xref: /openbmc/linux/drivers/usb/gadget/function/f_fs.c (revision 5d0e4d78)
1 /*
2  * f_fs.c -- user mode file system API for USB composite function controllers
3  *
4  * Copyright (C) 2010 Samsung Electronics
5  * Author: Michal Nazarewicz <mina86@mina86.com>
6  *
7  * Based on inode.c (GadgetFS) which was:
8  * Copyright (C) 2003-2004 David Brownell
9  * Copyright (C) 2003 Agilent Technologies
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  */
16 
17 
18 /* #define DEBUG */
19 /* #define VERBOSE_DEBUG */
20 
21 #include <linux/blkdev.h>
22 #include <linux/pagemap.h>
23 #include <linux/export.h>
24 #include <linux/hid.h>
25 #include <linux/module.h>
26 #include <linux/sched/signal.h>
27 #include <linux/uio.h>
28 #include <asm/unaligned.h>
29 
30 #include <linux/usb/composite.h>
31 #include <linux/usb/functionfs.h>
32 
33 #include <linux/aio.h>
34 #include <linux/mmu_context.h>
35 #include <linux/poll.h>
36 #include <linux/eventfd.h>
37 
38 #include "u_fs.h"
39 #include "u_f.h"
40 #include "u_os_desc.h"
41 #include "configfs.h"
42 
43 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
44 
45 /* Reference counter handling */
46 static void ffs_data_get(struct ffs_data *ffs);
47 static void ffs_data_put(struct ffs_data *ffs);
48 /* Creates new ffs_data object. */
49 static struct ffs_data *__must_check ffs_data_new(void) __attribute__((malloc));
50 
51 /* Opened counter handling. */
52 static void ffs_data_opened(struct ffs_data *ffs);
53 static void ffs_data_closed(struct ffs_data *ffs);
54 
55 /* Called with ffs->mutex held; take over ownership of data. */
56 static int __must_check
57 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
58 static int __must_check
59 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
60 
61 
62 /* The function structure ***************************************************/
63 
64 struct ffs_ep;
65 
66 struct ffs_function {
67 	struct usb_configuration	*conf;
68 	struct usb_gadget		*gadget;
69 	struct ffs_data			*ffs;
70 
71 	struct ffs_ep			*eps;
72 	u8				eps_revmap[16];
73 	short				*interfaces_nums;
74 
75 	struct usb_function		function;
76 };
77 
78 
79 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
80 {
81 	return container_of(f, struct ffs_function, function);
82 }
83 
84 
85 static inline enum ffs_setup_state
86 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
87 {
88 	return (enum ffs_setup_state)
89 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
90 }
91 
92 
93 static void ffs_func_eps_disable(struct ffs_function *func);
94 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
95 
96 static int ffs_func_bind(struct usb_configuration *,
97 			 struct usb_function *);
98 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
99 static void ffs_func_disable(struct usb_function *);
100 static int ffs_func_setup(struct usb_function *,
101 			  const struct usb_ctrlrequest *);
102 static bool ffs_func_req_match(struct usb_function *,
103 			       const struct usb_ctrlrequest *,
104 			       bool config0);
105 static void ffs_func_suspend(struct usb_function *);
106 static void ffs_func_resume(struct usb_function *);
107 
108 
109 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
110 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
111 
112 
113 /* The endpoints structures *************************************************/
114 
115 struct ffs_ep {
116 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
117 	struct usb_request		*req;	/* P: epfile->mutex */
118 
119 	/* [0]: full speed, [1]: high speed, [2]: super speed */
120 	struct usb_endpoint_descriptor	*descs[3];
121 
122 	u8				num;
123 
124 	int				status;	/* P: epfile->mutex */
125 };
126 
127 struct ffs_epfile {
128 	/* Protects ep->ep and ep->req. */
129 	struct mutex			mutex;
130 
131 	struct ffs_data			*ffs;
132 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
133 
134 	struct dentry			*dentry;
135 
136 	/*
137 	 * Buffer for holding data from partial reads which may happen since
138 	 * we’re rounding user read requests to a multiple of a max packet size.
139 	 *
140 	 * The pointer is initialised with NULL value and may be set by
141 	 * __ffs_epfile_read_data function to point to a temporary buffer.
142 	 *
143 	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
144 	 * data from said buffer and eventually free it.  Importantly, while the
145 	 * function is using the buffer, it sets the pointer to NULL.  This is
146 	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
147 	 * can never run concurrently (they are synchronised by epfile->mutex)
148 	 * so the latter will not assign a new value to the pointer.
149 	 *
150 	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
151 	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
152 	 * value is crux of the synchronisation between ffs_func_eps_disable and
153 	 * __ffs_epfile_read_data.
154 	 *
155 	 * Once __ffs_epfile_read_data is about to finish it will try to set the
156 	 * pointer back to its old value (as described above), but seeing as the
157 	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
158 	 * the buffer.
159 	 *
160 	 * == State transitions ==
161 	 *
162 	 * • ptr == NULL:  (initial state)
163 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
164 	 *   ◦ __ffs_epfile_read_buffered:    nop
165 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
166 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
167 	 * • ptr == DROP:
168 	 *   ◦ __ffs_epfile_read_buffer_free: nop
169 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
170 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
171 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
172 	 * • ptr == buf:
173 	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
174 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
175 	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
176 	 *                                    is always called first
177 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
178 	 * • ptr == NULL and reading:
179 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
180 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
181 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
182 	 *   ◦ reading finishes and …
183 	 *     … all data read:               free buf, go to ptr == NULL
184 	 *     … otherwise:                   go to ptr == buf and reading
185 	 * • ptr == DROP and reading:
186 	 *   ◦ __ffs_epfile_read_buffer_free: nop
187 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
188 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
189 	 *   ◦ reading finishes:              free buf, go to ptr == DROP
190 	 */
191 	struct ffs_buffer		*read_buffer;
192 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
193 
194 	char				name[5];
195 
196 	unsigned char			in;	/* P: ffs->eps_lock */
197 	unsigned char			isoc;	/* P: ffs->eps_lock */
198 
199 	unsigned char			_pad;
200 };
201 
202 struct ffs_buffer {
203 	size_t length;
204 	char *data;
205 	char storage[];
206 };
207 
208 /*  ffs_io_data structure ***************************************************/
209 
210 struct ffs_io_data {
211 	bool aio;
212 	bool read;
213 
214 	struct kiocb *kiocb;
215 	struct iov_iter data;
216 	const void *to_free;
217 	char *buf;
218 
219 	struct mm_struct *mm;
220 	struct work_struct work;
221 
222 	struct usb_ep *ep;
223 	struct usb_request *req;
224 
225 	struct ffs_data *ffs;
226 };
227 
228 struct ffs_desc_helper {
229 	struct ffs_data *ffs;
230 	unsigned interfaces_count;
231 	unsigned eps_count;
232 };
233 
234 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
235 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
236 
237 static struct dentry *
238 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
239 		   const struct file_operations *fops);
240 
241 /* Devices management *******************************************************/
242 
243 DEFINE_MUTEX(ffs_lock);
244 EXPORT_SYMBOL_GPL(ffs_lock);
245 
246 static struct ffs_dev *_ffs_find_dev(const char *name);
247 static struct ffs_dev *_ffs_alloc_dev(void);
248 static void _ffs_free_dev(struct ffs_dev *dev);
249 static void *ffs_acquire_dev(const char *dev_name);
250 static void ffs_release_dev(struct ffs_data *ffs_data);
251 static int ffs_ready(struct ffs_data *ffs);
252 static void ffs_closed(struct ffs_data *ffs);
253 
254 /* Misc helper functions ****************************************************/
255 
256 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
257 	__attribute__((warn_unused_result, nonnull));
258 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
259 	__attribute__((warn_unused_result, nonnull));
260 
261 
262 /* Control file aka ep0 *****************************************************/
263 
264 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
265 {
266 	struct ffs_data *ffs = req->context;
267 
268 	complete(&ffs->ep0req_completion);
269 }
270 
271 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
272 {
273 	struct usb_request *req = ffs->ep0req;
274 	int ret;
275 
276 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
277 
278 	spin_unlock_irq(&ffs->ev.waitq.lock);
279 
280 	req->buf      = data;
281 	req->length   = len;
282 
283 	/*
284 	 * UDC layer requires to provide a buffer even for ZLP, but should
285 	 * not use it at all. Let's provide some poisoned pointer to catch
286 	 * possible bug in the driver.
287 	 */
288 	if (req->buf == NULL)
289 		req->buf = (void *)0xDEADBABE;
290 
291 	reinit_completion(&ffs->ep0req_completion);
292 
293 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
294 	if (unlikely(ret < 0))
295 		return ret;
296 
297 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
298 	if (unlikely(ret)) {
299 		usb_ep_dequeue(ffs->gadget->ep0, req);
300 		return -EINTR;
301 	}
302 
303 	ffs->setup_state = FFS_NO_SETUP;
304 	return req->status ? req->status : req->actual;
305 }
306 
307 static int __ffs_ep0_stall(struct ffs_data *ffs)
308 {
309 	if (ffs->ev.can_stall) {
310 		pr_vdebug("ep0 stall\n");
311 		usb_ep_set_halt(ffs->gadget->ep0);
312 		ffs->setup_state = FFS_NO_SETUP;
313 		return -EL2HLT;
314 	} else {
315 		pr_debug("bogus ep0 stall!\n");
316 		return -ESRCH;
317 	}
318 }
319 
320 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
321 			     size_t len, loff_t *ptr)
322 {
323 	struct ffs_data *ffs = file->private_data;
324 	ssize_t ret;
325 	char *data;
326 
327 	ENTER();
328 
329 	/* Fast check if setup was canceled */
330 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
331 		return -EIDRM;
332 
333 	/* Acquire mutex */
334 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
335 	if (unlikely(ret < 0))
336 		return ret;
337 
338 	/* Check state */
339 	switch (ffs->state) {
340 	case FFS_READ_DESCRIPTORS:
341 	case FFS_READ_STRINGS:
342 		/* Copy data */
343 		if (unlikely(len < 16)) {
344 			ret = -EINVAL;
345 			break;
346 		}
347 
348 		data = ffs_prepare_buffer(buf, len);
349 		if (IS_ERR(data)) {
350 			ret = PTR_ERR(data);
351 			break;
352 		}
353 
354 		/* Handle data */
355 		if (ffs->state == FFS_READ_DESCRIPTORS) {
356 			pr_info("read descriptors\n");
357 			ret = __ffs_data_got_descs(ffs, data, len);
358 			if (unlikely(ret < 0))
359 				break;
360 
361 			ffs->state = FFS_READ_STRINGS;
362 			ret = len;
363 		} else {
364 			pr_info("read strings\n");
365 			ret = __ffs_data_got_strings(ffs, data, len);
366 			if (unlikely(ret < 0))
367 				break;
368 
369 			ret = ffs_epfiles_create(ffs);
370 			if (unlikely(ret)) {
371 				ffs->state = FFS_CLOSING;
372 				break;
373 			}
374 
375 			ffs->state = FFS_ACTIVE;
376 			mutex_unlock(&ffs->mutex);
377 
378 			ret = ffs_ready(ffs);
379 			if (unlikely(ret < 0)) {
380 				ffs->state = FFS_CLOSING;
381 				return ret;
382 			}
383 
384 			return len;
385 		}
386 		break;
387 
388 	case FFS_ACTIVE:
389 		data = NULL;
390 		/*
391 		 * We're called from user space, we can use _irq
392 		 * rather then _irqsave
393 		 */
394 		spin_lock_irq(&ffs->ev.waitq.lock);
395 		switch (ffs_setup_state_clear_cancelled(ffs)) {
396 		case FFS_SETUP_CANCELLED:
397 			ret = -EIDRM;
398 			goto done_spin;
399 
400 		case FFS_NO_SETUP:
401 			ret = -ESRCH;
402 			goto done_spin;
403 
404 		case FFS_SETUP_PENDING:
405 			break;
406 		}
407 
408 		/* FFS_SETUP_PENDING */
409 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
410 			spin_unlock_irq(&ffs->ev.waitq.lock);
411 			ret = __ffs_ep0_stall(ffs);
412 			break;
413 		}
414 
415 		/* FFS_SETUP_PENDING and not stall */
416 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
417 
418 		spin_unlock_irq(&ffs->ev.waitq.lock);
419 
420 		data = ffs_prepare_buffer(buf, len);
421 		if (IS_ERR(data)) {
422 			ret = PTR_ERR(data);
423 			break;
424 		}
425 
426 		spin_lock_irq(&ffs->ev.waitq.lock);
427 
428 		/*
429 		 * We are guaranteed to be still in FFS_ACTIVE state
430 		 * but the state of setup could have changed from
431 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
432 		 * to check for that.  If that happened we copied data
433 		 * from user space in vain but it's unlikely.
434 		 *
435 		 * For sure we are not in FFS_NO_SETUP since this is
436 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
437 		 * transition can be performed and it's protected by
438 		 * mutex.
439 		 */
440 		if (ffs_setup_state_clear_cancelled(ffs) ==
441 		    FFS_SETUP_CANCELLED) {
442 			ret = -EIDRM;
443 done_spin:
444 			spin_unlock_irq(&ffs->ev.waitq.lock);
445 		} else {
446 			/* unlocks spinlock */
447 			ret = __ffs_ep0_queue_wait(ffs, data, len);
448 		}
449 		kfree(data);
450 		break;
451 
452 	default:
453 		ret = -EBADFD;
454 		break;
455 	}
456 
457 	mutex_unlock(&ffs->mutex);
458 	return ret;
459 }
460 
461 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
462 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
463 				     size_t n)
464 {
465 	/*
466 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
467 	 * size of ffs->ev.types array (which is four) so that's how much space
468 	 * we reserve.
