xref: /openbmc/linux/drivers/usb/gadget/function/f_fs.c (revision 6724ed7f)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * f_fs.c -- user mode file system API for USB composite function controllers
4  *
5  * Copyright (C) 2010 Samsung Electronics
6  * Author: Michal Nazarewicz <mina86@mina86.com>
7  *
8  * Based on inode.c (GadgetFS) which was:
9  * Copyright (C) 2003-2004 David Brownell
10  * Copyright (C) 2003 Agilent Technologies
11  */
12 
13 
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16 
17 #include <linux/blkdev.h>
18 #include <linux/pagemap.h>
19 #include <linux/export.h>
20 #include <linux/hid.h>
21 #include <linux/module.h>
22 #include <linux/sched/signal.h>
23 #include <linux/uio.h>
24 #include <asm/unaligned.h>
25 
26 #include <linux/usb/composite.h>
27 #include <linux/usb/functionfs.h>
28 
29 #include <linux/aio.h>
30 #include <linux/mmu_context.h>
31 #include <linux/poll.h>
32 #include <linux/eventfd.h>
33 
34 #include "u_fs.h"
35 #include "u_f.h"
36 #include "u_os_desc.h"
37 #include "configfs.h"
38 
39 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
40 
41 /* Reference counter handling */
42 static void ffs_data_get(struct ffs_data *ffs);
43 static void ffs_data_put(struct ffs_data *ffs);
44 /* Creates new ffs_data object. */
45 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
46 	__attribute__((malloc));
47 
48 /* Opened counter handling. */
49 static void ffs_data_opened(struct ffs_data *ffs);
50 static void ffs_data_closed(struct ffs_data *ffs);
51 
52 /* Called with ffs->mutex held; take over ownership of data. */
53 static int __must_check
54 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
55 static int __must_check
56 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
57 
58 
59 /* The function structure ***************************************************/
60 
61 struct ffs_ep;
62 
63 struct ffs_function {
64 	struct usb_configuration	*conf;
65 	struct usb_gadget		*gadget;
66 	struct ffs_data			*ffs;
67 
68 	struct ffs_ep			*eps;
69 	u8				eps_revmap[16];
70 	short				*interfaces_nums;
71 
72 	struct usb_function		function;
73 };
74 
75 
76 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
77 {
78 	return container_of(f, struct ffs_function, function);
79 }
80 
81 
82 static inline enum ffs_setup_state
83 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
84 {
85 	return (enum ffs_setup_state)
86 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
87 }
88 
89 
90 static void ffs_func_eps_disable(struct ffs_function *func);
91 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
92 
93 static int ffs_func_bind(struct usb_configuration *,
94 			 struct usb_function *);
95 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
96 static void ffs_func_disable(struct usb_function *);
97 static int ffs_func_setup(struct usb_function *,
98 			  const struct usb_ctrlrequest *);
99 static bool ffs_func_req_match(struct usb_function *,
100 			       const struct usb_ctrlrequest *,
101 			       bool config0);
102 static void ffs_func_suspend(struct usb_function *);
103 static void ffs_func_resume(struct usb_function *);
104 
105 
106 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
107 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
108 
109 
110 /* The endpoints structures *************************************************/
111 
112 struct ffs_ep {
113 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
114 	struct usb_request		*req;	/* P: epfile->mutex */
115 
116 	/* [0]: full speed, [1]: high speed, [2]: super speed */
117 	struct usb_endpoint_descriptor	*descs[3];
118 
119 	u8				num;
120 
121 	int				status;	/* P: epfile->mutex */
122 };
123 
124 struct ffs_epfile {
125 	/* Protects ep->ep and ep->req. */
126 	struct mutex			mutex;
127 
128 	struct ffs_data			*ffs;
129 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
130 
131 	struct dentry			*dentry;
132 
133 	/*
134 	 * Buffer for holding data from partial reads which may happen since
135 	 * we’re rounding user read requests to a multiple of a max packet size.
136 	 *
137 	 * The pointer is initialised with NULL value and may be set by
138 	 * __ffs_epfile_read_data function to point to a temporary buffer.
139 	 *
140 	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
141 	 * data from said buffer and eventually free it.  Importantly, while the
142 	 * function is using the buffer, it sets the pointer to NULL.  This is
143 	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
144 	 * can never run concurrently (they are synchronised by epfile->mutex)
145 	 * so the latter will not assign a new value to the pointer.
146 	 *
147 	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
148 	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
149 	 * value is crux of the synchronisation between ffs_func_eps_disable and
150 	 * __ffs_epfile_read_data.
151 	 *
152 	 * Once __ffs_epfile_read_data is about to finish it will try to set the
153 	 * pointer back to its old value (as described above), but seeing as the
154 	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
155 	 * the buffer.
156 	 *
157 	 * == State transitions ==
158 	 *
159 	 * • ptr == NULL:  (initial state)
160 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
161 	 *   ◦ __ffs_epfile_read_buffered:    nop
162 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
163 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
164 	 * • ptr == DROP:
165 	 *   ◦ __ffs_epfile_read_buffer_free: nop
166 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
167 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
168 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
169 	 * • ptr == buf:
170 	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
171 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
172 	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
173 	 *                                    is always called first
174 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
175 	 * • ptr == NULL and reading:
176 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
177 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
178 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
179 	 *   ◦ reading finishes and …
180 	 *     … all data read:               free buf, go to ptr == NULL
181 	 *     … otherwise:                   go to ptr == buf and reading
182 	 * • ptr == DROP and reading:
183 	 *   ◦ __ffs_epfile_read_buffer_free: nop
184 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
185 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
186 	 *   ◦ reading finishes:              free buf, go to ptr == DROP
187 	 */
188 	struct ffs_buffer		*read_buffer;
189 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
190 
191 	char				name[5];
192 
193 	unsigned char			in;	/* P: ffs->eps_lock */
194 	unsigned char			isoc;	/* P: ffs->eps_lock */
195 
196 	unsigned char			_pad;
197 };
198 
199 struct ffs_buffer {
200 	size_t length;
201 	char *data;
202 	char storage[];
203 };
204 
205 /*  ffs_io_data structure ***************************************************/
206 
207 struct ffs_io_data {
208 	bool aio;
209 	bool read;
210 
211 	struct kiocb *kiocb;
212 	struct iov_iter data;
213 	const void *to_free;
214 	char *buf;
215 
216 	struct mm_struct *mm;
217 	struct work_struct work;
218 
219 	struct usb_ep *ep;
220 	struct usb_request *req;
221 
222 	struct ffs_data *ffs;
223 };
224 
225 struct ffs_desc_helper {
226 	struct ffs_data *ffs;
227 	unsigned interfaces_count;
228 	unsigned eps_count;
229 };
230 
231 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
232 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
233 
234 static struct dentry *
235 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
236 		   const struct file_operations *fops);
237 
238 /* Devices management *******************************************************/
239 
240 DEFINE_MUTEX(ffs_lock);
241 EXPORT_SYMBOL_GPL(ffs_lock);
242 
243 static struct ffs_dev *_ffs_find_dev(const char *name);
244 static struct ffs_dev *_ffs_alloc_dev(void);
245 static void _ffs_free_dev(struct ffs_dev *dev);
246 static void *ffs_acquire_dev(const char *dev_name);
247 static void ffs_release_dev(struct ffs_data *ffs_data);
248 static int ffs_ready(struct ffs_data *ffs);
249 static void ffs_closed(struct ffs_data *ffs);
250 
251 /* Misc helper functions ****************************************************/
252 
253 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
254 	__attribute__((warn_unused_result, nonnull));
255 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
256 	__attribute__((warn_unused_result, nonnull));
257 
258 
259 /* Control file aka ep0 *****************************************************/
260 
261 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
262 {
263 	struct ffs_data *ffs = req->context;
264 
265 	complete(&ffs->ep0req_completion);
266 }
267 
268 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
269 {
270 	struct usb_request *req = ffs->ep0req;
271 	int ret;
272 
273 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
274 
275 	spin_unlock_irq(&ffs->ev.waitq.lock);
276 
277 	req->buf      = data;
278 	req->length   = len;
279 
280 	/*
281 	 * UDC layer requires to provide a buffer even for ZLP, but should
282 	 * not use it at all. Let's provide some poisoned pointer to catch
283 	 * possible bug in the driver.
284 	 */
285 	if (req->buf == NULL)
286 		req->buf = (void *)0xDEADBABE;
287 
288 	reinit_completion(&ffs->ep0req_completion);
289 
290 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
291 	if (unlikely(ret < 0))
292 		return ret;
293 
294 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
295 	if (unlikely(ret)) {
296 		usb_ep_dequeue(ffs->gadget->ep0, req);
297 		return -EINTR;
298 	}
299 
300 	ffs->setup_state = FFS_NO_SETUP;
301 	return req->status ? req->status : req->actual;
302 }
303 
304 static int __ffs_ep0_stall(struct ffs_data *ffs)
305 {
306 	if (ffs->ev.can_stall) {
307 		pr_vdebug("ep0 stall\n");
308 		usb_ep_set_halt(ffs->gadget->ep0);
309 		ffs->setup_state = FFS_NO_SETUP;
310 		return -EL2HLT;
311 	} else {
312 		pr_debug("bogus ep0 stall!\n");
313 		return -ESRCH;
314 	}
315 }
316 
317 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
318 			     size_t len, loff_t *ptr)
319 {
320 	struct ffs_data *ffs = file->private_data;
321 	ssize_t ret;
322 	char *data;
323 
324 	ENTER();
325 
326 	/* Fast check if setup was canceled */
327 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
328 		return -EIDRM;
329 
330 	/* Acquire mutex */
331 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
332 	if (unlikely(ret < 0))
333 		return ret;
334 
335 	/* Check state */
336 	switch (ffs->state) {
337 	case FFS_READ_DESCRIPTORS:
338 	case FFS_READ_STRINGS:
339 		/* Copy data */
340 		if (unlikely(len < 16)) {
341 			ret = -EINVAL;
342 			break;
343 		}
344 
345 		data = ffs_prepare_buffer(buf, len);
346 		if (IS_ERR(data)) {
347 			ret = PTR_ERR(data);
348 			break;
349 		}
350 
351 		/* Handle data */
352 		if (ffs->state == FFS_READ_DESCRIPTORS) {
353 			pr_info("read descriptors\n");
354 			ret = __ffs_data_got_descs(ffs, data, len);
355 			if (unlikely(ret < 0))
356 				break;
357 
358 			ffs->state = FFS_READ_STRINGS;
359 			ret = len;
360 		} else {
361 			pr_info("read strings\n");
362 			ret = __ffs_data_got_strings(ffs, data, len);
363 			if (unlikely(ret < 0))
364 				break;
365 
366 			ret = ffs_epfiles_create(ffs);
367 			if (unlikely(ret)) {
368 				ffs->state = FFS_CLOSING;
369 				break;
370 			}
371 
372 			ffs->state = FFS_ACTIVE;
373 			mutex_unlock(&ffs->mutex);
374 
375 			ret = ffs_ready(ffs);
376 			if (unlikely(ret < 0)) {
377 				ffs->state = FFS_CLOSING;
378 				return ret;
379 			}
380 
381 			return len;
382 		}
383 		break;
384 
385 	case FFS_ACTIVE:
386 		data = NULL;
387 		/*
388 		 * We're called from user space, we can use _irq
389 		 * rather then _irqsave
390 		 */
391 		spin_lock_irq(&ffs->ev.waitq.lock);
392 		switch (ffs_setup_state_clear_cancelled(ffs)) {
393 		case FFS_SETUP_CANCELLED:
394 			ret = -EIDRM;
395 			goto done_spin;
396 
397 		case FFS_NO_SETUP:
398 			ret = -ESRCH;
399 			goto done_spin;
400 
401 		case FFS_SETUP_PENDING:
402 			break;
403 		}
404 
405 		/* FFS_SETUP_PENDING */
406 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
407 			spin_unlock_irq(&ffs->ev.waitq.lock);
408 			ret = __ffs_ep0_stall(ffs);
409 			break;
410 		}
411 
412 		/* FFS_SETUP_PENDING and not stall */
413 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
414 
415 		spin_unlock_irq(&ffs->ev.waitq.lock);
416 
417 		data = ffs_prepare_buffer(buf, len);
418 		if (IS_ERR(data)) {
419 			ret = PTR_ERR(data);
420 			break;
421 		}
422 
423 		spin_lock_irq(&ffs->ev.waitq.lock);
424 
425 		/*
426 		 * We are guaranteed to be still in FFS_ACTIVE state
427 		 * but the state of setup could have changed from
428 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
429 		 * to check for that.  If that happened we copied data
430 		 * from user space in vain but it's unlikely.
431 		 *
432 		 * For sure we are not in FFS_NO_SETUP since this is
433 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
434 		 * transition can be performed and it's protected by
435 		 * mutex.
436 		 */
437 		if (ffs_setup_state_clear_cancelled(ffs) ==
438 		    FFS_SETUP_CANCELLED) {
439 			ret = -EIDRM;
440 done_spin:
441 			spin_unlock_irq(&ffs->ev.waitq.lock);
442 		} else {
443 			/* unlocks spinlock */
444 			ret = __ffs_ep0_queue_wait(ffs, data, len);
445 		}
446 		kfree(data);
447 		break;
448 
449 	default:
450 		ret = -EBADFD;
451 		break;
452 	}
453 
454 	mutex_unlock(&ffs->mutex);
455 	return ret;
456 }
457 
458 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
459 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
460 				     size_t n)
461 {
462 	/*
463 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
464 	 * size of ffs->ev.types array (which is four) so that's how much space
465 	 * we reserve.
