1 /* 2 * f_fs.c -- user mode file system API for USB composite function controllers 3 * 4 * Copyright (C) 2010 Samsung Electronics 5 * Author: Michal Nazarewicz <mina86@mina86.com> 6 * 7 * Based on inode.c (GadgetFS) which was: 8 * Copyright (C) 2003-2004 David Brownell 9 * Copyright (C) 2003 Agilent Technologies 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2 of the License, or 14 * (at your option) any later version. 15 */ 16 17 18 /* #define DEBUG */ 19 /* #define VERBOSE_DEBUG */ 20 21 #include <linux/blkdev.h> 22 #include <linux/pagemap.h> 23 #include <linux/export.h> 24 #include <linux/hid.h> 25 #include <linux/module.h> 26 #include <linux/sched/signal.h> 27 #include <linux/uio.h> 28 #include <asm/unaligned.h> 29 30 #include <linux/usb/composite.h> 31 #include <linux/usb/functionfs.h> 32 33 #include <linux/aio.h> 34 #include <linux/mmu_context.h> 35 #include <linux/poll.h> 36 #include <linux/eventfd.h> 37 38 #include "u_fs.h" 39 #include "u_f.h" 40 #include "u_os_desc.h" 41 #include "configfs.h" 42 43 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ 44 45 /* Reference counter handling */ 46 static void ffs_data_get(struct ffs_data *ffs); 47 static void ffs_data_put(struct ffs_data *ffs); 48 /* Creates new ffs_data object. */ 49 static struct ffs_data *__must_check ffs_data_new(void) __attribute__((malloc)); 50 51 /* Opened counter handling. */ 52 static void ffs_data_opened(struct ffs_data *ffs); 53 static void ffs_data_closed(struct ffs_data *ffs); 54 55 /* Called with ffs->mutex held; take over ownership of data. */ 56 static int __must_check 57 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); 58 static int __must_check 59 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); 60 61 62 /* The function structure ***************************************************/ 63 64 struct ffs_ep; 65 66 struct ffs_function { 67 struct usb_configuration *conf; 68 struct usb_gadget *gadget; 69 struct ffs_data *ffs; 70 71 struct ffs_ep *eps; 72 u8 eps_revmap[16]; 73 short *interfaces_nums; 74 75 struct usb_function function; 76 }; 77 78 79 static struct ffs_function *ffs_func_from_usb(struct usb_function *f) 80 { 81 return container_of(f, struct ffs_function, function); 82 } 83 84 85 static inline enum ffs_setup_state 86 ffs_setup_state_clear_cancelled(struct ffs_data *ffs) 87 { 88 return (enum ffs_setup_state) 89 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); 90 } 91 92 93 static void ffs_func_eps_disable(struct ffs_function *func); 94 static int __must_check ffs_func_eps_enable(struct ffs_function *func); 95 96 static int ffs_func_bind(struct usb_configuration *, 97 struct usb_function *); 98 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); 99 static void ffs_func_disable(struct usb_function *); 100 static int ffs_func_setup(struct usb_function *, 101 const struct usb_ctrlrequest *); 102 static bool ffs_func_req_match(struct usb_function *, 103 const struct usb_ctrlrequest *, 104 bool config0); 105 static void ffs_func_suspend(struct usb_function *); 106 static void ffs_func_resume(struct usb_function *); 107 108 109 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); 110 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); 111 112 113 /* The endpoints structures *************************************************/ 114 115 struct ffs_ep { 116 struct usb_ep *ep; /* P: ffs->eps_lock */ 117 struct usb_request *req; /* P: epfile->mutex */ 118 119 /* [0]: full speed, [1]: high speed, [2]: super speed */ 120 struct usb_endpoint_descriptor *descs[3]; 121 122 u8 num; 123 124 int status; /* P: epfile->mutex */ 125 }; 126 127 struct ffs_epfile { 128 /* Protects ep->ep and ep->req. */ 129 struct mutex mutex; 130 131 struct ffs_data *ffs; 132 struct ffs_ep *ep; /* P: ffs->eps_lock */ 133 134 struct dentry *dentry; 135 136 /* 137 * Buffer for holding data from partial reads which may happen since 138 * we’re rounding user read requests to a multiple of a max packet size. 139 * 140 * The pointer is initialised with NULL value and may be set by 141 * __ffs_epfile_read_data function to point to a temporary buffer. 142 * 143 * In normal operation, calls to __ffs_epfile_read_buffered will consume 144 * data from said buffer and eventually free it. Importantly, while the 145 * function is using the buffer, it sets the pointer to NULL. This is 146 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered 147 * can never run concurrently (they are synchronised by epfile->mutex) 148 * so the latter will not assign a new value to the pointer. 149 * 150 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is 151 * valid) and sets the pointer to READ_BUFFER_DROP value. This special 152 * value is crux of the synchronisation between ffs_func_eps_disable and 153 * __ffs_epfile_read_data. 154 * 155 * Once __ffs_epfile_read_data is about to finish it will try to set the 156 * pointer back to its old value (as described above), but seeing as the 157 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free 158 * the buffer. 159 * 160 * == State transitions == 161 * 162 * • ptr == NULL: (initial state) 163 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP 164 * ◦ __ffs_epfile_read_buffered: nop 165 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf 166 * ◦ reading finishes: n/a, not in ‘and reading’ state 167 * • ptr == DROP: 168 * ◦ __ffs_epfile_read_buffer_free: nop 169 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL 170 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop 171 * ◦ reading finishes: n/a, not in ‘and reading’ state 172 * • ptr == buf: 173 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP 174 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading 175 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered 176 * is always called first 177 * ◦ reading finishes: n/a, not in ‘and reading’ state 178 * • ptr == NULL and reading: 179 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading 180 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 181 * ◦ __ffs_epfile_read_data: n/a, mutex is held 182 * ◦ reading finishes and … 183 * … all data read: free buf, go to ptr == NULL 184 * … otherwise: go to ptr == buf and reading 185 * • ptr == DROP and reading: 186 * ◦ __ffs_epfile_read_buffer_free: nop 187 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 188 * ◦ __ffs_epfile_read_data: n/a, mutex is held 189 * ◦ reading finishes: free buf, go to ptr == DROP 190 */ 191 struct ffs_buffer *read_buffer; 192 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN)) 193 194 char name[5]; 195 196 unsigned char in; /* P: ffs->eps_lock */ 197 unsigned char isoc; /* P: ffs->eps_lock */ 198 199 unsigned char _pad; 200 }; 201 202 struct ffs_buffer { 203 size_t length; 204 char *data; 205 char storage[]; 206 }; 207 208 /* ffs_io_data structure ***************************************************/ 209 210 struct ffs_io_data { 211 bool aio; 212 bool read; 213 214 struct kiocb *kiocb; 215 struct iov_iter data; 216 const void *to_free; 217 char *buf; 218 219 struct mm_struct *mm; 220 struct work_struct work; 221 222 struct usb_ep *ep; 223 struct usb_request *req; 224 225 struct ffs_data *ffs; 226 }; 227 228 struct ffs_desc_helper { 229 struct ffs_data *ffs; 230 unsigned interfaces_count; 231 unsigned eps_count; 232 }; 233 234 static int __must_check ffs_epfiles_create(struct ffs_data *ffs); 235 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count); 236 237 static struct dentry * 238 ffs_sb_create_file(struct super_block *sb, const char *name, void *data, 239 const struct file_operations *fops); 240 241 /* Devices management *******************************************************/ 242 243 DEFINE_MUTEX(ffs_lock); 244 EXPORT_SYMBOL_GPL(ffs_lock); 245 246 static struct ffs_dev *_ffs_find_dev(const char *name); 247 static struct ffs_dev *_ffs_alloc_dev(void); 248 static void _ffs_free_dev(struct ffs_dev *dev); 249 static void *ffs_acquire_dev(const char *dev_name); 250 static void ffs_release_dev(struct ffs_data *ffs_data); 251 static int ffs_ready(struct ffs_data *ffs); 252 static void ffs_closed(struct ffs_data *ffs); 253 254 /* Misc helper functions ****************************************************/ 255 256 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 257 __attribute__((warn_unused_result, nonnull)); 258 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 259 __attribute__((warn_unused_result, nonnull)); 260 261 262 /* Control file aka ep0 *****************************************************/ 263 264 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) 265 { 266 struct ffs_data *ffs = req->context; 267 268 complete(&ffs->ep0req_completion); 269 } 270 271 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) 272 { 273 struct usb_request *req = ffs->ep0req; 274 int ret; 275 276 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); 277 278 spin_unlock_irq(&ffs->ev.waitq.lock); 279 280 req->buf = data; 281 req->length = len; 282 283 /* 284 * UDC layer requires to provide a buffer even for ZLP, but should 285 * not use it at all. Let's provide some poisoned pointer to catch 286 * possible bug in the driver. 287 */ 288 if (req->buf == NULL) 289 req->buf = (void *)0xDEADBABE; 290 291 reinit_completion(&ffs->ep0req_completion); 292 293 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); 294 if (unlikely(ret < 0)) 295 return ret; 296 297 ret = wait_for_completion_interruptible(&ffs->ep0req_completion); 298 if (unlikely(ret)) { 299 usb_ep_dequeue(ffs->gadget->ep0, req); 300 return -EINTR; 301 } 302 303 ffs->setup_state = FFS_NO_SETUP; 304 return req->status ? req->status : req->actual; 305 } 306 307 static int __ffs_ep0_stall(struct ffs_data *ffs) 308 { 309 if (ffs->ev.can_stall) { 310 pr_vdebug("ep0 stall\n"); 311 usb_ep_set_halt(ffs->gadget->ep0); 312 ffs->setup_state = FFS_NO_SETUP; 313 return -EL2HLT; 314 } else { 315 pr_debug("bogus ep0 stall!\n"); 316 return -ESRCH; 317 } 318 } 319 320 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, 321 size_t len, loff_t *ptr) 322 { 323 struct ffs_data *ffs = file->private_data; 324 ssize_t ret; 325 char *data; 326 327 ENTER(); 328 329 /* Fast check if setup was canceled */ 330 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 331 return -EIDRM; 332 333 /* Acquire mutex */ 334 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 335 if (unlikely(ret < 0)) 336 return ret; 337 338 /* Check state */ 339 switch (ffs->state) { 340 case FFS_READ_DESCRIPTORS: 341 case FFS_READ_STRINGS: 342 /* Copy data */ 343 if (unlikely(len < 16)) { 344 ret = -EINVAL; 345 break; 346 } 347 348 data = ffs_prepare_buffer(buf, len); 349 if (IS_ERR(data)) { 350 ret = PTR_ERR(data); 351 break; 352 } 353 354 /* Handle data */ 355 if (ffs->state == FFS_READ_DESCRIPTORS) { 356 pr_info("read descriptors\n"); 357 ret = __ffs_data_got_descs(ffs, data, len); 358 if (unlikely(ret < 0)) 359 break; 360 361 ffs->state = FFS_READ_STRINGS; 362 ret = len; 363 } else { 364 pr_info("read strings\n"); 365 ret = __ffs_data_got_strings(ffs, data, len); 366 if (unlikely(ret < 0)) 367 break; 368 369 ret = ffs_epfiles_create(ffs); 370 if (unlikely(ret)) { 371 ffs->state = FFS_CLOSING; 372 break; 373 } 374 375 ffs->state = FFS_ACTIVE; 376 mutex_unlock(&ffs->mutex); 377 378 ret = ffs_ready(ffs); 379 if (unlikely(ret < 0)) { 380 ffs->state = FFS_CLOSING; 381 return ret; 382 } 383 384 return len; 385 } 386 break; 387 388 case FFS_ACTIVE: 389 data = NULL; 390 /* 391 * We're called from user space, we can use _irq 392 * rather then _irqsave 393 */ 394 spin_lock_irq(&ffs->ev.waitq.lock); 395 switch (ffs_setup_state_clear_cancelled(ffs)) { 396 case FFS_SETUP_CANCELLED: 397 ret = -EIDRM; 398 goto done_spin; 399 400 case FFS_NO_SETUP: 401 ret = -ESRCH; 402 goto done_spin; 403 404 case FFS_SETUP_PENDING: 405 break; 406 } 407 408 /* FFS_SETUP_PENDING */ 409 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { 410 spin_unlock_irq(&ffs->ev.waitq.lock); 411 ret = __ffs_ep0_stall(ffs); 412 break; 413 } 414 415 /* FFS_SETUP_PENDING and not stall */ 416 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 417 418 spin_unlock_irq(&ffs->ev.waitq.lock); 419 420 data = ffs_prepare_buffer(buf, len); 421 if (IS_ERR(data)) { 422 ret = PTR_ERR(data); 423 break; 424 } 425 426 spin_lock_irq(&ffs->ev.waitq.lock); 427 428 /* 429 * We are guaranteed to be still in FFS_ACTIVE state 430 * but the state of setup could have changed from 431 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need 432 * to check for that. If that happened we copied data 433 * from user space in vain but it's unlikely. 