469 	 */
470 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
471 	const size_t size = n * sizeof *events;
472 	unsigned i = 0;
473 
474 	memset(events, 0, size);
475 
476 	do {
477 		events[i].type = ffs->ev.types[i];
478 		if (events[i].type == FUNCTIONFS_SETUP) {
479 			events[i].u.setup = ffs->ev.setup;
480 			ffs->setup_state = FFS_SETUP_PENDING;
481 		}
482 	} while (++i < n);
483 
484 	ffs->ev.count -= n;
485 	if (ffs->ev.count)
486 		memmove(ffs->ev.types, ffs->ev.types + n,
487 			ffs->ev.count * sizeof *ffs->ev.types);
488 
489 	spin_unlock_irq(&ffs->ev.waitq.lock);
490 	mutex_unlock(&ffs->mutex);
491 
492 	return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
493 }
494 
495 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
496 			    size_t len, loff_t *ptr)
497 {
498 	struct ffs_data *ffs = file->private_data;
499 	char *data = NULL;
500 	size_t n;
501 	int ret;
502 
503 	ENTER();
504 
505 	/* Fast check if setup was canceled */
506 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
507 		return -EIDRM;
508 
509 	/* Acquire mutex */
510 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
511 	if (unlikely(ret < 0))
512 		return ret;
513 
514 	/* Check state */
515 	if (ffs->state != FFS_ACTIVE) {
516 		ret = -EBADFD;
517 		goto done_mutex;
518 	}
519 
520 	/*
521 	 * We're called from user space, we can use _irq rather then
522 	 * _irqsave
523 	 */
524 	spin_lock_irq(&ffs->ev.waitq.lock);
525 
526 	switch (ffs_setup_state_clear_cancelled(ffs)) {
527 	case FFS_SETUP_CANCELLED:
528 		ret = -EIDRM;
529 		break;
530 
531 	case FFS_NO_SETUP:
532 		n = len / sizeof(struct usb_functionfs_event);
533 		if (unlikely(!n)) {
534 			ret = -EINVAL;
535 			break;
536 		}
537 
538 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
539 			ret = -EAGAIN;
540 			break;
541 		}
542 
543 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
544 							ffs->ev.count)) {
545 			ret = -EINTR;
546 			break;
547 		}
548 
549 		return __ffs_ep0_read_events(ffs, buf,
550 					     min(n, (size_t)ffs->ev.count));
551 
552 	case FFS_SETUP_PENDING:
553 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
554 			spin_unlock_irq(&ffs->ev.waitq.lock);
555 			ret = __ffs_ep0_stall(ffs);
556 			goto done_mutex;
557 		}
558 
559 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
560 
561 		spin_unlock_irq(&ffs->ev.waitq.lock);
562 
563 		if (likely(len)) {
564 			data = kmalloc(len, GFP_KERNEL);
565 			if (unlikely(!data)) {
566 				ret = -ENOMEM;
567 				goto done_mutex;
568 			}
569 		}
570 
571 		spin_lock_irq(&ffs->ev.waitq.lock);
572 
573 		/* See ffs_ep0_write() */
574 		if (ffs_setup_state_clear_cancelled(ffs) ==
575 		    FFS_SETUP_CANCELLED) {
576 			ret = -EIDRM;
577 			break;
578 		}
579 
580 		/* unlocks spinlock */
581 		ret = __ffs_ep0_queue_wait(ffs, data, len);
582 		if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
583 			ret = -EFAULT;
584 		goto done_mutex;
585 
586 	default:
587 		ret = -EBADFD;
588 		break;
589 	}
590 
591 	spin_unlock_irq(&ffs->ev.waitq.lock);
592 done_mutex:
593 	mutex_unlock(&ffs->mutex);
594 	kfree(data);
595 	return ret;
596 }
597 
598 static int ffs_ep0_open(struct inode *inode, struct file *file)
599 {
600 	struct ffs_data *ffs = inode->i_private;
601 
602 	ENTER();
603 
604 	if (unlikely(ffs->state == FFS_CLOSING))
605 		return -EBUSY;
606 
607 	file->private_data = ffs;
608 	ffs_data_opened(ffs);
609 
610 	return 0;
611 }
612 
613 static int ffs_ep0_release(struct inode *inode, struct file *file)
614 {
615 	struct ffs_data *ffs = file->private_data;
616 
617 	ENTER();
618 
619 	ffs_data_closed(ffs);
620 
621 	return 0;
622 }
623 
624 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
625 {
626 	struct ffs_data *ffs = file->private_data;
627 	struct usb_gadget *gadget = ffs->gadget;
628 	long ret;
629 
630 	ENTER();
631 
632 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
633 		struct ffs_function *func = ffs->func;
634 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
635 	} else if (gadget && gadget->ops->ioctl) {
636 		ret = gadget->ops->ioctl(gadget, code, value);
637 	} else {
638 		ret = -ENOTTY;
639 	}
640 
641 	return ret;
642 }
643 
644 static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait)
645 {
646 	struct ffs_data *ffs = file->private_data;
647 	unsigned int mask = POLLWRNORM;
648 	int ret;
649 
650 	poll_wait(file, &ffs->ev.waitq, wait);
651 
652 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
653 	if (unlikely(ret < 0))
654 		return mask;
655 
656 	switch (ffs->state) {
657 	case FFS_READ_DESCRIPTORS:
658 	case FFS_READ_STRINGS:
659 		mask |= POLLOUT;
660 		break;
661 
662 	case FFS_ACTIVE:
663 		switch (ffs->setup_state) {
664 		case FFS_NO_SETUP:
665 			if (ffs->ev.count)
666 				mask |= POLLIN;
667 			break;
668 
669 		case FFS_SETUP_PENDING:
670 		case FFS_SETUP_CANCELLED:
671 			mask |= (POLLIN | POLLOUT);
672 			break;
673 		}
674 	case FFS_CLOSING:
675 		break;
676 	case FFS_DEACTIVATED:
677 		break;
678 	}
679 
680 	mutex_unlock(&ffs->mutex);
681 
682 	return mask;
683 }
684 
685 static const struct file_operations ffs_ep0_operations = {
686 	.llseek =	no_llseek,
687 
688 	.open =		ffs_ep0_open,
689 	.write =	ffs_ep0_write,
690 	.read =		ffs_ep0_read,
691 	.release =	ffs_ep0_release,
692 	.unlocked_ioctl =	ffs_ep0_ioctl,
693 	.poll =		ffs_ep0_poll,
694 };
695 
696 
697 /* "Normal" endpoints operations ********************************************/
698 
699 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
700 {
701 	ENTER();
702 	if (likely(req->context)) {
703 		struct ffs_ep *ep = _ep->driver_data;
704 		ep->status = req->status ? req->status : req->actual;
705 		complete(req->context);
706 	}
707 }
708 
709 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
710 {
711 	ssize_t ret = copy_to_iter(data, data_len, iter);
712 	if (likely(ret == data_len))
713 		return ret;
714 
715 	if (unlikely(iov_iter_count(iter)))
716 		return -EFAULT;
717 
718 	/*
719 	 * Dear user space developer!
720 	 *
721 	 * TL;DR: To stop getting below error message in your kernel log, change
722 	 * user space code using functionfs to align read buffers to a max
723 	 * packet size.
724 	 *
725 	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
726 	 * packet size.  When unaligned buffer is passed to functionfs, it
727 	 * internally uses a larger, aligned buffer so that such UDCs are happy.
728 	 *
729 	 * Unfortunately, this means that host may send more data than was
730 	 * requested in read(2) system call.  f_fs doesn’t know what to do with
731 	 * that excess data so it simply drops it.
732 	 *
733 	 * Was the buffer aligned in the first place, no such problem would
734 	 * happen.
735 	 *
736 	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
737 	 * by splitting a request into multiple parts.  This splitting may still
738 	 * be a problem though so it’s likely best to align the buffer
739 	 * regardless of it being AIO or not..
740 	 *
741 	 * This only affects OUT endpoints, i.e. reading data with a read(2),
742 	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
743 	 * affected.
744 	 */
745 	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
746 	       "Align read buffer size to max packet size to avoid the problem.\n",
747 	       data_len, ret);
748 
749 	return ret;
750 }
751 
752 static void ffs_user_copy_worker(struct work_struct *work)
753 {
754 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
755 						   work);
756 	int ret = io_data->req->status ? io_data->req->status :
757 					 io_data->req->actual;
758 	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
759 
760 	if (io_data->read && ret > 0) {
761 		use_mm(io_data->mm);
762 		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
763 		unuse_mm(io_data->mm);
764 	}
765 
766 	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
767 
768 	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
769 		eventfd_signal(io_data->ffs->ffs_eventfd, 1);
770 
771 	usb_ep_free_request(io_data->ep, io_data->req);
772 
773 	if (io_data->read)
774 		kfree(io_data->to_free);
775 	kfree(io_data->buf);
776 	kfree(io_data);
777 }
778 
779 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
780 					 struct usb_request *req)
781 {
782 	struct ffs_io_data *io_data = req->context;
783 
784 	ENTER();
785 
786 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
787 	schedule_work(&io_data->work);
788 }
789 
790 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
791 {
792 	/*
793 	 * See comment in struct ffs_epfile for full read_buffer pointer
794 	 * synchronisation story.
795 	 */
796 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
797 	if (buf && buf != READ_BUFFER_DROP)
798 		kfree(buf);
799 }
800 
801 /* Assumes epfile->mutex is held. */
802 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
803 					  struct iov_iter *iter)
804 {
805 	/*
806 	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
807 	 * the buffer while we are using it.  See comment in struct ffs_epfile
808 	 * for full read_buffer pointer synchronisation story.
809 	 */
810 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
811 	ssize_t ret;
812 	if (!buf || buf == READ_BUFFER_DROP)
813 		return 0;
814 
815 	ret = copy_to_iter(buf->data, buf->length, iter);
816 	if (buf->length == ret) {
817 		kfree(buf);
818 		return ret;
819 	}
820 
821 	if (unlikely(iov_iter_count(iter))) {
822 		ret = -EFAULT;
823 	} else {
824 		buf->length -= ret;
825 		buf->data += ret;
826 	}
827 
828 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
829 		kfree(buf);
830 
831 	return ret;
832 }
833 
834 /* Assumes epfile->mutex is held. */
835 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
836 				      void *data, int data_len,
837 				      struct iov_iter *iter)
838 {
839 	struct ffs_buffer *buf;
840 
841 	ssize_t ret = copy_to_iter(data, data_len, iter);
842 	if (likely(data_len == ret))
843 		return ret;
844 
845 	if (unlikely(iov_iter_count(iter)))
846 		return -EFAULT;
847 
848 	/* See ffs_copy_to_iter for more context. */
849 	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
850 		data_len, ret);
851 
852 	data_len -= ret;
853 	buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
854 	if (!buf)
855 		return -ENOMEM;
856 	buf->length = data_len;
857 	buf->data = buf->storage;
858 	memcpy(buf->storage, data + ret, data_len);
859 
860 	/*
861 	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
862 	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
863 	 * in struct ffs_epfile for full read_buffer pointer synchronisation
864 	 * story.
865 	 */
866 	if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
867 		kfree(buf);
868 
869 	return ret;
870 }
871 
872 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
873 {
874 	struct ffs_epfile *epfile = file->private_data;
875 	struct usb_request *req;
876 	struct ffs_ep *ep;
877 	char *data = NULL;
878 	ssize_t ret, data_len = -EINVAL;
879 	int halt;
880 
881 	/* Are we still active? */
882 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
883 		return -ENODEV;
884 
885 	/* Wait for endpoint to be enabled */
886 	ep = epfile->ep;
887 	if (!ep) {
888 		if (file->f_flags & O_NONBLOCK)
889 			return -EAGAIN;
890 
891 		ret = wait_event_interruptible(
892 				epfile->ffs->wait, (ep = epfile->ep));
893 		if (ret)
894 			return -EINTR;
895 	}
896 
897 	/* Do we halt? */
898 	halt = (!io_data->read == !epfile->in);
899 	if (halt && epfile->isoc)
900 		return -EINVAL;
901 
902 	/* We will be using request and read_buffer */
903 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
904 	if (unlikely(ret))
905 		goto error;
906 
907 	/* Allocate & copy */
908 	if (!halt) {
909 		struct usb_gadget *gadget;
910 
911 		/*
912 		 * Do we have buffered data from previous partial read?  Check
913 		 * that for synchronous case only because we do not have
914 		 * facility to ‘wake up’ a pending asynchronous read and push
915 		 * buffered data to it which we would need to make things behave
916 		 * consistently.
917 		 */
918 		if (!io_data->aio && io_data->read) {
919 			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
920 			if (ret)
921 				goto error_mutex;
922 		}
923 
924 		/*
925 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
926 		 * before the waiting completes, so do not assign to 'gadget'
927 		 * earlier
928 		 */
929 		gadget = epfile->ffs->gadget;
930 
931 		spin_lock_irq(&epfile->ffs->eps_lock);
932 		/* In the meantime, endpoint got disabled or changed. */
933 		if (epfile->ep != ep) {
934 			ret = -ESHUTDOWN;
935 			goto error_lock;
936 		}
937 		data_len = iov_iter_count(&io_data->data);
938 		/*
939 		 * Controller may require buffer size to be aligned to
940 		 * maxpacketsize of an out endpoint.
941 		 */
942 		if (io_data->read)
943 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
944 		spin_unlock_irq(&epfile->ffs->eps_lock);
945 
946 		data = kmalloc(data_len, GFP_KERNEL);
947 		if (unlikely(!data)) {
948 			ret = -ENOMEM;
949 			goto error_mutex;
950 		}
951 		if (!io_data->read &&
952 		    !copy_from_iter_full(data, data_len, &io_data->data)) {
953 			ret = -EFAULT;
954 			goto error_mutex;
955 		}
956 	}
957 
958 	spin_lock_irq(&epfile->ffs->eps_lock);
959 
960 	if (epfile->ep != ep) {
961 		/* In the meantime, endpoint got disabled or changed. */
962 		ret = -ESHUTDOWN;
963 	} else if (halt) {
964 		/* Halt */
965 		if (likely(epfile->ep == ep) && !WARN_ON(!ep->ep))
966 			usb_ep_set_halt(ep->ep);
967 		ret = -EBADMSG;
968 	} else if (unlikely(data_len == -EINVAL)) {
969 		/*
970 		 * Sanity Check: even though data_len can't be used
971 		 * uninitialized at the time I write this comment, some
972 		 * compilers complain about this situation.
973 		 * In order to keep the code clean from warnings, data_len is
974 		 * being initialized to -EINVAL during its declaration, which
975 		 * means we can't rely on compiler anymore to warn no future
976 		 * changes won't result in data_len being used uninitialized.
977 		 * For such reason, we're adding this redundant sanity check
978 		 * here.
979 		 */
980 		WARN(1, "%s: data_len == -EINVAL\n", __func__);
981 		ret = -EINVAL;
982 	} else if (!io_data->aio) {
983 		DECLARE_COMPLETION_ONSTACK(done);
984 		bool interrupted = false;
985 
986 		req = ep->req;
987 		req->buf      = data;
988 		req->length   = data_len;
989 
990 		req->context  = &done;
991 		req->complete = ffs_epfile_io_complete;
992 
993 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
994 		if (unlikely(ret < 0))
995 			goto error_lock;
996 
997 		spin_unlock_irq(&epfile->ffs->eps_lock);
998 
999 		if (unlikely(wait_for_completion_interruptible(&done))) {
1000 			/*
1001 			 * To avoid race condition with ffs_epfile_io_complete,
1002 			 * dequeue the request first then check
1003 			 * status. usb_ep_dequeue API should guarantee no race
1004 			 * condition with req->complete callback.