466 	 */
467 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
468 	const size_t size = n * sizeof *events;
469 	unsigned i = 0;
470 
471 	memset(events, 0, size);
472 
473 	do {
474 		events[i].type = ffs->ev.types[i];
475 		if (events[i].type == FUNCTIONFS_SETUP) {
476 			events[i].u.setup = ffs->ev.setup;
477 			ffs->setup_state = FFS_SETUP_PENDING;
478 		}
479 	} while (++i < n);
480 
481 	ffs->ev.count -= n;
482 	if (ffs->ev.count)
483 		memmove(ffs->ev.types, ffs->ev.types + n,
484 			ffs->ev.count * sizeof *ffs->ev.types);
485 
486 	spin_unlock_irq(&ffs->ev.waitq.lock);
487 	mutex_unlock(&ffs->mutex);
488 
489 	return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
490 }
491 
492 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
493 			    size_t len, loff_t *ptr)
494 {
495 	struct ffs_data *ffs = file->private_data;
496 	char *data = NULL;
497 	size_t n;
498 	int ret;
499 
500 	ENTER();
501 
502 	/* Fast check if setup was canceled */
503 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
504 		return -EIDRM;
505 
506 	/* Acquire mutex */
507 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
508 	if (unlikely(ret < 0))
509 		return ret;
510 
511 	/* Check state */
512 	if (ffs->state != FFS_ACTIVE) {
513 		ret = -EBADFD;
514 		goto done_mutex;
515 	}
516 
517 	/*
518 	 * We're called from user space, we can use _irq rather then
519 	 * _irqsave
520 	 */
521 	spin_lock_irq(&ffs->ev.waitq.lock);
522 
523 	switch (ffs_setup_state_clear_cancelled(ffs)) {
524 	case FFS_SETUP_CANCELLED:
525 		ret = -EIDRM;
526 		break;
527 
528 	case FFS_NO_SETUP:
529 		n = len / sizeof(struct usb_functionfs_event);
530 		if (unlikely(!n)) {
531 			ret = -EINVAL;
532 			break;
533 		}
534 
535 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
536 			ret = -EAGAIN;
537 			break;
538 		}
539 
540 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
541 							ffs->ev.count)) {
542 			ret = -EINTR;
543 			break;
544 		}
545 
546 		return __ffs_ep0_read_events(ffs, buf,
547 					     min(n, (size_t)ffs->ev.count));
548 
549 	case FFS_SETUP_PENDING:
550 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
551 			spin_unlock_irq(&ffs->ev.waitq.lock);
552 			ret = __ffs_ep0_stall(ffs);
553 			goto done_mutex;
554 		}
555 
556 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
557 
558 		spin_unlock_irq(&ffs->ev.waitq.lock);
559 
560 		if (likely(len)) {
561 			data = kmalloc(len, GFP_KERNEL);
562 			if (unlikely(!data)) {
563 				ret = -ENOMEM;
564 				goto done_mutex;
565 			}
566 		}
567 
568 		spin_lock_irq(&ffs->ev.waitq.lock);
569 
570 		/* See ffs_ep0_write() */
571 		if (ffs_setup_state_clear_cancelled(ffs) ==
572 		    FFS_SETUP_CANCELLED) {
573 			ret = -EIDRM;
574 			break;
575 		}
576 
577 		/* unlocks spinlock */
578 		ret = __ffs_ep0_queue_wait(ffs, data, len);
579 		if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
580 			ret = -EFAULT;
581 		goto done_mutex;
582 
583 	default:
584 		ret = -EBADFD;
585 		break;
586 	}
587 
588 	spin_unlock_irq(&ffs->ev.waitq.lock);
589 done_mutex:
590 	mutex_unlock(&ffs->mutex);
591 	kfree(data);
592 	return ret;
593 }
594 
595 static int ffs_ep0_open(struct inode *inode, struct file *file)
596 {
597 	struct ffs_data *ffs = inode->i_private;
598 
599 	ENTER();
600 
601 	if (unlikely(ffs->state == FFS_CLOSING))
602 		return -EBUSY;
603 
604 	file->private_data = ffs;
605 	ffs_data_opened(ffs);
606 
607 	return 0;
608 }
609 
610 static int ffs_ep0_release(struct inode *inode, struct file *file)
611 {
612 	struct ffs_data *ffs = file->private_data;
613 
614 	ENTER();
615 
616 	ffs_data_closed(ffs);
617 
618 	return 0;
619 }
620 
621 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
622 {
623 	struct ffs_data *ffs = file->private_data;
624 	struct usb_gadget *gadget = ffs->gadget;
625 	long ret;
626 
627 	ENTER();
628 
629 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
630 		struct ffs_function *func = ffs->func;
631 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
632 	} else if (gadget && gadget->ops->ioctl) {
633 		ret = gadget->ops->ioctl(gadget, code, value);
634 	} else {
635 		ret = -ENOTTY;
636 	}
637 
638 	return ret;
639 }
640 
641 static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait)
642 {
643 	struct ffs_data *ffs = file->private_data;
644 	unsigned int mask = POLLWRNORM;
645 	int ret;
646 
647 	poll_wait(file, &ffs->ev.waitq, wait);
648 
649 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
650 	if (unlikely(ret < 0))
651 		return mask;
652 
653 	switch (ffs->state) {
654 	case FFS_READ_DESCRIPTORS:
655 	case FFS_READ_STRINGS:
656 		mask |= POLLOUT;
657 		break;
658 
659 	case FFS_ACTIVE:
660 		switch (ffs->setup_state) {
661 		case FFS_NO_SETUP:
662 			if (ffs->ev.count)
663 				mask |= POLLIN;
664 			break;
665 
666 		case FFS_SETUP_PENDING:
667 		case FFS_SETUP_CANCELLED:
668 			mask |= (POLLIN | POLLOUT);
669 			break;
670 		}
671 	case FFS_CLOSING:
672 		break;
673 	case FFS_DEACTIVATED:
674 		break;
675 	}
676 
677 	mutex_unlock(&ffs->mutex);
678 
679 	return mask;
680 }
681 
682 static const struct file_operations ffs_ep0_operations = {
683 	.llseek =	no_llseek,
684 
685 	.open =		ffs_ep0_open,
686 	.write =	ffs_ep0_write,
687 	.read =		ffs_ep0_read,
688 	.release =	ffs_ep0_release,
689 	.unlocked_ioctl =	ffs_ep0_ioctl,
690 	.poll =		ffs_ep0_poll,
691 };
692 
693 
694 /* "Normal" endpoints operations ********************************************/
695 
696 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
697 {
698 	ENTER();
699 	if (likely(req->context)) {
700 		struct ffs_ep *ep = _ep->driver_data;
701 		ep->status = req->status ? req->status : req->actual;
702 		complete(req->context);
703 	}
704 }
705 
706 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
707 {
708 	ssize_t ret = copy_to_iter(data, data_len, iter);
709 	if (likely(ret == data_len))
710 		return ret;
711 
712 	if (unlikely(iov_iter_count(iter)))
713 		return -EFAULT;
714 
715 	/*
716 	 * Dear user space developer!
717 	 *
718 	 * TL;DR: To stop getting below error message in your kernel log, change
719 	 * user space code using functionfs to align read buffers to a max
720 	 * packet size.
721 	 *
722 	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
723 	 * packet size.  When unaligned buffer is passed to functionfs, it
724 	 * internally uses a larger, aligned buffer so that such UDCs are happy.
725 	 *
726 	 * Unfortunately, this means that host may send more data than was
727 	 * requested in read(2) system call.  f_fs doesn’t know what to do with
728 	 * that excess data so it simply drops it.
729 	 *
730 	 * Was the buffer aligned in the first place, no such problem would
731 	 * happen.
732 	 *
733 	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
734 	 * by splitting a request into multiple parts.  This splitting may still
735 	 * be a problem though so it’s likely best to align the buffer
736 	 * regardless of it being AIO or not..
737 	 *
738 	 * This only affects OUT endpoints, i.e. reading data with a read(2),
739 	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
740 	 * affected.
741 	 */
742 	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
743 	       "Align read buffer size to max packet size to avoid the problem.\n",
744 	       data_len, ret);
745 
746 	return ret;
747 }
748 
749 static void ffs_user_copy_worker(struct work_struct *work)
750 {
751 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
752 						   work);
753 	int ret = io_data->req->status ? io_data->req->status :
754 					 io_data->req->actual;
755 	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
756 
757 	if (io_data->read && ret > 0) {
758 		use_mm(io_data->mm);
759 		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
760 		unuse_mm(io_data->mm);
761 	}
762 
763 	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
764 
765 	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
766 		eventfd_signal(io_data->ffs->ffs_eventfd, 1);
767 
768 	usb_ep_free_request(io_data->ep, io_data->req);
769 
770 	if (io_data->read)
771 		kfree(io_data->to_free);
772 	kfree(io_data->buf);
773 	kfree(io_data);
774 }
775 
776 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
777 					 struct usb_request *req)
778 {
779 	struct ffs_io_data *io_data = req->context;
780 	struct ffs_data *ffs = io_data->ffs;
781 
782 	ENTER();
783 
784 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
785 	queue_work(ffs->io_completion_wq, &io_data->work);
786 }
787 
788 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
789 {
790 	/*
791 	 * See comment in struct ffs_epfile for full read_buffer pointer
792 	 * synchronisation story.
793 	 */
794 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
795 	if (buf && buf != READ_BUFFER_DROP)
796 		kfree(buf);
797 }
798 
799 /* Assumes epfile->mutex is held. */
800 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
801 					  struct iov_iter *iter)
802 {
803 	/*
804 	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
805 	 * the buffer while we are using it.  See comment in struct ffs_epfile
806 	 * for full read_buffer pointer synchronisation story.
807 	 */
808 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
809 	ssize_t ret;
810 	if (!buf || buf == READ_BUFFER_DROP)
811 		return 0;
812 
813 	ret = copy_to_iter(buf->data, buf->length, iter);
814 	if (buf->length == ret) {
815 		kfree(buf);
816 		return ret;
817 	}
818 
819 	if (unlikely(iov_iter_count(iter))) {
820 		ret = -EFAULT;
821 	} else {
822 		buf->length -= ret;
823 		buf->data += ret;
824 	}
825 
826 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
827 		kfree(buf);
828 
829 	return ret;
830 }
831 
832 /* Assumes epfile->mutex is held. */
833 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
834 				      void *data, int data_len,
835 				      struct iov_iter *iter)
836 {
837 	struct ffs_buffer *buf;
838 
839 	ssize_t ret = copy_to_iter(data, data_len, iter);
840 	if (likely(data_len == ret))
841 		return ret;
842 
843 	if (unlikely(iov_iter_count(iter)))
844 		return -EFAULT;
845 
846 	/* See ffs_copy_to_iter for more context. */
847 	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
848 		data_len, ret);
849 
850 	data_len -= ret;
851 	buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
852 	if (!buf)
853 		return -ENOMEM;
854 	buf->length = data_len;
855 	buf->data = buf->storage;
856 	memcpy(buf->storage, data + ret, data_len);
857 
858 	/*
859 	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
860 	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
861 	 * in struct ffs_epfile for full read_buffer pointer synchronisation
862 	 * story.
863 	 */
864 	if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
865 		kfree(buf);
866 
867 	return ret;
868 }
869 
870 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
871 {
872 	struct ffs_epfile *epfile = file->private_data;
873 	struct usb_request *req;
874 	struct ffs_ep *ep;
875 	char *data = NULL;
876 	ssize_t ret, data_len = -EINVAL;
877 	int halt;
878 
879 	/* Are we still active? */
880 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
881 		return -ENODEV;
882 
883 	/* Wait for endpoint to be enabled */
884 	ep = epfile->ep;
885 	if (!ep) {
886 		if (file->f_flags & O_NONBLOCK)
887 			return -EAGAIN;
888 
889 		ret = wait_event_interruptible(
890 				epfile->ffs->wait, (ep = epfile->ep));
891 		if (ret)
892 			return -EINTR;
893 	}
894 
895 	/* Do we halt? */
896 	halt = (!io_data->read == !epfile->in);
897 	if (halt && epfile->isoc)
898 		return -EINVAL;
899 
900 	/* We will be using request and read_buffer */
901 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
902 	if (unlikely(ret))
903 		goto error;
904 
905 	/* Allocate & copy */
906 	if (!halt) {
907 		struct usb_gadget *gadget;
908 
909 		/*
910 		 * Do we have buffered data from previous partial read?  Check
911 		 * that for synchronous case only because we do not have
912 		 * facility to ‘wake up’ a pending asynchronous read and push
913 		 * buffered data to it which we would need to make things behave
914 		 * consistently.
915 		 */
916 		if (!io_data->aio && io_data->read) {
917 			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
918 			if (ret)
919 				goto error_mutex;
920 		}
921 
922 		/*
923 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
924 		 * before the waiting completes, so do not assign to 'gadget'
925 		 * earlier
926 		 */
927 		gadget = epfile->ffs->gadget;
928 
929 		spin_lock_irq(&epfile->ffs->eps_lock);
930 		/* In the meantime, endpoint got disabled or changed. */
931 		if (epfile->ep != ep) {
932 			ret = -ESHUTDOWN;
933 			goto error_lock;
934 		}
935 		data_len = iov_iter_count(&io_data->data);
936 		/*
937 		 * Controller may require buffer size to be aligned to
938 		 * maxpacketsize of an out endpoint.
939 		 */
940 		if (io_data->read)
941 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
942 		spin_unlock_irq(&epfile->ffs->eps_lock);
943 
944 		data = kmalloc(data_len, GFP_KERNEL);
945 		if (unlikely(!data)) {
946 			ret = -ENOMEM;
947 			goto error_mutex;
948 		}
949 		if (!io_data->read &&
950 		    !copy_from_iter_full(data, data_len, &io_data->data)) {
951 			ret = -EFAULT;
952 			goto error_mutex;
953 		}
954 	}
955 
956 	spin_lock_irq(&epfile->ffs->eps_lock);
957 
958 	if (epfile->ep != ep) {
959 		/* In the meantime, endpoint got disabled or changed. */
960 		ret = -ESHUTDOWN;
961 	} else if (halt) {
962 		ret = usb_ep_set_halt(ep->ep);
963 		if (!ret)
964 			ret = -EBADMSG;
965 	} else if (unlikely(data_len == -EINVAL)) {
966 		/*
967 		 * Sanity Check: even though data_len can't be used
968 		 * uninitialized at the time I write this comment, some
969 		 * compilers complain about this situation.
970 		 * In order to keep the code clean from warnings, data_len is
971 		 * being initialized to -EINVAL during its declaration, which
972 		 * means we can't rely on compiler anymore to warn no future
973 		 * changes won't result in data_len being used uninitialized.
974 		 * For such reason, we're adding this redundant sanity check
975 		 * here.
976 		 */
977 		WARN(1, "%s: data_len == -EINVAL\n", __func__);
978 		ret = -EINVAL;
979 	} else if (!io_data->aio) {
980 		DECLARE_COMPLETION_ONSTACK(done);
981 		bool interrupted = false;
982 
983 		req = ep->req;
984 		req->buf      = data;
985 		req->length   = data_len;
986 
987 		req->context  = &done;
988 		req->complete = ffs_epfile_io_complete;
989 
990 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
991 		if (unlikely(ret < 0))
992 			goto error_lock;
993 
994 		spin_unlock_irq(&epfile->ffs->eps_lock);
995 
996 		if (unlikely(wait_for_completion_interruptible(&done))) {
997 			/*
998 			 * To avoid race condition with ffs_epfile_io_complete,
999 			 * dequeue the request first then check
1000 			 * status. usb_ep_dequeue API should guarantee no race
1001 			 * condition with req->complete callback.
