1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * f_fs.c -- user mode file system API for USB composite function controllers 4 * 5 * Copyright (C) 2010 Samsung Electronics 6 * Author: Michal Nazarewicz <mina86@mina86.com> 7 * 8 * Based on inode.c (GadgetFS) which was: 9 * Copyright (C) 2003-2004 David Brownell 10 * Copyright (C) 2003 Agilent Technologies 11 */ 12 13 14 /* #define DEBUG */ 15 /* #define VERBOSE_DEBUG */ 16 17 #include <linux/blkdev.h> 18 #include <linux/pagemap.h> 19 #include <linux/export.h> 20 #include <linux/fs_parser.h> 21 #include <linux/hid.h> 22 #include <linux/mm.h> 23 #include <linux/module.h> 24 #include <linux/scatterlist.h> 25 #include <linux/sched/signal.h> 26 #include <linux/uio.h> 27 #include <linux/vmalloc.h> 28 #include <asm/unaligned.h> 29 30 #include <linux/usb/ccid.h> 31 #include <linux/usb/composite.h> 32 #include <linux/usb/functionfs.h> 33 34 #include <linux/aio.h> 35 #include <linux/kthread.h> 36 #include <linux/poll.h> 37 #include <linux/eventfd.h> 38 39 #include "u_fs.h" 40 #include "u_f.h" 41 #include "u_os_desc.h" 42 #include "configfs.h" 43 44 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ 45 46 /* Reference counter handling */ 47 static void ffs_data_get(struct ffs_data *ffs); 48 static void ffs_data_put(struct ffs_data *ffs); 49 /* Creates new ffs_data object. */ 50 static struct ffs_data *__must_check ffs_data_new(const char *dev_name) 51 __attribute__((malloc)); 52 53 /* Opened counter handling. */ 54 static void ffs_data_opened(struct ffs_data *ffs); 55 static void ffs_data_closed(struct ffs_data *ffs); 56 57 /* Called with ffs->mutex held; take over ownership of data. */ 58 static int __must_check 59 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); 60 static int __must_check 61 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); 62 63 64 /* The function structure ***************************************************/ 65 66 struct ffs_ep; 67 68 struct ffs_function { 69 struct usb_configuration *conf; 70 struct usb_gadget *gadget; 71 struct ffs_data *ffs; 72 73 struct ffs_ep *eps; 74 u8 eps_revmap[16]; 75 short *interfaces_nums; 76 77 struct usb_function function; 78 }; 79 80 81 static struct ffs_function *ffs_func_from_usb(struct usb_function *f) 82 { 83 return container_of(f, struct ffs_function, function); 84 } 85 86 87 static inline enum ffs_setup_state 88 ffs_setup_state_clear_cancelled(struct ffs_data *ffs) 89 { 90 return (enum ffs_setup_state) 91 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); 92 } 93 94 95 static void ffs_func_eps_disable(struct ffs_function *func); 96 static int __must_check ffs_func_eps_enable(struct ffs_function *func); 97 98 static int ffs_func_bind(struct usb_configuration *, 99 struct usb_function *); 100 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); 101 static void ffs_func_disable(struct usb_function *); 102 static int ffs_func_setup(struct usb_function *, 103 const struct usb_ctrlrequest *); 104 static bool ffs_func_req_match(struct usb_function *, 105 const struct usb_ctrlrequest *, 106 bool config0); 107 static void ffs_func_suspend(struct usb_function *); 108 static void ffs_func_resume(struct usb_function *); 109 110 111 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); 112 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); 113 114 115 /* The endpoints structures *************************************************/ 116 117 struct ffs_ep { 118 struct usb_ep *ep; /* P: ffs->eps_lock */ 119 struct usb_request *req; /* P: epfile->mutex */ 120 121 /* [0]: full speed, [1]: high speed, [2]: super speed */ 122 struct usb_endpoint_descriptor *descs[3]; 123 124 u8 num; 125 126 int status; /* P: epfile->mutex */ 127 }; 128 129 struct ffs_epfile { 130 /* Protects ep->ep and ep->req. */ 131 struct mutex mutex; 132 133 struct ffs_data *ffs; 134 struct ffs_ep *ep; /* P: ffs->eps_lock */ 135 136 struct dentry *dentry; 137 138 /* 139 * Buffer for holding data from partial reads which may happen since 140 * we’re rounding user read requests to a multiple of a max packet size. 141 * 142 * The pointer is initialised with NULL value and may be set by 143 * __ffs_epfile_read_data function to point to a temporary buffer. 144 * 145 * In normal operation, calls to __ffs_epfile_read_buffered will consume 146 * data from said buffer and eventually free it. Importantly, while the 147 * function is using the buffer, it sets the pointer to NULL. This is 148 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered 149 * can never run concurrently (they are synchronised by epfile->mutex) 150 * so the latter will not assign a new value to the pointer. 151 * 152 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is 153 * valid) and sets the pointer to READ_BUFFER_DROP value. This special 154 * value is crux of the synchronisation between ffs_func_eps_disable and 155 * __ffs_epfile_read_data. 156 * 157 * Once __ffs_epfile_read_data is about to finish it will try to set the 158 * pointer back to its old value (as described above), but seeing as the 159 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free 160 * the buffer. 161 * 162 * == State transitions == 163 * 164 * • ptr == NULL: (initial state) 165 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP 166 * ◦ __ffs_epfile_read_buffered: nop 167 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf 168 * ◦ reading finishes: n/a, not in ‘and reading’ state 169 * • ptr == DROP: 170 * ◦ __ffs_epfile_read_buffer_free: nop 171 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL 172 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop 173 * ◦ reading finishes: n/a, not in ‘and reading’ state 174 * • ptr == buf: 175 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP 176 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading 177 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered 178 * is always called first 179 * ◦ reading finishes: n/a, not in ‘and reading’ state 180 * • ptr == NULL and reading: 181 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading 182 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 183 * ◦ __ffs_epfile_read_data: n/a, mutex is held 184 * ◦ reading finishes and … 185 * … all data read: free buf, go to ptr == NULL 186 * … otherwise: go to ptr == buf and reading 187 * • ptr == DROP and reading: 188 * ◦ __ffs_epfile_read_buffer_free: nop 189 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 190 * ◦ __ffs_epfile_read_data: n/a, mutex is held 191 * ◦ reading finishes: free buf, go to ptr == DROP 192 */ 193 struct ffs_buffer *read_buffer; 194 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN)) 195 196 char name[5]; 197 198 unsigned char in; /* P: ffs->eps_lock */ 199 unsigned char isoc; /* P: ffs->eps_lock */ 200 201 unsigned char _pad; 202 }; 203 204 struct ffs_buffer { 205 size_t length; 206 char *data; 207 char storage[]; 208 }; 209 210 /* ffs_io_data structure ***************************************************/ 211 212 struct ffs_io_data { 213 bool aio; 214 bool read; 215 216 struct kiocb *kiocb; 217 struct iov_iter data; 218 const void *to_free; 219 char *buf; 220 221 struct mm_struct *mm; 222 struct work_struct work; 223 224 struct usb_ep *ep; 225 struct usb_request *req; 226 struct sg_table sgt; 227 bool use_sg; 228 229 struct ffs_data *ffs; 230 }; 231 232 struct ffs_desc_helper { 233 struct ffs_data *ffs; 234 unsigned interfaces_count; 235 unsigned eps_count; 236 }; 237 238 static int __must_check ffs_epfiles_create(struct ffs_data *ffs); 239 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count); 240 241 static struct dentry * 242 ffs_sb_create_file(struct super_block *sb, const char *name, void *data, 243 const struct file_operations *fops); 244 245 /* Devices management *******************************************************/ 246 247 DEFINE_MUTEX(ffs_lock); 248 EXPORT_SYMBOL_GPL(ffs_lock); 249 250 static struct ffs_dev *_ffs_find_dev(const char *name); 251 static struct ffs_dev *_ffs_alloc_dev(void); 252 static void _ffs_free_dev(struct ffs_dev *dev); 253 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data); 254 static void ffs_release_dev(struct ffs_dev *ffs_dev); 255 static int ffs_ready(struct ffs_data *ffs); 256 static void ffs_closed(struct ffs_data *ffs); 257 258 /* Misc helper functions ****************************************************/ 259 260 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 261 __attribute__((warn_unused_result, nonnull)); 262 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 263 __attribute__((warn_unused_result, nonnull)); 264 265 266 /* Control file aka ep0 *****************************************************/ 267 268 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) 269 { 270 struct ffs_data *ffs = req->context; 271 272 complete(&ffs->ep0req_completion); 273 } 274 275 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) 276 __releases(&ffs->ev.waitq.lock) 277 { 278 struct usb_request *req = ffs->ep0req; 279 int ret; 280 281 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); 282 283 spin_unlock_irq(&ffs->ev.waitq.lock); 284 285 req->buf = data; 286 req->length = len; 287 288 /* 289 * UDC layer requires to provide a buffer even for ZLP, but should 290 * not use it at all. Let's provide some poisoned pointer to catch 291 * possible bug in the driver. 292 */ 293 if (req->buf == NULL) 294 req->buf = (void *)0xDEADBABE; 295 296 reinit_completion(&ffs->ep0req_completion); 297 298 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); 299 if (ret < 0) 300 return ret; 301 302 ret = wait_for_completion_interruptible(&ffs->ep0req_completion); 303 if (ret) { 304 usb_ep_dequeue(ffs->gadget->ep0, req); 305 return -EINTR; 306 } 307 308 ffs->setup_state = FFS_NO_SETUP; 309 return req->status ? req->status : req->actual; 310 } 311 312 static int __ffs_ep0_stall(struct ffs_data *ffs) 313 { 314 if (ffs->ev.can_stall) { 315 pr_vdebug("ep0 stall\n"); 316 usb_ep_set_halt(ffs->gadget->ep0); 317 ffs->setup_state = FFS_NO_SETUP; 318 return -EL2HLT; 319 } else { 320 pr_debug("bogus ep0 stall!