xref: /openbmc/linux/drivers/usb/gadget/function/f_fs.c (revision 6dfcd296)
1 /*
2  * f_fs.c -- user mode file system API for USB composite function controllers
3  *
4  * Copyright (C) 2010 Samsung Electronics
5  * Author: Michal Nazarewicz <mina86@mina86.com>
6  *
7  * Based on inode.c (GadgetFS) which was:
8  * Copyright (C) 2003-2004 David Brownell
9  * Copyright (C) 2003 Agilent Technologies
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  */
16 
17 
18 /* #define DEBUG */
19 /* #define VERBOSE_DEBUG */
20 
21 #include <linux/blkdev.h>
22 #include <linux/pagemap.h>
23 #include <linux/export.h>
24 #include <linux/hid.h>
25 #include <linux/module.h>
26 #include <linux/uio.h>
27 #include <asm/unaligned.h>
28 
29 #include <linux/usb/composite.h>
30 #include <linux/usb/functionfs.h>
31 
32 #include <linux/aio.h>
33 #include <linux/mmu_context.h>
34 #include <linux/poll.h>
35 #include <linux/eventfd.h>
36 
37 #include "u_fs.h"
38 #include "u_f.h"
39 #include "u_os_desc.h"
40 #include "configfs.h"
41 
42 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
43 
44 /* Reference counter handling */
45 static void ffs_data_get(struct ffs_data *ffs);
46 static void ffs_data_put(struct ffs_data *ffs);
47 /* Creates new ffs_data object. */
48 static struct ffs_data *__must_check ffs_data_new(void) __attribute__((malloc));
49 
50 /* Opened counter handling. */
51 static void ffs_data_opened(struct ffs_data *ffs);
52 static void ffs_data_closed(struct ffs_data *ffs);
53 
54 /* Called with ffs->mutex held; take over ownership of data. */
55 static int __must_check
56 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
57 static int __must_check
58 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
59 
60 
61 /* The function structure ***************************************************/
62 
63 struct ffs_ep;
64 
65 struct ffs_function {
66 	struct usb_configuration	*conf;
67 	struct usb_gadget		*gadget;
68 	struct ffs_data			*ffs;
69 
70 	struct ffs_ep			*eps;
71 	u8				eps_revmap[16];
72 	short				*interfaces_nums;
73 
74 	struct usb_function		function;
75 };
76 
77 
78 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
79 {
80 	return container_of(f, struct ffs_function, function);
81 }
82 
83 
84 static inline enum ffs_setup_state
85 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
86 {
87 	return (enum ffs_setup_state)
88 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
89 }
90 
91 
92 static void ffs_func_eps_disable(struct ffs_function *func);
93 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
94 
95 static int ffs_func_bind(struct usb_configuration *,
96 			 struct usb_function *);
97 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
98 static void ffs_func_disable(struct usb_function *);
99 static int ffs_func_setup(struct usb_function *,
100 			  const struct usb_ctrlrequest *);
101 static bool ffs_func_req_match(struct usb_function *,
102 			       const struct usb_ctrlrequest *,
103 			       bool config0);
104 static void ffs_func_suspend(struct usb_function *);
105 static void ffs_func_resume(struct usb_function *);
106 
107 
108 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
109 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
110 
111 
112 /* The endpoints structures *************************************************/
113 
114 struct ffs_ep {
115 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
116 	struct usb_request		*req;	/* P: epfile->mutex */
117 
118 	/* [0]: full speed, [1]: high speed, [2]: super speed */
119 	struct usb_endpoint_descriptor	*descs[3];
120 
121 	u8				num;
122 
123 	int				status;	/* P: epfile->mutex */
124 };
125 
126 struct ffs_epfile {
127 	/* Protects ep->ep and ep->req. */
128 	struct mutex			mutex;
129 	wait_queue_head_t		wait;
130 
131 	struct ffs_data			*ffs;
132 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
133 
134 	struct dentry			*dentry;
135 
136 	/*
137 	 * Buffer for holding data from partial reads which may happen since
138 	 * we’re rounding user read requests to a multiple of a max packet size.
139 	 */
140 	struct ffs_buffer		*read_buffer;	/* P: epfile->mutex */
141 
142 	char				name[5];
143 
144 	unsigned char			in;	/* P: ffs->eps_lock */
145 	unsigned char			isoc;	/* P: ffs->eps_lock */
146 
147 	unsigned char			_pad;
148 };
149 
150 struct ffs_buffer {
151 	size_t length;
152 	char *data;
153 	char storage[];
154 };
155 
156 /*  ffs_io_data structure ***************************************************/
157 
158 struct ffs_io_data {
159 	bool aio;
160 	bool read;
161 
162 	struct kiocb *kiocb;
163 	struct iov_iter data;
164 	const void *to_free;
165 	char *buf;
166 
167 	struct mm_struct *mm;
168 	struct work_struct work;
169 
170 	struct usb_ep *ep;
171 	struct usb_request *req;
172 
173 	struct ffs_data *ffs;
174 };
175 
176 struct ffs_desc_helper {
177 	struct ffs_data *ffs;
178 	unsigned interfaces_count;
179 	unsigned eps_count;
180 };
181 
182 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
183 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
184 
185 static struct dentry *
186 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
187 		   const struct file_operations *fops);
188 
189 /* Devices management *******************************************************/
190 
191 DEFINE_MUTEX(ffs_lock);
192 EXPORT_SYMBOL_GPL(ffs_lock);
193 
194 static struct ffs_dev *_ffs_find_dev(const char *name);
195 static struct ffs_dev *_ffs_alloc_dev(void);
196 static int _ffs_name_dev(struct ffs_dev *dev, const char *name);
197 static void _ffs_free_dev(struct ffs_dev *dev);
198 static void *ffs_acquire_dev(const char *dev_name);
199 static void ffs_release_dev(struct ffs_data *ffs_data);
200 static int ffs_ready(struct ffs_data *ffs);
201 static void ffs_closed(struct ffs_data *ffs);
202 
203 /* Misc helper functions ****************************************************/
204 
205 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
206 	__attribute__((warn_unused_result, nonnull));
207 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
208 	__attribute__((warn_unused_result, nonnull));
209 
210 
211 /* Control file aka ep0 *****************************************************/
212 
213 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
214 {
215 	struct ffs_data *ffs = req->context;
216 
217 	complete_all(&ffs->ep0req_completion);
218 }
219 
220 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
221 {
222 	struct usb_request *req = ffs->ep0req;
223 	int ret;
224 
225 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
226 
227 	spin_unlock_irq(&ffs->ev.waitq.lock);
228 
229 	req->buf      = data;
230 	req->length   = len;
231 
232 	/*
233 	 * UDC layer requires to provide a buffer even for ZLP, but should
234 	 * not use it at all. Let's provide some poisoned pointer to catch
235 	 * possible bug in the driver.
236 	 */
237 	if (req->buf == NULL)
238 		req->buf = (void *)0xDEADBABE;
239 
240 	reinit_completion(&ffs->ep0req_completion);
241 
242 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
243 	if (unlikely(ret < 0))
244 		return ret;
245 
246 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
247 	if (unlikely(ret)) {
248 		usb_ep_dequeue(ffs->gadget->ep0, req);
249 		return -EINTR;
250 	}
251 
252 	ffs->setup_state = FFS_NO_SETUP;
253 	return req->status ? req->status : req->actual;
254 }
255 
256 static int __ffs_ep0_stall(struct ffs_data *ffs)
257 {
258 	if (ffs->ev.can_stall) {
259 		pr_vdebug("ep0 stall\n");
260 		usb_ep_set_halt(ffs->gadget->ep0);
261 		ffs->setup_state = FFS_NO_SETUP;
262 		return -EL2HLT;
263 	} else {
264 		pr_debug("bogus ep0 stall!\n");
265 		return -ESRCH;
266 	}
267 }
268 
269 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
270 			     size_t len, loff_t *ptr)
271 {
272 	struct ffs_data *ffs = file->private_data;
273 	ssize_t ret;
274 	char *data;
275 
276 	ENTER();
277 
278 	/* Fast check if setup was canceled */
279 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
280 		return -EIDRM;
281 
282 	/* Acquire mutex */
283 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
284 	if (unlikely(ret < 0))
285 		return ret;
286 
287 	/* Check state */
288 	switch (ffs->state) {
289 	case FFS_READ_DESCRIPTORS:
290 	case FFS_READ_STRINGS:
291 		/* Copy data */
292 		if (unlikely(len < 16)) {
293 			ret = -EINVAL;
294 			break;
295 		}
296 
297 		data = ffs_prepare_buffer(buf, len);
298 		if (IS_ERR(data)) {
299 			ret = PTR_ERR(data);
300 			break;
301 		}
302 
303 		/* Handle data */
304 		if (ffs->state == FFS_READ_DESCRIPTORS) {
305 			pr_info("read descriptors\n");
306 			ret = __ffs_data_got_descs(ffs, data, len);
307 			if (unlikely(ret < 0))
308 				break;
309 
310 			ffs->state = FFS_READ_STRINGS;
311 			ret = len;
312 		} else {
313 			pr_info("read strings\n");
314 			ret = __ffs_data_got_strings(ffs, data, len);
315 			if (unlikely(ret < 0))
316 				break;
317 
318 			ret = ffs_epfiles_create(ffs);
319 			if (unlikely(ret)) {
320 				ffs->state = FFS_CLOSING;
321 				break;
322 			}
323 
324 			ffs->state = FFS_ACTIVE;
325 			mutex_unlock(&ffs->mutex);
326 
327 			ret = ffs_ready(ffs);
328 			if (unlikely(ret < 0)) {
329 				ffs->state = FFS_CLOSING;
330 				return ret;
331 			}
332 
333 			return len;
334 		}
335 		break;
336 
337 	case FFS_ACTIVE:
338 		data = NULL;
339 		/*
340 		 * We're called from user space, we can use _irq
341 		 * rather then _irqsave
342 		 */
343 		spin_lock_irq(&ffs->ev.waitq.lock);
344 		switch (ffs_setup_state_clear_cancelled(ffs)) {
345 		case FFS_SETUP_CANCELLED:
346 			ret = -EIDRM;
347 			goto done_spin;
348 
349 		case FFS_NO_SETUP:
350 			ret = -ESRCH;
351 			goto done_spin;
352 
353 		case FFS_SETUP_PENDING:
354 			break;
355 		}
356 
357 		/* FFS_SETUP_PENDING */
358 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
359 			spin_unlock_irq(&ffs->ev.waitq.lock);
360 			ret = __ffs_ep0_stall(ffs);
361 			break;
362 		}
363 
364 		/* FFS_SETUP_PENDING and not stall */
365 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
366 
367 		spin_unlock_irq(&ffs->ev.waitq.lock);
368 
369 		data = ffs_prepare_buffer(buf, len);
370 		if (IS_ERR(data)) {
371 			ret = PTR_ERR(data);
372 			break;
373 		}
374 
375 		spin_lock_irq(&ffs->ev.waitq.lock);
376 
377 		/*
378 		 * We are guaranteed to be still in FFS_ACTIVE state
379 		 * but the state of setup could have changed from
380 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
381 		 * to check for that.  If that happened we copied data
382 		 * from user space in vain but it's unlikely.
383 		 *
384 		 * For sure we are not in FFS_NO_SETUP since this is
385 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
386 		 * transition can be performed and it's protected by
387 		 * mutex.
388 		 */
389 		if (ffs_setup_state_clear_cancelled(ffs) ==
390 		    FFS_SETUP_CANCELLED) {
391 			ret = -EIDRM;
392 done_spin:
393 			spin_unlock_irq(&ffs->ev.waitq.lock);
394 		} else {
395 			/* unlocks spinlock */
396 			ret = __ffs_ep0_queue_wait(ffs, data, len);
397 		}
398 		kfree(data);
399 		break;
400 
401 	default:
402 		ret = -EBADFD;
403 		break;
404 	}
405 
406 	mutex_unlock(&ffs->mutex);
407 	return ret;
408 }
409 
410 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
411 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
412 				     size_t n)
413 {
414 	/*
415 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
416 	 * size of ffs->ev.types array (which is four) so that's how much space
417 	 * we reserve.