1005 			 */
1006 			usb_ep_dequeue(ep->ep, req);
1007 			interrupted = ep->status < 0;
1008 		}
1009 
1010 		if (interrupted)
1011 			ret = -EINTR;
1012 		else if (io_data->read && ep->status > 0)
1013 			ret = __ffs_epfile_read_data(epfile, data, ep->status,
1014 						     &io_data->data);
1015 		else
1016 			ret = ep->status;
1017 		goto error_mutex;
1018 	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_KERNEL))) {
1019 		ret = -ENOMEM;
1020 	} else {
1021 		req->buf      = data;
1022 		req->length   = data_len;
1023 
1024 		io_data->buf = data;
1025 		io_data->ep = ep->ep;
1026 		io_data->req = req;
1027 		io_data->ffs = epfile->ffs;
1028 
1029 		req->context  = io_data;
1030 		req->complete = ffs_epfile_async_io_complete;
1031 
1032 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1033 		if (unlikely(ret)) {
1034 			usb_ep_free_request(ep->ep, req);
1035 			goto error_lock;
1036 		}
1037 
1038 		ret = -EIOCBQUEUED;
1039 		/*
1040 		 * Do not kfree the buffer in this function.  It will be freed
1041 		 * by ffs_user_copy_worker.
1042 		 */
1043 		data = NULL;
1044 	}
1045 
1046 error_lock:
1047 	spin_unlock_irq(&epfile->ffs->eps_lock);
1048 error_mutex:
1049 	mutex_unlock(&epfile->mutex);
1050 error:
1051 	kfree(data);
1052 	return ret;
1053 }
1054 
1055 static int
1056 ffs_epfile_open(struct inode *inode, struct file *file)
1057 {
1058 	struct ffs_epfile *epfile = inode->i_private;
1059 
1060 	ENTER();
1061 
1062 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1063 		return -ENODEV;
1064 
1065 	file->private_data = epfile;
1066 	ffs_data_opened(epfile->ffs);
1067 
1068 	return 0;
1069 }
1070 
1071 static int ffs_aio_cancel(struct kiocb *kiocb)
1072 {
1073 	struct ffs_io_data *io_data = kiocb->private;
1074 	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1075 	int value;
1076 
1077 	ENTER();
1078 
1079 	spin_lock_irq(&epfile->ffs->eps_lock);
1080 
1081 	if (likely(io_data && io_data->ep && io_data->req))
1082 		value = usb_ep_dequeue(io_data->ep, io_data->req);
1083 	else
1084 		value = -EINVAL;
1085 
1086 	spin_unlock_irq(&epfile->ffs->eps_lock);
1087 
1088 	return value;
1089 }
1090 
1091 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1092 {
1093 	struct ffs_io_data io_data, *p = &io_data;
1094 	ssize_t res;
1095 
1096 	ENTER();
1097 
1098 	if (!is_sync_kiocb(kiocb)) {
1099 		p = kmalloc(sizeof(io_data), GFP_KERNEL);
1100 		if (unlikely(!p))
1101 			return -ENOMEM;
1102 		p->aio = true;
1103 	} else {
1104 		p->aio = false;
1105 	}
1106 
1107 	p->read = false;
1108 	p->kiocb = kiocb;
1109 	p->data = *from;
1110 	p->mm = current->mm;
1111 
1112 	kiocb->private = p;
1113 
1114 	if (p->aio)
1115 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1116 
1117 	res = ffs_epfile_io(kiocb->ki_filp, p);
1118 	if (res == -EIOCBQUEUED)
1119 		return res;
1120 	if (p->aio)
1121 		kfree(p);
1122 	else
1123 		*from = p->data;
1124 	return res;
1125 }
1126 
1127 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1128 {
1129 	struct ffs_io_data io_data, *p = &io_data;
1130 	ssize_t res;
1131 
1132 	ENTER();
1133 
1134 	if (!is_sync_kiocb(kiocb)) {
1135 		p = kmalloc(sizeof(io_data), GFP_KERNEL);
1136 		if (unlikely(!p))
1137 			return -ENOMEM;
1138 		p->aio = true;
1139 	} else {
1140 		p->aio = false;
1141 	}
1142 
1143 	p->read = true;
1144 	p->kiocb = kiocb;
1145 	if (p->aio) {
1146 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1147 		if (!p->to_free) {
1148 			kfree(p);
1149 			return -ENOMEM;
1150 		}
1151 	} else {
1152 		p->data = *to;
1153 		p->to_free = NULL;
1154 	}
1155 	p->mm = current->mm;
1156 
1157 	kiocb->private = p;
1158 
1159 	if (p->aio)
1160 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1161 
1162 	res = ffs_epfile_io(kiocb->ki_filp, p);
1163 	if (res == -EIOCBQUEUED)
1164 		return res;
1165 
1166 	if (p->aio) {
1167 		kfree(p->to_free);
1168 		kfree(p);
1169 	} else {
1170 		*to = p->data;
1171 	}
1172 	return res;
1173 }
1174 
1175 static int
1176 ffs_epfile_release(struct inode *inode, struct file *file)
1177 {
1178 	struct ffs_epfile *epfile = inode->i_private;
1179 
1180 	ENTER();
1181 
1182 	__ffs_epfile_read_buffer_free(epfile);
1183 	ffs_data_closed(epfile->ffs);
1184 
1185 	return 0;
1186 }
1187 
1188 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1189 			     unsigned long value)
1190 {
1191 	struct ffs_epfile *epfile = file->private_data;
1192 	struct ffs_ep *ep;
1193 	int ret;
1194 
1195 	ENTER();
1196 
1197 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1198 		return -ENODEV;
1199 
1200 	/* Wait for endpoint to be enabled */
1201 	ep = epfile->ep;
1202 	if (!ep) {
1203 		if (file->f_flags & O_NONBLOCK)
1204 			return -EAGAIN;
1205 
1206 		ret = wait_event_interruptible(
1207 				epfile->ffs->wait, (ep = epfile->ep));
1208 		if (ret)
1209 			return -EINTR;
1210 	}
1211 
1212 	spin_lock_irq(&epfile->ffs->eps_lock);
1213 
1214 	/* In the meantime, endpoint got disabled or changed. */
1215 	if (epfile->ep != ep) {
1216 		spin_unlock_irq(&epfile->ffs->eps_lock);
1217 		return -ESHUTDOWN;
1218 	}
1219 
1220 	switch (code) {
1221 	case FUNCTIONFS_FIFO_STATUS:
1222 		ret = usb_ep_fifo_status(epfile->ep->ep);
1223 		break;
1224 	case FUNCTIONFS_FIFO_FLUSH:
1225 		usb_ep_fifo_flush(epfile->ep->ep);
1226 		ret = 0;
1227 		break;
1228 	case FUNCTIONFS_CLEAR_HALT:
1229 		ret = usb_ep_clear_halt(epfile->ep->ep);
1230 		break;
1231 	case FUNCTIONFS_ENDPOINT_REVMAP:
1232 		ret = epfile->ep->num;
1233 		break;
1234 	case FUNCTIONFS_ENDPOINT_DESC:
1235 	{
1236 		int desc_idx;
1237 		struct usb_endpoint_descriptor *desc;
1238 
1239 		switch (epfile->ffs->gadget->speed) {
1240 		case USB_SPEED_SUPER:
1241 			desc_idx = 2;
1242 			break;
1243 		case USB_SPEED_HIGH:
1244 			desc_idx = 1;
1245 			break;
1246 		default:
1247 			desc_idx = 0;
1248 		}
1249 		desc = epfile->ep->descs[desc_idx];
1250 
1251 		spin_unlock_irq(&epfile->ffs->eps_lock);
1252 		ret = copy_to_user((void *)value, desc, desc->bLength);
1253 		if (ret)
1254 			ret = -EFAULT;
1255 		return ret;
1256 	}
1257 	default:
1258 		ret = -ENOTTY;
1259 	}
1260 	spin_unlock_irq(&epfile->ffs->eps_lock);
1261 
1262 	return ret;
1263 }
1264 
1265 static const struct file_operations ffs_epfile_operations = {
1266 	.llseek =	no_llseek,
1267 
1268 	.open =		ffs_epfile_open,
1269 	.write_iter =	ffs_epfile_write_iter,
1270 	.read_iter =	ffs_epfile_read_iter,
1271 	.release =	ffs_epfile_release,
1272 	.unlocked_ioctl =	ffs_epfile_ioctl,
1273 };
1274 
1275 
1276 /* File system and super block operations ***********************************/
1277 
1278 /*
1279  * Mounting the file system creates a controller file, used first for
1280  * function configuration then later for event monitoring.
1281  */
1282 
1283 static struct inode *__must_check
1284 ffs_sb_make_inode(struct super_block *sb, void *data,
1285 		  const struct file_operations *fops,
1286 		  const struct inode_operations *iops,
1287 		  struct ffs_file_perms *perms)
1288 {
1289 	struct inode *inode;
1290 
1291 	ENTER();
1292 
1293 	inode = new_inode(sb);
1294 
1295 	if (likely(inode)) {
1296 		struct timespec ts = current_time(inode);
1297 
1298 		inode->i_ino	 = get_next_ino();
1299 		inode->i_mode    = perms->mode;
1300 		inode->i_uid     = perms->uid;
1301 		inode->i_gid     = perms->gid;
1302 		inode->i_atime   = ts;
1303 		inode->i_mtime   = ts;
1304 		inode->i_ctime   = ts;
1305 		inode->i_private = data;
1306 		if (fops)
1307 			inode->i_fop = fops;
1308 		if (iops)
1309 			inode->i_op  = iops;
1310 	}
1311 
1312 	return inode;
1313 }
1314 
1315 /* Create "regular" file */
1316 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1317 					const char *name, void *data,
1318 					const struct file_operations *fops)
1319 {
1320 	struct ffs_data	*ffs = sb->s_fs_info;
1321 	struct dentry	*dentry;
1322 	struct inode	*inode;
1323 
1324 	ENTER();
1325 
1326 	dentry = d_alloc_name(sb->s_root, name);
1327 	if (unlikely(!dentry))
1328 		return NULL;
1329 
1330 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1331 	if (unlikely(!inode)) {
1332 		dput(dentry);
1333 		return NULL;
1334 	}
1335 
1336 	d_add(dentry, inode);
1337 	return dentry;
1338 }
1339 
1340 /* Super block */
1341 static const struct super_operations ffs_sb_operations = {
1342 	.statfs =	simple_statfs,
1343 	.drop_inode =	generic_delete_inode,
1344 };
1345 
1346 struct ffs_sb_fill_data {
1347 	struct ffs_file_perms perms;
1348 	umode_t root_mode;
1349 	const char *dev_name;
1350 	bool no_disconnect;
1351 	struct ffs_data *ffs_data;
1352 };
1353 
1354 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1355 {
1356 	struct ffs_sb_fill_data *data = _data;
1357 	struct inode	*inode;
1358 	struct ffs_data	*ffs = data->ffs_data;
1359 
1360 	ENTER();
1361 
1362 	ffs->sb              = sb;
1363 	data->ffs_data       = NULL;
1364 	sb->s_fs_info        = ffs;
1365 	sb->s_blocksize      = PAGE_SIZE;
1366 	sb->s_blocksize_bits = PAGE_SHIFT;
1367 	sb->s_magic          = FUNCTIONFS_MAGIC;
1368 	sb->s_op             = &ffs_sb_operations;
1369 	sb->s_time_gran      = 1;
1370 
1371 	/* Root inode */
1372 	data->perms.mode = data->root_mode;
1373 	inode = ffs_sb_make_inode(sb, NULL,
1374 				  &simple_dir_operations,
1375 				  &simple_dir_inode_operations,
1376 				  &data->perms);
1377 	sb->s_root = d_make_root(inode);
1378 	if (unlikely(!sb->s_root))
1379 		return -ENOMEM;
1380 
1381 	/* EP0 file */
1382 	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1383 					 &ffs_ep0_operations)))
1384 		return -ENOMEM;
1385 
1386 	return 0;
1387 }
1388 
1389 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1390 {
1391 	ENTER();
1392 
1393 	if (!opts || !*opts)
1394 		return 0;
1395 
1396 	for (;;) {
1397 		unsigned long value;
1398 		char *eq, *comma;
1399 
1400 		/* Option limit */
1401 		comma = strchr(opts, ',');
1402 		if (comma)
1403 			*comma = 0;
1404 
1405 		/* Value limit */
1406 		eq = strchr(opts, '=');
1407 		if (unlikely(!eq)) {
1408 			pr_err("'=' missing in %s\n", opts);
1409 			return -EINVAL;
1410 		}
1411 		*eq = 0;
1412 
1413 		/* Parse value */
1414 		if (kstrtoul(eq + 1, 0, &value)) {
1415 			pr_err("%s: invalid value: %s\n", opts, eq + 1);
1416 			return -EINVAL;
1417 		}
1418 
1419 		/* Interpret option */
1420 		switch (eq - opts) {
1421 		case 13:
1422 			if (!memcmp(opts, "no_disconnect", 13))
1423 				data->no_disconnect = !!value;
1424 			else
1425 				goto invalid;
1426 			break;
1427 		case 5:
1428 			if (!memcmp(opts, "rmode", 5))
1429 				data->root_mode  = (value & 0555) | S_IFDIR;
1430 			else if (!memcmp(opts, "fmode", 5))
1431 				data->perms.mode = (value & 0666) | S_IFREG;
1432 			else
1433 				goto invalid;
1434 			break;
1435 
1436 		case 4:
1437 			if (!memcmp(opts, "mode", 4)) {
1438 				data->root_mode  = (value & 0555) | S_IFDIR;
1439 				data->perms.mode = (value & 0666) | S_IFREG;
1440 			} else {
1441 				goto invalid;
1442 			}
1443 			break;
1444 
1445 		case 3:
1446 			if (!memcmp(opts, "uid", 3)) {
1447 				data->perms.uid = make_kuid(current_user_ns(), value);
1448 				if (!uid_valid(data->perms.uid)) {
1449 					pr_err("%s: unmapped value: %lu\n", opts, value);
1450 					return -EINVAL;
1451 				}
1452 			} else if (!memcmp(opts, "gid", 3)) {
1453 				data->perms.gid = make_kgid(current_user_ns(), value);
1454 				if (!gid_valid(data->perms.gid)) {
1455 					pr_err("%s: unmapped value: %lu\n", opts, value);
1456 					return -EINVAL;
1457 				}
1458 			} else {
1459 				goto invalid;
1460 			}
1461 			break;
1462 
1463 		default:
