xref: /openbmc/linux/drivers/usb/gadget/function/f_fs.c (revision 56d06fa2)
1 /*
2  * f_fs.c -- user mode file system API for USB composite function controllers
3  *
4  * Copyright (C) 2010 Samsung Electronics
5  * Author: Michal Nazarewicz <mina86@mina86.com>
6  *
7  * Based on inode.c (GadgetFS) which was:
8  * Copyright (C) 2003-2004 David Brownell
9  * Copyright (C) 2003 Agilent Technologies
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  */
16 
17 
18 /* #define DEBUG */
19 /* #define VERBOSE_DEBUG */
20 
21 #include <linux/blkdev.h>
22 #include <linux/pagemap.h>
23 #include <linux/export.h>
24 #include <linux/hid.h>
25 #include <linux/module.h>
26 #include <linux/uio.h>
27 #include <asm/unaligned.h>
28 
29 #include <linux/usb/composite.h>
30 #include <linux/usb/functionfs.h>
31 
32 #include <linux/aio.h>
33 #include <linux/mmu_context.h>
34 #include <linux/poll.h>
35 #include <linux/eventfd.h>
36 
37 #include "u_fs.h"
38 #include "u_f.h"
39 #include "u_os_desc.h"
40 #include "configfs.h"
41 
42 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
43 
44 /* Reference counter handling */
45 static void ffs_data_get(struct ffs_data *ffs);
46 static void ffs_data_put(struct ffs_data *ffs);
47 /* Creates new ffs_data object. */
48 static struct ffs_data *__must_check ffs_data_new(void) __attribute__((malloc));
49 
50 /* Opened counter handling. */
51 static void ffs_data_opened(struct ffs_data *ffs);
52 static void ffs_data_closed(struct ffs_data *ffs);
53 
54 /* Called with ffs->mutex held; take over ownership of data. */
55 static int __must_check
56 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
57 static int __must_check
58 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
59 
60 
61 /* The function structure ***************************************************/
62 
63 struct ffs_ep;
64 
65 struct ffs_function {
66 	struct usb_configuration	*conf;
67 	struct usb_gadget		*gadget;
68 	struct ffs_data			*ffs;
69 
70 	struct ffs_ep			*eps;
71 	u8				eps_revmap[16];
72 	short				*interfaces_nums;
73 
74 	struct usb_function		function;
75 };
76 
77 
78 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
79 {
80 	return container_of(f, struct ffs_function, function);
81 }
82 
83 
84 static inline enum ffs_setup_state
85 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
86 {
87 	return (enum ffs_setup_state)
88 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
89 }
90 
91 
92 static void ffs_func_eps_disable(struct ffs_function *func);
93 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
94 
95 static int ffs_func_bind(struct usb_configuration *,
96 			 struct usb_function *);
97 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
98 static void ffs_func_disable(struct usb_function *);
99 static int ffs_func_setup(struct usb_function *,
100 			  const struct usb_ctrlrequest *);
101 static void ffs_func_suspend(struct usb_function *);
102 static void ffs_func_resume(struct usb_function *);
103 
104 
105 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
106 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
107 
108 
109 /* The endpoints structures *************************************************/
110 
111 struct ffs_ep {
112 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
113 	struct usb_request		*req;	/* P: epfile->mutex */
114 
115 	/* [0]: full speed, [1]: high speed, [2]: super speed */
116 	struct usb_endpoint_descriptor	*descs[3];
117 
118 	u8				num;
119 
120 	int				status;	/* P: epfile->mutex */
121 };
122 
123 struct ffs_epfile {
124 	/* Protects ep->ep and ep->req. */
125 	struct mutex			mutex;
126 	wait_queue_head_t		wait;
127 
128 	struct ffs_data			*ffs;
129 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
130 
131 	struct dentry			*dentry;
132 
133 	char				name[5];
134 
135 	unsigned char			in;	/* P: ffs->eps_lock */
136 	unsigned char			isoc;	/* P: ffs->eps_lock */
137 
138 	unsigned char			_pad;
139 };
140 
141 /*  ffs_io_data structure ***************************************************/
142 
143 struct ffs_io_data {
144 	bool aio;
145 	bool read;
146 
147 	struct kiocb *kiocb;
148 	struct iov_iter data;
149 	const void *to_free;
150 	char *buf;
151 
152 	struct mm_struct *mm;
153 	struct work_struct work;
154 
155 	struct usb_ep *ep;
156 	struct usb_request *req;
157 
158 	struct ffs_data *ffs;
159 };
160 
161 struct ffs_desc_helper {
162 	struct ffs_data *ffs;
163 	unsigned interfaces_count;
164 	unsigned eps_count;
165 };
166 
167 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
168 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
169 
170 static struct dentry *
171 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
172 		   const struct file_operations *fops);
173 
174 /* Devices management *******************************************************/
175 
176 DEFINE_MUTEX(ffs_lock);
177 EXPORT_SYMBOL_GPL(ffs_lock);
178 
179 static struct ffs_dev *_ffs_find_dev(const char *name);
180 static struct ffs_dev *_ffs_alloc_dev(void);
181 static int _ffs_name_dev(struct ffs_dev *dev, const char *name);
182 static void _ffs_free_dev(struct ffs_dev *dev);
183 static void *ffs_acquire_dev(const char *dev_name);
184 static void ffs_release_dev(struct ffs_data *ffs_data);
185 static int ffs_ready(struct ffs_data *ffs);
186 static void ffs_closed(struct ffs_data *ffs);
187 
188 /* Misc helper functions ****************************************************/
189 
190 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
191 	__attribute__((warn_unused_result, nonnull));
192 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
193 	__attribute__((warn_unused_result, nonnull));
194 
195 
196 /* Control file aka ep0 *****************************************************/
197 
198 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
199 {
200 	struct ffs_data *ffs = req->context;
201 
202 	complete_all(&ffs->ep0req_completion);
203 }
204 
205 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
206 {
207 	struct usb_request *req = ffs->ep0req;
208 	int ret;
209 
210 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
211 
212 	spin_unlock_irq(&ffs->ev.waitq.lock);
213 
214 	req->buf      = data;
215 	req->length   = len;
216 
217 	/*
218 	 * UDC layer requires to provide a buffer even for ZLP, but should
219 	 * not use it at all. Let's provide some poisoned pointer to catch
220 	 * possible bug in the driver.
221 	 */
222 	if (req->buf == NULL)
223 		req->buf = (void *)0xDEADBABE;
224 
225 	reinit_completion(&ffs->ep0req_completion);
226 
227 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
228 	if (unlikely(ret < 0))
229 		return ret;
230 
231 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
232 	if (unlikely(ret)) {
233 		usb_ep_dequeue(ffs->gadget->ep0, req);
234 		return -EINTR;
235 	}
236 
237 	ffs->setup_state = FFS_NO_SETUP;
238 	return req->status ? req->status : req->actual;
239 }
240 
241 static int __ffs_ep0_stall(struct ffs_data *ffs)
242 {
243 	if (ffs->ev.can_stall) {
244 		pr_vdebug("ep0 stall\n");
245 		usb_ep_set_halt(ffs->gadget->ep0);
246 		ffs->setup_state = FFS_NO_SETUP;
247 		return -EL2HLT;
248 	} else {
249 		pr_debug("bogus ep0 stall!\n");
250 		return -ESRCH;
251 	}
252 }
253 
254 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
255 			     size_t len, loff_t *ptr)
256 {
257 	struct ffs_data *ffs = file->private_data;
258 	ssize_t ret;
259 	char *data;
260 
261 	ENTER();
262 
263 	/* Fast check if setup was canceled */
264 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
265 		return -EIDRM;
266 
267 	/* Acquire mutex */
268 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
269 	if (unlikely(ret < 0))
270 		return ret;
271 
272 	/* Check state */
273 	switch (ffs->state) {
274 	case FFS_READ_DESCRIPTORS:
275 	case FFS_READ_STRINGS:
276 		/* Copy data */
277 		if (unlikely(len < 16)) {
278 			ret = -EINVAL;
279 			break;
280 		}
281 
282 		data = ffs_prepare_buffer(buf, len);
283 		if (IS_ERR(data)) {
284 			ret = PTR_ERR(data);
285 			break;
286 		}
287 
288 		/* Handle data */
289 		if (ffs->state == FFS_READ_DESCRIPTORS) {
290 			pr_info("read descriptors\n");
291 			ret = __ffs_data_got_descs(ffs, data, len);
292 			if (unlikely(ret < 0))
293 				break;
294 
295 			ffs->state = FFS_READ_STRINGS;
296 			ret = len;
297 		} else {
298 			pr_info("read strings\n");
299 			ret = __ffs_data_got_strings(ffs, data, len);
300 			if (unlikely(ret < 0))
301 				break;
302 
303 			ret = ffs_epfiles_create(ffs);
304 			if (unlikely(ret)) {
305 				ffs->state = FFS_CLOSING;
306 				break;
307 			}
308 
309 			ffs->state = FFS_ACTIVE;
310 			mutex_unlock(&ffs->mutex);
311 
312 			ret = ffs_ready(ffs);
313 			if (unlikely(ret < 0)) {
314 				ffs->state = FFS_CLOSING;
315 				return ret;
316 			}
317 
318 			return len;
319 		}
320 		break;
321 
322 	case FFS_ACTIVE:
323 		data = NULL;
324 		/*
325 		 * We're called from user space, we can use _irq
326 		 * rather then _irqsave
327 		 */
328 		spin_lock_irq(&ffs->ev.waitq.lock);
329 		switch (ffs_setup_state_clear_cancelled(ffs)) {
330 		case FFS_SETUP_CANCELLED:
331 			ret = -EIDRM;
332 			goto done_spin;
333 
334 		case FFS_NO_SETUP:
335 			ret = -ESRCH;
336 			goto done_spin;
337 
338 		case FFS_SETUP_PENDING:
339 			break;
340 		}
341 
342 		/* FFS_SETUP_PENDING */
343 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
344 			spin_unlock_irq(&ffs->ev.waitq.lock);
345 			ret = __ffs_ep0_stall(ffs);
346 			break;
347 		}
348 
349 		/* FFS_SETUP_PENDING and not stall */
350 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
351 
352 		spin_unlock_irq(&ffs->ev.waitq.lock);
353 
354 		data = ffs_prepare_buffer(buf, len);
355 		if (IS_ERR(data)) {
356 			ret = PTR_ERR(data);
357 			break;
358 		}
359 
360 		spin_lock_irq(&ffs->ev.waitq.lock);
361 
362 		/*
363 		 * We are guaranteed to be still in FFS_ACTIVE state
364 		 * but the state of setup could have changed from
365 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
366 		 * to check for that.  If that happened we copied data
367 		 * from user space in vain but it's unlikely.
368 		 *
369 		 * For sure we are not in FFS_NO_SETUP since this is
370 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
371 		 * transition can be performed and it's protected by
372 		 * mutex.
373 		 */
374 		if (ffs_setup_state_clear_cancelled(ffs) ==
375 		    FFS_SETUP_CANCELLED) {
376 			ret = -EIDRM;
377 done_spin:
378 			spin_unlock_irq(&ffs->ev.waitq.lock);
379 		} else {
380 			/* unlocks spinlock */
381 			ret = __ffs_ep0_queue_wait(ffs, data, len);
382 		}
383 		kfree(data);
384 		break;
385 
386 	default:
387 		ret = -EBADFD;
388 		break;
389 	}
390 
391 	mutex_unlock(&ffs->mutex);
392 	return ret;
393 }
394 
395 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
396 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
397 				     size_t n)
398 {
399 	/*
400 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
401 	 * size of ffs->ev.types array (which is four) so that's how much space
402 	 * we reserve.