1002 			 */
1003 			usb_ep_dequeue(ep->ep, req);
1004 			interrupted = ep->status < 0;
1005 		}
1006 
1007 		if (interrupted)
1008 			ret = -EINTR;
1009 		else if (io_data->read && ep->status > 0)
1010 			ret = __ffs_epfile_read_data(epfile, data, ep->status,
1011 						     &io_data->data);
1012 		else
1013 			ret = ep->status;
1014 		goto error_mutex;
1015 	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1016 		ret = -ENOMEM;
1017 	} else {
1018 		req->buf      = data;
1019 		req->length   = data_len;
1020 
1021 		io_data->buf = data;
1022 		io_data->ep = ep->ep;
1023 		io_data->req = req;
1024 		io_data->ffs = epfile->ffs;
1025 
1026 		req->context  = io_data;
1027 		req->complete = ffs_epfile_async_io_complete;
1028 
1029 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1030 		if (unlikely(ret)) {
1031 			usb_ep_free_request(ep->ep, req);
1032 			goto error_lock;
1033 		}
1034 
1035 		ret = -EIOCBQUEUED;
1036 		/*
1037 		 * Do not kfree the buffer in this function.  It will be freed
1038 		 * by ffs_user_copy_worker.
1039 		 */
1040 		data = NULL;
1041 	}
1042 
1043 error_lock:
1044 	spin_unlock_irq(&epfile->ffs->eps_lock);
1045 error_mutex:
1046 	mutex_unlock(&epfile->mutex);
1047 error:
1048 	kfree(data);
1049 	return ret;
1050 }
1051 
1052 static int
1053 ffs_epfile_open(struct inode *inode, struct file *file)
1054 {
1055 	struct ffs_epfile *epfile = inode->i_private;
1056 
1057 	ENTER();
1058 
1059 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1060 		return -ENODEV;
1061 
1062 	file->private_data = epfile;
1063 	ffs_data_opened(epfile->ffs);
1064 
1065 	return 0;
1066 }
1067 
1068 static int ffs_aio_cancel(struct kiocb *kiocb)
1069 {
1070 	struct ffs_io_data *io_data = kiocb->private;
1071 	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1072 	int value;
1073 
1074 	ENTER();
1075 
1076 	spin_lock_irq(&epfile->ffs->eps_lock);
1077 
1078 	if (likely(io_data && io_data->ep && io_data->req))
1079 		value = usb_ep_dequeue(io_data->ep, io_data->req);
1080 	else
1081 		value = -EINVAL;
1082 
1083 	spin_unlock_irq(&epfile->ffs->eps_lock);
1084 
1085 	return value;
1086 }
1087 
1088 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1089 {
1090 	struct ffs_io_data io_data, *p = &io_data;
1091 	ssize_t res;
1092 
1093 	ENTER();
1094 
1095 	if (!is_sync_kiocb(kiocb)) {
1096 		p = kmalloc(sizeof(io_data), GFP_KERNEL);
1097 		if (unlikely(!p))
1098 			return -ENOMEM;
1099 		p->aio = true;
1100 	} else {
1101 		p->aio = false;
1102 	}
1103 
1104 	p->read = false;
1105 	p->kiocb = kiocb;
1106 	p->data = *from;
1107 	p->mm = current->mm;
1108 
1109 	kiocb->private = p;
1110 
1111 	if (p->aio)
1112 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1113 
1114 	res = ffs_epfile_io(kiocb->ki_filp, p);
1115 	if (res == -EIOCBQUEUED)
1116 		return res;
1117 	if (p->aio)
1118 		kfree(p);
1119 	else
1120 		*from = p->data;
1121 	return res;
1122 }
1123 
1124 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1125 {
1126 	struct ffs_io_data io_data, *p = &io_data;
1127 	ssize_t res;
1128 
1129 	ENTER();
1130 
1131 	if (!is_sync_kiocb(kiocb)) {
1132 		p = kmalloc(sizeof(io_data), GFP_KERNEL);
1133 		if (unlikely(!p))
1134 			return -ENOMEM;
1135 		p->aio = true;
1136 	} else {
1137 		p->aio = false;
1138 	}
1139 
1140 	p->read = true;
1141 	p->kiocb = kiocb;
1142 	if (p->aio) {
1143 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1144 		if (!p->to_free) {
1145 			kfree(p);
1146 			return -ENOMEM;
1147 		}
1148 	} else {
1149 		p->data = *to;
1150 		p->to_free = NULL;
1151 	}
1152 	p->mm = current->mm;
1153 
1154 	kiocb->private = p;
1155 
1156 	if (p->aio)
1157 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1158 
1159 	res = ffs_epfile_io(kiocb->ki_filp, p);
1160 	if (res == -EIOCBQUEUED)
1161 		return res;
1162 
1163 	if (p->aio) {
1164 		kfree(p->to_free);
1165 		kfree(p);
1166 	} else {
1167 		*to = p->data;
1168 	}
1169 	return res;
1170 }
1171 
1172 static int
1173 ffs_epfile_release(struct inode *inode, struct file *file)
1174 {
1175 	struct ffs_epfile *epfile = inode->i_private;
1176 
1177 	ENTER();
1178 
1179 	__ffs_epfile_read_buffer_free(epfile);
1180 	ffs_data_closed(epfile->ffs);
1181 
1182 	return 0;
1183 }
1184 
1185 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1186 			     unsigned long value)
1187 {
1188 	struct ffs_epfile *epfile = file->private_data;
1189 	struct ffs_ep *ep;
1190 	int ret;
1191 
1192 	ENTER();
1193 
1194 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1195 		return -ENODEV;
1196 
1197 	/* Wait for endpoint to be enabled */
1198 	ep = epfile->ep;
1199 	if (!ep) {
1200 		if (file->f_flags & O_NONBLOCK)
1201 			return -EAGAIN;
1202 
1203 		ret = wait_event_interruptible(
1204 				epfile->ffs->wait, (ep = epfile->ep));
1205 		if (ret)
1206 			return -EINTR;
1207 	}
1208 
1209 	spin_lock_irq(&epfile->ffs->eps_lock);
1210 
1211 	/* In the meantime, endpoint got disabled or changed. */
1212 	if (epfile->ep != ep) {
1213 		spin_unlock_irq(&epfile->ffs->eps_lock);
1214 		return -ESHUTDOWN;
1215 	}
1216 
1217 	switch (code) {
1218 	case FUNCTIONFS_FIFO_STATUS:
1219 		ret = usb_ep_fifo_status(epfile->ep->ep);
1220 		break;
1221 	case FUNCTIONFS_FIFO_FLUSH:
1222 		usb_ep_fifo_flush(epfile->ep->ep);
1223 		ret = 0;
1224 		break;
1225 	case FUNCTIONFS_CLEAR_HALT:
1226 		ret = usb_ep_clear_halt(epfile->ep->ep);
1227 		break;
1228 	case FUNCTIONFS_ENDPOINT_REVMAP:
1229 		ret = epfile->ep->num;
1230 		break;
1231 	case FUNCTIONFS_ENDPOINT_DESC:
1232 	{
1233 		int desc_idx;
1234 		struct usb_endpoint_descriptor *desc;
1235 
1236 		switch (epfile->ffs->gadget->speed) {
1237 		case USB_SPEED_SUPER:
1238 			desc_idx = 2;
1239 			break;
1240 		case USB_SPEED_HIGH:
1241 			desc_idx = 1;
1242 			break;
1243 		default:
1244 			desc_idx = 0;
1245 		}
1246 		desc = epfile->ep->descs[desc_idx];
1247 
1248 		spin_unlock_irq(&epfile->ffs->eps_lock);
1249 		ret = copy_to_user((void *)value, desc, desc->bLength);
1250 		if (ret)
1251 			ret = -EFAULT;
1252 		return ret;
1253 	}
1254 	default:
1255 		ret = -ENOTTY;
1256 	}
1257 	spin_unlock_irq(&epfile->ffs->eps_lock);
1258 
1259 	return ret;
1260 }
1261 
1262 static const struct file_operations ffs_epfile_operations = {
1263 	.llseek =	no_llseek,
1264 
1265 	.open =		ffs_epfile_open,
1266 	.write_iter =	ffs_epfile_write_iter,
1267 	.read_iter =	ffs_epfile_read_iter,
1268 	.release =	ffs_epfile_release,
1269 	.unlocked_ioctl =	ffs_epfile_ioctl,
1270 };
1271 
1272 
1273 /* File system and super block operations ***********************************/
1274 
1275 /*
1276  * Mounting the file system creates a controller file, used first for
1277  * function configuration then later for event monitoring.
1278  */
1279 
1280 static struct inode *__must_check
1281 ffs_sb_make_inode(struct super_block *sb, void *data,
1282 		  const struct file_operations *fops,
1283 		  const struct inode_operations *iops,
1284 		  struct ffs_file_perms *perms)
1285 {
1286 	struct inode *inode;
1287 
1288 	ENTER();
1289 
1290 	inode = new_inode(sb);
1291 
1292 	if (likely(inode)) {
1293 		struct timespec ts = current_time(inode);
1294 
1295 		inode->i_ino	 = get_next_ino();
1296 		inode->i_mode    = perms->mode;
1297 		inode->i_uid     = perms->uid;
1298 		inode->i_gid     = perms->gid;
1299 		inode->i_atime   = ts;
1300 		inode->i_mtime   = ts;
1301 		inode->i_ctime   = ts;
1302 		inode->i_private = data;
1303 		if (fops)
1304 			inode->i_fop = fops;
1305 		if (iops)
1306 			inode->i_op  = iops;
1307 	}
1308 
1309 	return inode;
1310 }
1311 
1312 /* Create "regular" file */
1313 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1314 					const char *name, void *data,
1315 					const struct file_operations *fops)
1316 {
1317 	struct ffs_data	*ffs = sb->s_fs_info;
1318 	struct dentry	*dentry;
1319 	struct inode	*inode;
1320 
1321 	ENTER();
1322 
1323 	dentry = d_alloc_name(sb->s_root, name);
1324 	if (unlikely(!dentry))
1325 		return NULL;
1326 
1327 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1328 	if (unlikely(!inode)) {
1329 		dput(dentry);
1330 		return NULL;
1331 	}
1332 
1333 	d_add(dentry, inode);
1334 	return dentry;
1335 }
1336 
1337 /* Super block */
1338 static const struct super_operations ffs_sb_operations = {
1339 	.statfs =	simple_statfs,
1340 	.drop_inode =	generic_delete_inode,
1341 };
1342 
1343 struct ffs_sb_fill_data {
1344 	struct ffs_file_perms perms;
1345 	umode_t root_mode;
1346 	const char *dev_name;
1347 	bool no_disconnect;
1348 	struct ffs_data *ffs_data;
1349 };
1350 
1351 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1352 {
1353 	struct ffs_sb_fill_data *data = _data;
1354 	struct inode	*inode;
1355 	struct ffs_data	*ffs = data->ffs_data;
1356 
1357 	ENTER();
1358 
1359 	ffs->sb              = sb;
1360 	data->ffs_data       = NULL;
1361 	sb->s_fs_info        = ffs;
1362 	sb->s_blocksize      = PAGE_SIZE;
1363 	sb->s_blocksize_bits = PAGE_SHIFT;
1364 	sb->s_magic          = FUNCTIONFS_MAGIC;
1365 	sb->s_op             = &ffs_sb_operations;
1366 	sb->s_time_gran      = 1;
1367 
1368 	/* Root inode */
1369 	data->perms.mode = data->root_mode;
1370 	inode = ffs_sb_make_inode(sb, NULL,
1371 				  &simple_dir_operations,
1372 				  &simple_dir_inode_operations,
1373 				  &data->perms);
1374 	sb->s_root = d_make_root(inode);
1375 	if (unlikely(!sb->s_root))
1376 		return -ENOMEM;
1377 
1378 	/* EP0 file */
1379 	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1380 					 &ffs_ep0_operations)))
1381 		return -ENOMEM;
1382 
1383 	return 0;
1384 }
1385 
1386 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1387 {
1388 	ENTER();
1389 
1390 	if (!opts || !*opts)
1391 		return 0;
1392 
1393 	for (;;) {
1394 		unsigned long value;
1395 		char *eq, *comma;
1396 
1397 		/* Option limit */
1398 		comma = strchr(opts, ',');
1399 		if (comma)
1400 			*comma = 0;
1401 
1402 		/* Value limit */
1403 		eq = strchr(opts, '=');
1404 		if (unlikely(!eq)) {
1405 			pr_err("'=' missing in %s\n", opts);
1406 			return -EINVAL;
1407 		}
1408 		*eq = 0;
1409 
1410 		/* Parse value */
1411 		if (kstrtoul(eq + 1, 0, &value)) {
1412 			pr_err("%s: invalid value: %s\n", opts, eq + 1);
1413 			return -EINVAL;
1414 		}
1415 
1416 		/* Interpret option */
1417 		switch (eq - opts) {
1418 		case 13:
1419 			if (!memcmp(opts, "no_disconnect", 13))
1420 				data->no_disconnect = !!value;
1421 			else
1422 				goto invalid;
1423 			break;
1424 		case 5:
1425 			if (!memcmp(opts, "rmode", 5))
1426 				data->root_mode  = (value & 0555) | S_IFDIR;
1427 			else if (!memcmp(opts, "fmode", 5))
1428 				data->perms.mode = (value & 0666) | S_IFREG;
1429 			else
1430 				goto invalid;
1431 			break;
1432 
1433 		case 4:
1434 			if (!memcmp(opts, "mode", 4)) {
1435 				data->root_mode  = (value & 0555) | S_IFDIR;
1436 				data->perms.mode = (value & 0666) | S_IFREG;
1437 			} else {
1438 				goto invalid;
1439 			}
1440 			break;
1441 
1442 		case 3:
1443 			if (!memcmp(opts, "uid", 3)) {
1444 				data->perms.uid = make_kuid(current_user_ns(), value);
1445 				if (!uid_valid(data->perms.uid)) {
1446 					pr_err("%s: unmapped value: %lu\n", opts, value);
1447 					return -EINVAL;
1448 				}
1449 			} else if (!memcmp(opts, "gid", 3)) {
1450 				data->perms.gid = make_kgid(current_user_ns(), value);
1451 				if (!gid_valid(data->perms.gid)) {
1452 					pr_err("%s: unmapped value: %lu\n", opts, value);
1453 					return -EINVAL;
1454 				}
1455 			} else {
1456 				goto invalid;
1457 			}
1458 			break;
1459 
1460 		default:
1461 invalid:
1462 			pr_err("%s: invalid option\n", opts);
1463 			return -EINVAL;
1464 		}
1465 