418 	 */
419 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
420 	const size_t size = n * sizeof *events;
421 	unsigned i = 0;
422 
423 	memset(events, 0, size);
424 
425 	do {
426 		events[i].type = ffs->ev.types[i];
427 		if (events[i].type == FUNCTIONFS_SETUP) {
428 			events[i].u.setup = ffs->ev.setup;
429 			ffs->setup_state = FFS_SETUP_PENDING;
430 		}
431 	} while (++i < n);
432 
433 	ffs->ev.count -= n;
434 	if (ffs->ev.count)
435 		memmove(ffs->ev.types, ffs->ev.types + n,
436 			ffs->ev.count * sizeof *ffs->ev.types);
437 
438 	spin_unlock_irq(&ffs->ev.waitq.lock);
439 	mutex_unlock(&ffs->mutex);
440 
441 	return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
442 }
443 
444 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
445 			    size_t len, loff_t *ptr)
446 {
447 	struct ffs_data *ffs = file->private_data;
448 	char *data = NULL;
449 	size_t n;
450 	int ret;
451 
452 	ENTER();
453 
454 	/* Fast check if setup was canceled */
455 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
456 		return -EIDRM;
457 
458 	/* Acquire mutex */
459 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
460 	if (unlikely(ret < 0))
461 		return ret;
462 
463 	/* Check state */
464 	if (ffs->state != FFS_ACTIVE) {
465 		ret = -EBADFD;
466 		goto done_mutex;
467 	}
468 
469 	/*
470 	 * We're called from user space, we can use _irq rather then
471 	 * _irqsave
472 	 */
473 	spin_lock_irq(&ffs->ev.waitq.lock);
474 
475 	switch (ffs_setup_state_clear_cancelled(ffs)) {
476 	case FFS_SETUP_CANCELLED:
477 		ret = -EIDRM;
478 		break;
479 
480 	case FFS_NO_SETUP:
481 		n = len / sizeof(struct usb_functionfs_event);
482 		if (unlikely(!n)) {
483 			ret = -EINVAL;
484 			break;
485 		}
486 
487 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
488 			ret = -EAGAIN;
489 			break;
490 		}
491 
492 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
493 							ffs->ev.count)) {
494 			ret = -EINTR;
495 			break;
496 		}
497 
498 		return __ffs_ep0_read_events(ffs, buf,
499 					     min(n, (size_t)ffs->ev.count));
500 
501 	case FFS_SETUP_PENDING:
502 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
503 			spin_unlock_irq(&ffs->ev.waitq.lock);
504 			ret = __ffs_ep0_stall(ffs);
505 			goto done_mutex;
506 		}
507 
508 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
509 
510 		spin_unlock_irq(&ffs->ev.waitq.lock);
511 
512 		if (likely(len)) {
513 			data = kmalloc(len, GFP_KERNEL);
514 			if (unlikely(!data)) {
515 				ret = -ENOMEM;
516 				goto done_mutex;
517 			}
518 		}
519 
520 		spin_lock_irq(&ffs->ev.waitq.lock);
521 
522 		/* See ffs_ep0_write() */
523 		if (ffs_setup_state_clear_cancelled(ffs) ==
524 		    FFS_SETUP_CANCELLED) {
525 			ret = -EIDRM;
526 			break;
527 		}
528 
529 		/* unlocks spinlock */
530 		ret = __ffs_ep0_queue_wait(ffs, data, len);
531 		if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
532 			ret = -EFAULT;
533 		goto done_mutex;
534 
535 	default:
536 		ret = -EBADFD;
537 		break;
538 	}
539 
540 	spin_unlock_irq(&ffs->ev.waitq.lock);
541 done_mutex:
542 	mutex_unlock(&ffs->mutex);
543 	kfree(data);
544 	return ret;
545 }
546 
547 static int ffs_ep0_open(struct inode *inode, struct file *file)
548 {
549 	struct ffs_data *ffs = inode->i_private;
550 
551 	ENTER();
552 
553 	if (unlikely(ffs->state == FFS_CLOSING))
554 		return -EBUSY;
555 
556 	file->private_data = ffs;
557 	ffs_data_opened(ffs);
558 
559 	return 0;
560 }
561 
562 static int ffs_ep0_release(struct inode *inode, struct file *file)
563 {
564 	struct ffs_data *ffs = file->private_data;
565 
566 	ENTER();
567 
568 	ffs_data_closed(ffs);
569 
570 	return 0;
571 }
572 
573 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
574 {
575 	struct ffs_data *ffs = file->private_data;
576 	struct usb_gadget *gadget = ffs->gadget;
577 	long ret;
578 
579 	ENTER();
580 
581 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
582 		struct ffs_function *func = ffs->func;
583 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
584 	} else if (gadget && gadget->ops->ioctl) {
585 		ret = gadget->ops->ioctl(gadget, code, value);
586 	} else {
587 		ret = -ENOTTY;
588 	}
589 
590 	return ret;
591 }
592 
593 static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait)
594 {
595 	struct ffs_data *ffs = file->private_data;
596 	unsigned int mask = POLLWRNORM;
597 	int ret;
598 
599 	poll_wait(file, &ffs->ev.waitq, wait);
600 
601 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
602 	if (unlikely(ret < 0))
603 		return mask;
604 
605 	switch (ffs->state) {
606 	case FFS_READ_DESCRIPTORS:
607 	case FFS_READ_STRINGS:
608 		mask |= POLLOUT;
609 		break;
610 
611 	case FFS_ACTIVE:
612 		switch (ffs->setup_state) {
613 		case FFS_NO_SETUP:
614 			if (ffs->ev.count)
615 				mask |= POLLIN;
616 			break;
617 
618 		case FFS_SETUP_PENDING:
619 		case FFS_SETUP_CANCELLED:
620 			mask |= (POLLIN | POLLOUT);
621 			break;
622 		}
623 	case FFS_CLOSING:
624 		break;
625 	case FFS_DEACTIVATED:
626 		break;
627 	}
628 
629 	mutex_unlock(&ffs->mutex);
630 
631 	return mask;
632 }
633 
634 static const struct file_operations ffs_ep0_operations = {
635 	.llseek =	no_llseek,
636 
637 	.open =		ffs_ep0_open,
638 	.write =	ffs_ep0_write,
639 	.read =		ffs_ep0_read,
640 	.release =	ffs_ep0_release,
641 	.unlocked_ioctl =	ffs_ep0_ioctl,
642 	.poll =		ffs_ep0_poll,
643 };
644 
645 
646 /* "Normal" endpoints operations ********************************************/
647 
648 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
649 {
650 	ENTER();
651 	if (likely(req->context)) {
652 		struct ffs_ep *ep = _ep->driver_data;
653 		ep->status = req->status ? req->status : req->actual;
654 		complete(req->context);
655 	}
656 }
657 
658 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
659 {
660 	ssize_t ret = copy_to_iter(data, data_len, iter);
661 	if (likely(ret == data_len))
662 		return ret;
663 
664 	if (unlikely(iov_iter_count(iter)))
665 		return -EFAULT;
666 
667 	/*
668 	 * Dear user space developer!
669 	 *
670 	 * TL;DR: To stop getting below error message in your kernel log, change
671 	 * user space code using functionfs to align read buffers to a max
672 	 * packet size.
673 	 *
674 	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
675 	 * packet size.  When unaligned buffer is passed to functionfs, it
676 	 * internally uses a larger, aligned buffer so that such UDCs are happy.
677 	 *
678 	 * Unfortunately, this means that host may send more data than was
679 	 * requested in read(2) system call.  f_fs doesn’t know what to do with
680 	 * that excess data so it simply drops it.
681 	 *
682 	 * Was the buffer aligned in the first place, no such problem would
683 	 * happen.
684 	 *
685 	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
686 	 * by splitting a request into multiple parts.  This splitting may still
687 	 * be a problem though so it’s likely best to align the buffer
688 	 * regardless of it being AIO or not..
689 	 *
690 	 * This only affects OUT endpoints, i.e. reading data with a read(2),
691 	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
692 	 * affected.
693 	 */
694 	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
695 	       "Align read buffer size to max packet size to avoid the problem.\n",
696 	       data_len, ret);
697 
698 	return ret;
699 }
700 
701 static void ffs_user_copy_worker(struct work_struct *work)
702 {
703 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
704 						   work);
705 	int ret = io_data->req->status ? io_data->req->status :
706 					 io_data->req->actual;
707 	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
708 
709 	if (io_data->read && ret > 0) {
710 		use_mm(io_data->mm);
711 		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
712 		unuse_mm(io_data->mm);
713 	}
714 
715 	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
716 
717 	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
718 		eventfd_signal(io_data->ffs->ffs_eventfd, 1);
719 
720 	usb_ep_free_request(io_data->ep, io_data->req);
721 
722 	if (io_data->read)
723 		kfree(io_data->to_free);
724 	kfree(io_data->buf);
725 	kfree(io_data);
726 }
727 
728 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
729 					 struct usb_request *req)
730 {
731 	struct ffs_io_data *io_data = req->context;
732 
733 	ENTER();
734 
735 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
736 	schedule_work(&io_data->work);
737 }
738 
739 /* Assumes epfile->mutex is held. */
740 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
741 					  struct iov_iter *iter)
742 {
743 	struct ffs_buffer *buf = epfile->read_buffer;
744 	ssize_t ret;
745 	if (!buf)
746 		return 0;
747 
748 	ret = copy_to_iter(buf->data, buf->length, iter);
749 	if (buf->length == ret) {
750 		kfree(buf);
751 		epfile->read_buffer = NULL;
752 	} else if (unlikely(iov_iter_count(iter))) {
753 		ret = -EFAULT;
754 	} else {
755 		buf->length -= ret;
756 		buf->data += ret;
757 	}
758 	return ret;
759 }
760 
761 /* Assumes epfile->mutex is held. */
762 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
763 				      void *data, int data_len,
764 				      struct iov_iter *iter)
765 {
766 	struct ffs_buffer *buf;
767 
768 	ssize_t ret = copy_to_iter(data, data_len, iter);
769 	if (likely(data_len == ret))
770 		return ret;
771 
772 	if (unlikely(iov_iter_count(iter)))
773 		return -EFAULT;
774 
775 	/* See ffs_copy_to_iter for more context. */
776 	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
777 		data_len, ret);
778 
779 	data_len -= ret;
780 	buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
781 	if (!buf)
782 		return -ENOMEM;
783 	buf->length = data_len;
784 	buf->data = buf->storage;
785 	memcpy(buf->storage, data + ret, data_len);
786 	epfile->read_buffer = buf;
787 
788 	return ret;
789 }
790 
791 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
792 {
793 	struct ffs_epfile *epfile = file->private_data;
794 	struct usb_request *req;
795 	struct ffs_ep *ep;
796 	char *data = NULL;
797 	ssize_t ret, data_len = -EINVAL;
798 	int halt;
799 
800 	/* Are we still active? */
801 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
802 		return -ENODEV;
803 
804 	/* Wait for endpoint to be enabled */
805 	ep = epfile->ep;
806 	if (!ep) {
807 		if (file->f_flags & O_NONBLOCK)
808 			return -EAGAIN;
809 
810 		ret = wait_event_interruptible(epfile->wait, (ep = epfile->ep));
811 		if (ret)
812 			return -EINTR;
813 	}
814 
815 	/* Do we halt? */
816 	halt = (!io_data->read == !epfile->in);
817 	if (halt && epfile->isoc)
818 		return -EINVAL;
819 
820 	/* We will be using request and read_buffer */
821 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
822 	if (unlikely(ret))
823 		goto error;
824 
825 	/* Allocate & copy */
826 	if (!halt) {
827 		struct usb_gadget *gadget;
828 
829 		/*
830 		 * Do we have buffered data from previous partial read?  Check
831 		 * that for synchronous case only because we do not have
832 		 * facility to ‘wake up’ a pending asynchronous read and push
833 		 * buffered data to it which we would need to make things behave
834 		 * consistently.
835 		 */
836 		if (!io_data->aio && io_data->read) {
837 			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
838 			if (ret)
839 				goto error_mutex;
840 		}
841 
842 		/*
843 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
844 		 * before the waiting completes, so do not assign to 'gadget'
845 		 * earlier
846 		 */
847 		gadget = epfile->ffs->gadget;
848 
849 		spin_lock_irq(&epfile->ffs->eps_lock);
850 		/* In the meantime, endpoint got disabled or changed. */
851 		if (epfile->ep != ep) {
852 			ret = -ESHUTDOWN;
853 			goto error_lock;
854 		}
855 		data_len = iov_iter_count(&io_data->data);
856 		/*
857 		 * Controller may require buffer size to be aligned to
858 		 * maxpacketsize of an out endpoint.
859 		 */
860 		if (io_data->read)
861 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
862 		spin_unlock_irq(&epfile->ffs->eps_lock);
863 
864 		data = kmalloc(data_len, GFP_KERNEL);
865 		if (unlikely(!data)) {
866 			ret = -ENOMEM;
867 			goto error_mutex;
868 		}
869 		if (!io_data->read &&
870 		    copy_from_iter(data, data_len, &io_data->data) != data_len) {
871 			ret = -EFAULT;
872 			goto error_mutex;
873 		}
874 	}
875 
876 	spin_lock_irq(&epfile->ffs->eps_lock);
877 
878 	if (epfile->ep != ep) {
879 		/* In the meantime, endpoint got disabled or changed. */
880 		ret = -ESHUTDOWN;
881 	} else if (halt) {
882 		/* Halt */
883 		if (likely(epfile->ep == ep) && !WARN_ON(!ep->ep))
884 			usb_ep_set_halt(ep->ep);
885 		ret = -EBADMSG;
886 	} else if (unlikely(data_len == -EINVAL)) {
887 		/*
888 		 * Sanity Check: even though data_len can't be used
889 		 * uninitialized at the time I write this comment, some
890 		 * compilers complain about this situation.
891 		 * In order to keep the code clean from warnings, data_len is
892 		 * being initialized to -EINVAL during its declaration, which
893 		 * means we can't rely on compiler anymore to warn no future
894 		 * changes won't result in data_len being used uninitialized.
895 		 * For such reason, we're adding this redundant sanity check
896 		 * here.
897 		 */
898 		WARN(1, "%s: data_len == -EINVAL\n", __func__);
899 		ret = -EINVAL;
900 	} else if (!io_data->aio) {
901 		DECLARE_COMPLETION_ONSTACK(done);
902 		bool interrupted = false;
903 
904 		req = ep->req;
905 		req->buf      = data;
906 		req->length   = data_len;
907 
908 		req->context  = &done;
909 		req->complete = ffs_epfile_io_complete;
910 
911 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
912 		if (unlikely(ret < 0))
913 			goto error_lock;
914 
915 		spin_unlock_irq(&epfile->ffs->eps_lock);
916 
917 		if (unlikely(wait_for_completion_interruptible(&done))) {
918 			/*
919 			 * To avoid race condition with ffs_epfile_io_complete,
920 			 * dequeue the request first then check
921 			 * status. usb_ep_dequeue API should guarantee no race
922 			 * condition with req->complete callback.
923 			 */
924 			usb_ep_dequeue(ep->ep, req);
925 			interrupted = ep->status < 0;
926 		}
927 
928 		if (interrupted)
929 			ret = -EINTR;
930 		else if (io_data->read && ep->status > 0)
931 			ret = __ffs_epfile_read_data(epfile, data, ep->status,
932 						     &io_data->data);
933 		else
934 			ret = ep->status;
935 		goto error_mutex;
936 	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_KERNEL))) {
937 		ret = -ENOMEM;
938 	} else {
939 		req->buf      = data;
940 		req->length   = data_len;
941 
942 		io_data->buf = data;
943 		io_data->ep = ep->ep;
944 		io_data->req = req;
945 		io_data->ffs = epfile->ffs;
946 
947 		req->context  = io_data;
948 		req->complete = ffs_epfile_async_io_complete;
949 
950 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
951 		if (unlikely(ret)) {
952 			usb_ep_free_request(ep->ep, req);
953 			goto error_lock;
954 		}
955 
956 		ret = -EIOCBQUEUED;
957 		/*
958 		 * Do not kfree the buffer in this function.  It will be freed
959 		 * by ffs_user_copy_worker.