403 	 */
404 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
405 	const size_t size = n * sizeof *events;
406 	unsigned i = 0;
407 
408 	memset(events, 0, size);
409 
410 	do {
411 		events[i].type = ffs->ev.types[i];
412 		if (events[i].type == FUNCTIONFS_SETUP) {
413 			events[i].u.setup = ffs->ev.setup;
414 			ffs->setup_state = FFS_SETUP_PENDING;
415 		}
416 	} while (++i < n);
417 
418 	ffs->ev.count -= n;
419 	if (ffs->ev.count)
420 		memmove(ffs->ev.types, ffs->ev.types + n,
421 			ffs->ev.count * sizeof *ffs->ev.types);
422 
423 	spin_unlock_irq(&ffs->ev.waitq.lock);
424 	mutex_unlock(&ffs->mutex);
425 
426 	return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
427 }
428 
429 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
430 			    size_t len, loff_t *ptr)
431 {
432 	struct ffs_data *ffs = file->private_data;
433 	char *data = NULL;
434 	size_t n;
435 	int ret;
436 
437 	ENTER();
438 
439 	/* Fast check if setup was canceled */
440 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
441 		return -EIDRM;
442 
443 	/* Acquire mutex */
444 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
445 	if (unlikely(ret < 0))
446 		return ret;
447 
448 	/* Check state */
449 	if (ffs->state != FFS_ACTIVE) {
450 		ret = -EBADFD;
451 		goto done_mutex;
452 	}
453 
454 	/*
455 	 * We're called from user space, we can use _irq rather then
456 	 * _irqsave
457 	 */
458 	spin_lock_irq(&ffs->ev.waitq.lock);
459 
460 	switch (ffs_setup_state_clear_cancelled(ffs)) {
461 	case FFS_SETUP_CANCELLED:
462 		ret = -EIDRM;
463 		break;
464 
465 	case FFS_NO_SETUP:
466 		n = len / sizeof(struct usb_functionfs_event);
467 		if (unlikely(!n)) {
468 			ret = -EINVAL;
469 			break;
470 		}
471 
472 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
473 			ret = -EAGAIN;
474 			break;
475 		}
476 
477 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
478 							ffs->ev.count)) {
479 			ret = -EINTR;
480 			break;
481 		}
482 
483 		return __ffs_ep0_read_events(ffs, buf,
484 					     min(n, (size_t)ffs->ev.count));
485 
486 	case FFS_SETUP_PENDING:
487 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
488 			spin_unlock_irq(&ffs->ev.waitq.lock);
489 			ret = __ffs_ep0_stall(ffs);
490 			goto done_mutex;
491 		}
492 
493 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
494 
495 		spin_unlock_irq(&ffs->ev.waitq.lock);
496 
497 		if (likely(len)) {
498 			data = kmalloc(len, GFP_KERNEL);
499 			if (unlikely(!data)) {
500 				ret = -ENOMEM;
501 				goto done_mutex;
502 			}
503 		}
504 
505 		spin_lock_irq(&ffs->ev.waitq.lock);
506 
507 		/* See ffs_ep0_write() */
508 		if (ffs_setup_state_clear_cancelled(ffs) ==
509 		    FFS_SETUP_CANCELLED) {
510 			ret = -EIDRM;
511 			break;
512 		}
513 
514 		/* unlocks spinlock */
515 		ret = __ffs_ep0_queue_wait(ffs, data, len);
516 		if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
517 			ret = -EFAULT;
518 		goto done_mutex;
519 
520 	default:
521 		ret = -EBADFD;
522 		break;
523 	}
524 
525 	spin_unlock_irq(&ffs->ev.waitq.lock);
526 done_mutex:
527 	mutex_unlock(&ffs->mutex);
528 	kfree(data);
529 	return ret;
530 }
531 
532 static int ffs_ep0_open(struct inode *inode, struct file *file)
533 {
534 	struct ffs_data *ffs = inode->i_private;
535 
536 	ENTER();
537 
538 	if (unlikely(ffs->state == FFS_CLOSING))
539 		return -EBUSY;
540 
541 	file->private_data = ffs;
542 	ffs_data_opened(ffs);
543 
544 	return 0;
545 }
546 
547 static int ffs_ep0_release(struct inode *inode, struct file *file)
548 {
549 	struct ffs_data *ffs = file->private_data;
550 
551 	ENTER();
552 
553 	ffs_data_closed(ffs);
554 
555 	return 0;
556 }
557 
558 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
559 {
560 	struct ffs_data *ffs = file->private_data;
561 	struct usb_gadget *gadget = ffs->gadget;
562 	long ret;
563 
564 	ENTER();
565 
566 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
567 		struct ffs_function *func = ffs->func;
568 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
569 	} else if (gadget && gadget->ops->ioctl) {
570 		ret = gadget->ops->ioctl(gadget, code, value);
571 	} else {
572 		ret = -ENOTTY;
573 	}
574 
575 	return ret;
576 }
577 
578 static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait)
579 {
580 	struct ffs_data *ffs = file->private_data;
581 	unsigned int mask = POLLWRNORM;
582 	int ret;
583 
584 	poll_wait(file, &ffs->ev.waitq, wait);
585 
586 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
587 	if (unlikely(ret < 0))
588 		return mask;
589 
590 	switch (ffs->state) {
591 	case FFS_READ_DESCRIPTORS:
592 	case FFS_READ_STRINGS:
593 		mask |= POLLOUT;
594 		break;
595 
596 	case FFS_ACTIVE:
597 		switch (ffs->setup_state) {
598 		case FFS_NO_SETUP:
599 			if (ffs->ev.count)
600 				mask |= POLLIN;
601 			break;
602 
603 		case FFS_SETUP_PENDING:
604 		case FFS_SETUP_CANCELLED:
605 			mask |= (POLLIN | POLLOUT);
606 			break;
607 		}
608 	case FFS_CLOSING:
609 		break;
610 	case FFS_DEACTIVATED:
611 		break;
612 	}
613 
614 	mutex_unlock(&ffs->mutex);
615 
616 	return mask;
617 }
618 
619 static const struct file_operations ffs_ep0_operations = {
620 	.llseek =	no_llseek,
621 
622 	.open =		ffs_ep0_open,
623 	.write =	ffs_ep0_write,
624 	.read =		ffs_ep0_read,
625 	.release =	ffs_ep0_release,
626 	.unlocked_ioctl =	ffs_ep0_ioctl,
627 	.poll =		ffs_ep0_poll,
628 };
629 
630 
631 /* "Normal" endpoints operations ********************************************/
632 
633 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
634 {
635 	ENTER();
636 	if (likely(req->context)) {
637 		struct ffs_ep *ep = _ep->driver_data;
638 		ep->status = req->status ? req->status : req->actual;
639 		complete(req->context);
640 	}
641 }
642 
643 static void ffs_user_copy_worker(struct work_struct *work)
644 {
645 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
646 						   work);
647 	int ret = io_data->req->status ? io_data->req->status :
648 					 io_data->req->actual;
649 	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
650 
651 	if (io_data->read && ret > 0) {
652 		use_mm(io_data->mm);
653 		ret = copy_to_iter(io_data->buf, ret, &io_data->data);
654 		if (iov_iter_count(&io_data->data))
655 			ret = -EFAULT;
656 		unuse_mm(io_data->mm);
657 	}
658 
659 	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
660 
661 	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
662 		eventfd_signal(io_data->ffs->ffs_eventfd, 1);
663 
664 	usb_ep_free_request(io_data->ep, io_data->req);
665 
666 	if (io_data->read)
667 		kfree(io_data->to_free);
668 	kfree(io_data->buf);
669 	kfree(io_data);
670 }
671 
672 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
673 					 struct usb_request *req)
674 {
675 	struct ffs_io_data *io_data = req->context;
676 
677 	ENTER();
678 
679 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
680 	schedule_work(&io_data->work);
681 }
682 
683 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
684 {
685 	struct ffs_epfile *epfile = file->private_data;
686 	struct usb_request *req;
687 	struct ffs_ep *ep;
688 	char *data = NULL;
689 	ssize_t ret, data_len = -EINVAL;
690 	int halt;
691 
692 	/* Are we still active? */
693 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
694 		return -ENODEV;
695 
696 	/* Wait for endpoint to be enabled */
697 	ep = epfile->ep;
698 	if (!ep) {
699 		if (file->f_flags & O_NONBLOCK)
700 			return -EAGAIN;
701 
702 		ret = wait_event_interruptible(epfile->wait, (ep = epfile->ep));
703 		if (ret)
704 			return -EINTR;
705 	}
706 
707 	/* Do we halt? */
708 	halt = (!io_data->read == !epfile->in);
709 	if (halt && epfile->isoc)
710 		return -EINVAL;
711 
712 	/* Allocate & copy */
713 	if (!halt) {
714 		/*
715 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
716 		 * before the waiting completes, so do not assign to 'gadget'
717 		 * earlier
718 		 */
719 		struct usb_gadget *gadget = epfile->ffs->gadget;
720 		size_t copied;
721 
722 		spin_lock_irq(&epfile->ffs->eps_lock);
723 		/* In the meantime, endpoint got disabled or changed. */
724 		if (epfile->ep != ep) {
725 			spin_unlock_irq(&epfile->ffs->eps_lock);
726 			return -ESHUTDOWN;
727 		}
728 		data_len = iov_iter_count(&io_data->data);
729 		/*
730 		 * Controller may require buffer size to be aligned to
731 		 * maxpacketsize of an out endpoint.
732 		 */
733 		if (io_data->read)
734 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
735 		spin_unlock_irq(&epfile->ffs->eps_lock);
736 
737 		data = kmalloc(data_len, GFP_KERNEL);
738 		if (unlikely(!data))
739 			return -ENOMEM;
740 		if (!io_data->read) {
741 			copied = copy_from_iter(data, data_len, &io_data->data);
742 			if (copied != data_len) {
743 				ret = -EFAULT;
744 				goto error;
745 			}
746 		}
747 	}
748 
749 	/* We will be using request */
750 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
751 	if (unlikely(ret))
752 		goto error;
753 
754 	spin_lock_irq(&epfile->ffs->eps_lock);
755 
756 	if (epfile->ep != ep) {
757 		/* In the meantime, endpoint got disabled or changed. */
758 		ret = -ESHUTDOWN;
759 	} else if (halt) {
760 		/* Halt */
761 		if (likely(epfile->ep == ep) && !WARN_ON(!ep->ep))
762 			usb_ep_set_halt(ep->ep);
763 		ret = -EBADMSG;
764 	} else if (unlikely(data_len == -EINVAL)) {
765 		/*
766 		 * Sanity Check: even though data_len can't be used
767 		 * uninitialized at the time I write this comment, some
768 		 * compilers complain about this situation.
769 		 * In order to keep the code clean from warnings, data_len is
770 		 * being initialized to -EINVAL during its declaration, which
771 		 * means we can't rely on compiler anymore to warn no future
772 		 * changes won't result in data_len being used uninitialized.
773 		 * For such reason, we're adding this redundant sanity check
774 		 * here.
775 		 */
776 		WARN(1, "%s: data_len == -EINVAL\n", __func__);
777 		ret = -EINVAL;
778 	} else if (!io_data->aio) {
779 		DECLARE_COMPLETION_ONSTACK(done);
780 		bool interrupted = false;
781 
782 		req = ep->req;
783 		req->buf      = data;
784 		req->length   = data_len;
785 
786 		req->context  = &done;
787 		req->complete = ffs_epfile_io_complete;
788 
789 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
790 		if (unlikely(ret < 0))
791 			goto error_lock;
792 
793 		spin_unlock_irq(&epfile->ffs->eps_lock);
794 
795 		if (unlikely(wait_for_completion_interruptible(&done))) {
796 			/*
797 			 * To avoid race condition with ffs_epfile_io_complete,
798 			 * dequeue the request first then check
799 			 * status. usb_ep_dequeue API should guarantee no race
800 			 * condition with req->complete callback.
801 			 */
802 			usb_ep_dequeue(ep->ep, req);
803 			interrupted = ep->status < 0;
804 		}
805 
806 		/*
807 		 * XXX We may end up silently droping data here.  Since data_len
808 		 * (i.e. req->length) may be bigger than len (after being
809 		 * rounded up to maxpacketsize), we may end up with more data
810 		 * then user space has space for.
811 		 */
812 		ret = interrupted ? -EINTR : ep->status;
813 		if (io_data->read && ret > 0) {
814 			ret = copy_to_iter(data, ret, &io_data->data);
815 			if (!ret)
816 				ret = -EFAULT;
817 		}
818 		goto error_mutex;
819 	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_KERNEL))) {
820 		ret = -ENOMEM;
821 	} else {
822 		req->buf      = data;
823 		req->length   = data_len;
824 
825 		io_data->buf = data;
826 		io_data->ep = ep->ep;
827 		io_data->req = req;
828 		io_data->ffs = epfile->ffs;
829 
830 		req->context  = io_data;
831 		req->complete = ffs_epfile_async_io_complete;
832 
833 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
834 		if (unlikely(ret)) {
835 			usb_ep_free_request(ep->ep, req);
836 			goto error_lock;
837 		}
838 
839 		ret = -EIOCBQUEUED;
840 		/*
841 		 * Do not kfree the buffer in this function.  It will be freed
842 		 * by ffs_user_copy_worker.
