = -ENOMEM; 516 goto done_mutex; 517 } 518 } 519 520 spin_lock_irq(&ffs->ev.waitq.lock); 521 522 /* See ffs_ep0_write() */ 523 if (ffs_setup_state_clear_cancelled(ffs) == 524 FFS_SETUP_CANCELLED) { 525 ret = -EIDRM; 526 break; 527 } 528 529 /* unlocks spinlock */ 530 ret = __ffs_ep0_queue_wait(ffs, data, len); 531 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len))) 532 ret = -EFAULT; 533 goto done_mutex; 534 535 default: 536 ret = -EBADFD; 537 break; 538 } 539 540 spin_unlock_irq(&ffs->ev.waitq.lock); 541 done_mutex: 542 mutex_unlock(&ffs->mutex); 543 kfree(data); 544 return ret; 545 } 546 547 static int ffs_ep0_open(struct inode *inode, struct file *file) 548 { 549 struct ffs_data *ffs = inode->i_private; 550 551 ENTER(); 552 553 if (unlikely(ffs->state == FFS_CLOSING)) 554 return -EBUSY; 555 556 file->private_data = ffs; 557 ffs_data_opened(ffs); 558 559 return 0; 560 } 561 562 static int ffs_ep0_release(struct inode *inode, struct file *file) 563 { 564 struct ffs_data *ffs = file->private_data; 565 566 ENTER(); 567 568 ffs_data_closed(ffs); 569 570 return 0; 571 } 572 573 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) 574 { 575 struct ffs_data *ffs = file->private_data; 576 struct usb_gadget *gadget = ffs->gadget; 577 long ret; 578 579 ENTER(); 580 581 if (code == FUNCTIONFS_INTERFACE_REVMAP) { 582 struct ffs_function *func = ffs->func; 583 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; 584 } else if (gadget && gadget->ops->ioctl) { 585 ret = gadget->ops->ioctl(gadget, code, value); 586 } else { 587 ret = -ENOTTY; 588 } 589 590 return ret; 591 } 592 593 static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait) 594 { 595 struct ffs_data *ffs = file->private_data; 596 unsigned int mask = POLLWRNORM; 597 int ret; 598 599 poll_wait(file, &ffs->ev.waitq, wait); 600 601 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 602 if (unlikely(ret < 0)) 603 return mask; 604 605 switch (ffs->state) { 606 case FFS_READ_DESCRIPTORS: 607 case FFS_READ_STRINGS: 608 mask |= POLLOUT; 609 break; 610 611 case FFS_ACTIVE: 612 switch (ffs->setup_state) { 613 case FFS_NO_SETUP: 614 if (ffs->ev.count) 615 mask |= POLLIN; 616 break; 617 618 case FFS_SETUP_PENDING: 619 case FFS_SETUP_CANCELLED: 620 mask |= (POLLIN | POLLOUT); 621 break; 622 } 623 case FFS_CLOSING: 624 break; 625 case FFS_DEACTIVATED: 626 break; 627 } 628 629 mutex_unlock(&ffs->mutex); 630 631 return mask; 632 } 633 634 static const struct file_operations ffs_ep0_operations = { 635 .llseek = no_llseek, 636 637 .open = ffs_ep0_open, 638 .write = ffs_ep0_write, 639 .read = ffs_ep0_read, 640 .release = ffs_ep0_release, 641 .unlocked_ioctl = ffs_ep0_ioctl, 642 .poll = ffs_ep0_poll, 643 }; 644 645 646 /* "Normal" endpoints operations ********************************************/ 647 648 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) 649 { 650 ENTER(); 651 if (likely(req->context)) { 652 struct ffs_ep *ep = _ep->driver_data; 653 ep->status = req->status ? req->status : req->actual; 654 complete(req->context); 655 } 656 } 657 658 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter) 659 { 660 ssize_t ret = copy_to_iter(data, data_len, iter); 661 if (likely(ret == data_len)) 662 return ret; 663 664 if (unlikely(iov_iter_count(iter))) 665 return -EFAULT; 666 667 /* 668 * Dear user space developer! 669 * 670 * TL;DR: To stop getting below error message in your kernel log, change 671 * user space code using functionfs to align read buffers to a max 672 * packet size. 673 * 674 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max 675 * packet size. When unaligned buffer is passed to functionfs, it 676 * internally uses a larger, aligned buffer so that such UDCs are happy. 677 * 678 * Unfortunately, this means that host may send more data than was 679 * requested in read(2) system call. f_fs doesn’t know what to do with 680 * that excess data so it simply drops it. 681 * 682 * Was the buffer aligned in the first place, no such problem would 683 * happen. 684 * 685 * Data may be dropped only in AIO reads. Synchronous reads are handled 686 * by splitting a request into multiple parts. This splitting may still 687 * be a problem though so it’s likely best to align the buffer 688 * regardless of it being AIO or not.. 689 * 690 * This only affects OUT endpoints, i.e. reading data with a read(2), 691 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not 692 * affected. 693 */ 694 pr_err("functionfs read size %d > requested size %zd, dropping excess data. " 695 "Align read buffer size to max packet size to avoid the problem.\n", 696 data_len, ret); 697 698 return ret; 699 } 700 701 static void ffs_user_copy_worker(struct work_struct *work) 702 { 703 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 704 work); 705 int ret = io_data->req->status ? io_data->req->status : 706 io_data->req->actual; 707 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD; 708 709 if (io_data->read && ret > 0) { 710 use_mm(io_data->mm); 711 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data); 712 unuse_mm(io_data->mm); 713 } 714 715 io_data->kiocb->ki_complete(io_data->kiocb, ret, ret); 716 717 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd) 718 eventfd_signal(io_data->ffs->ffs_eventfd, 1); 719 720 usb_ep_free_request(io_data->ep, io_data->req); 721 722 if (io_data->read) 723 kfree(io_data->to_free); 724 kfree(io_data->buf); 725 kfree(io_data); 726 } 727 728 static void ffs_epfile_async_io_complete(struct usb_ep *_ep, 729 struct usb_request *req) 730 { 731 struct ffs_io_data *io_data = req->context; 732 733 ENTER(); 734 735 INIT_WORK(&io_data->work, ffs_user_copy_worker); 736 schedule_work(&io_data->work); 737 } 738 739 /* Assumes epfile->mutex is held. */ 740 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile, 741 struct iov_iter *iter) 742 { 743 struct ffs_buffer *buf = epfile->read_buffer; 744 ssize_t ret; 745 if (!buf) 746 return 0; 747 748 ret = copy_to_iter(buf->data, buf->length, iter); 749 if (buf->length == ret) { 750 kfree(buf); 751 epfile->read_buffer = NULL; 752 } else if (unlikely(iov_iter_count(iter))) { 753 ret = -EFAULT; 754 } else { 755 buf->length -= ret; 756 buf->data += ret; 757 } 758 return ret; 759 } 760 761 /* Assumes epfile->mutex is held. */ 762 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile, 763 void *data, int data_len, 764 struct iov_iter *iter) 765 { 766 struct ffs_buffer *buf; 767 768 ssize_t ret = copy_to_iter(data, data_len, iter); 769 if (likely(data_len == ret)) 770 return ret; 771 772 if (unlikely(iov_iter_count(iter))) 773 return -EFAULT; 774 775 /* See ffs_copy_to_iter for more context. */ 776 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.", 777 data_len, ret); 778 779 data_len -= ret; 780 buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL); 781 if (!buf) 782 return -ENOMEM; 783 buf->length = data_len; 784 buf->data = buf->storage; 785 memcpy(buf->storage, data + ret, data_len); 786 epfile->read_buffer = buf; 787 788 return ret; 789 } 790 791 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) 792 { 793 struct ffs_epfile *epfile = file->private_data; 794 struct usb_request *req; 795 struct ffs_ep *ep; 796 char *data = NULL; 797 ssize_t ret, data_len = -EINVAL; 798 int halt; 799 800 /* Are we still active? */ 801 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 802 return -ENODEV; 803 804 /* Wait for endpoint to be enabled */ 805 ep = epfile->ep; 806 if (!ep) { 807 if (file->f_flags & O_NONBLOCK) 808 return -EAGAIN; 809 810 ret = wait_event_interruptible(epfile->wait, (ep = epfile->ep)); 811 if (ret) 812 return -EINTR; 813 } 814 815 /* Do we halt? */ 816 halt = (!io_data->read == !epfile->in); 817 if (halt && epfile->isoc) 818 return -EINVAL; 819 820 /* We will be using request and read_buffer */ 821 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); 822 if (unlikely(ret)) 823 goto error; 824 825 /* Allocate & copy */ 826 if (!halt) { 827 struct usb_gadget *gadget; 828 829 /* 830 * Do we have buffered data from previous partial read? Check 831 * that for synchronous case only because we do not have 832 * facility to ‘wake up’ a pending asynchronous read and push 833 * buffered data to it which we would need to make things behave 834 * consistently. 835 */ 836 if (!io_data->aio && io_data->read) { 837 ret = __ffs_epfile_read_buffered(epfile, &io_data->data); 838 if (ret) 839 goto error_mutex; 840 } 841 842 /* 843 * if we _do_ wait above, the epfile->ffs->gadget might be NULL 844 * before the waiting completes, so do not assign to 'gadget' 845 * earlier 846 */ 847 gadget = epfile->ffs->gadget; 848 849 spin_lock_irq(&epfile->ffs->eps_lock); 850 /* In the meantime, endpoint got disabled or changed. */ 851 if (epfile->ep != ep) { 852 ret = -ESHUTDOWN; 853 goto error_lock; 854 } 855 data_len = iov_iter_count(&io_data->data); 856 /* 857 * Controller may require buffer size to be aligned to 858 * maxpacketsize of an out endpoint. 859 */ 860 if (io_data->read) 861 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len); 862 spin_unlock_irq(&epfile->ffs->eps_lock); 863 864 data = kmalloc(data_len, GFP_KERNEL); 865 if (unlikely(!data)) { 866 ret = -ENOMEM; 867 goto error_mutex; 868 } 869 if (!io_data->read && 870 copy_from_iter(data, data_len, &io_data->data) != data_len) { 871 ret = -EFAULT; 872 goto error_mutex; 873 } 874 } 875 876 spin_lock_irq(&epfile->ffs->eps_lock); 877 878 if (epfile->ep != ep) { 879 /* In the meantime, endpoint got disabled or changed. */ 880 ret = -ESHUTDOWN; 881 } else if (halt) { 882 /* Halt */ 883 if (likely(epfile->ep == ep) && !WARN_ON(!ep->ep)) 884 usb_ep_set_halt(ep->ep); 885 ret = -EBADMSG; 886 } else if (unlikely(data_len == -EINVAL)) { 887 /* 888 * Sanity Check: even though data_len can't be used 889 * uninitialized at the time I write this comment, some 890 * compilers complain about this situation. 891 * In order to keep the code clean from warnings, data_len is 892 * being initialized to -EINVAL during its declaration, which 893 * means we can't rely on compiler anymore to warn no future 894 * changes won't result in data_len being used uninitialized. 