1464 invalid:
1465 			pr_err("%s: invalid option\n", opts);
1466 			return -EINVAL;
1467 		}
1468 
1469 		/* Next iteration */
1470 		if (!comma)
1471 			break;
1472 		opts = comma + 1;
1473 	}
1474 
1475 	return 0;
1476 }
1477 
1478 /* "mount -t functionfs dev_name /dev/function" ends up here */
1479 
1480 static struct dentry *
1481 ffs_fs_mount(struct file_system_type *t, int flags,
1482 	      const char *dev_name, void *opts)
1483 {
1484 	struct ffs_sb_fill_data data = {
1485 		.perms = {
1486 			.mode = S_IFREG | 0600,
1487 			.uid = GLOBAL_ROOT_UID,
1488 			.gid = GLOBAL_ROOT_GID,
1489 		},
1490 		.root_mode = S_IFDIR | 0500,
1491 		.no_disconnect = false,
1492 	};
1493 	struct dentry *rv;
1494 	int ret;
1495 	void *ffs_dev;
1496 	struct ffs_data	*ffs;
1497 
1498 	ENTER();
1499 
1500 	ret = ffs_fs_parse_opts(&data, opts);
1501 	if (unlikely(ret < 0))
1502 		return ERR_PTR(ret);
1503 
1504 	ffs = ffs_data_new();
1505 	if (unlikely(!ffs))
1506 		return ERR_PTR(-ENOMEM);
1507 	ffs->file_perms = data.perms;
1508 	ffs->no_disconnect = data.no_disconnect;
1509 
1510 	ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1511 	if (unlikely(!ffs->dev_name)) {
1512 		ffs_data_put(ffs);
1513 		return ERR_PTR(-ENOMEM);
1514 	}
1515 
1516 	ffs_dev = ffs_acquire_dev(dev_name);
1517 	if (IS_ERR(ffs_dev)) {
1518 		ffs_data_put(ffs);
1519 		return ERR_CAST(ffs_dev);
1520 	}
1521 	ffs->private_data = ffs_dev;
1522 	data.ffs_data = ffs;
1523 
1524 	rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1525 	if (IS_ERR(rv) && data.ffs_data) {
1526 		ffs_release_dev(data.ffs_data);
1527 		ffs_data_put(data.ffs_data);
1528 	}
1529 	return rv;
1530 }
1531 
1532 static void
1533 ffs_fs_kill_sb(struct super_block *sb)
1534 {
1535 	ENTER();
1536 
1537 	kill_litter_super(sb);
1538 	if (sb->s_fs_info) {
1539 		ffs_release_dev(sb->s_fs_info);
1540 		ffs_data_closed(sb->s_fs_info);
1541 		ffs_data_put(sb->s_fs_info);
1542 	}
1543 }
1544 
1545 static struct file_system_type ffs_fs_type = {
1546 	.owner		= THIS_MODULE,
1547 	.name		= "functionfs",
1548 	.mount		= ffs_fs_mount,
1549 	.kill_sb	= ffs_fs_kill_sb,
1550 };
1551 MODULE_ALIAS_FS("functionfs");
1552 
1553 
1554 /* Driver's main init/cleanup functions *************************************/
1555 
1556 static int functionfs_init(void)
1557 {
1558 	int ret;
1559 
1560 	ENTER();
1561 
1562 	ret = register_filesystem(&ffs_fs_type);
1563 	if (likely(!ret))
1564 		pr_info("file system registered\n");
1565 	else
1566 		pr_err("failed registering file system (%d)\n", ret);
1567 
1568 	return ret;
1569 }
1570 
1571 static void functionfs_cleanup(void)
1572 {
1573 	ENTER();
1574 
1575 	pr_info("unloading\n");
1576 	unregister_filesystem(&ffs_fs_type);
1577 }
1578 
1579 
1580 /* ffs_data and ffs_function construction and destruction code **************/
1581 
1582 static void ffs_data_clear(struct ffs_data *ffs);
1583 static void ffs_data_reset(struct ffs_data *ffs);
1584 
1585 static void ffs_data_get(struct ffs_data *ffs)
1586 {
1587 	ENTER();
1588 
1589 	refcount_inc(&ffs->ref);
1590 }
1591 
1592 static void ffs_data_opened(struct ffs_data *ffs)
1593 {
1594 	ENTER();
1595 
1596 	refcount_inc(&ffs->ref);
1597 	if (atomic_add_return(1, &ffs->opened) == 1 &&
1598 			ffs->state == FFS_DEACTIVATED) {
1599 		ffs->state = FFS_CLOSING;
1600 		ffs_data_reset(ffs);
1601 	}
1602 }
1603 
1604 static void ffs_data_put(struct ffs_data *ffs)
1605 {
1606 	ENTER();
1607 
1608 	if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1609 		pr_info("%s(): freeing\n", __func__);
1610 		ffs_data_clear(ffs);
1611 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1612 		       waitqueue_active(&ffs->ep0req_completion.wait) ||
1613 		       waitqueue_active(&ffs->wait));
1614 		kfree(ffs->dev_name);
1615 		kfree(ffs);
1616 	}
1617 }
1618 
1619 static void ffs_data_closed(struct ffs_data *ffs)
1620 {
1621 	ENTER();
1622 
1623 	if (atomic_dec_and_test(&ffs->opened)) {
1624 		if (ffs->no_disconnect) {
1625 			ffs->state = FFS_DEACTIVATED;
1626 			if (ffs->epfiles) {
1627 				ffs_epfiles_destroy(ffs->epfiles,
1628 						   ffs->eps_count);
1629 				ffs->epfiles = NULL;
1630 			}
1631 			if (ffs->setup_state == FFS_SETUP_PENDING)
1632 				__ffs_ep0_stall(ffs);
1633 		} else {
1634 			ffs->state = FFS_CLOSING;
1635 			ffs_data_reset(ffs);
1636 		}
1637 	}
1638 	if (atomic_read(&ffs->opened) < 0) {
1639 		ffs->state = FFS_CLOSING;
1640 		ffs_data_reset(ffs);
1641 	}
1642 
1643 	ffs_data_put(ffs);
1644 }
1645 
1646 static struct ffs_data *ffs_data_new(void)
1647 {
1648 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1649 	if (unlikely(!ffs))
1650 		return NULL;
1651 
1652 	ENTER();
1653 
1654 	refcount_set(&ffs->ref, 1);
1655 	atomic_set(&ffs->opened, 0);
1656 	ffs->state = FFS_READ_DESCRIPTORS;
1657 	mutex_init(&ffs->mutex);
1658 	spin_lock_init(&ffs->eps_lock);
1659 	init_waitqueue_head(&ffs->ev.waitq);
1660 	init_waitqueue_head(&ffs->wait);
1661 	init_completion(&ffs->ep0req_completion);
1662 
1663 	/* XXX REVISIT need to update it in some places, or do we? */
1664 	ffs->ev.can_stall = 1;
1665 
1666 	return ffs;
1667 }
1668 
1669 static void ffs_data_clear(struct ffs_data *ffs)
1670 {
1671 	ENTER();
1672 
1673 	ffs_closed(ffs);
1674 
1675 	BUG_ON(ffs->gadget);
1676 
1677 	if (ffs->epfiles)
1678 		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1679 
1680 	if (ffs->ffs_eventfd)
1681 		eventfd_ctx_put(ffs->ffs_eventfd);
1682 
1683 	kfree(ffs->raw_descs_data);
1684 	kfree(ffs->raw_strings);
1685 	kfree(ffs->stringtabs);
1686 }
1687 
1688 static void ffs_data_reset(struct ffs_data *ffs)
1689 {
1690 	ENTER();
1691 
1692 	ffs_data_clear(ffs);
1693 
1694 	ffs->epfiles = NULL;
1695 	ffs->raw_descs_data = NULL;
1696 	ffs->raw_descs = NULL;
1697 	ffs->raw_strings = NULL;
1698 	ffs->stringtabs = NULL;
1699 
1700 	ffs->raw_descs_length = 0;
1701 	ffs->fs_descs_count = 0;
1702 	ffs->hs_descs_count = 0;
1703 	ffs->ss_descs_count = 0;
1704 
1705 	ffs->strings_count = 0;
1706 	ffs->interfaces_count = 0;
1707 	ffs->eps_count = 0;
1708 
1709 	ffs->ev.count = 0;
1710 
1711 	ffs->state = FFS_READ_DESCRIPTORS;
1712 	ffs->setup_state = FFS_NO_SETUP;
1713 	ffs->flags = 0;
1714 }
1715 
1716 
1717 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1718 {
1719 	struct usb_gadget_strings **lang;
1720 	int first_id;
1721 
1722 	ENTER();
1723 
1724 	if (WARN_ON(ffs->state != FFS_ACTIVE
1725 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1726 		return -EBADFD;
1727 
1728 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1729 	if (unlikely(first_id < 0))
1730 		return first_id;
1731 
1732 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1733 	if (unlikely(!ffs->ep0req))
1734 		return -ENOMEM;
1735 	ffs->ep0req->complete = ffs_ep0_complete;
1736 	ffs->ep0req->context = ffs;
1737 
1738 	lang = ffs->stringtabs;
1739 	if (lang) {
1740 		for (; *lang; ++lang) {
1741 			struct usb_string *str = (*lang)->strings;
1742 			int id = first_id;
1743 			for (; str->s; ++id, ++str)
1744 				str->id = id;
1745 		}
1746 	}
1747 
1748 	ffs->gadget = cdev->gadget;
1749 	ffs_data_get(ffs);
1750 	return 0;
1751 }
1752 
1753 static void functionfs_unbind(struct ffs_data *ffs)
1754 {
1755 	ENTER();
1756 
1757 	if (!WARN_ON(!ffs->gadget)) {
1758 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1759 		ffs->ep0req = NULL;
1760 		ffs->gadget = NULL;
1761 		clear_bit(FFS_FL_BOUND, &ffs->flags);
1762 		ffs_data_put(ffs);
1763 	}
1764 }
1765 
1766 static int ffs_epfiles_create(struct ffs_data *ffs)
1767 {
1768 	struct ffs_epfile *epfile, *epfiles;
1769 	unsigned i, count;
1770 
1771 	ENTER();
1772 
1773 	count = ffs->eps_count;
1774 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1775 	if (!epfiles)
1776 		return -ENOMEM;
1777 
1778 	epfile = epfiles;
1779 	for (i = 1; i <= count; ++i, ++epfile) {
1780 		epfile->ffs = ffs;
1781 		mutex_init(&epfile->mutex);
1782 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1783 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1784 		else
1785 			sprintf(epfile->name, "ep%u", i);
1786 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1787 						 epfile,
1788 						 &ffs_epfile_operations);
1789 		if (unlikely(!epfile->dentry)) {
1790 			ffs_epfiles_destroy(epfiles, i - 1);
1791 			return -ENOMEM;
1792 		}
1793 	}
1794 
1795 	ffs->epfiles = epfiles;
1796 	return 0;
1797 }
1798 
1799 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1800 {
1801 	struct ffs_epfile *epfile = epfiles;
1802 
1803 	ENTER();
1804 
1805 	for (; count; --count, ++epfile) {
1806 		BUG_ON(mutex_is_locked(&epfile->mutex));
1807 		if (epfile->dentry) {
1808 			d_delete(epfile->dentry);
1809 			dput(epfile->dentry);
1810 			epfile->dentry = NULL;
1811 		}
1812 	}
1813 
1814 	kfree(epfiles);
1815 }
1816 
1817 static void ffs_func_eps_disable(struct ffs_function *func)
1818 {
1819 	struct ffs_ep *ep         = func->eps;
1820 	struct ffs_epfile *epfile = func->ffs->epfiles;
1821 	unsigned count            = func->ffs->eps_count;
1822 	unsigned long flags;
1823 
1824 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1825 	while (count--) {
1826 		/* pending requests get nuked */
1827 		if (likely(ep->ep))
1828 			usb_ep_disable(ep->ep);
1829 		++ep;
1830 
1831 		if (epfile) {
1832 			epfile->ep = NULL;
1833 			__ffs_epfile_read_buffer_free(epfile);
1834 			++epfile;
1835 		}
1836 	}
1837 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1838 }
1839 
1840 static int ffs_func_eps_enable(struct ffs_function *func)
1841 {
1842 	struct ffs_data *ffs      = func->ffs;
1843 	struct ffs_ep *ep         = func->eps;
1844 	struct ffs_epfile *epfile = ffs->epfiles;
1845 	unsigned count            = ffs->eps_count;
1846 	unsigned long flags;
1847 	int ret = 0;
1848 
1849 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1850 	while(count--) {
1851 		struct usb_endpoint_descriptor *ds;
1852 		struct usb_ss_ep_comp_descriptor *comp_desc = NULL;
1853 		int needs_comp_desc = false;
1854 		int desc_idx;
1855 
1856 		if (ffs->gadget->speed == USB_SPEED_SUPER) {
1857 			desc_idx = 2;
1858 			needs_comp_desc = true;
1859 		} else if (ffs->gadget->speed == USB_SPEED_HIGH)
1860 			desc_idx = 1;
1861 		else
1862 			desc_idx = 0;
1863 
1864 		/* fall-back to lower speed if desc missing for current speed */
1865 		do {
1866 			ds = ep->descs[desc_idx];
1867 		} while (!ds && --desc_idx >= 0);
1868 
1869 		if (!ds) {
1870 			ret = -EINVAL;
1871 			break;
1872 		}
1873 
1874 		ep->ep->driver_data = ep;
1875 		ep->ep->desc = ds;
1876 
1877 		if (needs_comp_desc) {
1878 			comp_desc = (struct usb_ss_ep_comp_descriptor *)(ds +
1879 					USB_DT_ENDPOINT_SIZE);
1880 			ep->ep->maxburst = comp_desc->bMaxBurst + 1;
1881 			ep->ep->comp_desc = comp_desc;
1882 		}
1883 
1884 		ret = usb_ep_enable(ep->ep);
1885 		if (likely(!ret)) {
1886 			epfile->ep = ep;
1887 			epfile->in = usb_endpoint_dir_in(ds);
1888 			epfile->isoc = usb_endpoint_xfer_isoc(ds);
1889 		} else {
1890 			break;
1891 		}
1892 
1893 		++ep;
1894 		++epfile;
1895 	}
1896 
1897 	wake_up_interruptible(&ffs->wait);
1898 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1899 
1900 	return ret;
1901 }
1902 
1903 
1904 /* Parsing and building descriptors and strings *****************************/
1905 
1906 /*
1907  * This validates if data pointed by data is a valid USB descriptor as
1908  * well as record how many interfaces, endpoints and strings are
1909  * required by given configuration.  Returns address after the
1910  * descriptor or NULL if data is invalid.