960 		 */
961 		data = NULL;
962 	}
963 
964 error_lock:
965 	spin_unlock_irq(&epfile->ffs->eps_lock);
966 error_mutex:
967 	mutex_unlock(&epfile->mutex);
968 error:
969 	kfree(data);
970 	return ret;
971 }
972 
973 static int
974 ffs_epfile_open(struct inode *inode, struct file *file)
975 {
976 	struct ffs_epfile *epfile = inode->i_private;
977 
978 	ENTER();
979 
980 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
981 		return -ENODEV;
982 
983 	file->private_data = epfile;
984 	ffs_data_opened(epfile->ffs);
985 
986 	return 0;
987 }
988 
989 static int ffs_aio_cancel(struct kiocb *kiocb)
990 {
991 	struct ffs_io_data *io_data = kiocb->private;
992 	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
993 	int value;
994 
995 	ENTER();
996 
997 	spin_lock_irq(&epfile->ffs->eps_lock);
998 
999 	if (likely(io_data && io_data->ep && io_data->req))
1000 		value = usb_ep_dequeue(io_data->ep, io_data->req);
1001 	else
1002 		value = -EINVAL;
1003 
1004 	spin_unlock_irq(&epfile->ffs->eps_lock);
1005 
1006 	return value;
1007 }
1008 
1009 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1010 {
1011 	struct ffs_io_data io_data, *p = &io_data;
1012 	ssize_t res;
1013 
1014 	ENTER();
1015 
1016 	if (!is_sync_kiocb(kiocb)) {
1017 		p = kmalloc(sizeof(io_data), GFP_KERNEL);
1018 		if (unlikely(!p))
1019 			return -ENOMEM;
1020 		p->aio = true;
1021 	} else {
1022 		p->aio = false;
1023 	}
1024 
1025 	p->read = false;
1026 	p->kiocb = kiocb;
1027 	p->data = *from;
1028 	p->mm = current->mm;
1029 
1030 	kiocb->private = p;
1031 
1032 	if (p->aio)
1033 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1034 
1035 	res = ffs_epfile_io(kiocb->ki_filp, p);
1036 	if (res == -EIOCBQUEUED)
1037 		return res;
1038 	if (p->aio)
1039 		kfree(p);
1040 	else
1041 		*from = p->data;
1042 	return res;
1043 }
1044 
1045 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1046 {
1047 	struct ffs_io_data io_data, *p = &io_data;
1048 	ssize_t res;
1049 
1050 	ENTER();
1051 
1052 	if (!is_sync_kiocb(kiocb)) {
1053 		p = kmalloc(sizeof(io_data), GFP_KERNEL);
1054 		if (unlikely(!p))
1055 			return -ENOMEM;
1056 		p->aio = true;
1057 	} else {
1058 		p->aio = false;
1059 	}
1060 
1061 	p->read = true;
1062 	p->kiocb = kiocb;
1063 	if (p->aio) {
1064 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1065 		if (!p->to_free) {
1066 			kfree(p);
1067 			return -ENOMEM;
1068 		}
1069 	} else {
1070 		p->data = *to;
1071 		p->to_free = NULL;
1072 	}
1073 	p->mm = current->mm;
1074 
1075 	kiocb->private = p;
1076 
1077 	if (p->aio)
1078 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1079 
1080 	res = ffs_epfile_io(kiocb->ki_filp, p);
1081 	if (res == -EIOCBQUEUED)
1082 		return res;
1083 
1084 	if (p->aio) {
1085 		kfree(p->to_free);
1086 		kfree(p);
1087 	} else {
1088 		*to = p->data;
1089 	}
1090 	return res;
1091 }
1092 
1093 static int
1094 ffs_epfile_release(struct inode *inode, struct file *file)
1095 {
1096 	struct ffs_epfile *epfile = inode->i_private;
1097 
1098 	ENTER();
1099 
1100 	kfree(epfile->read_buffer);
1101 	epfile->read_buffer = NULL;
1102 	ffs_data_closed(epfile->ffs);
1103 
1104 	return 0;
1105 }
1106 
1107 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1108 			     unsigned long value)
1109 {
1110 	struct ffs_epfile *epfile = file->private_data;
1111 	int ret;
1112 
1113 	ENTER();
1114 
1115 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1116 		return -ENODEV;
1117 
1118 	spin_lock_irq(&epfile->ffs->eps_lock);
1119 	if (likely(epfile->ep)) {
1120 		switch (code) {
1121 		case FUNCTIONFS_FIFO_STATUS:
1122 			ret = usb_ep_fifo_status(epfile->ep->ep);
1123 			break;
1124 		case FUNCTIONFS_FIFO_FLUSH:
1125 			usb_ep_fifo_flush(epfile->ep->ep);
1126 			ret = 0;
1127 			break;
1128 		case FUNCTIONFS_CLEAR_HALT:
1129 			ret = usb_ep_clear_halt(epfile->ep->ep);
1130 			break;
1131 		case FUNCTIONFS_ENDPOINT_REVMAP:
1132 			ret = epfile->ep->num;
1133 			break;
1134 		case FUNCTIONFS_ENDPOINT_DESC:
1135 		{
1136 			int desc_idx;
1137 			struct usb_endpoint_descriptor *desc;
1138 
1139 			switch (epfile->ffs->gadget->speed) {
1140 			case USB_SPEED_SUPER:
1141 				desc_idx = 2;
1142 				break;
1143 			case USB_SPEED_HIGH:
1144 				desc_idx = 1;
1145 				break;
1146 			default:
1147 				desc_idx = 0;
1148 			}
1149 			desc = epfile->ep->descs[desc_idx];
1150 
1151 			spin_unlock_irq(&epfile->ffs->eps_lock);
1152 			ret = copy_to_user((void *)value, desc, sizeof(*desc));
1153 			if (ret)
1154 				ret = -EFAULT;
1155 			return ret;
1156 		}
1157 		default:
1158 			ret = -ENOTTY;
1159 		}
1160 	} else {
1161 		ret = -ENODEV;
1162 	}
1163 	spin_unlock_irq(&epfile->ffs->eps_lock);
1164 
1165 	return ret;
1166 }
1167 
1168 static const struct file_operations ffs_epfile_operations = {
1169 	.llseek =	no_llseek,
1170 
1171 	.open =		ffs_epfile_open,
1172 	.write_iter =	ffs_epfile_write_iter,
1173 	.read_iter =	ffs_epfile_read_iter,
1174 	.release =	ffs_epfile_release,
1175 	.unlocked_ioctl =	ffs_epfile_ioctl,
1176 };
1177 
1178 
1179 /* File system and super block operations ***********************************/
1180 
1181 /*
1182  * Mounting the file system creates a controller file, used first for
1183  * function configuration then later for event monitoring.
1184  */
1185 
1186 static struct inode *__must_check
1187 ffs_sb_make_inode(struct super_block *sb, void *data,
1188 		  const struct file_operations *fops,
1189 		  const struct inode_operations *iops,
1190 		  struct ffs_file_perms *perms)
1191 {
1192 	struct inode *inode;
1193 
1194 	ENTER();
1195 
1196 	inode = new_inode(sb);
1197 
1198 	if (likely(inode)) {
1199 		struct timespec ts = current_time(inode);
1200 
1201 		inode->i_ino	 = get_next_ino();
1202 		inode->i_mode    = perms->mode;
1203 		inode->i_uid     = perms->uid;
1204 		inode->i_gid     = perms->gid;
1205 		inode->i_atime   = ts;
1206 		inode->i_mtime   = ts;
1207 		inode->i_ctime   = ts;
1208 		inode->i_private = data;
1209 		if (fops)
1210 			inode->i_fop = fops;
1211 		if (iops)
1212 			inode->i_op  = iops;
1213 	}
1214 
1215 	return inode;
1216 }
1217 
1218 /* Create "regular" file */
1219 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1220 					const char *name, void *data,
1221 					const struct file_operations *fops)
1222 {
1223 	struct ffs_data	*ffs = sb->s_fs_info;
1224 	struct dentry	*dentry;
1225 	struct inode	*inode;
1226 
1227 	ENTER();
1228 
1229 	dentry = d_alloc_name(sb->s_root, name);
1230 	if (unlikely(!dentry))
1231 		return NULL;
1232 
1233 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1234 	if (unlikely(!inode)) {
1235 		dput(dentry);
1236 		return NULL;
1237 	}
1238 
1239 	d_add(dentry, inode);
1240 	return dentry;
1241 }
1242 
1243 /* Super block */
1244 static const struct super_operations ffs_sb_operations = {
1245 	.statfs =	simple_statfs,
1246 	.drop_inode =	generic_delete_inode,
1247 };
1248 
1249 struct ffs_sb_fill_data {
1250 	struct ffs_file_perms perms;
1251 	umode_t root_mode;
1252 	const char *dev_name;
1253 	bool no_disconnect;
1254 	struct ffs_data *ffs_data;
1255 };
1256 
1257 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1258 {
1259 	struct ffs_sb_fill_data *data = _data;
1260 	struct inode	*inode;
1261 	struct ffs_data	*ffs = data->ffs_data;
1262 
1263 	ENTER();
1264 
1265 	ffs->sb              = sb;
1266 	data->ffs_data       = NULL;
1267 	sb->s_fs_info        = ffs;
1268 	sb->s_blocksize      = PAGE_SIZE;
1269 	sb->s_blocksize_bits = PAGE_SHIFT;
1270 	sb->s_magic          = FUNCTIONFS_MAGIC;
1271 	sb->s_op             = &ffs_sb_operations;
1272 	sb->s_time_gran      = 1;
1273 
1274 	/* Root inode */
1275 	data->perms.mode = data->root_mode;
1276 	inode = ffs_sb_make_inode(sb, NULL,
1277 				  &simple_dir_operations,
1278 				  &simple_dir_inode_operations,
1279 				  &data->perms);
1280 	sb->s_root = d_make_root(inode);
1281 	if (unlikely(!sb->s_root))
1282 		return -ENOMEM;
1283 
1284 	/* EP0 file */
1285 	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1286 					 &ffs_ep0_operations)))
1287 		return -ENOMEM;
1288 
1289 	return 0;
1290 }
1291 
1292 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1293 {
1294 	ENTER();
1295 
1296 	if (!opts || !*opts)
1297 		return 0;
1298 
1299 	for (;;) {
1300 		unsigned long value;
1301 		char *eq, *comma;
1302 
1303 		/* Option limit */
1304 		comma = strchr(opts, ',');
1305 		if (comma)
1306 			*comma = 0;
1307 
1308 		/* Value limit */
1309 		eq = strchr(opts, '=');
1310 		if (unlikely(!eq)) {
1311 			pr_err("'=' missing in %s\n", opts);
1312 			return -EINVAL;
1313 		}
1314 		*eq = 0;
1315 
1316 		/* Parse value */
1317 		if (kstrtoul(eq + 1, 0, &value)) {
1318 			pr_err("%s: invalid value: %s\n", opts, eq + 1);
1319 			return -EINVAL;
1320 		}
1321 
1322 		/* Interpret option */
1323 		switch (eq - opts) {
1324 		case 13:
1325 			if (!memcmp(opts, "no_disconnect", 13))
1326 				data->no_disconnect = !!value;
1327 			else
1328 				goto invalid;
1329 			break;
1330 		case 5:
1331 			if (!memcmp(opts, "rmode", 5))
1332 				data->root_mode  = (value & 0555) | S_IFDIR;
1333 			else if (!memcmp(opts, "fmode", 5))
1334 				data->perms.mode = (value & 0666) | S_IFREG;
1335 			else
1336 				goto invalid;
1337 			break;
1338 
1339 		case 4:
1340 			if (!memcmp(opts, "mode", 4)) {
1341 				data->root_mode  = (value & 0555) | S_IFDIR;
1342 				data->perms.mode = (value & 0666) | S_IFREG;
1343 			} else {
1344 				goto invalid;
1345 			}
1346 			break;
1347 
1348 		case 3:
1349 			if (!memcmp(opts, "uid", 3)) {
1350 				data->perms.uid = make_kuid(current_user_ns(), value);
1351 				if (!uid_valid(data->perms.uid)) {
1352 					pr_err("%s: unmapped value: %lu\n", opts, value);
1353 					return -EINVAL;
1354 				}
1355 			} else if (!memcmp(opts, "gid", 3)) {
1356 				data->perms.gid = make_kgid(current_user_ns(), value);
1357 				if (!gid_valid(data->perms.gid)) {
1358 					pr_err("%s: unmapped value: %lu\n", opts, value);
1359 					return -EINVAL;
1360 				}
1361 			} else {
1362 				goto invalid;
1363 			}
1364 			break;
1365 
1366 		default:
1367 invalid:
1368 			pr_err("%s: invalid option\n", opts);
1369 			return -EINVAL;
1370 		}
1371 
1372 		/* Next iteration */
1373 		if (!comma)
1374 			break;
1375 		opts = comma + 1;
1376 	}
1377 
1378 	return 0;
1379 }
1380 
1381 /* "mount -t functionfs dev_name /dev/function" ends up here */
1382 
1383 static struct dentry *
1384 ffs_fs_mount(struct file_system_type *t, int flags,
1385 	      const char *dev_name, void *opts)
1386 {
1387 	struct ffs_sb_fill_data data = {
1388 		.perms = {
1389 			.mode = S_IFREG | 0600,
1390 			.uid = GLOBAL_ROOT_UID,
1391 			.gid = GLOBAL_ROOT_GID,