895 * For such reason, we're adding this redundant sanity check 896 * here. 897 */ 898 WARN(1, "%s: data_len == -EINVAL\n", __func__); 899 ret = -EINVAL; 900 } else if (!io_data->aio) { 901 DECLARE_COMPLETION_ONSTACK(done); 902 bool interrupted = false; 903 904 req = ep->req; 905 req->buf = data; 906 req->length = data_len; 907 908 req->context = &done; 909 req->complete = ffs_epfile_io_complete; 910 911 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 912 if (unlikely(ret < 0)) 913 goto error_lock; 914 915 spin_unlock_irq(&epfile->ffs->eps_lock); 916 917 if (unlikely(wait_for_completion_interruptible(&done))) { 918 /* 919 * To avoid race condition with ffs_epfile_io_complete, 920 * dequeue the request first then check 921 * status. usb_ep_dequeue API should guarantee no race 922 * condition with req->complete callback. 923 */ 924 usb_ep_dequeue(ep->ep, req); 925 interrupted = ep->status < 0; 926 } 927 928 if (interrupted) 929 ret = -EINTR; 930 else if (io_data->read && ep->status > 0) 931 ret = __ffs_epfile_read_data(epfile, data, ep->status, 932 &io_data->data); 933 else 934 ret = ep->status; 935 goto error_mutex; 936 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_KERNEL))) { 937 ret = -ENOMEM; 938 } else { 939 req->buf = data; 940 req->length = data_len; 941 942 io_data->buf = data; 943 io_data->ep = ep->ep; 944 io_data->req = req; 945 io_data->ffs = epfile->ffs; 946 947 req->context = io_data; 948 req->complete = ffs_epfile_async_io_complete; 949 950 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 951 if (unlikely(ret)) { 952 usb_ep_free_request(ep->ep, req); 953 goto error_lock; 954 } 955 956 ret = -EIOCBQUEUED; 957 /* 958 * Do not kfree the buffer in this function. It will be freed 959 * by ffs_user_copy_worker. 960 */ 961 data = NULL; 962 } 963 964 error_lock: 965 spin_unlock_irq(&epfile->ffs->eps_lock); 966 error_mutex: 967 mutex_unlock(&epfile->mutex); 968 error: 969 kfree(data); 970 return ret; 971 } 972 973 static int 974 ffs_epfile_open(struct inode *inode, struct file *file) 975 { 976 struct ffs_epfile *epfile = inode->i_private; 977 978 ENTER(); 979 980 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 981 return -ENODEV; 982 983 file->private_data = epfile; 984 ffs_data_opened(epfile->ffs); 985 986 return 0; 987 } 988 989 static int ffs_aio_cancel(struct kiocb *kiocb) 990 { 991 struct ffs_io_data *io_data = kiocb->private; 992 struct ffs_epfile *epfile = kiocb->ki_filp->private_data; 993 int value; 994 995 ENTER(); 996 997 spin_lock_irq(&epfile->ffs->eps_lock); 998 999 if (likely(io_data && io_data->ep && io_data->req)) 1000 value = usb_ep_dequeue(io_data->ep, io_data->req); 1001 else 1002 value = -EINVAL; 1003 1004 spin_unlock_irq(&epfile->ffs->eps_lock); 1005 1006 return value; 1007 } 1008 1009 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from) 1010 { 1011 struct ffs_io_data io_data, *p = &io_data; 1012 ssize_t res; 1013 1014 ENTER(); 1015 1016 if (!is_sync_kiocb(kiocb)) { 1017 p = kmalloc(sizeof(io_data), GFP_KERNEL); 1018 if (unlikely(!p)) 1019 return -ENOMEM; 1020 p->aio = true; 1021 } else { 1022 p->aio = false; 1023 } 1024 1025 p->read = false; 1026 p->kiocb = kiocb; 1027 p->data = *from; 1028 p->mm = current->mm; 1029 1030 kiocb->private = p; 1031 1032 if (p->aio) 1033 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1034 1035 res = ffs_epfile_io(kiocb->ki_filp, p); 1036 if (res == -EIOCBQUEUED) 1037 return res; 1038 if (p->aio) 1039 kfree(p); 1040 else 1041 *from = p->data; 1042 return res; 1043 } 1044 1045 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to) 1046 { 1047 struct ffs_io_data io_data, *p = &io_data; 1048 ssize_t res; 1049 1050 ENTER(); 1051 1052 if (!is_sync_kiocb(kiocb)) { 1053 p = kmalloc(sizeof(io_data), GFP_KERNEL); 1054 if (unlikely(!p)) 1055 return -ENOMEM; 1056 p->aio = true; 1057 } else { 1058 p->aio = false; 1059 } 1060 1061 p->read = true; 1062 p->kiocb = kiocb; 1063 if (p->aio) { 1064 p->to_free = dup_iter(&p->data, to, GFP_KERNEL); 1065 if (!p->to_free) { 1066 kfree(p); 1067 return -ENOMEM; 1068 } 1069 } else { 1070 p->data = *to; 1071 p->to_free = NULL; 1072 } 1073 p->mm = current->mm; 1074 1075 kiocb->private = p; 1076 1077 if (p->aio) 1078 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1079 1080 res = ffs_epfile_io(kiocb->ki_filp, p); 1081 if (res == -EIOCBQUEUED) 1082 return res; 1083 1084 if (p->aio) { 1085 kfree(p->to_free); 1086 kfree(p); 1087 } else { 1088 *to = p->data; 1089 } 1090 return res; 1091 } 1092 1093 static int 1094 ffs_epfile_release(struct inode *inode, struct file *file) 1095 { 1096 struct ffs_epfile *epfile = inode->i_private; 1097 1098 ENTER(); 1099 1100 kfree(epfile->read_buffer); 1101 epfile->read_buffer = NULL; 1102 ffs_data_closed(epfile->ffs); 1103 1104 return 0; 1105 } 1106 1107 static long ffs_epfile_ioctl(struct file *file, unsigned code, 1108 unsigned long value) 1109 { 1110 struct ffs_epfile *epfile = file->private_data; 1111 int ret; 1112 1113 ENTER(); 1114 1115 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1116 return -ENODEV; 1117 1118 spin_lock_irq(&epfile->ffs->eps_lock); 1119 if (likely(epfile->ep)) { 1120 switch (code) { 1121 case FUNCTIONFS_FIFO_STATUS: 1122 ret = usb_ep_fifo_status(epfile->ep->ep); 1123 break; 1124 case FUNCTIONFS_FIFO_FLUSH: 1125 usb_ep_fifo_flush(epfile->ep->ep); 1126 ret = 0; 1127 break; 1128 case FUNCTIONFS_CLEAR_HALT: 1129 ret = usb_ep_clear_halt(epfile->ep->ep); 1130 break; 1131 case FUNCTIONFS_ENDPOINT_REVMAP: 1132 ret = epfile->ep->num; 1133 break; 1134 case FUNCTIONFS_ENDPOINT_DESC: 1135 { 1136 int desc_idx; 1137 struct usb_endpoint_descriptor *desc; 1138 1139 switch (epfile->ffs->gadget->speed) { 1140 case USB_SPEED_SUPER: 1141 desc_idx = 2; 1142 break; 1143 case USB_SPEED_HIGH: 1144 desc_idx = 1; 1145 break; 1146 default: 1147 desc_idx = 0; 1148 } 1149 desc = epfile->ep->descs[desc_idx]; 1150 1151 spin_unlock_irq(&epfile->ffs->eps_lock); 1152 ret = copy_to_user((void *)value, desc, sizeof(*desc)); 1153 if (ret) 1154 ret = -EFAULT; 1155 return ret; 1156 } 1157 default: 1158 ret = -ENOTTY; 1159 } 1160 } else { 1161 ret = -ENODEV; 1162 } 1163 spin_unlock_irq(&epfile->ffs->eps_lock); 1164 1165 return ret; 1166 } 1167 1168 static const struct file_operations ffs_epfile_operations = { 1169 .llseek = no_llseek, 1170 1171 .open = ffs_epfile_open, 1172 .write_iter = ffs_epfile_write_iter, 1173 .read_iter = ffs_epfile_read_iter, 1174 .release = ffs_epfile_release, 1175 .unlocked_ioctl = ffs_epfile_ioctl, 1176 }; 1177 1178 1179 /* File system and super block operations ***********************************/ 1180 1181 /* 1182 * Mounting the file system creates a controller file, used first for 1183 * function configuration then later for event monitoring. 1184 */ 1185 1186 static struct inode *__must_check 1187 ffs_sb_make_inode(struct super_block *sb, void *data, 1188 const struct file_operations *fops, 1189 const struct inode_operations *iops, 1190 struct ffs_file_perms *perms) 1191 { 1192 struct inode *inode; 1193 1194 ENTER(); 1195 1196 inode = new_inode(sb); 1197 1198 if (likely(inode)) { 1199 struct timespec ts = current_time(inode); 1200 1201 inode->i_ino = get_next_ino(); 1202 inode->i_mode = perms->mode; 1203 inode->i_uid = perms->uid; 1204 inode->i_gid = perms->gid; 1205 inode->i_atime = ts; 1206 inode->i_mtime = ts; 1207 inode->i_ctime = ts; 1208 inode->i_private = data; 1209 if (fops) 1210 inode->i_fop = fops; 1211 if (iops) 1212 inode->i_op = iops; 1213 } 1214 1215 return inode; 1216 } 1217 1218 /* Create "regular" file */ 1219 static struct dentry *ffs_sb_create_file(struct super_block *sb, 1220 const char *name, void *data, 1221 const struct file_operations *fops) 1222 { 1223 struct ffs_data *ffs = sb->s_fs_info; 1224 struct dentry *dentry; 1225 struct inode *inode; 1226 1227 ENTER(); 1228 1229 dentry = d_alloc_name(sb->s_root, name); 1230 if (unlikely(!dentry)) 1231 return NULL; 1232 1233 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); 1234 if (unlikely(!inode)) { 1235 dput(dentry); 1236 return NULL; 1237 } 1238 1239 d_add(dentry, inode); 1240 return dentry; 1241 } 1242 1243 /* Super block */ 1244 static const struct super_operations ffs_sb_operations = { 1245 .statfs = simple_statfs, 1246 .drop_inode = generic_delete_inode, 1247 }; 1248 1249 struct ffs_sb_fill_data { 1250 struct ffs_file_perms perms; 1251 umode_t root_mode; 1252 const char *dev_name; 1253 bool no_disconnect; 1254 struct ffs_data *ffs_data; 1255 }; 1256 1257 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent) 1258 { 1259 struct ffs_sb_fill_data *data = _data; 1260 struct inode *inode; 1261 struct ffs_data *ffs = data->ffs_data; 1262 1263 ENTER(); 1264 1265 ffs->sb = sb; 1266 data->ffs_data = NULL; 1267 sb->s_fs_info = ffs; 1268 sb->s_blocksize = PAGE_SIZE; 1269 sb->s_blocksize_bits = PAGE_SHIFT; 1270 sb->s_magic = FUNCTIONFS_MAGIC; 1271 sb->s_op = &ffs_sb_operations; 1272 sb->s_time_gran = 1; 1273 1274 /* Root inode */ 1275 data->perms.mode = data->root_mode; 1276 inode = ffs_sb_make_inode(sb, NULL, 1277 &simple_dir_operations, 1278 &simple_dir_inode_operations, 1279 &data->perms); 1280 sb->s_root = d_make_root(inode); 1281 if (unlikely(!sb->s_root)) 1282 return -ENOMEM; 1283 1284 /* EP0 file */ 1285 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs, 1286 &ffs_ep0_operations))) 1287 return -ENOMEM; 1288 1289 return 0; 1290 } 1291 1292 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts) 1293 { 1294 ENTER(); 1295 1296 if (!opts || !