1911  */
1912 
1913 enum ffs_entity_type {
1914 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1915 };
1916 
1917 enum ffs_os_desc_type {
1918 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1919 };
1920 
1921 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1922 				   u8 *valuep,
1923 				   struct usb_descriptor_header *desc,
1924 				   void *priv);
1925 
1926 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1927 				    struct usb_os_desc_header *h, void *data,
1928 				    unsigned len, void *priv);
1929 
1930 static int __must_check ffs_do_single_desc(char *data, unsigned len,
1931 					   ffs_entity_callback entity,
1932 					   void *priv)
1933 {
1934 	struct usb_descriptor_header *_ds = (void *)data;
1935 	u8 length;
1936 	int ret;
1937 
1938 	ENTER();
1939 
1940 	/* At least two bytes are required: length and type */
1941 	if (len < 2) {
1942 		pr_vdebug("descriptor too short\n");
1943 		return -EINVAL;
1944 	}
1945 
1946 	/* If we have at least as many bytes as the descriptor takes? */
1947 	length = _ds->bLength;
1948 	if (len < length) {
1949 		pr_vdebug("descriptor longer then available data\n");
1950 		return -EINVAL;
1951 	}
1952 
1953 #define __entity_check_INTERFACE(val)  1
1954 #define __entity_check_STRING(val)     (val)
1955 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
1956 #define __entity(type, val) do {					\
1957 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
1958 		if (unlikely(!__entity_check_ ##type(val))) {		\
1959 			pr_vdebug("invalid entity's value\n");		\
1960 			return -EINVAL;					\
1961 		}							\
1962 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
1963 		if (unlikely(ret < 0)) {				\
1964 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
1965 				 (val), ret);				\
1966 			return ret;					\
1967 		}							\
1968 	} while (0)
1969 
1970 	/* Parse descriptor depending on type. */
1971 	switch (_ds->bDescriptorType) {
1972 	case USB_DT_DEVICE:
1973 	case USB_DT_CONFIG:
1974 	case USB_DT_STRING:
1975 	case USB_DT_DEVICE_QUALIFIER:
1976 		/* function can't have any of those */
1977 		pr_vdebug("descriptor reserved for gadget: %d\n",
1978 		      _ds->bDescriptorType);
1979 		return -EINVAL;
1980 
1981 	case USB_DT_INTERFACE: {
1982 		struct usb_interface_descriptor *ds = (void *)_ds;
1983 		pr_vdebug("interface descriptor\n");
1984 		if (length != sizeof *ds)
1985 			goto inv_length;
1986 
1987 		__entity(INTERFACE, ds->bInterfaceNumber);
1988 		if (ds->iInterface)
1989 			__entity(STRING, ds->iInterface);
1990 	}
1991 		break;
1992 
1993 	case USB_DT_ENDPOINT: {
1994 		struct usb_endpoint_descriptor *ds = (void *)_ds;
1995 		pr_vdebug("endpoint descriptor\n");
1996 		if (length != USB_DT_ENDPOINT_SIZE &&
1997 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
1998 			goto inv_length;
1999 		__entity(ENDPOINT, ds->bEndpointAddress);
2000 	}
2001 		break;
2002 
2003 	case HID_DT_HID:
2004 		pr_vdebug("hid descriptor\n");
2005 		if (length != sizeof(struct hid_descriptor))
2006 			goto inv_length;
2007 		break;
2008 
2009 	case USB_DT_OTG:
2010 		if (length != sizeof(struct usb_otg_descriptor))
2011 			goto inv_length;
2012 		break;
2013 
2014 	case USB_DT_INTERFACE_ASSOCIATION: {
2015 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2016 		pr_vdebug("interface association descriptor\n");
2017 		if (length != sizeof *ds)
2018 			goto inv_length;
2019 		if (ds->iFunction)
2020 			__entity(STRING, ds->iFunction);
2021 	}
2022 		break;
2023 
2024 	case USB_DT_SS_ENDPOINT_COMP:
2025 		pr_vdebug("EP SS companion descriptor\n");
2026 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2027 			goto inv_length;
2028 		break;
2029 
2030 	case USB_DT_OTHER_SPEED_CONFIG:
2031 	case USB_DT_INTERFACE_POWER:
2032 	case USB_DT_DEBUG:
2033 	case USB_DT_SECURITY:
2034 	case USB_DT_CS_RADIO_CONTROL:
2035 		/* TODO */
2036 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2037 		return -EINVAL;
2038 
2039 	default:
2040 		/* We should never be here */
2041 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2042 		return -EINVAL;
2043 
2044 inv_length:
2045 		pr_vdebug("invalid length: %d (descriptor %d)\n",
2046 			  _ds->bLength, _ds->bDescriptorType);
2047 		return -EINVAL;
2048 	}
2049 
2050 #undef __entity
2051 #undef __entity_check_DESCRIPTOR
2052 #undef __entity_check_INTERFACE
2053 #undef __entity_check_STRING
2054 #undef __entity_check_ENDPOINT
2055 
2056 	return length;
2057 }
2058 
2059 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2060 				     ffs_entity_callback entity, void *priv)
2061 {
2062 	const unsigned _len = len;
2063 	unsigned long num = 0;
2064 
2065 	ENTER();
2066 
2067 	for (;;) {
2068 		int ret;
2069 
2070 		if (num == count)
2071 			data = NULL;
2072 
2073 		/* Record "descriptor" entity */
2074 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2075 		if (unlikely(ret < 0)) {
2076 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2077 				 num, ret);
2078 			return ret;
2079 		}
2080 
2081 		if (!data)
2082 			return _len - len;
2083 
2084 		ret = ffs_do_single_desc(data, len, entity, priv);
2085 		if (unlikely(ret < 0)) {
2086 			pr_debug("%s returns %d\n", __func__, ret);
2087 			return ret;
2088 		}
2089 
2090 		len -= ret;
2091 		data += ret;
2092 		++num;
2093 	}
2094 }
2095 
2096 static int __ffs_data_do_entity(enum ffs_entity_type type,
2097 				u8 *valuep, struct usb_descriptor_header *desc,
2098 				void *priv)
2099 {
2100 	struct ffs_desc_helper *helper = priv;
2101 	struct usb_endpoint_descriptor *d;
2102 
2103 	ENTER();
2104 
2105 	switch (type) {
2106 	case FFS_DESCRIPTOR:
2107 		break;
2108 
2109 	case FFS_INTERFACE:
2110 		/*
2111 		 * Interfaces are indexed from zero so if we
2112 		 * encountered interface "n" then there are at least
2113 		 * "n+1" interfaces.
2114 		 */
2115 		if (*valuep >= helper->interfaces_count)
2116 			helper->interfaces_count = *valuep + 1;
2117 		break;
2118 
2119 	case FFS_STRING:
2120 		/*
2121 		 * Strings are indexed from 1 (0 is reserved
2122 		 * for languages list)
2123 		 */
2124 		if (*valuep > helper->ffs->strings_count)
2125 			helper->ffs->strings_count = *valuep;
2126 		break;
2127 
2128 	case FFS_ENDPOINT:
2129 		d = (void *)desc;
2130 		helper->eps_count++;
2131 		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2132 			return -EINVAL;
2133 		/* Check if descriptors for any speed were already parsed */
2134 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2135 			helper->ffs->eps_addrmap[helper->eps_count] =
2136 				d->bEndpointAddress;
2137 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2138 				d->bEndpointAddress)
2139 			return -EINVAL;
2140 		break;
2141 	}
2142 
2143 	return 0;
2144 }
2145 
2146 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2147 				   struct usb_os_desc_header *desc)
2148 {
2149 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2150 	u16 w_index = le16_to_cpu(desc->wIndex);
2151 
2152 	if (bcd_version != 1) {
2153 		pr_vdebug("unsupported os descriptors version: %d",
2154 			  bcd_version);
2155 		return -EINVAL;
2156 	}
2157 	switch (w_index) {
2158 	case 0x4:
2159 		*next_type = FFS_OS_DESC_EXT_COMPAT;
2160 		break;
2161 	case 0x5:
2162 		*next_type = FFS_OS_DESC_EXT_PROP;
2163 		break;
2164 	default:
2165 		pr_vdebug("unsupported os descriptor type: %d", w_index);
2166 		return -EINVAL;
2167 	}
2168 
2169 	return sizeof(*desc);
2170 }
2171 
2172 /*
2173  * Process all extended compatibility/extended property descriptors
2174  * of a feature descriptor
2175  */
2176 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2177 					      enum ffs_os_desc_type type,
2178 					      u16 feature_count,
2179 					      ffs_os_desc_callback entity,
2180 					      void *priv,
2181 					      struct usb_os_desc_header *h)
2182 {
2183 	int ret;
2184 	const unsigned _len = len;
2185 
2186 	ENTER();
2187 
2188 	/* loop over all ext compat/ext prop descriptors */
2189 	while (feature_count--) {
2190 		ret = entity(type, h, data, len, priv);
2191 		if (unlikely(ret < 0)) {
2192 			pr_debug("bad OS descriptor, type: %d\n", type);
2193 			return ret;
2194 		}
2195 		data += ret;
2196 		len -= ret;
2197 	}
2198 	return _len - len;
2199 }
2200 
2201 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2202 static int __must_check ffs_do_os_descs(unsigned count,
2203 					char *data, unsigned len,
2204 					ffs_os_desc_callback entity, void *priv)
2205 {
2206 	const unsigned _len = len;
2207 	unsigned long num = 0;
2208 
2209 	ENTER();
2210 
2211 	for (num = 0; num < count; ++num) {
2212 		int ret;
2213 		enum ffs_os_desc_type type;
2214 		u16 feature_count;
2215 		struct usb_os_desc_header *desc = (void *)data;
2216 
2217 		if (len < sizeof(*desc))
2218 			return -EINVAL;
2219 
2220 		/*
2221 		 * Record "descriptor" entity.
2222 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2223 		 * Move the data pointer to the beginning of extended
2224 		 * compatibilities proper or extended properties proper
2225 		 * portions of the data
2226 		 */
2227 		if (le32_to_cpu(desc->dwLength) > len)
2228 			return -EINVAL;
2229 
2230 		ret = __ffs_do_os_desc_header(&type, desc);
2231 		if (unlikely(ret < 0)) {
2232 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2233 				 num, ret);
2234 			return ret;
2235 		}
2236 		/*
2237 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2238 		 */
2239 		feature_count = le16_to_cpu(desc->wCount);
2240 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2241 		    (feature_count > 255 || desc->Reserved))
2242 				return -EINVAL;
2243 		len -= ret;
2244 		data += ret;
2245 
2246 		/*
2247 		 * Process all function/property descriptors
2248 		 * of this Feature Descriptor
2249 		 */
2250 		ret = ffs_do_single_os_desc(data, len, type,
2251 					    feature_count, entity, priv, desc);
2252 		if (unlikely(ret < 0)) {
2253 			pr_debug("%s returns %d\n", __func__, ret);
2254 			return ret;
2255 		}
2256 
2257 		len -= ret;
2258 		data += ret;
2259 	}
2260 	return _len - len;
2261 }
2262 
2263 /**
2264  * Validate contents of the buffer from userspace related to OS descriptors.