843 		 */
844 		data = NULL;
845 	}
846 
847 error_lock:
848 	spin_unlock_irq(&epfile->ffs->eps_lock);
849 error_mutex:
850 	mutex_unlock(&epfile->mutex);
851 error:
852 	kfree(data);
853 	return ret;
854 }
855 
856 static int
857 ffs_epfile_open(struct inode *inode, struct file *file)
858 {
859 	struct ffs_epfile *epfile = inode->i_private;
860 
861 	ENTER();
862 
863 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
864 		return -ENODEV;
865 
866 	file->private_data = epfile;
867 	ffs_data_opened(epfile->ffs);
868 
869 	return 0;
870 }
871 
872 static int ffs_aio_cancel(struct kiocb *kiocb)
873 {
874 	struct ffs_io_data *io_data = kiocb->private;
875 	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
876 	int value;
877 
878 	ENTER();
879 
880 	spin_lock_irq(&epfile->ffs->eps_lock);
881 
882 	if (likely(io_data && io_data->ep && io_data->req))
883 		value = usb_ep_dequeue(io_data->ep, io_data->req);
884 	else
885 		value = -EINVAL;
886 
887 	spin_unlock_irq(&epfile->ffs->eps_lock);
888 
889 	return value;
890 }
891 
892 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
893 {
894 	struct ffs_io_data io_data, *p = &io_data;
895 	ssize_t res;
896 
897 	ENTER();
898 
899 	if (!is_sync_kiocb(kiocb)) {
900 		p = kmalloc(sizeof(io_data), GFP_KERNEL);
901 		if (unlikely(!p))
902 			return -ENOMEM;
903 		p->aio = true;
904 	} else {
905 		p->aio = false;
906 	}
907 
908 	p->read = false;
909 	p->kiocb = kiocb;
910 	p->data = *from;
911 	p->mm = current->mm;
912 
913 	kiocb->private = p;
914 
915 	if (p->aio)
916 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
917 
918 	res = ffs_epfile_io(kiocb->ki_filp, p);
919 	if (res == -EIOCBQUEUED)
920 		return res;
921 	if (p->aio)
922 		kfree(p);
923 	else
924 		*from = p->data;
925 	return res;
926 }
927 
928 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
929 {
930 	struct ffs_io_data io_data, *p = &io_data;
931 	ssize_t res;
932 
933 	ENTER();
934 
935 	if (!is_sync_kiocb(kiocb)) {
936 		p = kmalloc(sizeof(io_data), GFP_KERNEL);
937 		if (unlikely(!p))
938 			return -ENOMEM;
939 		p->aio = true;
940 	} else {
941 		p->aio = false;
942 	}
943 
944 	p->read = true;
945 	p->kiocb = kiocb;
946 	if (p->aio) {
947 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
948 		if (!p->to_free) {
949 			kfree(p);
950 			return -ENOMEM;
951 		}
952 	} else {
953 		p->data = *to;
954 		p->to_free = NULL;
955 	}
956 	p->mm = current->mm;
957 
958 	kiocb->private = p;
959 
960 	if (p->aio)
961 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
962 
963 	res = ffs_epfile_io(kiocb->ki_filp, p);
964 	if (res == -EIOCBQUEUED)
965 		return res;
966 
967 	if (p->aio) {
968 		kfree(p->to_free);
969 		kfree(p);
970 	} else {
971 		*to = p->data;
972 	}
973 	return res;
974 }
975 
976 static int
977 ffs_epfile_release(struct inode *inode, struct file *file)
978 {
979 	struct ffs_epfile *epfile = inode->i_private;
980 
981 	ENTER();
982 
983 	ffs_data_closed(epfile->ffs);
984 
985 	return 0;
986 }
987 
988 static long ffs_epfile_ioctl(struct file *file, unsigned code,
989 			     unsigned long value)
990 {
991 	struct ffs_epfile *epfile = file->private_data;
992 	int ret;
993 
994 	ENTER();
995 
996 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
997 		return -ENODEV;
998 
999 	spin_lock_irq(&epfile->ffs->eps_lock);
1000 	if (likely(epfile->ep)) {
1001 		switch (code) {
1002 		case FUNCTIONFS_FIFO_STATUS:
1003 			ret = usb_ep_fifo_status(epfile->ep->ep);
1004 			break;
1005 		case FUNCTIONFS_FIFO_FLUSH:
1006 			usb_ep_fifo_flush(epfile->ep->ep);
1007 			ret = 0;
1008 			break;
1009 		case FUNCTIONFS_CLEAR_HALT:
1010 			ret = usb_ep_clear_halt(epfile->ep->ep);
1011 			break;
1012 		case FUNCTIONFS_ENDPOINT_REVMAP:
1013 			ret = epfile->ep->num;
1014 			break;
1015 		case FUNCTIONFS_ENDPOINT_DESC:
1016 		{
1017 			int desc_idx;
1018 			struct usb_endpoint_descriptor *desc;
1019 
1020 			switch (epfile->ffs->gadget->speed) {
1021 			case USB_SPEED_SUPER:
1022 				desc_idx = 2;
1023 				break;
1024 			case USB_SPEED_HIGH:
1025 				desc_idx = 1;
1026 				break;
1027 			default:
1028 				desc_idx = 0;
1029 			}
1030 			desc = epfile->ep->descs[desc_idx];
1031 
1032 			spin_unlock_irq(&epfile->ffs->eps_lock);
1033 			ret = copy_to_user((void *)value, desc, sizeof(*desc));
1034 			if (ret)
1035 				ret = -EFAULT;
1036 			return ret;
1037 		}
1038 		default:
1039 			ret = -ENOTTY;
1040 		}
1041 	} else {
1042 		ret = -ENODEV;
1043 	}
1044 	spin_unlock_irq(&epfile->ffs->eps_lock);
1045 
1046 	return ret;
1047 }
1048 
1049 static const struct file_operations ffs_epfile_operations = {
1050 	.llseek =	no_llseek,
1051 
1052 	.open =		ffs_epfile_open,
1053 	.write_iter =	ffs_epfile_write_iter,
1054 	.read_iter =	ffs_epfile_read_iter,
1055 	.release =	ffs_epfile_release,
1056 	.unlocked_ioctl =	ffs_epfile_ioctl,
1057 };
1058 
1059 
1060 /* File system and super block operations ***********************************/
1061 
1062 /*
1063  * Mounting the file system creates a controller file, used first for
1064  * function configuration then later for event monitoring.
1065  */
1066 
1067 static struct inode *__must_check
1068 ffs_sb_make_inode(struct super_block *sb, void *data,
1069 		  const struct file_operations *fops,
1070 		  const struct inode_operations *iops,
1071 		  struct ffs_file_perms *perms)
1072 {
1073 	struct inode *inode;
1074 
1075 	ENTER();
1076 
1077 	inode = new_inode(sb);
1078 
1079 	if (likely(inode)) {
1080 		struct timespec current_time = CURRENT_TIME;
1081 
1082 		inode->i_ino	 = get_next_ino();
1083 		inode->i_mode    = perms->mode;
1084 		inode->i_uid     = perms->uid;
1085 		inode->i_gid     = perms->gid;
1086 		inode->i_atime   = current_time;
1087 		inode->i_mtime   = current_time;
1088 		inode->i_ctime   = current_time;
1089 		inode->i_private = data;
1090 		if (fops)
1091 			inode->i_fop = fops;
1092 		if (iops)
1093 			inode->i_op  = iops;
1094 	}
1095 
1096 	return inode;
1097 }
1098 
1099 /* Create "regular" file */
1100 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1101 					const char *name, void *data,
1102 					const struct file_operations *fops)
1103 {
1104 	struct ffs_data	*ffs = sb->s_fs_info;
1105 	struct dentry	*dentry;
1106 	struct inode	*inode;
1107 
1108 	ENTER();
1109 
1110 	dentry = d_alloc_name(sb->s_root, name);
1111 	if (unlikely(!dentry))
1112 		return NULL;
1113 
1114 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1115 	if (unlikely(!inode)) {
1116 		dput(dentry);
1117 		return NULL;
1118 	}
1119 
1120 	d_add(dentry, inode);
1121 	return dentry;
1122 }
1123 
1124 /* Super block */
1125 static const struct super_operations ffs_sb_operations = {
1126 	.statfs =	simple_statfs,
1127 	.drop_inode =	generic_delete_inode,
1128 };
1129 
1130 struct ffs_sb_fill_data {
1131 	struct ffs_file_perms perms;
1132 	umode_t root_mode;
1133 	const char *dev_name;
1134 	bool no_disconnect;
1135 	struct ffs_data *ffs_data;
1136 };
1137 
1138 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1139 {
1140 	struct ffs_sb_fill_data *data = _data;
1141 	struct inode	*inode;
1142 	struct ffs_data	*ffs = data->ffs_data;
1143 
1144 	ENTER();
1145 
1146 	ffs->sb              = sb;
1147 	data->ffs_data       = NULL;
1148 	sb->s_fs_info        = ffs;
1149 	sb->s_blocksize      = PAGE_SIZE;
1150 	sb->s_blocksize_bits = PAGE_SHIFT;
1151 	sb->s_magic          = FUNCTIONFS_MAGIC;
1152 	sb->s_op             = &ffs_sb_operations;
1153 	sb->s_time_gran      = 1;
1154 
1155 	/* Root inode */
1156 	data->perms.mode = data->root_mode;
1157 	inode = ffs_sb_make_inode(sb, NULL,
1158 				  &simple_dir_operations,
1159 				  &simple_dir_inode_operations,
1160 				  &data->perms);
1161 	sb->s_root = d_make_root(inode);
1162 	if (unlikely(!sb->s_root))
1163 		return -ENOMEM;
1164 
1165 	/* EP0 file */
1166 	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1167 					 &ffs_ep0_operations)))
1168 		return -ENOMEM;
1169 
1170 	return 0;
1171 }
1172 
1173 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1174 {
1175 	ENTER();
1176 
1177 	if (!opts || !*opts)
1178 		return 0;
1179 
1180 	for (;;) {
1181 		unsigned long value;
1182 		char *eq, *comma;
1183 
1184 		/* Option limit */
1185 		comma = strchr(opts, ',');
1186 		if (comma)
1187 			*comma = 0;
1188 
1189 		/* Value limit */
1190 		eq = strchr(opts, '=');
1191 		if (unlikely(!eq)) {
1192 			pr_err("'=' missing in %s\n", opts);
1193 			return -EINVAL;
1194 		}
1195 		*eq = 0;
1196 
1197 		/* Parse value */
1198 		if (kstrtoul(eq + 1, 0, &value)) {
1199 			pr_err("%s: invalid value: %s\n", opts, eq + 1);
1200 			return -EINVAL;
1201 		}
1202 
1203 		/* Interpret option */
1204 		switch (eq - opts) {
1205 		case 13:
1206 			if (!memcmp(opts, "no_disconnect", 13))
1207 				data->no_disconnect = !!value;
1208 			else
1209 				goto invalid;
1210 			break;
1211 		case 5:
1212 			if (!memcmp(opts, "rmode", 5))
1213 				data->root_mode  = (value & 0555) | S_IFDIR;
1214 			else if (!memcmp(opts, "fmode", 5))
1215 				data->perms.mode = (value & 0666) | S_IFREG;
1216 			else
1217 				goto invalid;
1218 			break;
1219 
1220 		case 4:
1221 			if (!memcmp(opts, "mode", 4)) {
1222 				data->root_mode  = (value & 0555) | S_IFDIR;
1223 				data->perms.mode = (value & 0666) | S_IFREG;
1224 			} else {
1225 				goto invalid;
1226 			}
1227 			break;
1228 
1229 		case 3:
1230 			if (!memcmp(opts, "uid", 3)) {
1231 				data->perms.uid = make_kuid(current_user_ns(), value);
1232 				if (!uid_valid(data->perms.uid)) {
1233 					pr_err("%s: unmapped value: %lu\n", opts, value);
1234 					return -EINVAL;
1235 				}
1236 			} else if (!memcmp(opts, "gid", 3)) {
1237 				data->perms.gid = make_kgid(current_user_ns(), value);
1238 				if (!gid_valid(data->perms.gid)) {
1239 					pr_err("%s: unmapped value: %lu\n", opts, value);
1240 					return -EINVAL;
1241 				}
1242 			} else {
1243 				goto invalid;
1244 			}
1245 			break;
1246 
1247 		default:
1248 invalid:
1249 			pr_err("%s: invalid option\n", opts);
1250 			return -EINVAL;
1251 		}
1252 
1253 		/* Next iteration */
1254 		if (!comma)
1255 			break;
1256 		opts = comma + 1;
1257 	}
1258 
1259 	return 0;
1260 }
1261 
1262 /* "mount -t functionfs dev_name /dev/function" ends up here */
1263 
1264 static struct dentry *
1265 ffs_fs_mount(struct file_system_type *t, int flags,
1266 	      const char *dev_name, void *opts)
1267 {
1268 	struct ffs_sb_fill_data data = {
1269 		.perms = {
1270 			.mode = S_IFREG | 0600,
1271 			.uid = GLOBAL_ROOT_UID,
1272 			.gid = GLOBAL_ROOT_GID,
1273 		},
1274 		.root_mode = S_IFDIR | 0500,
1275 		.no_disconnect = false,
1276 	};
1277 	struct dentry *rv;
1278 	int ret;
1279 	void *ffs_dev;
1280 	struct ffs_data	*ffs;
1281 
1282 	ENTER();
1283 
1284 	ret = ffs_fs_parse_opts(&data, opts);
1285 	if (unlikely(ret < 0))
1286 		return ERR_PTR(ret);
1287 
1288 	ffs = ffs_data_new();
1289 	if (unlikely(!ffs))
1290 		return ERR_PTR(-ENOMEM);
1291 	ffs->file_perms = data.perms;
1292 	ffs->no_disconnect = data.no_disconnect;
1293 
1294 	ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1295 	if (unlikely(!ffs->dev_name)) {
1296 		ffs_data_put(ffs);
1297 		return ERR_PTR(-ENOMEM);
1298 	}
1299 
1300 	ffs_dev = ffs_acquire_dev(dev_name);
1301 	if (IS_ERR(ffs_dev)) {
1302 		ffs_data_put(ffs);
1303 		return ERR_CAST(ffs_dev);
1304 	}
1305 	ffs->private_data = ffs_dev;
1306 	data.ffs_data = ffs;
1307 
1308 	rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1309 	if (IS_ERR(rv) && data.ffs_data) {
1310 		ffs_release_dev(data.ffs_data);
1311 		ffs_data_put(data.ffs_data);
1312 	}
1313 	return rv;
1314 }
1315 
1316 static void
1317 ffs_fs_kill_sb(struct super_block *sb)
1318 {
1319 	ENTER();
1320 
1321 	kill_litter_super(sb);
1322 	if (sb->s_fs_info) {
1323 		ffs_release_dev(sb->s_fs_info);
1324 		ffs_data_closed(sb->s_fs_info);
1325 		ffs_data_put(sb->s_fs_info);
1326 	}
1327 }
1328 
1329 static struct file_system_type ffs_fs_type = {
1330 	.owner		= THIS_MODULE,
1331 	.name		= "functionfs",
1332 	.mount		= ffs_fs_mount,
1333 	.kill_sb	= ffs_fs_kill_sb,
1334 };
1335 MODULE_ALIAS_FS("functionfs");
1336 
1337 
1338 /* Driver's main init/cleanup functions *************************************/
1339 
1340 static int functionfs_init(void)
1341 {
1342 	int ret;
1343 
1344 	ENTER();
1345 
1346 	ret = register_filesystem(&ffs_fs_type);
1347 	if (likely(!ret))
1348 		pr_info("file system registered\n");
1349 	else
1350 		pr_err("failed registering file system (%d)\n", ret);
1351 
1352 	return ret;
1353 }
1354 
1355 static void functionfs_cleanup(void)
1356 {
1357 	ENTER();
1358 
1359 	pr_info("unloading\n");
1360 	unregister_filesystem(&ffs_fs_type);
1361 }
1362 
1363 
1364 /* ffs_data and ffs_function construction and destruction code **************/
1365 
1366 static void ffs_data_clear(struct ffs_data *ffs);
1367 static void ffs_data_reset(struct ffs_data *ffs);
1368 
1369 static void ffs_data_get(struct ffs_data *ffs)
1370 {
1371 	ENTER();
1372 
1373 	atomic_inc(&ffs->ref);
1374 }
1375 
1376 static void ffs_data_opened(struct ffs_data *ffs)
1377 {
1378 	ENTER();
1379 
1380 	atomic_inc(&ffs->ref);
1381 	if (atomic_add_return(1, &ffs->opened) == 1 &&
1382 			ffs->state == FFS_DEACTIVATED) {
1383 		ffs->state = FFS_CLOSING;
1384 		ffs_data_reset(ffs);
1385 	}
1386 }
1387 
1388 static void ffs_data_put(struct ffs_data *ffs)
1389 {
1390 	ENTER();
1391 
1392 	if (unlikely(atomic_dec_and_test(&ffs->ref))) {