*opts) 1297 return 0; 1298 1299 for (;;) { 1300 unsigned long value; 1301 char *eq, *comma; 1302 1303 /* Option limit */ 1304 comma = strchr(opts, ','); 1305 if (comma) 1306 *comma = 0; 1307 1308 /* Value limit */ 1309 eq = strchr(opts, '='); 1310 if (unlikely(!eq)) { 1311 pr_err("'=' missing in %s\n", opts); 1312 return -EINVAL; 1313 } 1314 *eq = 0; 1315 1316 /* Parse value */ 1317 if (kstrtoul(eq + 1, 0, &value)) { 1318 pr_err("%s: invalid value: %s\n", opts, eq + 1); 1319 return -EINVAL; 1320 } 1321 1322 /* Interpret option */ 1323 switch (eq - opts) { 1324 case 13: 1325 if (!memcmp(opts, "no_disconnect", 13)) 1326 data->no_disconnect = !!value; 1327 else 1328 goto invalid; 1329 break; 1330 case 5: 1331 if (!memcmp(opts, "rmode", 5)) 1332 data->root_mode = (value & 0555) | S_IFDIR; 1333 else if (!memcmp(opts, "fmode", 5)) 1334 data->perms.mode = (value & 0666) | S_IFREG; 1335 else 1336 goto invalid; 1337 break; 1338 1339 case 4: 1340 if (!memcmp(opts, "mode", 4)) { 1341 data->root_mode = (value & 0555) | S_IFDIR; 1342 data->perms.mode = (value & 0666) | S_IFREG; 1343 } else { 1344 goto invalid; 1345 } 1346 break; 1347 1348 case 3: 1349 if (!memcmp(opts, "uid", 3)) { 1350 data->perms.uid = make_kuid(current_user_ns(), value); 1351 if (!uid_valid(data->perms.uid)) { 1352 pr_err("%s: unmapped value: %lu\n", opts, value); 1353 return -EINVAL; 1354 } 1355 } else if (!memcmp(opts, "gid", 3)) { 1356 data->perms.gid = make_kgid(current_user_ns(), value); 1357 if (!gid_valid(data->perms.gid)) { 1358 pr_err("%s: unmapped value: %lu\n", opts, value); 1359 return -EINVAL; 1360 } 1361 } else { 1362 goto invalid; 1363 } 1364 break; 1365 1366 default: 1367 invalid: 1368 pr_err("%s: invalid option\n", opts); 1369 return -EINVAL; 1370 } 1371 1372 /* Next iteration */ 1373 if (!comma) 1374 break; 1375 opts = comma + 1; 1376 } 1377 1378 return 0; 1379 } 1380 1381 /* "mount -t functionfs dev_name /dev/function" ends up here */ 1382 1383 static struct dentry * 1384 ffs_fs_mount(struct file_system_type *t, int flags, 1385 const char *dev_name, void *opts) 1386 { 1387 struct ffs_sb_fill_data data = { 1388 .perms = { 1389 .mode = S_IFREG | 0600, 1390 .uid = GLOBAL_ROOT_UID, 1391 .gid = GLOBAL_ROOT_GID, 1392 }, 1393 .root_mode = S_IFDIR | 0500, 1394 .no_disconnect = false, 1395 }; 1396 struct dentry *rv; 1397 int ret; 1398 void *ffs_dev; 1399 struct ffs_data *ffs; 1400 1401 ENTER(); 1402 1403 ret = ffs_fs_parse_opts(&data, opts); 1404 if (unlikely(ret < 0)) 1405 return ERR_PTR(ret); 1406 1407 ffs = ffs_data_new(); 1408 if (unlikely(!ffs)) 1409 return ERR_PTR(-ENOMEM); 1410 ffs->file_perms = data.perms; 1411 ffs->no_disconnect = data.no_disconnect; 1412 1413 ffs->dev_name = kstrdup(dev_name, GFP_KERNEL); 1414 if (unlikely(!ffs->dev_name)) { 1415 ffs_data_put(ffs); 1416 return ERR_PTR(-ENOMEM); 1417 } 1418 1419 ffs_dev = ffs_acquire_dev(dev_name); 1420 if (IS_ERR(ffs_dev)) { 1421 ffs_data_put(ffs); 1422 return ERR_CAST(ffs_dev); 1423 } 1424 ffs->private_data = ffs_dev; 1425 data.ffs_data = ffs; 1426 1427 rv = mount_nodev(t, flags, &data, ffs_sb_fill); 1428 if (IS_ERR(rv) && data.ffs_data) { 1429 ffs_release_dev(data.ffs_data); 1430 ffs_data_put(data.ffs_data); 1431 } 1432 return rv; 1433 } 1434 1435 static void 1436 ffs_fs_kill_sb(struct super_block *sb) 1437 { 1438 ENTER(); 1439 1440 kill_litter_super(sb); 1441 if (sb->s_fs_info) { 1442 ffs_release_dev(sb->s_fs_info); 1443 ffs_data_closed(sb->s_fs_info); 1444 ffs_data_put(sb->s_fs_info); 1445 } 1446 } 1447 1448 static struct file_system_type ffs_fs_type = { 1449 .owner = THIS_MODULE, 1450 .name = "functionfs", 1451 .mount = ffs_fs_mount, 1452 .kill_sb = ffs_fs_kill_sb, 1453 }; 1454 MODULE_ALIAS_FS("functionfs"); 1455 1456 1457 /* Driver's main init/cleanup functions *************************************/ 1458 1459 static int functionfs_init(void) 1460 { 1461 int ret; 1462 1463 ENTER(); 1464 1465 ret = register_filesystem(&ffs_fs_type); 1466 if (likely(!ret)) 1467 pr_info("file system registered\n"); 1468 else 1469 pr_err("failed registering file system (%d)\n", ret); 1470 1471 return ret; 1472 } 1473 1474 static void functionfs_cleanup(void) 1475 { 1476 ENTER(); 1477 1478 pr_info("unloading\n"); 1479 unregister_filesystem(&ffs_fs_type); 1480 } 1481 1482 1483 /* ffs_data and ffs_function construction and destruction code **************/ 1484 1485 static void ffs_data_clear(struct ffs_data *ffs); 1486 static void ffs_data_reset(struct ffs_data *ffs); 1487 1488 static void ffs_data_get(struct ffs_data *ffs) 1489 { 1490 ENTER(); 1491 1492 atomic_inc(&ffs->ref); 1493 } 1494 1495 static void ffs_data_opened(struct ffs_data *ffs) 1496 { 1497 ENTER(); 1498 1499 atomic_inc(&ffs->ref); 1500 if (atomic_add_return(1, &ffs->opened) == 1 && 1501 ffs->state == FFS_DEACTIVATED) { 1502 ffs->state = FFS_CLOSING; 1503 ffs_data_reset(ffs); 1504 } 1505 } 1506 1507 static void ffs_data_put(struct ffs_data *ffs) 1508 { 1509 ENTER(); 1510 1511 if (unlikely(atomic_dec_and_test(&ffs->ref))) { 1512 pr_info("%s(): freeing\n", __func__); 1513 ffs_data_clear(ffs); 1514 BUG_ON(waitqueue_active(&ffs->ev.waitq) || 1515 waitqueue_active(&ffs->ep0req_completion.wait)); 1516 kfree(ffs->dev_name); 1517 kfree(ffs); 1518 } 1519 } 1520 1521 static void ffs_data_closed(struct ffs_data *ffs) 1522 { 1523 ENTER(); 1524 1525 if (atomic_dec_and_test(&ffs->opened)) { 1526 if (ffs->no_disconnect) { 1527 ffs->state = FFS_DEACTIVATED; 1528 if (ffs->epfiles) { 1529 ffs_epfiles_destroy(ffs->epfiles, 1530 ffs->eps_count); 1531 ffs->epfiles = NULL; 1532 } 1533 if (ffs->setup_state == FFS_SETUP_PENDING) 1534 __ffs_ep0_stall(ffs); 1535 } else { 1536 ffs->state = FFS_CLOSING; 1537 ffs_data_reset(ffs); 1538 } 1539 } 1540 if (atomic_read(&ffs->opened) < 0) { 1541 ffs->state = FFS_CLOSING; 1542 ffs_data_reset(ffs); 1543 } 1544 1545 ffs_data_put(ffs); 1546 } 1547 1548 static struct ffs_data *ffs_data_new(void) 1549 { 1550 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); 1551 if (unlikely(!ffs)) 1552 return NULL; 1553 1554 ENTER(); 1555 1556 atomic_set(&ffs->ref, 1); 1557 atomic_set(&ffs->opened, 0); 1558 ffs->state = FFS_READ_DESCRIPTORS; 1559 mutex_init(&ffs->mutex); 1560 spin_lock_init(&ffs->eps_lock); 1561 init_waitqueue_head(&ffs->ev.waitq); 1562 init_completion(&ffs->ep0req_completion); 1563 1564 /* XXX REVISIT need to update it in some places, or do we? */ 1565 ffs->ev.can_stall = 1; 1566 1567 return ffs; 1568 } 1569 1570 static void ffs_data_clear(struct ffs_data *ffs) 1571 { 1572 ENTER(); 1573 1574 ffs_closed(ffs); 1575 1576 BUG_ON(ffs->gadget); 1577 1578 if (ffs->epfiles) 1579 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count); 1580 1581 if (ffs->ffs_eventfd) 1582 eventfd_ctx_put(ffs->ffs_eventfd); 1583 1584 kfree(ffs->raw_descs_data); 1585 kfree(ffs->raw_strings); 1586 kfree(ffs->stringtabs); 1587 } 1588 1589 static void ffs_data_reset(struct ffs_data *ffs) 1590 { 1591 ENTER(); 1592 1593 ffs_data_clear(ffs); 1594 1595 ffs->epfiles = NULL; 1596 ffs->raw_descs_data = NULL; 1597 ffs->raw_descs = NULL; 1598 ffs->raw_strings = NULL; 1599 ffs->stringtabs = NULL; 1600 1601 ffs->raw_descs_length = 0; 1602 ffs->fs_descs_count = 0; 1603 ffs->hs_descs_count = 0; 1604 ffs->ss_descs_count = 0; 1605 1606 ffs->strings_count = 0; 1607 ffs->interfaces_count = 0; 1608 ffs->eps_count = 0; 1609 1610 ffs->ev.count = 0; 1611 1612 ffs->state = FFS_READ_DESCRIPTORS; 1613 ffs->setup_state = FFS_NO_SETUP; 1614 ffs->flags = 0; 1615 } 1616 1617 1618 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) 1619 { 1620 struct usb_gadget_strings **lang; 1621 int first_id; 1622 1623 ENTER(); 1624 1625 if (WARN_ON(ffs->state != FFS_ACTIVE 1626 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) 1627 return -EBADFD; 1628 1629 first_id = usb_string_ids_n(cdev, ffs->strings_count); 1630 if (unlikely(first_id < 0)) 1631 return first_id; 1632 1633 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); 1634 if (unlikely(!ffs->ep0req)) 1635 return -ENOMEM; 1636 ffs->ep0req->complete = ffs_ep0_complete; 1637 ffs->ep0req->context = ffs; 1638 1639 lang = ffs->stringtabs; 1640 if (lang) { 1641 for (; *lang; ++lang) { 1642 struct usb_string *str = (*lang)->strings; 1643 int id = first_id; 1644 for (; str->s; ++id, ++str) 1645 str->id = id; 1646 } 1647 } 1648 1649 ffs->gadget = cdev->gadget; 1650 ffs_data_get(ffs); 1651 return 0; 1652 } 1653 1654 static void functionfs_unbind(struct ffs_data *ffs) 1655 { 1656 ENTER(); 1657 1658 if (!WARN_ON(!ffs->gadget)) { 1659 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); 1660 ffs->ep0req = NULL; 1661 ffs->gadget = NULL; 1662 clear_bit(FFS_FL_BOUND, &ffs->flags); 1663 ffs_data_put(ffs); 1664 } 1665 } 1666 1667 static int ffs_epfiles_create(struct ffs_data *ffs) 1668 { 1669 struct ffs_epfile *epfile, *epfiles; 1670 unsigned i, count; 1671 1672 ENTER(); 1673 1674 count = ffs->eps_count; 1675 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); 1676 if (!epfiles) 1677 return -ENOMEM; 1678 1679 epfile = epfiles; 1680 for (i = 1; i <= count; ++i, ++epfile) { 1681 epfile->ffs = ffs; 1682 mutex_init(&epfile->mutex); 1683 init_waitqueue_head(&epfile->wait); 1684 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 1685 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]); 1686 else 1687 sprintf(epfile->name, "ep%u", i); 1688 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name, 1689 epfile, 1690 &ffs_epfile_operations); 1691 if (unlikely(!epfile->dentry)) { 1692 ffs_epfiles_destroy(epfiles, i - 1); 1693 return -ENOMEM; 1694 } 1695 } 1696 1697 ffs->epfiles = epfiles; 1698 return 0; 1699 } 1700 1701 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count) 1702 { 1703 struct ffs_epfile *epfile = epfiles; 1704 1705 ENTER(); 1706 1707 for (; count; --count, ++epfile) { 1708 BUG_ON(mutex_is_locked(&epfile->mutex) || 1709 waitqueue_active(&epfile->wait)); 1710 if (epfile->dentry) { 1711 d_delete(epfile->dentry); 1712 dput(epfile->dentry); 1713 epfile->dentry = NULL; 1714 } 1715 } 1716 1717 kfree(epfiles); 1718 } 1719 1720 static void ffs_func_eps_disable(struct ffs_function *func) 1721 { 1722 struct ffs_ep *ep = func->eps; 1723 struct ffs_epfile *epfile = func->ffs->epfiles; 1724 unsigned count = func->ffs->eps_count; 1725 unsigned long flags; 1726 1727 do { 1728 if (epfile) 1729 mutex_lock(&epfile->mutex); 1730 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1731 /* pending requests get nuked */ 1732 if (likely(ep->ep)) 1733 usb_ep_disable(ep->ep); 1734 ++ep; 1735 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1736 1737 if (epfile) { 1738 epfile->ep = NULL; 1739 kfree(epfile->read_buffer); 1740 epfile->read_buffer = NULL; 1741 mutex_unlock(&epfile->mutex); 1742 ++epfile; 1743 } 1744 } while (--count); 1745 } 1746 1747 static int ffs_func_eps_enable(struct ffs_function *func) 1748 { 1749 struct ffs_data *ffs = func->ffs; 1750 struct ffs_ep *ep = func->eps; 1751 struct ffs_epfile *epfile = ffs->epfiles; 1752 unsigned count = ffs->eps_count; 1753 unsigned long flags; 1754 int ret = 0; 1755 1756 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1757 do { 1758 struct usb_endpoint_descriptor *ds; 1759 int desc_idx; 1760 1761 if (ffs->gadget->speed == USB_SPEED_SUPER) 1762 desc_idx = 2; 1763 else if (ffs->gadget->speed == USB_SPEED_HIGH) 1764 desc_idx = 1; 1765 else 1766 desc_idx = 0; 1767 1768 /* fall-back to lower speed if desc missing for current speed */ 1769 do { 1770 ds = ep->descs[desc_idx]; 1771 } while (!ds && --desc_idx >= 0); 1772 1773 if (!ds) { 1774 ret = -EINVAL; 1775 break; 1776 } 1777 1778 ep->ep->driver_data = ep; 1779 ep->ep->desc = ds; 1780 ret = usb_ep_enable(ep->ep); 1781 if (likely(!ret)) { 1782 epfile->ep = ep; 1783 epfile->in = usb_endpoint_dir_in(ds); 1784 epfile->isoc = usb_endpoint_xfer_isoc(ds); 1785 } else { 1786 break; 1787 } 1788 1789 wake_up(&epfile->wait); 1790 1791 ++ep; 1792 ++epfile; 1793 } while (--count); 1794 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1795 1796 return ret; 1797 } 1798 1799 1800 /* Parsing and building descriptors and strings *****************************/ 1801 1802 /* 1803 * This validates if data pointed by data is a valid USB descriptor as 1804 * well as record how many interfaces, endpoints and strings are 1805 * required by given configuration. Returns address after the 1806 * descriptor or NULL if data is invalid. 