1466 		/* Next iteration */
1467 		if (!comma)
1468 			break;
1469 		opts = comma + 1;
1470 	}
1471 
1472 	return 0;
1473 }
1474 
1475 /* "mount -t functionfs dev_name /dev/function" ends up here */
1476 
1477 static struct dentry *
1478 ffs_fs_mount(struct file_system_type *t, int flags,
1479 	      const char *dev_name, void *opts)
1480 {
1481 	struct ffs_sb_fill_data data = {
1482 		.perms = {
1483 			.mode = S_IFREG | 0600,
1484 			.uid = GLOBAL_ROOT_UID,
1485 			.gid = GLOBAL_ROOT_GID,
1486 		},
1487 		.root_mode = S_IFDIR | 0500,
1488 		.no_disconnect = false,
1489 	};
1490 	struct dentry *rv;
1491 	int ret;
1492 	void *ffs_dev;
1493 	struct ffs_data	*ffs;
1494 
1495 	ENTER();
1496 
1497 	ret = ffs_fs_parse_opts(&data, opts);
1498 	if (unlikely(ret < 0))
1499 		return ERR_PTR(ret);
1500 
1501 	ffs = ffs_data_new(dev_name);
1502 	if (unlikely(!ffs))
1503 		return ERR_PTR(-ENOMEM);
1504 	ffs->file_perms = data.perms;
1505 	ffs->no_disconnect = data.no_disconnect;
1506 
1507 	ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1508 	if (unlikely(!ffs->dev_name)) {
1509 		ffs_data_put(ffs);
1510 		return ERR_PTR(-ENOMEM);
1511 	}
1512 
1513 	ffs_dev = ffs_acquire_dev(dev_name);
1514 	if (IS_ERR(ffs_dev)) {
1515 		ffs_data_put(ffs);
1516 		return ERR_CAST(ffs_dev);
1517 	}
1518 	ffs->private_data = ffs_dev;
1519 	data.ffs_data = ffs;
1520 
1521 	rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1522 	if (IS_ERR(rv) && data.ffs_data) {
1523 		ffs_release_dev(data.ffs_data);
1524 		ffs_data_put(data.ffs_data);
1525 	}
1526 	return rv;
1527 }
1528 
1529 static void
1530 ffs_fs_kill_sb(struct super_block *sb)
1531 {
1532 	ENTER();
1533 
1534 	kill_litter_super(sb);
1535 	if (sb->s_fs_info) {
1536 		ffs_release_dev(sb->s_fs_info);
1537 		ffs_data_closed(sb->s_fs_info);
1538 		ffs_data_put(sb->s_fs_info);
1539 	}
1540 }
1541 
1542 static struct file_system_type ffs_fs_type = {
1543 	.owner		= THIS_MODULE,
1544 	.name		= "functionfs",
1545 	.mount		= ffs_fs_mount,
1546 	.kill_sb	= ffs_fs_kill_sb,
1547 };
1548 MODULE_ALIAS_FS("functionfs");
1549 
1550 
1551 /* Driver's main init/cleanup functions *************************************/
1552 
1553 static int functionfs_init(void)
1554 {
1555 	int ret;
1556 
1557 	ENTER();
1558 
1559 	ret = register_filesystem(&ffs_fs_type);
1560 	if (likely(!ret))
1561 		pr_info("file system registered\n");
1562 	else
1563 		pr_err("failed registering file system (%d)\n", ret);
1564 
1565 	return ret;
1566 }
1567 
1568 static void functionfs_cleanup(void)
1569 {
1570 	ENTER();
1571 
1572 	pr_info("unloading\n");
1573 	unregister_filesystem(&ffs_fs_type);
1574 }
1575 
1576 
1577 /* ffs_data and ffs_function construction and destruction code **************/
1578 
1579 static void ffs_data_clear(struct ffs_data *ffs);
1580 static void ffs_data_reset(struct ffs_data *ffs);
1581 
1582 static void ffs_data_get(struct ffs_data *ffs)
1583 {
1584 	ENTER();
1585 
1586 	refcount_inc(&ffs->ref);
1587 }
1588 
1589 static void ffs_data_opened(struct ffs_data *ffs)
1590 {
1591 	ENTER();
1592 
1593 	refcount_inc(&ffs->ref);
1594 	if (atomic_add_return(1, &ffs->opened) == 1 &&
1595 			ffs->state == FFS_DEACTIVATED) {
1596 		ffs->state = FFS_CLOSING;
1597 		ffs_data_reset(ffs);
1598 	}
1599 }
1600 
1601 static void ffs_data_put(struct ffs_data *ffs)
1602 {
1603 	ENTER();
1604 
1605 	if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1606 		pr_info("%s(): freeing\n", __func__);
1607 		ffs_data_clear(ffs);
1608 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1609 		       waitqueue_active(&ffs->ep0req_completion.wait) ||
1610 		       waitqueue_active(&ffs->wait));
1611 		destroy_workqueue(ffs->io_completion_wq);
1612 		kfree(ffs->dev_name);
1613 		kfree(ffs);
1614 	}
1615 }
1616 
1617 static void ffs_data_closed(struct ffs_data *ffs)
1618 {
1619 	ENTER();
1620 
1621 	if (atomic_dec_and_test(&ffs->opened)) {
1622 		if (ffs->no_disconnect) {
1623 			ffs->state = FFS_DEACTIVATED;
1624 			if (ffs->epfiles) {
1625 				ffs_epfiles_destroy(ffs->epfiles,
1626 						   ffs->eps_count);
1627 				ffs->epfiles = NULL;
1628 			}
1629 			if (ffs->setup_state == FFS_SETUP_PENDING)
1630 				__ffs_ep0_stall(ffs);
1631 		} else {
1632 			ffs->state = FFS_CLOSING;
1633 			ffs_data_reset(ffs);
1634 		}
1635 	}
1636 	if (atomic_read(&ffs->opened) < 0) {
1637 		ffs->state = FFS_CLOSING;
1638 		ffs_data_reset(ffs);
1639 	}
1640 
1641 	ffs_data_put(ffs);
1642 }
1643 
1644 static struct ffs_data *ffs_data_new(const char *dev_name)
1645 {
1646 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1647 	if (unlikely(!ffs))
1648 		return NULL;
1649 
1650 	ENTER();
1651 
1652 	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1653 	if (!ffs->io_completion_wq) {
1654 		kfree(ffs);
1655 		return NULL;
1656 	}
1657 
1658 	refcount_set(&ffs->ref, 1);
1659 	atomic_set(&ffs->opened, 0);
1660 	ffs->state = FFS_READ_DESCRIPTORS;
1661 	mutex_init(&ffs->mutex);
1662 	spin_lock_init(&ffs->eps_lock);
1663 	init_waitqueue_head(&ffs->ev.waitq);
1664 	init_waitqueue_head(&ffs->wait);
1665 	init_completion(&ffs->ep0req_completion);
1666 
1667 	/* XXX REVISIT need to update it in some places, or do we? */
1668 	ffs->ev.can_stall = 1;
1669 
1670 	return ffs;
1671 }
1672 
1673 static void ffs_data_clear(struct ffs_data *ffs)
1674 {
1675 	ENTER();
1676 
1677 	ffs_closed(ffs);
1678 
1679 	BUG_ON(ffs->gadget);
1680 
1681 	if (ffs->epfiles)
1682 		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1683 
1684 	if (ffs->ffs_eventfd)
1685 		eventfd_ctx_put(ffs->ffs_eventfd);
1686 
1687 	kfree(ffs->raw_descs_data);
1688 	kfree(ffs->raw_strings);
1689 	kfree(ffs->stringtabs);
1690 }
1691 
1692 static void ffs_data_reset(struct ffs_data *ffs)
1693 {
1694 	ENTER();
1695 
1696 	ffs_data_clear(ffs);
1697 
1698 	ffs->epfiles = NULL;
1699 	ffs->raw_descs_data = NULL;
1700 	ffs->raw_descs = NULL;
1701 	ffs->raw_strings = NULL;
1702 	ffs->stringtabs = NULL;
1703 
1704 	ffs->raw_descs_length = 0;
1705 	ffs->fs_descs_count = 0;
1706 	ffs->hs_descs_count = 0;
1707 	ffs->ss_descs_count = 0;
1708 
1709 	ffs->strings_count = 0;
1710 	ffs->interfaces_count = 0;
1711 	ffs->eps_count = 0;
1712 
1713 	ffs->ev.count = 0;
1714 
1715 	ffs->state = FFS_READ_DESCRIPTORS;
1716 	ffs->setup_state = FFS_NO_SETUP;
1717 	ffs->flags = 0;
1718 }
1719 
1720 
1721 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1722 {
1723 	struct usb_gadget_strings **lang;
1724 	int first_id;
1725 
1726 	ENTER();
1727 
1728 	if (WARN_ON(ffs->state != FFS_ACTIVE
1729 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1730 		return -EBADFD;
1731 
1732 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1733 	if (unlikely(first_id < 0))
1734 		return first_id;
1735 
1736 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1737 	if (unlikely(!ffs->ep0req))
1738 		return -ENOMEM;
1739 	ffs->ep0req->complete = ffs_ep0_complete;
1740 	ffs->ep0req->context = ffs;
1741 
1742 	lang = ffs->stringtabs;
1743 	if (lang) {
1744 		for (; *lang; ++lang) {
1745 			struct usb_string *str = (*lang)->strings;
1746 			int id = first_id;
1747 			for (; str->s; ++id, ++str)
1748 				str->id = id;
1749 		}
1750 	}
1751 
1752 	ffs->gadget = cdev->gadget;
1753 	ffs_data_get(ffs);
1754 	return 0;
1755 }
1756 
1757 static void functionfs_unbind(struct ffs_data *ffs)
1758 {
1759 	ENTER();
1760 
1761 	if (!WARN_ON(!ffs->gadget)) {
1762 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1763 		ffs->ep0req = NULL;
1764 		ffs->gadget = NULL;
1765 		clear_bit(FFS_FL_BOUND, &ffs->flags);
1766 		ffs_data_put(ffs);
1767 	}
1768 }
1769 
1770 static int ffs_epfiles_create(struct ffs_data *ffs)
1771 {
1772 	struct ffs_epfile *epfile, *epfiles;
1773 	unsigned i, count;
1774 
1775 	ENTER();
1776 
1777 	count = ffs->eps_count;
1778 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1779 	if (!epfiles)
1780 		return -ENOMEM;
1781 
1782 	epfile = epfiles;
1783 	for (i = 1; i <= count; ++i, ++epfile) {
1784 		epfile->ffs = ffs;
1785 		mutex_init(&epfile->mutex);
1786 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1787 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1788 		else
1789 			sprintf(epfile->name, "ep%u", i);
1790 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1791 						 epfile,
1792 						 &ffs_epfile_operations);
1793 		if (unlikely(!epfile->dentry)) {
1794 			ffs_epfiles_destroy(epfiles, i - 1);
1795 			return -ENOMEM;
1796 		}
1797 	}
1798 
1799 	ffs->epfiles = epfiles;
1800 	return 0;
1801 }
1802 
1803 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1804 {
1805 	struct ffs_epfile *epfile = epfiles;
1806 
1807 	ENTER();
1808 
1809 	for (; count; --count, ++epfile) {
1810 		BUG_ON(mutex_is_locked(&epfile->mutex));
1811 		if (epfile->dentry) {
1812 			d_delete(epfile->dentry);
1813 			dput(epfile->dentry);
1814 			epfile->dentry = NULL;
1815 		}
1816 	}
1817 
1818 	kfree(epfiles);
1819 }
1820 
1821 static void ffs_func_eps_disable(struct ffs_function *func)
1822 {
1823 	struct ffs_ep *ep         = func->eps;
1824 	struct ffs_epfile *epfile = func->ffs->epfiles;
1825 	unsigned count            = func->ffs->eps_count;
1826 	unsigned long flags;
1827 
1828 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1829 	while (count--) {
1830 		/* pending requests get nuked */
1831 		if (likely(ep->ep))
1832 			usb_ep_disable(ep->ep);
1833 		++ep;
1834 
1835 		if (epfile) {
1836 			epfile->ep = NULL;
1837 			__ffs_epfile_read_buffer_free(epfile);
1838 			++epfile;
1839 		}
1840 	}
1841 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1842 }
1843 
1844 static int ffs_func_eps_enable(struct ffs_function *func)
1845 {
1846 	struct ffs_data *ffs      = func->ffs;
1847 	struct ffs_ep *ep         = func->eps;
1848 	struct ffs_epfile *epfile = ffs->epfiles;
1849 	unsigned count            = ffs->eps_count;
1850 	unsigned long flags;
1851 	int ret = 0;
1852 
1853 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1854 	while(count--) {
1855 		struct usb_endpoint_descriptor *ds;
1856 		struct usb_ss_ep_comp_descriptor *comp_desc = NULL;
1857 		int needs_comp_desc = false;
1858 		int desc_idx;
1859 
1860 		if (ffs->gadget->speed == USB_SPEED_SUPER) {
1861 			desc_idx = 2;
1862 			needs_comp_desc = true;
1863 		} else if (ffs->gadget->speed == USB_SPEED_HIGH)
1864 			desc_idx = 1;
1865 		else
1866 			desc_idx = 0;
1867 
1868 		/* fall-back to lower speed if desc missing for current speed */
1869 		do {
1870 			ds = ep->descs[desc_idx];
1871 		} while (!ds && --desc_idx >= 0);
1872 
1873 		if (!ds) {
1874 			ret = -EINVAL;
1875 			break;
1876 		}
1877 
1878 		ep->ep->driver_data = ep;
1879 		ep->ep->desc = ds;
1880 
1881 		if (needs_comp_desc) {
1882 			comp_desc = (struct usb_ss_ep_comp_descriptor *)(ds +
1883 					USB_DT_ENDPOINT_SIZE);
1884 			ep->ep->maxburst = comp_desc->bMaxBurst + 1;
1885 			ep->ep->comp_desc = comp_desc;
1886 		}
1887 
1888 		ret = usb_ep_enable(ep->ep);
1889 		if (likely(!ret)) {
1890 			epfile->ep = ep;
1891 			epfile->in = usb_endpoint_dir_in(ds);
1892 			epfile->isoc = usb_endpoint_xfer_isoc(ds);
1893 		} else {
1894 			break;
1895 		}
1896 
1897 		++ep;
1898 		++epfile;
1899 	}
1900 
1901 	wake_up_interruptible(&ffs->wait);
1902 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1903 
1904 	return ret;
1905 }
1906 
1907 
1908 /* Parsing and building descriptors and strings *****************************/
1909 
1910 /*
1911  * This validates if data pointed by data is a valid USB descriptor as
1912  * well as record how many interfaces, endpoints and strings are
1913  * required by given configuration.  Returns address after the
1914  * descriptor or NULL if data is invalid.