434 * 435 * For sure we are not in FFS_NO_SETUP since this is 436 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP 437 * transition can be performed and it's protected by 438 * mutex. 439 */ 440 if (ffs_setup_state_clear_cancelled(ffs) == 441 FFS_SETUP_CANCELLED) { 442 ret = -EIDRM; 443 done_spin: 444 spin_unlock_irq(&ffs->ev.waitq.lock); 445 } else { 446 /* unlocks spinlock */ 447 ret = __ffs_ep0_queue_wait(ffs, data, len); 448 } 449 kfree(data); 450 break; 451 452 default: 453 ret = -EBADFD; 454 break; 455 } 456 457 mutex_unlock(&ffs->mutex); 458 return ret; 459 } 460 461 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */ 462 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, 463 size_t n) 464 { 465 /* 466 * n cannot be bigger than ffs->ev.count, which cannot be bigger than 467 * size of ffs->ev.types array (which is four) so that's how much space 468 * we reserve. 469 */ 470 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)]; 471 const size_t size = n * sizeof *events; 472 unsigned i = 0; 473 474 memset(events, 0, size); 475 476 do { 477 events[i].type = ffs->ev.types[i]; 478 if (events[i].type == FUNCTIONFS_SETUP) { 479 events[i].u.setup = ffs->ev.setup; 480 ffs->setup_state = FFS_SETUP_PENDING; 481 } 482 } while (++i < n); 483 484 ffs->ev.count -= n; 485 if (ffs->ev.count) 486 memmove(ffs->ev.types, ffs->ev.types + n, 487 ffs->ev.count * sizeof *ffs->ev.types); 488 489 spin_unlock_irq(&ffs->ev.waitq.lock); 490 mutex_unlock(&ffs->mutex); 491 492 return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size; 493 } 494 495 static ssize_t ffs_ep0_read(struct file *file, char __user *buf, 496 size_t len, loff_t *ptr) 497 { 498 struct ffs_data *ffs = file->private_data; 499 char *data = NULL; 500 size_t n; 501 int ret; 502 503 ENTER(); 504 505 /* Fast check if setup was canceled */ 506 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 507 return -EIDRM; 508 509 /* Acquire mutex */ 510 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 511 if (unlikely(ret < 0)) 512 return ret; 513 514 /* Check state */ 515 if (ffs->state != FFS_ACTIVE) { 516 ret = -EBADFD; 517 goto done_mutex; 518 } 519 520 /* 521 * We're called from user space, we can use _irq rather then 522 * _irqsave 523 */ 524 spin_lock_irq(&ffs->ev.waitq.lock); 525 526 switch (ffs_setup_state_clear_cancelled(ffs)) { 527 case FFS_SETUP_CANCELLED: 528 ret = -EIDRM; 529 break; 530 531 case FFS_NO_SETUP: 532 n = len / sizeof(struct usb_functionfs_event); 533 if (unlikely(!n)) { 534 ret = -EINVAL; 535 break; 536 } 537 538 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { 539 ret = -EAGAIN; 540 break; 541 } 542 543 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, 544 ffs->ev.count)) { 545 ret = -EINTR; 546 break; 547 } 548 549 return __ffs_ep0_read_events(ffs, buf, 550 min(n, (size_t)ffs->ev.count)); 551 552 case FFS_SETUP_PENDING: 553 if (ffs->ev.setup.bRequestType & USB_DIR_IN) { 554 spin_unlock_irq(&ffs->ev.waitq.lock); 555 ret = __ffs_ep0_stall(ffs); 556 goto done_mutex; 557 } 558 559 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 560 561 spin_unlock_irq(&ffs->ev.waitq.lock); 562 563 if (likely(len)) { 564 data = kmalloc(len, GFP_KERNEL); 565 if (unlikely(!data)) { 566 ret = -ENOMEM; 567 goto done_mutex; 568 } 569 } 570 571 spin_lock_irq(&ffs->ev.waitq.lock); 572 573 /* See ffs_ep0_write() */ 574 if (ffs_setup_state_clear_cancelled(ffs) == 575 FFS_SETUP_CANCELLED) { 576 ret = -EIDRM; 577 break; 578 } 579 580 /* unlocks spinlock */ 581 ret = __ffs_ep0_queue_wait(ffs, data, len); 582 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len))) 583 ret = -EFAULT; 584 goto done_mutex; 585 586 default: 587 ret = -EBADFD; 588 break; 589 } 590 591 spin_unlock_irq(&ffs->ev.waitq.lock); 592 done_mutex: 593 mutex_unlock(&ffs->mutex); 594 kfree(data); 595 return ret; 596 } 597 598 static int ffs_ep0_open(struct inode *inode, struct file *file) 599 { 600 struct ffs_data *ffs = inode->i_private; 601 602 ENTER(); 603 604 if (unlikely(ffs->state == FFS_CLOSING)) 605 return -EBUSY; 606 607 file->private_data = ffs; 608 ffs_data_opened(ffs); 609 610 return 0; 611 } 612 613 static int ffs_ep0_release(struct inode *inode, struct file *file) 614 { 615 struct ffs_data *ffs = file->private_data; 616 617 ENTER(); 618 619 ffs_data_closed(ffs); 620 621 return 0; 622 } 623 624 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) 625 { 626 struct ffs_data *ffs = file->private_data; 627 struct usb_gadget *gadget = ffs->gadget; 628 long ret; 629 630 ENTER(); 631 632 if (code == FUNCTIONFS_INTERFACE_REVMAP) { 633 struct ffs_function *func = ffs->func; 634 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; 635 } else if (gadget && gadget->ops->ioctl) { 636 ret = gadget->ops->ioctl(gadget, code, value); 637 } else { 638 ret = -ENOTTY; 639 } 640 641 return ret; 642 } 643 644 static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait) 645 { 646 struct ffs_data *ffs = file->private_data; 647 unsigned int mask = POLLWRNORM; 648 int ret; 649 650 poll_wait(file, &ffs->ev.waitq, wait); 651 652 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 653 if (unlikely(ret < 0)) 654 return mask; 655 656 switch (ffs->state) { 657 case FFS_READ_DESCRIPTORS: 658 case FFS_READ_STRINGS: 659 mask |= POLLOUT; 660 break; 661 662 case FFS_ACTIVE: 663 switch (ffs->setup_state) { 664 case FFS_NO_SETUP: 665 if (ffs->ev.count) 666 mask |= POLLIN; 667 break; 668 669 case FFS_SETUP_PENDING: 670 case FFS_SETUP_CANCELLED: 671 mask |= (POLLIN | POLLOUT); 672 break; 673 } 674 case FFS_CLOSING: 675 break; 676 case FFS_DEACTIVATED: 677 break; 678 } 679 680 mutex_unlock(&ffs->mutex); 681 682 return mask; 683 } 684 685 static const struct file_operations ffs_ep0_operations = { 686 .llseek = no_llseek, 687 688 .open = ffs_ep0_open, 689 .write = ffs_ep0_write, 690 .read = ffs_ep0_read, 691 .release = ffs_ep0_release, 692 .unlocked_ioctl = ffs_ep0_ioctl, 693 .poll = ffs_ep0_poll, 694 }; 695 696 697 /* "Normal" endpoints operations ********************************************/ 698 699 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) 700 { 701 ENTER(); 702 if (likely(req->context)) { 703 struct ffs_ep *ep = _ep->driver_data; 704 ep->status = req->status ? req->status : req->actual; 705 complete(req->context); 706 } 707 } 708 709 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter) 710 { 711 ssize_t ret = copy_to_iter(data, data_len, iter); 712 if (likely(ret == data_len)) 713 return ret; 714 715 if (unlikely(iov_iter_count(iter))) 716 return -EFAULT; 717 718 /* 719 * Dear user space developer! 720 * 721 * TL;DR: To stop getting below error message in your kernel log, change 722 * user space code using functionfs to align read buffers to a max 723 * packet size. 724 * 725 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max 726 * packet size. When unaligned buffer is passed to functionfs, it 727 * internally uses a larger, aligned buffer so that such UDCs are happy. 728 * 729 * Unfortunately, this means that host may send more data than was 730 * requested in read(2) system call. f_fs doesn’t know what to do with 731 * that excess data so it simply drops it. 732 * 733 * Was the buffer aligned in the first place, no such problem would 734 * happen. 735 * 736 * Data may be dropped only in AIO reads. Synchronous reads are handled 737 * by splitting a request into multiple parts. This splitting may still 738 * be a problem though so it’s likely best to align the buffer 739 * regardless of it being AIO or not.. 740 * 741 * This only affects OUT endpoints, i.e. reading data with a read(2), 742 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not 743 * affected. 744 */ 745 pr_err("functionfs read size %d > requested size %zd, dropping excess data. " 746 "Align read buffer size to max packet size to avoid the problem.\n", 747 data_len, ret); 748 749 return ret; 750 } 751 752 static void ffs_user_copy_worker(struct work_struct *work) 753 { 754 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 755 work); 756 int ret = io_data->req->status ? io_data->req->status : 757 io_data->req->actual; 758 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD; 759 760 if (io_data->read && ret > 0) { 761 use_mm(io_data->mm); 762 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data); 763 unuse_mm(io_data->mm); 764 } 765 766 io_data->kiocb->ki_complete(io_data->kiocb, ret, ret); 767 768 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd) 769 eventfd_signal(io_data->ffs->ffs_eventfd, 1); 770 771 usb_ep_free_request(io_data->ep, io_data->req); 772 773 if (io_data->read) 774 kfree(io_data->to_free); 775 kfree(io_data->buf); 776 kfree(io_data); 777 } 778 779 static void ffs_epfile_async_io_complete(struct usb_ep *_ep, 780 struct usb_request *req) 781 { 782 struct ffs_io_data *io_data = req->context; 783 784 ENTER(); 785 786 INIT_WORK(&io_data->work, ffs_user_copy_worker); 787 schedule_work(&io_data->work); 788 } 789 790 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile) 791 { 792 /* 793 * See comment in struct ffs_epfile for full read_buffer pointer 794 * synchronisation story. 795 */ 796 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP); 797 if (buf && buf != READ_BUFFER_DROP) 798 kfree(buf); 799 } 800 801 /* Assumes epfile->mutex is held. */ 802 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile, 803 struct iov_iter *iter) 804 { 805 /* 806 * Null out epfile->read_buffer so ffs_func_eps_disable does not free 807 * the buffer while we are using it. See comment in struct ffs_epfile 808 * for full read_buffer pointer synchronisation story. 809 */ 810 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL); 811 ssize_t ret; 812 if (!buf || buf == READ_BUFFER_DROP) 813 return 0; 814 815 ret = copy_to_iter(buf->data, buf->length, iter); 816 if (buf->length == ret) { 817 kfree(buf); 818 return ret; 819 } 820 821 if (unlikely(iov_iter_count(iter))) { 822 ret = -EFAULT; 823 } else { 824 buf->length -= ret; 825 buf->data += ret; 826 } 827 828 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 829 kfree(buf); 830 831 return ret; 832 } 833 834 /* Assumes epfile->mutex is held. */ 835 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile, 836 void *data, int data_len, 837 struct iov_iter *iter) 838 { 839 struct ffs_buffer *buf; 840 841 ssize_t ret = copy_to_iter(data, data_len, iter); 842 if (likely(data_len == ret)) 843 return ret; 844 845 if (unlikely(iov_iter_count(iter))) 846 return -EFAULT; 847 848 /* See ffs_copy_to_iter for more context. */ 849 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.", 850 data_len, ret); 851 852 data_len -= ret; 853 buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL); 854 if (!buf) 855 return -ENOMEM; 856 buf->length = data_len; 857 buf->data = buf->storage; 858 memcpy(buf->storage, data + ret, data_len); 859 860 /* 861 * At this point read_buffer is NULL or READ_BUFFER_DROP (if 862 * ffs_func_eps_disable has been called in the meanwhile). See comment 863 * in struct ffs_epfile for full read_buffer pointer synchronisation 864 * story. 865 */ 866 if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf))) 867 kfree(buf); 868 869 return ret; 870 } 871 872 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) 873 { 874 struct ffs_epfile *epfile = file->private_data; 875 struct usb_request *req; 876 struct ffs_ep *ep; 877 char *data = NULL; 878 ssize_t ret, data_len = -EINVAL; 879 int halt; 880 881 /* Are we still active? */ 882 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 883 return -ENODEV; 884 885 /* Wait for endpoint to be enabled */ 886 ep = epfile->ep; 887 if (!ep) { 888 if (file->f_flags & O_NONBLOCK) 889 return -EAGAIN; 890 891 ret = wait_event_interruptible( 892 epfile->ffs->wait, (ep = epfile->ep)); 893 if (ret) 894 return -EINTR; 895 } 896 897 /* Do we halt? */ 898 halt = (!io_data->read == !epfile->in); 899 if (halt && epfile->isoc) 900 return -EINVAL; 901 902 /* We will be using request and read_buffer */ 903 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); 904 if (unlikely(ret)) 905 goto error; 906 907 /* Allocate & copy */ 908 if (!halt) { 909 struct usb_gadget *gadget; 910 911 /* 912 * Do we have buffered data from previous partial read? Check 913 * that for synchronous case only because we do not have 914 * facility to ‘wake up’ a pending asynchronous read and push 915 * buffered data to it which we would need to make things behave 916 * consistently. 