1392 		},
1393 		.root_mode = S_IFDIR | 0500,
1394 		.no_disconnect = false,
1395 	};
1396 	struct dentry *rv;
1397 	int ret;
1398 	void *ffs_dev;
1399 	struct ffs_data	*ffs;
1400 
1401 	ENTER();
1402 
1403 	ret = ffs_fs_parse_opts(&data, opts);
1404 	if (unlikely(ret < 0))
1405 		return ERR_PTR(ret);
1406 
1407 	ffs = ffs_data_new();
1408 	if (unlikely(!ffs))
1409 		return ERR_PTR(-ENOMEM);
1410 	ffs->file_perms = data.perms;
1411 	ffs->no_disconnect = data.no_disconnect;
1412 
1413 	ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1414 	if (unlikely(!ffs->dev_name)) {
1415 		ffs_data_put(ffs);
1416 		return ERR_PTR(-ENOMEM);
1417 	}
1418 
1419 	ffs_dev = ffs_acquire_dev(dev_name);
1420 	if (IS_ERR(ffs_dev)) {
1421 		ffs_data_put(ffs);
1422 		return ERR_CAST(ffs_dev);
1423 	}
1424 	ffs->private_data = ffs_dev;
1425 	data.ffs_data = ffs;
1426 
1427 	rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1428 	if (IS_ERR(rv) && data.ffs_data) {
1429 		ffs_release_dev(data.ffs_data);
1430 		ffs_data_put(data.ffs_data);
1431 	}
1432 	return rv;
1433 }
1434 
1435 static void
1436 ffs_fs_kill_sb(struct super_block *sb)
1437 {
1438 	ENTER();
1439 
1440 	kill_litter_super(sb);
1441 	if (sb->s_fs_info) {
1442 		ffs_release_dev(sb->s_fs_info);
1443 		ffs_data_closed(sb->s_fs_info);
1444 		ffs_data_put(sb->s_fs_info);
1445 	}
1446 }
1447 
1448 static struct file_system_type ffs_fs_type = {
1449 	.owner		= THIS_MODULE,
1450 	.name		= "functionfs",
1451 	.mount		= ffs_fs_mount,
1452 	.kill_sb	= ffs_fs_kill_sb,
1453 };
1454 MODULE_ALIAS_FS("functionfs");
1455 
1456 
1457 /* Driver's main init/cleanup functions *************************************/
1458 
1459 static int functionfs_init(void)
1460 {
1461 	int ret;
1462 
1463 	ENTER();
1464 
1465 	ret = register_filesystem(&ffs_fs_type);
1466 	if (likely(!ret))
1467 		pr_info("file system registered\n");
1468 	else
1469 		pr_err("failed registering file system (%d)\n", ret);
1470 
1471 	return ret;
1472 }
1473 
1474 static void functionfs_cleanup(void)
1475 {
1476 	ENTER();
1477 
1478 	pr_info("unloading\n");
1479 	unregister_filesystem(&ffs_fs_type);
1480 }
1481 
1482 
1483 /* ffs_data and ffs_function construction and destruction code **************/
1484 
1485 static void ffs_data_clear(struct ffs_data *ffs);
1486 static void ffs_data_reset(struct ffs_data *ffs);
1487 
1488 static void ffs_data_get(struct ffs_data *ffs)
1489 {
1490 	ENTER();
1491 
1492 	atomic_inc(&ffs->ref);
1493 }
1494 
1495 static void ffs_data_opened(struct ffs_data *ffs)
1496 {
1497 	ENTER();
1498 
1499 	atomic_inc(&ffs->ref);
1500 	if (atomic_add_return(1, &ffs->opened) == 1 &&
1501 			ffs->state == FFS_DEACTIVATED) {
1502 		ffs->state = FFS_CLOSING;
1503 		ffs_data_reset(ffs);
1504 	}
1505 }
1506 
1507 static void ffs_data_put(struct ffs_data *ffs)
1508 {
1509 	ENTER();
1510 
1511 	if (unlikely(atomic_dec_and_test(&ffs->ref))) {
1512 		pr_info("%s(): freeing\n", __func__);
1513 		ffs_data_clear(ffs);
1514 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1515 		       waitqueue_active(&ffs->ep0req_completion.wait));
1516 		kfree(ffs->dev_name);
1517 		kfree(ffs);
1518 	}
1519 }
1520 
1521 static void ffs_data_closed(struct ffs_data *ffs)
1522 {
1523 	ENTER();
1524 
1525 	if (atomic_dec_and_test(&ffs->opened)) {
1526 		if (ffs->no_disconnect) {
1527 			ffs->state = FFS_DEACTIVATED;
1528 			if (ffs->epfiles) {
1529 				ffs_epfiles_destroy(ffs->epfiles,
1530 						   ffs->eps_count);
1531 				ffs->epfiles = NULL;
1532 			}
1533 			if (ffs->setup_state == FFS_SETUP_PENDING)
1534 				__ffs_ep0_stall(ffs);
1535 		} else {
1536 			ffs->state = FFS_CLOSING;
1537 			ffs_data_reset(ffs);
1538 		}
1539 	}
1540 	if (atomic_read(&ffs->opened) < 0) {
1541 		ffs->state = FFS_CLOSING;
1542 		ffs_data_reset(ffs);
1543 	}
1544 
1545 	ffs_data_put(ffs);
1546 }
1547 
1548 static struct ffs_data *ffs_data_new(void)
1549 {
1550 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1551 	if (unlikely(!ffs))
1552 		return NULL;
1553 
1554 	ENTER();
1555 
1556 	atomic_set(&ffs->ref, 1);
1557 	atomic_set(&ffs->opened, 0);
1558 	ffs->state = FFS_READ_DESCRIPTORS;
1559 	mutex_init(&ffs->mutex);
1560 	spin_lock_init(&ffs->eps_lock);
1561 	init_waitqueue_head(&ffs->ev.waitq);
1562 	init_completion(&ffs->ep0req_completion);
1563 
1564 	/* XXX REVISIT need to update it in some places, or do we? */
1565 	ffs->ev.can_stall = 1;
1566 
1567 	return ffs;
1568 }
1569 
1570 static void ffs_data_clear(struct ffs_data *ffs)
1571 {
1572 	ENTER();
1573 
1574 	ffs_closed(ffs);
1575 
1576 	BUG_ON(ffs->gadget);
1577 
1578 	if (ffs->epfiles)
1579 		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1580 
1581 	if (ffs->ffs_eventfd)
1582 		eventfd_ctx_put(ffs->ffs_eventfd);
1583 
1584 	kfree(ffs->raw_descs_data);
1585 	kfree(ffs->raw_strings);
1586 	kfree(ffs->stringtabs);
1587 }
1588 
1589 static void ffs_data_reset(struct ffs_data *ffs)
1590 {
1591 	ENTER();
1592 
1593 	ffs_data_clear(ffs);
1594 
1595 	ffs->epfiles = NULL;
1596 	ffs->raw_descs_data = NULL;
1597 	ffs->raw_descs = NULL;
1598 	ffs->raw_strings = NULL;
1599 	ffs->stringtabs = NULL;
1600 
1601 	ffs->raw_descs_length = 0;
1602 	ffs->fs_descs_count = 0;
1603 	ffs->hs_descs_count = 0;
1604 	ffs->ss_descs_count = 0;
1605 
1606 	ffs->strings_count = 0;
1607 	ffs->interfaces_count = 0;
1608 	ffs->eps_count = 0;
1609 
1610 	ffs->ev.count = 0;
1611 
1612 	ffs->state = FFS_READ_DESCRIPTORS;
1613 	ffs->setup_state = FFS_NO_SETUP;
1614 	ffs->flags = 0;
1615 }
1616 
1617 
1618 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1619 {
1620 	struct usb_gadget_strings **lang;
1621 	int first_id;
1622 
1623 	ENTER();
1624 
1625 	if (WARN_ON(ffs->state != FFS_ACTIVE
1626 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1627 		return -EBADFD;
1628 
1629 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1630 	if (unlikely(first_id < 0))
1631 		return first_id;
1632 
1633 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1634 	if (unlikely(!ffs->ep0req))
1635 		return -ENOMEM;
1636 	ffs->ep0req->complete = ffs_ep0_complete;
1637 	ffs->ep0req->context = ffs;
1638 
1639 	lang = ffs->stringtabs;
1640 	if (lang) {
1641 		for (; *lang; ++lang) {
1642 			struct usb_string *str = (*lang)->strings;
1643 			int id = first_id;
1644 			for (; str->s; ++id, ++str)
1645 				str->id = id;
1646 		}
1647 	}
1648 
1649 	ffs->gadget = cdev->gadget;
1650 	ffs_data_get(ffs);
1651 	return 0;
1652 }
1653 
1654 static void functionfs_unbind(struct ffs_data *ffs)
1655 {
1656 	ENTER();
1657 
1658 	if (!WARN_ON(!ffs->gadget)) {
1659 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1660 		ffs->ep0req = NULL;
1661 		ffs->gadget = NULL;
1662 		clear_bit(FFS_FL_BOUND, &ffs->flags);
1663 		ffs_data_put(ffs);
1664 	}
1665 }
1666 
1667 static int ffs_epfiles_create(struct ffs_data *ffs)
1668 {
1669 	struct ffs_epfile *epfile, *epfiles;
1670 	unsigned i, count;
1671 
1672 	ENTER();
1673 
1674 	count = ffs->eps_count;
1675 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1676 	if (!epfiles)
1677 		return -ENOMEM;
1678 
1679 	epfile = epfiles;
1680 	for (i = 1; i <= count; ++i, ++epfile) {
1681 		epfile->ffs = ffs;
1682 		mutex_init(&epfile->mutex);
1683 		init_waitqueue_head(&epfile->wait);
1684 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1685 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1686 		else
1687 			sprintf(epfile->name, "ep%u", i);
1688 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1689 						 epfile,
1690 						 &ffs_epfile_operations);
1691 		if (unlikely(!epfile->dentry)) {
1692 			ffs_epfiles_destroy(epfiles, i - 1);
1693 			return -ENOMEM;
1694 		}
1695 	}
1696 
1697 	ffs->epfiles = epfiles;
1698 	return 0;
1699 }
1700 
1701 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1702 {
1703 	struct ffs_epfile *epfile = epfiles;
1704 
1705 	ENTER();
1706 
1707 	for (; count; --count, ++epfile) {
1708 		BUG_ON(mutex_is_locked(&epfile->mutex) ||
1709 		       waitqueue_active(&epfile->wait));
1710 		if (epfile->dentry) {
1711 			d_delete(epfile->dentry);
1712 			dput(epfile->dentry);
1713 			epfile->dentry = NULL;
1714 		}
1715 	}
1716 
1717 	kfree(epfiles);
1718 }
1719 
1720 static void ffs_func_eps_disable(struct ffs_function *func)
1721 {
1722 	struct ffs_ep *ep         = func->eps;
1723 	struct ffs_epfile *epfile = func->ffs->epfiles;
1724 	unsigned count            = func->ffs->eps_count;
1725 	unsigned long flags;
1726 
1727 	do {
1728 		if (epfile)
1729 			mutex_lock(&epfile->mutex);
1730 		spin_lock_irqsave(&func->ffs->eps_lock, flags);
1731 		/* pending requests get nuked */
1732 		if (likely(ep->ep))
1733 			usb_ep_disable(ep->ep);
1734 		++ep;
1735 		spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1736 
1737 		if (epfile) {
1738 			epfile->ep = NULL;
1739 			kfree(epfile->read_buffer);
1740 			epfile->read_buffer = NULL;
1741 			mutex_unlock(&epfile->mutex);
1742 			++epfile;
1743 		}
1744 	} while (--count);
1745 }
1746 
1747 static int ffs_func_eps_enable(struct ffs_function *func)
1748 {
1749 	struct ffs_data *ffs      = func->ffs;
1750 	struct ffs_ep *ep         = func->eps;
1751 	struct ffs_epfile *epfile = ffs->epfiles;
1752 	unsigned count            = ffs->eps_count;
1753 	unsigned long flags;
1754 	int ret = 0;
1755 
1756 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1757 	do {
1758 		struct usb_endpoint_descriptor *ds;
1759 		int desc_idx;
1760 
1761 		if (ffs->gadget->speed == USB_SPEED_SUPER)
1762 			desc_idx = 2;
1763 		else if (ffs->gadget->speed == USB_SPEED_HIGH)
1764 			desc_idx = 1;
1765 		else
1766 			desc_idx = 0;
1767 
1768 		/* fall-back to lower speed if desc missing for current speed */
1769 		do {
1770 			ds = ep->descs[desc_idx];
1771 		} while (!ds && --desc_idx >= 0);
1772 
1773 		if (!ds) {
1774 			ret = -EINVAL;
1775 			break;
1776 		}
1777 
1778 		ep->ep->driver_data = ep;
1779 		ep->ep->desc = ds;
1780 		ret = usb_ep_enable(ep->ep);
1781 		if (likely(!ret)) {
1782 			epfile->ep = ep;
1783 			epfile->in = usb_endpoint_dir_in(ds);
1784 			epfile->isoc = usb_endpoint_xfer_isoc(ds);
1785 		} else {
1786 			break;
1787 		}
1788 
1789 		wake_up(&epfile->wait);
1790 
1791 		++ep;
1792 		++epfile;
1793 	} while (--count);
1794 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1795 
1796 	return ret;
1797 }
1798 
1799 
1800 /* Parsing and building descriptors and strings *****************************/
1801 
1802 /*
1803  * This validates if data pointed by data is a valid USB descriptor as
1804  * well as record how many interfaces, endpoints and strings are
1805  * required by given configuration.  Returns address after the
1806  * descriptor or NULL if data is invalid.