1807 */ 1808 1809 enum ffs_entity_type { 1810 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT 1811 }; 1812 1813 enum ffs_os_desc_type { 1814 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP 1815 }; 1816 1817 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, 1818 u8 *valuep, 1819 struct usb_descriptor_header *desc, 1820 void *priv); 1821 1822 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, 1823 struct usb_os_desc_header *h, void *data, 1824 unsigned len, void *priv); 1825 1826 static int __must_check ffs_do_single_desc(char *data, unsigned len, 1827 ffs_entity_callback entity, 1828 void *priv) 1829 { 1830 struct usb_descriptor_header *_ds = (void *)data; 1831 u8 length; 1832 int ret; 1833 1834 ENTER(); 1835 1836 /* At least two bytes are required: length and type */ 1837 if (len < 2) { 1838 pr_vdebug("descriptor too short\n"); 1839 return -EINVAL; 1840 } 1841 1842 /* If we have at least as many bytes as the descriptor takes? */ 1843 length = _ds->bLength; 1844 if (len < length) { 1845 pr_vdebug("descriptor longer then available data\n"); 1846 return -EINVAL; 1847 } 1848 1849 #define __entity_check_INTERFACE(val) 1 1850 #define __entity_check_STRING(val) (val) 1851 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) 1852 #define __entity(type, val) do { \ 1853 pr_vdebug("entity " #type "(%02x)\n", (val)); \ 1854 if (unlikely(!__entity_check_ ##type(val))) { \ 1855 pr_vdebug("invalid entity's value\n"); \ 1856 return -EINVAL; \ 1857 } \ 1858 ret = entity(FFS_ ##type, &val, _ds, priv); \ 1859 if (unlikely(ret < 0)) { \ 1860 pr_debug("entity " #type "(%02x); ret = %d\n", \ 1861 (val), ret); \ 1862 return ret; \ 1863 } \ 1864 } while (0) 1865 1866 /* Parse descriptor depending on type. */ 1867 switch (_ds->bDescriptorType) { 1868 case USB_DT_DEVICE: 1869 case USB_DT_CONFIG: 1870 case USB_DT_STRING: 1871 case USB_DT_DEVICE_QUALIFIER: 1872 /* function can't have any of those */ 1873 pr_vdebug("descriptor reserved for gadget: %d\n", 1874 _ds->bDescriptorType); 1875 return -EINVAL; 1876 1877 case USB_DT_INTERFACE: { 1878 struct usb_interface_descriptor *ds = (void *)_ds; 1879 pr_vdebug("interface descriptor\n"); 1880 if (length != sizeof *ds) 1881 goto inv_length; 1882 1883 __entity(INTERFACE, ds->bInterfaceNumber); 1884 if (ds->iInterface) 1885 __entity(STRING, ds->iInterface); 1886 } 1887 break; 1888 1889 case USB_DT_ENDPOINT: { 1890 struct usb_endpoint_descriptor *ds = (void *)_ds; 1891 pr_vdebug("endpoint descriptor\n"); 1892 if (length != USB_DT_ENDPOINT_SIZE && 1893 length != USB_DT_ENDPOINT_AUDIO_SIZE) 1894 goto inv_length; 1895 __entity(ENDPOINT, ds->bEndpointAddress); 1896 } 1897 break; 1898 1899 case HID_DT_HID: 1900 pr_vdebug("hid descriptor\n"); 1901 if (length != sizeof(struct hid_descriptor)) 1902 goto inv_length; 1903 break; 1904 1905 case USB_DT_OTG: 1906 if (length != sizeof(struct usb_otg_descriptor)) 1907 goto inv_length; 1908 break; 1909 1910 case USB_DT_INTERFACE_ASSOCIATION: { 1911 struct usb_interface_assoc_descriptor *ds = (void *)_ds; 1912 pr_vdebug("interface association descriptor\n"); 1913 if (length != sizeof *ds) 1914 goto inv_length; 1915 if (ds->iFunction) 1916 __entity(STRING, ds->iFunction); 1917 } 1918 break; 1919 1920 case USB_DT_SS_ENDPOINT_COMP: 1921 pr_vdebug("EP SS companion descriptor\n"); 1922 if (length != sizeof(struct usb_ss_ep_comp_descriptor)) 1923 goto inv_length; 1924 break; 1925 1926 case USB_DT_OTHER_SPEED_CONFIG: 1927 case USB_DT_INTERFACE_POWER: 1928 case USB_DT_DEBUG: 1929 case USB_DT_SECURITY: 1930 case USB_DT_CS_RADIO_CONTROL: 1931 /* TODO */ 1932 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); 1933 return -EINVAL; 1934 1935 default: 1936 /* We should never be here */ 1937 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); 1938 return -EINVAL; 1939 1940 inv_length: 1941 pr_vdebug("invalid length: %d (descriptor %d)\n", 1942 _ds->bLength, _ds->bDescriptorType); 1943 return -EINVAL; 1944 } 1945 1946 #undef __entity 1947 #undef __entity_check_DESCRIPTOR 1948 #undef __entity_check_INTERFACE 1949 #undef __entity_check_STRING 1950 #undef __entity_check_ENDPOINT 1951 1952 return length; 1953 } 1954 1955 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, 1956 ffs_entity_callback entity, void *priv) 1957 { 1958 const unsigned _len = len; 1959 unsigned long num = 0; 1960 1961 ENTER(); 1962 1963 for (;;) { 1964 int ret; 1965 1966 if (num == count) 1967 data = NULL; 1968 1969 /* Record "descriptor" entity */ 1970 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); 1971 if (unlikely(ret < 0)) { 1972 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", 1973 num, ret); 1974 return ret; 1975 } 1976 1977 if (!data) 1978 return _len - len; 1979 1980 ret = ffs_do_single_desc(data, len, entity, priv); 1981 if (unlikely(ret < 0)) { 1982 pr_debug("%s returns %d\n", __func__, ret); 1983 return ret; 1984 } 1985 1986 len -= ret; 1987 data += ret; 1988 ++num; 1989 } 1990 } 1991 1992 static int __ffs_data_do_entity(enum ffs_entity_type type, 1993 u8 *valuep, struct usb_descriptor_header *desc, 1994 void *priv) 1995 { 1996 struct ffs_desc_helper *helper = priv; 1997 struct usb_endpoint_descriptor *d; 1998 1999 ENTER(); 2000 2001 switch (type) { 2002 case FFS_DESCRIPTOR: 2003 break; 2004 2005 case FFS_INTERFACE: 2006 /* 2007 * Interfaces are indexed from zero so if we 2008 * encountered interface "n" then there are at least 2009 * "n+1" interfaces. 2010 */ 2011 if (*valuep >= helper->interfaces_count) 2012 helper->interfaces_count = *valuep + 1; 2013 break; 2014 2015 case FFS_STRING: 2016 /* 2017 * Strings are indexed from 1 (0 is magic ;) reserved 2018 * for languages list or some such) 2019 */ 2020 if (*valuep > helper->ffs->strings_count) 2021 helper->ffs->strings_count = *valuep; 2022 break; 2023 2024 case FFS_ENDPOINT: 2025 d = (void *)desc; 2026 helper->eps_count++; 2027 if (helper->eps_count >= 15) 2028 return -EINVAL; 2029 /* Check if descriptors for any speed were already parsed */ 2030 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count) 2031 helper->ffs->eps_addrmap[helper->eps_count] = 2032 d->bEndpointAddress; 2033 else if (helper->ffs->eps_addrmap[helper->eps_count] != 2034 d->bEndpointAddress) 2035 return -EINVAL; 2036 break; 2037 } 2038 2039 return 0; 2040 } 2041 2042 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, 2043 struct usb_os_desc_header *desc) 2044 { 2045 u16 bcd_version = le16_to_cpu(desc->bcdVersion); 2046 u16 w_index = le16_to_cpu(desc->wIndex); 2047 2048 if (bcd_version != 1) { 2049 pr_vdebug("unsupported os descriptors version: %d", 2050 bcd_version); 2051 return -EINVAL; 2052 } 2053 switch (w_index) { 2054 case 0x4: 2055 *next_type = FFS_OS_DESC_EXT_COMPAT; 2056 break; 2057 case 0x5: 2058 *next_type = FFS_OS_DESC_EXT_PROP; 2059 break; 2060 default: 2061 pr_vdebug("unsupported os descriptor type: %d", w_index); 2062 return -EINVAL; 2063 } 2064 2065 return sizeof(*desc); 2066 } 2067 2068 /* 2069 * Process all extended compatibility/extended property descriptors 2070 * of a feature descriptor 2071 */ 2072 static int __must_check ffs_do_single_os_desc(char *data, unsigned len, 2073 enum ffs_os_desc_type type, 2074 u16 feature_count, 2075 ffs_os_desc_callback entity, 2076 void *priv, 2077 struct usb_os_desc_header *h) 2078 { 2079 int ret; 2080 const unsigned _len = len; 2081 2082 ENTER(); 2083 2084 /* loop over all ext compat/ext prop descriptors */ 2085 while (feature_count--) { 2086 ret = entity(type, h, data, len, priv); 2087 if (unlikely(ret < 0)) { 2088 pr_debug("bad OS descriptor, type: %d\n", type); 2089 return ret; 2090 } 2091 data += ret; 2092 len -= ret; 2093 } 2094 return _len - len; 2095 } 2096 2097 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ 2098 static int __must_check ffs_do_os_descs(unsigned count, 2099 char *data, unsigned len, 2100 ffs_os_desc_callback entity, void *priv) 2101 { 2102 const unsigned _len = len; 2103 unsigned long num = 0; 2104 2105 ENTER(); 2106 2107 for (num = 0; num < count; ++num) { 2108 int ret; 2109 enum ffs_os_desc_type type; 2110 u16 feature_count; 2111 struct usb_os_desc_header *desc = (void *)data; 2112 2113 if (len < sizeof(*desc)) 2114 return -EINVAL; 2115 2116 /* 2117 * Record "descriptor" entity. 2118 * Process dwLength, bcdVersion, wIndex, get b/wCount. 2119 * Move the data pointer to the beginning of extended 2120 * compatibilities proper or extended properties proper 2121 * portions of the data 2122 */ 2123 if (le32_to_cpu(desc->dwLength) > len) 2124 return -EINVAL; 2125 2126 ret = __ffs_do_os_desc_header(&type, desc); 2127 if (unlikely(ret < 0)) { 2128 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", 2129 num, ret); 2130 return ret; 2131 } 2132 /* 2133 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" 2134 */ 2135 feature_count = le16_to_cpu(desc->wCount); 2136 if (type == FFS_OS_DESC_EXT_COMPAT && 2137 (feature_count > 255 || desc->Reserved)) 2138 return -EINVAL; 2139 len -= ret; 2140 data += ret; 2141 2142 /* 2143 * Process all function/property descriptors 2144 * of this Feature Descriptor 2145 */ 2146 ret = ffs_do_single_os_desc(data, len, type, 2147 feature_count, entity, priv, desc); 2148 if (unlikely(ret < 0)) { 2149 pr_debug("%s returns %d\n", __func__, ret); 2150 return ret; 2151 } 2152 2153 len -= ret; 2154 data += ret; 2155 } 2156 return _len - len; 2157 } 2158 2159 /** 2160 * Validate contents of the buffer from userspace related to OS descriptors. 