1393 		pr_info("%s(): freeing\n", __func__);
1394 		ffs_data_clear(ffs);
1395 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1396 		       waitqueue_active(&ffs->ep0req_completion.wait));
1397 		kfree(ffs->dev_name);
1398 		kfree(ffs);
1399 	}
1400 }
1401 
1402 static void ffs_data_closed(struct ffs_data *ffs)
1403 {
1404 	ENTER();
1405 
1406 	if (atomic_dec_and_test(&ffs->opened)) {
1407 		if (ffs->no_disconnect) {
1408 			ffs->state = FFS_DEACTIVATED;
1409 			if (ffs->epfiles) {
1410 				ffs_epfiles_destroy(ffs->epfiles,
1411 						   ffs->eps_count);
1412 				ffs->epfiles = NULL;
1413 			}
1414 			if (ffs->setup_state == FFS_SETUP_PENDING)
1415 				__ffs_ep0_stall(ffs);
1416 		} else {
1417 			ffs->state = FFS_CLOSING;
1418 			ffs_data_reset(ffs);
1419 		}
1420 	}
1421 	if (atomic_read(&ffs->opened) < 0) {
1422 		ffs->state = FFS_CLOSING;
1423 		ffs_data_reset(ffs);
1424 	}
1425 
1426 	ffs_data_put(ffs);
1427 }
1428 
1429 static struct ffs_data *ffs_data_new(void)
1430 {
1431 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1432 	if (unlikely(!ffs))
1433 		return NULL;
1434 
1435 	ENTER();
1436 
1437 	atomic_set(&ffs->ref, 1);
1438 	atomic_set(&ffs->opened, 0);
1439 	ffs->state = FFS_READ_DESCRIPTORS;
1440 	mutex_init(&ffs->mutex);
1441 	spin_lock_init(&ffs->eps_lock);
1442 	init_waitqueue_head(&ffs->ev.waitq);
1443 	init_completion(&ffs->ep0req_completion);
1444 
1445 	/* XXX REVISIT need to update it in some places, or do we? */
1446 	ffs->ev.can_stall = 1;
1447 
1448 	return ffs;
1449 }
1450 
1451 static void ffs_data_clear(struct ffs_data *ffs)
1452 {
1453 	ENTER();
1454 
1455 	ffs_closed(ffs);
1456 
1457 	BUG_ON(ffs->gadget);
1458 
1459 	if (ffs->epfiles)
1460 		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1461 
1462 	if (ffs->ffs_eventfd)
1463 		eventfd_ctx_put(ffs->ffs_eventfd);
1464 
1465 	kfree(ffs->raw_descs_data);
1466 	kfree(ffs->raw_strings);
1467 	kfree(ffs->stringtabs);
1468 }
1469 
1470 static void ffs_data_reset(struct ffs_data *ffs)
1471 {
1472 	ENTER();
1473 
1474 	ffs_data_clear(ffs);
1475 
1476 	ffs->epfiles = NULL;
1477 	ffs->raw_descs_data = NULL;
1478 	ffs->raw_descs = NULL;
1479 	ffs->raw_strings = NULL;
1480 	ffs->stringtabs = NULL;
1481 
1482 	ffs->raw_descs_length = 0;
1483 	ffs->fs_descs_count = 0;
1484 	ffs->hs_descs_count = 0;
1485 	ffs->ss_descs_count = 0;
1486 
1487 	ffs->strings_count = 0;
1488 	ffs->interfaces_count = 0;
1489 	ffs->eps_count = 0;
1490 
1491 	ffs->ev.count = 0;
1492 
1493 	ffs->state = FFS_READ_DESCRIPTORS;
1494 	ffs->setup_state = FFS_NO_SETUP;
1495 	ffs->flags = 0;
1496 }
1497 
1498 
1499 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1500 {
1501 	struct usb_gadget_strings **lang;
1502 	int first_id;
1503 
1504 	ENTER();
1505 
1506 	if (WARN_ON(ffs->state != FFS_ACTIVE
1507 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1508 		return -EBADFD;
1509 
1510 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1511 	if (unlikely(first_id < 0))
1512 		return first_id;
1513 
1514 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1515 	if (unlikely(!ffs->ep0req))
1516 		return -ENOMEM;
1517 	ffs->ep0req->complete = ffs_ep0_complete;
1518 	ffs->ep0req->context = ffs;
1519 
1520 	lang = ffs->stringtabs;
1521 	if (lang) {
1522 		for (; *lang; ++lang) {
1523 			struct usb_string *str = (*lang)->strings;
1524 			int id = first_id;
1525 			for (; str->s; ++id, ++str)
1526 				str->id = id;
1527 		}
1528 	}
1529 
1530 	ffs->gadget = cdev->gadget;
1531 	ffs_data_get(ffs);
1532 	return 0;
1533 }
1534 
1535 static void functionfs_unbind(struct ffs_data *ffs)
1536 {
1537 	ENTER();
1538 
1539 	if (!WARN_ON(!ffs->gadget)) {
1540 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1541 		ffs->ep0req = NULL;
1542 		ffs->gadget = NULL;
1543 		clear_bit(FFS_FL_BOUND, &ffs->flags);
1544 		ffs_data_put(ffs);
1545 	}
1546 }
1547 
1548 static int ffs_epfiles_create(struct ffs_data *ffs)
1549 {
1550 	struct ffs_epfile *epfile, *epfiles;
1551 	unsigned i, count;
1552 
1553 	ENTER();
1554 
1555 	count = ffs->eps_count;
1556 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1557 	if (!epfiles)
1558 		return -ENOMEM;
1559 
1560 	epfile = epfiles;
1561 	for (i = 1; i <= count; ++i, ++epfile) {
1562 		epfile->ffs = ffs;
1563 		mutex_init(&epfile->mutex);
1564 		init_waitqueue_head(&epfile->wait);
1565 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1566 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1567 		else
1568 			sprintf(epfile->name, "ep%u", i);
1569 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1570 						 epfile,
1571 						 &ffs_epfile_operations);
1572 		if (unlikely(!epfile->dentry)) {
1573 			ffs_epfiles_destroy(epfiles, i - 1);
1574 			return -ENOMEM;
1575 		}
1576 	}
1577 
1578 	ffs->epfiles = epfiles;
1579 	return 0;
1580 }
1581 
1582 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1583 {
1584 	struct ffs_epfile *epfile = epfiles;
1585 
1586 	ENTER();
1587 
1588 	for (; count; --count, ++epfile) {
1589 		BUG_ON(mutex_is_locked(&epfile->mutex) ||
1590 		       waitqueue_active(&epfile->wait));
1591 		if (epfile->dentry) {
1592 			d_delete(epfile->dentry);
1593 			dput(epfile->dentry);
1594 			epfile->dentry = NULL;
1595 		}
1596 	}
1597 
1598 	kfree(epfiles);
1599 }
1600 
1601 static void ffs_func_eps_disable(struct ffs_function *func)
1602 {
1603 	struct ffs_ep *ep         = func->eps;
1604 	struct ffs_epfile *epfile = func->ffs->epfiles;
1605 	unsigned count            = func->ffs->eps_count;
1606 	unsigned long flags;
1607 
1608 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1609 	do {
1610 		/* pending requests get nuked */
1611 		if (likely(ep->ep))
1612 			usb_ep_disable(ep->ep);
1613 		++ep;
1614 
1615 		if (epfile) {
1616 			epfile->ep = NULL;
1617 			++epfile;
1618 		}
1619 	} while (--count);
1620 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1621 }
1622 
1623 static int ffs_func_eps_enable(struct ffs_function *func)
1624 {
1625 	struct ffs_data *ffs      = func->ffs;
1626 	struct ffs_ep *ep         = func->eps;
1627 	struct ffs_epfile *epfile = ffs->epfiles;
1628 	unsigned count            = ffs->eps_count;
1629 	unsigned long flags;
1630 	int ret = 0;
1631 
1632 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1633 	do {
1634 		struct usb_endpoint_descriptor *ds;
1635 		int desc_idx;
1636 
1637 		if (ffs->gadget->speed == USB_SPEED_SUPER)
1638 			desc_idx = 2;
1639 		else if (ffs->gadget->speed == USB_SPEED_HIGH)
1640 			desc_idx = 1;
1641 		else
1642 			desc_idx = 0;
1643 
1644 		/* fall-back to lower speed if desc missing for current speed */
1645 		do {
1646 			ds = ep->descs[desc_idx];
1647 		} while (!ds && --desc_idx >= 0);
1648 
1649 		if (!ds) {
1650 			ret = -EINVAL;
1651 			break;
1652 		}
1653 
1654 		ep->ep->driver_data = ep;
1655 		ep->ep->desc = ds;
1656 		ret = usb_ep_enable(ep->ep);
1657 		if (likely(!ret)) {
1658 			epfile->ep = ep;
1659 			epfile->in = usb_endpoint_dir_in(ds);
1660 			epfile->isoc = usb_endpoint_xfer_isoc(ds);
1661 		} else {
1662 			break;
1663 		}
1664 
1665 		wake_up(&epfile->wait);
1666 
1667 		++ep;
1668 		++epfile;
1669 	} while (--count);
1670 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1671 
1672 	return ret;
1673 }
1674 
1675 
1676 /* Parsing and building descriptors and strings *****************************/
1677 
1678 /*
1679  * This validates if data pointed by data is a valid USB descriptor as
1680  * well as record how many interfaces, endpoints and strings are
1681  * required by given configuration.  Returns address after the
1682  * descriptor or NULL if data is invalid.
1683  */
1684 
1685 enum ffs_entity_type {
1686 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1687 };
1688 
1689 enum ffs_os_desc_type {
1690 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1691 };
1692 
1693 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1694 				   u8 *valuep,
1695 				   struct usb_descriptor_header *desc,
1696 				   void *priv);
1697 
1698 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1699 				    struct usb_os_desc_header *h, void *data,
1700 				    unsigned len, void *priv);
1701 
1702 static int __must_check ffs_do_single_desc(char *data, unsigned len,
1703 					   ffs_entity_callback entity,
1704 					   void *priv)
1705 {
1706 	struct usb_descriptor_header *_ds = (void *)data;
1707 	u8 length;
1708 	int ret;
1709 
1710 	ENTER();
1711 
1712 	/* At least two bytes are required: length and type */
1713 	if (len < 2) {
1714 		pr_vdebug("descriptor too short\n");
1715 		return -EINVAL;
1716 	}
1717 
1718 	/* If we have at least as many bytes as the descriptor takes? */
1719 	length = _ds->bLength;
1720 	if (len < length) {
1721 		pr_vdebug("descriptor longer then available data\n");
1722 		return -EINVAL;
1723 	}
1724 
1725 #define __entity_check_INTERFACE(val)  1
1726 #define __entity_check_STRING(val)     (val)
1727 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
1728 #define __entity(type, val) do {					\
1729 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
1730 		if (unlikely(!__entity_check_ ##type(val))) {		\
1731 			pr_vdebug("invalid entity's value\n");		\
1732 			return -EINVAL;					\
1733 		}							\
1734 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
1735 		if (unlikely(ret < 0)) {				\
1736 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
1737 				 (val), ret);				\
1738 			return ret;					\
1739 		}							\
1740 	} while (0)
1741 
1742 	/* Parse descriptor depending on type. */
1743 	switch (_ds->bDescriptorType) {
1744 	case USB_DT_DEVICE:
1745 	case USB_DT_CONFIG:
1746 	case USB_DT_STRING:
1747 	case USB_DT_DEVICE_QUALIFIER:
1748 		/* function can't have any of those */
1749 		pr_vdebug("descriptor reserved for gadget: %d\n",
1750 		      _ds->bDescriptorType);
1751 		return -EINVAL;
1752 
1753 	case USB_DT_INTERFACE: {
1754 		struct usb_interface_descriptor *ds = (void *)_ds;
1755 		pr_vdebug("interface descriptor\n");
1756 		if (length != sizeof *ds)
1757 			goto inv_length;
1758 
1759 		__entity(INTERFACE, ds->bInterfaceNumber);
1760 		if (ds->iInterface)
1761 			__entity(STRING, ds->iInterface);
1762 	}
1763 		break;
1764 
1765 	case USB_DT_ENDPOINT: {
1766 		struct usb_endpoint_descriptor *ds = (void *)_ds;
1767 		pr_vdebug("endpoint descriptor\n");
1768 		if (length != USB_DT_ENDPOINT_SIZE &&
1769 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
1770 			goto inv_length;
1771 		__entity(ENDPOINT, ds->bEndpointAddress);
1772 	}
1773 		break;
1774 
1775 	case HID_DT_HID:
1776 		pr_vdebug("hid descriptor\n");
1777 		if (length != sizeof(struct hid_descriptor))
1778 			goto inv_length;
1779 		break;
1780 
1781 	case USB_DT_OTG:
1782 		if (length != sizeof(struct usb_otg_descriptor))
1783 			goto inv_length;
1784 		break;
1785 
1786 	case USB_DT_INTERFACE_ASSOCIATION: {
1787 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
1788 		pr_vdebug("interface association descriptor\n");
1789 		if (length != sizeof *ds)
1790 			goto inv_length;
1791 		if (ds->iFunction)
1792 			__entity(STRING, ds->iFunction);
1793 	}
1794 		break;
1795 
1796 	case USB_DT_SS_ENDPOINT_COMP:
1797 		pr_vdebug("EP SS companion descriptor\n");
1798 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
1799 			goto inv_length;
1800 		break;
1801 
1802 	case USB_DT_OTHER_SPEED_CONFIG:
1803 	case USB_DT_INTERFACE_POWER:
1804 	case USB_DT_DEBUG:
1805 	case USB_DT_SECURITY:
1806 	case USB_DT_CS_RADIO_CONTROL:
1807 		/* TODO */
1808 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
1809 		return -EINVAL;
1810 
1811 	default:
1812 		/* We should never be here */
1813 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
1814 		return -EINVAL;
1815 
1816 inv_length:
1817 		pr_vdebug("invalid length: %d (descriptor %d)\n",
1818 			  _ds->bLength, _ds->bDescriptorType);
1819 		return -EINVAL;
1820 	}
1821 
1822 #undef __entity
1823 #undef __entity_check_DESCRIPTOR
1824 #undef __entity_check_INTERFACE
1825 #undef __entity_check_STRING
1826 #undef __entity_check_ENDPOINT
1827 
1828 	return length;
1829 }
1830 
1831 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
1832 				     ffs_entity_callback entity, void *priv)
1833 {
1834 	const unsigned _len = len;
1835 	unsigned long num = 0;
1836 
1837 	ENTER();
1838 
1839 	for (;;) {
1840 		int ret;
1841 
1842 		if (num == count)
1843 			data = NULL;
1844 
1845 		/* Record "descriptor" entity */
1846 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
1847 		if (unlikely(ret < 0)) {
1848 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
1849 				 num, ret);
1850 			return ret;
1851 		}
1852 
1853 		if (!data)
1854 			return _len - len;
1855 
1856 		ret = ffs_do_single_desc(data, len, entity, priv);
1857 		if (unlikely(ret < 0)) {
1858 			pr_debug("%s returns %d\n", __func__, ret);
1859 			return ret;
1860 		}
1861 
1862 		len -= ret;
1863 		data += ret;
1864 		++num;
1865 	}
1866 }
1867 
1868 static int __ffs_data_do_entity(enum ffs_entity_type type,
1869 				u8 *valuep, struct usb_descriptor_header *desc,
1870 				void *priv)
1871 {
1872 	struct ffs_desc_helper *helper = priv;
1873 	struct usb_endpoint_descriptor *d;
1874 
1875 	ENTER();
1876 
1877 	switch (type) {
1878 	case FFS_DESCRIPTOR:
1879 		break;
1880 
1881 	case FFS_INTERFACE:
1882 		/*
1883 		 * Interfaces are indexed from zero so if we
1884 		 * encountered interface "n" then there are at least
1885 		 * "n+1" interfaces.