1915  */
1916 
1917 enum ffs_entity_type {
1918 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1919 };
1920 
1921 enum ffs_os_desc_type {
1922 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1923 };
1924 
1925 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1926 				   u8 *valuep,
1927 				   struct usb_descriptor_header *desc,
1928 				   void *priv);
1929 
1930 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1931 				    struct usb_os_desc_header *h, void *data,
1932 				    unsigned len, void *priv);
1933 
1934 static int __must_check ffs_do_single_desc(char *data, unsigned len,
1935 					   ffs_entity_callback entity,
1936 					   void *priv)
1937 {
1938 	struct usb_descriptor_header *_ds = (void *)data;
1939 	u8 length;
1940 	int ret;
1941 
1942 	ENTER();
1943 
1944 	/* At least two bytes are required: length and type */
1945 	if (len < 2) {
1946 		pr_vdebug("descriptor too short\n");
1947 		return -EINVAL;
1948 	}
1949 
1950 	/* If we have at least as many bytes as the descriptor takes? */
1951 	length = _ds->bLength;
1952 	if (len < length) {
1953 		pr_vdebug("descriptor longer then available data\n");
1954 		return -EINVAL;
1955 	}
1956 
1957 #define __entity_check_INTERFACE(val)  1
1958 #define __entity_check_STRING(val)     (val)
1959 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
1960 #define __entity(type, val) do {					\
1961 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
1962 		if (unlikely(!__entity_check_ ##type(val))) {		\
1963 			pr_vdebug("invalid entity's value\n");		\
1964 			return -EINVAL;					\
1965 		}							\
1966 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
1967 		if (unlikely(ret < 0)) {				\
1968 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
1969 				 (val), ret);				\
1970 			return ret;					\
1971 		}							\
1972 	} while (0)
1973 
1974 	/* Parse descriptor depending on type. */
1975 	switch (_ds->bDescriptorType) {
1976 	case USB_DT_DEVICE:
1977 	case USB_DT_CONFIG:
1978 	case USB_DT_STRING:
1979 	case USB_DT_DEVICE_QUALIFIER:
1980 		/* function can't have any of those */
1981 		pr_vdebug("descriptor reserved for gadget: %d\n",
1982 		      _ds->bDescriptorType);
1983 		return -EINVAL;
1984 
1985 	case USB_DT_INTERFACE: {
1986 		struct usb_interface_descriptor *ds = (void *)_ds;
1987 		pr_vdebug("interface descriptor\n");
1988 		if (length != sizeof *ds)
1989 			goto inv_length;
1990 
1991 		__entity(INTERFACE, ds->bInterfaceNumber);
1992 		if (ds->iInterface)
1993 			__entity(STRING, ds->iInterface);
1994 	}
1995 		break;
1996 
1997 	case USB_DT_ENDPOINT: {
1998 		struct usb_endpoint_descriptor *ds = (void *)_ds;
1999 		pr_vdebug("endpoint descriptor\n");
2000 		if (length != USB_DT_ENDPOINT_SIZE &&
2001 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
2002 			goto inv_length;
2003 		__entity(ENDPOINT, ds->bEndpointAddress);
2004 	}
2005 		break;
2006 
2007 	case HID_DT_HID:
2008 		pr_vdebug("hid descriptor\n");
2009 		if (length != sizeof(struct hid_descriptor))
2010 			goto inv_length;
2011 		break;
2012 
2013 	case USB_DT_OTG:
2014 		if (length != sizeof(struct usb_otg_descriptor))
2015 			goto inv_length;
2016 		break;
2017 
2018 	case USB_DT_INTERFACE_ASSOCIATION: {
2019 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2020 		pr_vdebug("interface association descriptor\n");
2021 		if (length != sizeof *ds)
2022 			goto inv_length;
2023 		if (ds->iFunction)
2024 			__entity(STRING, ds->iFunction);
2025 	}
2026 		break;
2027 
2028 	case USB_DT_SS_ENDPOINT_COMP:
2029 		pr_vdebug("EP SS companion descriptor\n");
2030 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2031 			goto inv_length;
2032 		break;
2033 
2034 	case USB_DT_OTHER_SPEED_CONFIG:
2035 	case USB_DT_INTERFACE_POWER:
2036 	case USB_DT_DEBUG:
2037 	case USB_DT_SECURITY:
2038 	case USB_DT_CS_RADIO_CONTROL:
2039 		/* TODO */
2040 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2041 		return -EINVAL;
2042 
2043 	default:
2044 		/* We should never be here */
2045 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2046 		return -EINVAL;
2047 
2048 inv_length:
2049 		pr_vdebug("invalid length: %d (descriptor %d)\n",
2050 			  _ds->bLength, _ds->bDescriptorType);
2051 		return -EINVAL;
2052 	}
2053 
2054 #undef __entity
2055 #undef __entity_check_DESCRIPTOR
2056 #undef __entity_check_INTERFACE
2057 #undef __entity_check_STRING
2058 #undef __entity_check_ENDPOINT
2059 
2060 	return length;
2061 }
2062 
2063 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2064 				     ffs_entity_callback entity, void *priv)
2065 {
2066 	const unsigned _len = len;
2067 	unsigned long num = 0;
2068 
2069 	ENTER();
2070 
2071 	for (;;) {
2072 		int ret;
2073 
2074 		if (num == count)
2075 			data = NULL;
2076 
2077 		/* Record "descriptor" entity */
2078 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2079 		if (unlikely(ret < 0)) {
2080 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2081 				 num, ret);
2082 			return ret;
2083 		}
2084 
2085 		if (!data)
2086 			return _len - len;
2087 
2088 		ret = ffs_do_single_desc(data, len, entity, priv);
2089 		if (unlikely(ret < 0)) {
2090 			pr_debug("%s returns %d\n", __func__, ret);
2091 			return ret;
2092 		}
2093 
2094 		len -= ret;
2095 		data += ret;
2096 		++num;
2097 	}
2098 }
2099 
2100 static int __ffs_data_do_entity(enum ffs_entity_type type,
2101 				u8 *valuep, struct usb_descriptor_header *desc,
2102 				void *priv)
2103 {
2104 	struct ffs_desc_helper *helper = priv;
2105 	struct usb_endpoint_descriptor *d;
2106 
2107 	ENTER();
2108 
2109 	switch (type) {
2110 	case FFS_DESCRIPTOR:
2111 		break;
2112 
2113 	case FFS_INTERFACE:
2114 		/*
2115 		 * Interfaces are indexed from zero so if we
2116 		 * encountered interface "n" then there are at least
2117 		 * "n+1" interfaces.
2118 		 */
2119 		if (*valuep >= helper->interfaces_count)
2120 			helper->interfaces_count = *valuep + 1;
2121 		break;
2122 
2123 	case FFS_STRING:
2124 		/*
2125 		 * Strings are indexed from 1 (0 is reserved
2126 		 * for languages list)
2127 		 */
2128 		if (*valuep > helper->ffs->strings_count)
2129 			helper->ffs->strings_count = *valuep;
2130 		break;
2131 
2132 	case FFS_ENDPOINT:
2133 		d = (void *)desc;
2134 		helper->eps_count++;
2135 		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2136 			return -EINVAL;
2137 		/* Check if descriptors for any speed were already parsed */
2138 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2139 			helper->ffs->eps_addrmap[helper->eps_count] =
2140 				d->bEndpointAddress;
2141 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2142 				d->bEndpointAddress)
2143 			return -EINVAL;
2144 		break;
2145 	}
2146 
2147 	return 0;
2148 }
2149 
2150 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2151 				   struct usb_os_desc_header *desc)
2152 {
2153 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2154 	u16 w_index = le16_to_cpu(desc->wIndex);
2155 
2156 	if (bcd_version != 1) {
2157 		pr_vdebug("unsupported os descriptors version: %d",
2158 			  bcd_version);
2159 		return -EINVAL;
2160 	}
2161 	switch (w_index) {
2162 	case 0x4:
2163 		*next_type = FFS_OS_DESC_EXT_COMPAT;
2164 		break;
2165 	case 0x5:
2166 		*next_type = FFS_OS_DESC_EXT_PROP;
2167 		break;
2168 	default:
2169 		pr_vdebug("unsupported os descriptor type: %d", w_index);
2170 		return -EINVAL;
2171 	}
2172 
2173 	return sizeof(*desc);
2174 }
2175 
2176 /*
2177  * Process all extended compatibility/extended property descriptors
2178  * of a feature descriptor
2179  */
2180 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2181 					      enum ffs_os_desc_type type,
2182 					      u16 feature_count,
2183 					      ffs_os_desc_callback entity,
2184 					      void *priv,
2185 					      struct usb_os_desc_header *h)
2186 {
2187 	int ret;
2188 	const unsigned _len = len;
2189 
2190 	ENTER();
2191 
2192 	/* loop over all ext compat/ext prop descriptors */
2193 	while (feature_count--) {
2194 		ret = entity(type, h, data, len, priv);
2195 		if (unlikely(ret < 0)) {
2196 			pr_debug("bad OS descriptor, type: %d\n", type);
2197 			return ret;
2198 		}
2199 		data += ret;
2200 		len -= ret;
2201 	}
2202 	return _len - len;
2203 }
2204 
2205 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2206 static int __must_check ffs_do_os_descs(unsigned count,
2207 					char *data, unsigned len,
2208 					ffs_os_desc_callback entity, void *priv)
2209 {
2210 	const unsigned _len = len;
2211 	unsigned long num = 0;
2212 
2213 	ENTER();
2214 
2215 	for (num = 0; num < count; ++num) {
2216 		int ret;
2217 		enum ffs_os_desc_type type;
2218 		u16 feature_count;
2219 		struct usb_os_desc_header *desc = (void *)data;
2220 
2221 		if (len < sizeof(*desc))
2222 			return -EINVAL;
2223 
2224 		/*
2225 		 * Record "descriptor" entity.
2226 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2227 		 * Move the data pointer to the beginning of extended
2228 		 * compatibilities proper or extended properties proper
2229 		 * portions of the data
2230 		 */
2231 		if (le32_to_cpu(desc->dwLength) > len)
2232 			return -EINVAL;
2233 
2234 		ret = __ffs_do_os_desc_header(&type, desc);
2235 		if (unlikely(ret < 0)) {
2236 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2237 				 num, ret);
2238 			return ret;
2239 		}
2240 		/*
2241 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2242 		 */
2243 		feature_count = le16_to_cpu(desc->wCount);
2244 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2245 		    (feature_count > 255 || desc->Reserved))
2246 				return -EINVAL;
2247 		len -= ret;
2248 		data += ret;
2249 
2250 		/*
2251 		 * Process all function/property descriptors
2252 		 * of this Feature Descriptor
2253 		 */
2254 		ret = ffs_do_single_os_desc(data, len, type,
2255 					    feature_count, entity, priv, desc);
2256 		if (unlikely(ret < 0)) {
2257 			pr_debug("%s returns %d\n", __func__, ret);
2258 			return ret;
2259 		}
2260 
2261 		len -= ret;
2262 		data += ret;
2263 	}
2264 	return _len - len;
2265 }
2266 
2267 /**
2268  * Validate contents of the buffer from userspace related to OS descriptors.
2269  */
2270 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2271 				 struct usb_os_desc_header *h, void *data,
2272 				 unsigned len, void *priv)
2273 {
2274 	struct ffs_data *ffs = priv;
2275 	u8 length;
2276 
2277 	ENTER();
2278 
2279 	switch (type) {
2280 	case FFS_OS_DESC_EXT_COMPAT: {
2281 		struct usb_ext_compat_desc *d = data;
2282 		int i;
2283 
2284 		if (len < sizeof(*d) ||
2285 		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2286 			return -EINVAL;
2287 		if (d->Reserved1 != 1) {
2288 			/*
2289 			 * According to the spec, Reserved1 must be set to 1
2290 			 * but older kernels incorrectly rejected non-zero
2291 			 * values.  We fix it here to avoid returning EINVAL
2292 			 * in response to values we used to accept.