2161 */ 2162 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, 2163 struct usb_os_desc_header *h, void *data, 2164 unsigned len, void *priv) 2165 { 2166 struct ffs_data *ffs = priv; 2167 u8 length; 2168 2169 ENTER(); 2170 2171 switch (type) { 2172 case FFS_OS_DESC_EXT_COMPAT: { 2173 struct usb_ext_compat_desc *d = data; 2174 int i; 2175 2176 if (len < sizeof(*d) || 2177 d->bFirstInterfaceNumber >= ffs->interfaces_count || 2178 !d->Reserved1) 2179 return -EINVAL; 2180 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) 2181 if (d->Reserved2[i]) 2182 return -EINVAL; 2183 2184 length = sizeof(struct usb_ext_compat_desc); 2185 } 2186 break; 2187 case FFS_OS_DESC_EXT_PROP: { 2188 struct usb_ext_prop_desc *d = data; 2189 u32 type, pdl; 2190 u16 pnl; 2191 2192 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) 2193 return -EINVAL; 2194 length = le32_to_cpu(d->dwSize); 2195 type = le32_to_cpu(d->dwPropertyDataType); 2196 if (type < USB_EXT_PROP_UNICODE || 2197 type > USB_EXT_PROP_UNICODE_MULTI) { 2198 pr_vdebug("unsupported os descriptor property type: %d", 2199 type); 2200 return -EINVAL; 2201 } 2202 pnl = le16_to_cpu(d->wPropertyNameLength); 2203 pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl)); 2204 if (length != 14 + pnl + pdl) { 2205 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", 2206 length, pnl, pdl, type); 2207 return -EINVAL; 2208 } 2209 ++ffs->ms_os_descs_ext_prop_count; 2210 /* property name reported to the host as "WCHAR"s */ 2211 ffs->ms_os_descs_ext_prop_name_len += pnl * 2; 2212 ffs->ms_os_descs_ext_prop_data_len += pdl; 2213 } 2214 break; 2215 default: 2216 pr_vdebug("unknown descriptor: %d\n", type); 2217 return -EINVAL; 2218 } 2219 return length; 2220 } 2221 2222 static int __ffs_data_got_descs(struct ffs_data *ffs, 2223 char *const _data, size_t len) 2224 { 2225 char *data = _data, *raw_descs; 2226 unsigned os_descs_count = 0, counts[3], flags; 2227 int ret = -EINVAL, i; 2228 struct ffs_desc_helper helper; 2229 2230 ENTER(); 2231 2232 if (get_unaligned_le32(data + 4) != len) 2233 goto error; 2234 2235 switch (get_unaligned_le32(data)) { 2236 case FUNCTIONFS_DESCRIPTORS_MAGIC: 2237 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; 2238 data += 8; 2239 len -= 8; 2240 break; 2241 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: 2242 flags = get_unaligned_le32(data + 8); 2243 ffs->user_flags = flags; 2244 if (flags & ~(FUNCTIONFS_HAS_FS_DESC | 2245 FUNCTIONFS_HAS_HS_DESC | 2246 FUNCTIONFS_HAS_SS_DESC | 2247 FUNCTIONFS_HAS_MS_OS_DESC | 2248 FUNCTIONFS_VIRTUAL_ADDR | 2249 FUNCTIONFS_EVENTFD | 2250 FUNCTIONFS_ALL_CTRL_RECIP | 2251 FUNCTIONFS_CONFIG0_SETUP)) { 2252 ret = -ENOSYS; 2253 goto error; 2254 } 2255 data += 12; 2256 len -= 12; 2257 break; 2258 default: 2259 goto error; 2260 } 2261 2262 if (flags & FUNCTIONFS_EVENTFD) { 2263 if (len < 4) 2264 goto error; 2265 ffs->ffs_eventfd = 2266 eventfd_ctx_fdget((int)get_unaligned_le32(data)); 2267 if (IS_ERR(ffs->ffs_eventfd)) { 2268 ret = PTR_ERR(ffs->ffs_eventfd); 2269 ffs->ffs_eventfd = NULL; 2270 goto error; 2271 } 2272 data += 4; 2273 len -= 4; 2274 } 2275 2276 /* Read fs_count, hs_count and ss_count (if present) */ 2277 for (i = 0; i < 3; ++i) { 2278 if (!(flags & (1 << i))) { 2279 counts[i] = 0; 2280 } else if (len < 4) { 2281 goto error; 2282 } else { 2283 counts[i] = get_unaligned_le32(data); 2284 data += 4; 2285 len -= 4; 2286 } 2287 } 2288 if (flags & (1 << i)) { 2289 os_descs_count = get_unaligned_le32(data); 2290 data += 4; 2291 len -= 4; 2292 }; 2293 2294 /* Read descriptors */ 2295 raw_descs = data; 2296 helper.ffs = ffs; 2297 for (i = 0; i < 3; ++i) { 2298 if (!counts[i]) 2299 continue; 2300 helper.interfaces_count = 0; 2301 helper.eps_count = 0; 2302 ret = ffs_do_descs(counts[i], data, len, 2303 __ffs_data_do_entity, &helper); 2304 if (ret < 0) 2305 goto error; 2306 if (!ffs->eps_count && !ffs->interfaces_count) { 2307 ffs->eps_count = helper.eps_count; 2308 ffs->interfaces_count = helper.interfaces_count; 2309 } else { 2310 if (ffs->eps_count != helper.eps_count) { 2311 ret = -EINVAL; 2312 goto error; 2313 } 2314 if (ffs->interfaces_count != helper.interfaces_count) { 2315 ret = -EINVAL; 2316 goto error; 2317 } 2318 } 2319 data += ret; 2320 len -= ret; 2321 } 2322 if (os_descs_count) { 2323 ret = ffs_do_os_descs(os_descs_count, data, len, 2324 __ffs_data_do_os_desc, ffs); 2325 if (ret < 0) 2326 goto error; 2327 data += ret; 2328 len -= ret; 2329 } 2330 2331 if (raw_descs == data || len) { 2332 ret = -EINVAL; 2333 goto error; 2334 } 2335 2336 ffs->raw_descs_data = _data; 2337 ffs->raw_descs = raw_descs; 2338 ffs->raw_descs_length = data - raw_descs; 2339 ffs->fs_descs_count = counts[0]; 2340 ffs->hs_descs_count = counts[1]; 2341 ffs->ss_descs_count = counts[2]; 2342 ffs->ms_os_descs_count = os_descs_count; 2343 2344 return 0; 2345 2346 error: 2347 kfree(_data); 2348 return ret; 2349 } 2350 2351 static int __ffs_data_got_strings(struct ffs_data *ffs, 2352 char *const _data, size_t len) 2353 { 2354 u32 str_count, needed_count, lang_count; 2355 struct usb_gadget_strings **stringtabs, *t; 2356 const char *data = _data; 2357 struct usb_string *s; 2358 2359 ENTER(); 2360 2361 if (unlikely(get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || 2362 get_unaligned_le32(data + 4) != len)) 2363 goto error; 2364 str_count = get_unaligned_le32(data + 8); 2365 lang_count = get_unaligned_le32(data + 12); 2366 2367 /* if one is zero the other must be zero */ 2368 if (unlikely(!str_count != !lang_count)) 2369 goto error; 2370 2371 /* Do we have at least as many strings as descriptors need? */ 2372 needed_count = ffs->strings_count; 2373 if (unlikely(str_count < needed_count)) 2374 goto error; 2375 2376 /* 2377 * If we don't need any strings just return and free all 2378 * memory. 2379 */ 2380 if (!needed_count) { 2381 kfree(_data); 2382 return 0; 2383 } 2384 2385 /* Allocate everything in one chunk so there's less maintenance. */ 2386 { 2387 unsigned i = 0; 2388 vla_group(d); 2389 vla_item(d, struct usb_gadget_strings *, stringtabs, 2390 lang_count + 1); 2391 vla_item(d, struct usb_gadget_strings, stringtab, lang_count); 2392 vla_item(d, struct usb_string, strings, 2393 lang_count*(needed_count+1)); 2394 2395 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); 2396 2397 if (unlikely(!vlabuf)) { 2398 kfree(_data); 2399 return -ENOMEM; 2400 } 2401 2402 /* Initialize the VLA pointers */ 2403 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2404 t = vla_ptr(vlabuf, d, stringtab); 2405 i = lang_count; 2406 do { 2407 *stringtabs++ = t++; 2408 } while (--i); 2409 *stringtabs = NULL; 2410 2411 /* stringtabs = vlabuf = d_stringtabs for later kfree */ 2412 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2413 t = vla_ptr(vlabuf, d, stringtab); 2414 s = vla_ptr(vlabuf, d, strings); 2415 } 2416 2417 /* For each language */ 2418 data += 16; 2419 len -= 16; 2420 2421 do { /* lang_count > 0 so we can use do-while */ 2422 unsigned needed = needed_count; 2423 2424 if (unlikely(len < 3)) 2425 goto error_free; 2426 t->language = get_unaligned_le16(data); 2427 t->strings = s; 2428 ++t; 2429 2430 data += 2; 2431 len -= 2; 2432 2433 /* For each string */ 2434 do { /* str_count > 0 so we can use do-while */ 2435 size_t length = strnlen(data, len); 2436 2437 if (unlikely(length == len)) 2438 goto error_free; 2439 2440 /* 2441 * User may provide more strings then we need, 2442 * if that's the case we simply ignore the 2443 * rest 2444 */ 2445 if (likely(needed)) { 2446 /* 2447 * s->id will be set while adding 2448 * function to configuration so for 2449 * now just leave garbage here. 2450 */ 2451 s->s = data; 2452 --needed; 2453 ++s; 2454 } 2455 2456 data += length + 1; 2457 len -= length + 1; 2458 } while (--str_count); 2459 2460 s->id = 0; /* terminator */ 2461 s->s = NULL; 2462 ++s; 2463 2464 } while (--lang_count); 2465 2466 /* Some garbage left? */ 2467 if (unlikely(len)) 2468 goto error_free; 2469 2470 /* Done! */ 2471 ffs->stringtabs = stringtabs; 2472 ffs->raw_strings = _data; 2473 2474 return 0; 2475 2476 error_free: 2477 kfree(stringtabs); 2478 error: 2479 kfree(_data); 2480 return -EINVAL; 2481 } 2482 2483 2484 /* Events handling and management *******************************************/ 2485 2486 static void __ffs_event_add(struct ffs_data *ffs, 2487 enum usb_functionfs_event_type type) 2488 { 2489 enum usb_functionfs_event_type rem_type1, rem_type2 = type; 2490 int neg = 0; 2491 2492 /* 2493 * Abort any unhandled setup 2494 * 2495 * We do not need to worry about some cmpxchg() changing value 2496 * of ffs->setup_state without holding the lock because when 2497 * state is FFS_SETUP_PENDING cmpxchg() in several places in 2498 * the source does nothing. 