917 */ 918 if (!io_data->aio && io_data->read) { 919 ret = __ffs_epfile_read_buffered(epfile, &io_data->data); 920 if (ret) 921 goto error_mutex; 922 } 923 924 /* 925 * if we _do_ wait above, the epfile->ffs->gadget might be NULL 926 * before the waiting completes, so do not assign to 'gadget' 927 * earlier 928 */ 929 gadget = epfile->ffs->gadget; 930 931 spin_lock_irq(&epfile->ffs->eps_lock); 932 /* In the meantime, endpoint got disabled or changed. */ 933 if (epfile->ep != ep) { 934 ret = -ESHUTDOWN; 935 goto error_lock; 936 } 937 data_len = iov_iter_count(&io_data->data); 938 /* 939 * Controller may require buffer size to be aligned to 940 * maxpacketsize of an out endpoint. 941 */ 942 if (io_data->read) 943 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len); 944 spin_unlock_irq(&epfile->ffs->eps_lock); 945 946 data = kmalloc(data_len, GFP_KERNEL); 947 if (unlikely(!data)) { 948 ret = -ENOMEM; 949 goto error_mutex; 950 } 951 if (!io_data->read && 952 !copy_from_iter_full(data, data_len, &io_data->data)) { 953 ret = -EFAULT; 954 goto error_mutex; 955 } 956 } 957 958 spin_lock_irq(&epfile->ffs->eps_lock); 959 960 if (epfile->ep != ep) { 961 /* In the meantime, endpoint got disabled or changed. */ 962 ret = -ESHUTDOWN; 963 } else if (halt) { 964 /* Halt */ 965 if (likely(epfile->ep == ep) && !WARN_ON(!ep->ep)) 966 usb_ep_set_halt(ep->ep); 967 ret = -EBADMSG; 968 } else if (unlikely(data_len == -EINVAL)) { 969 /* 970 * Sanity Check: even though data_len can't be used 971 * uninitialized at the time I write this comment, some 972 * compilers complain about this situation. 973 * In order to keep the code clean from warnings, data_len is 974 * being initialized to -EINVAL during its declaration, which 975 * means we can't rely on compiler anymore to warn no future 976 * changes won't result in data_len being used uninitialized. 977 * For such reason, we're adding this redundant sanity check 978 * here. 979 */ 980 WARN(1, "%s: data_len == -EINVAL\n", __func__); 981 ret = -EINVAL; 982 } else if (!io_data->aio) { 983 DECLARE_COMPLETION_ONSTACK(done); 984 bool interrupted = false; 985 986 req = ep->req; 987 req->buf = data; 988 req->length = data_len; 989 990 req->context = &done; 991 req->complete = ffs_epfile_io_complete; 992 993 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 994 if (unlikely(ret < 0)) 995 goto error_lock; 996 997 spin_unlock_irq(&epfile->ffs->eps_lock); 998 999 if (unlikely(wait_for_completion_interruptible(&done))) { 1000 /* 1001 * To avoid race condition with ffs_epfile_io_complete, 1002 * dequeue the request first then check 1003 * status. usb_ep_dequeue API should guarantee no race 1004 * condition with req->complete callback. 1005 */ 1006 usb_ep_dequeue(ep->ep, req); 1007 interrupted = ep->status < 0; 1008 } 1009 1010 if (interrupted) 1011 ret = -EINTR; 1012 else if (io_data->read && ep->status > 0) 1013 ret = __ffs_epfile_read_data(epfile, data, ep->status, 1014 &io_data->data); 1015 else 1016 ret = ep->status; 1017 goto error_mutex; 1018 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_KERNEL))) { 1019 ret = -ENOMEM; 1020 } else { 1021 req->buf = data; 1022 req->length = data_len; 1023 1024 io_data->buf = data; 1025 io_data->ep = ep->ep; 1026 io_data->req = req; 1027 io_data->ffs = epfile->ffs; 1028 1029 req->context = io_data; 1030 req->complete = ffs_epfile_async_io_complete; 1031 1032 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1033 if (unlikely(ret)) { 1034 usb_ep_free_request(ep->ep, req); 1035 goto error_lock; 1036 } 1037 1038 ret = -EIOCBQUEUED; 1039 /* 1040 * Do not kfree the buffer in this function. It will be freed 1041 * by ffs_user_copy_worker. 1042 */ 1043 data = NULL; 1044 } 1045 1046 error_lock: 1047 spin_unlock_irq(&epfile->ffs->eps_lock); 1048 error_mutex: 1049 mutex_unlock(&epfile->mutex); 1050 error: 1051 kfree(data); 1052 return ret; 1053 } 1054 1055 static int 1056 ffs_epfile_open(struct inode *inode, struct file *file) 1057 { 1058 struct ffs_epfile *epfile = inode->i_private; 1059 1060 ENTER(); 1061 1062 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1063 return -ENODEV; 1064 1065 file->private_data = epfile; 1066 ffs_data_opened(epfile->ffs); 1067 1068 return 0; 1069 } 1070 1071 static int ffs_aio_cancel(struct kiocb *kiocb) 1072 { 1073 struct ffs_io_data *io_data = kiocb->private; 1074 struct ffs_epfile *epfile = kiocb->ki_filp->private_data; 1075 int value; 1076 1077 ENTER(); 1078 1079 spin_lock_irq(&epfile->ffs->eps_lock); 1080 1081 if (likely(io_data && io_data->ep && io_data->req)) 1082 value = usb_ep_dequeue(io_data->ep, io_data->req); 1083 else 1084 value = -EINVAL; 1085 1086 spin_unlock_irq(&epfile->ffs->eps_lock); 1087 1088 return value; 1089 } 1090 1091 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from) 1092 { 1093 struct ffs_io_data io_data, *p = &io_data; 1094 ssize_t res; 1095 1096 ENTER(); 1097 1098 if (!is_sync_kiocb(kiocb)) { 1099 p = kmalloc(sizeof(io_data), GFP_KERNEL); 1100 if (unlikely(!p)) 1101 return -ENOMEM; 1102 p->aio = true; 1103 } else { 1104 p->aio = false; 1105 } 1106 1107 p->read = false; 1108 p->kiocb = kiocb; 1109 p->data = *from; 1110 p->mm = current->mm; 1111 1112 kiocb->private = p; 1113 1114 if (p->aio) 1115 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1116 1117 res = ffs_epfile_io(kiocb->ki_filp, p); 1118 if (res == -EIOCBQUEUED) 1119 return res; 1120 if (p->aio) 1121 kfree(p); 1122 else 1123 *from = p->data; 1124 return res; 1125 } 1126 1127 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to) 1128 { 1129 struct ffs_io_data io_data, *p = &io_data; 1130 ssize_t res; 1131 1132 ENTER(); 1133 1134 if (!is_sync_kiocb(kiocb)) { 1135 p = kmalloc(sizeof(io_data), GFP_KERNEL); 1136 if (unlikely(!p)) 1137 return -ENOMEM; 1138 p->aio = true; 1139 } else { 1140 p->aio = false; 1141 } 1142 1143 p->read = true; 1144 p->kiocb = kiocb; 1145 if (p->aio) { 1146 p->to_free = dup_iter(&p->data, to, GFP_KERNEL); 1147 if (!p->to_free) { 1148 kfree(p); 1149 return -ENOMEM; 1150 } 1151 } else { 1152 p->data = *to; 1153 p->to_free = NULL; 1154 } 1155 p->mm = current->mm; 1156 1157 kiocb->private = p; 1158 1159 if (p->aio) 1160 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1161 1162 res = ffs_epfile_io(kiocb->ki_filp, p); 1163 if (res == -EIOCBQUEUED) 1164 return res; 1165 1166 if (p->aio) { 1167 kfree(p->to_free); 1168 kfree(p); 1169 } else { 1170 *to = p->data; 1171 } 1172 return res; 1173 } 1174 1175 static int 1176 ffs_epfile_release(struct inode *inode, struct file *file) 1177 { 1178 struct ffs_epfile *epfile = inode->i_private; 1179 1180 ENTER(); 1181 1182 __ffs_epfile_read_buffer_free(epfile); 1183 ffs_data_closed(epfile->ffs); 1184 1185 return 0; 1186 } 1187 1188 static long ffs_epfile_ioctl(struct file *file, unsigned code, 1189 unsigned long value) 1190 { 1191 struct ffs_epfile *epfile = file->private_data; 1192 struct ffs_ep *ep; 1193 int ret; 1194 1195 ENTER(); 1196 1197 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1198 return -ENODEV; 1199 1200 /* Wait for endpoint to be enabled */ 1201 ep = epfile->ep; 1202 if (!ep) { 1203 if (file->f_flags & O_NONBLOCK) 1204 return -EAGAIN; 1205 1206 ret = wait_event_interruptible( 1207 epfile->ffs->wait, (ep = epfile->ep)); 1208 if (ret) 1209 return -EINTR; 1210 } 1211 1212 spin_lock_irq(&epfile->ffs->eps_lock); 1213 1214 /* In the meantime, endpoint got disabled or changed. */ 1215 if (epfile->ep != ep) { 1216 spin_unlock_irq(&epfile->ffs->eps_lock); 1217 return -ESHUTDOWN; 1218 } 1219 1220 switch (code) { 1221 case FUNCTIONFS_FIFO_STATUS: 1222 ret = usb_ep_fifo_status(epfile->ep->ep); 1223 break; 1224 case FUNCTIONFS_FIFO_FLUSH: 1225 usb_ep_fifo_flush(epfile->ep->ep); 1226 ret = 0; 1227 break; 1228 case FUNCTIONFS_CLEAR_HALT: 1229 ret = usb_ep_clear_halt(epfile->ep->ep); 1230 break; 1231 case FUNCTIONFS_ENDPOINT_REVMAP: 1232 ret = epfile->ep->num; 1233 break; 1234 case FUNCTIONFS_ENDPOINT_DESC: 1235 { 1236 int desc_idx; 1237 struct usb_endpoint_descriptor *desc; 1238 1239 switch (epfile->ffs->gadget->speed) { 1240 case USB_SPEED_SUPER: 1241 desc_idx = 2; 1242 break; 1243 case USB_SPEED_HIGH: 1244 desc_idx = 1; 1245 break; 1246 default: 1247 desc_idx = 0; 1248 } 1249 desc = epfile->ep->descs[desc_idx]; 1250 1251 spin_unlock_irq(&epfile->ffs->eps_lock); 1252 ret = copy_to_user((void *)value, desc, desc->bLength); 1253 if (ret) 1254 ret = -EFAULT; 1255 return ret; 1256 } 1257 default: 1258 ret = -ENOTTY; 1259 } 1260 spin_unlock_irq(&epfile->ffs->eps_lock); 1261 1262 return ret; 1263 } 1264 1265 static const struct file_operations ffs_epfile_operations = { 1266 .llseek = no_llseek, 1267 1268 .open = ffs_epfile_open, 1269 .write_iter = ffs_epfile_write_iter, 1270 .read_iter = ffs_epfile_read_iter, 1271 .release = ffs_epfile_release, 1272 .unlocked_ioctl = ffs_epfile_ioctl, 1273 }; 1274 1275 1276 /* File system and super block operations ***********************************/ 1277 1278 /* 1279 * Mounting the file system creates a controller file, used first for 1280 * function configuration then later for event monitoring. 1281 */ 1282 1283 static struct inode *__must_check 1284 ffs_sb_make_inode(struct super_block *sb, void *data, 1285 const struct file_operations *fops, 1286 const struct inode_operations *iops, 1287 struct ffs_file_perms *perms) 1288 { 1289 struct inode *inode; 1290 1291 ENTER(); 1292 1293 inode = new_inode(sb); 1294 1295 if (likely(inode)) { 1296 struct timespec ts = current_time(inode); 1297 1298 inode->i_ino = get_next_ino(); 1299 inode->i_mode = perms->mode; 1300 inode->i_uid = perms->uid; 1301 inode->i_gid = perms->gid; 1302 inode->i_atime = ts; 1303 inode->i_mtime = ts; 1304 inode->i_ctime = ts; 1305 inode->i_private = data; 1306 if (fops) 1307 inode->i_fop = fops; 1308 if (iops) 1309 inode->i_op = iops; 1310 } 1311 1312 return inode; 1313 } 1314 1315 /* Create "regular" file */ 1316 static struct dentry *ffs_sb_create_file(struct super_block *sb, 1317 const char *name, void *data, 1318 const struct file_operations *fops) 1319 { 1320 struct ffs_data *ffs = sb->s_fs_info; 1321 struct dentry *dentry; 1322 struct inode *inode; 1323 1324 ENTER(); 1325 1326 dentry = d_alloc_name(sb->s_root, name); 1327 if (unlikely(!dentry)) 1328 return NULL; 1329 1330 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); 1331 if (unlikely(!inode)) { 1332 dput(dentry); 1333 return NULL; 1334 } 1335 1336 d_add(dentry, inode); 1337 return dentry; 1338 } 1339 1340 /* Super block */ 1341 static const struct super_operations ffs_sb_operations = { 1342 .statfs = simple_statfs, 1343 .drop_inode = generic_delete_inode, 1344 }; 1345 1346 struct ffs_sb_fill_data { 1347 struct ffs_file_perms perms; 1348 umode_t root_mode; 1349 const char *dev_name; 1350 bool no_disconnect; 1351 struct ffs_data *ffs_data; 1352 }; 1353 1354 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent) 1355 { 1356 struct ffs_sb_fill_data *data = _data; 1357 struct inode *inode; 1358 struct ffs_data *ffs = data->ffs_data; 1359 1360 ENTER(); 1361 1362 ffs->sb = sb; 1363 data->ffs_data = NULL; 1364 sb->s_fs_info = ffs; 1365 sb->s_blocksize = PAGE_SIZE; 1366 sb->s_blocksize_bits = PAGE_SHIFT; 1367 sb->s_magic = FUNCTIONFS_MAGIC; 1368 sb->s_op = &ffs_sb_operations; 1369 sb->s_time_gran = 1; 1370 1371 /* Root inode */ 1372 data->perms.mode = data->root_mode; 1373 inode = ffs_sb_make_inode(sb, NULL, 1374 &simple_dir_operations, 1375 &simple_dir_inode_operations, 1376 &data->perms); 1377 sb->s_root = d_make_root(inode); 1378 if (unlikely(!sb->s_root)) 1379 return -ENOMEM; 1380 1381 /* EP0 file */ 1382 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs, 1383 &ffs_ep0_operations))) 1384 return -ENOMEM; 1385 1386 return 0; 1387 } 1388 1389 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts) 1390 { 1391 ENTER(); 1392 1393 if (!opts || !