\n"); 321 return -ESRCH; 322 } 323 } 324 325 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, 326 size_t len, loff_t *ptr) 327 { 328 struct ffs_data *ffs = file->private_data; 329 ssize_t ret; 330 char *data; 331 332 ENTER(); 333 334 /* Fast check if setup was canceled */ 335 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 336 return -EIDRM; 337 338 /* Acquire mutex */ 339 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 340 if (ret < 0) 341 return ret; 342 343 /* Check state */ 344 switch (ffs->state) { 345 case FFS_READ_DESCRIPTORS: 346 case FFS_READ_STRINGS: 347 /* Copy data */ 348 if (len < 16) { 349 ret = -EINVAL; 350 break; 351 } 352 353 data = ffs_prepare_buffer(buf, len); 354 if (IS_ERR(data)) { 355 ret = PTR_ERR(data); 356 break; 357 } 358 359 /* Handle data */ 360 if (ffs->state == FFS_READ_DESCRIPTORS) { 361 pr_info("read descriptors\n"); 362 ret = __ffs_data_got_descs(ffs, data, len); 363 if (ret < 0) 364 break; 365 366 ffs->state = FFS_READ_STRINGS; 367 ret = len; 368 } else { 369 pr_info("read strings\n"); 370 ret = __ffs_data_got_strings(ffs, data, len); 371 if (ret < 0) 372 break; 373 374 ret = ffs_epfiles_create(ffs); 375 if (ret) { 376 ffs->state = FFS_CLOSING; 377 break; 378 } 379 380 ffs->state = FFS_ACTIVE; 381 mutex_unlock(&ffs->mutex); 382 383 ret = ffs_ready(ffs); 384 if (ret < 0) { 385 ffs->state = FFS_CLOSING; 386 return ret; 387 } 388 389 return len; 390 } 391 break; 392 393 case FFS_ACTIVE: 394 data = NULL; 395 /* 396 * We're called from user space, we can use _irq 397 * rather then _irqsave 398 */ 399 spin_lock_irq(&ffs->ev.waitq.lock); 400 switch (ffs_setup_state_clear_cancelled(ffs)) { 401 case FFS_SETUP_CANCELLED: 402 ret = -EIDRM; 403 goto done_spin; 404 405 case FFS_NO_SETUP: 406 ret = -ESRCH; 407 goto done_spin; 408 409 case FFS_SETUP_PENDING: 410 break; 411 } 412 413 /* FFS_SETUP_PENDING */ 414 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { 415 spin_unlock_irq(&ffs->ev.waitq.lock); 416 ret = __ffs_ep0_stall(ffs); 417 break; 418 } 419 420 /* FFS_SETUP_PENDING and not stall */ 421 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 422 423 spin_unlock_irq(&ffs->ev.waitq.lock); 424 425 data = ffs_prepare_buffer(buf, len); 426 if (IS_ERR(data)) { 427 ret = PTR_ERR(data); 428 break; 429 } 430 431 spin_lock_irq(&ffs->ev.waitq.lock); 432 433 /* 434 * We are guaranteed to be still in FFS_ACTIVE state 435 * but the state of setup could have changed from 436 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need 437 * to check for that. If that happened we copied data 438 * from user space in vain but it's unlikely. 439 * 440 * For sure we are not in FFS_NO_SETUP since this is 441 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP 442 * transition can be performed and it's protected by 443 * mutex. 444 */ 445 if (ffs_setup_state_clear_cancelled(ffs) == 446 FFS_SETUP_CANCELLED) { 447 ret = -EIDRM; 448 done_spin: 449 spin_unlock_irq(&ffs->ev.waitq.lock); 450 } else { 451 /* unlocks spinlock */ 452 ret = __ffs_ep0_queue_wait(ffs, data, len); 453 } 454 kfree(data); 455 break; 456 457 default: 458 ret = -EBADFD; 459 break; 460 } 461 462 mutex_unlock(&ffs->mutex); 463 return ret; 464 } 465 466 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */ 467 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, 468 size_t n) 469 __releases(&ffs->ev.waitq.lock) 470 { 471 /* 472 * n cannot be bigger than ffs->ev.count, which cannot be bigger than 473 * size of ffs->ev.types array (which is four) so that's how much space 474 * we reserve. 475 */ 476 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)]; 477 const size_t size = n * sizeof *events; 478 unsigned i = 0; 479 480 memset(events, 0, size); 481 482 do { 483 events[i].type = ffs->ev.types[i]; 484 if (events[i].type == FUNCTIONFS_SETUP) { 485 events[i].u.setup = ffs->ev.setup; 486 ffs->setup_state = FFS_SETUP_PENDING; 487 } 488 } while (++i < n); 489 490 ffs->ev.count -= n; 491 if (ffs->ev.count) 492 memmove(ffs->ev.types, ffs->ev.types + n, 493 ffs->ev.count * sizeof *ffs->ev.types); 494 495 spin_unlock_irq(&ffs->ev.waitq.lock); 496 mutex_unlock(&ffs->mutex); 497 498 return copy_to_user(buf, events, size) ? -EFAULT : size; 499 } 500 501 static ssize_t ffs_ep0_read(struct file *file, char __user *buf, 502 size_t len, loff_t *ptr) 503 { 504 struct ffs_data *ffs = file->private_data; 505 char *data = NULL; 506 size_t n; 507 int ret; 508 509 ENTER(); 510 511 /* Fast check if setup was canceled */ 512 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 513 return -EIDRM; 514 515 /* Acquire mutex */ 516 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 517 if (ret < 0) 518 return ret; 519 520 /* Check state */ 521 if (ffs->state != FFS_ACTIVE) { 522 ret = -EBADFD; 523 goto done_mutex; 524 } 525 526 /* 527 * We're called from user space, we can use _irq rather then 528 * _irqsave 529 */ 530 spin_lock_irq(&ffs->ev.waitq.lock); 531 532 switch (ffs_setup_state_clear_cancelled(ffs)) { 533 case FFS_SETUP_CANCELLED: 534 ret = -EIDRM; 535 break; 536 537 case FFS_NO_SETUP: 538 n = len / sizeof(struct usb_functionfs_event); 539 if (!n) { 540 ret = -EINVAL; 541 break; 542 } 543 544 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { 545 ret = -EAGAIN; 546 break; 547 } 548 549 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, 550 ffs->ev.count)) { 551 ret = -EINTR; 552 break; 553 } 554 555 /* unlocks spinlock */ 556 return __ffs_ep0_read_events(ffs, buf, 557 min(n, (size_t)ffs->ev.count)); 558 559 case FFS_SETUP_PENDING: 560 if (ffs->ev.setup.bRequestType & USB_DIR_IN) { 561 spin_unlock_irq(&ffs->ev.waitq.lock); 562 ret = __ffs_ep0_stall(ffs); 563 goto done_mutex; 564 } 565 566 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 567 568 spin_unlock_irq(&ffs->ev.waitq.lock); 569 570 if (len) { 571 data = kmalloc(len, GFP_KERNEL); 572 if (!data) { 573 ret = -ENOMEM; 574 goto done_mutex; 575 } 576 } 577 578 spin_lock_irq(&ffs->ev.waitq.lock); 579 580 /* See ffs_ep0_write() */ 581 if (ffs_setup_state_clear_cancelled(ffs) == 582 FFS_SETUP_CANCELLED) { 583 ret = -EIDRM; 584 break; 585 } 586 587 /* unlocks spinlock */ 588 ret = __ffs_ep0_queue_wait(ffs, data, len); 589 if ((ret > 0) && (copy_to_user(buf, data, len))) 590 ret = -EFAULT; 591 goto done_mutex; 592 593 default: 594 ret = -EBADFD; 595 break; 596 } 597 598 spin_unlock_irq(&ffs->ev.waitq.lock); 599 done_mutex: 600 mutex_unlock(&ffs->mutex); 601 kfree(data); 602 return ret; 603 } 604 605 static int ffs_ep0_open(struct inode *inode, struct file *file) 606 { 607 struct ffs_data *ffs = inode->i_private; 608 609 ENTER(); 610 611 if (ffs->state == FFS_CLOSING) 612 return -EBUSY; 613 614 file->private_data = ffs; 615 ffs_data_opened(ffs); 616 617 return stream_open(inode, file); 618 } 619 620 static int ffs_ep0_release(struct inode *inode, struct file *file) 621 { 622 struct ffs_data *ffs = file->private_data; 623 624 ENTER(); 625 626 ffs_data_closed(ffs); 627 628 return 0; 629 } 630 631 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) 632 { 633 struct ffs_data *ffs = file->private_data; 634 struct usb_gadget *gadget = ffs->gadget; 635 long ret; 636 637 ENTER(); 638 639 if (code == FUNCTIONFS_INTERFACE_REVMAP) { 640 struct ffs_function *func = ffs->func; 641 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; 642 } else if (gadget && gadget->ops->ioctl) { 643 ret = gadget->ops->ioctl(gadget, code, value); 644 } else { 645 ret = -ENOTTY; 646 } 647 648 return ret; 649 } 650 651 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait) 652 { 653 struct ffs_data *ffs = file->private_data; 654 __poll_t mask = EPOLLWRNORM; 655 int ret; 656 657 poll_wait(file, &ffs->ev.waitq, wait); 658 659 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 660 if (ret < 0) 661 return mask; 662 663 switch (ffs->state) { 664 case FFS_READ_DESCRIPTORS: 665 case FFS_READ_STRINGS: 666 mask |= EPOLLOUT; 667 break; 668 669 case FFS_ACTIVE: 670 switch (ffs->setup_state) { 671 case FFS_NO_SETUP: 672 if (ffs->ev.count) 673 mask |= EPOLLIN; 674 break; 675 676 case FFS_SETUP_PENDING: 677 case FFS_SETUP_CANCELLED: 678 mask |= (EPOLLIN | EPOLLOUT); 679 break; 680 } 681 break; 682 683 case FFS_CLOSING: 684 break; 685 case FFS_DEACTIVATED: 686 break; 687 } 688 689 mutex_unlock(&ffs->mutex); 690 691 return mask; 692 } 693 694 static const struct file_operations ffs_ep0_operations = { 695 .llseek = no_llseek, 696 697 .open = ffs_ep0_open, 698 .write = ffs_ep0_write, 699 .read = ffs_ep0_read, 700 .release = ffs_ep0_release, 701 .unlocked_ioctl = ffs_ep0_ioctl, 702 .poll = ffs_ep0_poll, 703 }; 704 705 706 /* "Normal" endpoints operations ********************************************/ 707 708 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) 709 { 710 ENTER(); 711 if (req->context) { 712 struct ffs_ep *ep = _ep->driver_data; 713 ep->status = req->status ? req->status : req->actual; 714 complete(req->context); 715 } 716 } 717 718 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter) 719 { 720 ssize_t ret = copy_to_iter(data, data_len, iter); 721 if (ret == data_len) 722 return ret; 723 724 if (iov_iter_count(iter)) 725 return -EFAULT; 726 727 /* 728 * Dear user space developer! 729 * 730 * TL;DR: To stop getting below error message in your kernel log, change 731 * user space code using functionfs to align read buffers to a max 732 * packet size. 733 * 734 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max 735 * packet size. When unaligned buffer is passed to functionfs, it 736 * internally uses a larger, aligned buffer so that such UDCs are happy. 737 * 738 * Unfortunately, this means that host may send more data than was 739 * requested in read(2) system call. f_fs doesn’t know what to do with 740 * that excess data so it simply drops it. 741 * 742 * Was the buffer aligned in the first place, no such problem would 743 * happen. 744 * 745 * Data may be dropped only in AIO reads. Synchronous reads are handled 746 * by splitting a request into multiple parts. This splitting may still 747 * be a problem though so it’s likely best to align the buffer 748 * regardless of it being AIO or not.. 749 * 750 * This only affects OUT endpoints, i.e. reading data with a read(2), 751 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not 752 * affected. 753 */ 754 pr_err("functionfs read size %d > requested size %zd, dropping excess data. " 755 "Align read buffer size to max packet size to avoid the problem.