1807  */
1808 
1809 enum ffs_entity_type {
1810 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1811 };
1812 
1813 enum ffs_os_desc_type {
1814 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1815 };
1816 
1817 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1818 				   u8 *valuep,
1819 				   struct usb_descriptor_header *desc,
1820 				   void *priv);
1821 
1822 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1823 				    struct usb_os_desc_header *h, void *data,
1824 				    unsigned len, void *priv);
1825 
1826 static int __must_check ffs_do_single_desc(char *data, unsigned len,
1827 					   ffs_entity_callback entity,
1828 					   void *priv)
1829 {
1830 	struct usb_descriptor_header *_ds = (void *)data;
1831 	u8 length;
1832 	int ret;
1833 
1834 	ENTER();
1835 
1836 	/* At least two bytes are required: length and type */
1837 	if (len < 2) {
1838 		pr_vdebug("descriptor too short\n");
1839 		return -EINVAL;
1840 	}
1841 
1842 	/* If we have at least as many bytes as the descriptor takes? */
1843 	length = _ds->bLength;
1844 	if (len < length) {
1845 		pr_vdebug("descriptor longer then available data\n");
1846 		return -EINVAL;
1847 	}
1848 
1849 #define __entity_check_INTERFACE(val)  1
1850 #define __entity_check_STRING(val)     (val)
1851 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
1852 #define __entity(type, val) do {					\
1853 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
1854 		if (unlikely(!__entity_check_ ##type(val))) {		\
1855 			pr_vdebug("invalid entity's value\n");		\
1856 			return -EINVAL;					\
1857 		}							\
1858 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
1859 		if (unlikely(ret < 0)) {				\
1860 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
1861 				 (val), ret);				\
1862 			return ret;					\
1863 		}							\
1864 	} while (0)
1865 
1866 	/* Parse descriptor depending on type. */
1867 	switch (_ds->bDescriptorType) {
1868 	case USB_DT_DEVICE:
1869 	case USB_DT_CONFIG:
1870 	case USB_DT_STRING:
1871 	case USB_DT_DEVICE_QUALIFIER:
1872 		/* function can't have any of those */
1873 		pr_vdebug("descriptor reserved for gadget: %d\n",
1874 		      _ds->bDescriptorType);
1875 		return -EINVAL;
1876 
1877 	case USB_DT_INTERFACE: {
1878 		struct usb_interface_descriptor *ds = (void *)_ds;
1879 		pr_vdebug("interface descriptor\n");
1880 		if (length != sizeof *ds)
1881 			goto inv_length;
1882 
1883 		__entity(INTERFACE, ds->bInterfaceNumber);
1884 		if (ds->iInterface)
1885 			__entity(STRING, ds->iInterface);
1886 	}
1887 		break;
1888 
1889 	case USB_DT_ENDPOINT: {
1890 		struct usb_endpoint_descriptor *ds = (void *)_ds;
1891 		pr_vdebug("endpoint descriptor\n");
1892 		if (length != USB_DT_ENDPOINT_SIZE &&
1893 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
1894 			goto inv_length;
1895 		__entity(ENDPOINT, ds->bEndpointAddress);
1896 	}
1897 		break;
1898 
1899 	case HID_DT_HID:
1900 		pr_vdebug("hid descriptor\n");
1901 		if (length != sizeof(struct hid_descriptor))
1902 			goto inv_length;
1903 		break;
1904 
1905 	case USB_DT_OTG:
1906 		if (length != sizeof(struct usb_otg_descriptor))
1907 			goto inv_length;
1908 		break;
1909 
1910 	case USB_DT_INTERFACE_ASSOCIATION: {
1911 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
1912 		pr_vdebug("interface association descriptor\n");
1913 		if (length != sizeof *ds)
1914 			goto inv_length;
1915 		if (ds->iFunction)
1916 			__entity(STRING, ds->iFunction);
1917 	}
1918 		break;
1919 
1920 	case USB_DT_SS_ENDPOINT_COMP:
1921 		pr_vdebug("EP SS companion descriptor\n");
1922 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
1923 			goto inv_length;
1924 		break;
1925 
1926 	case USB_DT_OTHER_SPEED_CONFIG:
1927 	case USB_DT_INTERFACE_POWER:
1928 	case USB_DT_DEBUG:
1929 	case USB_DT_SECURITY:
1930 	case USB_DT_CS_RADIO_CONTROL:
1931 		/* TODO */
1932 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
1933 		return -EINVAL;
1934 
1935 	default:
1936 		/* We should never be here */
1937 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
1938 		return -EINVAL;
1939 
1940 inv_length:
1941 		pr_vdebug("invalid length: %d (descriptor %d)\n",
1942 			  _ds->bLength, _ds->bDescriptorType);
1943 		return -EINVAL;
1944 	}
1945 
1946 #undef __entity
1947 #undef __entity_check_DESCRIPTOR
1948 #undef __entity_check_INTERFACE
1949 #undef __entity_check_STRING
1950 #undef __entity_check_ENDPOINT
1951 
1952 	return length;
1953 }
1954 
1955 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
1956 				     ffs_entity_callback entity, void *priv)
1957 {
1958 	const unsigned _len = len;
1959 	unsigned long num = 0;
1960 
1961 	ENTER();
1962 
1963 	for (;;) {
1964 		int ret;
1965 
1966 		if (num == count)
1967 			data = NULL;
1968 
1969 		/* Record "descriptor" entity */
1970 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
1971 		if (unlikely(ret < 0)) {
1972 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
1973 				 num, ret);
1974 			return ret;
1975 		}
1976 
1977 		if (!data)
1978 			return _len - len;
1979 
1980 		ret = ffs_do_single_desc(data, len, entity, priv);
1981 		if (unlikely(ret < 0)) {
1982 			pr_debug("%s returns %d\n", __func__, ret);
1983 			return ret;
1984 		}
1985 
1986 		len -= ret;
1987 		data += ret;
1988 		++num;
1989 	}
1990 }
1991 
1992 static int __ffs_data_do_entity(enum ffs_entity_type type,
1993 				u8 *valuep, struct usb_descriptor_header *desc,
1994 				void *priv)
1995 {
1996 	struct ffs_desc_helper *helper = priv;
1997 	struct usb_endpoint_descriptor *d;
1998 
1999 	ENTER();
2000 
2001 	switch (type) {
2002 	case FFS_DESCRIPTOR:
2003 		break;
2004 
2005 	case FFS_INTERFACE:
2006 		/*
2007 		 * Interfaces are indexed from zero so if we
2008 		 * encountered interface "n" then there are at least
2009 		 * "n+1" interfaces.
2010 		 */
2011 		if (*valuep >= helper->interfaces_count)
2012 			helper->interfaces_count = *valuep + 1;
2013 		break;
2014 
2015 	case FFS_STRING:
2016 		/*
2017 		 * Strings are indexed from 1 (0 is magic ;) reserved
2018 		 * for languages list or some such)
2019 		 */
2020 		if (*valuep > helper->ffs->strings_count)
2021 			helper->ffs->strings_count = *valuep;
2022 		break;
2023 
2024 	case FFS_ENDPOINT:
2025 		d = (void *)desc;
2026 		helper->eps_count++;
2027 		if (helper->eps_count >= 15)
2028 			return -EINVAL;
2029 		/* Check if descriptors for any speed were already parsed */
2030 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2031 			helper->ffs->eps_addrmap[helper->eps_count] =
2032 				d->bEndpointAddress;
2033 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2034 				d->bEndpointAddress)
2035 			return -EINVAL;
2036 		break;
2037 	}
2038 
2039 	return 0;
2040 }
2041 
2042 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2043 				   struct usb_os_desc_header *desc)
2044 {
2045 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2046 	u16 w_index = le16_to_cpu(desc->wIndex);
2047 
2048 	if (bcd_version != 1) {
2049 		pr_vdebug("unsupported os descriptors version: %d",
2050 			  bcd_version);
2051 		return -EINVAL;
2052 	}
2053 	switch (w_index) {
2054 	case 0x4:
2055 		*next_type = FFS_OS_DESC_EXT_COMPAT;
2056 		break;
2057 	case 0x5:
2058 		*next_type = FFS_OS_DESC_EXT_PROP;
2059 		break;
2060 	default:
2061 		pr_vdebug("unsupported os descriptor type: %d", w_index);
2062 		return -EINVAL;
2063 	}
2064 
2065 	return sizeof(*desc);
2066 }
2067 
2068 /*
2069  * Process all extended compatibility/extended property descriptors
2070  * of a feature descriptor
2071  */
2072 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2073 					      enum ffs_os_desc_type type,
2074 					      u16 feature_count,
2075 					      ffs_os_desc_callback entity,
2076 					      void *priv,
2077 					      struct usb_os_desc_header *h)
2078 {
2079 	int ret;
2080 	const unsigned _len = len;
2081 
2082 	ENTER();
2083 
2084 	/* loop over all ext compat/ext prop descriptors */
2085 	while (feature_count--) {
2086 		ret = entity(type, h, data, len, priv);
2087 		if (unlikely(ret < 0)) {
2088 			pr_debug("bad OS descriptor, type: %d\n", type);
2089 			return ret;
2090 		}
2091 		data += ret;
2092 		len -= ret;
2093 	}
2094 	return _len - len;
2095 }
2096 
2097 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2098 static int __must_check ffs_do_os_descs(unsigned count,
2099 					char *data, unsigned len,
2100 					ffs_os_desc_callback entity, void *priv)
2101 {
2102 	const unsigned _len = len;
2103 	unsigned long num = 0;
2104 
2105 	ENTER();
2106 
2107 	for (num = 0; num < count; ++num) {
2108 		int ret;
2109 		enum ffs_os_desc_type type;
2110 		u16 feature_count;
2111 		struct usb_os_desc_header *desc = (void *)data;
2112 
2113 		if (len < sizeof(*desc))
2114 			return -EINVAL;
2115 
2116 		/*
2117 		 * Record "descriptor" entity.
2118 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2119 		 * Move the data pointer to the beginning of extended
2120 		 * compatibilities proper or extended properties proper
2121 		 * portions of the data
2122 		 */
2123 		if (le32_to_cpu(desc->dwLength) > len)
2124 			return -EINVAL;
2125 
2126 		ret = __ffs_do_os_desc_header(&type, desc);
2127 		if (unlikely(ret < 0)) {
2128 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2129 				 num, ret);
2130 			return ret;
2131 		}
2132 		/*
2133 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2134 		 */
2135 		feature_count = le16_to_cpu(desc->wCount);
2136 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2137 		    (feature_count > 255 || desc->Reserved))
2138 				return -EINVAL;
2139 		len -= ret;
2140 		data += ret;
2141 
2142 		/*
2143 		 * Process all function/property descriptors
2144 		 * of this Feature Descriptor
2145 		 */
2146 		ret = ffs_do_single_os_desc(data, len, type,
2147 					    feature_count, entity, priv, desc);
2148 		if (unlikely(ret < 0)) {
2149 			pr_debug("%s returns %d\n", __func__, ret);
2150 			return ret;
2151 		}
2152 
2153 		len -= ret;
2154 		data += ret;
2155 	}
2156 	return _len - len;
2157 }
2158 
2159 /**
2160  * Validate contents of the buffer from userspace related to OS descriptors.
2161  */
2162 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2163 				 struct usb_os_desc_header *h, void *data,
2164 				 unsigned len, void *priv)
2165 {
2166 	struct ffs_data *ffs = priv;
2167 	u8 length;
2168 
2169 	ENTER();
2170 
2171 	switch (type) {
2172 	case FFS_OS_DESC_EXT_COMPAT: {
2173 		struct usb_ext_compat_desc *d = data;
2174 		int i;
2175 
2176 		if (len < sizeof(*d) ||
2177 		    d->bFirstInterfaceNumber >= ffs->interfaces_count ||
2178 		    !d->Reserved1)
2179 			return -EINVAL;
2180 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2181 			if (d->Reserved2[i])
2182 				return -EINVAL;
2183 
2184 		length = sizeof(struct usb_ext_compat_desc);
2185 	}
2186 		break;
2187 	case FFS_OS_DESC_EXT_PROP: {
2188 		struct usb_ext_prop_desc *d = data;
2189 		u32 type, pdl;
2190 		u16 pnl;
2191 
2192 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2193 			return -EINVAL;
2194 		length = le32_to_cpu(d->dwSize);
2195 		type = le32_to_cpu(d->dwPropertyDataType);
2196 		if (type < USB_EXT_PROP_UNICODE ||
2197 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2198 			pr_vdebug("unsupported os descriptor property type: %d",
2199 				  type);
2200 			return -EINVAL;
2201 		}
2202 		pnl = le16_to_cpu(d->wPropertyNameLength);
2203 		pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl));
2204 		if (length != 14 + pnl + pdl) {
2205 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2206 				  length, pnl, pdl, type);
2207 			return -EINVAL;
2208 		}
2209 		++ffs->ms_os_descs_ext_prop_count;
2210 		/* property name reported to the host as "WCHAR"s */
2211 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2212 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2213 	}
2214 		break;
2215 	default:
2216 		pr_vdebug("unknown descriptor: %d\n", type);
2217 		return -EINVAL;
2218 	}
2219 	return length;
2220 }
2221 
2222 static int __ffs_data_got_descs(struct ffs_data *ffs,
2223 				char *const _data, size_t len)
2224 {
2225 	char *data = _data, *raw_descs;
2226 	unsigned os_descs_count = 0, counts[3], flags;
2227 	int ret = -EINVAL, i;
2228 	struct ffs_desc_helper helper;
2229 
2230 	ENTER();
2231 
2232 	if (get_unaligned_le32(data + 4) != len)
2233 		goto error;
2234 
2235 	switch (get_unaligned_le32(data)) {
2236 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2237 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2238 		data += 8;
2239 		len  -= 8;
2240 		break;
2241 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2242 		flags = get_unaligned_le32(data + 8);
2243 		ffs->user_flags = flags;
2244 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2245 			      FUNCTIONFS_HAS_HS_DESC |
2246 			      FUNCTIONFS_HAS_SS_DESC |
2247 			      FUNCTIONFS_HAS_MS_OS_DESC |
2248 			      FUNCTIONFS_VIRTUAL_ADDR |
2249 			      FUNCTIONFS_EVENTFD |
2250 			      FUNCTIONFS_ALL_CTRL_RECIP |
2251 			      FUNCTIONFS_CONFIG0_SETUP)) {
2252 			ret = -ENOSYS;
2253 			goto error;
2254 		}
2255 		data += 12;
2256 		len  -= 12;
2257 		break;
2258 	default:
2259 		goto error;
2260 	}
2261 
2262 	if (flags & FUNCTIONFS_EVENTFD) {
2263 		if (len < 4)
2264 			goto error;
2265 		ffs->ffs_eventfd =
2266 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2267 		if (IS_ERR(ffs->ffs_eventfd)) {
2268 			ret = PTR_ERR(ffs->ffs_eventfd);
2269 			ffs->ffs_eventfd = NULL;
2270 			goto error;
2271 		}
2272 		data += 4;
2273 		len  -= 4;
2274 	}
2275 
2276 	/* Read fs_count, hs_count and ss_count (if present) */
2277 	for (i = 0; i < 3; ++i) {
2278 		if (!(flags & (1 << i))) {
2279 			counts[i] = 0;
2280 		} else if (len < 4) {
2281 			goto error;
2282 		} else {
2283 			counts[i] = get_unaligned_le32(data);
2284 			data += 4;
2285 			len  -= 4;
2286 		}
2287 	}
2288 	if (flags & (1 << i)) {
2289 		os_descs_count = get_unaligned_le32(data);
2290 		data += 4;
2291 		len -= 4;
2292 	};
2293 
2294 	/* Read descriptors */
2295 	raw_descs = data;
2296 	helper.ffs = ffs;
2297 	for (i = 0; i < 3; ++i) {
2298 		if (!counts[i])
2299 			continue;
2300 		helper.interfaces_count = 0;
2301 		helper.eps_count = 0;
2302 		ret = ffs_do_descs(counts[i], data, len,
2303 				   __ffs_data_do_entity, &helper);
2304 		if (ret < 0)
2305 			goto error;
2306 		if (!ffs->eps_count && !ffs->interfaces_count) {
2307 			ffs->eps_count = helper.eps_count;
2308 			ffs->interfaces_count = helper.interfaces_count;
2309 		} else {
2310 			if (ffs->eps_count != helper.eps_count) {
2311 				ret = -EINVAL;
2312 				goto error;
2313 			}
2314 			if (ffs->interfaces_count != helper.interfaces_count) {
2315 				ret = -EINVAL;
2316 				goto error;
2317 			}
2318 		}
2319 		data += ret;
2320 		len  -= ret;
2321 	}
2322 	if (os_descs_count) {
2323 		ret = ffs_do_os_descs(os_descs_count, data, len,
2324 				      __ffs_data_do_os_desc, ffs);
2325 		if (ret < 0)
2326 			goto error;
2327 		data += ret;
2328 		len -= ret;
2329 	}
2330 
2331 	if (raw_descs == data || len) {
2332 		ret = -EINVAL;
2333 		goto error;
2334 	}
2335 
2336 	ffs->raw_descs_data	= _data;
2337 	ffs->raw_descs		= raw_descs;
2338 	ffs->raw_descs_length	= data - raw_descs;
2339 	ffs->fs_descs_count	= counts[0];
2340 	ffs->hs_descs_count	= counts[1];
2341 	ffs->ss_descs_count	= counts[2];
2342 	ffs->ms_os_descs_count	= os_descs_count;
2343 
2344 	return 0;
2345 
2346 error:
2347 	kfree(_data);
2348 	return ret;
2349 }
2350 
2351 static int __ffs_data_got_strings(struct ffs_data *ffs,
2352 				  char *const _data, size_t len)
2353 {
2354 	u32 str_count, needed_count, lang_count;
2355 	struct usb_gadget_strings **stringtabs, *t;
2356 	const char *data = _data;
2357 	struct usb_string *s;
2358 
2359 	ENTER();
2360 
2361 	if (unlikely(get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2362 		     get_unaligned_le32(data + 4) != len))
2363 		goto error;
2364 	str_count  = get_unaligned_le32(data + 8);
2365 	lang_count = get_unaligned_le32(data + 12);
2366 
2367 	/* if one is zero the other must be zero */
2368 	if (unlikely(!str_count != !lang_count))
2369 		goto error;
2370 
2371 	/* Do we have at least as many strings as descriptors need? */
2372 	needed_count = ffs->strings_count;
2373 	if (unlikely(str_count < needed_count))
2374 		goto error;
2375 
2376 	/*
2377 	 * If we don't need any strings just return and free all
2378 	 * memory.