1886 		 */
1887 		if (*valuep >= helper->interfaces_count)
1888 			helper->interfaces_count = *valuep + 1;
1889 		break;
1890 
1891 	case FFS_STRING:
1892 		/*
1893 		 * Strings are indexed from 1 (0 is magic ;) reserved
1894 		 * for languages list or some such)
1895 		 */
1896 		if (*valuep > helper->ffs->strings_count)
1897 			helper->ffs->strings_count = *valuep;
1898 		break;
1899 
1900 	case FFS_ENDPOINT:
1901 		d = (void *)desc;
1902 		helper->eps_count++;
1903 		if (helper->eps_count >= 15)
1904 			return -EINVAL;
1905 		/* Check if descriptors for any speed were already parsed */
1906 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
1907 			helper->ffs->eps_addrmap[helper->eps_count] =
1908 				d->bEndpointAddress;
1909 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
1910 				d->bEndpointAddress)
1911 			return -EINVAL;
1912 		break;
1913 	}
1914 
1915 	return 0;
1916 }
1917 
1918 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
1919 				   struct usb_os_desc_header *desc)
1920 {
1921 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
1922 	u16 w_index = le16_to_cpu(desc->wIndex);
1923 
1924 	if (bcd_version != 1) {
1925 		pr_vdebug("unsupported os descriptors version: %d",
1926 			  bcd_version);
1927 		return -EINVAL;
1928 	}
1929 	switch (w_index) {
1930 	case 0x4:
1931 		*next_type = FFS_OS_DESC_EXT_COMPAT;
1932 		break;
1933 	case 0x5:
1934 		*next_type = FFS_OS_DESC_EXT_PROP;
1935 		break;
1936 	default:
1937 		pr_vdebug("unsupported os descriptor type: %d", w_index);
1938 		return -EINVAL;
1939 	}
1940 
1941 	return sizeof(*desc);
1942 }
1943 
1944 /*
1945  * Process all extended compatibility/extended property descriptors
1946  * of a feature descriptor
1947  */
1948 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
1949 					      enum ffs_os_desc_type type,
1950 					      u16 feature_count,
1951 					      ffs_os_desc_callback entity,
1952 					      void *priv,
1953 					      struct usb_os_desc_header *h)
1954 {
1955 	int ret;
1956 	const unsigned _len = len;
1957 
1958 	ENTER();
1959 
1960 	/* loop over all ext compat/ext prop descriptors */
1961 	while (feature_count--) {
1962 		ret = entity(type, h, data, len, priv);
1963 		if (unlikely(ret < 0)) {
1964 			pr_debug("bad OS descriptor, type: %d\n", type);
1965 			return ret;
1966 		}
1967 		data += ret;
1968 		len -= ret;
1969 	}
1970 	return _len - len;
1971 }
1972 
1973 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
1974 static int __must_check ffs_do_os_descs(unsigned count,
1975 					char *data, unsigned len,
1976 					ffs_os_desc_callback entity, void *priv)
1977 {
1978 	const unsigned _len = len;
1979 	unsigned long num = 0;
1980 
1981 	ENTER();
1982 
1983 	for (num = 0; num < count; ++num) {
1984 		int ret;
1985 		enum ffs_os_desc_type type;
1986 		u16 feature_count;
1987 		struct usb_os_desc_header *desc = (void *)data;
1988 
1989 		if (len < sizeof(*desc))
1990 			return -EINVAL;
1991 
1992 		/*
1993 		 * Record "descriptor" entity.
1994 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
1995 		 * Move the data pointer to the beginning of extended
1996 		 * compatibilities proper or extended properties proper
1997 		 * portions of the data
1998 		 */
1999 		if (le32_to_cpu(desc->dwLength) > len)
2000 			return -EINVAL;
2001 
2002 		ret = __ffs_do_os_desc_header(&type, desc);
2003 		if (unlikely(ret < 0)) {
2004 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2005 				 num, ret);
2006 			return ret;
2007 		}
2008 		/*
2009 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2010 		 */
2011 		feature_count = le16_to_cpu(desc->wCount);
2012 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2013 		    (feature_count > 255 || desc->Reserved))
2014 				return -EINVAL;
2015 		len -= ret;
2016 		data += ret;
2017 
2018 		/*
2019 		 * Process all function/property descriptors
2020 		 * of this Feature Descriptor
2021 		 */
2022 		ret = ffs_do_single_os_desc(data, len, type,
2023 					    feature_count, entity, priv, desc);
2024 		if (unlikely(ret < 0)) {
2025 			pr_debug("%s returns %d\n", __func__, ret);
2026 			return ret;
2027 		}
2028 
2029 		len -= ret;
2030 		data += ret;
2031 	}
2032 	return _len - len;
2033 }
2034 
2035 /**
2036  * Validate contents of the buffer from userspace related to OS descriptors.
2037  */
2038 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2039 				 struct usb_os_desc_header *h, void *data,
2040 				 unsigned len, void *priv)
2041 {
2042 	struct ffs_data *ffs = priv;
2043 	u8 length;
2044 
2045 	ENTER();
2046 
2047 	switch (type) {
2048 	case FFS_OS_DESC_EXT_COMPAT: {
2049 		struct usb_ext_compat_desc *d = data;
2050 		int i;
2051 
2052 		if (len < sizeof(*d) ||
2053 		    d->bFirstInterfaceNumber >= ffs->interfaces_count ||
2054 		    d->Reserved1)
2055 			return -EINVAL;
2056 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2057 			if (d->Reserved2[i])
2058 				return -EINVAL;
2059 
2060 		length = sizeof(struct usb_ext_compat_desc);
2061 	}
2062 		break;
2063 	case FFS_OS_DESC_EXT_PROP: {
2064 		struct usb_ext_prop_desc *d = data;
2065 		u32 type, pdl;
2066 		u16 pnl;
2067 
2068 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2069 			return -EINVAL;
2070 		length = le32_to_cpu(d->dwSize);
2071 		type = le32_to_cpu(d->dwPropertyDataType);
2072 		if (type < USB_EXT_PROP_UNICODE ||
2073 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2074 			pr_vdebug("unsupported os descriptor property type: %d",
2075 				  type);
2076 			return -EINVAL;
2077 		}
2078 		pnl = le16_to_cpu(d->wPropertyNameLength);
2079 		pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl));
2080 		if (length != 14 + pnl + pdl) {
2081 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2082 				  length, pnl, pdl, type);
2083 			return -EINVAL;
2084 		}
2085 		++ffs->ms_os_descs_ext_prop_count;
2086 		/* property name reported to the host as "WCHAR"s */
2087 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2088 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2089 	}
2090 		break;
2091 	default:
2092 		pr_vdebug("unknown descriptor: %d\n", type);
2093 		return -EINVAL;
2094 	}
2095 	return length;
2096 }
2097 
2098 static int __ffs_data_got_descs(struct ffs_data *ffs,
2099 				char *const _data, size_t len)
2100 {
2101 	char *data = _data, *raw_descs;
2102 	unsigned os_descs_count = 0, counts[3], flags;
2103 	int ret = -EINVAL, i;
2104 	struct ffs_desc_helper helper;
2105 
2106 	ENTER();
2107 
2108 	if (get_unaligned_le32(data + 4) != len)
2109 		goto error;
2110 
2111 	switch (get_unaligned_le32(data)) {
2112 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2113 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2114 		data += 8;
2115 		len  -= 8;
2116 		break;
2117 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2118 		flags = get_unaligned_le32(data + 8);
2119 		ffs->user_flags = flags;
2120 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2121 			      FUNCTIONFS_HAS_HS_DESC |
2122 			      FUNCTIONFS_HAS_SS_DESC |
2123 			      FUNCTIONFS_HAS_MS_OS_DESC |
2124 			      FUNCTIONFS_VIRTUAL_ADDR |
2125 			      FUNCTIONFS_EVENTFD)) {
2126 			ret = -ENOSYS;
2127 			goto error;
2128 		}
2129 		data += 12;
2130 		len  -= 12;
2131 		break;
2132 	default:
2133 		goto error;
2134 	}
2135 
2136 	if (flags & FUNCTIONFS_EVENTFD) {
2137 		if (len < 4)
2138 			goto error;
2139 		ffs->ffs_eventfd =
2140 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2141 		if (IS_ERR(ffs->ffs_eventfd)) {
2142 			ret = PTR_ERR(ffs->ffs_eventfd);
2143 			ffs->ffs_eventfd = NULL;
2144 			goto error;
2145 		}
2146 		data += 4;
2147 		len  -= 4;
2148 	}
2149 
2150 	/* Read fs_count, hs_count and ss_count (if present) */
2151 	for (i = 0; i < 3; ++i) {
2152 		if (!(flags & (1 << i))) {
2153 			counts[i] = 0;
2154 		} else if (len < 4) {
2155 			goto error;
2156 		} else {
2157 			counts[i] = get_unaligned_le32(data);
2158 			data += 4;
2159 			len  -= 4;
2160 		}
2161 	}
2162 	if (flags & (1 << i)) {
2163 		os_descs_count = get_unaligned_le32(data);
2164 		data += 4;
2165 		len -= 4;
2166 	};
2167 
2168 	/* Read descriptors */
2169 	raw_descs = data;
2170 	helper.ffs = ffs;
2171 	for (i = 0; i < 3; ++i) {
2172 		if (!counts[i])
2173 			continue;
2174 		helper.interfaces_count = 0;
2175 		helper.eps_count = 0;
2176 		ret = ffs_do_descs(counts[i], data, len,
2177 				   __ffs_data_do_entity, &helper);
2178 		if (ret < 0)
2179 			goto error;
2180 		if (!ffs->eps_count && !ffs->interfaces_count) {
2181 			ffs->eps_count = helper.eps_count;
2182 			ffs->interfaces_count = helper.interfaces_count;
2183 		} else {
2184 			if (ffs->eps_count != helper.eps_count) {
2185 				ret = -EINVAL;
2186 				goto error;
2187 			}
2188 			if (ffs->interfaces_count != helper.interfaces_count) {
2189 				ret = -EINVAL;
2190 				goto error;
2191 			}
2192 		}
2193 		data += ret;
2194 		len  -= ret;
2195 	}
2196 	if (os_descs_count) {
2197 		ret = ffs_do_os_descs(os_descs_count, data, len,
2198 				      __ffs_data_do_os_desc, ffs);
2199 		if (ret < 0)
2200 			goto error;
2201 		data += ret;
2202 		len -= ret;
2203 	}
2204 
2205 	if (raw_descs == data || len) {
2206 		ret = -EINVAL;
2207 		goto error;
2208 	}
2209 
2210 	ffs->raw_descs_data	= _data;
2211 	ffs->raw_descs		= raw_descs;
2212 	ffs->raw_descs_length	= data - raw_descs;
2213 	ffs->fs_descs_count	= counts[0];
2214 	ffs->hs_descs_count	= counts[1];
2215 	ffs->ss_descs_count	= counts[2];
2216 	ffs->ms_os_descs_count	= os_descs_count;
2217 
2218 	return 0;
2219 
2220 error:
2221 	kfree(_data);
2222 	return ret;
2223 }
2224 
2225 static int __ffs_data_got_strings(struct ffs_data *ffs,
2226 				  char *const _data, size_t len)
2227 {
2228 	u32 str_count, needed_count, lang_count;
2229 	struct usb_gadget_strings **stringtabs, *t;
2230 	struct usb_string *strings, *s;
2231 	const char *data = _data;
2232 
2233 	ENTER();
2234 
2235 	if (unlikely(get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2236 		     get_unaligned_le32(data + 4) != len))
2237 		goto error;
2238 	str_count  = get_unaligned_le32(data + 8);
2239 	lang_count = get_unaligned_le32(data + 12);
2240 
2241 	/* if one is zero the other must be zero */
2242 	if (unlikely(!str_count != !lang_count))
2243 		goto error;
2244 
2245 	/* Do we have at least as many strings as descriptors need? */
2246 	needed_count = ffs->strings_count;
2247 	if (unlikely(str_count < needed_count))
2248 		goto error;
2249 
2250 	/*
2251 	 * If we don't need any strings just return and free all
2252 	 * memory.