\n", 756 data_len, ret); 757 758 return ret; 759 } 760 761 /* 762 * allocate a virtually contiguous buffer and create a scatterlist describing it 763 * @sg_table - pointer to a place to be filled with sg_table contents 764 * @size - required buffer size 765 */ 766 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz) 767 { 768 struct page **pages; 769 void *vaddr, *ptr; 770 unsigned int n_pages; 771 int i; 772 773 vaddr = vmalloc(sz); 774 if (!vaddr) 775 return NULL; 776 777 n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT; 778 pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL); 779 if (!pages) { 780 vfree(vaddr); 781 782 return NULL; 783 } 784 for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE) 785 pages[i] = vmalloc_to_page(ptr); 786 787 if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) { 788 kvfree(pages); 789 vfree(vaddr); 790 791 return NULL; 792 } 793 kvfree(pages); 794 795 return vaddr; 796 } 797 798 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data, 799 size_t data_len) 800 { 801 if (io_data->use_sg) 802 return ffs_build_sg_list(&io_data->sgt, data_len); 803 804 return kmalloc(data_len, GFP_KERNEL); 805 } 806 807 static inline void ffs_free_buffer(struct ffs_io_data *io_data) 808 { 809 if (!io_data->buf) 810 return; 811 812 if (io_data->use_sg) { 813 sg_free_table(&io_data->sgt); 814 vfree(io_data->buf); 815 } else { 816 kfree(io_data->buf); 817 } 818 } 819 820 static void ffs_user_copy_worker(struct work_struct *work) 821 { 822 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 823 work); 824 int ret = io_data->req->status ? io_data->req->status : 825 io_data->req->actual; 826 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD; 827 828 if (io_data->read && ret > 0) { 829 kthread_use_mm(io_data->mm); 830 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data); 831 kthread_unuse_mm(io_data->mm); 832 } 833 834 io_data->kiocb->ki_complete(io_data->kiocb, ret); 835 836 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd) 837 eventfd_signal(io_data->ffs->ffs_eventfd, 1); 838 839 usb_ep_free_request(io_data->ep, io_data->req); 840 841 if (io_data->read) 842 kfree(io_data->to_free); 843 ffs_free_buffer(io_data); 844 kfree(io_data); 845 } 846 847 static void ffs_epfile_async_io_complete(struct usb_ep *_ep, 848 struct usb_request *req) 849 { 850 struct ffs_io_data *io_data = req->context; 851 struct ffs_data *ffs = io_data->ffs; 852 853 ENTER(); 854 855 INIT_WORK(&io_data->work, ffs_user_copy_worker); 856 queue_work(ffs->io_completion_wq, &io_data->work); 857 } 858 859 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile) 860 { 861 /* 862 * See comment in struct ffs_epfile for full read_buffer pointer 863 * synchronisation story. 864 */ 865 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP); 866 if (buf && buf != READ_BUFFER_DROP) 867 kfree(buf); 868 } 869 870 /* Assumes epfile->mutex is held. */ 871 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile, 872 struct iov_iter *iter) 873 { 874 /* 875 * Null out epfile->read_buffer so ffs_func_eps_disable does not free 876 * the buffer while we are using it. See comment in struct ffs_epfile 877 * for full read_buffer pointer synchronisation story. 878 */ 879 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL); 880 ssize_t ret; 881 if (!buf || buf == READ_BUFFER_DROP) 882 return 0; 883 884 ret = copy_to_iter(buf->data, buf->length, iter); 885 if (buf->length == ret) { 886 kfree(buf); 887 return ret; 888 } 889 890 if (iov_iter_count(iter)) { 891 ret = -EFAULT; 892 } else { 893 buf->length -= ret; 894 buf->data += ret; 895 } 896 897 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 898 kfree(buf); 899 900 return ret; 901 } 902 903 /* Assumes epfile->mutex is held. */ 904 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile, 905 void *data, int data_len, 906 struct iov_iter *iter) 907 { 908 struct ffs_buffer *buf; 909 910 ssize_t ret = copy_to_iter(data, data_len, iter); 911 if (data_len == ret) 912 return ret; 913 914 if (iov_iter_count(iter)) 915 return -EFAULT; 916 917 /* See ffs_copy_to_iter for more context. */ 918 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.", 919 data_len, ret); 920 921 data_len -= ret; 922 buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL); 923 if (!buf) 924 return -ENOMEM; 925 buf->length = data_len; 926 buf->data = buf->storage; 927 memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len)); 928 929 /* 930 * At this point read_buffer is NULL or READ_BUFFER_DROP (if 931 * ffs_func_eps_disable has been called in the meanwhile). See comment 932 * in struct ffs_epfile for full read_buffer pointer synchronisation 933 * story. 934 */ 935 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 936 kfree(buf); 937 938 return ret; 939 } 940 941 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) 942 { 943 struct ffs_epfile *epfile = file->private_data; 944 struct usb_request *req; 945 struct ffs_ep *ep; 946 char *data = NULL; 947 ssize_t ret, data_len = -EINVAL; 948 int halt; 949 950 /* Are we still active? */ 951 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 952 return -ENODEV; 953 954 /* Wait for endpoint to be enabled */ 955 ep = epfile->ep; 956 if (!ep) { 957 if (file->f_flags & O_NONBLOCK) 958 return -EAGAIN; 959 960 ret = wait_event_interruptible( 961 epfile->ffs->wait, (ep = epfile->ep)); 962 if (ret) 963 return -EINTR; 964 } 965 966 /* Do we halt? */ 967 halt = (!io_data->read == !epfile->in); 968 if (halt && epfile->isoc) 969 return -EINVAL; 970 971 /* We will be using request and read_buffer */ 972 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); 973 if (ret) 974 goto error; 975 976 /* Allocate & copy */ 977 if (!halt) { 978 struct usb_gadget *gadget; 979 980 /* 981 * Do we have buffered data from previous partial read? Check 982 * that for synchronous case only because we do not have 983 * facility to ‘wake up’ a pending asynchronous read and push 984 * buffered data to it which we would need to make things behave 985 * consistently. 986 */ 987 if (!io_data->aio && io_data->read) { 988 ret = __ffs_epfile_read_buffered(epfile, &io_data->data); 989 if (ret) 990 goto error_mutex; 991 } 992 993 /* 994 * if we _do_ wait above, the epfile->ffs->gadget might be NULL 995 * before the waiting completes, so do not assign to 'gadget' 996 * earlier 997 */ 998 gadget = epfile->ffs->gadget; 999 1000 spin_lock_irq(&epfile->ffs->eps_lock); 1001 /* In the meantime, endpoint got disabled or changed. */ 1002 if (epfile->ep != ep) { 1003 ret = -ESHUTDOWN; 1004 goto error_lock; 1005 } 1006 data_len = iov_iter_count(&io_data->data); 1007 /* 1008 * Controller may require buffer size to be aligned to 1009 * maxpacketsize of an out endpoint. 1010 */ 1011 if (io_data->read) 1012 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len); 1013 1014 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE; 1015 spin_unlock_irq(&epfile->ffs->eps_lock); 1016 1017 data = ffs_alloc_buffer(io_data, data_len); 1018 if (!data) { 1019 ret = -ENOMEM; 1020 goto error_mutex; 1021 } 1022 if (!io_data->read && 1023 !copy_from_iter_full(data, data_len, &io_data->data)) { 1024 ret = -EFAULT; 1025 goto error_mutex; 1026 } 1027 } 1028 1029 spin_lock_irq(&epfile->ffs->eps_lock); 1030 1031 if (epfile->ep != ep) { 1032 /* In the meantime, endpoint got disabled or changed. */ 1033 ret = -ESHUTDOWN; 1034 } else if (halt) { 1035 ret = usb_ep_set_halt(ep->ep); 1036 if (!ret) 1037 ret = -EBADMSG; 1038 } else if (data_len == -EINVAL) { 1039 /* 1040 * Sanity Check: even though data_len can't be used 1041 * uninitialized at the time I write this comment, some 1042 * compilers complain about this situation. 1043 * In order to keep the code clean from warnings, data_len is 1044 * being initialized to -EINVAL during its declaration, which 1045 * means we can't rely on compiler anymore to warn no future 1046 * changes won't result in data_len being used uninitialized. 1047 * For such reason, we're adding this redundant sanity check 1048 * here. 1049 */ 1050 WARN(1, "%s: data_len == -EINVAL\n", __func__); 1051 ret = -EINVAL; 1052 } else if (!io_data->aio) { 1053 DECLARE_COMPLETION_ONSTACK(done); 1054 bool interrupted = false; 1055 1056 req = ep->req; 1057 if (io_data->use_sg) { 1058 req->buf = NULL; 1059 req->sg = io_data->sgt.sgl; 1060 req->num_sgs = io_data->sgt.nents; 1061 } else { 1062 req->buf = data; 1063 req->num_sgs = 0; 1064 } 1065 req->length = data_len; 1066 1067 io_data->buf = data; 1068 1069 req->context = &done; 1070 req->complete = ffs_epfile_io_complete; 1071 1072 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1073 if (ret < 0) 1074 goto error_lock; 1075 1076 spin_unlock_irq(&epfile->ffs->eps_lock); 1077 1078 if (wait_for_completion_interruptible(&done)) { 1079 /* 1080 * To avoid race condition with ffs_epfile_io_complete, 1081 * dequeue the request first then check 1082 * status. usb_ep_dequeue API should guarantee no race 1083 * condition with req->complete callback. 1084 */ 1085 usb_ep_dequeue(ep->ep, req); 1086 wait_for_completion(&done); 1087 interrupted = ep->status < 0; 1088 } 1089 1090 if (interrupted) 1091 ret = -EINTR; 1092 else if (io_data->read && ep->status > 0) 1093 ret = __ffs_epfile_read_data(epfile, data, ep->status, 1094 &io_data->data); 1095 else 1096 ret = ep->status; 1097 goto error_mutex; 1098 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) { 1099 ret = -ENOMEM; 1100 } else { 1101 if (io_data->use_sg) { 1102 req->buf = NULL; 1103 req->sg = io_data->sgt.sgl; 1104 req->num_sgs = io_data->sgt.nents; 1105 } else { 1106 req->buf = data; 1107 req->num_sgs = 0; 1108 } 1109 req->length = data_len; 1110 1111 io_data->buf = data; 1112 io_data->ep = ep->ep; 1113 io_data->req = req; 1114 io_data->ffs = epfile->ffs; 1115 1116 req->context = io_data; 1117 req->complete = ffs_epfile_async_io_complete; 1118 1119 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1120 if (ret) { 1121 io_data->req = NULL; 1122 usb_ep_free_request(ep->ep, req); 1123 goto error_lock; 1124 } 1125 1126 ret = -EIOCBQUEUED; 1127 /* 1128 * Do not kfree the buffer in this function. It will be freed 1129 * by ffs_user_copy_worker. 