2379 	 */
2380 	if (!needed_count) {
2381 		kfree(_data);
2382 		return 0;
2383 	}
2384 
2385 	/* Allocate everything in one chunk so there's less maintenance. */
2386 	{
2387 		unsigned i = 0;
2388 		vla_group(d);
2389 		vla_item(d, struct usb_gadget_strings *, stringtabs,
2390 			lang_count + 1);
2391 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2392 		vla_item(d, struct usb_string, strings,
2393 			lang_count*(needed_count+1));
2394 
2395 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2396 
2397 		if (unlikely(!vlabuf)) {
2398 			kfree(_data);
2399 			return -ENOMEM;
2400 		}
2401 
2402 		/* Initialize the VLA pointers */
2403 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2404 		t = vla_ptr(vlabuf, d, stringtab);
2405 		i = lang_count;
2406 		do {
2407 			*stringtabs++ = t++;
2408 		} while (--i);
2409 		*stringtabs = NULL;
2410 
2411 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2412 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2413 		t = vla_ptr(vlabuf, d, stringtab);
2414 		s = vla_ptr(vlabuf, d, strings);
2415 	}
2416 
2417 	/* For each language */
2418 	data += 16;
2419 	len -= 16;
2420 
2421 	do { /* lang_count > 0 so we can use do-while */
2422 		unsigned needed = needed_count;
2423 
2424 		if (unlikely(len < 3))
2425 			goto error_free;
2426 		t->language = get_unaligned_le16(data);
2427 		t->strings  = s;
2428 		++t;
2429 
2430 		data += 2;
2431 		len -= 2;
2432 
2433 		/* For each string */
2434 		do { /* str_count > 0 so we can use do-while */
2435 			size_t length = strnlen(data, len);
2436 
2437 			if (unlikely(length == len))
2438 				goto error_free;
2439 
2440 			/*
2441 			 * User may provide more strings then we need,
2442 			 * if that's the case we simply ignore the
2443 			 * rest
2444 			 */
2445 			if (likely(needed)) {
2446 				/*
2447 				 * s->id will be set while adding
2448 				 * function to configuration so for
2449 				 * now just leave garbage here.
2450 				 */
2451 				s->s = data;
2452 				--needed;
2453 				++s;
2454 			}
2455 
2456 			data += length + 1;
2457 			len -= length + 1;
2458 		} while (--str_count);
2459 
2460 		s->id = 0;   /* terminator */
2461 		s->s = NULL;
2462 		++s;
2463 
2464 	} while (--lang_count);
2465 
2466 	/* Some garbage left? */
2467 	if (unlikely(len))
2468 		goto error_free;
2469 
2470 	/* Done! */
2471 	ffs->stringtabs = stringtabs;
2472 	ffs->raw_strings = _data;
2473 
2474 	return 0;
2475 
2476 error_free:
2477 	kfree(stringtabs);
2478 error:
2479 	kfree(_data);
2480 	return -EINVAL;
2481 }
2482 
2483 
2484 /* Events handling and management *******************************************/
2485 
2486 static void __ffs_event_add(struct ffs_data *ffs,
2487 			    enum usb_functionfs_event_type type)
2488 {
2489 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2490 	int neg = 0;
2491 
2492 	/*
2493 	 * Abort any unhandled setup
2494 	 *
2495 	 * We do not need to worry about some cmpxchg() changing value
2496 	 * of ffs->setup_state without holding the lock because when
2497 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2498 	 * the source does nothing.
2499 	 */
2500 	if (ffs->setup_state == FFS_SETUP_PENDING)
2501 		ffs->setup_state = FFS_SETUP_CANCELLED;
2502 
2503 	/*
2504 	 * Logic of this function guarantees that there are at most four pending
2505 	 * evens on ffs->ev.types queue.  This is important because the queue
2506 	 * has space for four elements only and __ffs_ep0_read_events function
2507 	 * depends on that limit as well.  If more event types are added, those
2508 	 * limits have to be revisited or guaranteed to still hold.
2509 	 */
2510 	switch (type) {
2511 	case FUNCTIONFS_RESUME:
2512 		rem_type2 = FUNCTIONFS_SUSPEND;
2513 		/* FALL THROUGH */
2514 	case FUNCTIONFS_SUSPEND:
2515 	case FUNCTIONFS_SETUP:
2516 		rem_type1 = type;
2517 		/* Discard all similar events */
2518 		break;
2519 
2520 	case FUNCTIONFS_BIND:
2521 	case FUNCTIONFS_UNBIND:
2522 	case FUNCTIONFS_DISABLE:
2523 	case FUNCTIONFS_ENABLE:
2524 		/* Discard everything other then power management. */
2525 		rem_type1 = FUNCTIONFS_SUSPEND;
2526 		rem_type2 = FUNCTIONFS_RESUME;
2527 		neg = 1;
2528 		break;
2529 
2530 	default:
2531 		WARN(1, "%d: unknown event, this should not happen\n", type);
2532 		return;
2533 	}
2534 
2535 	{
2536 		u8 *ev  = ffs->ev.types, *out = ev;
2537 		unsigned n = ffs->ev.count;
2538 		for (; n; --n, ++ev)
2539 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2540 				*out++ = *ev;
2541 			else
2542 				pr_vdebug("purging event %d\n", *ev);
2543 		ffs->ev.count = out - ffs->ev.types;
2544 	}
2545 
2546 	pr_vdebug("adding event %d\n", type);
2547 	ffs->ev.types[ffs->ev.count++] = type;
2548 	wake_up_locked(&ffs->ev.waitq);
2549 	if (ffs->ffs_eventfd)
2550 		eventfd_signal(ffs->ffs_eventfd, 1);
2551 }
2552 
2553 static void ffs_event_add(struct ffs_data *ffs,
2554 			  enum usb_functionfs_event_type type)
2555 {
2556 	unsigned long flags;
2557 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2558 	__ffs_event_add(ffs, type);
2559 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2560 }
2561 
2562 /* Bind/unbind USB function hooks *******************************************/
2563 
2564 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2565 {
2566 	int i;
2567 
2568 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2569 		if (ffs->eps_addrmap[i] == endpoint_address)
2570 			return i;
2571 	return -ENOENT;
2572 }
2573 
2574 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2575 				    struct usb_descriptor_header *desc,
2576 				    void *priv)
2577 {
2578 	struct usb_endpoint_descriptor *ds = (void *)desc;
2579 	struct ffs_function *func = priv;
2580 	struct ffs_ep *ffs_ep;
2581 	unsigned ep_desc_id;
2582 	int idx;
2583 	static const char *speed_names[] = { "full", "high", "super" };
2584 
2585 	if (type != FFS_DESCRIPTOR)
2586 		return 0;
2587 
2588 	/*
2589 	 * If ss_descriptors is not NULL, we are reading super speed
2590 	 * descriptors; if hs_descriptors is not NULL, we are reading high
2591 	 * speed descriptors; otherwise, we are reading full speed
2592 	 * descriptors.
2593 	 */
2594 	if (func->function.ss_descriptors) {
2595 		ep_desc_id = 2;
2596 		func->function.ss_descriptors[(long)valuep] = desc;
2597 	} else if (func->function.hs_descriptors) {
2598 		ep_desc_id = 1;
2599 		func->function.hs_descriptors[(long)valuep] = desc;
2600 	} else {
2601 		ep_desc_id = 0;
2602 		func->function.fs_descriptors[(long)valuep]    = desc;
2603 	}
2604 
2605 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2606 		return 0;
2607 
2608 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2609 	if (idx < 0)
2610 		return idx;
2611 
2612 	ffs_ep = func->eps + idx;
2613 
2614 	if (unlikely(ffs_ep->descs[ep_desc_id])) {
2615 		pr_err("two %sspeed descriptors for EP %d\n",
2616 			  speed_names[ep_desc_id],
2617 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2618 		return -EINVAL;
2619 	}
2620 	ffs_ep->descs[ep_desc_id] = ds;
2621 
2622 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2623 	if (ffs_ep->ep) {
2624 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2625 		if (!ds->wMaxPacketSize)
2626 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2627 	} else {
2628 		struct usb_request *req;
2629 		struct usb_ep *ep;
2630 		u8 bEndpointAddress;
2631 
2632 		/*
2633 		 * We back up bEndpointAddress because autoconfig overwrites
2634 		 * it with physical endpoint address.
2635 		 */
2636 		bEndpointAddress = ds->bEndpointAddress;
2637 		pr_vdebug("autoconfig\n");
2638 		ep = usb_ep_autoconfig(func->gadget, ds);
2639 		if (unlikely(!ep))
2640 			return -ENOTSUPP;
2641 		ep->driver_data = func->eps + idx;
2642 
2643 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2644 		if (unlikely(!req))
2645 			return -ENOMEM;
2646 
2647 		ffs_ep->ep  = ep;
2648 		ffs_ep->req = req;
2649 		func->eps_revmap[ds->bEndpointAddress &
2650 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2651 		/*
2652 		 * If we use virtual address mapping, we restore
2653 		 * original bEndpointAddress value.
2654 		 */
2655 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2656 			ds->bEndpointAddress = bEndpointAddress;
2657 	}
2658 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2659 
2660 	return 0;
2661 }
2662 
2663 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2664 				   struct usb_descriptor_header *desc,
2665 				   void *priv)
2666 {
2667 	struct ffs_function *func = priv;
2668 	unsigned idx;
2669 	u8 newValue;
2670 
2671 	switch (type) {
2672 	default:
2673 	case FFS_DESCRIPTOR:
2674 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2675 		return 0;
2676 
2677 	case FFS_INTERFACE:
2678 		idx = *valuep;
2679 		if (func->interfaces_nums[idx] < 0) {
2680 			int id = usb_interface_id(func->conf, &func->function);
2681 			if (unlikely(id < 0))
2682 				return id;
2683 			func->interfaces_nums[idx] = id;
2684 		}
2685 		newValue = func->interfaces_nums[idx];
2686 		break;
2687 
2688 	case FFS_STRING:
2689 		/* String' IDs are allocated when fsf_data is bound to cdev */
2690 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2691 		break;
2692 
2693 	case FFS_ENDPOINT:
2694 		/*
2695 		 * USB_DT_ENDPOINT are handled in
2696 		 * __ffs_func_bind_do_descs().
2697 		 */
2698 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2699 			return 0;
2700 
2701 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2702 		if (unlikely(!func->eps[idx].ep))
2703 			return -EINVAL;
2704 
2705 		{
2706 			struct usb_endpoint_descriptor **descs;
2707 			descs = func->eps[idx].descs;
2708 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2709 		}
2710 		break;
2711 	}
2712 
2713 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2714 	*valuep = newValue;
2715 	return 0;
2716 }
2717 
2718 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2719 				      struct usb_os_desc_header *h, void *data,
2720 				      unsigned len, void *priv)
2721 {
2722 	struct ffs_function *func = priv;
2723 	u8 length = 0;
2724 
2725 	switch (type) {
2726 	case FFS_OS_DESC_EXT_COMPAT: {
2727 		struct usb_ext_compat_desc *desc = data;
2728 		struct usb_os_desc_table *t;
2729 
2730 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2731 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2732 		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2733 		       ARRAY_SIZE(desc->CompatibleID) +
2734 		       ARRAY_SIZE(desc->SubCompatibleID));
2735 		length = sizeof(*desc);
2736 	}
2737 		break;
2738 	case FFS_OS_DESC_EXT_PROP: {
2739 		struct usb_ext_prop_desc *desc = data;
2740 		struct usb_os_desc_table *t;
2741 		struct usb_os_desc_ext_prop *ext_prop;
2742 		char *ext_prop_name;
2743 		char *ext_prop_data;
2744 
2745 		t = &func->function.os_desc_table[h->interface];
2746 		t->if_id = func->interfaces_nums[h->interface];
2747 
2748 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2749 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2750 
2751 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2752 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2753 		ext_prop->data_len = le32_to_cpu(*(u32 *)
2754 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2755 		length = ext_prop->name_len + ext_prop->data_len + 14;
2756 
2757 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2758 		func->ffs->ms_os_descs_ext_prop_name_avail +=
2759 			ext_prop->name_len;
2760 
2761 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2762 		func->ffs->ms_os_descs_ext_prop_data_avail +=
2763 			ext_prop->data_len;
2764 		memcpy(ext_prop_data,
2765 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2766 		       ext_prop->data_len);
2767 		/* unicode data reported to the host as "WCHAR"s */
2768 		switch (ext_prop->type) {
2769 		case USB_EXT_PROP_UNICODE:
2770 		case USB_EXT_PROP_UNICODE_ENV:
2771 		case USB_EXT_PROP_UNICODE_LINK:
2772 		case USB_EXT_PROP_UNICODE_MULTI:
2773 			ext_prop->data_len *= 2;
2774 			break;
2775 		}
2776 		ext_prop->data = ext_prop_data;
2777 
2778 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2779 		       ext_prop->name_len);
2780 		/* property name reported to the host as "WCHAR"s */
2781 		ext_prop->name_len *= 2;
2782 		ext_prop->name = ext_prop_name;
2783 
2784 		t->os_desc->ext_prop_len +=
2785 			ext_prop->name_len + ext_prop->data_len + 14;
2786 		++t->os_desc->ext_prop_count;
2787 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2788 	}
2789 		break;
2790 	default:
2791 		pr_vdebug("unknown descriptor: %d\n", type);
2792 	}
2793 
2794 	return length;
2795 }
2796 
2797 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2798 						struct usb_configuration *c)
2799 {
2800 	struct ffs_function *func = ffs_func_from_usb(f);
2801 	struct f_fs_opts *ffs_opts =
2802 		container_of(f->fi, struct f_fs_opts, func_inst);
2803 	int ret;
2804 
2805 	ENTER();
2806 
2807 	/*
2808 	 * Legacy gadget triggers binding in functionfs_ready_callback,
2809 	 * which already uses locking; taking the same lock here would
2810 	 * cause a deadlock.