2253 	 */
2254 	if (!needed_count) {
2255 		kfree(_data);
2256 		return 0;
2257 	}
2258 
2259 	/* Allocate everything in one chunk so there's less maintenance. */
2260 	{
2261 		unsigned i = 0;
2262 		vla_group(d);
2263 		vla_item(d, struct usb_gadget_strings *, stringtabs,
2264 			lang_count + 1);
2265 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2266 		vla_item(d, struct usb_string, strings,
2267 			lang_count*(needed_count+1));
2268 
2269 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2270 
2271 		if (unlikely(!vlabuf)) {
2272 			kfree(_data);
2273 			return -ENOMEM;
2274 		}
2275 
2276 		/* Initialize the VLA pointers */
2277 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2278 		t = vla_ptr(vlabuf, d, stringtab);
2279 		i = lang_count;
2280 		do {
2281 			*stringtabs++ = t++;
2282 		} while (--i);
2283 		*stringtabs = NULL;
2284 
2285 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2286 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2287 		t = vla_ptr(vlabuf, d, stringtab);
2288 		s = vla_ptr(vlabuf, d, strings);
2289 		strings = s;
2290 	}
2291 
2292 	/* For each language */
2293 	data += 16;
2294 	len -= 16;
2295 
2296 	do { /* lang_count > 0 so we can use do-while */
2297 		unsigned needed = needed_count;
2298 
2299 		if (unlikely(len < 3))
2300 			goto error_free;
2301 		t->language = get_unaligned_le16(data);
2302 		t->strings  = s;
2303 		++t;
2304 
2305 		data += 2;
2306 		len -= 2;
2307 
2308 		/* For each string */
2309 		do { /* str_count > 0 so we can use do-while */
2310 			size_t length = strnlen(data, len);
2311 
2312 			if (unlikely(length == len))
2313 				goto error_free;
2314 
2315 			/*
2316 			 * User may provide more strings then we need,
2317 			 * if that's the case we simply ignore the
2318 			 * rest
2319 			 */
2320 			if (likely(needed)) {
2321 				/*
2322 				 * s->id will be set while adding
2323 				 * function to configuration so for
2324 				 * now just leave garbage here.
2325 				 */
2326 				s->s = data;
2327 				--needed;
2328 				++s;
2329 			}
2330 
2331 			data += length + 1;
2332 			len -= length + 1;
2333 		} while (--str_count);
2334 
2335 		s->id = 0;   /* terminator */
2336 		s->s = NULL;
2337 		++s;
2338 
2339 	} while (--lang_count);
2340 
2341 	/* Some garbage left? */
2342 	if (unlikely(len))
2343 		goto error_free;
2344 
2345 	/* Done! */
2346 	ffs->stringtabs = stringtabs;
2347 	ffs->raw_strings = _data;
2348 
2349 	return 0;
2350 
2351 error_free:
2352 	kfree(stringtabs);
2353 error:
2354 	kfree(_data);
2355 	return -EINVAL;
2356 }
2357 
2358 
2359 /* Events handling and management *******************************************/
2360 
2361 static void __ffs_event_add(struct ffs_data *ffs,
2362 			    enum usb_functionfs_event_type type)
2363 {
2364 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2365 	int neg = 0;
2366 
2367 	/*
2368 	 * Abort any unhandled setup
2369 	 *
2370 	 * We do not need to worry about some cmpxchg() changing value
2371 	 * of ffs->setup_state without holding the lock because when
2372 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2373 	 * the source does nothing.
2374 	 */
2375 	if (ffs->setup_state == FFS_SETUP_PENDING)
2376 		ffs->setup_state = FFS_SETUP_CANCELLED;
2377 
2378 	/*
2379 	 * Logic of this function guarantees that there are at most four pending
2380 	 * evens on ffs->ev.types queue.  This is important because the queue
2381 	 * has space for four elements only and __ffs_ep0_read_events function
2382 	 * depends on that limit as well.  If more event types are added, those
2383 	 * limits have to be revisited or guaranteed to still hold.
2384 	 */
2385 	switch (type) {
2386 	case FUNCTIONFS_RESUME:
2387 		rem_type2 = FUNCTIONFS_SUSPEND;
2388 		/* FALL THROUGH */
2389 	case FUNCTIONFS_SUSPEND:
2390 	case FUNCTIONFS_SETUP:
2391 		rem_type1 = type;
2392 		/* Discard all similar events */
2393 		break;
2394 
2395 	case FUNCTIONFS_BIND:
2396 	case FUNCTIONFS_UNBIND:
2397 	case FUNCTIONFS_DISABLE:
2398 	case FUNCTIONFS_ENABLE:
2399 		/* Discard everything other then power management. */
2400 		rem_type1 = FUNCTIONFS_SUSPEND;
2401 		rem_type2 = FUNCTIONFS_RESUME;
2402 		neg = 1;
2403 		break;
2404 
2405 	default:
2406 		WARN(1, "%d: unknown event, this should not happen\n", type);
2407 		return;
2408 	}
2409 
2410 	{
2411 		u8 *ev  = ffs->ev.types, *out = ev;
2412 		unsigned n = ffs->ev.count;
2413 		for (; n; --n, ++ev)
2414 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2415 				*out++ = *ev;
2416 			else
2417 				pr_vdebug("purging event %d\n", *ev);
2418 		ffs->ev.count = out - ffs->ev.types;
2419 	}
2420 
2421 	pr_vdebug("adding event %d\n", type);
2422 	ffs->ev.types[ffs->ev.count++] = type;
2423 	wake_up_locked(&ffs->ev.waitq);
2424 	if (ffs->ffs_eventfd)
2425 		eventfd_signal(ffs->ffs_eventfd, 1);
2426 }
2427 
2428 static void ffs_event_add(struct ffs_data *ffs,
2429 			  enum usb_functionfs_event_type type)
2430 {
2431 	unsigned long flags;
2432 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2433 	__ffs_event_add(ffs, type);
2434 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2435 }
2436 
2437 /* Bind/unbind USB function hooks *******************************************/
2438 
2439 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2440 {
2441 	int i;
2442 
2443 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2444 		if (ffs->eps_addrmap[i] == endpoint_address)
2445 			return i;
2446 	return -ENOENT;
2447 }
2448 
2449 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2450 				    struct usb_descriptor_header *desc,
2451 				    void *priv)
2452 {
2453 	struct usb_endpoint_descriptor *ds = (void *)desc;
2454 	struct ffs_function *func = priv;
2455 	struct ffs_ep *ffs_ep;
2456 	unsigned ep_desc_id;
2457 	int idx;
2458 	static const char *speed_names[] = { "full", "high", "super" };
2459 
2460 	if (type != FFS_DESCRIPTOR)
2461 		return 0;
2462 
2463 	/*
2464 	 * If ss_descriptors is not NULL, we are reading super speed
2465 	 * descriptors; if hs_descriptors is not NULL, we are reading high
2466 	 * speed descriptors; otherwise, we are reading full speed
2467 	 * descriptors.
2468 	 */
2469 	if (func->function.ss_descriptors) {
2470 		ep_desc_id = 2;
2471 		func->function.ss_descriptors[(long)valuep] = desc;
2472 	} else if (func->function.hs_descriptors) {
2473 		ep_desc_id = 1;
2474 		func->function.hs_descriptors[(long)valuep] = desc;
2475 	} else {
2476 		ep_desc_id = 0;
2477 		func->function.fs_descriptors[(long)valuep]    = desc;
2478 	}
2479 
2480 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2481 		return 0;
2482 
2483 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2484 	if (idx < 0)
2485 		return idx;
2486 
2487 	ffs_ep = func->eps + idx;
2488 
2489 	if (unlikely(ffs_ep->descs[ep_desc_id])) {
2490 		pr_err("two %sspeed descriptors for EP %d\n",
2491 			  speed_names[ep_desc_id],
2492 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2493 		return -EINVAL;
2494 	}
2495 	ffs_ep->descs[ep_desc_id] = ds;
2496 
2497 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2498 	if (ffs_ep->ep) {
2499 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2500 		if (!ds->wMaxPacketSize)
2501 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2502 	} else {
2503 		struct usb_request *req;
2504 		struct usb_ep *ep;
2505 		u8 bEndpointAddress;
2506 
2507 		/*
2508 		 * We back up bEndpointAddress because autoconfig overwrites
2509 		 * it with physical endpoint address.
2510 		 */
2511 		bEndpointAddress = ds->bEndpointAddress;
2512 		pr_vdebug("autoconfig\n");
2513 		ep = usb_ep_autoconfig(func->gadget, ds);
2514 		if (unlikely(!ep))
2515 			return -ENOTSUPP;
2516 		ep->driver_data = func->eps + idx;
2517 
2518 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2519 		if (unlikely(!req))
2520 			return -ENOMEM;
2521 
2522 		ffs_ep->ep  = ep;
2523 		ffs_ep->req = req;
2524 		func->eps_revmap[ds->bEndpointAddress &
2525 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2526 		/*
2527 		 * If we use virtual address mapping, we restore
2528 		 * original bEndpointAddress value.
2529 		 */
2530 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2531 			ds->bEndpointAddress = bEndpointAddress;
2532 	}
2533 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2534 
2535 	return 0;
2536 }
2537 
2538 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2539 				   struct usb_descriptor_header *desc,
2540 				   void *priv)
2541 {
2542 	struct ffs_function *func = priv;
2543 	unsigned idx;
2544 	u8 newValue;
2545 
2546 	switch (type) {
2547 	default:
2548 	case FFS_DESCRIPTOR:
2549 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2550 		return 0;
2551 
2552 	case FFS_INTERFACE:
2553 		idx = *valuep;
2554 		if (func->interfaces_nums[idx] < 0) {
2555 			int id = usb_interface_id(func->conf, &func->function);
2556 			if (unlikely(id < 0))
2557 				return id;
2558 			func->interfaces_nums[idx] = id;
2559 		}
2560 		newValue = func->interfaces_nums[idx];
2561 		break;
2562 
2563 	case FFS_STRING:
2564 		/* String' IDs are allocated when fsf_data is bound to cdev */
2565 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2566 		break;
2567 
2568 	case FFS_ENDPOINT:
2569 		/*
2570 		 * USB_DT_ENDPOINT are handled in
2571 		 * __ffs_func_bind_do_descs().
2572 		 */
2573 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2574 			return 0;
2575 
2576 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2577 		if (unlikely(!func->eps[idx].ep))
2578 			return -EINVAL;
2579 
2580 		{
2581 			struct usb_endpoint_descriptor **descs;
2582 			descs = func->eps[idx].descs;
2583 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2584 		}
2585 		break;
2586 	}
2587 
2588 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2589 	*valuep = newValue;
2590 	return 0;
2591 }
2592 
2593 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2594 				      struct usb_os_desc_header *h, void *data,
2595 				      unsigned len, void *priv)
2596 {
2597 	struct ffs_function *func = priv;
2598 	u8 length = 0;
2599 
2600 	switch (type) {
2601 	case FFS_OS_DESC_EXT_COMPAT: {
2602 		struct usb_ext_compat_desc *desc = data;
2603 		struct usb_os_desc_table *t;
2604 
2605 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2606 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2607 		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2608 		       ARRAY_SIZE(desc->CompatibleID) +
2609 		       ARRAY_SIZE(desc->SubCompatibleID));
2610 		length = sizeof(*desc);
2611 	}
2612 		break;
2613 	case FFS_OS_DESC_EXT_PROP: {
2614 		struct usb_ext_prop_desc *desc = data;
2615 		struct usb_os_desc_table *t;
2616 		struct usb_os_desc_ext_prop *ext_prop;
2617 		char *ext_prop_name;
2618 		char *ext_prop_data;
2619 
2620 		t = &func->function.os_desc_table[h->interface];
2621 		t->if_id = func->interfaces_nums[h->interface];
2622 
2623 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2624 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2625 
2626 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2627 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2628 		ext_prop->data_len = le32_to_cpu(*(u32 *)
2629 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2630 		length = ext_prop->name_len + ext_prop->data_len + 14;
2631 
2632 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2633 		func->ffs->ms_os_descs_ext_prop_name_avail +=
2634 			ext_prop->name_len;
2635 
2636 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2637 		func->ffs->ms_os_descs_ext_prop_data_avail +=
2638 			ext_prop->data_len;
2639 		memcpy(ext_prop_data,
2640 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2641 		       ext_prop->data_len);
2642 		/* unicode data reported to the host as "WCHAR"s */
2643 		switch (ext_prop->type) {
2644 		case USB_EXT_PROP_UNICODE:
2645 		case USB_EXT_PROP_UNICODE_ENV:
2646 		case USB_EXT_PROP_UNICODE_LINK:
2647 		case USB_EXT_PROP_UNICODE_MULTI:
2648 			ext_prop->data_len *= 2;
2649 			break;
2650 		}
2651 		ext_prop->data = ext_prop_data;
2652 
2653 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2654 		       ext_prop->name_len);
2655 		/* property name reported to the host as "WCHAR"s */
2656 		ext_prop->name_len *= 2;
2657 		ext_prop->name = ext_prop_name;
2658 
2659 		t->os_desc->ext_prop_len +=
2660 			ext_prop->name_len + ext_prop->data_len + 14;
2661 		++t->os_desc->ext_prop_count;
2662 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2663 	}
2664 		break;
2665 	default:
2666 		pr_vdebug("unknown descriptor: %d\n", type);
2667 	}
2668 
2669 	return length;
2670 }
2671 
2672 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2673 						struct usb_configuration *c)
2674 {
2675 	struct ffs_function *func = ffs_func_from_usb(f);
2676 	struct f_fs_opts *ffs_opts =
2677 		container_of(f->fi, struct f_fs_opts, func_inst);
2678 	int ret;
2679 
2680 	ENTER();
2681 
2682 	/*
2683 	 * Legacy gadget triggers binding in functionfs_ready_callback,
2684 	 * which already uses locking; taking the same lock here would
2685 	 * cause a deadlock.