1130 */ 1131 data = NULL; 1132 } 1133 1134 error_lock: 1135 spin_unlock_irq(&epfile->ffs->eps_lock); 1136 error_mutex: 1137 mutex_unlock(&epfile->mutex); 1138 error: 1139 if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */ 1140 ffs_free_buffer(io_data); 1141 return ret; 1142 } 1143 1144 static int 1145 ffs_epfile_open(struct inode *inode, struct file *file) 1146 { 1147 struct ffs_epfile *epfile = inode->i_private; 1148 1149 ENTER(); 1150 1151 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1152 return -ENODEV; 1153 1154 file->private_data = epfile; 1155 ffs_data_opened(epfile->ffs); 1156 1157 return stream_open(inode, file); 1158 } 1159 1160 static int ffs_aio_cancel(struct kiocb *kiocb) 1161 { 1162 struct ffs_io_data *io_data = kiocb->private; 1163 struct ffs_epfile *epfile = kiocb->ki_filp->private_data; 1164 unsigned long flags; 1165 int value; 1166 1167 ENTER(); 1168 1169 spin_lock_irqsave(&epfile->ffs->eps_lock, flags); 1170 1171 if (io_data && io_data->ep && io_data->req) 1172 value = usb_ep_dequeue(io_data->ep, io_data->req); 1173 else 1174 value = -EINVAL; 1175 1176 spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags); 1177 1178 return value; 1179 } 1180 1181 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from) 1182 { 1183 struct ffs_io_data io_data, *p = &io_data; 1184 ssize_t res; 1185 1186 ENTER(); 1187 1188 if (!is_sync_kiocb(kiocb)) { 1189 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1190 if (!p) 1191 return -ENOMEM; 1192 p->aio = true; 1193 } else { 1194 memset(p, 0, sizeof(*p)); 1195 p->aio = false; 1196 } 1197 1198 p->read = false; 1199 p->kiocb = kiocb; 1200 p->data = *from; 1201 p->mm = current->mm; 1202 1203 kiocb->private = p; 1204 1205 if (p->aio) 1206 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1207 1208 res = ffs_epfile_io(kiocb->ki_filp, p); 1209 if (res == -EIOCBQUEUED) 1210 return res; 1211 if (p->aio) 1212 kfree(p); 1213 else 1214 *from = p->data; 1215 return res; 1216 } 1217 1218 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to) 1219 { 1220 struct ffs_io_data io_data, *p = &io_data; 1221 ssize_t res; 1222 1223 ENTER(); 1224 1225 if (!is_sync_kiocb(kiocb)) { 1226 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1227 if (!p) 1228 return -ENOMEM; 1229 p->aio = true; 1230 } else { 1231 memset(p, 0, sizeof(*p)); 1232 p->aio = false; 1233 } 1234 1235 p->read = true; 1236 p->kiocb = kiocb; 1237 if (p->aio) { 1238 p->to_free = dup_iter(&p->data, to, GFP_KERNEL); 1239 if (!p->to_free) { 1240 kfree(p); 1241 return -ENOMEM; 1242 } 1243 } else { 1244 p->data = *to; 1245 p->to_free = NULL; 1246 } 1247 p->mm = current->mm; 1248 1249 kiocb->private = p; 1250 1251 if (p->aio) 1252 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1253 1254 res = ffs_epfile_io(kiocb->ki_filp, p); 1255 if (res == -EIOCBQUEUED) 1256 return res; 1257 1258 if (p->aio) { 1259 kfree(p->to_free); 1260 kfree(p); 1261 } else { 1262 *to = p->data; 1263 } 1264 return res; 1265 } 1266 1267 static int 1268 ffs_epfile_release(struct inode *inode, struct file *file) 1269 { 1270 struct ffs_epfile *epfile = inode->i_private; 1271 1272 ENTER(); 1273 1274 __ffs_epfile_read_buffer_free(epfile); 1275 ffs_data_closed(epfile->ffs); 1276 1277 return 0; 1278 } 1279 1280 static long ffs_epfile_ioctl(struct file *file, unsigned code, 1281 unsigned long value) 1282 { 1283 struct ffs_epfile *epfile = file->private_data; 1284 struct ffs_ep *ep; 1285 int ret; 1286 1287 ENTER(); 1288 1289 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1290 return -ENODEV; 1291 1292 /* Wait for endpoint to be enabled */ 1293 ep = epfile->ep; 1294 if (!ep) { 1295 if (file->f_flags & O_NONBLOCK) 1296 return -EAGAIN; 1297 1298 ret = wait_event_interruptible( 1299 epfile->ffs->wait, (ep = epfile->ep)); 1300 if (ret) 1301 return -EINTR; 1302 } 1303 1304 spin_lock_irq(&epfile->ffs->eps_lock); 1305 1306 /* In the meantime, endpoint got disabled or changed. */ 1307 if (epfile->ep != ep) { 1308 spin_unlock_irq(&epfile->ffs->eps_lock); 1309 return -ESHUTDOWN; 1310 } 1311 1312 switch (code) { 1313 case FUNCTIONFS_FIFO_STATUS: 1314 ret = usb_ep_fifo_status(epfile->ep->ep); 1315 break; 1316 case FUNCTIONFS_FIFO_FLUSH: 1317 usb_ep_fifo_flush(epfile->ep->ep); 1318 ret = 0; 1319 break; 1320 case FUNCTIONFS_CLEAR_HALT: 1321 ret = usb_ep_clear_halt(epfile->ep->ep); 1322 break; 1323 case FUNCTIONFS_ENDPOINT_REVMAP: 1324 ret = epfile->ep->num; 1325 break; 1326 case FUNCTIONFS_ENDPOINT_DESC: 1327 { 1328 int desc_idx; 1329 struct usb_endpoint_descriptor desc1, *desc; 1330 1331 switch (epfile->ffs->gadget->speed) { 1332 case USB_SPEED_SUPER: 1333 case USB_SPEED_SUPER_PLUS: 1334 desc_idx = 2; 1335 break; 1336 case USB_SPEED_HIGH: 1337 desc_idx = 1; 1338 break; 1339 default: 1340 desc_idx = 0; 1341 } 1342 1343 desc = epfile->ep->descs[desc_idx]; 1344 memcpy(&desc1, desc, desc->bLength); 1345 1346 spin_unlock_irq(&epfile->ffs->eps_lock); 1347 ret = copy_to_user((void __user *)value, &desc1, desc1.bLength); 1348 if (ret) 1349 ret = -EFAULT; 1350 return ret; 1351 } 1352 default: 1353 ret = -ENOTTY; 1354 } 1355 spin_unlock_irq(&epfile->ffs->eps_lock); 1356 1357 return ret; 1358 } 1359 1360 static const struct file_operations ffs_epfile_operations = { 1361 .llseek = no_llseek, 1362 1363 .open = ffs_epfile_open, 1364 .write_iter = ffs_epfile_write_iter, 1365 .read_iter = ffs_epfile_read_iter, 1366 .release = ffs_epfile_release, 1367 .unlocked_ioctl = ffs_epfile_ioctl, 1368 .compat_ioctl = compat_ptr_ioctl, 1369 }; 1370 1371 1372 /* File system and super block operations ***********************************/ 1373 1374 /* 1375 * Mounting the file system creates a controller file, used first for 1376 * function configuration then later for event monitoring. 1377 */ 1378 1379 static struct inode *__must_check 1380 ffs_sb_make_inode(struct super_block *sb, void *data, 1381 const struct file_operations *fops, 1382 const struct inode_operations *iops, 1383 struct ffs_file_perms *perms) 1384 { 1385 struct inode *inode; 1386 1387 ENTER(); 1388 1389 inode = new_inode(sb); 1390 1391 if (inode) { 1392 struct timespec64 ts = current_time(inode); 1393 1394 inode->i_ino = get_next_ino(); 1395 inode->i_mode = perms->mode; 1396 inode->i_uid = perms->uid; 1397 inode->i_gid = perms->gid; 1398 inode->i_atime = ts; 1399 inode->i_mtime = ts; 1400 inode->i_ctime = ts; 1401 inode->i_private = data; 1402 if (fops) 1403 inode->i_fop = fops; 1404 if (iops) 1405 inode->i_op = iops; 1406 } 1407 1408 return inode; 1409 } 1410 1411 /* Create "regular" file */ 1412 static struct dentry *ffs_sb_create_file(struct super_block *sb, 1413 const char *name, void *data, 1414 const struct file_operations *fops) 1415 { 1416 struct ffs_data *ffs = sb->s_fs_info; 1417 struct dentry *dentry; 1418 struct inode *inode; 1419 1420 ENTER(); 1421 1422 dentry = d_alloc_name(sb->s_root, name); 1423 if (!dentry) 1424 return NULL; 1425 1426 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); 1427 if (!inode) { 1428 dput(dentry); 1429 return NULL; 1430 } 1431 1432 d_add(dentry, inode); 1433 return dentry; 1434 } 1435 1436 /* Super block */ 1437 static const struct super_operations ffs_sb_operations = { 1438 .statfs = simple_statfs, 1439 .drop_inode = generic_delete_inode, 1440 }; 1441 1442 struct ffs_sb_fill_data { 1443 struct ffs_file_perms perms; 1444 umode_t root_mode; 1445 const char *dev_name; 1446 bool no_disconnect; 1447 struct ffs_data *ffs_data; 1448 }; 1449 1450 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc) 1451 { 1452 struct ffs_sb_fill_data *data = fc->fs_private; 1453 struct inode *inode; 1454 struct ffs_data *ffs = data->ffs_data; 1455 1456 ENTER(); 1457 1458 ffs->sb = sb; 1459 data->ffs_data = NULL; 1460 sb->s_fs_info = ffs; 1461 sb->s_blocksize = PAGE_SIZE; 1462 sb->s_blocksize_bits = PAGE_SHIFT; 1463 sb->s_magic = FUNCTIONFS_MAGIC; 1464 sb->s_op = &ffs_sb_operations; 1465 sb->s_time_gran = 1; 1466 1467 /* Root inode */ 1468 data->perms.mode = data->root_mode; 1469 inode = ffs_sb_make_inode(sb, NULL, 1470 &simple_dir_operations, 1471 &simple_dir_inode_operations, 1472 &data->perms); 1473 sb->s_root = d_make_root(inode); 1474 if (!sb->s_root) 1475 return -ENOMEM; 1476 1477 /* EP0 file */ 1478 if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations)) 1479 return -ENOMEM; 1480 1481 return 0; 1482 } 1483 1484 enum { 1485 Opt_no_disconnect, 1486 Opt_rmode, 1487 Opt_fmode, 1488 Opt_mode, 1489 Opt_uid, 1490 Opt_gid, 1491 }; 1492 1493 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = { 1494 fsparam_bool ("no_disconnect", Opt_no_disconnect), 1495 fsparam_u32 ("rmode", Opt_rmode), 1496 fsparam_u32 ("fmode", Opt_fmode), 1497 fsparam_u32 ("mode", Opt_mode), 1498 fsparam_u32 ("uid", Opt_uid), 1499 fsparam_u32 ("gid", Opt_gid), 1500 {} 1501 }; 1502 1503 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1504 { 1505 struct ffs_sb_fill_data *data = fc->fs_private; 1506 struct fs_parse_result result; 1507 int opt; 1508 1509 ENTER(); 1510 1511 opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result); 1512 if (opt < 0) 1513 return opt; 1514 1515 switch (opt) { 1516 case Opt_no_disconnect: 1517 data->no_disconnect = result.boolean; 1518 break; 1519 case Opt_rmode: 1520 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1521 break; 1522 case Opt_fmode: 1523 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 1524 break; 1525 case Opt_mode: 1526 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1527 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 1528 break; 1529 1530 case Opt_uid: 1531 data->perms.uid = make_kuid(current_user_ns(), result.uint_32); 1532 if (!uid_valid(data->perms.uid)) 1533 goto unmapped_value; 1534 break; 1535 case Opt_gid: 1536 data->perms.gid = make_kgid(current_user_ns(), result.uint_32); 1537 if (!gid_valid(data->perms.gid)) 1538 goto unmapped_value; 1539 break; 1540 1541 default: 1542 return -ENOPARAM; 1543 } 1544 1545 return 0; 1546 1547 unmapped_value: 1548 return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32); 1549 } 1550 1551 /* 1552 * Set up the superblock for a mount. 