2265  */
2266 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2267 				 struct usb_os_desc_header *h, void *data,
2268 				 unsigned len, void *priv)
2269 {
2270 	struct ffs_data *ffs = priv;
2271 	u8 length;
2272 
2273 	ENTER();
2274 
2275 	switch (type) {
2276 	case FFS_OS_DESC_EXT_COMPAT: {
2277 		struct usb_ext_compat_desc *d = data;
2278 		int i;
2279 
2280 		if (len < sizeof(*d) ||
2281 		    d->bFirstInterfaceNumber >= ffs->interfaces_count ||
2282 		    !d->Reserved1)
2283 			return -EINVAL;
2284 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2285 			if (d->Reserved2[i])
2286 				return -EINVAL;
2287 
2288 		length = sizeof(struct usb_ext_compat_desc);
2289 	}
2290 		break;
2291 	case FFS_OS_DESC_EXT_PROP: {
2292 		struct usb_ext_prop_desc *d = data;
2293 		u32 type, pdl;
2294 		u16 pnl;
2295 
2296 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2297 			return -EINVAL;
2298 		length = le32_to_cpu(d->dwSize);
2299 		if (len < length)
2300 			return -EINVAL;
2301 		type = le32_to_cpu(d->dwPropertyDataType);
2302 		if (type < USB_EXT_PROP_UNICODE ||
2303 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2304 			pr_vdebug("unsupported os descriptor property type: %d",
2305 				  type);
2306 			return -EINVAL;
2307 		}
2308 		pnl = le16_to_cpu(d->wPropertyNameLength);
2309 		if (length < 14 + pnl) {
2310 			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2311 				  length, pnl, type);
2312 			return -EINVAL;
2313 		}
2314 		pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl));
2315 		if (length != 14 + pnl + pdl) {
2316 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2317 				  length, pnl, pdl, type);
2318 			return -EINVAL;
2319 		}
2320 		++ffs->ms_os_descs_ext_prop_count;
2321 		/* property name reported to the host as "WCHAR"s */
2322 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2323 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2324 	}
2325 		break;
2326 	default:
2327 		pr_vdebug("unknown descriptor: %d\n", type);
2328 		return -EINVAL;
2329 	}
2330 	return length;
2331 }
2332 
2333 static int __ffs_data_got_descs(struct ffs_data *ffs,
2334 				char *const _data, size_t len)
2335 {
2336 	char *data = _data, *raw_descs;
2337 	unsigned os_descs_count = 0, counts[3], flags;
2338 	int ret = -EINVAL, i;
2339 	struct ffs_desc_helper helper;
2340 
2341 	ENTER();
2342 
2343 	if (get_unaligned_le32(data + 4) != len)
2344 		goto error;
2345 
2346 	switch (get_unaligned_le32(data)) {
2347 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2348 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2349 		data += 8;
2350 		len  -= 8;
2351 		break;
2352 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2353 		flags = get_unaligned_le32(data + 8);
2354 		ffs->user_flags = flags;
2355 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2356 			      FUNCTIONFS_HAS_HS_DESC |
2357 			      FUNCTIONFS_HAS_SS_DESC |
2358 			      FUNCTIONFS_HAS_MS_OS_DESC |
2359 			      FUNCTIONFS_VIRTUAL_ADDR |
2360 			      FUNCTIONFS_EVENTFD |
2361 			      FUNCTIONFS_ALL_CTRL_RECIP |
2362 			      FUNCTIONFS_CONFIG0_SETUP)) {
2363 			ret = -ENOSYS;
2364 			goto error;
2365 		}
2366 		data += 12;
2367 		len  -= 12;
2368 		break;
2369 	default:
2370 		goto error;
2371 	}
2372 
2373 	if (flags & FUNCTIONFS_EVENTFD) {
2374 		if (len < 4)
2375 			goto error;
2376 		ffs->ffs_eventfd =
2377 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2378 		if (IS_ERR(ffs->ffs_eventfd)) {
2379 			ret = PTR_ERR(ffs->ffs_eventfd);
2380 			ffs->ffs_eventfd = NULL;
2381 			goto error;
2382 		}
2383 		data += 4;
2384 		len  -= 4;
2385 	}
2386 
2387 	/* Read fs_count, hs_count and ss_count (if present) */
2388 	for (i = 0; i < 3; ++i) {
2389 		if (!(flags & (1 << i))) {
2390 			counts[i] = 0;
2391 		} else if (len < 4) {
2392 			goto error;
2393 		} else {
2394 			counts[i] = get_unaligned_le32(data);
2395 			data += 4;
2396 			len  -= 4;
2397 		}
2398 	}
2399 	if (flags & (1 << i)) {
2400 		if (len < 4) {
2401 			goto error;
2402 		}
2403 		os_descs_count = get_unaligned_le32(data);
2404 		data += 4;
2405 		len -= 4;
2406 	};
2407 
2408 	/* Read descriptors */
2409 	raw_descs = data;
2410 	helper.ffs = ffs;
2411 	for (i = 0; i < 3; ++i) {
2412 		if (!counts[i])
2413 			continue;
2414 		helper.interfaces_count = 0;
2415 		helper.eps_count = 0;
2416 		ret = ffs_do_descs(counts[i], data, len,
2417 				   __ffs_data_do_entity, &helper);
2418 		if (ret < 0)
2419 			goto error;
2420 		if (!ffs->eps_count && !ffs->interfaces_count) {
2421 			ffs->eps_count = helper.eps_count;
2422 			ffs->interfaces_count = helper.interfaces_count;
2423 		} else {
2424 			if (ffs->eps_count != helper.eps_count) {
2425 				ret = -EINVAL;
2426 				goto error;
2427 			}
2428 			if (ffs->interfaces_count != helper.interfaces_count) {
2429 				ret = -EINVAL;
2430 				goto error;
2431 			}
2432 		}
2433 		data += ret;
2434 		len  -= ret;
2435 	}
2436 	if (os_descs_count) {
2437 		ret = ffs_do_os_descs(os_descs_count, data, len,
2438 				      __ffs_data_do_os_desc, ffs);
2439 		if (ret < 0)
2440 			goto error;
2441 		data += ret;
2442 		len -= ret;
2443 	}
2444 
2445 	if (raw_descs == data || len) {
2446 		ret = -EINVAL;
2447 		goto error;
2448 	}
2449 
2450 	ffs->raw_descs_data	= _data;
2451 	ffs->raw_descs		= raw_descs;
2452 	ffs->raw_descs_length	= data - raw_descs;
2453 	ffs->fs_descs_count	= counts[0];
2454 	ffs->hs_descs_count	= counts[1];
2455 	ffs->ss_descs_count	= counts[2];
2456 	ffs->ms_os_descs_count	= os_descs_count;
2457 
2458 	return 0;
2459 
2460 error:
2461 	kfree(_data);
2462 	return ret;
2463 }
2464 
2465 static int __ffs_data_got_strings(struct ffs_data *ffs,
2466 				  char *const _data, size_t len)
2467 {
2468 	u32 str_count, needed_count, lang_count;
2469 	struct usb_gadget_strings **stringtabs, *t;
2470 	const char *data = _data;
2471 	struct usb_string *s;
2472 
2473 	ENTER();
2474 
2475 	if (unlikely(len < 16 ||
2476 		     get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2477 		     get_unaligned_le32(data + 4) != len))
2478 		goto error;
2479 	str_count  = get_unaligned_le32(data + 8);
2480 	lang_count = get_unaligned_le32(data + 12);
2481 
2482 	/* if one is zero the other must be zero */
2483 	if (unlikely(!str_count != !lang_count))
2484 		goto error;
2485 
2486 	/* Do we have at least as many strings as descriptors need? */
2487 	needed_count = ffs->strings_count;
2488 	if (unlikely(str_count < needed_count))
2489 		goto error;
2490 
2491 	/*
2492 	 * If we don't need any strings just return and free all
2493 	 * memory.
2494 	 */
2495 	if (!needed_count) {
2496 		kfree(_data);
2497 		return 0;
2498 	}
2499 
2500 	/* Allocate everything in one chunk so there's less maintenance. */
2501 	{
2502 		unsigned i = 0;
2503 		vla_group(d);
2504 		vla_item(d, struct usb_gadget_strings *, stringtabs,
2505 			lang_count + 1);
2506 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2507 		vla_item(d, struct usb_string, strings,
2508 			lang_count*(needed_count+1));
2509 
2510 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2511 
2512 		if (unlikely(!vlabuf)) {
2513 			kfree(_data);
2514 			return -ENOMEM;
2515 		}
2516 
2517 		/* Initialize the VLA pointers */
2518 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2519 		t = vla_ptr(vlabuf, d, stringtab);
2520 		i = lang_count;
2521 		do {
2522 			*stringtabs++ = t++;
2523 		} while (--i);
2524 		*stringtabs = NULL;
2525 
2526 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2527 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2528 		t = vla_ptr(vlabuf, d, stringtab);
2529 		s = vla_ptr(vlabuf, d, strings);
2530 	}
2531 
2532 	/* For each language */
2533 	data += 16;
2534 	len -= 16;
2535 
2536 	do { /* lang_count > 0 so we can use do-while */
2537 		unsigned needed = needed_count;
2538 
2539 		if (unlikely(len < 3))
2540 			goto error_free;
2541 		t->language = get_unaligned_le16(data);
2542 		t->strings  = s;
2543 		++t;
2544 
2545 		data += 2;
2546 		len -= 2;
2547 
2548 		/* For each string */
2549 		do { /* str_count > 0 so we can use do-while */
2550 			size_t length = strnlen(data, len);
2551 
2552 			if (unlikely(length == len))
2553 				goto error_free;
2554 
2555 			/*
2556 			 * User may provide more strings then we need,
2557 			 * if that's the case we simply ignore the
2558 			 * rest
2559 			 */
2560 			if (likely(needed)) {
2561 				/*
2562 				 * s->id will be set while adding
2563 				 * function to configuration so for
2564 				 * now just leave garbage here.
2565 				 */
2566 				s->s = data;
2567 				--needed;
2568 				++s;
2569 			}
2570 
2571 			data += length + 1;
2572 			len -= length + 1;
2573 		} while (--str_count);
2574 
2575 		s->id = 0;   /* terminator */
2576 		s->s = NULL;
2577 		++s;
2578 
2579 	} while (--lang_count);
2580 
2581 	/* Some garbage left? */
2582 	if (unlikely(len))
2583 		goto error_free;
2584 
2585 	/* Done! */
2586 	ffs->stringtabs = stringtabs;
2587 	ffs->raw_strings = _data;
2588 
2589 	return 0;
2590 
2591 error_free:
2592 	kfree(stringtabs);
2593 error:
2594 	kfree(_data);
2595 	return -EINVAL;
2596 }
2597 
2598 
2599 /* Events handling and management *******************************************/
2600 
2601 static void __ffs_event_add(struct ffs_data *ffs,
2602 			    enum usb_functionfs_event_type type)
2603 {
2604 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2605 	int neg = 0;
2606 
2607 	/*
2608 	 * Abort any unhandled setup
2609 	 *
2610 	 * We do not need to worry about some cmpxchg() changing value
2611 	 * of ffs->setup_state without holding the lock because when
2612 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2613 	 * the source does nothing.
2614 	 */
2615 	if (ffs->setup_state == FFS_SETUP_PENDING)
2616 		ffs->setup_state = FFS_SETUP_CANCELLED;
2617 
2618 	/*
2619 	 * Logic of this function guarantees that there are at most four pending
2620 	 * evens on ffs->ev.types queue.  This is important because the queue
2621 	 * has space for four elements only and __ffs_ep0_read_events function
2622 	 * depends on that limit as well.  If more event types are added, those
2623 	 * limits have to be revisited or guaranteed to still hold.
2624 	 */
2625 	switch (type) {
2626 	case FUNCTIONFS_RESUME:
2627 		rem_type2 = FUNCTIONFS_SUSPEND;
2628 		/* FALL THROUGH */
2629 	case FUNCTIONFS_SUSPEND:
2630 	case FUNCTIONFS_SETUP:
2631 		rem_type1 = type;
2632 		/* Discard all similar events */
2633 		break;
2634 
2635 	case FUNCTIONFS_BIND:
2636 	case FUNCTIONFS_UNBIND:
2637 	case FUNCTIONFS_DISABLE:
2638 	case FUNCTIONFS_ENABLE:
2639 		/* Discard everything other then power management. */
2640 		rem_type1 = FUNCTIONFS_SUSPEND;
2641 		rem_type2 = FUNCTIONFS_RESUME;
2642 		neg = 1;
2643 		break;
2644 
2645 	default:
2646 		WARN(1, "%d: unknown event, this should not happen\n", type);
2647 		return;
2648 	}
2649 
2650 	{
2651 		u8 *ev  = ffs->ev.types, *out = ev;
2652 		unsigned n = ffs->ev.count;
2653 		for (; n; --n, ++ev)
2654 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2655 				*out++ = *ev;
2656 			else
2657 				pr_vdebug("purging event %d\n", *ev);
2658 		ffs->ev.count = out - ffs->ev.types;
2659 	}
2660 
2661 	pr_vdebug("adding event %d\n", type);
2662 	ffs->ev.types[ffs->ev.count++] = type;
2663 	wake_up_locked(&ffs->ev.waitq);
2664 	if (ffs->ffs_eventfd)
2665 		eventfd_signal(ffs->ffs_eventfd, 1);
2666 }
2667 
2668 static void ffs_event_add(struct ffs_data *ffs,
2669 			  enum usb_functionfs_event_type type)
2670 {
2671 	unsigned long flags;
2672 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2673 	__ffs_event_add(ffs, type);
2674 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2675 }
2676 
2677 /* Bind/unbind USB function hooks *******************************************/
2678 
2679 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2680 {
2681 	int i;
2682 
2683 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2684 		if (ffs->eps_addrmap[i] == endpoint_address)
2685 			return i;
2686 	return -ENOENT;
2687 }
2688 
2689 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2690 				    struct usb_descriptor_header *desc,
2691 				    void *priv)
2692 {
2693 	struct usb_endpoint_descriptor *ds = (void *)desc;
2694 	struct ffs_function *func = priv;
2695 	struct ffs_ep *ffs_ep;
2696 	unsigned ep_desc_id;
2697 	int idx;
2698 	static const char *speed_names[] = { "full", "high", "super" };
2699 
2700 	if (type != FFS_DESCRIPTOR)
2701 		return 0;
2702 
2703 	/*
2704 	 * If ss_descriptors is not NULL, we are reading super speed
2705 	 * descriptors; if hs_descriptors is not NULL, we are reading high
2706 	 * speed descriptors; otherwise, we are reading full speed
2707 	 * descriptors.
2708 	 */
2709 	if (func->function.ss_descriptors) {
2710 		ep_desc_id = 2;
2711 		func->function.ss_descriptors[(long)valuep] = desc;
2712 	} else if (func->function.hs_descriptors) {
2713 		ep_desc_id = 1;
2714 		func->function.hs_descriptors[(long)valuep] = desc;
2715 	} else {
2716 		ep_desc_id = 0;
2717 		func->function.fs_descriptors[(long)valuep]    = desc;
2718 	}
2719 
2720 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2721 		return 0;
2722 
2723 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2724 	if (idx < 0)
2725 		return idx;
2726 
2727 	ffs_ep = func->eps + idx;
2728 
2729 	if (unlikely(ffs_ep->descs[ep_desc_id])) {
2730 		pr_err("two %sspeed descriptors for EP %d\n",
2731 			  speed_names[ep_desc_id],
2732 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2733 		return -EINVAL;
2734 	}
2735 	ffs_ep->descs[ep_desc_id] = ds;
2736 
2737 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2738 	if (ffs_ep->ep) {
2739 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2740 		if (!ds->wMaxPacketSize)
2741 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2742 	} else {
2743 		struct usb_request *req;
2744 		struct usb_ep *ep;
2745 		u8 bEndpointAddress;
2746 
2747 		/*
2748 		 * We back up bEndpointAddress because autoconfig overwrites
2749 		 * it with physical endpoint address.
2750 		 */
2751 		bEndpointAddress = ds->bEndpointAddress;
2752 		pr_vdebug("autoconfig\n");
2753 		ep = usb_ep_autoconfig(func->gadget, ds);
2754 		if (unlikely(!ep))
2755 			return -ENOTSUPP;
2756 		ep->driver_data = func->eps + idx;
2757 
2758 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2759 		if (unlikely(!req))
2760 			return -ENOMEM;
2761 
2762 		ffs_ep->ep  = ep;
2763 		ffs_ep->req = req;
2764 		func->eps_revmap[ds->bEndpointAddress &
2765 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2766 		/*
2767 		 * If we use virtual address mapping, we restore
2768 		 * original bEndpointAddress value.
2769 		 */
2770 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2771 			ds->bEndpointAddress = bEndpointAddress;
2772 	}
2773 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2774 
2775 	return 0;
2776 }
2777 
2778 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2779 				   struct usb_descriptor_header *desc,
2780 				   void *priv)
2781 {
2782 	struct ffs_function *func = priv;
2783 	unsigned idx;
2784 	u8 newValue;
2785 
2786 	switch (type) {
2787 	default:
2788 	case FFS_DESCRIPTOR:
2789 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2790 		return 0;
2791 
2792 	case FFS_INTERFACE:
2793 		idx = *valuep;
2794 		if (func->interfaces_nums[idx] < 0) {
2795 			int id = usb_interface_id(func->conf, &func->function);
2796 			if (unlikely(id < 0))
2797 				return id;
2798 			func->interfaces_nums[idx] = id;
2799 		}
2800 		newValue = func->interfaces_nums[idx];
2801 		break;
2802 
2803 	case FFS_STRING:
2804 		/* String' IDs are allocated when fsf_data is bound to cdev */
2805 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2806 		break;
2807 
2808 	case FFS_ENDPOINT:
2809 		/*
2810 		 * USB_DT_ENDPOINT are handled in
2811 		 * __ffs_func_bind_do_descs().