2686 	 *
2687 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
2688 	 */
2689 	if (!ffs_opts->no_configfs)
2690 		ffs_dev_lock();
2691 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2692 	func->ffs = ffs_opts->dev->ffs_data;
2693 	if (!ffs_opts->no_configfs)
2694 		ffs_dev_unlock();
2695 	if (ret)
2696 		return ERR_PTR(ret);
2697 
2698 	func->conf = c;
2699 	func->gadget = c->cdev->gadget;
2700 
2701 	/*
2702 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2703 	 * configurations are bound in sequence with list_for_each_entry,
2704 	 * in each configuration its functions are bound in sequence
2705 	 * with list_for_each_entry, so we assume no race condition
2706 	 * with regard to ffs_opts->bound access
2707 	 */
2708 	if (!ffs_opts->refcnt) {
2709 		ret = functionfs_bind(func->ffs, c->cdev);
2710 		if (ret)
2711 			return ERR_PTR(ret);
2712 	}
2713 	ffs_opts->refcnt++;
2714 	func->function.strings = func->ffs->stringtabs;
2715 
2716 	return ffs_opts;
2717 }
2718 
2719 static int _ffs_func_bind(struct usb_configuration *c,
2720 			  struct usb_function *f)
2721 {
2722 	struct ffs_function *func = ffs_func_from_usb(f);
2723 	struct ffs_data *ffs = func->ffs;
2724 
2725 	const int full = !!func->ffs->fs_descs_count;
2726 	const int high = gadget_is_dualspeed(func->gadget) &&
2727 		func->ffs->hs_descs_count;
2728 	const int super = gadget_is_superspeed(func->gadget) &&
2729 		func->ffs->ss_descs_count;
2730 
2731 	int fs_len, hs_len, ss_len, ret, i;
2732 
2733 	/* Make it a single chunk, less management later on */
2734 	vla_group(d);
2735 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2736 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2737 		full ? ffs->fs_descs_count + 1 : 0);
2738 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2739 		high ? ffs->hs_descs_count + 1 : 0);
2740 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2741 		super ? ffs->ss_descs_count + 1 : 0);
2742 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2743 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2744 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2745 	vla_item_with_sz(d, char[16], ext_compat,
2746 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2747 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
2748 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2749 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
2750 			 ffs->ms_os_descs_ext_prop_count);
2751 	vla_item_with_sz(d, char, ext_prop_name,
2752 			 ffs->ms_os_descs_ext_prop_name_len);
2753 	vla_item_with_sz(d, char, ext_prop_data,
2754 			 ffs->ms_os_descs_ext_prop_data_len);
2755 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
2756 	char *vlabuf;
2757 
2758 	ENTER();
2759 
2760 	/* Has descriptors only for speeds gadget does not support */
2761 	if (unlikely(!(full | high | super)))
2762 		return -ENOTSUPP;
2763 
2764 	/* Allocate a single chunk, less management later on */
2765 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
2766 	if (unlikely(!vlabuf))
2767 		return -ENOMEM;
2768 
2769 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
2770 	ffs->ms_os_descs_ext_prop_name_avail =
2771 		vla_ptr(vlabuf, d, ext_prop_name);
2772 	ffs->ms_os_descs_ext_prop_data_avail =
2773 		vla_ptr(vlabuf, d, ext_prop_data);
2774 
2775 	/* Copy descriptors  */
2776 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
2777 	       ffs->raw_descs_length);
2778 
2779 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
2780 	for (ret = ffs->eps_count; ret; --ret) {
2781 		struct ffs_ep *ptr;
2782 
2783 		ptr = vla_ptr(vlabuf, d, eps);
2784 		ptr[ret].num = -1;
2785 	}
2786 
2787 	/* Save pointers
2788 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
2789 	*/
2790 	func->eps             = vla_ptr(vlabuf, d, eps);
2791 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
2792 
2793 	/*
2794 	 * Go through all the endpoint descriptors and allocate
2795 	 * endpoints first, so that later we can rewrite the endpoint
2796 	 * numbers without worrying that it may be described later on.
2797 	 */
2798 	if (likely(full)) {
2799 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
2800 		fs_len = ffs_do_descs(ffs->fs_descs_count,
2801 				      vla_ptr(vlabuf, d, raw_descs),
2802 				      d_raw_descs__sz,
2803 				      __ffs_func_bind_do_descs, func);
2804 		if (unlikely(fs_len < 0)) {
2805 			ret = fs_len;
2806 			goto error;
2807 		}
2808 	} else {
2809 		fs_len = 0;
2810 	}
2811 
2812 	if (likely(high)) {
2813 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
2814 		hs_len = ffs_do_descs(ffs->hs_descs_count,
2815 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
2816 				      d_raw_descs__sz - fs_len,
2817 				      __ffs_func_bind_do_descs, func);
2818 		if (unlikely(hs_len < 0)) {
2819 			ret = hs_len;
2820 			goto error;
2821 		}
2822 	} else {
2823 		hs_len = 0;
2824 	}
2825 
2826 	if (likely(super)) {
2827 		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
2828 		ss_len = ffs_do_descs(ffs->ss_descs_count,
2829 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
2830 				d_raw_descs__sz - fs_len - hs_len,
2831 				__ffs_func_bind_do_descs, func);
2832 		if (unlikely(ss_len < 0)) {
2833 			ret = ss_len;
2834 			goto error;
2835 		}
2836 	} else {
2837 		ss_len = 0;
2838 	}
2839 
2840 	/*
2841 	 * Now handle interface numbers allocation and interface and
2842 	 * endpoint numbers rewriting.  We can do that in one go
2843 	 * now.
2844 	 */
2845 	ret = ffs_do_descs(ffs->fs_descs_count +
2846 			   (high ? ffs->hs_descs_count : 0) +
2847 			   (super ? ffs->ss_descs_count : 0),
2848 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
2849 			   __ffs_func_bind_do_nums, func);
2850 	if (unlikely(ret < 0))
2851 		goto error;
2852 
2853 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
2854 	if (c->cdev->use_os_string)
2855 		for (i = 0; i < ffs->interfaces_count; ++i) {
2856 			struct usb_os_desc *desc;
2857 
2858 			desc = func->function.os_desc_table[i].os_desc =
2859 				vla_ptr(vlabuf, d, os_desc) +
2860 				i * sizeof(struct usb_os_desc);
2861 			desc->ext_compat_id =
2862 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
2863 			INIT_LIST_HEAD(&desc->ext_prop);
2864 		}
2865 	ret = ffs_do_os_descs(ffs->ms_os_descs_count,
2866 			      vla_ptr(vlabuf, d, raw_descs) +
2867 			      fs_len + hs_len + ss_len,
2868 			      d_raw_descs__sz - fs_len - hs_len - ss_len,
2869 			      __ffs_func_bind_do_os_desc, func);
2870 	if (unlikely(ret < 0))
2871 		goto error;
2872 	func->function.os_desc_n =
2873 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
2874 
2875 	/* And we're done */
2876 	ffs_event_add(ffs, FUNCTIONFS_BIND);
2877 	return 0;
2878 
2879 error:
2880 	/* XXX Do we need to release all claimed endpoints here? */
2881 	return ret;
2882 }
2883 
2884 static int ffs_func_bind(struct usb_configuration *c,
2885 			 struct usb_function *f)
2886 {
2887 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
2888 	struct ffs_function *func = ffs_func_from_usb(f);
2889 	int ret;
2890 
2891 	if (IS_ERR(ffs_opts))
2892 		return PTR_ERR(ffs_opts);
2893 
2894 	ret = _ffs_func_bind(c, f);
2895 	if (ret && !--ffs_opts->refcnt)
2896 		functionfs_unbind(func->ffs);
2897 
2898 	return ret;
2899 }
2900 
2901 
2902 /* Other USB function hooks *************************************************/
2903 
2904 static void ffs_reset_work(struct work_struct *work)
2905 {
2906 	struct ffs_data *ffs = container_of(work,
2907 		struct ffs_data, reset_work);
2908 	ffs_data_reset(ffs);
2909 }
2910 
2911 static int ffs_func_set_alt(struct usb_function *f,
2912 			    unsigned interface, unsigned alt)
2913 {
2914 	struct ffs_function *func = ffs_func_from_usb(f);
2915 	struct ffs_data *ffs = func->ffs;
2916 	int ret = 0, intf;
2917 
2918 	if (alt != (unsigned)-1) {
2919 		intf = ffs_func_revmap_intf(func, interface);
2920 		if (unlikely(intf < 0))
2921 			return intf;
2922 	}
2923 
2924 	if (ffs->func)
2925 		ffs_func_eps_disable(ffs->func);
2926 
2927 	if (ffs->state == FFS_DEACTIVATED) {
2928 		ffs->state = FFS_CLOSING;
2929 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
2930 		schedule_work(&ffs->reset_work);
2931 		return -ENODEV;
2932 	}
2933 
2934 	if (ffs->state != FFS_ACTIVE)
2935 		return -ENODEV;
2936 
2937 	if (alt == (unsigned)-1) {
2938 		ffs->func = NULL;
2939 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
2940 		return 0;
2941 	}
2942 
2943 	ffs->func = func;
2944 	ret = ffs_func_eps_enable(func);
2945 	if (likely(ret >= 0))
2946 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
2947 	return ret;
2948 }
2949 
2950 static void ffs_func_disable(struct usb_function *f)
2951 {
2952 	ffs_func_set_alt(f, 0, (unsigned)-1);
2953 }
2954 
2955 static int ffs_func_setup(struct usb_function *f,
2956 			  const struct usb_ctrlrequest *creq)
2957 {
2958 	struct ffs_function *func = ffs_func_from_usb(f);
2959 	struct ffs_data *ffs = func->ffs;
2960 	unsigned long flags;
2961 	int ret;
2962 
2963 	ENTER();
2964 
2965 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
2966 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
2967 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
2968 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
2969 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
2970 
2971 	/*
2972 	 * Most requests directed to interface go through here
2973 	 * (notable exceptions are set/get interface) so we need to
2974 	 * handle them.  All other either handled by composite or
2975 	 * passed to usb_configuration->setup() (if one is set).  No
2976 	 * matter, we will handle requests directed to endpoint here
2977 	 * as well (as it's straightforward) but what to do with any
2978 	 * other request?