1553 */ 1554 static int ffs_fs_get_tree(struct fs_context *fc) 1555 { 1556 struct ffs_sb_fill_data *ctx = fc->fs_private; 1557 struct ffs_data *ffs; 1558 int ret; 1559 1560 ENTER(); 1561 1562 if (!fc->source) 1563 return invalf(fc, "No source specified"); 1564 1565 ffs = ffs_data_new(fc->source); 1566 if (!ffs) 1567 return -ENOMEM; 1568 ffs->file_perms = ctx->perms; 1569 ffs->no_disconnect = ctx->no_disconnect; 1570 1571 ffs->dev_name = kstrdup(fc->source, GFP_KERNEL); 1572 if (!ffs->dev_name) { 1573 ffs_data_put(ffs); 1574 return -ENOMEM; 1575 } 1576 1577 ret = ffs_acquire_dev(ffs->dev_name, ffs); 1578 if (ret) { 1579 ffs_data_put(ffs); 1580 return ret; 1581 } 1582 1583 ctx->ffs_data = ffs; 1584 return get_tree_nodev(fc, ffs_sb_fill); 1585 } 1586 1587 static void ffs_fs_free_fc(struct fs_context *fc) 1588 { 1589 struct ffs_sb_fill_data *ctx = fc->fs_private; 1590 1591 if (ctx) { 1592 if (ctx->ffs_data) { 1593 ffs_data_put(ctx->ffs_data); 1594 } 1595 1596 kfree(ctx); 1597 } 1598 } 1599 1600 static const struct fs_context_operations ffs_fs_context_ops = { 1601 .free = ffs_fs_free_fc, 1602 .parse_param = ffs_fs_parse_param, 1603 .get_tree = ffs_fs_get_tree, 1604 }; 1605 1606 static int ffs_fs_init_fs_context(struct fs_context *fc) 1607 { 1608 struct ffs_sb_fill_data *ctx; 1609 1610 ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL); 1611 if (!ctx) 1612 return -ENOMEM; 1613 1614 ctx->perms.mode = S_IFREG | 0600; 1615 ctx->perms.uid = GLOBAL_ROOT_UID; 1616 ctx->perms.gid = GLOBAL_ROOT_GID; 1617 ctx->root_mode = S_IFDIR | 0500; 1618 ctx->no_disconnect = false; 1619 1620 fc->fs_private = ctx; 1621 fc->ops = &ffs_fs_context_ops; 1622 return 0; 1623 } 1624 1625 static void 1626 ffs_fs_kill_sb(struct super_block *sb) 1627 { 1628 ENTER(); 1629 1630 kill_litter_super(sb); 1631 if (sb->s_fs_info) 1632 ffs_data_closed(sb->s_fs_info); 1633 } 1634 1635 static struct file_system_type ffs_fs_type = { 1636 .owner = THIS_MODULE, 1637 .name = "functionfs", 1638 .init_fs_context = ffs_fs_init_fs_context, 1639 .parameters = ffs_fs_fs_parameters, 1640 .kill_sb = ffs_fs_kill_sb, 1641 }; 1642 MODULE_ALIAS_FS("functionfs"); 1643 1644 1645 /* Driver's main init/cleanup functions *************************************/ 1646 1647 static int functionfs_init(void) 1648 { 1649 int ret; 1650 1651 ENTER(); 1652 1653 ret = register_filesystem(&ffs_fs_type); 1654 if (!ret) 1655 pr_info("file system registered\n"); 1656 else 1657 pr_err("failed registering file system (%d)\n", ret); 1658 1659 return ret; 1660 } 1661 1662 static void functionfs_cleanup(void) 1663 { 1664 ENTER(); 1665 1666 pr_info("unloading\n"); 1667 unregister_filesystem(&ffs_fs_type); 1668 } 1669 1670 1671 /* ffs_data and ffs_function construction and destruction code **************/ 1672 1673 static void ffs_data_clear(struct ffs_data *ffs); 1674 static void ffs_data_reset(struct ffs_data *ffs); 1675 1676 static void ffs_data_get(struct ffs_data *ffs) 1677 { 1678 ENTER(); 1679 1680 refcount_inc(&ffs->ref); 1681 } 1682 1683 static void ffs_data_opened(struct ffs_data *ffs) 1684 { 1685 ENTER(); 1686 1687 refcount_inc(&ffs->ref); 1688 if (atomic_add_return(1, &ffs->opened) == 1 && 1689 ffs->state == FFS_DEACTIVATED) { 1690 ffs->state = FFS_CLOSING; 1691 ffs_data_reset(ffs); 1692 } 1693 } 1694 1695 static void ffs_data_put(struct ffs_data *ffs) 1696 { 1697 ENTER(); 1698 1699 if (refcount_dec_and_test(&ffs->ref)) { 1700 pr_info("%s(): freeing\n", __func__); 1701 ffs_data_clear(ffs); 1702 ffs_release_dev(ffs->private_data); 1703 BUG_ON(waitqueue_active(&ffs->ev.waitq) || 1704 swait_active(&ffs->ep0req_completion.wait) || 1705 waitqueue_active(&ffs->wait)); 1706 destroy_workqueue(ffs->io_completion_wq); 1707 kfree(ffs->dev_name); 1708 kfree(ffs); 1709 } 1710 } 1711 1712 static void ffs_data_closed(struct ffs_data *ffs) 1713 { 1714 struct ffs_epfile *epfiles; 1715 unsigned long flags; 1716 1717 ENTER(); 1718 1719 if (atomic_dec_and_test(&ffs->opened)) { 1720 if (ffs->no_disconnect) { 1721 ffs->state = FFS_DEACTIVATED; 1722 spin_lock_irqsave(&ffs->eps_lock, flags); 1723 epfiles = ffs->epfiles; 1724 ffs->epfiles = NULL; 1725 spin_unlock_irqrestore(&ffs->eps_lock, 1726 flags); 1727 1728 if (epfiles) 1729 ffs_epfiles_destroy(epfiles, 1730 ffs->eps_count); 1731 1732 if (ffs->setup_state == FFS_SETUP_PENDING) 1733 __ffs_ep0_stall(ffs); 1734 } else { 1735 ffs->state = FFS_CLOSING; 1736 ffs_data_reset(ffs); 1737 } 1738 } 1739 if (atomic_read(&ffs->opened) < 0) { 1740 ffs->state = FFS_CLOSING; 1741 ffs_data_reset(ffs); 1742 } 1743 1744 ffs_data_put(ffs); 1745 } 1746 1747 static struct ffs_data *ffs_data_new(const char *dev_name) 1748 { 1749 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); 1750 if (!ffs) 1751 return NULL; 1752 1753 ENTER(); 1754 1755 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name); 1756 if (!ffs->io_completion_wq) { 1757 kfree(ffs); 1758 return NULL; 1759 } 1760 1761 refcount_set(&ffs->ref, 1); 1762 atomic_set(&ffs->opened, 0); 1763 ffs->state = FFS_READ_DESCRIPTORS; 1764 mutex_init(&ffs->mutex); 1765 spin_lock_init(&ffs->eps_lock); 1766 init_waitqueue_head(&ffs->ev.waitq); 1767 init_waitqueue_head(&ffs->wait); 1768 init_completion(&ffs->ep0req_completion); 1769 1770 /* XXX REVISIT need to update it in some places, or do we? */ 1771 ffs->ev.can_stall = 1; 1772 1773 return ffs; 1774 } 1775 1776 static void ffs_data_clear(struct ffs_data *ffs) 1777 { 1778 struct ffs_epfile *epfiles; 1779 unsigned long flags; 1780 1781 ENTER(); 1782 1783 ffs_closed(ffs); 1784 1785 BUG_ON(ffs->gadget); 1786 1787 spin_lock_irqsave(&ffs->eps_lock, flags); 1788 epfiles = ffs->epfiles; 1789 ffs->epfiles = NULL; 1790 spin_unlock_irqrestore(&ffs->eps_lock, flags); 1791 1792 /* 1793 * potential race possible between ffs_func_eps_disable 1794 * & ffs_epfile_release therefore maintaining a local 1795 * copy of epfile will save us from use-after-free. 1796 */ 1797 if (epfiles) { 1798 ffs_epfiles_destroy(epfiles, ffs->eps_count); 1799 ffs->epfiles = NULL; 1800 } 1801 1802 if (ffs->ffs_eventfd) { 1803 eventfd_ctx_put(ffs->ffs_eventfd); 1804 ffs->ffs_eventfd = NULL; 1805 } 1806 1807 kfree(ffs->raw_descs_data); 1808 kfree(ffs->raw_strings); 1809 kfree(ffs->stringtabs); 1810 } 1811 1812 static void ffs_data_reset(struct ffs_data *ffs) 1813 { 1814 ENTER(); 1815 1816 ffs_data_clear(ffs); 1817 1818 ffs->raw_descs_data = NULL; 1819 ffs->raw_descs = NULL; 1820 ffs->raw_strings = NULL; 1821 ffs->stringtabs = NULL; 1822 1823 ffs->raw_descs_length = 0; 1824 ffs->fs_descs_count = 0; 1825 ffs->hs_descs_count = 0; 1826 ffs->ss_descs_count = 0; 1827 1828 ffs->strings_count = 0; 1829 ffs->interfaces_count = 0; 1830 ffs->eps_count = 0; 1831 1832 ffs->ev.count = 0; 1833 1834 ffs->state = FFS_READ_DESCRIPTORS; 1835 ffs->setup_state = FFS_NO_SETUP; 1836 ffs->flags = 0; 1837 1838 ffs->ms_os_descs_ext_prop_count = 0; 1839 ffs->ms_os_descs_ext_prop_name_len = 0; 1840 ffs->ms_os_descs_ext_prop_data_len = 0; 1841 } 1842 1843 1844 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) 1845 { 1846 struct usb_gadget_strings **lang; 1847 int first_id; 1848 1849 ENTER(); 1850 1851 if (WARN_ON(ffs->state != FFS_ACTIVE 1852 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) 1853 return -EBADFD; 1854 1855 first_id = usb_string_ids_n(cdev, ffs->strings_count); 1856 if (first_id < 0) 1857 return first_id; 1858 1859 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); 1860 if (!ffs->ep0req) 1861 return -ENOMEM; 1862 ffs->ep0req->complete = ffs_ep0_complete; 1863 ffs->ep0req->context = ffs; 1864 1865 lang = ffs->stringtabs; 1866 if (lang) { 1867 for (; *lang; ++lang) { 1868 struct usb_string *str = (*lang)->strings; 1869 int id = first_id; 1870 for (; str->s; ++id, ++str) 1871 str->id = id; 1872 } 1873 } 1874 1875 ffs->gadget = cdev->gadget; 1876 ffs_data_get(ffs); 1877 return 0; 1878 } 1879 1880 static void functionfs_unbind(struct ffs_data *ffs) 1881 { 1882 ENTER(); 1883 1884 if (!WARN_ON(!ffs->gadget)) { 1885 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); 1886 ffs->ep0req = NULL; 1887 ffs->gadget = NULL; 1888 clear_bit(FFS_FL_BOUND, &ffs->flags); 1889 ffs_data_put(ffs); 1890 } 1891 } 1892 1893 static int ffs_epfiles_create(struct ffs_data *ffs) 1894 { 1895 struct ffs_epfile *epfile, *epfiles; 1896 unsigned i, count; 1897 1898 ENTER(); 1899 1900 count = ffs->eps_count; 1901 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); 1902 if (!epfiles) 1903 return -ENOMEM; 1904 1905 epfile = epfiles; 1906 for (i = 1; i <= count; ++i, ++epfile) { 1907 epfile->ffs = ffs; 1908 mutex_init(&epfile->mutex); 1909 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 1910 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]); 1911 else 1912 sprintf(epfile->name, "ep%u", i); 1913 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name, 1914 epfile, 1915 &ffs_epfile_operations); 1916 if (!epfile->dentry) { 1917 ffs_epfiles_destroy(epfiles, i - 1); 1918 return -ENOMEM; 1919 } 1920 } 1921 1922 ffs->epfiles = epfiles; 1923 return 0; 1924 } 1925 1926 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count) 1927 { 1928 struct ffs_epfile *epfile = epfiles; 1929 1930 ENTER(); 1931 1932 for (; count; --count, ++epfile) { 1933 BUG_ON(mutex_is_locked(&epfile->mutex)); 1934 if (epfile->dentry) { 1935 d_delete(epfile->dentry); 1936 dput(epfile->dentry); 1937 epfile->dentry = NULL; 1938 } 1939 } 1940 1941 kfree(epfiles); 1942 } 1943 1944 static void ffs_func_eps_disable(struct ffs_function *func) 1945 { 1946 struct ffs_ep *ep; 1947 struct ffs_epfile *epfile; 1948 unsigned short count; 1949 unsigned long flags; 1950 1951 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1952 count = func->ffs->eps_count; 1953 epfile = func->ffs->epfiles; 1954 ep = func->eps; 1955 while (count--) { 1956 /* pending requests get nuked */ 1957 if (ep->ep) 1958 usb_ep_disable(ep->ep); 1959 ++ep; 1960 1961 if (epfile) { 1962 epfile->ep = NULL; 1963 __ffs_epfile_read_buffer_free(epfile); 1964 ++epfile; 1965 } 1966 } 1967 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1968 } 1969 1970 static int ffs_func_eps_enable(struct ffs_function *func) 1971 { 1972 struct ffs_data *ffs; 1973 struct ffs_ep *ep; 1974 struct ffs_epfile *epfile; 1975 unsigned short count; 1976 unsigned long flags; 1977 int ret = 0; 1978 1979 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1980 ffs = func->ffs; 1981 ep = func->eps; 1982 epfile = ffs->epfiles; 1983 count = ffs->eps_count; 1984 while(count--) { 1985 ep->ep->driver_data = ep; 1986 1987 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep); 1988 if (ret) { 1989 pr_err("%s: config_ep_by_speed(%s) returned %d\n", 1990 __func__, ep->ep->name, ret); 1991 break; 1992 } 1993 1994 ret = usb_ep_enable(ep->ep); 1995 if (!ret) { 1996 epfile->ep = ep; 1997 epfile->in = usb_endpoint_dir_in(ep->ep->desc); 1998 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc); 1999 } else { 2000 break; 2001 } 2002 2003 ++ep; 2004 ++epfile; 2005 } 2006 2007 wake_up_interruptible(&ffs->wait); 2008 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 2009 2010 return ret; 2011 } 2012 2013 2014 /* Parsing and building descriptors and strings *****************************/ 2015 2016 /* 2017 * This validates if data pointed by data is a valid USB descriptor as 2018 * well as record how many interfaces, endpoints and strings are 2019 * required by given configuration. Returns address after the 2020 * descriptor or NULL if data is invalid. 