*opts) 1394 return 0; 1395 1396 for (;;) { 1397 unsigned long value; 1398 char *eq, *comma; 1399 1400 /* Option limit */ 1401 comma = strchr(opts, ','); 1402 if (comma) 1403 *comma = 0; 1404 1405 /* Value limit */ 1406 eq = strchr(opts, '='); 1407 if (unlikely(!eq)) { 1408 pr_err("'=' missing in %s\n", opts); 1409 return -EINVAL; 1410 } 1411 *eq = 0; 1412 1413 /* Parse value */ 1414 if (kstrtoul(eq + 1, 0, &value)) { 1415 pr_err("%s: invalid value: %s\n", opts, eq + 1); 1416 return -EINVAL; 1417 } 1418 1419 /* Interpret option */ 1420 switch (eq - opts) { 1421 case 13: 1422 if (!memcmp(opts, "no_disconnect", 13)) 1423 data->no_disconnect = !!value; 1424 else 1425 goto invalid; 1426 break; 1427 case 5: 1428 if (!memcmp(opts, "rmode", 5)) 1429 data->root_mode = (value & 0555) | S_IFDIR; 1430 else if (!memcmp(opts, "fmode", 5)) 1431 data->perms.mode = (value & 0666) | S_IFREG; 1432 else 1433 goto invalid; 1434 break; 1435 1436 case 4: 1437 if (!memcmp(opts, "mode", 4)) { 1438 data->root_mode = (value & 0555) | S_IFDIR; 1439 data->perms.mode = (value & 0666) | S_IFREG; 1440 } else { 1441 goto invalid; 1442 } 1443 break; 1444 1445 case 3: 1446 if (!memcmp(opts, "uid", 3)) { 1447 data->perms.uid = make_kuid(current_user_ns(), value); 1448 if (!uid_valid(data->perms.uid)) { 1449 pr_err("%s: unmapped value: %lu\n", opts, value); 1450 return -EINVAL; 1451 } 1452 } else if (!memcmp(opts, "gid", 3)) { 1453 data->perms.gid = make_kgid(current_user_ns(), value); 1454 if (!gid_valid(data->perms.gid)) { 1455 pr_err("%s: unmapped value: %lu\n", opts, value); 1456 return -EINVAL; 1457 } 1458 } else { 1459 goto invalid; 1460 } 1461 break; 1462 1463 default: 1464 invalid: 1465 pr_err("%s: invalid option\n", opts); 1466 return -EINVAL; 1467 } 1468 1469 /* Next iteration */ 1470 if (!comma) 1471 break; 1472 opts = comma + 1; 1473 } 1474 1475 return 0; 1476 } 1477 1478 /* "mount -t functionfs dev_name /dev/function" ends up here */ 1479 1480 static struct dentry * 1481 ffs_fs_mount(struct file_system_type *t, int flags, 1482 const char *dev_name, void *opts) 1483 { 1484 struct ffs_sb_fill_data data = { 1485 .perms = { 1486 .mode = S_IFREG | 0600, 1487 .uid = GLOBAL_ROOT_UID, 1488 .gid = GLOBAL_ROOT_GID, 1489 }, 1490 .root_mode = S_IFDIR | 0500, 1491 .no_disconnect = false, 1492 }; 1493 struct dentry *rv; 1494 int ret; 1495 void *ffs_dev; 1496 struct ffs_data *ffs; 1497 1498 ENTER(); 1499 1500 ret = ffs_fs_parse_opts(&data, opts); 1501 if (unlikely(ret < 0)) 1502 return ERR_PTR(ret); 1503 1504 ffs = ffs_data_new(); 1505 if (unlikely(!ffs)) 1506 return ERR_PTR(-ENOMEM); 1507 ffs->file_perms = data.perms; 1508 ffs->no_disconnect = data.no_disconnect; 1509 1510 ffs->dev_name = kstrdup(dev_name, GFP_KERNEL); 1511 if (unlikely(!ffs->dev_name)) { 1512 ffs_data_put(ffs); 1513 return ERR_PTR(-ENOMEM); 1514 } 1515 1516 ffs_dev = ffs_acquire_dev(dev_name); 1517 if (IS_ERR(ffs_dev)) { 1518 ffs_data_put(ffs); 1519 return ERR_CAST(ffs_dev); 1520 } 1521 ffs->private_data = ffs_dev; 1522 data.ffs_data = ffs; 1523 1524 rv = mount_nodev(t, flags, &data, ffs_sb_fill); 1525 if (IS_ERR(rv) && data.ffs_data) { 1526 ffs_release_dev(data.ffs_data); 1527 ffs_data_put(data.ffs_data); 1528 } 1529 return rv; 1530 } 1531 1532 static void 1533 ffs_fs_kill_sb(struct super_block *sb) 1534 { 1535 ENTER(); 1536 1537 kill_litter_super(sb); 1538 if (sb->s_fs_info) { 1539 ffs_release_dev(sb->s_fs_info); 1540 ffs_data_closed(sb->s_fs_info); 1541 ffs_data_put(sb->s_fs_info); 1542 } 1543 } 1544 1545 static struct file_system_type ffs_fs_type = { 1546 .owner = THIS_MODULE, 1547 .name = "functionfs", 1548 .mount = ffs_fs_mount, 1549 .kill_sb = ffs_fs_kill_sb, 1550 }; 1551 MODULE_ALIAS_FS("functionfs"); 1552 1553 1554 /* Driver's main init/cleanup functions *************************************/ 1555 1556 static int functionfs_init(void) 1557 { 1558 int ret; 1559 1560 ENTER(); 1561 1562 ret = register_filesystem(&ffs_fs_type); 1563 if (likely(!ret)) 1564 pr_info("file system registered\n"); 1565 else 1566 pr_err("failed registering file system (%d)\n", ret); 1567 1568 return ret; 1569 } 1570 1571 static void functionfs_cleanup(void) 1572 { 1573 ENTER(); 1574 1575 pr_info("unloading\n"); 1576 unregister_filesystem(&ffs_fs_type); 1577 } 1578 1579 1580 /* ffs_data and ffs_function construction and destruction code **************/ 1581 1582 static void ffs_data_clear(struct ffs_data *ffs); 1583 static void ffs_data_reset(struct ffs_data *ffs); 1584 1585 static void ffs_data_get(struct ffs_data *ffs) 1586 { 1587 ENTER(); 1588 1589 refcount_inc(&ffs->ref); 1590 } 1591 1592 static void ffs_data_opened(struct ffs_data *ffs) 1593 { 1594 ENTER(); 1595 1596 refcount_inc(&ffs->ref); 1597 if (atomic_add_return(1, &ffs->opened) == 1 && 1598 ffs->state == FFS_DEACTIVATED) { 1599 ffs->state = FFS_CLOSING; 1600 ffs_data_reset(ffs); 1601 } 1602 } 1603 1604 static void ffs_data_put(struct ffs_data *ffs) 1605 { 1606 ENTER(); 1607 1608 if (unlikely(refcount_dec_and_test(&ffs->ref))) { 1609 pr_info("%s(): freeing\n", __func__); 1610 ffs_data_clear(ffs); 1611 BUG_ON(waitqueue_active(&ffs->ev.waitq) || 1612 waitqueue_active(&ffs->ep0req_completion.wait) || 1613 waitqueue_active(&ffs->wait)); 1614 kfree(ffs->dev_name); 1615 kfree(ffs); 1616 } 1617 } 1618 1619 static void ffs_data_closed(struct ffs_data *ffs) 1620 { 1621 ENTER(); 1622 1623 if (atomic_dec_and_test(&ffs->opened)) { 1624 if (ffs->no_disconnect) { 1625 ffs->state = FFS_DEACTIVATED; 1626 if (ffs->epfiles) { 1627 ffs_epfiles_destroy(ffs->epfiles, 1628 ffs->eps_count); 1629 ffs->epfiles = NULL; 1630 } 1631 if (ffs->setup_state == FFS_SETUP_PENDING) 1632 __ffs_ep0_stall(ffs); 1633 } else { 1634 ffs->state = FFS_CLOSING; 1635 ffs_data_reset(ffs); 1636 } 1637 } 1638 if (atomic_read(&ffs->opened) < 0) { 1639 ffs->state = FFS_CLOSING; 1640 ffs_data_reset(ffs); 1641 } 1642 1643 ffs_data_put(ffs); 1644 } 1645 1646 static struct ffs_data *ffs_data_new(void) 1647 { 1648 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); 1649 if (unlikely(!ffs)) 1650 return NULL; 1651 1652 ENTER(); 1653 1654 refcount_set(&ffs->ref, 1); 1655 atomic_set(&ffs->opened, 0); 1656 ffs->state = FFS_READ_DESCRIPTORS; 1657 mutex_init(&ffs->mutex); 1658 spin_lock_init(&ffs->eps_lock); 1659 init_waitqueue_head(&ffs->ev.waitq); 1660 init_waitqueue_head(&ffs->wait); 1661 init_completion(&ffs->ep0req_completion); 1662 1663 /* XXX REVISIT need to update it in some places, or do we? */ 1664 ffs->ev.can_stall = 1; 1665 1666 return ffs; 1667 } 1668 1669 static void ffs_data_clear(struct ffs_data *ffs) 1670 { 1671 ENTER(); 1672 1673 ffs_closed(ffs); 1674 1675 BUG_ON(ffs->gadget); 1676 1677 if (ffs->epfiles) 1678 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count); 1679 1680 if (ffs->ffs_eventfd) 1681 eventfd_ctx_put(ffs->ffs_eventfd); 1682 1683 kfree(ffs->raw_descs_data); 1684 kfree(ffs->raw_strings); 1685 kfree(ffs->stringtabs); 1686 } 1687 1688 static void ffs_data_reset(struct ffs_data *ffs) 1689 { 1690 ENTER(); 1691 1692 ffs_data_clear(ffs); 1693 1694 ffs->epfiles = NULL; 1695 ffs->raw_descs_data = NULL; 1696 ffs->raw_descs = NULL; 1697 ffs->raw_strings = NULL; 1698 ffs->stringtabs = NULL; 1699 1700 ffs->raw_descs_length = 0; 1701 ffs->fs_descs_count = 0; 1702 ffs->hs_descs_count = 0; 1703 ffs->ss_descs_count = 0; 1704 1705 ffs->strings_count = 0; 1706 ffs->interfaces_count = 0; 1707 ffs->eps_count = 0; 1708 1709 ffs->ev.count = 0; 1710 1711 ffs->state = FFS_READ_DESCRIPTORS; 1712 ffs->setup_state = FFS_NO_SETUP; 1713 ffs->flags = 0; 1714 } 1715 1716 1717 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) 1718 { 1719 struct usb_gadget_strings **lang; 1720 int first_id; 1721 1722 ENTER(); 1723 1724 if (WARN_ON(ffs->state != FFS_ACTIVE 1725 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) 1726 return -EBADFD; 1727 1728 first_id = usb_string_ids_n(cdev, ffs->strings_count); 1729 if (unlikely(first_id < 0)) 1730 return first_id; 1731 1732 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); 1733 if (unlikely(!ffs->ep0req)) 1734 return -ENOMEM; 1735 ffs->ep0req->complete = ffs_ep0_complete; 1736 ffs->ep0req->context = ffs; 1737 1738 lang = ffs->stringtabs; 1739 if (lang) { 1740 for (; *lang; ++lang) { 1741 struct usb_string *str = (*lang)->strings; 1742 int id = first_id; 1743 for (; str->s; ++id, ++str) 1744 str->id = id; 1745 } 1746 } 1747 1748 ffs->gadget = cdev->gadget; 1749 ffs_data_get(ffs); 1750 return 0; 1751 } 1752 1753 static void functionfs_unbind(struct ffs_data *ffs) 1754 { 1755 ENTER(); 1756 1757 if (!WARN_ON(!ffs->gadget)) { 1758 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); 1759 ffs->ep0req = NULL; 1760 ffs->gadget = NULL; 1761 clear_bit(FFS_FL_BOUND, &ffs->flags); 1762 ffs_data_put(ffs); 1763 } 1764 } 1765 1766 static int ffs_epfiles_create(struct ffs_data *ffs) 1767 { 1768 struct ffs_epfile *epfile, *epfiles; 1769 unsigned i, count; 1770 1771 ENTER(); 1772 1773 count = ffs->eps_count; 1774 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); 1775 if (!epfiles) 1776 return -ENOMEM; 1777 1778 epfile = epfiles; 1779 for (i = 1; i <= count; ++i, ++epfile) { 1780 epfile->ffs = ffs; 1781 mutex_init(&epfile->mutex); 1782 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 1783 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]); 1784 else 1785 sprintf(epfile->name, "ep%u", i); 1786 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name, 1787 epfile, 1788 &ffs_epfile_operations); 1789 if (unlikely(!epfile->dentry)) { 1790 ffs_epfiles_destroy(epfiles, i - 1); 1791 return -ENOMEM; 1792 } 1793 } 1794 1795 ffs->epfiles = epfiles; 1796 return 0; 1797 } 1798 1799 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count) 1800 { 1801 struct ffs_epfile *epfile = epfiles; 1802 1803 ENTER(); 1804 1805 for (; count; --count, ++epfile) { 1806 BUG_ON(mutex_is_locked(&epfile->mutex)); 1807 if (epfile->dentry) { 1808 d_delete(epfile->dentry); 1809 dput(epfile->dentry); 1810 epfile->dentry = NULL; 1811 } 1812 } 1813 1814 kfree(epfiles); 1815 } 1816 1817 static void ffs_func_eps_disable(struct ffs_function *func) 1818 { 1819 struct ffs_ep *ep = func->eps; 1820 struct ffs_epfile *epfile = func->ffs->epfiles; 1821 unsigned count = func->ffs->eps_count; 1822 unsigned long flags; 1823 1824 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1825 while (count--) { 1826 /* pending requests get nuked */ 1827 if (likely(ep->ep)) 1828 usb_ep_disable(ep->ep); 1829 ++ep; 1830 1831 if (epfile) { 1832 epfile->ep = NULL; 1833 __ffs_epfile_read_buffer_free(epfile); 1834 ++epfile; 1835 } 1836 } 1837 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1838 } 1839 1840 static int ffs_func_eps_enable(struct ffs_function *func) 1841 { 1842 struct ffs_data *ffs = func->ffs; 1843 struct ffs_ep *ep = func->eps; 1844 struct ffs_epfile *epfile = ffs->epfiles; 1845 unsigned count = ffs->eps_count; 1846 unsigned long flags; 1847 int ret = 0; 1848 1849 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1850 while(count--) { 1851 struct usb_endpoint_descriptor *ds; 1852 struct usb_ss_ep_comp_descriptor *comp_desc = NULL; 1853 int needs_comp_desc = false; 1854 int desc_idx; 1855 1856 if (ffs->gadget->speed == USB_SPEED_SUPER) { 1857 desc_idx = 2; 1858 needs_comp_desc = true; 1859 } else if (ffs->gadget->speed == USB_SPEED_HIGH) 1860 desc_idx = 1; 1861 else 1862 desc_idx = 0; 1863 1864 /* fall-back to lower speed if desc missing for current speed */ 1865 do { 1866 ds = ep->descs[desc_idx]; 1867 } while (!ds && --desc_idx >= 0); 1868 1869 if (!ds) { 1870 ret = -EINVAL; 1871 break; 1872 } 1873 1874 ep->ep->driver_data = ep; 1875 ep->ep->desc = ds; 1876 1877 if (needs_comp_desc) { 1878 comp_desc = (struct usb_ss_ep_comp_descriptor *)(ds + 1879 USB_DT_ENDPOINT_SIZE); 1880 ep->ep->maxburst = comp_desc->bMaxBurst + 1; 1881 ep->ep->comp_desc = comp_desc; 1882 } 1883 1884 ret = usb_ep_enable(ep->ep); 1885 if (likely(!ret)) { 1886 epfile->ep = ep; 1887 epfile->in = usb_endpoint_dir_in(ds); 1888 epfile->isoc = usb_endpoint_xfer_isoc(ds); 1889 } else { 1890 break; 1891 } 1892 1893 ++ep; 1894 ++epfile; 1895 } 1896 1897 wake_up_interruptible(&ffs->wait); 1898 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1899 1900 return ret; 1901 } 1902 1903 1904 /* Parsing and building descriptors and strings *****************************/ 1905 1906 /* 1907 * This validates if data pointed by data is a valid USB descriptor as 1908 * well as record how many interfaces, endpoints and strings are 1909 * required by given configuration. Returns address after the 1910 * descriptor or NULL if data is invalid. 