2499 */ 2500 if (ffs->setup_state == FFS_SETUP_PENDING) 2501 ffs->setup_state = FFS_SETUP_CANCELLED; 2502 2503 /* 2504 * Logic of this function guarantees that there are at most four pending 2505 * evens on ffs->ev.types queue. This is important because the queue 2506 * has space for four elements only and __ffs_ep0_read_events function 2507 * depends on that limit as well. If more event types are added, those 2508 * limits have to be revisited or guaranteed to still hold. 2509 */ 2510 switch (type) { 2511 case FUNCTIONFS_RESUME: 2512 rem_type2 = FUNCTIONFS_SUSPEND; 2513 /* FALL THROUGH */ 2514 case FUNCTIONFS_SUSPEND: 2515 case FUNCTIONFS_SETUP: 2516 rem_type1 = type; 2517 /* Discard all similar events */ 2518 break; 2519 2520 case FUNCTIONFS_BIND: 2521 case FUNCTIONFS_UNBIND: 2522 case FUNCTIONFS_DISABLE: 2523 case FUNCTIONFS_ENABLE: 2524 /* Discard everything other then power management. */ 2525 rem_type1 = FUNCTIONFS_SUSPEND; 2526 rem_type2 = FUNCTIONFS_RESUME; 2527 neg = 1; 2528 break; 2529 2530 default: 2531 WARN(1, "%d: unknown event, this should not happen\n", type); 2532 return; 2533 } 2534 2535 { 2536 u8 *ev = ffs->ev.types, *out = ev; 2537 unsigned n = ffs->ev.count; 2538 for (; n; --n, ++ev) 2539 if ((*ev == rem_type1 || *ev == rem_type2) == neg) 2540 *out++ = *ev; 2541 else 2542 pr_vdebug("purging event %d\n", *ev); 2543 ffs->ev.count = out - ffs->ev.types; 2544 } 2545 2546 pr_vdebug("adding event %d\n", type); 2547 ffs->ev.types[ffs->ev.count++] = type; 2548 wake_up_locked(&ffs->ev.waitq); 2549 if (ffs->ffs_eventfd) 2550 eventfd_signal(ffs->ffs_eventfd, 1); 2551 } 2552 2553 static void ffs_event_add(struct ffs_data *ffs, 2554 enum usb_functionfs_event_type type) 2555 { 2556 unsigned long flags; 2557 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 2558 __ffs_event_add(ffs, type); 2559 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 2560 } 2561 2562 /* Bind/unbind USB function hooks *******************************************/ 2563 2564 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address) 2565 { 2566 int i; 2567 2568 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i) 2569 if (ffs->eps_addrmap[i] == endpoint_address) 2570 return i; 2571 return -ENOENT; 2572 } 2573 2574 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, 2575 struct usb_descriptor_header *desc, 2576 void *priv) 2577 { 2578 struct usb_endpoint_descriptor *ds = (void *)desc; 2579 struct ffs_function *func = priv; 2580 struct ffs_ep *ffs_ep; 2581 unsigned ep_desc_id; 2582 int idx; 2583 static const char *speed_names[] = { "full", "high", "super" }; 2584 2585 if (type != FFS_DESCRIPTOR) 2586 return 0; 2587 2588 /* 2589 * If ss_descriptors is not NULL, we are reading super speed 2590 * descriptors; if hs_descriptors is not NULL, we are reading high 2591 * speed descriptors; otherwise, we are reading full speed 2592 * descriptors. 2593 */ 2594 if (func->function.ss_descriptors) { 2595 ep_desc_id = 2; 2596 func->function.ss_descriptors[(long)valuep] = desc; 2597 } else if (func->function.hs_descriptors) { 2598 ep_desc_id = 1; 2599 func->function.hs_descriptors[(long)valuep] = desc; 2600 } else { 2601 ep_desc_id = 0; 2602 func->function.fs_descriptors[(long)valuep] = desc; 2603 } 2604 2605 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) 2606 return 0; 2607 2608 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1; 2609 if (idx < 0) 2610 return idx; 2611 2612 ffs_ep = func->eps + idx; 2613 2614 if (unlikely(ffs_ep->descs[ep_desc_id])) { 2615 pr_err("two %sspeed descriptors for EP %d\n", 2616 speed_names[ep_desc_id], 2617 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); 2618 return -EINVAL; 2619 } 2620 ffs_ep->descs[ep_desc_id] = ds; 2621 2622 ffs_dump_mem(": Original ep desc", ds, ds->bLength); 2623 if (ffs_ep->ep) { 2624 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; 2625 if (!ds->wMaxPacketSize) 2626 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; 2627 } else { 2628 struct usb_request *req; 2629 struct usb_ep *ep; 2630 u8 bEndpointAddress; 2631 2632 /* 2633 * We back up bEndpointAddress because autoconfig overwrites 2634 * it with physical endpoint address. 2635 */ 2636 bEndpointAddress = ds->bEndpointAddress; 2637 pr_vdebug("autoconfig\n"); 2638 ep = usb_ep_autoconfig(func->gadget, ds); 2639 if (unlikely(!ep)) 2640 return -ENOTSUPP; 2641 ep->driver_data = func->eps + idx; 2642 2643 req = usb_ep_alloc_request(ep, GFP_KERNEL); 2644 if (unlikely(!req)) 2645 return -ENOMEM; 2646 2647 ffs_ep->ep = ep; 2648 ffs_ep->req = req; 2649 func->eps_revmap[ds->bEndpointAddress & 2650 USB_ENDPOINT_NUMBER_MASK] = idx + 1; 2651 /* 2652 * If we use virtual address mapping, we restore 2653 * original bEndpointAddress value. 2654 */ 2655 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 2656 ds->bEndpointAddress = bEndpointAddress; 2657 } 2658 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); 2659 2660 return 0; 2661 } 2662 2663 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, 2664 struct usb_descriptor_header *desc, 2665 void *priv) 2666 { 2667 struct ffs_function *func = priv; 2668 unsigned idx; 2669 u8 newValue; 2670 2671 switch (type) { 2672 default: 2673 case FFS_DESCRIPTOR: 2674 /* Handled in previous pass by __ffs_func_bind_do_descs() */ 2675 return 0; 2676 2677 case FFS_INTERFACE: 2678 idx = *valuep; 2679 if (func->interfaces_nums[idx] < 0) { 2680 int id = usb_interface_id(func->conf, &func->function); 2681 if (unlikely(id < 0)) 2682 return id; 2683 func->interfaces_nums[idx] = id; 2684 } 2685 newValue = func->interfaces_nums[idx]; 2686 break; 2687 2688 case FFS_STRING: 2689 /* String' IDs are allocated when fsf_data is bound to cdev */ 2690 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; 2691 break; 2692 2693 case FFS_ENDPOINT: 2694 /* 2695 * USB_DT_ENDPOINT are handled in 2696 * __ffs_func_bind_do_descs(). 2697 */ 2698 if (desc->bDescriptorType == USB_DT_ENDPOINT) 2699 return 0; 2700 2701 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; 2702 if (unlikely(!func->eps[idx].ep)) 2703 return -EINVAL; 2704 2705 { 2706 struct usb_endpoint_descriptor **descs; 2707 descs = func->eps[idx].descs; 2708 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; 2709 } 2710 break; 2711 } 2712 2713 pr_vdebug("%02x -> %02x\n", *valuep, newValue); 2714 *valuep = newValue; 2715 return 0; 2716 } 2717 2718 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, 2719 struct usb_os_desc_header *h, void *data, 2720 unsigned len, void *priv) 2721 { 2722 struct ffs_function *func = priv; 2723 u8 length = 0; 2724 2725 switch (type) { 2726 case FFS_OS_DESC_EXT_COMPAT: { 2727 struct usb_ext_compat_desc *desc = data; 2728 struct usb_os_desc_table *t; 2729 2730 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; 2731 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; 2732 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID, 2733 ARRAY_SIZE(desc->CompatibleID) + 2734 ARRAY_SIZE(desc->SubCompatibleID)); 2735 length = sizeof(*desc); 2736 } 2737 break; 2738 case FFS_OS_DESC_EXT_PROP: { 2739 struct usb_ext_prop_desc *desc = data; 2740 struct usb_os_desc_table *t; 2741 struct usb_os_desc_ext_prop *ext_prop; 2742 char *ext_prop_name; 2743 char *ext_prop_data; 2744 2745 t = &func->function.os_desc_table[h->interface]; 2746 t->if_id = func->interfaces_nums[h->interface]; 2747 2748 ext_prop = func->ffs->ms_os_descs_ext_prop_avail; 2749 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); 2750 2751 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); 2752 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); 2753 ext_prop->data_len = le32_to_cpu(*(u32 *) 2754 usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); 2755 length = ext_prop->name_len + ext_prop->data_len + 14; 2756 2757 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; 2758 func->ffs->ms_os_descs_ext_prop_name_avail += 2759 ext_prop->name_len; 2760 2761 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; 2762 func->ffs->ms_os_descs_ext_prop_data_avail += 2763 ext_prop->data_len; 2764 memcpy(ext_prop_data, 2765 usb_ext_prop_data_ptr(data, ext_prop->name_len), 2766 ext_prop->data_len); 2767 /* unicode data reported to the host as "WCHAR"s */ 2768 switch (ext_prop->type) { 2769 case USB_EXT_PROP_UNICODE: 2770 case USB_EXT_PROP_UNICODE_ENV: 2771 case USB_EXT_PROP_UNICODE_LINK: 2772 case USB_EXT_PROP_UNICODE_MULTI: 2773 ext_prop->data_len *= 2; 2774 break; 2775 } 2776 ext_prop->data = ext_prop_data; 2777 2778 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), 2779 ext_prop->name_len); 2780 /* property name reported to the host as "WCHAR"s */ 2781 ext_prop->name_len *= 2; 2782 ext_prop->name = ext_prop_name; 2783 2784 t->os_desc->ext_prop_len += 2785 ext_prop->name_len + ext_prop->data_len + 14; 2786 ++t->os_desc->ext_prop_count; 2787 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); 2788 } 2789 break; 2790 default: 2791 pr_vdebug("unknown descriptor: %d\n", type); 2792 } 2793 2794 return length; 2795 } 2796 2797 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, 2798 struct usb_configuration *c) 2799 { 2800 struct ffs_function *func = ffs_func_from_usb(f); 2801 struct f_fs_opts *ffs_opts = 2802 container_of(f->fi, struct f_fs_opts, func_inst); 2803 int ret; 2804 2805 ENTER(); 2806 2807 /* 2808 * Legacy gadget triggers binding in functionfs_ready_callback, 2809 * which already uses locking; taking the same lock here would 2810 * cause a deadlock. 2811 * 2812 * Configfs-enabled gadgets however do need ffs_dev_lock. 2813 */ 2814 if (!ffs_opts->no_configfs) 2815 ffs_dev_lock(); 2816 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; 2817 func->ffs = ffs_opts->dev->ffs_data; 2818 if (!ffs_opts->no_configfs) 2819 ffs_dev_unlock(); 2820 if (ret) 2821 return ERR_PTR(ret); 2822 2823 func->conf = c; 2824 func->gadget = c->cdev->gadget; 2825 2826 /* 2827 * in drivers/usb/gadget/configfs.c:configfs_composite_bind() 2828 * configurations are bound in sequence with list_for_each_entry, 2829 * in each configuration its functions are bound in sequence 2830 * with list_for_each_entry, so we assume no race condition 2831 * with regard to ffs_opts->bound access 2832 */ 2833 if (!ffs_opts->refcnt) { 2834 ret = functionfs_bind(func->ffs, c->cdev); 2835 if (ret) 2836 return ERR_PTR(ret); 2837 } 2838 ffs_opts->refcnt++; 2839 func->function.strings = func->ffs->stringtabs; 2840 2841 return ffs_opts; 2842 } 2843 2844 static int _ffs_func_bind(struct usb_configuration *c, 2845 struct usb_function *f) 2846 { 2847 struct ffs_function *func = ffs_func_from_usb(f); 2848 struct ffs_data *ffs = func->ffs; 2849 2850 const int full = !!func->ffs->fs_descs_count; 2851 const int high = gadget_is_dualspeed(func->gadget) && 2852 func->ffs->hs_descs_count; 2853 const int super = gadget_is_superspeed(func->gadget) && 2854 func->ffs->ss_descs_count; 2855 2856 int fs_len, hs_len, ss_len, ret, i; 2857 struct ffs_ep *eps_ptr; 2858 2859 /* Make it a single chunk, less management later on */ 2860 vla_group(d); 2861 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); 2862 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, 2863 full ? ffs->fs_descs_count + 1 : 0); 2864 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, 2865 high ? ffs->hs_descs_count + 1 : 0); 2866 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, 2867 super ? ffs->ss_descs_count + 1 : 0); 2868 vla_item_with_sz(d, short, inums, ffs->interfaces_count); 2869 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, 2870 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2871 vla_item_with_sz(d, char[16], ext_compat, 2872 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2873 vla_item_with_sz(d, struct usb_os_desc, os_desc, 2874 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2875 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, 2876 ffs->ms_os_descs_ext_prop_count); 2877 vla_item_with_sz(d, char, ext_prop_name, 2878 ffs->ms_os_descs_ext_prop_name_len); 2879 vla_item_with_sz(d, char, ext_prop_data, 2880 ffs->ms_os_descs_ext_prop_data_len); 2881 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); 2882 char *vlabuf; 2883 2884 ENTER(); 2885 2886 /* Has descriptors only for speeds gadget does not support */ 2887 if (unlikely(!