2812 		 */
2813 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2814 			return 0;
2815 
2816 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2817 		if (unlikely(!func->eps[idx].ep))
2818 			return -EINVAL;
2819 
2820 		{
2821 			struct usb_endpoint_descriptor **descs;
2822 			descs = func->eps[idx].descs;
2823 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2824 		}
2825 		break;
2826 	}
2827 
2828 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2829 	*valuep = newValue;
2830 	return 0;
2831 }
2832 
2833 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2834 				      struct usb_os_desc_header *h, void *data,
2835 				      unsigned len, void *priv)
2836 {
2837 	struct ffs_function *func = priv;
2838 	u8 length = 0;
2839 
2840 	switch (type) {
2841 	case FFS_OS_DESC_EXT_COMPAT: {
2842 		struct usb_ext_compat_desc *desc = data;
2843 		struct usb_os_desc_table *t;
2844 
2845 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2846 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2847 		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2848 		       ARRAY_SIZE(desc->CompatibleID) +
2849 		       ARRAY_SIZE(desc->SubCompatibleID));
2850 		length = sizeof(*desc);
2851 	}
2852 		break;
2853 	case FFS_OS_DESC_EXT_PROP: {
2854 		struct usb_ext_prop_desc *desc = data;
2855 		struct usb_os_desc_table *t;
2856 		struct usb_os_desc_ext_prop *ext_prop;
2857 		char *ext_prop_name;
2858 		char *ext_prop_data;
2859 
2860 		t = &func->function.os_desc_table[h->interface];
2861 		t->if_id = func->interfaces_nums[h->interface];
2862 
2863 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2864 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2865 
2866 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2867 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2868 		ext_prop->data_len = le32_to_cpu(*(u32 *)
2869 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2870 		length = ext_prop->name_len + ext_prop->data_len + 14;
2871 
2872 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2873 		func->ffs->ms_os_descs_ext_prop_name_avail +=
2874 			ext_prop->name_len;
2875 
2876 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2877 		func->ffs->ms_os_descs_ext_prop_data_avail +=
2878 			ext_prop->data_len;
2879 		memcpy(ext_prop_data,
2880 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2881 		       ext_prop->data_len);
2882 		/* unicode data reported to the host as "WCHAR"s */
2883 		switch (ext_prop->type) {
2884 		case USB_EXT_PROP_UNICODE:
2885 		case USB_EXT_PROP_UNICODE_ENV:
2886 		case USB_EXT_PROP_UNICODE_LINK:
2887 		case USB_EXT_PROP_UNICODE_MULTI:
2888 			ext_prop->data_len *= 2;
2889 			break;
2890 		}
2891 		ext_prop->data = ext_prop_data;
2892 
2893 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2894 		       ext_prop->name_len);
2895 		/* property name reported to the host as "WCHAR"s */
2896 		ext_prop->name_len *= 2;
2897 		ext_prop->name = ext_prop_name;
2898 
2899 		t->os_desc->ext_prop_len +=
2900 			ext_prop->name_len + ext_prop->data_len + 14;
2901 		++t->os_desc->ext_prop_count;
2902 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2903 	}
2904 		break;
2905 	default:
2906 		pr_vdebug("unknown descriptor: %d\n", type);
2907 	}
2908 
2909 	return length;
2910 }
2911 
2912 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2913 						struct usb_configuration *c)
2914 {
2915 	struct ffs_function *func = ffs_func_from_usb(f);
2916 	struct f_fs_opts *ffs_opts =
2917 		container_of(f->fi, struct f_fs_opts, func_inst);
2918 	int ret;
2919 
2920 	ENTER();
2921 
2922 	/*
2923 	 * Legacy gadget triggers binding in functionfs_ready_callback,
2924 	 * which already uses locking; taking the same lock here would
2925 	 * cause a deadlock.
2926 	 *
2927 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
2928 	 */
2929 	if (!ffs_opts->no_configfs)
2930 		ffs_dev_lock();
2931 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2932 	func->ffs = ffs_opts->dev->ffs_data;
2933 	if (!ffs_opts->no_configfs)
2934 		ffs_dev_unlock();
2935 	if (ret)
2936 		return ERR_PTR(ret);
2937 
2938 	func->conf = c;
2939 	func->gadget = c->cdev->gadget;
2940 
2941 	/*
2942 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2943 	 * configurations are bound in sequence with list_for_each_entry,
2944 	 * in each configuration its functions are bound in sequence
2945 	 * with list_for_each_entry, so we assume no race condition
2946 	 * with regard to ffs_opts->bound access
2947 	 */
2948 	if (!ffs_opts->refcnt) {
2949 		ret = functionfs_bind(func->ffs, c->cdev);
2950 		if (ret)
2951 			return ERR_PTR(ret);
2952 	}
2953 	ffs_opts->refcnt++;
2954 	func->function.strings = func->ffs->stringtabs;
2955 
2956 	return ffs_opts;
2957 }
2958 
2959 static int _ffs_func_bind(struct usb_configuration *c,
2960 			  struct usb_function *f)
2961 {
2962 	struct ffs_function *func = ffs_func_from_usb(f);
2963 	struct ffs_data *ffs = func->ffs;
2964 
2965 	const int full = !!func->ffs->fs_descs_count;
2966 	const int high = gadget_is_dualspeed(func->gadget) &&
2967 		func->ffs->hs_descs_count;
2968 	const int super = gadget_is_superspeed(func->gadget) &&
2969 		func->ffs->ss_descs_count;
2970 
2971 	int fs_len, hs_len, ss_len, ret, i;
2972 	struct ffs_ep *eps_ptr;
2973 
2974 	/* Make it a single chunk, less management later on */
2975 	vla_group(d);
2976 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2977 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2978 		full ? ffs->fs_descs_count + 1 : 0);
2979 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2980 		high ? ffs->hs_descs_count + 1 : 0);
2981 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2982 		super ? ffs->ss_descs_count + 1 : 0);
2983 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2984 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2985 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2986 	vla_item_with_sz(d, char[16], ext_compat,
2987 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2988 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
2989 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2990 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
2991 			 ffs->ms_os_descs_ext_prop_count);
2992 	vla_item_with_sz(d, char, ext_prop_name,
2993 			 ffs->ms_os_descs_ext_prop_name_len);
2994 	vla_item_with_sz(d, char, ext_prop_data,
2995 			 ffs->ms_os_descs_ext_prop_data_len);
2996 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
2997 	char *vlabuf;
2998 
2999 	ENTER();
3000 
3001 	/* Has descriptors only for speeds gadget does not support */
3002 	if (unlikely(!(full | high | super)))
3003 		return -ENOTSUPP;
3004 
3005 	/* Allocate a single chunk, less management later on */
3006 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3007 	if (unlikely(!vlabuf))
3008 		return -ENOMEM;
3009 
3010 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3011 	ffs->ms_os_descs_ext_prop_name_avail =
3012 		vla_ptr(vlabuf, d, ext_prop_name);
3013 	ffs->ms_os_descs_ext_prop_data_avail =
3014 		vla_ptr(vlabuf, d, ext_prop_data);
3015 
3016 	/* Copy descriptors  */
3017 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3018 	       ffs->raw_descs_length);
3019 
3020 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3021 	eps_ptr = vla_ptr(vlabuf, d, eps);
3022 	for (i = 0; i < ffs->eps_count; i++)
3023 		eps_ptr[i].num = -1;
3024 
3025 	/* Save pointers
3026 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3027 	*/
3028 	func->eps             = vla_ptr(vlabuf, d, eps);
3029 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3030 
3031 	/*
3032 	 * Go through all the endpoint descriptors and allocate
3033 	 * endpoints first, so that later we can rewrite the endpoint
3034 	 * numbers without worrying that it may be described later on.
3035 	 */
3036 	if (likely(full)) {
3037 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3038 		fs_len = ffs_do_descs(ffs->fs_descs_count,
3039 				      vla_ptr(vlabuf, d, raw_descs),
3040 				      d_raw_descs__sz,
3041 				      __ffs_func_bind_do_descs, func);
3042 		if (unlikely(fs_len < 0)) {
3043 			ret = fs_len;
3044 			goto error;
3045 		}
3046 	} else {
3047 		fs_len = 0;
3048 	}
3049 
3050 	if (likely(high)) {
3051 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3052 		hs_len = ffs_do_descs(ffs->hs_descs_count,
3053 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3054 				      d_raw_descs__sz - fs_len,
3055 				      __ffs_func_bind_do_descs, func);
3056 		if (unlikely(hs_len < 0)) {
3057 			ret = hs_len;
3058 			goto error;
3059 		}
3060 	} else {
3061 		hs_len = 0;
3062 	}
3063 
3064 	if (likely(super)) {
3065 		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3066 		ss_len = ffs_do_descs(ffs->ss_descs_count,
3067 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3068 				d_raw_descs__sz - fs_len - hs_len,
3069 				__ffs_func_bind_do_descs, func);
3070 		if (unlikely(ss_len < 0)) {
3071 			ret = ss_len;
3072 			goto error;
3073 		}
3074 	} else {
3075 		ss_len = 0;
3076 	}
3077 
3078 	/*
3079 	 * Now handle interface numbers allocation and interface and
3080 	 * endpoint numbers rewriting.  We can do that in one go
3081 	 * now.
3082 	 */
3083 	ret = ffs_do_descs(ffs->fs_descs_count +
3084 			   (high ? ffs->hs_descs_count : 0) +
3085 			   (super ? ffs->ss_descs_count : 0),
3086 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3087 			   __ffs_func_bind_do_nums, func);
3088 	if (unlikely(ret < 0))
3089 		goto error;
3090 
3091 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3092 	if (c->cdev->use_os_string) {
3093 		for (i = 0; i < ffs->interfaces_count; ++i) {
3094 			struct usb_os_desc *desc;
3095 
3096 			desc = func->function.os_desc_table[i].os_desc =
3097 				vla_ptr(vlabuf, d, os_desc) +
3098 				i * sizeof(struct usb_os_desc);
3099 			desc->ext_compat_id =
3100 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3101 			INIT_LIST_HEAD(&desc->ext_prop);
3102 		}
3103 		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3104 				      vla_ptr(vlabuf, d, raw_descs) +
3105 				      fs_len + hs_len + ss_len,
3106 				      d_raw_descs__sz - fs_len - hs_len -
3107 				      ss_len,
3108 				      __ffs_func_bind_do_os_desc, func);
3109 		if (unlikely(ret < 0))
3110 			goto error;
3111 	}
3112 	func->function.os_desc_n =
3113 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3114 
3115 	/* And we're done */
3116 	ffs_event_add(ffs, FUNCTIONFS_BIND);
3117 	return 0;
3118 
3119 error:
3120 	/* XXX Do we need to release all claimed endpoints here? */
3121 	return ret;
3122 }
3123 
3124 static int ffs_func_bind(struct usb_configuration *c,
3125 			 struct usb_function *f)
3126 {
3127 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3128 	struct ffs_function *func = ffs_func_from_usb(f);
3129 	int ret;
3130 
3131 	if (IS_ERR(ffs_opts))
3132 		return PTR_ERR(ffs_opts);
3133 
3134 	ret = _ffs_func_bind(c, f);
3135 	if (ret && !--ffs_opts->refcnt)
3136 		functionfs_unbind(func->ffs);
3137 
3138 	return ret;
3139 }
3140 
3141 
3142 /* Other USB function hooks *************************************************/
3143 
3144 static void ffs_reset_work(struct work_struct *work)
3145 {
3146 	struct ffs_data *ffs = container_of(work,
3147 		struct ffs_data, reset_work);
3148 	ffs_data_reset(ffs);
3149 }
3150 
3151 static int ffs_func_set_alt(struct usb_function *f,
3152 			    unsigned interface, unsigned alt)
3153 {
3154 	struct ffs_function *func = ffs_func_from_usb(f);
3155 	struct ffs_data *ffs = func->ffs;
3156 	int ret = 0, intf;
3157 
3158 	if (alt != (unsigned)-1) {
3159 		intf = ffs_func_revmap_intf(func, interface);
3160 		if (unlikely(intf < 0))
3161 			return intf;
3162 	}
3163 
3164 	if (ffs->func)
3165 		ffs_func_eps_disable(ffs->func);
3166 
3167 	if (ffs->state == FFS_DEACTIVATED) {
3168 		ffs->state = FFS_CLOSING;
3169 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3170 		schedule_work(&ffs->reset_work);
3171 		return -ENODEV;
3172 	}
3173 
3174 	if (ffs->state != FFS_ACTIVE)
3175 		return -ENODEV;
3176 
3177 	if (alt == (unsigned)-1) {
3178 		ffs->func = NULL;
3179 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3180 		return 0;
3181 	}
3182 
3183 	ffs->func = func;
3184 	ret = ffs_func_eps_enable(func);
3185 	if (likely(ret >= 0))
3186 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3187 	return ret;
3188 }
3189 
3190 static void ffs_func_disable(struct usb_function *f)
3191 {
3192 	ffs_func_set_alt(f, 0, (unsigned)-1);
3193 }
3194 
3195 static int ffs_func_setup(struct usb_function *f,
3196 			  const struct usb_ctrlrequest *creq)
3197 {
3198 	struct ffs_function *func = ffs_func_from_usb(f);
3199 	struct ffs_data *ffs = func->ffs;
3200 	unsigned long flags;
3201 	int ret;
3202 
3203 	ENTER();
3204 
3205 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3206 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3207 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3208 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3209 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3210 
3211 	/*
3212 	 * Most requests directed to interface go through here
3213 	 * (notable exceptions are set/get interface) so we need to
3214 	 * handle them.  All other either handled by composite or
3215 	 * passed to usb_configuration->setup() (if one is set).  No
3216 	 * matter, we will handle requests directed to endpoint here
3217 	 * as well (as it's straightforward).  Other request recipient
3218 	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3219 	 * is being used.