1911 */ 1912 1913 enum ffs_entity_type { 1914 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT 1915 }; 1916 1917 enum ffs_os_desc_type { 1918 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP 1919 }; 1920 1921 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, 1922 u8 *valuep, 1923 struct usb_descriptor_header *desc, 1924 void *priv); 1925 1926 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, 1927 struct usb_os_desc_header *h, void *data, 1928 unsigned len, void *priv); 1929 1930 static int __must_check ffs_do_single_desc(char *data, unsigned len, 1931 ffs_entity_callback entity, 1932 void *priv) 1933 { 1934 struct usb_descriptor_header *_ds = (void *)data; 1935 u8 length; 1936 int ret; 1937 1938 ENTER(); 1939 1940 /* At least two bytes are required: length and type */ 1941 if (len < 2) { 1942 pr_vdebug("descriptor too short\n"); 1943 return -EINVAL; 1944 } 1945 1946 /* If we have at least as many bytes as the descriptor takes? */ 1947 length = _ds->bLength; 1948 if (len < length) { 1949 pr_vdebug("descriptor longer then available data\n"); 1950 return -EINVAL; 1951 } 1952 1953 #define __entity_check_INTERFACE(val) 1 1954 #define __entity_check_STRING(val) (val) 1955 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) 1956 #define __entity(type, val) do { \ 1957 pr_vdebug("entity " #type "(%02x)\n", (val)); \ 1958 if (unlikely(!__entity_check_ ##type(val))) { \ 1959 pr_vdebug("invalid entity's value\n"); \ 1960 return -EINVAL; \ 1961 } \ 1962 ret = entity(FFS_ ##type, &val, _ds, priv); \ 1963 if (unlikely(ret < 0)) { \ 1964 pr_debug("entity " #type "(%02x); ret = %d\n", \ 1965 (val), ret); \ 1966 return ret; \ 1967 } \ 1968 } while (0) 1969 1970 /* Parse descriptor depending on type. */ 1971 switch (_ds->bDescriptorType) { 1972 case USB_DT_DEVICE: 1973 case USB_DT_CONFIG: 1974 case USB_DT_STRING: 1975 case USB_DT_DEVICE_QUALIFIER: 1976 /* function can't have any of those */ 1977 pr_vdebug("descriptor reserved for gadget: %d\n", 1978 _ds->bDescriptorType); 1979 return -EINVAL; 1980 1981 case USB_DT_INTERFACE: { 1982 struct usb_interface_descriptor *ds = (void *)_ds; 1983 pr_vdebug("interface descriptor\n"); 1984 if (length != sizeof *ds) 1985 goto inv_length; 1986 1987 __entity(INTERFACE, ds->bInterfaceNumber); 1988 if (ds->iInterface) 1989 __entity(STRING, ds->iInterface); 1990 } 1991 break; 1992 1993 case USB_DT_ENDPOINT: { 1994 struct usb_endpoint_descriptor *ds = (void *)_ds; 1995 pr_vdebug("endpoint descriptor\n"); 1996 if (length != USB_DT_ENDPOINT_SIZE && 1997 length != USB_DT_ENDPOINT_AUDIO_SIZE) 1998 goto inv_length; 1999 __entity(ENDPOINT, ds->bEndpointAddress); 2000 } 2001 break; 2002 2003 case HID_DT_HID: 2004 pr_vdebug("hid descriptor\n"); 2005 if (length != sizeof(struct hid_descriptor)) 2006 goto inv_length; 2007 break; 2008 2009 case USB_DT_OTG: 2010 if (length != sizeof(struct usb_otg_descriptor)) 2011 goto inv_length; 2012 break; 2013 2014 case USB_DT_INTERFACE_ASSOCIATION: { 2015 struct usb_interface_assoc_descriptor *ds = (void *)_ds; 2016 pr_vdebug("interface association descriptor\n"); 2017 if (length != sizeof *ds) 2018 goto inv_length; 2019 if (ds->iFunction) 2020 __entity(STRING, ds->iFunction); 2021 } 2022 break; 2023 2024 case USB_DT_SS_ENDPOINT_COMP: 2025 pr_vdebug("EP SS companion descriptor\n"); 2026 if (length != sizeof(struct usb_ss_ep_comp_descriptor)) 2027 goto inv_length; 2028 break; 2029 2030 case USB_DT_OTHER_SPEED_CONFIG: 2031 case USB_DT_INTERFACE_POWER: 2032 case USB_DT_DEBUG: 2033 case USB_DT_SECURITY: 2034 case USB_DT_CS_RADIO_CONTROL: 2035 /* TODO */ 2036 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); 2037 return -EINVAL; 2038 2039 default: 2040 /* We should never be here */ 2041 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); 2042 return -EINVAL; 2043 2044 inv_length: 2045 pr_vdebug("invalid length: %d (descriptor %d)\n", 2046 _ds->bLength, _ds->bDescriptorType); 2047 return -EINVAL; 2048 } 2049 2050 #undef __entity 2051 #undef __entity_check_DESCRIPTOR 2052 #undef __entity_check_INTERFACE 2053 #undef __entity_check_STRING 2054 #undef __entity_check_ENDPOINT 2055 2056 return length; 2057 } 2058 2059 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, 2060 ffs_entity_callback entity, void *priv) 2061 { 2062 const unsigned _len = len; 2063 unsigned long num = 0; 2064 2065 ENTER(); 2066 2067 for (;;) { 2068 int ret; 2069 2070 if (num == count) 2071 data = NULL; 2072 2073 /* Record "descriptor" entity */ 2074 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); 2075 if (unlikely(ret < 0)) { 2076 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", 2077 num, ret); 2078 return ret; 2079 } 2080 2081 if (!data) 2082 return _len - len; 2083 2084 ret = ffs_do_single_desc(data, len, entity, priv); 2085 if (unlikely(ret < 0)) { 2086 pr_debug("%s returns %d\n", __func__, ret); 2087 return ret; 2088 } 2089 2090 len -= ret; 2091 data += ret; 2092 ++num; 2093 } 2094 } 2095 2096 static int __ffs_data_do_entity(enum ffs_entity_type type, 2097 u8 *valuep, struct usb_descriptor_header *desc, 2098 void *priv) 2099 { 2100 struct ffs_desc_helper *helper = priv; 2101 struct usb_endpoint_descriptor *d; 2102 2103 ENTER(); 2104 2105 switch (type) { 2106 case FFS_DESCRIPTOR: 2107 break; 2108 2109 case FFS_INTERFACE: 2110 /* 2111 * Interfaces are indexed from zero so if we 2112 * encountered interface "n" then there are at least 2113 * "n+1" interfaces. 2114 */ 2115 if (*valuep >= helper->interfaces_count) 2116 helper->interfaces_count = *valuep + 1; 2117 break; 2118 2119 case FFS_STRING: 2120 /* 2121 * Strings are indexed from 1 (0 is reserved 2122 * for languages list) 2123 */ 2124 if (*valuep > helper->ffs->strings_count) 2125 helper->ffs->strings_count = *valuep; 2126 break; 2127 2128 case FFS_ENDPOINT: 2129 d = (void *)desc; 2130 helper->eps_count++; 2131 if (helper->eps_count >= FFS_MAX_EPS_COUNT) 2132 return -EINVAL; 2133 /* Check if descriptors for any speed were already parsed */ 2134 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count) 2135 helper->ffs->eps_addrmap[helper->eps_count] = 2136 d->bEndpointAddress; 2137 else if (helper->ffs->eps_addrmap[helper->eps_count] != 2138 d->bEndpointAddress) 2139 return -EINVAL; 2140 break; 2141 } 2142 2143 return 0; 2144 } 2145 2146 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, 2147 struct usb_os_desc_header *desc) 2148 { 2149 u16 bcd_version = le16_to_cpu(desc->bcdVersion); 2150 u16 w_index = le16_to_cpu(desc->wIndex); 2151 2152 if (bcd_version != 1) { 2153 pr_vdebug("unsupported os descriptors version: %d", 2154 bcd_version); 2155 return -EINVAL; 2156 } 2157 switch (w_index) { 2158 case 0x4: 2159 *next_type = FFS_OS_DESC_EXT_COMPAT; 2160 break; 2161 case 0x5: 2162 *next_type = FFS_OS_DESC_EXT_PROP; 2163 break; 2164 default: 2165 pr_vdebug("unsupported os descriptor type: %d", w_index); 2166 return -EINVAL; 2167 } 2168 2169 return sizeof(*desc); 2170 } 2171 2172 /* 2173 * Process all extended compatibility/extended property descriptors 2174 * of a feature descriptor 2175 */ 2176 static int __must_check ffs_do_single_os_desc(char *data, unsigned len, 2177 enum ffs_os_desc_type type, 2178 u16 feature_count, 2179 ffs_os_desc_callback entity, 2180 void *priv, 2181 struct usb_os_desc_header *h) 2182 { 2183 int ret; 2184 const unsigned _len = len; 2185 2186 ENTER(); 2187 2188 /* loop over all ext compat/ext prop descriptors */ 2189 while (feature_count--) { 2190 ret = entity(type, h, data, len, priv); 2191 if (unlikely(ret < 0)) { 2192 pr_debug("bad OS descriptor, type: %d\n", type); 2193 return ret; 2194 } 2195 data += ret; 2196 len -= ret; 2197 } 2198 return _len - len; 2199 } 2200 2201 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ 2202 static int __must_check ffs_do_os_descs(unsigned count, 2203 char *data, unsigned len, 2204 ffs_os_desc_callback entity, void *priv) 2205 { 2206 const unsigned _len = len; 2207 unsigned long num = 0; 2208 2209 ENTER(); 2210 2211 for (num = 0; num < count; ++num) { 2212 int ret; 2213 enum ffs_os_desc_type type; 2214 u16 feature_count; 2215 struct usb_os_desc_header *desc = (void *)data; 2216 2217 if (len < sizeof(*desc)) 2218 return -EINVAL; 2219 2220 /* 2221 * Record "descriptor" entity. 2222 * Process dwLength, bcdVersion, wIndex, get b/wCount. 2223 * Move the data pointer to the beginning of extended 2224 * compatibilities proper or extended properties proper 2225 * portions of the data 2226 */ 2227 if (le32_to_cpu(desc->dwLength) > len) 2228 return -EINVAL; 2229 2230 ret = __ffs_do_os_desc_header(&type, desc); 2231 if (unlikely(ret < 0)) { 2232 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", 2233 num, ret); 2234 return ret; 2235 } 2236 /* 2237 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" 2238 */ 2239 feature_count = le16_to_cpu(desc->wCount); 2240 if (type == FFS_OS_DESC_EXT_COMPAT && 2241 (feature_count > 255 || desc->Reserved)) 2242 return -EINVAL; 2243 len -= ret; 2244 data += ret; 2245 2246 /* 2247 * Process all function/property descriptors 2248 * of this Feature Descriptor 2249 */ 2250 ret = ffs_do_single_os_desc(data, len, type, 2251 feature_count, entity, priv, desc); 2252 if (unlikely(ret < 0)) { 2253 pr_debug("%s returns %d\n", __func__, ret); 2254 return ret; 2255 } 2256 2257 len -= ret; 2258 data += ret; 2259 } 2260 return _len - len; 2261 } 2262 2263 /** 2264 * Validate contents of the buffer from userspace related to OS descriptors. 2265 */ 2266 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, 2267 struct usb_os_desc_header *h, void *data, 2268 unsigned len, void *priv) 2269 { 2270 struct ffs_data *ffs = priv; 2271 u8 length; 2272 2273 ENTER(); 2274 2275 switch (type) { 2276 case FFS_OS_DESC_EXT_COMPAT: { 2277 struct usb_ext_compat_desc *d = data; 2278 int i; 2279 2280 if (len < sizeof(*d) || 2281 d->bFirstInterfaceNumber >= ffs->interfaces_count || 2282 !d->Reserved1) 2283 return -EINVAL; 2284 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) 2285 if (d->Reserved2[i]) 2286 return -EINVAL; 2287 2288 length = sizeof(struct usb_ext_compat_desc); 2289 } 2290 break; 2291 case FFS_OS_DESC_EXT_PROP: { 2292 struct usb_ext_prop_desc *d = data; 2293 u32 type, pdl; 2294 u16 pnl; 2295 2296 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) 2297 return -EINVAL; 2298 length = le32_to_cpu(d->dwSize); 2299 if (len < length) 2300 return -EINVAL; 2301 type = le32_to_cpu(d->dwPropertyDataType); 2302 if (type < USB_EXT_PROP_UNICODE || 2303 type > USB_EXT_PROP_UNICODE_MULTI) { 2304 pr_vdebug("unsupported os descriptor property type: %d", 2305 type); 2306 return -EINVAL; 2307 } 2308 pnl = le16_to_cpu(d->wPropertyNameLength); 2309 if (length < 14 + pnl) { 2310 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n", 2311 length, pnl, type); 2312 return -EINVAL; 2313 } 2314 pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl)); 2315 if (length != 14 + pnl + pdl) { 2316 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", 2317 length, pnl, pdl, type); 2318 return -EINVAL; 2319 } 2320 ++ffs->ms_os_descs_ext_prop_count; 2321 /* property name reported to the host as "WCHAR"s */ 2322 ffs->ms_os_descs_ext_prop_name_len += pnl * 2; 2323 ffs->ms_os_descs_ext_prop_data_len += pdl; 2324 } 2325 break; 2326 default: 2327 pr_vdebug("unknown descriptor: %d\n", type); 2328 return -EINVAL; 2329 } 2330 return length; 2331 } 2332 2333 static int __ffs_data_got_descs(struct ffs_data *ffs, 2334 char *const _data, size_t len) 2335 { 2336 char *data = _data, *raw_descs; 2337 unsigned os_descs_count = 0, counts[3], flags; 2338 int ret = -EINVAL, i; 2339 struct ffs_desc_helper helper; 2340 2341 ENTER(); 2342 2343 if (get_unaligned_le32(data + 4) != len) 2344 goto error; 2345 2346 switch (get_unaligned_le32(data)) { 2347 case FUNCTIONFS_DESCRIPTORS_MAGIC: 2348 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; 2349 data += 8; 2350 len -= 8; 2351 break; 2352 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: 2353 flags = get_unaligned_le32(data + 8); 2354 ffs->user_flags = flags; 2355 if (flags & ~(FUNCTIONFS_HAS_FS_DESC | 2356 FUNCTIONFS_HAS_HS_DESC | 2357 FUNCTIONFS_HAS_SS_DESC | 2358 FUNCTIONFS_HAS_MS_OS_DESC | 2359 FUNCTIONFS_VIRTUAL_ADDR | 2360 FUNCTIONFS_EVENTFD | 2361 FUNCTIONFS_ALL_CTRL_RECIP | 2362 FUNCTIONFS_CONFIG0_SETUP)) { 2363 ret = -ENOSYS; 2364 goto error; 2365 } 2366 data += 12; 2367 len -= 12; 2368 break; 2369 default: 2370 goto error; 2371 } 2372 2373 if (flags & FUNCTIONFS_EVENTFD) { 2374 if (len < 4) 2375 goto error; 2376 ffs->ffs_eventfd = 2377 eventfd_ctx_fdget((int)get_unaligned_le32(data)); 2378 if (IS_ERR(ffs->ffs_eventfd)) { 2379 ret = PTR_ERR(ffs->ffs_eventfd); 2380 ffs->ffs_eventfd = NULL; 2381 goto error; 2382 } 2383 data += 4; 2384 len -= 4; 2385 } 2386 2387 /* Read fs_count, hs_count and ss_count (if present) */ 2388 for (i = 0; i < 3; ++i) { 2389 if (!