(full | high | super))) 2888 return -ENOTSUPP; 2889 2890 /* Allocate a single chunk, less management later on */ 2891 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); 2892 if (unlikely(!vlabuf)) 2893 return -ENOMEM; 2894 2895 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); 2896 ffs->ms_os_descs_ext_prop_name_avail = 2897 vla_ptr(vlabuf, d, ext_prop_name); 2898 ffs->ms_os_descs_ext_prop_data_avail = 2899 vla_ptr(vlabuf, d, ext_prop_data); 2900 2901 /* Copy descriptors */ 2902 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, 2903 ffs->raw_descs_length); 2904 2905 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); 2906 eps_ptr = vla_ptr(vlabuf, d, eps); 2907 for (i = 0; i < ffs->eps_count; i++) 2908 eps_ptr[i].num = -1; 2909 2910 /* Save pointers 2911 * d_eps == vlabuf, func->eps used to kfree vlabuf later 2912 */ 2913 func->eps = vla_ptr(vlabuf, d, eps); 2914 func->interfaces_nums = vla_ptr(vlabuf, d, inums); 2915 2916 /* 2917 * Go through all the endpoint descriptors and allocate 2918 * endpoints first, so that later we can rewrite the endpoint 2919 * numbers without worrying that it may be described later on. 2920 */ 2921 if (likely(full)) { 2922 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); 2923 fs_len = ffs_do_descs(ffs->fs_descs_count, 2924 vla_ptr(vlabuf, d, raw_descs), 2925 d_raw_descs__sz, 2926 __ffs_func_bind_do_descs, func); 2927 if (unlikely(fs_len < 0)) { 2928 ret = fs_len; 2929 goto error; 2930 } 2931 } else { 2932 fs_len = 0; 2933 } 2934 2935 if (likely(high)) { 2936 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); 2937 hs_len = ffs_do_descs(ffs->hs_descs_count, 2938 vla_ptr(vlabuf, d, raw_descs) + fs_len, 2939 d_raw_descs__sz - fs_len, 2940 __ffs_func_bind_do_descs, func); 2941 if (unlikely(hs_len < 0)) { 2942 ret = hs_len; 2943 goto error; 2944 } 2945 } else { 2946 hs_len = 0; 2947 } 2948 2949 if (likely(super)) { 2950 func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs); 2951 ss_len = ffs_do_descs(ffs->ss_descs_count, 2952 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, 2953 d_raw_descs__sz - fs_len - hs_len, 2954 __ffs_func_bind_do_descs, func); 2955 if (unlikely(ss_len < 0)) { 2956 ret = ss_len; 2957 goto error; 2958 } 2959 } else { 2960 ss_len = 0; 2961 } 2962 2963 /* 2964 * Now handle interface numbers allocation and interface and 2965 * endpoint numbers rewriting. We can do that in one go 2966 * now. 2967 */ 2968 ret = ffs_do_descs(ffs->fs_descs_count + 2969 (high ? ffs->hs_descs_count : 0) + 2970 (super ? ffs->ss_descs_count : 0), 2971 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, 2972 __ffs_func_bind_do_nums, func); 2973 if (unlikely(ret < 0)) 2974 goto error; 2975 2976 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); 2977 if (c->cdev->use_os_string) { 2978 for (i = 0; i < ffs->interfaces_count; ++i) { 2979 struct usb_os_desc *desc; 2980 2981 desc = func->function.os_desc_table[i].os_desc = 2982 vla_ptr(vlabuf, d, os_desc) + 2983 i * sizeof(struct usb_os_desc); 2984 desc->ext_compat_id = 2985 vla_ptr(vlabuf, d, ext_compat) + i * 16; 2986 INIT_LIST_HEAD(&desc->ext_prop); 2987 } 2988 ret = ffs_do_os_descs(ffs->ms_os_descs_count, 2989 vla_ptr(vlabuf, d, raw_descs) + 2990 fs_len + hs_len + ss_len, 2991 d_raw_descs__sz - fs_len - hs_len - 2992 ss_len, 2993 __ffs_func_bind_do_os_desc, func); 2994 if (unlikely(ret < 0)) 2995 goto error; 2996 } 2997 func->function.os_desc_n = 2998 c->cdev->use_os_string ? ffs->interfaces_count : 0; 2999 3000 /* And we're done */ 3001 ffs_event_add(ffs, FUNCTIONFS_BIND); 3002 return 0; 3003 3004 error: 3005 /* XXX Do we need to release all claimed endpoints here? */ 3006 return ret; 3007 } 3008 3009 static int ffs_func_bind(struct usb_configuration *c, 3010 struct usb_function *f) 3011 { 3012 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); 3013 struct ffs_function *func = ffs_func_from_usb(f); 3014 int ret; 3015 3016 if (IS_ERR(ffs_opts)) 3017 return PTR_ERR(ffs_opts); 3018 3019 ret = _ffs_func_bind(c, f); 3020 if (ret && !--ffs_opts->refcnt) 3021 functionfs_unbind(func->ffs); 3022 3023 return ret; 3024 } 3025 3026 3027 /* Other USB function hooks *************************************************/ 3028 3029 static void ffs_reset_work(struct work_struct *work) 3030 { 3031 struct ffs_data *ffs = container_of(work, 3032 struct ffs_data, reset_work); 3033 ffs_data_reset(ffs); 3034 } 3035 3036 static int ffs_func_set_alt(struct usb_function *f, 3037 unsigned interface, unsigned alt) 3038 { 3039 struct ffs_function *func = ffs_func_from_usb(f); 3040 struct ffs_data *ffs = func->ffs; 3041 int ret = 0, intf; 3042 3043 if (alt != (unsigned)-1) { 3044 intf = ffs_func_revmap_intf(func, interface); 3045 if (unlikely(intf < 0)) 3046 return intf; 3047 } 3048 3049 if (ffs->func) 3050 ffs_func_eps_disable(ffs->func); 3051 3052 if (ffs->state == FFS_DEACTIVATED) { 3053 ffs->state = FFS_CLOSING; 3054 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3055 schedule_work(&ffs->reset_work); 3056 return -ENODEV; 3057 } 3058 3059 if (ffs->state != FFS_ACTIVE) 3060 return -ENODEV; 3061 3062 if (alt == (unsigned)-1) { 3063 ffs->func = NULL; 3064 ffs_event_add(ffs, FUNCTIONFS_DISABLE); 3065 return 0; 3066 } 3067 3068 ffs->func = func; 3069 ret = ffs_func_eps_enable(func); 3070 if (likely(ret >= 0)) 3071 ffs_event_add(ffs, FUNCTIONFS_ENABLE); 3072 return ret; 3073 } 3074 3075 static void ffs_func_disable(struct usb_function *f) 3076 { 3077 ffs_func_set_alt(f, 0, (unsigned)-1); 3078 } 3079 3080 static int ffs_func_setup(struct usb_function *f, 3081 const struct usb_ctrlrequest *creq) 3082 { 3083 struct ffs_function *func = ffs_func_from_usb(f); 3084 struct ffs_data *ffs = func->ffs; 3085 unsigned long flags; 3086 int ret; 3087 3088 ENTER(); 3089 3090 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); 3091 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); 3092 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); 3093 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); 3094 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); 3095 3096 /* 3097 * Most requests directed to interface go through here 3098 * (notable exceptions are set/get interface) so we need to 3099 * handle them. All other either handled by composite or 3100 * passed to usb_configuration->setup() (if one is set). No 3101 * matter, we will handle requests directed to endpoint here 3102 * as well (as it's straightforward). Other request recipient 3103 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP 3104 * is being used. 3105 */ 3106 if (ffs->state != FFS_ACTIVE) 3107 return -ENODEV; 3108 3109 switch (creq->bRequestType & USB_RECIP_MASK) { 3110 case USB_RECIP_INTERFACE: 3111 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); 3112 if (unlikely(ret < 0)) 3113 return ret; 3114 break; 3115 3116 case USB_RECIP_ENDPOINT: 3117 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); 3118 if (unlikely(ret < 0)) 3119 return ret; 3120 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3121 ret = func->ffs->eps_addrmap[ret]; 3122 break; 3123 3124 default: 3125 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP) 3126 ret = le16_to_cpu(creq->wIndex); 3127 else 3128 return -EOPNOTSUPP; 3129 } 3130 3131 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3132 ffs->ev.setup = *creq; 3133 ffs->ev.setup.wIndex = cpu_to_le16(ret); 3134 __ffs_event_add(ffs, FUNCTIONFS_SETUP); 3135 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3136 3137 return 0; 3138 } 3139 3140 static bool ffs_func_req_match(struct usb_function *f, 3141 const struct usb_ctrlrequest *creq, 3142 bool config0) 3143 { 3144 struct ffs_function *func = ffs_func_from_usb(f); 3145 3146 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP)) 3147 return false; 3148 3149 switch (creq->bRequestType & USB_RECIP_MASK) { 3150 case USB_RECIP_INTERFACE: 3151 return ffs_func_revmap_intf(func, 3152 le16_to_cpu(creq->wIndex) >= 0); 3153 case USB_RECIP_ENDPOINT: 3154 return ffs_func_revmap_ep(func, 3155 le16_to_cpu(creq->wIndex) >= 0); 3156 default: 3157 return (bool) (func->ffs->user_flags & 3158 FUNCTIONFS_ALL_CTRL_RECIP); 3159 } 3160 } 3161 3162 static void ffs_func_suspend(struct usb_function *f) 3163 { 3164 ENTER(); 3165 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); 3166 } 3167 3168 static void ffs_func_resume(struct usb_function *f) 3169 { 3170 ENTER(); 3171 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); 3172 } 3173 3174 3175 /* Endpoint and interface numbers reverse mapping ***************************/ 3176 3177 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) 3178 { 3179 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; 3180 return num ? num : -EDOM; 3181 } 3182 3183 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) 3184 { 3185 short *nums = func->interfaces_nums; 3186 unsigned count = func->ffs->interfaces_count; 3187 3188 for (; count; --count, ++nums) { 3189 if (*nums >= 0 && *nums == intf) 3190 return nums - func->interfaces_nums; 3191 } 3192 3193 return -EDOM; 3194 } 3195 3196 3197 /* Devices management *******************************************************/ 3198 3199 static LIST_HEAD(ffs_devices); 3200 3201 static struct ffs_dev *_ffs_do_find_dev(const char *name) 3202 { 3203 struct ffs_dev *dev; 3204 3205 list_for_each_entry(dev, &ffs_devices, entry) { 3206 if (!dev->name || !name) 3207 continue; 3208 if (strcmp(dev->name, name) == 0) 3209 return dev; 3210 } 3211 3212 return NULL; 3213 } 3214 3215 /* 3216 * ffs_lock must be taken by the caller of this function 3217 */ 3218 static struct ffs_dev *_ffs_get_single_dev(void) 3219 { 3220 struct ffs_dev *dev; 3221 3222 if (list_is_singular(&ffs_devices)) { 3223 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); 