2021 */ 2022 2023 enum ffs_entity_type { 2024 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT 2025 }; 2026 2027 enum ffs_os_desc_type { 2028 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP 2029 }; 2030 2031 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, 2032 u8 *valuep, 2033 struct usb_descriptor_header *desc, 2034 void *priv); 2035 2036 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, 2037 struct usb_os_desc_header *h, void *data, 2038 unsigned len, void *priv); 2039 2040 static int __must_check ffs_do_single_desc(char *data, unsigned len, 2041 ffs_entity_callback entity, 2042 void *priv, int *current_class) 2043 { 2044 struct usb_descriptor_header *_ds = (void *)data; 2045 u8 length; 2046 int ret; 2047 2048 ENTER(); 2049 2050 /* At least two bytes are required: length and type */ 2051 if (len < 2) { 2052 pr_vdebug("descriptor too short\n"); 2053 return -EINVAL; 2054 } 2055 2056 /* If we have at least as many bytes as the descriptor takes? */ 2057 length = _ds->bLength; 2058 if (len < length) { 2059 pr_vdebug("descriptor longer then available data\n"); 2060 return -EINVAL; 2061 } 2062 2063 #define __entity_check_INTERFACE(val) 1 2064 #define __entity_check_STRING(val) (val) 2065 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) 2066 #define __entity(type, val) do { \ 2067 pr_vdebug("entity " #type "(%02x)\n", (val)); \ 2068 if (!__entity_check_ ##type(val)) { \ 2069 pr_vdebug("invalid entity's value\n"); \ 2070 return -EINVAL; \ 2071 } \ 2072 ret = entity(FFS_ ##type, &val, _ds, priv); \ 2073 if (ret < 0) { \ 2074 pr_debug("entity " #type "(%02x); ret = %d\n", \ 2075 (val), ret); \ 2076 return ret; \ 2077 } \ 2078 } while (0) 2079 2080 /* Parse descriptor depending on type. */ 2081 switch (_ds->bDescriptorType) { 2082 case USB_DT_DEVICE: 2083 case USB_DT_CONFIG: 2084 case USB_DT_STRING: 2085 case USB_DT_DEVICE_QUALIFIER: 2086 /* function can't have any of those */ 2087 pr_vdebug("descriptor reserved for gadget: %d\n", 2088 _ds->bDescriptorType); 2089 return -EINVAL; 2090 2091 case USB_DT_INTERFACE: { 2092 struct usb_interface_descriptor *ds = (void *)_ds; 2093 pr_vdebug("interface descriptor\n"); 2094 if (length != sizeof *ds) 2095 goto inv_length; 2096 2097 __entity(INTERFACE, ds->bInterfaceNumber); 2098 if (ds->iInterface) 2099 __entity(STRING, ds->iInterface); 2100 *current_class = ds->bInterfaceClass; 2101 } 2102 break; 2103 2104 case USB_DT_ENDPOINT: { 2105 struct usb_endpoint_descriptor *ds = (void *)_ds; 2106 pr_vdebug("endpoint descriptor\n"); 2107 if (length != USB_DT_ENDPOINT_SIZE && 2108 length != USB_DT_ENDPOINT_AUDIO_SIZE) 2109 goto inv_length; 2110 __entity(ENDPOINT, ds->bEndpointAddress); 2111 } 2112 break; 2113 2114 case USB_TYPE_CLASS | 0x01: 2115 if (*current_class == USB_INTERFACE_CLASS_HID) { 2116 pr_vdebug("hid descriptor\n"); 2117 if (length != sizeof(struct hid_descriptor)) 2118 goto inv_length; 2119 break; 2120 } else if (*current_class == USB_INTERFACE_CLASS_CCID) { 2121 pr_vdebug("ccid descriptor\n"); 2122 if (length != sizeof(struct ccid_descriptor)) 2123 goto inv_length; 2124 break; 2125 } else { 2126 pr_vdebug("unknown descriptor: %d for class %d\n", 2127 _ds->bDescriptorType, *current_class); 2128 return -EINVAL; 2129 } 2130 2131 case USB_DT_OTG: 2132 if (length != sizeof(struct usb_otg_descriptor)) 2133 goto inv_length; 2134 break; 2135 2136 case USB_DT_INTERFACE_ASSOCIATION: { 2137 struct usb_interface_assoc_descriptor *ds = (void *)_ds; 2138 pr_vdebug("interface association descriptor\n"); 2139 if (length != sizeof *ds) 2140 goto inv_length; 2141 if (ds->iFunction) 2142 __entity(STRING, ds->iFunction); 2143 } 2144 break; 2145 2146 case USB_DT_SS_ENDPOINT_COMP: 2147 pr_vdebug("EP SS companion descriptor\n"); 2148 if (length != sizeof(struct usb_ss_ep_comp_descriptor)) 2149 goto inv_length; 2150 break; 2151 2152 case USB_DT_OTHER_SPEED_CONFIG: 2153 case USB_DT_INTERFACE_POWER: 2154 case USB_DT_DEBUG: 2155 case USB_DT_SECURITY: 2156 case USB_DT_CS_RADIO_CONTROL: 2157 /* TODO */ 2158 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); 2159 return -EINVAL; 2160 2161 default: 2162 /* We should never be here */ 2163 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); 2164 return -EINVAL; 2165 2166 inv_length: 2167 pr_vdebug("invalid length: %d (descriptor %d)\n", 2168 _ds->bLength, _ds->bDescriptorType); 2169 return -EINVAL; 2170 } 2171 2172 #undef __entity 2173 #undef __entity_check_DESCRIPTOR 2174 #undef __entity_check_INTERFACE 2175 #undef __entity_check_STRING 2176 #undef __entity_check_ENDPOINT 2177 2178 return length; 2179 } 2180 2181 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, 2182 ffs_entity_callback entity, void *priv) 2183 { 2184 const unsigned _len = len; 2185 unsigned long num = 0; 2186 int current_class = -1; 2187 2188 ENTER(); 2189 2190 for (;;) { 2191 int ret; 2192 2193 if (num == count) 2194 data = NULL; 2195 2196 /* Record "descriptor" entity */ 2197 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); 2198 if (ret < 0) { 2199 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", 2200 num, ret); 2201 return ret; 2202 } 2203 2204 if (!data) 2205 return _len - len; 2206 2207 ret = ffs_do_single_desc(data, len, entity, priv, 2208 ¤t_class); 2209 if (ret < 0) { 2210 pr_debug("%s returns %d\n", __func__, ret); 2211 return ret; 2212 } 2213 2214 len -= ret; 2215 data += ret; 2216 ++num; 2217 } 2218 } 2219 2220 static int __ffs_data_do_entity(enum ffs_entity_type type, 2221 u8 *valuep, struct usb_descriptor_header *desc, 2222 void *priv) 2223 { 2224 struct ffs_desc_helper *helper = priv; 2225 struct usb_endpoint_descriptor *d; 2226 2227 ENTER(); 2228 2229 switch (type) { 2230 case FFS_DESCRIPTOR: 2231 break; 2232 2233 case FFS_INTERFACE: 2234 /* 2235 * Interfaces are indexed from zero so if we 2236 * encountered interface "n" then there are at least 2237 * "n+1" interfaces. 2238 */ 2239 if (*valuep >= helper->interfaces_count) 2240 helper->interfaces_count = *valuep + 1; 2241 break; 2242 2243 case FFS_STRING: 2244 /* 2245 * Strings are indexed from 1 (0 is reserved 2246 * for languages list) 2247 */ 2248 if (*valuep > helper->ffs->strings_count) 2249 helper->ffs->strings_count = *valuep; 2250 break; 2251 2252 case FFS_ENDPOINT: 2253 d = (void *)desc; 2254 helper->eps_count++; 2255 if (helper->eps_count >= FFS_MAX_EPS_COUNT) 2256 return -EINVAL; 2257 /* Check if descriptors for any speed were already parsed */ 2258 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count) 2259 helper->ffs->eps_addrmap[helper->eps_count] = 2260 d->bEndpointAddress; 2261 else if (helper->ffs->eps_addrmap[helper->eps_count] != 2262 d->bEndpointAddress) 2263 return -EINVAL; 2264 break; 2265 } 2266 2267 return 0; 2268 } 2269 2270 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, 2271 struct usb_os_desc_header *desc) 2272 { 2273 u16 bcd_version = le16_to_cpu(desc->bcdVersion); 2274 u16 w_index = le16_to_cpu(desc->wIndex); 2275 2276 if (bcd_version != 1) { 2277 pr_vdebug("unsupported os descriptors version: %d", 2278 bcd_version); 2279 return -EINVAL; 2280 } 2281 switch (w_index) { 2282 case 0x4: 2283 *next_type = FFS_OS_DESC_EXT_COMPAT; 2284 break; 2285 case 0x5: 2286 *next_type = FFS_OS_DESC_EXT_PROP; 2287 break; 2288 default: 2289 pr_vdebug("unsupported os descriptor type: %d", w_index); 2290 return -EINVAL; 2291 } 2292 2293 return sizeof(*desc); 2294 } 2295 2296 /* 2297 * Process all extended compatibility/extended property descriptors 2298 * of a feature descriptor 2299 */ 2300 static int __must_check ffs_do_single_os_desc(char *data, unsigned len, 2301 enum ffs_os_desc_type type, 2302 u16 feature_count, 2303 ffs_os_desc_callback entity, 2304 void *priv, 2305 struct usb_os_desc_header *h) 2306 { 2307 int ret; 2308 const unsigned _len = len; 2309 2310 ENTER(); 2311 2312 /* loop over all ext compat/ext prop descriptors */ 2313 while (feature_count--) { 2314 ret = entity(type, h, data, len, priv); 2315 if (ret < 0) { 2316 pr_debug("bad OS descriptor, type: %d\n", type); 2317 return ret; 2318 } 2319 data += ret; 2320 len -= ret; 2321 } 2322 return _len - len; 2323 } 2324 2325 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ 2326 static int __must_check ffs_do_os_descs(unsigned count, 2327 char *data, unsigned len, 2328 ffs_os_desc_callback entity, void *priv) 2329 { 2330 const unsigned _len = len; 2331 unsigned long num = 0; 2332 2333 ENTER(); 2334 2335 for (num = 0; num < count; ++num) { 2336 int ret; 2337 enum ffs_os_desc_type type; 2338 u16 feature_count; 2339 struct usb_os_desc_header *desc = (void *)data; 2340 2341 if (len < sizeof(*desc)) 2342 return -EINVAL; 2343 2344 /* 2345 * Record "descriptor" entity. 2346 * Process dwLength, bcdVersion, wIndex, get b/wCount. 2347 * Move the data pointer to the beginning of extended 2348 * compatibilities proper or extended properties proper 2349 * portions of the data 2350 */ 2351 if (le32_to_cpu(desc->dwLength) > len) 2352 return -EINVAL; 2353 2354 ret = __ffs_do_os_desc_header(&type, desc); 2355 if (ret < 0) { 2356 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", 2357 num, ret); 2358 return ret; 2359 } 2360 /* 2361 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" 2362 */ 2363 feature_count = le16_to_cpu(desc->wCount); 2364 if (type == FFS_OS_DESC_EXT_COMPAT && 2365 (feature_count > 255 || desc->Reserved)) 2366 return -EINVAL; 2367 len -= ret; 2368 data += ret; 2369 2370 /* 2371 * Process all function/property descriptors 2372 * of this Feature Descriptor 2373 */ 2374 ret = ffs_do_single_os_desc(data, len, type, 2375 feature_count, entity, priv, desc); 2376 if (ret < 0) { 2377 pr_debug("%s returns %d\n", __func__, ret); 2378 return ret; 2379 } 2380 2381 len -= ret; 2382 data += ret; 2383 } 2384 return _len - len; 2385 } 2386 2387 /* 2388 * Validate contents of the buffer from userspace related to OS descriptors. 2389 */ 2390 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, 2391 struct usb_os_desc_header *h, void *data, 2392 unsigned len, void *priv) 2393 { 2394 struct ffs_data *ffs = priv; 2395 u8 length; 2396 2397 ENTER(); 2398 2399 switch (type) { 2400 case FFS_OS_DESC_EXT_COMPAT: { 2401 struct usb_ext_compat_desc *d = data; 2402 int i; 2403 2404 if (len < sizeof(*d) || 2405 d->bFirstInterfaceNumber >= ffs->interfaces_count) 2406 return -EINVAL; 2407 if (d->Reserved1 != 1) { 2408 /* 2409 * According to the spec, Reserved1 must be set to 1 2410 * but older kernels incorrectly rejected non-zero 2411 * values. We fix it here to avoid returning EINVAL 2412 * in response to values we used to accept. 