(flags & (1 << i))) { 2390 counts[i] = 0; 2391 } else if (len < 4) { 2392 goto error; 2393 } else { 2394 counts[i] = get_unaligned_le32(data); 2395 data += 4; 2396 len -= 4; 2397 } 2398 } 2399 if (flags & (1 << i)) { 2400 if (len < 4) { 2401 goto error; 2402 } 2403 os_descs_count = get_unaligned_le32(data); 2404 data += 4; 2405 len -= 4; 2406 }; 2407 2408 /* Read descriptors */ 2409 raw_descs = data; 2410 helper.ffs = ffs; 2411 for (i = 0; i < 3; ++i) { 2412 if (!counts[i]) 2413 continue; 2414 helper.interfaces_count = 0; 2415 helper.eps_count = 0; 2416 ret = ffs_do_descs(counts[i], data, len, 2417 __ffs_data_do_entity, &helper); 2418 if (ret < 0) 2419 goto error; 2420 if (!ffs->eps_count && !ffs->interfaces_count) { 2421 ffs->eps_count = helper.eps_count; 2422 ffs->interfaces_count = helper.interfaces_count; 2423 } else { 2424 if (ffs->eps_count != helper.eps_count) { 2425 ret = -EINVAL; 2426 goto error; 2427 } 2428 if (ffs->interfaces_count != helper.interfaces_count) { 2429 ret = -EINVAL; 2430 goto error; 2431 } 2432 } 2433 data += ret; 2434 len -= ret; 2435 } 2436 if (os_descs_count) { 2437 ret = ffs_do_os_descs(os_descs_count, data, len, 2438 __ffs_data_do_os_desc, ffs); 2439 if (ret < 0) 2440 goto error; 2441 data += ret; 2442 len -= ret; 2443 } 2444 2445 if (raw_descs == data || len) { 2446 ret = -EINVAL; 2447 goto error; 2448 } 2449 2450 ffs->raw_descs_data = _data; 2451 ffs->raw_descs = raw_descs; 2452 ffs->raw_descs_length = data - raw_descs; 2453 ffs->fs_descs_count = counts[0]; 2454 ffs->hs_descs_count = counts[1]; 2455 ffs->ss_descs_count = counts[2]; 2456 ffs->ms_os_descs_count = os_descs_count; 2457 2458 return 0; 2459 2460 error: 2461 kfree(_data); 2462 return ret; 2463 } 2464 2465 static int __ffs_data_got_strings(struct ffs_data *ffs, 2466 char *const _data, size_t len) 2467 { 2468 u32 str_count, needed_count, lang_count; 2469 struct usb_gadget_strings **stringtabs, *t; 2470 const char *data = _data; 2471 struct usb_string *s; 2472 2473 ENTER(); 2474 2475 if (unlikely(len < 16 || 2476 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || 2477 get_unaligned_le32(data + 4) != len)) 2478 goto error; 2479 str_count = get_unaligned_le32(data + 8); 2480 lang_count = get_unaligned_le32(data + 12); 2481 2482 /* if one is zero the other must be zero */ 2483 if (unlikely(!str_count != !lang_count)) 2484 goto error; 2485 2486 /* Do we have at least as many strings as descriptors need? */ 2487 needed_count = ffs->strings_count; 2488 if (unlikely(str_count < needed_count)) 2489 goto error; 2490 2491 /* 2492 * If we don't need any strings just return and free all 2493 * memory. 2494 */ 2495 if (!needed_count) { 2496 kfree(_data); 2497 return 0; 2498 } 2499 2500 /* Allocate everything in one chunk so there's less maintenance. */ 2501 { 2502 unsigned i = 0; 2503 vla_group(d); 2504 vla_item(d, struct usb_gadget_strings *, stringtabs, 2505 lang_count + 1); 2506 vla_item(d, struct usb_gadget_strings, stringtab, lang_count); 2507 vla_item(d, struct usb_string, strings, 2508 lang_count*(needed_count+1)); 2509 2510 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); 2511 2512 if (unlikely(!vlabuf)) { 2513 kfree(_data); 2514 return -ENOMEM; 2515 } 2516 2517 /* Initialize the VLA pointers */ 2518 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2519 t = vla_ptr(vlabuf, d, stringtab); 2520 i = lang_count; 2521 do { 2522 *stringtabs++ = t++; 2523 } while (--i); 2524 *stringtabs = NULL; 2525 2526 /* stringtabs = vlabuf = d_stringtabs for later kfree */ 2527 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2528 t = vla_ptr(vlabuf, d, stringtab); 2529 s = vla_ptr(vlabuf, d, strings); 2530 } 2531 2532 /* For each language */ 2533 data += 16; 2534 len -= 16; 2535 2536 do { /* lang_count > 0 so we can use do-while */ 2537 unsigned needed = needed_count; 2538 2539 if (unlikely(len < 3)) 2540 goto error_free; 2541 t->language = get_unaligned_le16(data); 2542 t->strings = s; 2543 ++t; 2544 2545 data += 2; 2546 len -= 2; 2547 2548 /* For each string */ 2549 do { /* str_count > 0 so we can use do-while */ 2550 size_t length = strnlen(data, len); 2551 2552 if (unlikely(length == len)) 2553 goto error_free; 2554 2555 /* 2556 * User may provide more strings then we need, 2557 * if that's the case we simply ignore the 2558 * rest 2559 */ 2560 if (likely(needed)) { 2561 /* 2562 * s->id will be set while adding 2563 * function to configuration so for 2564 * now just leave garbage here. 2565 */ 2566 s->s = data; 2567 --needed; 2568 ++s; 2569 } 2570 2571 data += length + 1; 2572 len -= length + 1; 2573 } while (--str_count); 2574 2575 s->id = 0; /* terminator */ 2576 s->s = NULL; 2577 ++s; 2578 2579 } while (--lang_count); 2580 2581 /* Some garbage left? */ 2582 if (unlikely(len)) 2583 goto error_free; 2584 2585 /* Done! */ 2586 ffs->stringtabs = stringtabs; 2587 ffs->raw_strings = _data; 2588 2589 return 0; 2590 2591 error_free: 2592 kfree(stringtabs); 2593 error: 2594 kfree(_data); 2595 return -EINVAL; 2596 } 2597 2598 2599 /* Events handling and management *******************************************/ 2600 2601 static void __ffs_event_add(struct ffs_data *ffs, 2602 enum usb_functionfs_event_type type) 2603 { 2604 enum usb_functionfs_event_type rem_type1, rem_type2 = type; 2605 int neg = 0; 2606 2607 /* 2608 * Abort any unhandled setup 2609 * 2610 * We do not need to worry about some cmpxchg() changing value 2611 * of ffs->setup_state without holding the lock because when 2612 * state is FFS_SETUP_PENDING cmpxchg() in several places in 2613 * the source does nothing. 2614 */ 2615 if (ffs->setup_state == FFS_SETUP_PENDING) 2616 ffs->setup_state = FFS_SETUP_CANCELLED; 2617 2618 /* 2619 * Logic of this function guarantees that there are at most four pending 2620 * evens on ffs->ev.types queue. This is important because the queue 2621 * has space for four elements only and __ffs_ep0_read_events function 2622 * depends on that limit as well. If more event types are added, those 2623 * limits have to be revisited or guaranteed to still hold. 2624 */ 2625 switch (type) { 2626 case FUNCTIONFS_RESUME: 2627 rem_type2 = FUNCTIONFS_SUSPEND; 2628 /* FALL THROUGH */ 2629 case FUNCTIONFS_SUSPEND: 2630 case FUNCTIONFS_SETUP: 2631 rem_type1 = type; 2632 /* Discard all similar events */ 2633 break; 2634 2635 case FUNCTIONFS_BIND: 2636 case FUNCTIONFS_UNBIND: 2637 case FUNCTIONFS_DISABLE: 2638 case FUNCTIONFS_ENABLE: 2639 /* Discard everything other then power management. */ 2640 rem_type1 = FUNCTIONFS_SUSPEND; 2641 rem_type2 = FUNCTIONFS_RESUME; 2642 neg = 1; 2643 break; 2644 2645 default: 2646 WARN(1, "%d: unknown event, this should not happen\n", type); 2647 return; 2648 } 2649 2650 { 2651 u8 *ev = ffs->ev.types, *out = ev; 2652 unsigned n = ffs->ev.count; 2653 for (; n; --n, ++ev) 2654 if ((*ev == rem_type1 || *ev == rem_type2) == neg) 2655 *out++ = *ev; 2656 else 2657 pr_vdebug("purging event %d\n", *ev); 2658 ffs->ev.count = out - ffs->ev.types; 2659 } 2660 2661 pr_vdebug("adding event %d\n", type); 2662 ffs->ev.types[ffs->ev.count++] = type; 2663 wake_up_locked(&ffs->ev.waitq); 2664 if (ffs->ffs_eventfd) 2665 eventfd_signal(ffs->ffs_eventfd, 1); 2666 } 2667 2668 static void ffs_event_add(struct ffs_data *ffs, 2669 enum usb_functionfs_event_type type) 2670 { 2671 unsigned long flags; 2672 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 2673 __ffs_event_add(ffs, type); 2674 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 2675 } 2676 2677 /* Bind/unbind USB function hooks *******************************************/ 2678 2679 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address) 2680 { 2681 int i; 2682 2683 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i) 2684 if (ffs->eps_addrmap[i] == endpoint_address) 2685 return i; 2686 return -ENOENT; 2687 } 2688 2689 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, 2690 struct usb_descriptor_header *desc, 2691 void *priv) 2692 { 2693 struct usb_endpoint_descriptor *ds = (void *)desc; 2694 struct ffs_function *func = priv; 2695 struct ffs_ep *ffs_ep; 2696 unsigned ep_desc_id; 2697 int idx; 2698 static const char *speed_names[] = { "full", "high", "super" }; 2699 2700 if (type != FFS_DESCRIPTOR) 2701 return 0; 2702 2703 /* 2704 * If ss_descriptors is not NULL, we are reading super speed 2705 * descriptors; if hs_descriptors is not NULL, we are reading high 2706 * speed descriptors; otherwise, we are reading full speed 2707 * descriptors. 2708 */ 2709 if (func->function.ss_descriptors) { 2710 ep_desc_id = 2; 2711 func->function.ss_descriptors[(long)valuep] = desc; 2712 } else if (func->function.hs_descriptors) { 2713 ep_desc_id = 1; 2714 func->function.hs_descriptors[(long)valuep] = desc; 2715 } else { 2716 ep_desc_id = 0; 2717 func->function.fs_descriptors[(long)valuep] = desc; 2718 } 2719 2720 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) 2721 return 0; 2722 2723 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1; 2724 if (idx < 0) 2725 return idx; 2726 2727 ffs_ep = func->eps + idx; 2728 2729 if (unlikely(ffs_ep->descs[ep_desc_id])) { 2730 pr_err("two %sspeed descriptors for EP %d\n", 2731 speed_names[ep_desc_id], 2732 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); 2733 return -EINVAL; 2734 } 2735 ffs_ep->descs[ep_desc_id] = ds; 2736 2737 ffs_dump_mem(": Original ep desc", ds, ds->bLength); 2738 if (ffs_ep->ep) { 2739 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; 2740 if (!ds->wMaxPacketSize) 2741 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; 2742 } else { 2743 struct usb_request *req; 2744 struct usb_ep *ep; 2745 u8 bEndpointAddress; 2746 2747 /* 2748 * We back up bEndpointAddress because autoconfig overwrites 2749 * it with physical endpoint address. 2750 */ 2751 bEndpointAddress = ds->bEndpointAddress; 2752 pr_vdebug("autoconfig\n"); 2753 ep = usb_ep_autoconfig(func->gadget, ds); 2754 if (unlikely(!ep)) 2755 return -ENOTSUPP; 2756 ep->driver_data = func->eps + idx; 2757 2758 req = usb_ep_alloc_request(ep, GFP_KERNEL); 2759 if (unlikely(!req)) 2760 return -ENOMEM; 2761 2762 ffs_ep->ep = ep; 2763 ffs_ep->req = req; 2764 func->eps_revmap[ds->bEndpointAddress & 2765 USB_ENDPOINT_NUMBER_MASK] = idx + 1; 2766 /* 2767 * If we use virtual address mapping, we restore 2768 * original bEndpointAddress value. 2769 */ 2770 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 2771 ds->bEndpointAddress = bEndpointAddress; 2772 } 2773 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); 2774 2775 return 0; 2776 } 2777 2778 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, 2779 struct usb_descriptor_header *desc, 2780 void *priv) 2781 { 2782 struct ffs_function *func = priv; 2783 unsigned idx; 2784 u8 newValue; 2785 2786 switch (type) { 2787 default: 2788 case FFS_DESCRIPTOR: 2789 /* Handled in previous pass by __ffs_func_bind_do_descs() */ 2790 return 0; 2791 2792 case FFS_INTERFACE: 2793 idx = *valuep; 2794 if (func->interfaces_nums[idx] < 0) { 2795 int id = usb_interface_id(func->conf, &func->function); 2796 if (unlikely(id < 0)) 2797 return id; 2798 func->interfaces_nums[idx] = id; 2799 } 2800 newValue = func->interfaces_nums[idx]; 2801 break; 2802 2803 case FFS_STRING: 2804 /* String' IDs are allocated when fsf_data is bound to cdev */ 2805 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; 2806 break; 2807 2808 case FFS_ENDPOINT: 2809 /* 2810 * USB_DT_ENDPOINT are handled in 2811 * __ffs_func_bind_do_descs(). 