2979 	 */
2980 	if (ffs->state != FFS_ACTIVE)
2981 		return -ENODEV;
2982 
2983 	switch (creq->bRequestType & USB_RECIP_MASK) {
2984 	case USB_RECIP_INTERFACE:
2985 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
2986 		if (unlikely(ret < 0))
2987 			return ret;
2988 		break;
2989 
2990 	case USB_RECIP_ENDPOINT:
2991 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
2992 		if (unlikely(ret < 0))
2993 			return ret;
2994 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2995 			ret = func->ffs->eps_addrmap[ret];
2996 		break;
2997 
2998 	default:
2999 		return -EOPNOTSUPP;
3000 	}
3001 
3002 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3003 	ffs->ev.setup = *creq;
3004 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3005 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3006 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3007 
3008 	return 0;
3009 }
3010 
3011 static void ffs_func_suspend(struct usb_function *f)
3012 {
3013 	ENTER();
3014 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3015 }
3016 
3017 static void ffs_func_resume(struct usb_function *f)
3018 {
3019 	ENTER();
3020 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3021 }
3022 
3023 
3024 /* Endpoint and interface numbers reverse mapping ***************************/
3025 
3026 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3027 {
3028 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3029 	return num ? num : -EDOM;
3030 }
3031 
3032 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3033 {
3034 	short *nums = func->interfaces_nums;
3035 	unsigned count = func->ffs->interfaces_count;
3036 
3037 	for (; count; --count, ++nums) {
3038 		if (*nums >= 0 && *nums == intf)
3039 			return nums - func->interfaces_nums;
3040 	}
3041 
3042 	return -EDOM;
3043 }
3044 
3045 
3046 /* Devices management *******************************************************/
3047 
3048 static LIST_HEAD(ffs_devices);
3049 
3050 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3051 {
3052 	struct ffs_dev *dev;
3053 
3054 	list_for_each_entry(dev, &ffs_devices, entry) {
3055 		if (!dev->name || !name)
3056 			continue;
3057 		if (strcmp(dev->name, name) == 0)
3058 			return dev;
3059 	}
3060 
3061 	return NULL;
3062 }
3063 
3064 /*
3065  * ffs_lock must be taken by the caller of this function
3066  */
3067 static struct ffs_dev *_ffs_get_single_dev(void)
3068 {
3069 	struct ffs_dev *dev;
3070 
3071 	if (list_is_singular(&ffs_devices)) {
3072 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3073 		if (dev->single)
3074 			return dev;
3075 	}
3076 
3077 	return NULL;
3078 }
3079 
3080 /*
3081  * ffs_lock must be taken by the caller of this function
3082  */
3083 static struct ffs_dev *_ffs_find_dev(const char *name)
3084 {
3085 	struct ffs_dev *dev;
3086 
3087 	dev = _ffs_get_single_dev();
3088 	if (dev)
3089 		return dev;
3090 
3091 	return _ffs_do_find_dev(name);
3092 }
3093 
3094 /* Configfs support *********************************************************/
3095 
3096 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3097 {
3098 	return container_of(to_config_group(item), struct f_fs_opts,
3099 			    func_inst.group);
3100 }
3101 
3102 static void ffs_attr_release(struct config_item *item)
3103 {
3104 	struct f_fs_opts *opts = to_ffs_opts(item);
3105 
3106 	usb_put_function_instance(&opts->func_inst);
3107 }
3108 
3109 static struct configfs_item_operations ffs_item_ops = {
3110 	.release	= ffs_attr_release,
3111 };
3112 
3113 static struct config_item_type ffs_func_type = {
3114 	.ct_item_ops	= &ffs_item_ops,
3115 	.ct_owner	= THIS_MODULE,
3116 };
3117 
3118 
3119 /* Function registration interface ******************************************/
3120 
3121 static void ffs_free_inst(struct usb_function_instance *f)
3122 {
3123 	struct f_fs_opts *opts;
3124 
3125 	opts = to_f_fs_opts(f);
3126 	ffs_dev_lock();
3127 	_ffs_free_dev(opts->dev);
3128 	ffs_dev_unlock();
3129 	kfree(opts);
3130 }
3131 
3132 #define MAX_INST_NAME_LEN	40
3133 
3134 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3135 {
3136 	struct f_fs_opts *opts;
3137 	char *ptr;
3138 	const char *tmp;
3139 	int name_len, ret;
3140 
3141 	name_len = strlen(name) + 1;
3142 	if (name_len > MAX_INST_NAME_LEN)
3143 		return -ENAMETOOLONG;
3144 
3145 	ptr = kstrndup(name, name_len, GFP_KERNEL);
3146 	if (!ptr)
3147 		return -ENOMEM;
3148 
3149 	opts = to_f_fs_opts(fi);
3150 	tmp = NULL;
3151 
3152 	ffs_dev_lock();
3153 
3154 	tmp = opts->dev->name_allocated ? opts->dev->name : NULL;
3155 	ret = _ffs_name_dev(opts->dev, ptr);
3156 	if (ret) {
3157 		kfree(ptr);
3158 		ffs_dev_unlock();
3159 		return ret;
3160 	}
3161 	opts->dev->name_allocated = true;
3162 
3163 	ffs_dev_unlock();
3164 
3165 	kfree(tmp);
3166 
3167 	return 0;
3168 }
3169 
3170 static struct usb_function_instance *ffs_alloc_inst(void)
3171 {
3172 	struct f_fs_opts *opts;
3173 	struct ffs_dev *dev;
3174 
3175 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3176 	if (!opts)
3177 		return ERR_PTR(-ENOMEM);
3178 
3179 	opts->func_inst.set_inst_name = ffs_set_inst_name;
3180 	opts->func_inst.free_func_inst = ffs_free_inst;
3181 	ffs_dev_lock();
3182 	dev = _ffs_alloc_dev();
3183 	ffs_dev_unlock();
3184 	if (IS_ERR(dev)) {
3185 		kfree(opts);
3186 		return ERR_CAST(dev);
3187 	}
3188 	opts->dev = dev;
3189 	dev->opts = opts;
3190 
3191 	config_group_init_type_name(&opts->func_inst.group, "",
3192 				    &ffs_func_type);
3193 	return &opts->func_inst;
3194 }
3195 
3196 static void ffs_free(struct usb_function *f)
3197 {
3198 	kfree(ffs_func_from_usb(f));
3199 }
3200 
3201 static void ffs_func_unbind(struct usb_configuration *c,
3202 			    struct usb_function *f)
3203 {
3204 	struct ffs_function *func = ffs_func_from_usb(f);
3205 	struct ffs_data *ffs = func->ffs;
3206 	struct f_fs_opts *opts =
3207 		container_of(f->fi, struct f_fs_opts, func_inst);
3208 	struct ffs_ep *ep = func->eps;
3209 	unsigned count = ffs->eps_count;
3210 	unsigned long flags;
3211 
3212 	ENTER();
3213 	if (ffs->func == func) {
3214 		ffs_func_eps_disable(func);
3215 		ffs->func = NULL;
3216 	}
3217 
3218 	if (!--opts->refcnt)
3219 		functionfs_unbind(ffs);
3220 
3221 	/* cleanup after autoconfig */
3222 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3223 	do {
3224 		if (ep->ep && ep->req)
3225 			usb_ep_free_request(ep->ep, ep->req);
3226 		ep->req = NULL;
3227 		++ep;
3228 	} while (--count);
3229 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3230 	kfree(func->eps);
3231 	func->eps = NULL;
3232 	/*
3233 	 * eps, descriptors and interfaces_nums are allocated in the
3234 	 * same chunk so only one free is required.
3235 	 */
3236 	func->function.fs_descriptors = NULL;
3237 	func->function.hs_descriptors = NULL;
3238 	func->function.ss_descriptors = NULL;
3239 	func->interfaces_nums = NULL;
3240 
3241 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3242 }
3243 
3244 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3245 {
3246 	struct ffs_function *func;
3247 
3248 	ENTER();
3249 
3250 	func = kzalloc(sizeof(*func), GFP_KERNEL);
3251 	if (unlikely(!func))
3252 		return ERR_PTR(-ENOMEM);
3253 
3254 	func->function.name    = "Function FS Gadget";
3255 
3256 	func->function.bind    = ffs_func_bind;
3257 	func->function.unbind  = ffs_func_unbind;
3258 	func->function.set_alt = ffs_func_set_alt;
3259 	func->function.disable = ffs_func_disable;
3260 	func->function.setup   = ffs_func_setup;
3261 	func->function.suspend = ffs_func_suspend;
3262 	func->function.resume  = ffs_func_resume;
3263 	func->function.free_func = ffs_free;
3264 
3265 	return &func->function;
3266 }
3267 
3268 /*
3269  * ffs_lock must be taken by the caller of this function
3270  */
3271 static struct ffs_dev *_ffs_alloc_dev(void)
3272 {
3273 	struct ffs_dev *dev;
3274 	int ret;
3275 
3276 	if (_ffs_get_single_dev())
3277 			return ERR_PTR(-EBUSY);
3278 
3279 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3280 	if (!dev)
3281 		return ERR_PTR(-ENOMEM);
3282 
3283 	if (list_empty(&ffs_devices)) {
3284 		ret = functionfs_init();
3285 		if (ret) {
3286 			kfree(dev);
3287 			return ERR_PTR(ret);
3288 		}
3289 	}
3290 
3291 	list_add(&dev->entry, &ffs_devices);
3292 
3293 	return dev;
3294 }
3295 
3296 /*
3297  * ffs_lock must be taken by the caller of this function
3298  * The caller is responsible for "name" being available whenever f_fs needs it
3299  */
3300 static int _ffs_name_dev(struct ffs_dev *dev, const char *name)
3301 {
3302 	struct ffs_dev *existing;
3303 
3304 	existing = _ffs_do_find_dev(name);
3305 	if (existing)
3306 		return -EBUSY;
3307 
3308 	dev->name = name;
3309 
3310 	return 0;
3311 }
3312 
3313 /*
3314  * The caller is responsible for "name" being available whenever f_fs needs it
3315  */
3316 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3317 {
3318 	int ret;
3319 
3320 	ffs_dev_lock();
3321 	ret = _ffs_name_dev(dev, name);
3322 	ffs_dev_unlock();
3323 
3324 	return ret;
3325 }
3326 EXPORT_SYMBOL_GPL(ffs_name_dev);
3327 
3328 int ffs_single_dev(struct ffs_dev *dev)
3329 {
3330 	int ret;
3331 
3332 	ret = 0;
3333 	ffs_dev_lock();
3334 
3335 	if (!list_is_singular(&ffs_devices))
3336 		ret = -EBUSY;
3337 	else
3338 		dev->single = true;
3339 
3340 	ffs_dev_unlock();
3341 	return ret;
3342 }
3343 EXPORT_SYMBOL_GPL(ffs_single_dev);
3344 
3345 /*
3346  * ffs_lock must be taken by the caller of this function
3347  */
3348 static void _ffs_free_dev(struct ffs_dev *dev)
3349 {
3350 	list_del(&dev->entry);
3351 	if (dev->name_allocated)
3352 		kfree(dev->name);
3353 	kfree(dev);
3354 	if (list_empty(&ffs_devices))
3355 		functionfs_cleanup();
3356 }
3357 
3358 static void *ffs_acquire_dev(const char *dev_name)
3359 {
3360 	struct ffs_dev *ffs_dev;
3361 
3362 	ENTER();
3363 	ffs_dev_lock();
3364 
3365 	ffs_dev = _ffs_find_dev(dev_name);
3366 	if (!ffs_dev)
3367 		ffs_dev = ERR_PTR(-ENOENT);
3368 	else if (ffs_dev->mounted)
3369 		ffs_dev = ERR_PTR(-EBUSY);
3370 	else if (ffs_dev->ffs_acquire_dev_callback &&
3371 	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3372 		ffs_dev = ERR_PTR(-ENOENT);
3373 	else
3374 		ffs_dev->mounted = true;
3375 
3376 	ffs_dev_unlock();
3377 	return ffs_dev;
3378 }
3379 
3380 static void ffs_release_dev(struct ffs_data *ffs_data)
3381 {
3382 	struct ffs_dev *ffs_dev;
3383 
3384 	ENTER();
3385 	ffs_dev_lock();
3386 
3387 	ffs_dev = ffs_data->private_data;
3388 	if (ffs_dev) {
3389 		ffs_dev->mounted = false;
3390 
3391 		if (ffs_dev->ffs_release_dev_callback)
3392 			ffs_dev->ffs_release_dev_callback(ffs_dev);
3393 	}
3394 
3395 	ffs_dev_unlock();
3396 }
3397 
3398 static int ffs_ready(struct ffs_data *ffs)
3399 {
3400 	struct ffs_dev *ffs_obj;
3401 	int ret = 0;
3402 
3403 	ENTER();
3404 	ffs_dev_lock();
3405 
3406 	ffs_obj = ffs->private_data;
3407 	if (!ffs_obj) {
3408 		ret = -EINVAL;
3409 		goto done;
3410 	}
3411 	if (WARN_ON(ffs_obj->desc_ready)) {
3412 		ret = -EBUSY;
3413 		goto done;
3414 	}
3415 
3416 	ffs_obj->desc_ready = true;
3417 	ffs_obj->ffs_data = ffs;
3418 
3419 	if (ffs_obj->ffs_ready_callback) {
3420 		ret = ffs_obj->ffs_ready_callback(ffs);
3421 		if (ret)
3422 			goto done;
3423 	}
3424 
3425 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3426 done:
3427 	ffs_dev_unlock();
3428 	return ret;
3429 }
3430 
3431 static void ffs_closed(struct ffs_data *ffs)
3432 {
3433 	struct ffs_dev *ffs_obj;
3434 	struct f_fs_opts *opts;
3435 
3436 	ENTER();
3437 	ffs_dev_lock();
3438 
3439 	ffs_obj = ffs->private_data;
3440 	if (!ffs_obj)
3441 		goto done;
3442 
3443 	ffs_obj->desc_ready = false;
3444 
3445 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3446 	    ffs_obj->ffs_closed_callback)
3447 		ffs_obj->ffs_closed_callback(ffs);
3448 
3449 	if (ffs_obj->opts)
3450 		opts = ffs_obj->opts;
3451 	else
3452 		goto done;
3453 
3454 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3455 	    || !atomic_read(&opts->func_inst.group.cg_item.ci_kref.refcount))
3456 		goto done;
3457 
3458 	unregister_gadget_item(ffs_obj->opts->
3459 			       func_inst.group.cg_item.ci_parent->ci_parent);
3460 done:
3461 	ffs_dev_unlock();
3462 }
3463 
3464 /* Misc helper functions ****************************************************/
3465 
3466 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3467 {
3468 	return nonblock
3469 		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3470 		: mutex_lock_interruptible(mutex);
3471 }
3472 
3473 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3474 {
3475 	char *data;
3476 
3477 	if (unlikely(!len))
3478 		return NULL;
3479 
3480 	data = kmalloc(len, GFP_KERNEL);
3481 	if (unlikely(!data))
3482 		return ERR_PTR(-ENOMEM);
3483 
3484 	if (unlikely(copy_from_user(data, buf, len))) {
3485 		kfree(data);
3486 		return ERR_PTR(-EFAULT);
3487 	}
3488 
3489 	pr_vdebug("Buffer from user space:\n");
3490 	ffs_dump_mem("", data, len);
3491 
3492 	return data;
3493 }
3494 
3495 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3496 MODULE_LICENSE("GPL");
3497 MODULE_AUTHOR("Michal Nazarewicz");
3498