2811 	 *
2812 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
2813 	 */
2814 	if (!ffs_opts->no_configfs)
2815 		ffs_dev_lock();
2816 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2817 	func->ffs = ffs_opts->dev->ffs_data;
2818 	if (!ffs_opts->no_configfs)
2819 		ffs_dev_unlock();
2820 	if (ret)
2821 		return ERR_PTR(ret);
2822 
2823 	func->conf = c;
2824 	func->gadget = c->cdev->gadget;
2825 
2826 	/*
2827 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2828 	 * configurations are bound in sequence with list_for_each_entry,
2829 	 * in each configuration its functions are bound in sequence
2830 	 * with list_for_each_entry, so we assume no race condition
2831 	 * with regard to ffs_opts->bound access
2832 	 */
2833 	if (!ffs_opts->refcnt) {
2834 		ret = functionfs_bind(func->ffs, c->cdev);
2835 		if (ret)
2836 			return ERR_PTR(ret);
2837 	}
2838 	ffs_opts->refcnt++;
2839 	func->function.strings = func->ffs->stringtabs;
2840 
2841 	return ffs_opts;
2842 }
2843 
2844 static int _ffs_func_bind(struct usb_configuration *c,
2845 			  struct usb_function *f)
2846 {
2847 	struct ffs_function *func = ffs_func_from_usb(f);
2848 	struct ffs_data *ffs = func->ffs;
2849 
2850 	const int full = !!func->ffs->fs_descs_count;
2851 	const int high = gadget_is_dualspeed(func->gadget) &&
2852 		func->ffs->hs_descs_count;
2853 	const int super = gadget_is_superspeed(func->gadget) &&
2854 		func->ffs->ss_descs_count;
2855 
2856 	int fs_len, hs_len, ss_len, ret, i;
2857 	struct ffs_ep *eps_ptr;
2858 
2859 	/* Make it a single chunk, less management later on */
2860 	vla_group(d);
2861 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2862 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2863 		full ? ffs->fs_descs_count + 1 : 0);
2864 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2865 		high ? ffs->hs_descs_count + 1 : 0);
2866 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2867 		super ? ffs->ss_descs_count + 1 : 0);
2868 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2869 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2870 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2871 	vla_item_with_sz(d, char[16], ext_compat,
2872 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2873 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
2874 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2875 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
2876 			 ffs->ms_os_descs_ext_prop_count);
2877 	vla_item_with_sz(d, char, ext_prop_name,
2878 			 ffs->ms_os_descs_ext_prop_name_len);
2879 	vla_item_with_sz(d, char, ext_prop_data,
2880 			 ffs->ms_os_descs_ext_prop_data_len);
2881 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
2882 	char *vlabuf;
2883 
2884 	ENTER();
2885 
2886 	/* Has descriptors only for speeds gadget does not support */
2887 	if (unlikely(!(full | high | super)))
2888 		return -ENOTSUPP;
2889 
2890 	/* Allocate a single chunk, less management later on */
2891 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
2892 	if (unlikely(!vlabuf))
2893 		return -ENOMEM;
2894 
2895 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
2896 	ffs->ms_os_descs_ext_prop_name_avail =
2897 		vla_ptr(vlabuf, d, ext_prop_name);
2898 	ffs->ms_os_descs_ext_prop_data_avail =
2899 		vla_ptr(vlabuf, d, ext_prop_data);
2900 
2901 	/* Copy descriptors  */
2902 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
2903 	       ffs->raw_descs_length);
2904 
2905 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
2906 	eps_ptr = vla_ptr(vlabuf, d, eps);
2907 	for (i = 0; i < ffs->eps_count; i++)
2908 		eps_ptr[i].num = -1;
2909 
2910 	/* Save pointers
2911 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
2912 	*/
2913 	func->eps             = vla_ptr(vlabuf, d, eps);
2914 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
2915 
2916 	/*
2917 	 * Go through all the endpoint descriptors and allocate
2918 	 * endpoints first, so that later we can rewrite the endpoint
2919 	 * numbers without worrying that it may be described later on.
2920 	 */
2921 	if (likely(full)) {
2922 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
2923 		fs_len = ffs_do_descs(ffs->fs_descs_count,
2924 				      vla_ptr(vlabuf, d, raw_descs),
2925 				      d_raw_descs__sz,
2926 				      __ffs_func_bind_do_descs, func);
2927 		if (unlikely(fs_len < 0)) {
2928 			ret = fs_len;
2929 			goto error;
2930 		}
2931 	} else {
2932 		fs_len = 0;
2933 	}
2934 
2935 	if (likely(high)) {
2936 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
2937 		hs_len = ffs_do_descs(ffs->hs_descs_count,
2938 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
2939 				      d_raw_descs__sz - fs_len,
2940 				      __ffs_func_bind_do_descs, func);
2941 		if (unlikely(hs_len < 0)) {
2942 			ret = hs_len;
2943 			goto error;
2944 		}
2945 	} else {
2946 		hs_len = 0;
2947 	}
2948 
2949 	if (likely(super)) {
2950 		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
2951 		ss_len = ffs_do_descs(ffs->ss_descs_count,
2952 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
2953 				d_raw_descs__sz - fs_len - hs_len,
2954 				__ffs_func_bind_do_descs, func);
2955 		if (unlikely(ss_len < 0)) {
2956 			ret = ss_len;
2957 			goto error;
2958 		}
2959 	} else {
2960 		ss_len = 0;
2961 	}
2962 
2963 	/*
2964 	 * Now handle interface numbers allocation and interface and
2965 	 * endpoint numbers rewriting.  We can do that in one go
2966 	 * now.
2967 	 */
2968 	ret = ffs_do_descs(ffs->fs_descs_count +
2969 			   (high ? ffs->hs_descs_count : 0) +
2970 			   (super ? ffs->ss_descs_count : 0),
2971 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
2972 			   __ffs_func_bind_do_nums, func);
2973 	if (unlikely(ret < 0))
2974 		goto error;
2975 
2976 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
2977 	if (c->cdev->use_os_string) {
2978 		for (i = 0; i < ffs->interfaces_count; ++i) {
2979 			struct usb_os_desc *desc;
2980 
2981 			desc = func->function.os_desc_table[i].os_desc =
2982 				vla_ptr(vlabuf, d, os_desc) +
2983 				i * sizeof(struct usb_os_desc);
2984 			desc->ext_compat_id =
2985 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
2986 			INIT_LIST_HEAD(&desc->ext_prop);
2987 		}
2988 		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
2989 				      vla_ptr(vlabuf, d, raw_descs) +
2990 				      fs_len + hs_len + ss_len,
2991 				      d_raw_descs__sz - fs_len - hs_len -
2992 				      ss_len,
2993 				      __ffs_func_bind_do_os_desc, func);
2994 		if (unlikely(ret < 0))
2995 			goto error;
2996 	}
2997 	func->function.os_desc_n =
2998 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
2999 
3000 	/* And we're done */
3001 	ffs_event_add(ffs, FUNCTIONFS_BIND);
3002 	return 0;
3003 
3004 error:
3005 	/* XXX Do we need to release all claimed endpoints here? */
3006 	return ret;
3007 }
3008 
3009 static int ffs_func_bind(struct usb_configuration *c,
3010 			 struct usb_function *f)
3011 {
3012 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3013 	struct ffs_function *func = ffs_func_from_usb(f);
3014 	int ret;
3015 
3016 	if (IS_ERR(ffs_opts))
3017 		return PTR_ERR(ffs_opts);
3018 
3019 	ret = _ffs_func_bind(c, f);
3020 	if (ret && !--ffs_opts->refcnt)
3021 		functionfs_unbind(func->ffs);
3022 
3023 	return ret;
3024 }
3025 
3026 
3027 /* Other USB function hooks *************************************************/
3028 
3029 static void ffs_reset_work(struct work_struct *work)
3030 {
3031 	struct ffs_data *ffs = container_of(work,
3032 		struct ffs_data, reset_work);
3033 	ffs_data_reset(ffs);
3034 }
3035 
3036 static int ffs_func_set_alt(struct usb_function *f,
3037 			    unsigned interface, unsigned alt)
3038 {
3039 	struct ffs_function *func = ffs_func_from_usb(f);
3040 	struct ffs_data *ffs = func->ffs;
3041 	int ret = 0, intf;
3042 
3043 	if (alt != (unsigned)-1) {
3044 		intf = ffs_func_revmap_intf(func, interface);
3045 		if (unlikely(intf < 0))
3046 			return intf;
3047 	}
3048 
3049 	if (ffs->func)
3050 		ffs_func_eps_disable(ffs->func);
3051 
3052 	if (ffs->state == FFS_DEACTIVATED) {
3053 		ffs->state = FFS_CLOSING;
3054 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3055 		schedule_work(&ffs->reset_work);
3056 		return -ENODEV;
3057 	}
3058 
3059 	if (ffs->state != FFS_ACTIVE)
3060 		return -ENODEV;
3061 
3062 	if (alt == (unsigned)-1) {
3063 		ffs->func = NULL;
3064 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3065 		return 0;
3066 	}
3067 
3068 	ffs->func = func;
3069 	ret = ffs_func_eps_enable(func);
3070 	if (likely(ret >= 0))
3071 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3072 	return ret;
3073 }
3074 
3075 static void ffs_func_disable(struct usb_function *f)
3076 {
3077 	ffs_func_set_alt(f, 0, (unsigned)-1);
3078 }
3079 
3080 static int ffs_func_setup(struct usb_function *f,
3081 			  const struct usb_ctrlrequest *creq)
3082 {
3083 	struct ffs_function *func = ffs_func_from_usb(f);
3084 	struct ffs_data *ffs = func->ffs;
3085 	unsigned long flags;
3086 	int ret;
3087 
3088 	ENTER();
3089 
3090 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3091 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3092 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3093 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3094 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3095 
3096 	/*
3097 	 * Most requests directed to interface go through here
3098 	 * (notable exceptions are set/get interface) so we need to
3099 	 * handle them.  All other either handled by composite or
3100 	 * passed to usb_configuration->setup() (if one is set).  No
3101 	 * matter, we will handle requests directed to endpoint here
3102 	 * as well (as it's straightforward).  Other request recipient
3103 	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3104 	 * is being used.