3220 	 */
3221 	if (ffs->state != FFS_ACTIVE)
3222 		return -ENODEV;
3223 
3224 	switch (creq->bRequestType & USB_RECIP_MASK) {
3225 	case USB_RECIP_INTERFACE:
3226 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3227 		if (unlikely(ret < 0))
3228 			return ret;
3229 		break;
3230 
3231 	case USB_RECIP_ENDPOINT:
3232 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3233 		if (unlikely(ret < 0))
3234 			return ret;
3235 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3236 			ret = func->ffs->eps_addrmap[ret];
3237 		break;
3238 
3239 	default:
3240 		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3241 			ret = le16_to_cpu(creq->wIndex);
3242 		else
3243 			return -EOPNOTSUPP;
3244 	}
3245 
3246 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3247 	ffs->ev.setup = *creq;
3248 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3249 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3250 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3251 
3252 	return 0;
3253 }
3254 
3255 static bool ffs_func_req_match(struct usb_function *f,
3256 			       const struct usb_ctrlrequest *creq,
3257 			       bool config0)
3258 {
3259 	struct ffs_function *func = ffs_func_from_usb(f);
3260 
3261 	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3262 		return false;
3263 
3264 	switch (creq->bRequestType & USB_RECIP_MASK) {
3265 	case USB_RECIP_INTERFACE:
3266 		return (ffs_func_revmap_intf(func,
3267 					     le16_to_cpu(creq->wIndex)) >= 0);
3268 	case USB_RECIP_ENDPOINT:
3269 		return (ffs_func_revmap_ep(func,
3270 					   le16_to_cpu(creq->wIndex)) >= 0);
3271 	default:
3272 		return (bool) (func->ffs->user_flags &
3273 			       FUNCTIONFS_ALL_CTRL_RECIP);
3274 	}
3275 }
3276 
3277 static void ffs_func_suspend(struct usb_function *f)
3278 {
3279 	ENTER();
3280 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3281 }
3282 
3283 static void ffs_func_resume(struct usb_function *f)
3284 {
3285 	ENTER();
3286 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3287 }
3288 
3289 
3290 /* Endpoint and interface numbers reverse mapping ***************************/
3291 
3292 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3293 {
3294 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3295 	return num ? num : -EDOM;
3296 }
3297 
3298 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3299 {
3300 	short *nums = func->interfaces_nums;
3301 	unsigned count = func->ffs->interfaces_count;
3302 
3303 	for (; count; --count, ++nums) {
3304 		if (*nums >= 0 && *nums == intf)
3305 			return nums - func->interfaces_nums;
3306 	}
3307 
3308 	return -EDOM;
3309 }
3310 
3311 
3312 /* Devices management *******************************************************/
3313 
3314 static LIST_HEAD(ffs_devices);
3315 
3316 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3317 {
3318 	struct ffs_dev *dev;
3319 
3320 	if (!name)
3321 		return NULL;
3322 
3323 	list_for_each_entry(dev, &ffs_devices, entry) {
3324 		if (strcmp(dev->name, name) == 0)
3325 			return dev;
3326 	}
3327 
3328 	return NULL;
3329 }
3330 
3331 /*
3332  * ffs_lock must be taken by the caller of this function
3333  */
3334 static struct ffs_dev *_ffs_get_single_dev(void)
3335 {
3336 	struct ffs_dev *dev;
3337 
3338 	if (list_is_singular(&ffs_devices)) {
3339 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3340 		if (dev->single)
3341 			return dev;
3342 	}
3343 
3344 	return NULL;
3345 }
3346 
3347 /*
3348  * ffs_lock must be taken by the caller of this function
3349  */
3350 static struct ffs_dev *_ffs_find_dev(const char *name)
3351 {
3352 	struct ffs_dev *dev;
3353 
3354 	dev = _ffs_get_single_dev();
3355 	if (dev)
3356 		return dev;
3357 
3358 	return _ffs_do_find_dev(name);
3359 }
3360 
3361 /* Configfs support *********************************************************/
3362 
3363 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3364 {
3365 	return container_of(to_config_group(item), struct f_fs_opts,
3366 			    func_inst.group);
3367 }
3368 
3369 static void ffs_attr_release(struct config_item *item)
3370 {
3371 	struct f_fs_opts *opts = to_ffs_opts(item);
3372 
3373 	usb_put_function_instance(&opts->func_inst);
3374 }
3375 
3376 static struct configfs_item_operations ffs_item_ops = {
3377 	.release	= ffs_attr_release,
3378 };
3379 
3380 static struct config_item_type ffs_func_type = {
3381 	.ct_item_ops	= &ffs_item_ops,
3382 	.ct_owner	= THIS_MODULE,
3383 };
3384 
3385 
3386 /* Function registration interface ******************************************/
3387 
3388 static void ffs_free_inst(struct usb_function_instance *f)
3389 {
3390 	struct f_fs_opts *opts;
3391 
3392 	opts = to_f_fs_opts(f);
3393 	ffs_dev_lock();
3394 	_ffs_free_dev(opts->dev);
3395 	ffs_dev_unlock();
3396 	kfree(opts);
3397 }
3398 
3399 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3400 {
3401 	if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name))
3402 		return -ENAMETOOLONG;
3403 	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3404 }
3405 
3406 static struct usb_function_instance *ffs_alloc_inst(void)
3407 {
3408 	struct f_fs_opts *opts;
3409 	struct ffs_dev *dev;
3410 
3411 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3412 	if (!opts)
3413 		return ERR_PTR(-ENOMEM);
3414 
3415 	opts->func_inst.set_inst_name = ffs_set_inst_name;
3416 	opts->func_inst.free_func_inst = ffs_free_inst;
3417 	ffs_dev_lock();
3418 	dev = _ffs_alloc_dev();
3419 	ffs_dev_unlock();
3420 	if (IS_ERR(dev)) {
3421 		kfree(opts);
3422 		return ERR_CAST(dev);
3423 	}
3424 	opts->dev = dev;
3425 	dev->opts = opts;
3426 
3427 	config_group_init_type_name(&opts->func_inst.group, "",
3428 				    &ffs_func_type);
3429 	return &opts->func_inst;
3430 }
3431 
3432 static void ffs_free(struct usb_function *f)
3433 {
3434 	kfree(ffs_func_from_usb(f));
3435 }
3436 
3437 static void ffs_func_unbind(struct usb_configuration *c,
3438 			    struct usb_function *f)
3439 {
3440 	struct ffs_function *func = ffs_func_from_usb(f);
3441 	struct ffs_data *ffs = func->ffs;
3442 	struct f_fs_opts *opts =
3443 		container_of(f->fi, struct f_fs_opts, func_inst);
3444 	struct ffs_ep *ep = func->eps;
3445 	unsigned count = ffs->eps_count;
3446 	unsigned long flags;
3447 
3448 	ENTER();
3449 	if (ffs->func == func) {
3450 		ffs_func_eps_disable(func);
3451 		ffs->func = NULL;
3452 	}
3453 
3454 	if (!--opts->refcnt)
3455 		functionfs_unbind(ffs);
3456 
3457 	/* cleanup after autoconfig */
3458 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3459 	while (count--) {
3460 		if (ep->ep && ep->req)
3461 			usb_ep_free_request(ep->ep, ep->req);
3462 		ep->req = NULL;
3463 		++ep;
3464 	}
3465 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3466 	kfree(func->eps);
3467 	func->eps = NULL;
3468 	/*
3469 	 * eps, descriptors and interfaces_nums are allocated in the
3470 	 * same chunk so only one free is required.
3471 	 */
3472 	func->function.fs_descriptors = NULL;
3473 	func->function.hs_descriptors = NULL;
3474 	func->function.ss_descriptors = NULL;
3475 	func->interfaces_nums = NULL;
3476 
3477 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3478 }
3479 
3480 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3481 {
3482 	struct ffs_function *func;
3483 
3484 	ENTER();
3485 
3486 	func = kzalloc(sizeof(*func), GFP_KERNEL);
3487 	if (unlikely(!func))
3488 		return ERR_PTR(-ENOMEM);
3489 
3490 	func->function.name    = "Function FS Gadget";
3491 
3492 	func->function.bind    = ffs_func_bind;
3493 	func->function.unbind  = ffs_func_unbind;
3494 	func->function.set_alt = ffs_func_set_alt;
3495 	func->function.disable = ffs_func_disable;
3496 	func->function.setup   = ffs_func_setup;
3497 	func->function.req_match = ffs_func_req_match;
3498 	func->function.suspend = ffs_func_suspend;
3499 	func->function.resume  = ffs_func_resume;
3500 	func->function.free_func = ffs_free;
3501 
3502 	return &func->function;
3503 }
3504 
3505 /*
3506  * ffs_lock must be taken by the caller of this function
3507  */
3508 static struct ffs_dev *_ffs_alloc_dev(void)
3509 {
3510 	struct ffs_dev *dev;
3511 	int ret;
3512 
3513 	if (_ffs_get_single_dev())
3514 			return ERR_PTR(-EBUSY);
3515 
3516 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3517 	if (!dev)
3518 		return ERR_PTR(-ENOMEM);
3519 
3520 	if (list_empty(&ffs_devices)) {
3521 		ret = functionfs_init();
3522 		if (ret) {
3523 			kfree(dev);
3524 			return ERR_PTR(ret);
3525 		}
3526 	}
3527 
3528 	list_add(&dev->entry, &ffs_devices);
3529 
3530 	return dev;
3531 }
3532 
3533 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3534 {
3535 	struct ffs_dev *existing;
3536 	int ret = 0;
3537 
3538 	ffs_dev_lock();
3539 
3540 	existing = _ffs_do_find_dev(name);
3541 	if (!existing)
3542 		strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3543 	else if (existing != dev)
3544 		ret = -EBUSY;
3545 
3546 	ffs_dev_unlock();
3547 
3548 	return ret;
3549 }
3550 EXPORT_SYMBOL_GPL(ffs_name_dev);
3551 
3552 int ffs_single_dev(struct ffs_dev *dev)
3553 {
3554 	int ret;
3555 
3556 	ret = 0;
3557 	ffs_dev_lock();
3558 
3559 	if (!list_is_singular(&ffs_devices))
3560 		ret = -EBUSY;
3561 	else
3562 		dev->single = true;
3563 
3564 	ffs_dev_unlock();
3565 	return ret;
3566 }
3567 EXPORT_SYMBOL_GPL(ffs_single_dev);
3568 
3569 /*
3570  * ffs_lock must be taken by the caller of this function
3571  */
3572 static void _ffs_free_dev(struct ffs_dev *dev)
3573 {
3574 	list_del(&dev->entry);
3575 
3576 	/* Clear the private_data pointer to stop incorrect dev access */
3577 	if (dev->ffs_data)
3578 		dev->ffs_data->private_data = NULL;
3579 
3580 	kfree(dev);
3581 	if (list_empty(&ffs_devices))
3582 		functionfs_cleanup();
3583 }
3584 
3585 static void *ffs_acquire_dev(const char *dev_name)
3586 {
3587 	struct ffs_dev *ffs_dev;
3588 
3589 	ENTER();
3590 	ffs_dev_lock();
3591 
3592 	ffs_dev = _ffs_find_dev(dev_name);
3593 	if (!ffs_dev)
3594 		ffs_dev = ERR_PTR(-ENOENT);
3595 	else if (ffs_dev->mounted)
3596 		ffs_dev = ERR_PTR(-EBUSY);
3597 	else if (ffs_dev->ffs_acquire_dev_callback &&
3598 	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3599 		ffs_dev = ERR_PTR(-ENOENT);
3600 	else
3601 		ffs_dev->mounted = true;
3602 
3603 	ffs_dev_unlock();
3604 	return ffs_dev;
3605 }
3606 
3607 static void ffs_release_dev(struct ffs_data *ffs_data)
3608 {
3609 	struct ffs_dev *ffs_dev;
3610 
3611 	ENTER();
3612 	ffs_dev_lock();
3613 
3614 	ffs_dev = ffs_data->private_data;
3615 	if (ffs_dev) {
3616 		ffs_dev->mounted = false;
3617 
3618 		if (ffs_dev->ffs_release_dev_callback)
3619 			ffs_dev->ffs_release_dev_callback(ffs_dev);
3620 	}
3621 
3622 	ffs_dev_unlock();
3623 }
3624 
3625 static int ffs_ready(struct ffs_data *ffs)
3626 {
3627 	struct ffs_dev *ffs_obj;
3628 	int ret = 0;
3629 
3630 	ENTER();
3631 	ffs_dev_lock();
3632 
3633 	ffs_obj = ffs->private_data;
3634 	if (!ffs_obj) {
3635 		ret = -EINVAL;
3636 		goto done;
3637 	}
3638 	if (WARN_ON(ffs_obj->desc_ready)) {
3639 		ret = -EBUSY;
3640 		goto done;
3641 	}
3642 
3643 	ffs_obj->desc_ready = true;
3644 	ffs_obj->ffs_data = ffs;
3645 
3646 	if (ffs_obj->ffs_ready_callback) {
3647 		ret = ffs_obj->ffs_ready_callback(ffs);
3648 		if (ret)
3649 			goto done;
3650 	}
3651 
3652 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3653 done:
3654 	ffs_dev_unlock();
3655 	return ret;
3656 }
3657 
3658 static void ffs_closed(struct ffs_data *ffs)
3659 {
3660 	struct ffs_dev *ffs_obj;
3661 	struct f_fs_opts *opts;
3662 	struct config_item *ci;
3663 
3664 	ENTER();
3665 	ffs_dev_lock();
3666 
3667 	ffs_obj = ffs->private_data;
3668 	if (!ffs_obj)
3669 		goto done;
3670 
3671 	ffs_obj->desc_ready = false;
3672 
3673 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3674 	    ffs_obj->ffs_closed_callback)
3675 		ffs_obj->ffs_closed_callback(ffs);
3676 
3677 	if (ffs_obj->opts)
3678 		opts = ffs_obj->opts;
3679 	else
3680 		goto done;
3681 
3682 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3683 	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3684 		goto done;
3685 
3686 	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3687 	ffs_dev_unlock();
3688 
3689 	unregister_gadget_item(ci);
3690 	return;
3691 done:
3692 	ffs_dev_unlock();
3693 }
3694 
3695 /* Misc helper functions ****************************************************/
3696 
3697 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3698 {
3699 	return nonblock
3700 		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3701 		: mutex_lock_interruptible(mutex);
3702 }
3703 
3704 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3705 {
3706 	char *data;
3707 
3708 	if (unlikely(!len))
3709 		return NULL;
3710 
3711 	data = kmalloc(len, GFP_KERNEL);
3712 	if (unlikely(!data))
3713 		return ERR_PTR(-ENOMEM);
3714 
3715 	if (unlikely(copy_from_user(data, buf, len))) {
3716 		kfree(data);
3717 		return ERR_PTR(-EFAULT);
3718 	}
3719 
3720 	pr_vdebug("Buffer from user space:\n");
3721 	ffs_dump_mem("", data, len);
3722 
3723 	return data;
3724 }
3725 
3726 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3727 MODULE_LICENSE("GPL");
3728 MODULE_AUTHOR("Michal Nazarewicz");
3729