3224 if (dev->single) 3225 return dev; 3226 } 3227 3228 return NULL; 3229 } 3230 3231 /* 3232 * ffs_lock must be taken by the caller of this function 3233 */ 3234 static struct ffs_dev *_ffs_find_dev(const char *name) 3235 { 3236 struct ffs_dev *dev; 3237 3238 dev = _ffs_get_single_dev(); 3239 if (dev) 3240 return dev; 3241 3242 return _ffs_do_find_dev(name); 3243 } 3244 3245 /* Configfs support *********************************************************/ 3246 3247 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) 3248 { 3249 return container_of(to_config_group(item), struct f_fs_opts, 3250 func_inst.group); 3251 } 3252 3253 static void ffs_attr_release(struct config_item *item) 3254 { 3255 struct f_fs_opts *opts = to_ffs_opts(item); 3256 3257 usb_put_function_instance(&opts->func_inst); 3258 } 3259 3260 static struct configfs_item_operations ffs_item_ops = { 3261 .release = ffs_attr_release, 3262 }; 3263 3264 static struct config_item_type ffs_func_type = { 3265 .ct_item_ops = &ffs_item_ops, 3266 .ct_owner = THIS_MODULE, 3267 }; 3268 3269 3270 /* Function registration interface ******************************************/ 3271 3272 static void ffs_free_inst(struct usb_function_instance *f) 3273 { 3274 struct f_fs_opts *opts; 3275 3276 opts = to_f_fs_opts(f); 3277 ffs_dev_lock(); 3278 _ffs_free_dev(opts->dev); 3279 ffs_dev_unlock(); 3280 kfree(opts); 3281 } 3282 3283 #define MAX_INST_NAME_LEN 40 3284 3285 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) 3286 { 3287 struct f_fs_opts *opts; 3288 char *ptr; 3289 const char *tmp; 3290 int name_len, ret; 3291 3292 name_len = strlen(name) + 1; 3293 if (name_len > MAX_INST_NAME_LEN) 3294 return -ENAMETOOLONG; 3295 3296 ptr = kstrndup(name, name_len, GFP_KERNEL); 3297 if (!ptr) 3298 return -ENOMEM; 3299 3300 opts = to_f_fs_opts(fi); 3301 tmp = NULL; 3302 3303 ffs_dev_lock(); 3304 3305 tmp = opts->dev->name_allocated ? opts->dev->name : NULL; 3306 ret = _ffs_name_dev(opts->dev, ptr); 3307 if (ret) { 3308 kfree(ptr); 3309 ffs_dev_unlock(); 3310 return ret; 3311 } 3312 opts->dev->name_allocated = true; 3313 3314 ffs_dev_unlock(); 3315 3316 kfree(tmp); 3317 3318 return 0; 3319 } 3320 3321 static struct usb_function_instance *ffs_alloc_inst(void) 3322 { 3323 struct f_fs_opts *opts; 3324 struct ffs_dev *dev; 3325 3326 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 3327 if (!opts) 3328 return ERR_PTR(-ENOMEM); 3329 3330 opts->func_inst.set_inst_name = ffs_set_inst_name; 3331 opts->func_inst.free_func_inst = ffs_free_inst; 3332 ffs_dev_lock(); 3333 dev = _ffs_alloc_dev(); 3334 ffs_dev_unlock(); 3335 if (IS_ERR(dev)) { 3336 kfree(opts); 3337 return ERR_CAST(dev); 3338 } 3339 opts->dev = dev; 3340 dev->opts = opts; 3341 3342 config_group_init_type_name(&opts->func_inst.group, "", 3343 &ffs_func_type); 3344 return &opts->func_inst; 3345 } 3346 3347 static void ffs_free(struct usb_function *f) 3348 { 3349 kfree(ffs_func_from_usb(f)); 3350 } 3351 3352 static void ffs_func_unbind(struct usb_configuration *c, 3353 struct usb_function *f) 3354 { 3355 struct ffs_function *func = ffs_func_from_usb(f); 3356 struct ffs_data *ffs = func->ffs; 3357 struct f_fs_opts *opts = 3358 container_of(f->fi, struct f_fs_opts, func_inst); 3359 struct ffs_ep *ep = func->eps; 3360 unsigned count = ffs->eps_count; 3361 unsigned long flags; 3362 3363 ENTER(); 3364 if (ffs->func == func) { 3365 ffs_func_eps_disable(func); 3366 ffs->func = NULL; 3367 } 3368 3369 if (!--opts->refcnt) 3370 functionfs_unbind(ffs); 3371 3372 /* cleanup after autoconfig */ 3373 spin_lock_irqsave(&func->ffs->eps_lock, flags); 3374 do { 3375 if (ep->ep && ep->req) 3376 usb_ep_free_request(ep->ep, ep->req); 3377 ep->req = NULL; 3378 ++ep; 3379 } while (--count); 3380 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 3381 kfree(func->eps); 3382 func->eps = NULL; 3383 /* 3384 * eps, descriptors and interfaces_nums are allocated in the 3385 * same chunk so only one free is required. 3386 */ 3387 func->function.fs_descriptors = NULL; 3388 func->function.hs_descriptors = NULL; 3389 func->function.ss_descriptors = NULL; 3390 func->interfaces_nums = NULL; 3391 3392 ffs_event_add(ffs, FUNCTIONFS_UNBIND); 3393 } 3394 3395 static struct usb_function *ffs_alloc(struct usb_function_instance *fi) 3396 { 3397 struct ffs_function *func; 3398 3399 ENTER(); 3400 3401 func = kzalloc(sizeof(*func), GFP_KERNEL); 3402 if (unlikely(!func)) 3403 return ERR_PTR(-ENOMEM); 3404 3405 func->function.name = "Function FS Gadget"; 3406 3407 func->function.bind = ffs_func_bind; 3408 func->function.unbind = ffs_func_unbind; 3409 func->function.set_alt = ffs_func_set_alt; 3410 func->function.disable = ffs_func_disable; 3411 func->function.setup = ffs_func_setup; 3412 func->function.req_match = ffs_func_req_match; 3413 func->function.suspend = ffs_func_suspend; 3414 func->function.resume = ffs_func_resume; 3415 func->function.free_func = ffs_free; 3416 3417 return &func->function; 3418 } 3419 3420 /* 3421 * ffs_lock must be taken by the caller of this function 3422 */ 3423 static struct ffs_dev *_ffs_alloc_dev(void) 3424 { 3425 struct ffs_dev *dev; 3426 int ret; 3427 3428 if (_ffs_get_single_dev()) 3429 return ERR_PTR(-EBUSY); 3430 3431 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3432 if (!dev) 3433 return ERR_PTR(-ENOMEM); 3434 3435 if (list_empty(&ffs_devices)) { 3436 ret = functionfs_init(); 3437 if (ret) { 3438 kfree(dev); 3439 return ERR_PTR(ret); 3440 } 3441 } 3442 3443 list_add(&dev->entry, &ffs_devices); 3444 3445 return dev; 3446 } 3447 3448 /* 3449 * ffs_lock must be taken by the caller of this function 3450 * The caller is responsible for "name" being available whenever f_fs needs it 3451 */ 3452 static int _ffs_name_dev(struct ffs_dev *dev, const char *name) 3453 { 3454 struct ffs_dev *existing; 3455 3456 existing = _ffs_do_find_dev(name); 3457 if (existing) 3458 return -EBUSY; 3459 3460 dev->name = name; 3461 3462 return 0; 3463 } 3464 3465 /* 3466 * The caller is responsible for "name" being available whenever f_fs needs it 3467 */ 3468 int ffs_name_dev(struct ffs_dev *dev, const char *name) 3469 { 3470 int ret; 3471 3472 ffs_dev_lock(); 3473 ret = _ffs_name_dev(dev, name); 3474 ffs_dev_unlock(); 3475 3476 return ret; 3477 } 3478 EXPORT_SYMBOL_GPL(ffs_name_dev); 3479 3480 int ffs_single_dev(struct ffs_dev *dev) 3481 { 3482 int ret; 3483 3484 ret = 0; 3485 ffs_dev_lock(); 3486 3487 if (!list_is_singular(&ffs_devices)) 3488 ret = -EBUSY; 3489 else 3490 dev->single = true; 3491 3492 ffs_dev_unlock(); 3493 return ret; 3494 } 3495 EXPORT_SYMBOL_GPL(ffs_single_dev); 3496 3497 /* 3498 * ffs_lock must be taken by the caller of this function 3499 */ 3500 static void _ffs_free_dev(struct ffs_dev *dev) 3501 { 3502 list_del(&dev->entry); 3503 if (dev->name_allocated) 3504 kfree(dev->name); 3505 3506 /* Clear the private_data pointer to stop incorrect dev access */ 3507 if (dev->ffs_data) 3508 dev->ffs_data->private_data = NULL; 3509 3510 kfree(dev); 3511 if (list_empty(&ffs_devices)) 3512 functionfs_cleanup(); 3513 } 3514 3515 static void *ffs_acquire_dev(const char *dev_name) 3516 { 3517 struct ffs_dev *ffs_dev; 3518 3519 ENTER(); 3520 ffs_dev_lock(); 3521 3522 ffs_dev = _ffs_find_dev(dev_name); 3523 if (!ffs_dev) 3524 ffs_dev = ERR_PTR(-ENOENT); 3525 else if (ffs_dev->mounted) 3526 ffs_dev = ERR_PTR(-EBUSY); 3527 else if (ffs_dev->ffs_acquire_dev_callback && 3528 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) 3529 ffs_dev = ERR_PTR(-ENOENT); 3530 else 3531 ffs_dev->mounted = true; 3532 3533 ffs_dev_unlock(); 3534 return ffs_dev; 3535 } 3536 3537 static void ffs_release_dev(struct ffs_data *ffs_data) 3538 { 3539 struct ffs_dev *ffs_dev; 3540 3541 ENTER(); 3542 ffs_dev_lock(); 3543 3544 ffs_dev = ffs_data->private_data; 3545 if (ffs_dev) { 3546 ffs_dev->mounted = false; 3547 3548 if (ffs_dev->ffs_release_dev_callback) 3549 ffs_dev->ffs_release_dev_callback(ffs_dev); 3550 } 3551 3552 ffs_dev_unlock(); 3553 } 3554 3555 static int ffs_ready(struct ffs_data *ffs) 3556 { 3557 struct ffs_dev *ffs_obj; 3558 int ret = 0; 3559 3560 ENTER(); 3561 ffs_dev_lock(); 3562 3563 ffs_obj = ffs->private_data; 3564 if (!ffs_obj) { 3565 ret = -EINVAL; 3566 goto done; 3567 } 3568 if (WARN_ON(ffs_obj->desc_ready)) { 3569 ret = -EBUSY; 3570 goto done; 3571 } 3572 3573 ffs_obj->desc_ready = true; 3574 ffs_obj->ffs_data = ffs; 3575 3576 if (ffs_obj->ffs_ready_callback) { 3577 ret = ffs_obj->ffs_ready_callback(ffs); 3578 if (ret) 3579 goto done; 3580 } 3581 3582 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); 3583 done: 3584 ffs_dev_unlock(); 3585 return ret; 3586 } 3587 3588 static void ffs_closed(struct ffs_data *ffs) 3589 { 3590 struct ffs_dev *ffs_obj; 3591 struct f_fs_opts *opts; 3592 3593 ENTER(); 3594 ffs_dev_lock(); 3595 3596 ffs_obj = ffs->private_data; 3597 if (!ffs_obj) 3598 goto done; 3599 3600 ffs_obj->desc_ready = false; 3601 3602 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) && 3603 ffs_obj->ffs_closed_callback) 3604 ffs_obj->ffs_closed_callback(ffs); 3605 3606 if (ffs_obj->opts) 3607 opts = ffs_obj->opts; 3608 else 3609 goto done; 3610 3611 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent 3612 || !atomic_read(&opts->func_inst.group.cg_item.ci_kref.refcount)) 3613 goto done; 3614 3615 unregister_gadget_item(ffs_obj->opts-> 3616 func_inst.group.cg_item.ci_parent->ci_parent); 3617 done: 3618 ffs_dev_unlock(); 3619 } 3620 3621 /* Misc helper functions ****************************************************/ 3622 3623 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 3624 { 3625 return nonblock 3626 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN 3627 : mutex_lock_interruptible(mutex); 3628 } 3629 3630 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 3631 { 3632 char *data; 3633 3634 if (unlikely(!len)) 3635 return NULL; 3636 3637 data = kmalloc(len, GFP_KERNEL); 3638 if (unlikely(!data)) 3639 return ERR_PTR(-ENOMEM); 3640 3641 if (unlikely(copy_from_user(data, buf, len))) { 3642 kfree(data); 3643 return ERR_PTR(-EFAULT); 3644 } 3645 3646 pr_vdebug("Buffer from user space:\n"); 3647 ffs_dump_mem("", data, len); 3648 3649 return data; 3650 } 3651 3652 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); 3653 MODULE_LICENSE("GPL"); 3654 MODULE_AUTHOR("Michal Nazarewicz"); 3655