2293 			 */
2294 			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2295 			d->Reserved1 = 1;
2296 		}
2297 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2298 			if (d->Reserved2[i])
2299 				return -EINVAL;
2300 
2301 		length = sizeof(struct usb_ext_compat_desc);
2302 	}
2303 		break;
2304 	case FFS_OS_DESC_EXT_PROP: {
2305 		struct usb_ext_prop_desc *d = data;
2306 		u32 type, pdl;
2307 		u16 pnl;
2308 
2309 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2310 			return -EINVAL;
2311 		length = le32_to_cpu(d->dwSize);
2312 		if (len < length)
2313 			return -EINVAL;
2314 		type = le32_to_cpu(d->dwPropertyDataType);
2315 		if (type < USB_EXT_PROP_UNICODE ||
2316 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2317 			pr_vdebug("unsupported os descriptor property type: %d",
2318 				  type);
2319 			return -EINVAL;
2320 		}
2321 		pnl = le16_to_cpu(d->wPropertyNameLength);
2322 		if (length < 14 + pnl) {
2323 			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2324 				  length, pnl, type);
2325 			return -EINVAL;
2326 		}
2327 		pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl));
2328 		if (length != 14 + pnl + pdl) {
2329 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2330 				  length, pnl, pdl, type);
2331 			return -EINVAL;
2332 		}
2333 		++ffs->ms_os_descs_ext_prop_count;
2334 		/* property name reported to the host as "WCHAR"s */
2335 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2336 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2337 	}
2338 		break;
2339 	default:
2340 		pr_vdebug("unknown descriptor: %d\n", type);
2341 		return -EINVAL;
2342 	}
2343 	return length;
2344 }
2345 
2346 static int __ffs_data_got_descs(struct ffs_data *ffs,
2347 				char *const _data, size_t len)
2348 {
2349 	char *data = _data, *raw_descs;
2350 	unsigned os_descs_count = 0, counts[3], flags;
2351 	int ret = -EINVAL, i;
2352 	struct ffs_desc_helper helper;
2353 
2354 	ENTER();
2355 
2356 	if (get_unaligned_le32(data + 4) != len)
2357 		goto error;
2358 
2359 	switch (get_unaligned_le32(data)) {
2360 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2361 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2362 		data += 8;
2363 		len  -= 8;
2364 		break;
2365 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2366 		flags = get_unaligned_le32(data + 8);
2367 		ffs->user_flags = flags;
2368 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2369 			      FUNCTIONFS_HAS_HS_DESC |
2370 			      FUNCTIONFS_HAS_SS_DESC |
2371 			      FUNCTIONFS_HAS_MS_OS_DESC |
2372 			      FUNCTIONFS_VIRTUAL_ADDR |
2373 			      FUNCTIONFS_EVENTFD |
2374 			      FUNCTIONFS_ALL_CTRL_RECIP |
2375 			      FUNCTIONFS_CONFIG0_SETUP)) {
2376 			ret = -ENOSYS;
2377 			goto error;
2378 		}
2379 		data += 12;
2380 		len  -= 12;
2381 		break;
2382 	default:
2383 		goto error;
2384 	}
2385 
2386 	if (flags & FUNCTIONFS_EVENTFD) {
2387 		if (len < 4)
2388 			goto error;
2389 		ffs->ffs_eventfd =
2390 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2391 		if (IS_ERR(ffs->ffs_eventfd)) {
2392 			ret = PTR_ERR(ffs->ffs_eventfd);
2393 			ffs->ffs_eventfd = NULL;
2394 			goto error;
2395 		}
2396 		data += 4;
2397 		len  -= 4;
2398 	}
2399 
2400 	/* Read fs_count, hs_count and ss_count (if present) */
2401 	for (i = 0; i < 3; ++i) {
2402 		if (!(flags & (1 << i))) {
2403 			counts[i] = 0;
2404 		} else if (len < 4) {
2405 			goto error;
2406 		} else {
2407 			counts[i] = get_unaligned_le32(data);
2408 			data += 4;
2409 			len  -= 4;
2410 		}
2411 	}
2412 	if (flags & (1 << i)) {
2413 		if (len < 4) {
2414 			goto error;
2415 		}
2416 		os_descs_count = get_unaligned_le32(data);
2417 		data += 4;
2418 		len -= 4;
2419 	};
2420 
2421 	/* Read descriptors */
2422 	raw_descs = data;
2423 	helper.ffs = ffs;
2424 	for (i = 0; i < 3; ++i) {
2425 		if (!counts[i])
2426 			continue;
2427 		helper.interfaces_count = 0;
2428 		helper.eps_count = 0;
2429 		ret = ffs_do_descs(counts[i], data, len,
2430 				   __ffs_data_do_entity, &helper);
2431 		if (ret < 0)
2432 			goto error;
2433 		if (!ffs->eps_count && !ffs->interfaces_count) {
2434 			ffs->eps_count = helper.eps_count;
2435 			ffs->interfaces_count = helper.interfaces_count;
2436 		} else {
2437 			if (ffs->eps_count != helper.eps_count) {
2438 				ret = -EINVAL;
2439 				goto error;
2440 			}
2441 			if (ffs->interfaces_count != helper.interfaces_count) {
2442 				ret = -EINVAL;
2443 				goto error;
2444 			}
2445 		}
2446 		data += ret;
2447 		len  -= ret;
2448 	}
2449 	if (os_descs_count) {
2450 		ret = ffs_do_os_descs(os_descs_count, data, len,
2451 				      __ffs_data_do_os_desc, ffs);
2452 		if (ret < 0)
2453 			goto error;
2454 		data += ret;
2455 		len -= ret;
2456 	}
2457 
2458 	if (raw_descs == data || len) {
2459 		ret = -EINVAL;
2460 		goto error;
2461 	}
2462 
2463 	ffs->raw_descs_data	= _data;
2464 	ffs->raw_descs		= raw_descs;
2465 	ffs->raw_descs_length	= data - raw_descs;
2466 	ffs->fs_descs_count	= counts[0];
2467 	ffs->hs_descs_count	= counts[1];
2468 	ffs->ss_descs_count	= counts[2];
2469 	ffs->ms_os_descs_count	= os_descs_count;
2470 
2471 	return 0;
2472 
2473 error:
2474 	kfree(_data);
2475 	return ret;
2476 }
2477 
2478 static int __ffs_data_got_strings(struct ffs_data *ffs,
2479 				  char *const _data, size_t len)
2480 {
2481 	u32 str_count, needed_count, lang_count;
2482 	struct usb_gadget_strings **stringtabs, *t;
2483 	const char *data = _data;
2484 	struct usb_string *s;
2485 
2486 	ENTER();
2487 
2488 	if (unlikely(len < 16 ||
2489 		     get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2490 		     get_unaligned_le32(data + 4) != len))
2491 		goto error;
2492 	str_count  = get_unaligned_le32(data + 8);
2493 	lang_count = get_unaligned_le32(data + 12);
2494 
2495 	/* if one is zero the other must be zero */
2496 	if (unlikely(!str_count != !lang_count))
2497 		goto error;
2498 
2499 	/* Do we have at least as many strings as descriptors need? */
2500 	needed_count = ffs->strings_count;
2501 	if (unlikely(str_count < needed_count))
2502 		goto error;
2503 
2504 	/*
2505 	 * If we don't need any strings just return and free all
2506 	 * memory.
2507 	 */
2508 	if (!needed_count) {
2509 		kfree(_data);
2510 		return 0;
2511 	}
2512 
2513 	/* Allocate everything in one chunk so there's less maintenance. */
2514 	{
2515 		unsigned i = 0;
2516 		vla_group(d);
2517 		vla_item(d, struct usb_gadget_strings *, stringtabs,
2518 			lang_count + 1);
2519 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2520 		vla_item(d, struct usb_string, strings,
2521 			lang_count*(needed_count+1));
2522 
2523 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2524 
2525 		if (unlikely(!vlabuf)) {
2526 			kfree(_data);
2527 			return -ENOMEM;
2528 		}
2529 
2530 		/* Initialize the VLA pointers */
2531 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2532 		t = vla_ptr(vlabuf, d, stringtab);
2533 		i = lang_count;
2534 		do {
2535 			*stringtabs++ = t++;
2536 		} while (--i);
2537 		*stringtabs = NULL;
2538 
2539 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2540 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2541 		t = vla_ptr(vlabuf, d, stringtab);
2542 		s = vla_ptr(vlabuf, d, strings);
2543 	}
2544 
2545 	/* For each language */
2546 	data += 16;
2547 	len -= 16;
2548 
2549 	do { /* lang_count > 0 so we can use do-while */
2550 		unsigned needed = needed_count;
2551 
2552 		if (unlikely(len < 3))
2553 			goto error_free;
2554 		t->language = get_unaligned_le16(data);
2555 		t->strings  = s;
2556 		++t;
2557 
2558 		data += 2;
2559 		len -= 2;
2560 
2561 		/* For each string */
2562 		do { /* str_count > 0 so we can use do-while */
2563 			size_t length = strnlen(data, len);
2564 
2565 			if (unlikely(length == len))
2566 				goto error_free;
2567 
2568 			/*
2569 			 * User may provide more strings then we need,
2570 			 * if that's the case we simply ignore the
2571 			 * rest
2572 			 */
2573 			if (likely(needed)) {
2574 				/*
2575 				 * s->id will be set while adding
2576 				 * function to configuration so for
2577 				 * now just leave garbage here.
2578 				 */
2579 				s->s = data;
2580 				--needed;
2581 				++s;
2582 			}
2583 
2584 			data += length + 1;
2585 			len -= length + 1;
2586 		} while (--str_count);
2587 
2588 		s->id = 0;   /* terminator */
2589 		s->s = NULL;
2590 		++s;
2591 
2592 	} while (--lang_count);
2593 
2594 	/* Some garbage left? */
2595 	if (unlikely(len))
2596 		goto error_free;
2597 
2598 	/* Done! */
2599 	ffs->stringtabs = stringtabs;
2600 	ffs->raw_strings = _data;
2601 
2602 	return 0;
2603 
2604 error_free:
2605 	kfree(stringtabs);
2606 error:
2607 	kfree(_data);
2608 	return -EINVAL;
2609 }
2610 
2611 
2612 /* Events handling and management *******************************************/
2613 
2614 static void __ffs_event_add(struct ffs_data *ffs,
2615 			    enum usb_functionfs_event_type type)
2616 {
2617 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2618 	int neg = 0;
2619 
2620 	/*
2621 	 * Abort any unhandled setup
2622 	 *
2623 	 * We do not need to worry about some cmpxchg() changing value
2624 	 * of ffs->setup_state without holding the lock because when
2625 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2626 	 * the source does nothing.
2627 	 */
2628 	if (ffs->setup_state == FFS_SETUP_PENDING)
2629 		ffs->setup_state = FFS_SETUP_CANCELLED;
2630 
2631 	/*
2632 	 * Logic of this function guarantees that there are at most four pending
2633 	 * evens on ffs->ev.types queue.  This is important because the queue
2634 	 * has space for four elements only and __ffs_ep0_read_events function
2635 	 * depends on that limit as well.  If more event types are added, those
2636 	 * limits have to be revisited or guaranteed to still hold.
2637 	 */
2638 	switch (type) {
2639 	case FUNCTIONFS_RESUME:
2640 		rem_type2 = FUNCTIONFS_SUSPEND;
2641 		/* FALL THROUGH */
2642 	case FUNCTIONFS_SUSPEND:
2643 	case FUNCTIONFS_SETUP:
2644 		rem_type1 = type;
2645 		/* Discard all similar events */
2646 		break;
2647 
2648 	case FUNCTIONFS_BIND:
2649 	case FUNCTIONFS_UNBIND:
2650 	case FUNCTIONFS_DISABLE:
2651 	case FUNCTIONFS_ENABLE:
2652 		/* Discard everything other then power management. */
2653 		rem_type1 = FUNCTIONFS_SUSPEND;
2654 		rem_type2 = FUNCTIONFS_RESUME;
2655 		neg = 1;
2656 		break;
2657 
2658 	default:
2659 		WARN(1, "%d: unknown event, this should not happen\n", type);
2660 		return;
2661 	}
2662 
2663 	{
2664 		u8 *ev  = ffs->ev.types, *out = ev;
2665 		unsigned n = ffs->ev.count;
2666 		for (; n; --n, ++ev)
2667 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2668 				*out++ = *ev;
2669 			else
2670 				pr_vdebug("purging event %d\n", *ev);
2671 		ffs->ev.count = out - ffs->ev.types;
2672 	}
2673 
2674 	pr_vdebug("adding event %d\n", type);
2675 	ffs->ev.types[ffs->ev.count++] = type;
2676 	wake_up_locked(&ffs->ev.waitq);
2677 	if (ffs->ffs_eventfd)
2678 		eventfd_signal(ffs->ffs_eventfd, 1);
2679 }
2680 
2681 static void ffs_event_add(struct ffs_data *ffs,
2682 			  enum usb_functionfs_event_type type)
2683 {
2684 	unsigned long flags;
2685 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2686 	__ffs_event_add(ffs, type);
2687 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2688 }
2689 
2690 /* Bind/unbind USB function hooks *******************************************/
2691 
2692 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2693 {
2694 	int i;
2695 
2696 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2697 		if (ffs->eps_addrmap[i] == endpoint_address)
2698 			return i;
2699 	return -ENOENT;
2700 }
2701 
2702 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2703 				    struct usb_descriptor_header *desc,
2704 				    void *priv)
2705 {
2706 	struct usb_endpoint_descriptor *ds = (void *)desc;
2707 	struct ffs_function *func = priv;
2708 	struct ffs_ep *ffs_ep;
2709 	unsigned ep_desc_id;
2710 	int idx;
2711 	static const char *speed_names[] = { "full", "high", "super" };
2712 
2713 	if (type != FFS_DESCRIPTOR)
2714 		return 0;
2715 
2716 	/*
2717 	 * If ss_descriptors is not NULL, we are reading super speed
2718 	 * descriptors; if hs_descriptors is not NULL, we are reading high
2719 	 * speed descriptors; otherwise, we are reading full speed
2720 	 * descriptors.
2721 	 */
2722 	if (func->function.ss_descriptors) {
2723 		ep_desc_id = 2;
2724 		func->function.ss_descriptors[(long)valuep] = desc;
2725 	} else if (func->function.hs_descriptors) {
2726 		ep_desc_id = 1;
2727 		func->function.hs_descriptors[(long)valuep] = desc;
2728 	} else {
2729 		ep_desc_id = 0;
2730 		func->function.fs_descriptors[(long)valuep]    = desc;
2731 	}
2732 
2733 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2734 		return 0;
2735 
2736 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2737 	if (idx < 0)
2738 		return idx;
2739 
2740 	ffs_ep = func->eps + idx;
2741 
2742 	if (unlikely(ffs_ep->descs[ep_desc_id])) {
2743 		pr_err("two %sspeed descriptors for EP %d\n",
2744 			  speed_names[ep_desc_id],
2745 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2746 		return -EINVAL;
2747 	}
2748 	ffs_ep->descs[ep_desc_id] = ds;
2749 
2750 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2751 	if (ffs_ep->ep) {
2752 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2753 		if (!ds->wMaxPacketSize)
2754 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2755 	} else {
2756 		struct usb_request *req;
2757 		struct usb_ep *ep;
2758 		u8 bEndpointAddress;
2759 
2760 		/*
2761 		 * We back up bEndpointAddress because autoconfig overwrites
2762 		 * it with physical endpoint address.
2763 		 */
2764 		bEndpointAddress = ds->bEndpointAddress;
2765 		pr_vdebug("autoconfig\n");
2766 		ep = usb_ep_autoconfig(func->gadget, ds);
2767 		if (unlikely(!ep))
2768 			return -ENOTSUPP;
2769 		ep->driver_data = func->eps + idx;
2770 
2771 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2772 		if (unlikely(!req))
2773 			return -ENOMEM;
2774 
2775 		ffs_ep->ep  = ep;
2776 		ffs_ep->req = req;
2777 		func->eps_revmap[ds->bEndpointAddress &
2778 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2779 		/*
2780 		 * If we use virtual address mapping, we restore
2781 		 * original bEndpointAddress value.
2782 		 */
2783 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2784 			ds->bEndpointAddress = bEndpointAddress;
2785 	}
2786 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2787 
2788 	return 0;
2789 }
2790 
2791 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2792 				   struct usb_descriptor_header *desc,
2793 				   void *priv)
2794 {
2795 	struct ffs_function *func = priv;
2796 	unsigned idx;
2797 	u8 newValue;
2798 
2799 	switch (type) {
2800 	default:
2801 	case FFS_DESCRIPTOR:
2802 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2803 		return 0;
2804 
2805 	case FFS_INTERFACE:
2806 		idx = *valuep;
2807 		if (func->interfaces_nums[idx] < 0) {
2808 			int id = usb_interface_id(func->conf, &func->function);
2809 			if (unlikely(id < 0))
2810 				return id;
2811 			func->interfaces_nums[idx] = id;
2812 		}
2813 		newValue = func->interfaces_nums[idx];
2814 		break;
2815 
2816 	case FFS_STRING:
2817 		/* String' IDs are allocated when fsf_data is bound to cdev */
2818 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2819 		break;
2820 
2821 	case FFS_ENDPOINT:
2822 		/*
2823 		 * USB_DT_ENDPOINT are handled in
2824 		 * __ffs_func_bind_do_descs().