3105 	 */
3106 	if (ffs->state != FFS_ACTIVE)
3107 		return -ENODEV;
3108 
3109 	switch (creq->bRequestType & USB_RECIP_MASK) {
3110 	case USB_RECIP_INTERFACE:
3111 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3112 		if (unlikely(ret < 0))
3113 			return ret;
3114 		break;
3115 
3116 	case USB_RECIP_ENDPOINT:
3117 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3118 		if (unlikely(ret < 0))
3119 			return ret;
3120 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3121 			ret = func->ffs->eps_addrmap[ret];
3122 		break;
3123 
3124 	default:
3125 		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3126 			ret = le16_to_cpu(creq->wIndex);
3127 		else
3128 			return -EOPNOTSUPP;
3129 	}
3130 
3131 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3132 	ffs->ev.setup = *creq;
3133 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3134 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3135 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3136 
3137 	return 0;
3138 }
3139 
3140 static bool ffs_func_req_match(struct usb_function *f,
3141 			       const struct usb_ctrlrequest *creq,
3142 			       bool config0)
3143 {
3144 	struct ffs_function *func = ffs_func_from_usb(f);
3145 
3146 	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3147 		return false;
3148 
3149 	switch (creq->bRequestType & USB_RECIP_MASK) {
3150 	case USB_RECIP_INTERFACE:
3151 		return ffs_func_revmap_intf(func,
3152 					    le16_to_cpu(creq->wIndex) >= 0);
3153 	case USB_RECIP_ENDPOINT:
3154 		return ffs_func_revmap_ep(func,
3155 					  le16_to_cpu(creq->wIndex) >= 0);
3156 	default:
3157 		return (bool) (func->ffs->user_flags &
3158 			       FUNCTIONFS_ALL_CTRL_RECIP);
3159 	}
3160 }
3161 
3162 static void ffs_func_suspend(struct usb_function *f)
3163 {
3164 	ENTER();
3165 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3166 }
3167 
3168 static void ffs_func_resume(struct usb_function *f)
3169 {
3170 	ENTER();
3171 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3172 }
3173 
3174 
3175 /* Endpoint and interface numbers reverse mapping ***************************/
3176 
3177 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3178 {
3179 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3180 	return num ? num : -EDOM;
3181 }
3182 
3183 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3184 {
3185 	short *nums = func->interfaces_nums;
3186 	unsigned count = func->ffs->interfaces_count;
3187 
3188 	for (; count; --count, ++nums) {
3189 		if (*nums >= 0 && *nums == intf)
3190 			return nums - func->interfaces_nums;
3191 	}
3192 
3193 	return -EDOM;
3194 }
3195 
3196 
3197 /* Devices management *******************************************************/
3198 
3199 static LIST_HEAD(ffs_devices);
3200 
3201 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3202 {
3203 	struct ffs_dev *dev;
3204 
3205 	list_for_each_entry(dev, &ffs_devices, entry) {
3206 		if (!dev->name || !name)
3207 			continue;
3208 		if (strcmp(dev->name, name) == 0)
3209 			return dev;
3210 	}
3211 
3212 	return NULL;
3213 }
3214 
3215 /*
3216  * ffs_lock must be taken by the caller of this function
3217  */
3218 static struct ffs_dev *_ffs_get_single_dev(void)
3219 {
3220 	struct ffs_dev *dev;
3221 
3222 	if (list_is_singular(&ffs_devices)) {
3223 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3224 		if (dev->single)
3225 			return dev;
3226 	}
3227 
3228 	return NULL;
3229 }
3230 
3231 /*
3232  * ffs_lock must be taken by the caller of this function
3233  */
3234 static struct ffs_dev *_ffs_find_dev(const char *name)
3235 {
3236 	struct ffs_dev *dev;
3237 
3238 	dev = _ffs_get_single_dev();
3239 	if (dev)
3240 		return dev;
3241 
3242 	return _ffs_do_find_dev(name);
3243 }
3244 
3245 /* Configfs support *********************************************************/
3246 
3247 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3248 {
3249 	return container_of(to_config_group(item), struct f_fs_opts,
3250 			    func_inst.group);
3251 }
3252 
3253 static void ffs_attr_release(struct config_item *item)
3254 {
3255 	struct f_fs_opts *opts = to_ffs_opts(item);
3256 
3257 	usb_put_function_instance(&opts->func_inst);
3258 }
3259 
3260 static struct configfs_item_operations ffs_item_ops = {
3261 	.release	= ffs_attr_release,
3262 };
3263 
3264 static struct config_item_type ffs_func_type = {
3265 	.ct_item_ops	= &ffs_item_ops,
3266 	.ct_owner	= THIS_MODULE,
3267 };
3268 
3269 
3270 /* Function registration interface ******************************************/
3271 
3272 static void ffs_free_inst(struct usb_function_instance *f)
3273 {
3274 	struct f_fs_opts *opts;
3275 
3276 	opts = to_f_fs_opts(f);
3277 	ffs_dev_lock();
3278 	_ffs_free_dev(opts->dev);
3279 	ffs_dev_unlock();
3280 	kfree(opts);
3281 }
3282 
3283 #define MAX_INST_NAME_LEN	40
3284 
3285 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3286 {
3287 	struct f_fs_opts *opts;
3288 	char *ptr;
3289 	const char *tmp;
3290 	int name_len, ret;
3291 
3292 	name_len = strlen(name) + 1;
3293 	if (name_len > MAX_INST_NAME_LEN)
3294 		return -ENAMETOOLONG;
3295 
3296 	ptr = kstrndup(name, name_len, GFP_KERNEL);
3297 	if (!ptr)
3298 		return -ENOMEM;
3299 
3300 	opts = to_f_fs_opts(fi);
3301 	tmp = NULL;
3302 
3303 	ffs_dev_lock();
3304 
3305 	tmp = opts->dev->name_allocated ? opts->dev->name : NULL;
3306 	ret = _ffs_name_dev(opts->dev, ptr);
3307 	if (ret) {
3308 		kfree(ptr);
3309 		ffs_dev_unlock();
3310 		return ret;
3311 	}
3312 	opts->dev->name_allocated = true;
3313 
3314 	ffs_dev_unlock();
3315 
3316 	kfree(tmp);
3317 
3318 	return 0;
3319 }
3320 
3321 static struct usb_function_instance *ffs_alloc_inst(void)
3322 {
3323 	struct f_fs_opts *opts;
3324 	struct ffs_dev *dev;
3325 
3326 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3327 	if (!opts)
3328 		return ERR_PTR(-ENOMEM);
3329 
3330 	opts->func_inst.set_inst_name = ffs_set_inst_name;
3331 	opts->func_inst.free_func_inst = ffs_free_inst;
3332 	ffs_dev_lock();
3333 	dev = _ffs_alloc_dev();
3334 	ffs_dev_unlock();
3335 	if (IS_ERR(dev)) {
3336 		kfree(opts);
3337 		return ERR_CAST(dev);
3338 	}
3339 	opts->dev = dev;
3340 	dev->opts = opts;
3341 
3342 	config_group_init_type_name(&opts->func_inst.group, "",
3343 				    &ffs_func_type);
3344 	return &opts->func_inst;
3345 }
3346 
3347 static void ffs_free(struct usb_function *f)
3348 {
3349 	kfree(ffs_func_from_usb(f));
3350 }
3351 
3352 static void ffs_func_unbind(struct usb_configuration *c,
3353 			    struct usb_function *f)
3354 {
3355 	struct ffs_function *func = ffs_func_from_usb(f);
3356 	struct ffs_data *ffs = func->ffs;
3357 	struct f_fs_opts *opts =
3358 		container_of(f->fi, struct f_fs_opts, func_inst);
3359 	struct ffs_ep *ep = func->eps;
3360 	unsigned count = ffs->eps_count;
3361 	unsigned long flags;
3362 
3363 	ENTER();
3364 	if (ffs->func == func) {
3365 		ffs_func_eps_disable(func);
3366 		ffs->func = NULL;
3367 	}
3368 
3369 	if (!--opts->refcnt)
3370 		functionfs_unbind(ffs);
3371 
3372 	/* cleanup after autoconfig */
3373 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3374 	do {
3375 		if (ep->ep && ep->req)
3376 			usb_ep_free_request(ep->ep, ep->req);
3377 		ep->req = NULL;
3378 		++ep;
3379 	} while (--count);
3380 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3381 	kfree(func->eps);
3382 	func->eps = NULL;
3383 	/*
3384 	 * eps, descriptors and interfaces_nums are allocated in the
3385 	 * same chunk so only one free is required.
3386 	 */
3387 	func->function.fs_descriptors = NULL;
3388 	func->function.hs_descriptors = NULL;
3389 	func->function.ss_descriptors = NULL;
3390 	func->interfaces_nums = NULL;
3391 
3392 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3393 }
3394 
3395 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3396 {
3397 	struct ffs_function *func;
3398 
3399 	ENTER();
3400 
3401 	func = kzalloc(sizeof(*func), GFP_KERNEL);
3402 	if (unlikely(!func))
3403 		return ERR_PTR(-ENOMEM);
3404 
3405 	func->function.name    = "Function FS Gadget";
3406 
3407 	func->function.bind    = ffs_func_bind;
3408 	func->function.unbind  = ffs_func_unbind;
3409 	func->function.set_alt = ffs_func_set_alt;
3410 	func->function.disable = ffs_func_disable;
3411 	func->function.setup   = ffs_func_setup;
3412 	func->function.req_match = ffs_func_req_match;
3413 	func->function.suspend = ffs_func_suspend;
3414 	func->function.resume  = ffs_func_resume;
3415 	func->function.free_func = ffs_free;
3416 
3417 	return &func->function;
3418 }
3419 
3420 /*
3421  * ffs_lock must be taken by the caller of this function
3422  */
3423 static struct ffs_dev *_ffs_alloc_dev(void)
3424 {
3425 	struct ffs_dev *dev;
3426 	int ret;
3427 
3428 	if (_ffs_get_single_dev())
3429 			return ERR_PTR(-EBUSY);
3430 
3431 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3432 	if (!dev)
3433 		return ERR_PTR(-ENOMEM);
3434 
3435 	if (list_empty(&ffs_devices)) {
3436 		ret = functionfs_init();
3437 		if (ret) {
3438 			kfree(dev);
3439 			return ERR_PTR(ret);
3440 		}
3441 	}
3442 
3443 	list_add(&dev->entry, &ffs_devices);
3444 
3445 	return dev;
3446 }
3447 
3448 /*
3449  * ffs_lock must be taken by the caller of this function
3450  * The caller is responsible for "name" being available whenever f_fs needs it
3451  */
3452 static int _ffs_name_dev(struct ffs_dev *dev, const char *name)
3453 {
3454 	struct ffs_dev *existing;
3455 
3456 	existing = _ffs_do_find_dev(name);
3457 	if (existing)
3458 		return -EBUSY;
3459 
3460 	dev->name = name;
3461 
3462 	return 0;
3463 }
3464 
3465 /*
3466  * The caller is responsible for "name" being available whenever f_fs needs it
3467  */
3468 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3469 {
3470 	int ret;
3471 
3472 	ffs_dev_lock();
3473 	ret = _ffs_name_dev(dev, name);
3474 	ffs_dev_unlock();
3475 
3476 	return ret;
3477 }
3478 EXPORT_SYMBOL_GPL(ffs_name_dev);
3479 
3480 int ffs_single_dev(struct ffs_dev *dev)
3481 {
3482 	int ret;
3483 
3484 	ret = 0;
3485 	ffs_dev_lock();
3486 
3487 	if (!list_is_singular(&ffs_devices))
3488 		ret = -EBUSY;
3489 	else
3490 		dev->single = true;
3491 
3492 	ffs_dev_unlock();
3493 	return ret;
3494 }
3495 EXPORT_SYMBOL_GPL(ffs_single_dev);
3496 
3497 /*
3498  * ffs_lock must be taken by the caller of this function
3499  */
3500 static void _ffs_free_dev(struct ffs_dev *dev)
3501 {
3502 	list_del(&dev->entry);
3503 	if (dev->name_allocated)
3504 		kfree(dev->name);
3505 
3506 	/* Clear the private_data pointer to stop incorrect dev access */
3507 	if (dev->ffs_data)
3508 		dev->ffs_data->private_data = NULL;
3509 
3510 	kfree(dev);
3511 	if (list_empty(&ffs_devices))
3512 		functionfs_cleanup();
3513 }
3514 
3515 static void *ffs_acquire_dev(const char *dev_name)
3516 {
3517 	struct ffs_dev *ffs_dev;
3518 
3519 	ENTER();
3520 	ffs_dev_lock();
3521 
3522 	ffs_dev = _ffs_find_dev(dev_name);
3523 	if (!ffs_dev)
3524 		ffs_dev = ERR_PTR(-ENOENT);
3525 	else if (ffs_dev->mounted)
3526 		ffs_dev = ERR_PTR(-EBUSY);
3527 	else if (ffs_dev->ffs_acquire_dev_callback &&
3528 	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3529 		ffs_dev = ERR_PTR(-ENOENT);
3530 	else
3531 		ffs_dev->mounted = true;
3532 
3533 	ffs_dev_unlock();
3534 	return ffs_dev;
3535 }
3536 
3537 static void ffs_release_dev(struct ffs_data *ffs_data)
3538 {
3539 	struct ffs_dev *ffs_dev;
3540 
3541 	ENTER();
3542 	ffs_dev_lock();
3543 
3544 	ffs_dev = ffs_data->private_data;
3545 	if (ffs_dev) {
3546 		ffs_dev->mounted = false;
3547 
3548 		if (ffs_dev->ffs_release_dev_callback)
3549 			ffs_dev->ffs_release_dev_callback(ffs_dev);
3550 	}
3551 
3552 	ffs_dev_unlock();
3553 }
3554 
3555 static int ffs_ready(struct ffs_data *ffs)
3556 {
3557 	struct ffs_dev *ffs_obj;
3558 	int ret = 0;
3559 
3560 	ENTER();
3561 	ffs_dev_lock();
3562 
3563 	ffs_obj = ffs->private_data;
3564 	if (!ffs_obj) {
3565 		ret = -EINVAL;
3566 		goto done;
3567 	}
3568 	if (WARN_ON(ffs_obj->desc_ready)) {
3569 		ret = -EBUSY;
3570 		goto done;
3571 	}
3572 
3573 	ffs_obj->desc_ready = true;
3574 	ffs_obj->ffs_data = ffs;
3575 
3576 	if (ffs_obj->ffs_ready_callback) {
3577 		ret = ffs_obj->ffs_ready_callback(ffs);
3578 		if (ret)
3579 			goto done;
3580 	}
3581 
3582 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3583 done:
3584 	ffs_dev_unlock();
3585 	return ret;
3586 }
3587 
3588 static void ffs_closed(struct ffs_data *ffs)
3589 {
3590 	struct ffs_dev *ffs_obj;
3591 	struct f_fs_opts *opts;
3592 
3593 	ENTER();
3594 	ffs_dev_lock();
3595 
3596 	ffs_obj = ffs->private_data;
3597 	if (!ffs_obj)
3598 		goto done;
3599 
3600 	ffs_obj->desc_ready = false;
3601 
3602 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3603 	    ffs_obj->ffs_closed_callback)
3604 		ffs_obj->ffs_closed_callback(ffs);
3605 
3606 	if (ffs_obj->opts)
3607 		opts = ffs_obj->opts;
3608 	else
3609 		goto done;
3610 
3611 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3612 	    || !atomic_read(&opts->func_inst.group.cg_item.ci_kref.refcount))
3613 		goto done;
3614 
3615 	unregister_gadget_item(ffs_obj->opts->
3616 			       func_inst.group.cg_item.ci_parent->ci_parent);
3617 done:
3618 	ffs_dev_unlock();
3619 }
3620 
3621 /* Misc helper functions ****************************************************/
3622 
3623 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3624 {
3625 	return nonblock
3626 		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3627 		: mutex_lock_interruptible(mutex);
3628 }
3629 
3630 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3631 {
3632 	char *data;
3633 
3634 	if (unlikely(!len))
3635 		return NULL;
3636 
3637 	data = kmalloc(len, GFP_KERNEL);
3638 	if (unlikely(!data))
3639 		return ERR_PTR(-ENOMEM);
3640 
3641 	if (unlikely(copy_from_user(data, buf, len))) {
3642 		kfree(data);
3643 		return ERR_PTR(-EFAULT);
3644 	}
3645 
3646 	pr_vdebug("Buffer from user space:\n");
3647 	ffs_dump_mem("", data, len);
3648 
3649 	return data;
3650 }
3651 
3652 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3653 MODULE_LICENSE("GPL");
3654 MODULE_AUTHOR("Michal Nazarewicz");
3655