2812 */ 2813 if (desc->bDescriptorType == USB_DT_ENDPOINT) 2814 return 0; 2815 2816 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; 2817 if (unlikely(!func->eps[idx].ep)) 2818 return -EINVAL; 2819 2820 { 2821 struct usb_endpoint_descriptor **descs; 2822 descs = func->eps[idx].descs; 2823 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; 2824 } 2825 break; 2826 } 2827 2828 pr_vdebug("%02x -> %02x\n", *valuep, newValue); 2829 *valuep = newValue; 2830 return 0; 2831 } 2832 2833 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, 2834 struct usb_os_desc_header *h, void *data, 2835 unsigned len, void *priv) 2836 { 2837 struct ffs_function *func = priv; 2838 u8 length = 0; 2839 2840 switch (type) { 2841 case FFS_OS_DESC_EXT_COMPAT: { 2842 struct usb_ext_compat_desc *desc = data; 2843 struct usb_os_desc_table *t; 2844 2845 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; 2846 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; 2847 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID, 2848 ARRAY_SIZE(desc->CompatibleID) + 2849 ARRAY_SIZE(desc->SubCompatibleID)); 2850 length = sizeof(*desc); 2851 } 2852 break; 2853 case FFS_OS_DESC_EXT_PROP: { 2854 struct usb_ext_prop_desc *desc = data; 2855 struct usb_os_desc_table *t; 2856 struct usb_os_desc_ext_prop *ext_prop; 2857 char *ext_prop_name; 2858 char *ext_prop_data; 2859 2860 t = &func->function.os_desc_table[h->interface]; 2861 t->if_id = func->interfaces_nums[h->interface]; 2862 2863 ext_prop = func->ffs->ms_os_descs_ext_prop_avail; 2864 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); 2865 2866 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); 2867 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); 2868 ext_prop->data_len = le32_to_cpu(*(u32 *) 2869 usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); 2870 length = ext_prop->name_len + ext_prop->data_len + 14; 2871 2872 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; 2873 func->ffs->ms_os_descs_ext_prop_name_avail += 2874 ext_prop->name_len; 2875 2876 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; 2877 func->ffs->ms_os_descs_ext_prop_data_avail += 2878 ext_prop->data_len; 2879 memcpy(ext_prop_data, 2880 usb_ext_prop_data_ptr(data, ext_prop->name_len), 2881 ext_prop->data_len); 2882 /* unicode data reported to the host as "WCHAR"s */ 2883 switch (ext_prop->type) { 2884 case USB_EXT_PROP_UNICODE: 2885 case USB_EXT_PROP_UNICODE_ENV: 2886 case USB_EXT_PROP_UNICODE_LINK: 2887 case USB_EXT_PROP_UNICODE_MULTI: 2888 ext_prop->data_len *= 2; 2889 break; 2890 } 2891 ext_prop->data = ext_prop_data; 2892 2893 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), 2894 ext_prop->name_len); 2895 /* property name reported to the host as "WCHAR"s */ 2896 ext_prop->name_len *= 2; 2897 ext_prop->name = ext_prop_name; 2898 2899 t->os_desc->ext_prop_len += 2900 ext_prop->name_len + ext_prop->data_len + 14; 2901 ++t->os_desc->ext_prop_count; 2902 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); 2903 } 2904 break; 2905 default: 2906 pr_vdebug("unknown descriptor: %d\n", type); 2907 } 2908 2909 return length; 2910 } 2911 2912 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, 2913 struct usb_configuration *c) 2914 { 2915 struct ffs_function *func = ffs_func_from_usb(f); 2916 struct f_fs_opts *ffs_opts = 2917 container_of(f->fi, struct f_fs_opts, func_inst); 2918 int ret; 2919 2920 ENTER(); 2921 2922 /* 2923 * Legacy gadget triggers binding in functionfs_ready_callback, 2924 * which already uses locking; taking the same lock here would 2925 * cause a deadlock. 2926 * 2927 * Configfs-enabled gadgets however do need ffs_dev_lock. 2928 */ 2929 if (!ffs_opts->no_configfs) 2930 ffs_dev_lock(); 2931 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; 2932 func->ffs = ffs_opts->dev->ffs_data; 2933 if (!ffs_opts->no_configfs) 2934 ffs_dev_unlock(); 2935 if (ret) 2936 return ERR_PTR(ret); 2937 2938 func->conf = c; 2939 func->gadget = c->cdev->gadget; 2940 2941 /* 2942 * in drivers/usb/gadget/configfs.c:configfs_composite_bind() 2943 * configurations are bound in sequence with list_for_each_entry, 2944 * in each configuration its functions are bound in sequence 2945 * with list_for_each_entry, so we assume no race condition 2946 * with regard to ffs_opts->bound access 2947 */ 2948 if (!ffs_opts->refcnt) { 2949 ret = functionfs_bind(func->ffs, c->cdev); 2950 if (ret) 2951 return ERR_PTR(ret); 2952 } 2953 ffs_opts->refcnt++; 2954 func->function.strings = func->ffs->stringtabs; 2955 2956 return ffs_opts; 2957 } 2958 2959 static int _ffs_func_bind(struct usb_configuration *c, 2960 struct usb_function *f) 2961 { 2962 struct ffs_function *func = ffs_func_from_usb(f); 2963 struct ffs_data *ffs = func->ffs; 2964 2965 const int full = !!func->ffs->fs_descs_count; 2966 const int high = gadget_is_dualspeed(func->gadget) && 2967 func->ffs->hs_descs_count; 2968 const int super = gadget_is_superspeed(func->gadget) && 2969 func->ffs->ss_descs_count; 2970 2971 int fs_len, hs_len, ss_len, ret, i; 2972 struct ffs_ep *eps_ptr; 2973 2974 /* Make it a single chunk, less management later on */ 2975 vla_group(d); 2976 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); 2977 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, 2978 full ? ffs->fs_descs_count + 1 : 0); 2979 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, 2980 high ? ffs->hs_descs_count + 1 : 0); 2981 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, 2982 super ? ffs->ss_descs_count + 1 : 0); 2983 vla_item_with_sz(d, short, inums, ffs->interfaces_count); 2984 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, 2985 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2986 vla_item_with_sz(d, char[16], ext_compat, 2987 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2988 vla_item_with_sz(d, struct usb_os_desc, os_desc, 2989 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2990 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, 2991 ffs->ms_os_descs_ext_prop_count); 2992 vla_item_with_sz(d, char, ext_prop_name, 2993 ffs->ms_os_descs_ext_prop_name_len); 2994 vla_item_with_sz(d, char, ext_prop_data, 2995 ffs->ms_os_descs_ext_prop_data_len); 2996 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); 2997 char *vlabuf; 2998 2999 ENTER(); 3000 3001 /* Has descriptors only for speeds gadget does not support */ 3002 if (unlikely(!(full | high | super))) 3003 return -ENOTSUPP; 3004 3005 /* Allocate a single chunk, less management later on */ 3006 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); 3007 if (unlikely(!vlabuf)) 3008 return -ENOMEM; 3009 3010 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); 3011 ffs->ms_os_descs_ext_prop_name_avail = 3012 vla_ptr(vlabuf, d, ext_prop_name); 3013 ffs->ms_os_descs_ext_prop_data_avail = 3014 vla_ptr(vlabuf, d, ext_prop_data); 3015 3016 /* Copy descriptors */ 3017 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, 3018 ffs->raw_descs_length); 3019 3020 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); 3021 eps_ptr = vla_ptr(vlabuf, d, eps); 3022 for (i = 0; i < ffs->eps_count; i++) 3023 eps_ptr[i].num = -1; 3024 3025 /* Save pointers 3026 * d_eps == vlabuf, func->eps used to kfree vlabuf later 3027 */ 3028 func->eps = vla_ptr(vlabuf, d, eps); 3029 func->interfaces_nums = vla_ptr(vlabuf, d, inums); 3030 3031 /* 3032 * Go through all the endpoint descriptors and allocate 3033 * endpoints first, so that later we can rewrite the endpoint 3034 * numbers without worrying that it may be described later on. 3035 */ 3036 if (likely(full)) { 3037 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); 3038 fs_len = ffs_do_descs(ffs->fs_descs_count, 3039 vla_ptr(vlabuf, d, raw_descs), 3040 d_raw_descs__sz, 3041 __ffs_func_bind_do_descs, func); 3042 if (unlikely(fs_len < 0)) { 3043 ret = fs_len; 3044 goto error; 3045 } 3046 } else { 3047 fs_len = 0; 3048 } 3049 3050 if (likely(high)) { 3051 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); 3052 hs_len = ffs_do_descs(ffs->hs_descs_count, 3053 vla_ptr(vlabuf, d, raw_descs) + fs_len, 3054 d_raw_descs__sz - fs_len, 3055 __ffs_func_bind_do_descs, func); 3056 if (unlikely(hs_len < 0)) { 3057 ret = hs_len; 3058 goto error; 3059 } 3060 } else { 3061 hs_len = 0; 3062 } 3063 3064 if (likely(super)) { 3065 func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs); 3066 ss_len = ffs_do_descs(ffs->ss_descs_count, 3067 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, 3068 d_raw_descs__sz - fs_len - hs_len, 3069 __ffs_func_bind_do_descs, func); 3070 if (unlikely(ss_len < 0)) { 3071 ret = ss_len; 3072 goto error; 3073 } 3074 } else { 3075 ss_len = 0; 3076 } 3077 3078 /* 3079 * Now handle interface numbers allocation and interface and 3080 * endpoint numbers rewriting. We can do that in one go 3081 * now. 3082 */ 3083 ret = ffs_do_descs(ffs->fs_descs_count + 3084 (high ? ffs->hs_descs_count : 0) + 3085 (super ? ffs->ss_descs_count : 0), 3086 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, 3087 __ffs_func_bind_do_nums, func); 3088 if (unlikely(ret < 0)) 3089 goto error; 3090 3091 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); 3092 if (c->cdev->use_os_string) { 3093 for (i = 0; i < ffs->interfaces_count; ++i) { 3094 struct usb_os_desc *desc; 3095 3096 desc = func->function.os_desc_table[i].os_desc = 3097 vla_ptr(vlabuf, d, os_desc) + 3098 i * sizeof(struct usb_os_desc); 3099 desc->ext_compat_id = 3100 vla_ptr(vlabuf, d, ext_compat) + i * 16; 3101 INIT_LIST_HEAD(&desc->ext_prop); 3102 } 3103 ret = ffs_do_os_descs(ffs->ms_os_descs_count, 3104 vla_ptr(vlabuf, d, raw_descs) + 3105 fs_len + hs_len + ss_len, 3106 d_raw_descs__sz - fs_len - hs_len - 3107 ss_len, 3108 __ffs_func_bind_do_os_desc, func); 3109 if (unlikely(ret < 0)) 3110 goto error; 3111 } 3112 func->function.os_desc_n = 3113 c->cdev->use_os_string ? ffs->interfaces_count : 0; 3114 3115 /* And we're done */ 3116 ffs_event_add(ffs, FUNCTIONFS_BIND); 3117 return 0; 3118 3119 error: 3120 /* XXX Do we need to release all claimed endpoints here? */ 3121 return ret; 3122 } 3123 3124 static int ffs_func_bind(struct usb_configuration *c, 3125 struct usb_function *f) 3126 { 3127 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); 3128 struct ffs_function *func = ffs_func_from_usb(f); 3129 int ret; 3130 3131 if (IS_ERR(ffs_opts)) 3132 return PTR_ERR(ffs_opts); 3133 3134 ret = _ffs_func_bind(c, f); 3135 if (ret && !--ffs_opts->refcnt) 3136 functionfs_unbind(func->ffs); 3137 3138 return ret; 3139 } 3140 3141 3142 /* Other USB function hooks *************************************************/ 3143 3144 static void ffs_reset_work(struct work_struct *work) 3145 { 3146 struct ffs_data *ffs = container_of(work, 3147 struct ffs_data, reset_work); 3148 ffs_data_reset(ffs); 3149 } 3150 3151 static int ffs_func_set_alt(struct usb_function *f, 3152 unsigned interface, unsigned alt) 3153 { 3154 struct ffs_function *func = ffs_func_from_usb(f); 3155 struct ffs_data *ffs = func->ffs; 3156 int ret = 0, intf; 3157 3158 if (alt != (unsigned)-1) { 3159 intf = ffs_func_revmap_intf(func, interface); 3160 if (unlikely(intf < 0)) 3161 return intf; 3162 } 3163 3164 if (ffs->func) 3165 ffs_func_eps_disable(ffs->func); 3166 3167 if (ffs->state == FFS_DEACTIVATED) { 3168 ffs->state = FFS_CLOSING; 3169 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3170 schedule_work(&ffs->reset_work); 3171 return -ENODEV; 3172 } 3173 3174 if (ffs->state != FFS_ACTIVE) 3175 return -ENODEV; 3176 3177 if (alt == (unsigned)-1) { 3178 ffs->func = NULL; 3179 ffs_event_add(ffs, FUNCTIONFS_DISABLE); 3180 return 0; 3181 } 3182 3183 ffs->func = func; 3184 ret = ffs_func_eps_enable(func); 3185 if (likely(ret >= 0)) 3186 ffs_event_add(ffs, FUNCTIONFS_ENABLE); 3187 return ret; 3188 } 3189 3190 static void ffs_func_disable(struct usb_function *f) 3191 { 3192 ffs_func_set_alt(f, 0, (unsigned)-1); 3193 } 3194 3195 static int ffs_func_setup(struct usb_function *f, 3196 const struct usb_ctrlrequest *creq) 3197 { 3198 struct ffs_function *func = ffs_func_from_usb(f); 3199 struct ffs_data *ffs = func->ffs; 3200 unsigned long flags; 3201 int ret; 3202 3203 ENTER(); 3204 3205 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); 3206 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); 3207 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); 3208 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); 3209 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); 3210 3211 /* 3212 * Most requests directed to interface go through here 3213 * (notable exceptions are set/get interface) so we need to 3214 * handle them. All other either handled by composite or 3215 * passed to usb_configuration->setup() (if one is set). No 3216 * matter, we will handle requests directed to endpoint here 3217 * as well (as it's straightforward). Other request recipient 3218 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP 3219 * is being used. 3220 */ 3221 if (ffs->state != FFS_ACTIVE) 3222 return -ENODEV; 3223 3224 switch (creq->bRequestType & USB_RECIP_MASK) { 3225 case USB_RECIP_INTERFACE: 3226 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); 