2413 */ 2414 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n"); 2415 d->Reserved1 = 1; 2416 } 2417 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) 2418 if (d->Reserved2[i]) 2419 return -EINVAL; 2420 2421 length = sizeof(struct usb_ext_compat_desc); 2422 } 2423 break; 2424 case FFS_OS_DESC_EXT_PROP: { 2425 struct usb_ext_prop_desc *d = data; 2426 u32 type, pdl; 2427 u16 pnl; 2428 2429 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) 2430 return -EINVAL; 2431 length = le32_to_cpu(d->dwSize); 2432 if (len < length) 2433 return -EINVAL; 2434 type = le32_to_cpu(d->dwPropertyDataType); 2435 if (type < USB_EXT_PROP_UNICODE || 2436 type > USB_EXT_PROP_UNICODE_MULTI) { 2437 pr_vdebug("unsupported os descriptor property type: %d", 2438 type); 2439 return -EINVAL; 2440 } 2441 pnl = le16_to_cpu(d->wPropertyNameLength); 2442 if (length < 14 + pnl) { 2443 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n", 2444 length, pnl, type); 2445 return -EINVAL; 2446 } 2447 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl)); 2448 if (length != 14 + pnl + pdl) { 2449 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", 2450 length, pnl, pdl, type); 2451 return -EINVAL; 2452 } 2453 ++ffs->ms_os_descs_ext_prop_count; 2454 /* property name reported to the host as "WCHAR"s */ 2455 ffs->ms_os_descs_ext_prop_name_len += pnl * 2; 2456 ffs->ms_os_descs_ext_prop_data_len += pdl; 2457 } 2458 break; 2459 default: 2460 pr_vdebug("unknown descriptor: %d\n", type); 2461 return -EINVAL; 2462 } 2463 return length; 2464 } 2465 2466 static int __ffs_data_got_descs(struct ffs_data *ffs, 2467 char *const _data, size_t len) 2468 { 2469 char *data = _data, *raw_descs; 2470 unsigned os_descs_count = 0, counts[3], flags; 2471 int ret = -EINVAL, i; 2472 struct ffs_desc_helper helper; 2473 2474 ENTER(); 2475 2476 if (get_unaligned_le32(data + 4) != len) 2477 goto error; 2478 2479 switch (get_unaligned_le32(data)) { 2480 case FUNCTIONFS_DESCRIPTORS_MAGIC: 2481 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; 2482 data += 8; 2483 len -= 8; 2484 break; 2485 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: 2486 flags = get_unaligned_le32(data + 8); 2487 ffs->user_flags = flags; 2488 if (flags & ~(FUNCTIONFS_HAS_FS_DESC | 2489 FUNCTIONFS_HAS_HS_DESC | 2490 FUNCTIONFS_HAS_SS_DESC | 2491 FUNCTIONFS_HAS_MS_OS_DESC | 2492 FUNCTIONFS_VIRTUAL_ADDR | 2493 FUNCTIONFS_EVENTFD | 2494 FUNCTIONFS_ALL_CTRL_RECIP | 2495 FUNCTIONFS_CONFIG0_SETUP)) { 2496 ret = -ENOSYS; 2497 goto error; 2498 } 2499 data += 12; 2500 len -= 12; 2501 break; 2502 default: 2503 goto error; 2504 } 2505 2506 if (flags & FUNCTIONFS_EVENTFD) { 2507 if (len < 4) 2508 goto error; 2509 ffs->ffs_eventfd = 2510 eventfd_ctx_fdget((int)get_unaligned_le32(data)); 2511 if (IS_ERR(ffs->ffs_eventfd)) { 2512 ret = PTR_ERR(ffs->ffs_eventfd); 2513 ffs->ffs_eventfd = NULL; 2514 goto error; 2515 } 2516 data += 4; 2517 len -= 4; 2518 } 2519 2520 /* Read fs_count, hs_count and ss_count (if present) */ 2521 for (i = 0; i < 3; ++i) { 2522 if (!(flags & (1 << i))) { 2523 counts[i] = 0; 2524 } else if (len < 4) { 2525 goto error; 2526 } else { 2527 counts[i] = get_unaligned_le32(data); 2528 data += 4; 2529 len -= 4; 2530 } 2531 } 2532 if (flags & (1 << i)) { 2533 if (len < 4) { 2534 goto error; 2535 } 2536 os_descs_count = get_unaligned_le32(data); 2537 data += 4; 2538 len -= 4; 2539 } 2540 2541 /* Read descriptors */ 2542 raw_descs = data; 2543 helper.ffs = ffs; 2544 for (i = 0; i < 3; ++i) { 2545 if (!counts[i]) 2546 continue; 2547 helper.interfaces_count = 0; 2548 helper.eps_count = 0; 2549 ret = ffs_do_descs(counts[i], data, len, 2550 __ffs_data_do_entity, &helper); 2551 if (ret < 0) 2552 goto error; 2553 if (!ffs->eps_count && !ffs->interfaces_count) { 2554 ffs->eps_count = helper.eps_count; 2555 ffs->interfaces_count = helper.interfaces_count; 2556 } else { 2557 if (ffs->eps_count != helper.eps_count) { 2558 ret = -EINVAL; 2559 goto error; 2560 } 2561 if (ffs->interfaces_count != helper.interfaces_count) { 2562 ret = -EINVAL; 2563 goto error; 2564 } 2565 } 2566 data += ret; 2567 len -= ret; 2568 } 2569 if (os_descs_count) { 2570 ret = ffs_do_os_descs(os_descs_count, data, len, 2571 __ffs_data_do_os_desc, ffs); 2572 if (ret < 0) 2573 goto error; 2574 data += ret; 2575 len -= ret; 2576 } 2577 2578 if (raw_descs == data || len) { 2579 ret = -EINVAL; 2580 goto error; 2581 } 2582 2583 ffs->raw_descs_data = _data; 2584 ffs->raw_descs = raw_descs; 2585 ffs->raw_descs_length = data - raw_descs; 2586 ffs->fs_descs_count = counts[0]; 2587 ffs->hs_descs_count = counts[1]; 2588 ffs->ss_descs_count = counts[2]; 2589 ffs->ms_os_descs_count = os_descs_count; 2590 2591 return 0; 2592 2593 error: 2594 kfree(_data); 2595 return ret; 2596 } 2597 2598 static int __ffs_data_got_strings(struct ffs_data *ffs, 2599 char *const _data, size_t len) 2600 { 2601 u32 str_count, needed_count, lang_count; 2602 struct usb_gadget_strings **stringtabs, *t; 2603 const char *data = _data; 2604 struct usb_string *s; 2605 2606 ENTER(); 2607 2608 if (len < 16 || 2609 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || 2610 get_unaligned_le32(data + 4) != len) 2611 goto error; 2612 str_count = get_unaligned_le32(data + 8); 2613 lang_count = get_unaligned_le32(data + 12); 2614 2615 /* if one is zero the other must be zero */ 2616 if (!str_count != !lang_count) 2617 goto error; 2618 2619 /* Do we have at least as many strings as descriptors need? */ 2620 needed_count = ffs->strings_count; 2621 if (str_count < needed_count) 2622 goto error; 2623 2624 /* 2625 * If we don't need any strings just return and free all 2626 * memory. 2627 */ 2628 if (!needed_count) { 2629 kfree(_data); 2630 return 0; 2631 } 2632 2633 /* Allocate everything in one chunk so there's less maintenance. */ 2634 { 2635 unsigned i = 0; 2636 vla_group(d); 2637 vla_item(d, struct usb_gadget_strings *, stringtabs, 2638 lang_count + 1); 2639 vla_item(d, struct usb_gadget_strings, stringtab, lang_count); 2640 vla_item(d, struct usb_string, strings, 2641 lang_count*(needed_count+1)); 2642 2643 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); 2644 2645 if (!vlabuf) { 2646 kfree(_data); 2647 return -ENOMEM; 2648 } 2649 2650 /* Initialize the VLA pointers */ 2651 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2652 t = vla_ptr(vlabuf, d, stringtab); 2653 i = lang_count; 2654 do { 2655 *stringtabs++ = t++; 2656 } while (--i); 2657 *stringtabs = NULL; 2658 2659 /* stringtabs = vlabuf = d_stringtabs for later kfree */ 2660 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2661 t = vla_ptr(vlabuf, d, stringtab); 2662 s = vla_ptr(vlabuf, d, strings); 2663 } 2664 2665 /* For each language */ 2666 data += 16; 2667 len -= 16; 2668 2669 do { /* lang_count > 0 so we can use do-while */ 2670 unsigned needed = needed_count; 2671 u32 str_per_lang = str_count; 2672 2673 if (len < 3) 2674 goto error_free; 2675 t->language = get_unaligned_le16(data); 2676 t->strings = s; 2677 ++t; 2678 2679 data += 2; 2680 len -= 2; 2681 2682 /* For each string */ 2683 do { /* str_count > 0 so we can use do-while */ 2684 size_t length = strnlen(data, len); 2685 2686 if (length == len) 2687 goto error_free; 2688 2689 /* 2690 * User may provide more strings then we need, 2691 * if that's the case we simply ignore the 2692 * rest 2693 */ 2694 if (needed) { 2695 /* 2696 * s->id will be set while adding 2697 * function to configuration so for 2698 * now just leave garbage here. 2699 */ 2700 s->s = data; 2701 --needed; 2702 ++s; 2703 } 2704 2705 data += length + 1; 2706 len -= length + 1; 2707 } while (--str_per_lang); 2708 2709 s->id = 0; /* terminator */ 2710 s->s = NULL; 2711 ++s; 2712 2713 } while (--lang_count); 2714 2715 /* Some garbage left? */ 2716 if (len) 2717 goto error_free; 2718 2719 /* Done! */ 2720 ffs->stringtabs = stringtabs; 2721 ffs->raw_strings = _data; 2722 2723 return 0; 2724 2725 error_free: 2726 kfree(stringtabs); 2727 error: 2728 kfree(_data); 2729 return -EINVAL; 2730 } 2731 2732 2733 /* Events handling and management *******************************************/ 2734 2735 static void __ffs_event_add(struct ffs_data *ffs, 2736 enum usb_functionfs_event_type type) 2737 { 2738 enum usb_functionfs_event_type rem_type1, rem_type2 = type; 2739 int neg = 0; 2740 2741 /* 2742 * Abort any unhandled setup 2743 * 2744 * We do not need to worry about some cmpxchg() changing value 2745 * of ffs->setup_state without holding the lock because when 2746 * state is FFS_SETUP_PENDING cmpxchg() in several places in 2747 * the source does nothing. 2748 */ 2749 if (ffs->setup_state == FFS_SETUP_PENDING) 2750 ffs->setup_state = FFS_SETUP_CANCELLED; 2751 2752 /* 2753 * Logic of this function guarantees that there are at most four pending 2754 * evens on ffs->ev.types queue. This is important because the queue 2755 * has space for four elements only and __ffs_ep0_read_events function 2756 * depends on that limit as well. If more event types are added, those 2757 * limits have to be revisited or guaranteed to still hold. 2758 */ 2759 switch (type) { 2760 case FUNCTIONFS_RESUME: 2761 rem_type2 = FUNCTIONFS_SUSPEND; 2762 fallthrough; 2763 case FUNCTIONFS_SUSPEND: 2764 case FUNCTIONFS_SETUP: 2765 rem_type1 = type; 2766 /* Discard all similar events */ 2767 break; 2768 2769 case FUNCTIONFS_BIND: 2770 case FUNCTIONFS_UNBIND: 2771 case FUNCTIONFS_DISABLE: 2772 case FUNCTIONFS_ENABLE: 2773 /* Discard everything other then power management. */ 2774 rem_type1 = FUNCTIONFS_SUSPEND; 2775 rem_type2 = FUNCTIONFS_RESUME; 2776 neg = 1; 2777 break; 2778 2779 default: 2780 WARN(1, "%d: unknown event, this should not happen\n", type); 2781 return; 2782 } 2783 2784 { 2785 u8 *ev = ffs->ev.types, *out = ev; 2786 unsigned n = ffs->ev.count; 2787 for (; n; --n, ++ev) 2788 if ((*ev == rem_type1 || *ev == rem_type2) == neg) 2789 *out++ = *ev; 2790 else 2791 pr_vdebug("purging event %d\n", *ev); 2792 ffs->ev.count = out - ffs->ev.types; 2793 } 2794 2795 pr_vdebug("adding event %d\n", type); 2796 ffs->ev.types[ffs->ev.count++] = type; 2797 wake_up_locked(&ffs->ev.waitq); 2798 if (ffs->ffs_eventfd) 2799 eventfd_signal(ffs->ffs_eventfd, 1); 2800 } 2801 2802 static void ffs_event_add(struct ffs_data *ffs, 2803 enum usb_functionfs_event_type type) 2804 { 2805 unsigned long flags; 2806 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 2807 __ffs_event_add(ffs, type); 2808 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 2809 } 2810 2811 /* Bind/unbind USB function hooks *******************************************/ 2812 2813 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address) 2814 { 2815 int i; 2816 2817 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i) 2818 if (ffs->eps_addrmap[i] == endpoint_address) 2819 return i; 2820 return -ENOENT; 2821 } 2822 2823 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, 2824 struct usb_descriptor_header *desc, 2825 void *priv) 2826 { 2827 struct usb_endpoint_descriptor *ds = (void *)desc; 2828 struct ffs_function *func = priv; 2829 struct ffs_ep *ffs_ep; 2830 unsigned ep_desc_id; 2831 int idx; 2832 static const char *speed_names[] = { "full", "high", "super" }; 2833 2834 if (type != FFS_DESCRIPTOR) 2835 return 0; 2836 2837 /* 2838 * If ss_descriptors is not NULL, we are reading super speed 2839 * descriptors; if hs_descriptors is not NULL, we are reading high 2840 * speed descriptors; otherwise, we are reading full speed 2841 * descriptors. 