2825 		 */
2826 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2827 			return 0;
2828 
2829 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2830 		if (unlikely(!func->eps[idx].ep))
2831 			return -EINVAL;
2832 
2833 		{
2834 			struct usb_endpoint_descriptor **descs;
2835 			descs = func->eps[idx].descs;
2836 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2837 		}
2838 		break;
2839 	}
2840 
2841 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2842 	*valuep = newValue;
2843 	return 0;
2844 }
2845 
2846 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2847 				      struct usb_os_desc_header *h, void *data,
2848 				      unsigned len, void *priv)
2849 {
2850 	struct ffs_function *func = priv;
2851 	u8 length = 0;
2852 
2853 	switch (type) {
2854 	case FFS_OS_DESC_EXT_COMPAT: {
2855 		struct usb_ext_compat_desc *desc = data;
2856 		struct usb_os_desc_table *t;
2857 
2858 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2859 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2860 		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2861 		       ARRAY_SIZE(desc->CompatibleID) +
2862 		       ARRAY_SIZE(desc->SubCompatibleID));
2863 		length = sizeof(*desc);
2864 	}
2865 		break;
2866 	case FFS_OS_DESC_EXT_PROP: {
2867 		struct usb_ext_prop_desc *desc = data;
2868 		struct usb_os_desc_table *t;
2869 		struct usb_os_desc_ext_prop *ext_prop;
2870 		char *ext_prop_name;
2871 		char *ext_prop_data;
2872 
2873 		t = &func->function.os_desc_table[h->interface];
2874 		t->if_id = func->interfaces_nums[h->interface];
2875 
2876 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2877 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2878 
2879 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2880 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2881 		ext_prop->data_len = le32_to_cpu(*(u32 *)
2882 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2883 		length = ext_prop->name_len + ext_prop->data_len + 14;
2884 
2885 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2886 		func->ffs->ms_os_descs_ext_prop_name_avail +=
2887 			ext_prop->name_len;
2888 
2889 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2890 		func->ffs->ms_os_descs_ext_prop_data_avail +=
2891 			ext_prop->data_len;
2892 		memcpy(ext_prop_data,
2893 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2894 		       ext_prop->data_len);
2895 		/* unicode data reported to the host as "WCHAR"s */
2896 		switch (ext_prop->type) {
2897 		case USB_EXT_PROP_UNICODE:
2898 		case USB_EXT_PROP_UNICODE_ENV:
2899 		case USB_EXT_PROP_UNICODE_LINK:
2900 		case USB_EXT_PROP_UNICODE_MULTI:
2901 			ext_prop->data_len *= 2;
2902 			break;
2903 		}
2904 		ext_prop->data = ext_prop_data;
2905 
2906 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2907 		       ext_prop->name_len);
2908 		/* property name reported to the host as "WCHAR"s */
2909 		ext_prop->name_len *= 2;
2910 		ext_prop->name = ext_prop_name;
2911 
2912 		t->os_desc->ext_prop_len +=
2913 			ext_prop->name_len + ext_prop->data_len + 14;
2914 		++t->os_desc->ext_prop_count;
2915 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2916 	}
2917 		break;
2918 	default:
2919 		pr_vdebug("unknown descriptor: %d\n", type);
2920 	}
2921 
2922 	return length;
2923 }
2924 
2925 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2926 						struct usb_configuration *c)
2927 {
2928 	struct ffs_function *func = ffs_func_from_usb(f);
2929 	struct f_fs_opts *ffs_opts =
2930 		container_of(f->fi, struct f_fs_opts, func_inst);
2931 	int ret;
2932 
2933 	ENTER();
2934 
2935 	/*
2936 	 * Legacy gadget triggers binding in functionfs_ready_callback,
2937 	 * which already uses locking; taking the same lock here would
2938 	 * cause a deadlock.
2939 	 *
2940 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
2941 	 */
2942 	if (!ffs_opts->no_configfs)
2943 		ffs_dev_lock();
2944 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2945 	func->ffs = ffs_opts->dev->ffs_data;
2946 	if (!ffs_opts->no_configfs)
2947 		ffs_dev_unlock();
2948 	if (ret)
2949 		return ERR_PTR(ret);
2950 
2951 	func->conf = c;
2952 	func->gadget = c->cdev->gadget;
2953 
2954 	/*
2955 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2956 	 * configurations are bound in sequence with list_for_each_entry,
2957 	 * in each configuration its functions are bound in sequence
2958 	 * with list_for_each_entry, so we assume no race condition
2959 	 * with regard to ffs_opts->bound access
2960 	 */
2961 	if (!ffs_opts->refcnt) {
2962 		ret = functionfs_bind(func->ffs, c->cdev);
2963 		if (ret)
2964 			return ERR_PTR(ret);
2965 	}
2966 	ffs_opts->refcnt++;
2967 	func->function.strings = func->ffs->stringtabs;
2968 
2969 	return ffs_opts;
2970 }
2971 
2972 static int _ffs_func_bind(struct usb_configuration *c,
2973 			  struct usb_function *f)
2974 {
2975 	struct ffs_function *func = ffs_func_from_usb(f);
2976 	struct ffs_data *ffs = func->ffs;
2977 
2978 	const int full = !!func->ffs->fs_descs_count;
2979 	const int high = gadget_is_dualspeed(func->gadget) &&
2980 		func->ffs->hs_descs_count;
2981 	const int super = gadget_is_superspeed(func->gadget) &&
2982 		func->ffs->ss_descs_count;
2983 
2984 	int fs_len, hs_len, ss_len, ret, i;
2985 	struct ffs_ep *eps_ptr;
2986 
2987 	/* Make it a single chunk, less management later on */
2988 	vla_group(d);
2989 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2990 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2991 		full ? ffs->fs_descs_count + 1 : 0);
2992 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2993 		high ? ffs->hs_descs_count + 1 : 0);
2994 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2995 		super ? ffs->ss_descs_count + 1 : 0);
2996 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2997 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2998 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2999 	vla_item_with_sz(d, char[16], ext_compat,
3000 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3001 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
3002 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3003 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3004 			 ffs->ms_os_descs_ext_prop_count);
3005 	vla_item_with_sz(d, char, ext_prop_name,
3006 			 ffs->ms_os_descs_ext_prop_name_len);
3007 	vla_item_with_sz(d, char, ext_prop_data,
3008 			 ffs->ms_os_descs_ext_prop_data_len);
3009 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3010 	char *vlabuf;
3011 
3012 	ENTER();
3013 
3014 	/* Has descriptors only for speeds gadget does not support */
3015 	if (unlikely(!(full | high | super)))
3016 		return -ENOTSUPP;
3017 
3018 	/* Allocate a single chunk, less management later on */
3019 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3020 	if (unlikely(!vlabuf))
3021 		return -ENOMEM;
3022 
3023 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3024 	ffs->ms_os_descs_ext_prop_name_avail =
3025 		vla_ptr(vlabuf, d, ext_prop_name);
3026 	ffs->ms_os_descs_ext_prop_data_avail =
3027 		vla_ptr(vlabuf, d, ext_prop_data);
3028 
3029 	/* Copy descriptors  */
3030 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3031 	       ffs->raw_descs_length);
3032 
3033 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3034 	eps_ptr = vla_ptr(vlabuf, d, eps);
3035 	for (i = 0; i < ffs->eps_count; i++)
3036 		eps_ptr[i].num = -1;
3037 
3038 	/* Save pointers
3039 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3040 	*/
3041 	func->eps             = vla_ptr(vlabuf, d, eps);
3042 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3043 
3044 	/*
3045 	 * Go through all the endpoint descriptors and allocate
3046 	 * endpoints first, so that later we can rewrite the endpoint
3047 	 * numbers without worrying that it may be described later on.
3048 	 */
3049 	if (likely(full)) {
3050 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3051 		fs_len = ffs_do_descs(ffs->fs_descs_count,
3052 				      vla_ptr(vlabuf, d, raw_descs),
3053 				      d_raw_descs__sz,
3054 				      __ffs_func_bind_do_descs, func);
3055 		if (unlikely(fs_len < 0)) {
3056 			ret = fs_len;
3057 			goto error;
3058 		}
3059 	} else {
3060 		fs_len = 0;
3061 	}
3062 
3063 	if (likely(high)) {
3064 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3065 		hs_len = ffs_do_descs(ffs->hs_descs_count,
3066 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3067 				      d_raw_descs__sz - fs_len,
3068 				      __ffs_func_bind_do_descs, func);
3069 		if (unlikely(hs_len < 0)) {
3070 			ret = hs_len;
3071 			goto error;
3072 		}
3073 	} else {
3074 		hs_len = 0;
3075 	}
3076 
3077 	if (likely(super)) {
3078 		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3079 		ss_len = ffs_do_descs(ffs->ss_descs_count,
3080 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3081 				d_raw_descs__sz - fs_len - hs_len,
3082 				__ffs_func_bind_do_descs, func);
3083 		if (unlikely(ss_len < 0)) {
3084 			ret = ss_len;
3085 			goto error;
3086 		}
3087 	} else {
3088 		ss_len = 0;
3089 	}
3090 
3091 	/*
3092 	 * Now handle interface numbers allocation and interface and
3093 	 * endpoint numbers rewriting.  We can do that in one go
3094 	 * now.
3095 	 */
3096 	ret = ffs_do_descs(ffs->fs_descs_count +
3097 			   (high ? ffs->hs_descs_count : 0) +
3098 			   (super ? ffs->ss_descs_count : 0),
3099 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3100 			   __ffs_func_bind_do_nums, func);
3101 	if (unlikely(ret < 0))
3102 		goto error;
3103 
3104 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3105 	if (c->cdev->use_os_string) {
3106 		for (i = 0; i < ffs->interfaces_count; ++i) {
3107 			struct usb_os_desc *desc;
3108 
3109 			desc = func->function.os_desc_table[i].os_desc =
3110 				vla_ptr(vlabuf, d, os_desc) +
3111 				i * sizeof(struct usb_os_desc);
3112 			desc->ext_compat_id =
3113 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3114 			INIT_LIST_HEAD(&desc->ext_prop);
3115 		}
3116 		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3117 				      vla_ptr(vlabuf, d, raw_descs) +
3118 				      fs_len + hs_len + ss_len,
3119 				      d_raw_descs__sz - fs_len - hs_len -
3120 				      ss_len,
3121 				      __ffs_func_bind_do_os_desc, func);
3122 		if (unlikely(ret < 0))
3123 			goto error;
3124 	}
3125 	func->function.os_desc_n =
3126 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3127 
3128 	/* And we're done */
3129 	ffs_event_add(ffs, FUNCTIONFS_BIND);
3130 	return 0;
3131 
3132 error:
3133 	/* XXX Do we need to release all claimed endpoints here? */
3134 	return ret;
3135 }
3136 
3137 static int ffs_func_bind(struct usb_configuration *c,
3138 			 struct usb_function *f)
3139 {
3140 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3141 	struct ffs_function *func = ffs_func_from_usb(f);
3142 	int ret;
3143 
3144 	if (IS_ERR(ffs_opts))
3145 		return PTR_ERR(ffs_opts);
3146 
3147 	ret = _ffs_func_bind(c, f);
3148 	if (ret && !--ffs_opts->refcnt)
3149 		functionfs_unbind(func->ffs);
3150 
3151 	return ret;
3152 }
3153 
3154 
3155 /* Other USB function hooks *************************************************/
3156 
3157 static void ffs_reset_work(struct work_struct *work)
3158 {
3159 	struct ffs_data *ffs = container_of(work,
3160 		struct ffs_data, reset_work);
3161 	ffs_data_reset(ffs);
3162 }
3163 
3164 static int ffs_func_set_alt(struct usb_function *f,
3165 			    unsigned interface, unsigned alt)
3166 {
3167 	struct ffs_function *func = ffs_func_from_usb(f);
3168 	struct ffs_data *ffs = func->ffs;
3169 	int ret = 0, intf;
3170 
3171 	if (alt != (unsigned)-1) {
3172 		intf = ffs_func_revmap_intf(func, interface);
3173 		if (unlikely(intf < 0))
3174 			return intf;
3175 	}
3176 
3177 	if (ffs->func)
3178 		ffs_func_eps_disable(ffs->func);
3179 
3180 	if (ffs->state == FFS_DEACTIVATED) {
3181 		ffs->state = FFS_CLOSING;
3182 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3183 		schedule_work(&ffs->reset_work);
3184 		return -ENODEV;
3185 	}
3186 
3187 	if (ffs->state != FFS_ACTIVE)
3188 		return -ENODEV;
3189 
3190 	if (alt == (unsigned)-1) {
3191 		ffs->func = NULL;
3192 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3193 		return 0;
3194 	}
3195 
3196 	ffs->func = func;
3197 	ret = ffs_func_eps_enable(func);
3198 	if (likely(ret >= 0))
3199 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3200 	return ret;
3201 }
3202 
3203 static void ffs_func_disable(struct usb_function *f)
3204 {
3205 	ffs_func_set_alt(f, 0, (unsigned)-1);
3206 }
3207 
3208 static int ffs_func_setup(struct usb_function *f,
3209 			  const struct usb_ctrlrequest *creq)
3210 {
3211 	struct ffs_function *func = ffs_func_from_usb(f);
3212 	struct ffs_data *ffs = func->ffs;
3213 	unsigned long flags;
3214 	int ret;
3215 
3216 	ENTER();
3217 
3218 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3219 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3220 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3221 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3222 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3223 
3224 	/*
3225 	 * Most requests directed to interface go through here
3226 	 * (notable exceptions are set/get interface) so we need to
3227 	 * handle them.  All other either handled by composite or
3228 	 * passed to usb_configuration->setup() (if one is set).  No
3229 	 * matter, we will handle requests directed to endpoint here
3230 	 * as well (as it's straightforward).  Other request recipient
3231 	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3232 	 * is being used.