3227 if (unlikely(ret < 0)) 3228 return ret; 3229 break; 3230 3231 case USB_RECIP_ENDPOINT: 3232 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); 3233 if (unlikely(ret < 0)) 3234 return ret; 3235 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3236 ret = func->ffs->eps_addrmap[ret]; 3237 break; 3238 3239 default: 3240 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP) 3241 ret = le16_to_cpu(creq->wIndex); 3242 else 3243 return -EOPNOTSUPP; 3244 } 3245 3246 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3247 ffs->ev.setup = *creq; 3248 ffs->ev.setup.wIndex = cpu_to_le16(ret); 3249 __ffs_event_add(ffs, FUNCTIONFS_SETUP); 3250 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3251 3252 return 0; 3253 } 3254 3255 static bool ffs_func_req_match(struct usb_function *f, 3256 const struct usb_ctrlrequest *creq, 3257 bool config0) 3258 { 3259 struct ffs_function *func = ffs_func_from_usb(f); 3260 3261 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP)) 3262 return false; 3263 3264 switch (creq->bRequestType & USB_RECIP_MASK) { 3265 case USB_RECIP_INTERFACE: 3266 return (ffs_func_revmap_intf(func, 3267 le16_to_cpu(creq->wIndex)) >= 0); 3268 case USB_RECIP_ENDPOINT: 3269 return (ffs_func_revmap_ep(func, 3270 le16_to_cpu(creq->wIndex)) >= 0); 3271 default: 3272 return (bool) (func->ffs->user_flags & 3273 FUNCTIONFS_ALL_CTRL_RECIP); 3274 } 3275 } 3276 3277 static void ffs_func_suspend(struct usb_function *f) 3278 { 3279 ENTER(); 3280 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); 3281 } 3282 3283 static void ffs_func_resume(struct usb_function *f) 3284 { 3285 ENTER(); 3286 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); 3287 } 3288 3289 3290 /* Endpoint and interface numbers reverse mapping ***************************/ 3291 3292 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) 3293 { 3294 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; 3295 return num ? num : -EDOM; 3296 } 3297 3298 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) 3299 { 3300 short *nums = func->interfaces_nums; 3301 unsigned count = func->ffs->interfaces_count; 3302 3303 for (; count; --count, ++nums) { 3304 if (*nums >= 0 && *nums == intf) 3305 return nums - func->interfaces_nums; 3306 } 3307 3308 return -EDOM; 3309 } 3310 3311 3312 /* Devices management *******************************************************/ 3313 3314 static LIST_HEAD(ffs_devices); 3315 3316 static struct ffs_dev *_ffs_do_find_dev(const char *name) 3317 { 3318 struct ffs_dev *dev; 3319 3320 if (!name) 3321 return NULL; 3322 3323 list_for_each_entry(dev, &ffs_devices, entry) { 3324 if (strcmp(dev->name, name) == 0) 3325 return dev; 3326 } 3327 3328 return NULL; 3329 } 3330 3331 /* 3332 * ffs_lock must be taken by the caller of this function 3333 */ 3334 static struct ffs_dev *_ffs_get_single_dev(void) 3335 { 3336 struct ffs_dev *dev; 3337 3338 if (list_is_singular(&ffs_devices)) { 3339 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); 3340 if (dev->single) 3341 return dev; 3342 } 3343 3344 return NULL; 3345 } 3346 3347 /* 3348 * ffs_lock must be taken by the caller of this function 3349 */ 3350 static struct ffs_dev *_ffs_find_dev(const char *name) 3351 { 3352 struct ffs_dev *dev; 3353 3354 dev = _ffs_get_single_dev(); 3355 if (dev) 3356 return dev; 3357 3358 return _ffs_do_find_dev(name); 3359 } 3360 3361 /* Configfs support *********************************************************/ 3362 3363 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) 3364 { 3365 return container_of(to_config_group(item), struct f_fs_opts, 3366 func_inst.group); 3367 } 3368 3369 static void ffs_attr_release(struct config_item *item) 3370 { 3371 struct f_fs_opts *opts = to_ffs_opts(item); 3372 3373 usb_put_function_instance(&opts->func_inst); 3374 } 3375 3376 static struct configfs_item_operations ffs_item_ops = { 3377 .release = ffs_attr_release, 3378 }; 3379 3380 static struct config_item_type ffs_func_type = { 3381 .ct_item_ops = &ffs_item_ops, 3382 .ct_owner = THIS_MODULE, 3383 }; 3384 3385 3386 /* Function registration interface ******************************************/ 3387 3388 static void ffs_free_inst(struct usb_function_instance *f) 3389 { 3390 struct f_fs_opts *opts; 3391 3392 opts = to_f_fs_opts(f); 3393 ffs_dev_lock(); 3394 _ffs_free_dev(opts->dev); 3395 ffs_dev_unlock(); 3396 kfree(opts); 3397 } 3398 3399 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) 3400 { 3401 if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name)) 3402 return -ENAMETOOLONG; 3403 return ffs_name_dev(to_f_fs_opts(fi)->dev, name); 3404 } 3405 3406 static struct usb_function_instance *ffs_alloc_inst(void) 3407 { 3408 struct f_fs_opts *opts; 3409 struct ffs_dev *dev; 3410 3411 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 3412 if (!opts) 3413 return ERR_PTR(-ENOMEM); 3414 3415 opts->func_inst.set_inst_name = ffs_set_inst_name; 3416 opts->func_inst.free_func_inst = ffs_free_inst; 3417 ffs_dev_lock(); 3418 dev = _ffs_alloc_dev(); 3419 ffs_dev_unlock(); 3420 if (IS_ERR(dev)) { 3421 kfree(opts); 3422 return ERR_CAST(dev); 3423 } 3424 opts->dev = dev; 3425 dev->opts = opts; 3426 3427 config_group_init_type_name(&opts->func_inst.group, "", 3428 &ffs_func_type); 3429 return &opts->func_inst; 3430 } 3431 3432 static void ffs_free(struct usb_function *f) 3433 { 3434 kfree(ffs_func_from_usb(f)); 3435 } 3436 3437 static void ffs_func_unbind(struct usb_configuration *c, 3438 struct usb_function *f) 3439 { 3440 struct ffs_function *func = ffs_func_from_usb(f); 3441 struct ffs_data *ffs = func->ffs; 3442 struct f_fs_opts *opts = 3443 container_of(f->fi, struct f_fs_opts, func_inst); 3444 struct ffs_ep *ep = func->eps; 3445 unsigned count = ffs->eps_count; 3446 unsigned long flags; 3447 3448 ENTER(); 3449 if (ffs->func == func) { 3450 ffs_func_eps_disable(func); 3451 ffs->func = NULL; 3452 } 3453 3454 if (!--opts->refcnt) 3455 functionfs_unbind(ffs); 3456 3457 /* cleanup after autoconfig */ 3458 spin_lock_irqsave(&func->ffs->eps_lock, flags); 3459 while (count--) { 3460 if (ep->ep && ep->req) 3461 usb_ep_free_request(ep->ep, ep->req); 3462 ep->req = NULL; 3463 ++ep; 3464 } 3465 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 3466 kfree(func->eps); 3467 func->eps = NULL; 3468 /* 3469 * eps, descriptors and interfaces_nums are allocated in the 3470 * same chunk so only one free is required. 3471 */ 3472 func->function.fs_descriptors = NULL; 3473 func->function.hs_descriptors = NULL; 3474 func->function.ss_descriptors = NULL; 3475 func->interfaces_nums = NULL; 3476 3477 ffs_event_add(ffs, FUNCTIONFS_UNBIND); 3478 } 3479 3480 static struct usb_function *ffs_alloc(struct usb_function_instance *fi) 3481 { 3482 struct ffs_function *func; 3483 3484 ENTER(); 3485 3486 func = kzalloc(sizeof(*func), GFP_KERNEL); 3487 if (unlikely(!func)) 3488 return ERR_PTR(-ENOMEM); 3489 3490 func->function.name = "Function FS Gadget"; 3491 3492 func->function.bind = ffs_func_bind; 3493 func->function.unbind = ffs_func_unbind; 3494 func->function.set_alt = ffs_func_set_alt; 3495 func->function.disable = ffs_func_disable; 3496 func->function.setup = ffs_func_setup; 3497 func->function.req_match = ffs_func_req_match; 3498 func->function.suspend = ffs_func_suspend; 3499 func->function.resume = ffs_func_resume; 3500 func->function.free_func = ffs_free; 3501 3502 return &func->function; 3503 } 3504 3505 /* 3506 * ffs_lock must be taken by the caller of this function 3507 */ 3508 static struct ffs_dev *_ffs_alloc_dev(void) 3509 { 3510 struct ffs_dev *dev; 3511 int ret; 3512 3513 if (_ffs_get_single_dev()) 3514 return ERR_PTR(-EBUSY); 3515 3516 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3517 if (!dev) 3518 return ERR_PTR(-ENOMEM); 3519 3520 if (list_empty(&ffs_devices)) { 3521 ret = functionfs_init(); 3522 if (ret) { 3523 kfree(dev); 3524 return ERR_PTR(ret); 3525 } 3526 } 3527 3528 list_add(&dev->entry, &ffs_devices); 3529 3530 return dev; 3531 } 3532 3533 int ffs_name_dev(struct ffs_dev *dev, const char *name) 3534 { 3535 struct ffs_dev *existing; 3536 int ret = 0; 3537 3538 ffs_dev_lock(); 3539 3540 existing = _ffs_do_find_dev(name); 3541 if (!existing) 3542 strlcpy(dev->name, name, ARRAY_SIZE(dev->name)); 3543 else if (existing != dev) 3544 ret = -EBUSY; 3545 3546 ffs_dev_unlock(); 3547 3548 return ret; 3549 } 3550 EXPORT_SYMBOL_GPL(ffs_name_dev); 3551 3552 int ffs_single_dev(struct ffs_dev *dev) 3553 { 3554 int ret; 3555 3556 ret = 0; 3557 ffs_dev_lock(); 3558 3559 if (!list_is_singular(&ffs_devices)) 3560 ret = -EBUSY; 3561 else 3562 dev->single = true; 3563 3564 ffs_dev_unlock(); 3565 return ret; 3566 } 3567 EXPORT_SYMBOL_GPL(ffs_single_dev); 3568 3569 /* 3570 * ffs_lock must be taken by the caller of this function 3571 */ 3572 static void _ffs_free_dev(struct ffs_dev *dev) 3573 { 3574 list_del(&dev->entry); 3575 3576 /* Clear the private_data pointer to stop incorrect dev access */ 3577 if (dev->ffs_data) 3578 dev->ffs_data->private_data = NULL; 3579 3580 kfree(dev); 3581 if (list_empty(&ffs_devices)) 3582 functionfs_cleanup(); 3583 } 3584 3585 static void *ffs_acquire_dev(const char *dev_name) 3586 { 3587 struct ffs_dev *ffs_dev; 3588 3589 ENTER(); 3590 ffs_dev_lock(); 3591 3592 ffs_dev = _ffs_find_dev(dev_name); 3593 if (!ffs_dev) 3594 ffs_dev = ERR_PTR(-ENOENT); 3595 else if (ffs_dev->mounted) 3596 ffs_dev = ERR_PTR(-EBUSY); 3597 else if (ffs_dev->ffs_acquire_dev_callback && 3598 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) 3599 ffs_dev = ERR_PTR(-ENOENT); 3600 else 3601 ffs_dev->mounted = true; 3602 3603 ffs_dev_unlock(); 3604 return ffs_dev; 3605 } 3606 3607 static void ffs_release_dev(struct ffs_data *ffs_data) 3608 { 3609 struct ffs_dev *ffs_dev; 3610 3611 ENTER(); 3612 ffs_dev_lock(); 3613 3614 ffs_dev = ffs_data->private_data; 3615 if (ffs_dev) { 3616 ffs_dev->mounted = false; 3617 3618 if (ffs_dev->ffs_release_dev_callback) 3619 ffs_dev->ffs_release_dev_callback(ffs_dev); 3620 } 3621 3622 ffs_dev_unlock(); 3623 } 3624 3625 static int ffs_ready(struct ffs_data *ffs) 3626 { 3627 struct ffs_dev *ffs_obj; 3628 int ret = 0; 3629 3630 ENTER(); 3631 ffs_dev_lock(); 3632 3633 ffs_obj = ffs->private_data; 3634 if (!ffs_obj) { 3635 ret = -EINVAL; 3636 goto done; 3637 } 3638 if (WARN_ON(ffs_obj->desc_ready)) { 3639 ret = -EBUSY; 3640 goto done; 3641 } 3642 3643 ffs_obj->desc_ready = true; 3644 ffs_obj->ffs_data = ffs; 3645 3646 if (ffs_obj->ffs_ready_callback) { 3647 ret = ffs_obj->ffs_ready_callback(ffs); 3648 if (ret) 3649 goto done; 3650 } 3651 3652 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); 3653 done: 3654 ffs_dev_unlock(); 3655 return ret; 3656 } 3657 3658 static void ffs_closed(struct ffs_data *ffs) 3659 { 3660 struct ffs_dev *ffs_obj; 3661 struct f_fs_opts *opts; 3662 struct config_item *ci; 3663 3664 ENTER(); 3665 ffs_dev_lock(); 3666 3667 ffs_obj = ffs->private_data; 3668 if (!ffs_obj) 3669 goto done; 3670 3671 ffs_obj->desc_ready = false; 3672 3673 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) && 3674 ffs_obj->ffs_closed_callback) 3675 ffs_obj->ffs_closed_callback(ffs); 3676 3677 if (ffs_obj->opts) 3678 opts = ffs_obj->opts; 3679 else 3680 goto done; 3681 3682 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent 3683 || !kref_read(&opts->func_inst.group.cg_item.ci_kref)) 3684 goto done; 3685 3686 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent; 3687 ffs_dev_unlock(); 3688 3689 unregister_gadget_item(ci); 3690 return; 3691 done: 3692 ffs_dev_unlock(); 3693 } 3694 3695 /* Misc helper functions ****************************************************/ 3696 3697 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 3698 { 3699 return nonblock 3700 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN 3701 : mutex_lock_interruptible(mutex); 3702 } 3703 3704 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 3705 { 3706 char *data; 3707 3708 if (unlikely(!len)) 3709 return NULL; 3710 3711 data = kmalloc(len, GFP_KERNEL); 3712 if (unlikely(!data)) 3713 return ERR_PTR(-ENOMEM); 3714 3715 if (unlikely(copy_from_user(data, buf, len))) { 3716 kfree(data); 3717 return ERR_PTR(-EFAULT); 3718 } 3719 3720 pr_vdebug("Buffer from user space:\n"); 3721 ffs_dump_mem("", data, len); 3722 3723 return data; 3724 } 3725 3726 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); 3727 MODULE_LICENSE("GPL"); 3728 MODULE_AUTHOR("Michal Nazarewicz"); 3729