3233 	 */
3234 	if (ffs->state != FFS_ACTIVE)
3235 		return -ENODEV;
3236 
3237 	switch (creq->bRequestType & USB_RECIP_MASK) {
3238 	case USB_RECIP_INTERFACE:
3239 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3240 		if (unlikely(ret < 0))
3241 			return ret;
3242 		break;
3243 
3244 	case USB_RECIP_ENDPOINT:
3245 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3246 		if (unlikely(ret < 0))
3247 			return ret;
3248 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3249 			ret = func->ffs->eps_addrmap[ret];
3250 		break;
3251 
3252 	default:
3253 		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3254 			ret = le16_to_cpu(creq->wIndex);
3255 		else
3256 			return -EOPNOTSUPP;
3257 	}
3258 
3259 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3260 	ffs->ev.setup = *creq;
3261 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3262 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3263 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3264 
3265 	return 0;
3266 }
3267 
3268 static bool ffs_func_req_match(struct usb_function *f,
3269 			       const struct usb_ctrlrequest *creq,
3270 			       bool config0)
3271 {
3272 	struct ffs_function *func = ffs_func_from_usb(f);
3273 
3274 	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3275 		return false;
3276 
3277 	switch (creq->bRequestType & USB_RECIP_MASK) {
3278 	case USB_RECIP_INTERFACE:
3279 		return (ffs_func_revmap_intf(func,
3280 					     le16_to_cpu(creq->wIndex)) >= 0);
3281 	case USB_RECIP_ENDPOINT:
3282 		return (ffs_func_revmap_ep(func,
3283 					   le16_to_cpu(creq->wIndex)) >= 0);
3284 	default:
3285 		return (bool) (func->ffs->user_flags &
3286 			       FUNCTIONFS_ALL_CTRL_RECIP);
3287 	}
3288 }
3289 
3290 static void ffs_func_suspend(struct usb_function *f)
3291 {
3292 	ENTER();
3293 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3294 }
3295 
3296 static void ffs_func_resume(struct usb_function *f)
3297 {
3298 	ENTER();
3299 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3300 }
3301 
3302 
3303 /* Endpoint and interface numbers reverse mapping ***************************/
3304 
3305 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3306 {
3307 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3308 	return num ? num : -EDOM;
3309 }
3310 
3311 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3312 {
3313 	short *nums = func->interfaces_nums;
3314 	unsigned count = func->ffs->interfaces_count;
3315 
3316 	for (; count; --count, ++nums) {
3317 		if (*nums >= 0 && *nums == intf)
3318 			return nums - func->interfaces_nums;
3319 	}
3320 
3321 	return -EDOM;
3322 }
3323 
3324 
3325 /* Devices management *******************************************************/
3326 
3327 static LIST_HEAD(ffs_devices);
3328 
3329 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3330 {
3331 	struct ffs_dev *dev;
3332 
3333 	if (!name)
3334 		return NULL;
3335 
3336 	list_for_each_entry(dev, &ffs_devices, entry) {
3337 		if (strcmp(dev->name, name) == 0)
3338 			return dev;
3339 	}
3340 
3341 	return NULL;
3342 }
3343 
3344 /*
3345  * ffs_lock must be taken by the caller of this function
3346  */
3347 static struct ffs_dev *_ffs_get_single_dev(void)
3348 {
3349 	struct ffs_dev *dev;
3350 
3351 	if (list_is_singular(&ffs_devices)) {
3352 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3353 		if (dev->single)
3354 			return dev;
3355 	}
3356 
3357 	return NULL;
3358 }
3359 
3360 /*
3361  * ffs_lock must be taken by the caller of this function
3362  */
3363 static struct ffs_dev *_ffs_find_dev(const char *name)
3364 {
3365 	struct ffs_dev *dev;
3366 
3367 	dev = _ffs_get_single_dev();
3368 	if (dev)
3369 		return dev;
3370 
3371 	return _ffs_do_find_dev(name);
3372 }
3373 
3374 /* Configfs support *********************************************************/
3375 
3376 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3377 {
3378 	return container_of(to_config_group(item), struct f_fs_opts,
3379 			    func_inst.group);
3380 }
3381 
3382 static void ffs_attr_release(struct config_item *item)
3383 {
3384 	struct f_fs_opts *opts = to_ffs_opts(item);
3385 
3386 	usb_put_function_instance(&opts->func_inst);
3387 }
3388 
3389 static struct configfs_item_operations ffs_item_ops = {
3390 	.release	= ffs_attr_release,
3391 };
3392 
3393 static const struct config_item_type ffs_func_type = {
3394 	.ct_item_ops	= &ffs_item_ops,
3395 	.ct_owner	= THIS_MODULE,
3396 };
3397 
3398 
3399 /* Function registration interface ******************************************/
3400 
3401 static void ffs_free_inst(struct usb_function_instance *f)
3402 {
3403 	struct f_fs_opts *opts;
3404 
3405 	opts = to_f_fs_opts(f);
3406 	ffs_dev_lock();
3407 	_ffs_free_dev(opts->dev);
3408 	ffs_dev_unlock();
3409 	kfree(opts);
3410 }
3411 
3412 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3413 {
3414 	if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name))
3415 		return -ENAMETOOLONG;
3416 	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3417 }
3418 
3419 static struct usb_function_instance *ffs_alloc_inst(void)
3420 {
3421 	struct f_fs_opts *opts;
3422 	struct ffs_dev *dev;
3423 
3424 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3425 	if (!opts)
3426 		return ERR_PTR(-ENOMEM);
3427 
3428 	opts->func_inst.set_inst_name = ffs_set_inst_name;
3429 	opts->func_inst.free_func_inst = ffs_free_inst;
3430 	ffs_dev_lock();
3431 	dev = _ffs_alloc_dev();
3432 	ffs_dev_unlock();
3433 	if (IS_ERR(dev)) {
3434 		kfree(opts);
3435 		return ERR_CAST(dev);
3436 	}
3437 	opts->dev = dev;
3438 	dev->opts = opts;
3439 
3440 	config_group_init_type_name(&opts->func_inst.group, "",
3441 				    &ffs_func_type);
3442 	return &opts->func_inst;
3443 }
3444 
3445 static void ffs_free(struct usb_function *f)
3446 {
3447 	kfree(ffs_func_from_usb(f));
3448 }
3449 
3450 static void ffs_func_unbind(struct usb_configuration *c,
3451 			    struct usb_function *f)
3452 {
3453 	struct ffs_function *func = ffs_func_from_usb(f);
3454 	struct ffs_data *ffs = func->ffs;
3455 	struct f_fs_opts *opts =
3456 		container_of(f->fi, struct f_fs_opts, func_inst);
3457 	struct ffs_ep *ep = func->eps;
3458 	unsigned count = ffs->eps_count;
3459 	unsigned long flags;
3460 
3461 	ENTER();
3462 	if (ffs->func == func) {
3463 		ffs_func_eps_disable(func);
3464 		ffs->func = NULL;
3465 	}
3466 
3467 	if (!--opts->refcnt)
3468 		functionfs_unbind(ffs);
3469 
3470 	/* cleanup after autoconfig */
3471 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3472 	while (count--) {
3473 		if (ep->ep && ep->req)
3474 			usb_ep_free_request(ep->ep, ep->req);
3475 		ep->req = NULL;
3476 		++ep;
3477 	}
3478 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3479 	kfree(func->eps);
3480 	func->eps = NULL;
3481 	/*
3482 	 * eps, descriptors and interfaces_nums are allocated in the
3483 	 * same chunk so only one free is required.
3484 	 */
3485 	func->function.fs_descriptors = NULL;
3486 	func->function.hs_descriptors = NULL;
3487 	func->function.ss_descriptors = NULL;
3488 	func->interfaces_nums = NULL;
3489 
3490 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3491 }
3492 
3493 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3494 {
3495 	struct ffs_function *func;
3496 
3497 	ENTER();
3498 
3499 	func = kzalloc(sizeof(*func), GFP_KERNEL);
3500 	if (unlikely(!func))
3501 		return ERR_PTR(-ENOMEM);
3502 
3503 	func->function.name    = "Function FS Gadget";
3504 
3505 	func->function.bind    = ffs_func_bind;
3506 	func->function.unbind  = ffs_func_unbind;
3507 	func->function.set_alt = ffs_func_set_alt;
3508 	func->function.disable = ffs_func_disable;
3509 	func->function.setup   = ffs_func_setup;
3510 	func->function.req_match = ffs_func_req_match;
3511 	func->function.suspend = ffs_func_suspend;
3512 	func->function.resume  = ffs_func_resume;
3513 	func->function.free_func = ffs_free;
3514 
3515 	return &func->function;
3516 }
3517 
3518 /*
3519  * ffs_lock must be taken by the caller of this function
3520  */
3521 static struct ffs_dev *_ffs_alloc_dev(void)
3522 {
3523 	struct ffs_dev *dev;
3524 	int ret;
3525 
3526 	if (_ffs_get_single_dev())
3527 			return ERR_PTR(-EBUSY);
3528 
3529 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3530 	if (!dev)
3531 		return ERR_PTR(-ENOMEM);
3532 
3533 	if (list_empty(&ffs_devices)) {
3534 		ret = functionfs_init();
3535 		if (ret) {
3536 			kfree(dev);
3537 			return ERR_PTR(ret);
3538 		}
3539 	}
3540 
3541 	list_add(&dev->entry, &ffs_devices);
3542 
3543 	return dev;
3544 }
3545 
3546 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3547 {
3548 	struct ffs_dev *existing;
3549 	int ret = 0;
3550 
3551 	ffs_dev_lock();
3552 
3553 	existing = _ffs_do_find_dev(name);
3554 	if (!existing)
3555 		strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3556 	else if (existing != dev)
3557 		ret = -EBUSY;
3558 
3559 	ffs_dev_unlock();
3560 
3561 	return ret;
3562 }
3563 EXPORT_SYMBOL_GPL(ffs_name_dev);
3564 
3565 int ffs_single_dev(struct ffs_dev *dev)
3566 {
3567 	int ret;
3568 
3569 	ret = 0;
3570 	ffs_dev_lock();
3571 
3572 	if (!list_is_singular(&ffs_devices))
3573 		ret = -EBUSY;
3574 	else
3575 		dev->single = true;
3576 
3577 	ffs_dev_unlock();
3578 	return ret;
3579 }
3580 EXPORT_SYMBOL_GPL(ffs_single_dev);
3581 
3582 /*
3583  * ffs_lock must be taken by the caller of this function
3584  */
3585 static void _ffs_free_dev(struct ffs_dev *dev)
3586 {
3587 	list_del(&dev->entry);
3588 
3589 	/* Clear the private_data pointer to stop incorrect dev access */
3590 	if (dev->ffs_data)
3591 		dev->ffs_data->private_data = NULL;
3592 
3593 	kfree(dev);
3594 	if (list_empty(&ffs_devices))
3595 		functionfs_cleanup();
3596 }
3597 
3598 static void *ffs_acquire_dev(const char *dev_name)
3599 {
3600 	struct ffs_dev *ffs_dev;
3601 
3602 	ENTER();
3603 	ffs_dev_lock();
3604 
3605 	ffs_dev = _ffs_find_dev(dev_name);
3606 	if (!ffs_dev)
3607 		ffs_dev = ERR_PTR(-ENOENT);
3608 	else if (ffs_dev->mounted)
3609 		ffs_dev = ERR_PTR(-EBUSY);
3610 	else if (ffs_dev->ffs_acquire_dev_callback &&
3611 	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3612 		ffs_dev = ERR_PTR(-ENOENT);
3613 	else
3614 		ffs_dev->mounted = true;
3615 
3616 	ffs_dev_unlock();
3617 	return ffs_dev;
3618 }
3619 
3620 static void ffs_release_dev(struct ffs_data *ffs_data)
3621 {
3622 	struct ffs_dev *ffs_dev;
3623 
3624 	ENTER();
3625 	ffs_dev_lock();
3626 
3627 	ffs_dev = ffs_data->private_data;
3628 	if (ffs_dev) {
3629 		ffs_dev->mounted = false;
3630 
3631 		if (ffs_dev->ffs_release_dev_callback)
3632 			ffs_dev->ffs_release_dev_callback(ffs_dev);
3633 	}
3634 
3635 	ffs_dev_unlock();
3636 }
3637 
3638 static int ffs_ready(struct ffs_data *ffs)
3639 {
3640 	struct ffs_dev *ffs_obj;
3641 	int ret = 0;
3642 
3643 	ENTER();
3644 	ffs_dev_lock();
3645 
3646 	ffs_obj = ffs->private_data;
3647 	if (!ffs_obj) {
3648 		ret = -EINVAL;
3649 		goto done;
3650 	}
3651 	if (WARN_ON(ffs_obj->desc_ready)) {
3652 		ret = -EBUSY;
3653 		goto done;
3654 	}
3655 
3656 	ffs_obj->desc_ready = true;
3657 	ffs_obj->ffs_data = ffs;
3658 
3659 	if (ffs_obj->ffs_ready_callback) {
3660 		ret = ffs_obj->ffs_ready_callback(ffs);
3661 		if (ret)
3662 			goto done;
3663 	}
3664 
3665 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3666 done:
3667 	ffs_dev_unlock();
3668 	return ret;
3669 }
3670 
3671 static void ffs_closed(struct ffs_data *ffs)
3672 {
3673 	struct ffs_dev *ffs_obj;
3674 	struct f_fs_opts *opts;
3675 	struct config_item *ci;
3676 
3677 	ENTER();
3678 	ffs_dev_lock();
3679 
3680 	ffs_obj = ffs->private_data;
3681 	if (!ffs_obj)
3682 		goto done;
3683 
3684 	ffs_obj->desc_ready = false;
3685 	ffs_obj->ffs_data = NULL;
3686 
3687 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3688 	    ffs_obj->ffs_closed_callback)
3689 		ffs_obj->ffs_closed_callback(ffs);
3690 
3691 	if (ffs_obj->opts)
3692 		opts = ffs_obj->opts;
3693 	else
3694 		goto done;
3695 
3696 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3697 	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3698 		goto done;
3699 
3700 	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3701 	ffs_dev_unlock();
3702 
3703 	unregister_gadget_item(ci);
3704 	return;
3705 done:
3706 	ffs_dev_unlock();
3707 }
3708 
3709 /* Misc helper functions ****************************************************/
3710 
3711 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3712 {
3713 	return nonblock
3714 		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3715 		: mutex_lock_interruptible(mutex);
3716 }
3717 
3718 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3719 {
3720 	char *data;
3721 
3722 	if (unlikely(!len))
3723 		return NULL;
3724 
3725 	data = kmalloc(len, GFP_KERNEL);
3726 	if (unlikely(!data))
3727 		return ERR_PTR(-ENOMEM);
3728 
3729 	if (unlikely(copy_from_user(data, buf, len))) {
3730 		kfree(data);
3731 		return ERR_PTR(-EFAULT);
3732 	}
3733 
3734 	pr_vdebug("Buffer from user space:\n");
3735 	ffs_dump_mem("", data, len);
3736 
3737 	return data;
3738 }
3739 
3740 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3741 MODULE_LICENSE("GPL");
3742 MODULE_AUTHOR("Michal Nazarewicz");
3743