2842 */ 2843 if (func->function.ss_descriptors) { 2844 ep_desc_id = 2; 2845 func->function.ss_descriptors[(long)valuep] = desc; 2846 } else if (func->function.hs_descriptors) { 2847 ep_desc_id = 1; 2848 func->function.hs_descriptors[(long)valuep] = desc; 2849 } else { 2850 ep_desc_id = 0; 2851 func->function.fs_descriptors[(long)valuep] = desc; 2852 } 2853 2854 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) 2855 return 0; 2856 2857 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1; 2858 if (idx < 0) 2859 return idx; 2860 2861 ffs_ep = func->eps + idx; 2862 2863 if (ffs_ep->descs[ep_desc_id]) { 2864 pr_err("two %sspeed descriptors for EP %d\n", 2865 speed_names[ep_desc_id], 2866 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); 2867 return -EINVAL; 2868 } 2869 ffs_ep->descs[ep_desc_id] = ds; 2870 2871 ffs_dump_mem(": Original ep desc", ds, ds->bLength); 2872 if (ffs_ep->ep) { 2873 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; 2874 if (!ds->wMaxPacketSize) 2875 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; 2876 } else { 2877 struct usb_request *req; 2878 struct usb_ep *ep; 2879 u8 bEndpointAddress; 2880 u16 wMaxPacketSize; 2881 2882 /* 2883 * We back up bEndpointAddress because autoconfig overwrites 2884 * it with physical endpoint address. 2885 */ 2886 bEndpointAddress = ds->bEndpointAddress; 2887 /* 2888 * We back up wMaxPacketSize because autoconfig treats 2889 * endpoint descriptors as if they were full speed. 2890 */ 2891 wMaxPacketSize = ds->wMaxPacketSize; 2892 pr_vdebug("autoconfig\n"); 2893 ep = usb_ep_autoconfig(func->gadget, ds); 2894 if (!ep) 2895 return -ENOTSUPP; 2896 ep->driver_data = func->eps + idx; 2897 2898 req = usb_ep_alloc_request(ep, GFP_KERNEL); 2899 if (!req) 2900 return -ENOMEM; 2901 2902 ffs_ep->ep = ep; 2903 ffs_ep->req = req; 2904 func->eps_revmap[ds->bEndpointAddress & 2905 USB_ENDPOINT_NUMBER_MASK] = idx + 1; 2906 /* 2907 * If we use virtual address mapping, we restore 2908 * original bEndpointAddress value. 2909 */ 2910 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 2911 ds->bEndpointAddress = bEndpointAddress; 2912 /* 2913 * Restore wMaxPacketSize which was potentially 2914 * overwritten by autoconfig. 2915 */ 2916 ds->wMaxPacketSize = wMaxPacketSize; 2917 } 2918 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); 2919 2920 return 0; 2921 } 2922 2923 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, 2924 struct usb_descriptor_header *desc, 2925 void *priv) 2926 { 2927 struct ffs_function *func = priv; 2928 unsigned idx; 2929 u8 newValue; 2930 2931 switch (type) { 2932 default: 2933 case FFS_DESCRIPTOR: 2934 /* Handled in previous pass by __ffs_func_bind_do_descs() */ 2935 return 0; 2936 2937 case FFS_INTERFACE: 2938 idx = *valuep; 2939 if (func->interfaces_nums[idx] < 0) { 2940 int id = usb_interface_id(func->conf, &func->function); 2941 if (id < 0) 2942 return id; 2943 func->interfaces_nums[idx] = id; 2944 } 2945 newValue = func->interfaces_nums[idx]; 2946 break; 2947 2948 case FFS_STRING: 2949 /* String' IDs are allocated when fsf_data is bound to cdev */ 2950 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; 2951 break; 2952 2953 case FFS_ENDPOINT: 2954 /* 2955 * USB_DT_ENDPOINT are handled in 2956 * __ffs_func_bind_do_descs(). 2957 */ 2958 if (desc->bDescriptorType == USB_DT_ENDPOINT) 2959 return 0; 2960 2961 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; 2962 if (!func->eps[idx].ep) 2963 return -EINVAL; 2964 2965 { 2966 struct usb_endpoint_descriptor **descs; 2967 descs = func->eps[idx].descs; 2968 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; 2969 } 2970 break; 2971 } 2972 2973 pr_vdebug("%02x -> %02x\n", *valuep, newValue); 2974 *valuep = newValue; 2975 return 0; 2976 } 2977 2978 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, 2979 struct usb_os_desc_header *h, void *data, 2980 unsigned len, void *priv) 2981 { 2982 struct ffs_function *func = priv; 2983 u8 length = 0; 2984 2985 switch (type) { 2986 case FFS_OS_DESC_EXT_COMPAT: { 2987 struct usb_ext_compat_desc *desc = data; 2988 struct usb_os_desc_table *t; 2989 2990 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; 2991 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; 2992 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID, 2993 ARRAY_SIZE(desc->CompatibleID) + 2994 ARRAY_SIZE(desc->SubCompatibleID)); 2995 length = sizeof(*desc); 2996 } 2997 break; 2998 case FFS_OS_DESC_EXT_PROP: { 2999 struct usb_ext_prop_desc *desc = data; 3000 struct usb_os_desc_table *t; 3001 struct usb_os_desc_ext_prop *ext_prop; 3002 char *ext_prop_name; 3003 char *ext_prop_data; 3004 3005 t = &func->function.os_desc_table[h->interface]; 3006 t->if_id = func->interfaces_nums[h->interface]; 3007 3008 ext_prop = func->ffs->ms_os_descs_ext_prop_avail; 3009 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); 3010 3011 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); 3012 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); 3013 ext_prop->data_len = le32_to_cpu(*(__le32 *) 3014 usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); 3015 length = ext_prop->name_len + ext_prop->data_len + 14; 3016 3017 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; 3018 func->ffs->ms_os_descs_ext_prop_name_avail += 3019 ext_prop->name_len; 3020 3021 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; 3022 func->ffs->ms_os_descs_ext_prop_data_avail += 3023 ext_prop->data_len; 3024 memcpy(ext_prop_data, 3025 usb_ext_prop_data_ptr(data, ext_prop->name_len), 3026 ext_prop->data_len); 3027 /* unicode data reported to the host as "WCHAR"s */ 3028 switch (ext_prop->type) { 3029 case USB_EXT_PROP_UNICODE: 3030 case USB_EXT_PROP_UNICODE_ENV: 3031 case USB_EXT_PROP_UNICODE_LINK: 3032 case USB_EXT_PROP_UNICODE_MULTI: 3033 ext_prop->data_len *= 2; 3034 break; 3035 } 3036 ext_prop->data = ext_prop_data; 3037 3038 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), 3039 ext_prop->name_len); 3040 /* property name reported to the host as "WCHAR"s */ 3041 ext_prop->name_len *= 2; 3042 ext_prop->name = ext_prop_name; 3043 3044 t->os_desc->ext_prop_len += 3045 ext_prop->name_len + ext_prop->data_len + 14; 3046 ++t->os_desc->ext_prop_count; 3047 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); 3048 } 3049 break; 3050 default: 3051 pr_vdebug("unknown descriptor: %d\n", type); 3052 } 3053 3054 return length; 3055 } 3056 3057 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, 3058 struct usb_configuration *c) 3059 { 3060 struct ffs_function *func = ffs_func_from_usb(f); 3061 struct f_fs_opts *ffs_opts = 3062 container_of(f->fi, struct f_fs_opts, func_inst); 3063 struct ffs_data *ffs_data; 3064 int ret; 3065 3066 ENTER(); 3067 3068 /* 3069 * Legacy gadget triggers binding in functionfs_ready_callback, 3070 * which already uses locking; taking the same lock here would 3071 * cause a deadlock. 3072 * 3073 * Configfs-enabled gadgets however do need ffs_dev_lock. 3074 */ 3075 if (!ffs_opts->no_configfs) 3076 ffs_dev_lock(); 3077 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; 3078 ffs_data = ffs_opts->dev->ffs_data; 3079 if (!ffs_opts->no_configfs) 3080 ffs_dev_unlock(); 3081 if (ret) 3082 return ERR_PTR(ret); 3083 3084 func->ffs = ffs_data; 3085 func->conf = c; 3086 func->gadget = c->cdev->gadget; 3087 3088 /* 3089 * in drivers/usb/gadget/configfs.c:configfs_composite_bind() 3090 * configurations are bound in sequence with list_for_each_entry, 3091 * in each configuration its functions are bound in sequence 3092 * with list_for_each_entry, so we assume no race condition 3093 * with regard to ffs_opts->bound access 3094 */ 3095 if (!ffs_opts->refcnt) { 3096 ret = functionfs_bind(func->ffs, c->cdev); 3097 if (ret) 3098 return ERR_PTR(ret); 3099 } 3100 ffs_opts->refcnt++; 3101 func->function.strings = func->ffs->stringtabs; 3102 3103 return ffs_opts; 3104 } 3105 3106 static int _ffs_func_bind(struct usb_configuration *c, 3107 struct usb_function *f) 3108 { 3109 struct ffs_function *func = ffs_func_from_usb(f); 3110 struct ffs_data *ffs = func->ffs; 3111 3112 const int full = !!func->ffs->fs_descs_count; 3113 const int high = !!func->ffs->hs_descs_count; 3114 const int super = !!func->ffs->ss_descs_count; 3115 3116 int fs_len, hs_len, ss_len, ret, i; 3117 struct ffs_ep *eps_ptr; 3118 3119 /* Make it a single chunk, less management later on */ 3120 vla_group(d); 3121 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); 3122 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, 3123 full ? ffs->fs_descs_count + 1 : 0); 3124 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, 3125 high ? ffs->hs_descs_count + 1 : 0); 3126 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, 3127 super ? ffs->ss_descs_count + 1 : 0); 3128 vla_item_with_sz(d, short, inums, ffs->interfaces_count); 3129 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, 3130 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3131 vla_item_with_sz(d, char[16], ext_compat, 3132 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3133 vla_item_with_sz(d, struct usb_os_desc, os_desc, 3134 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3135 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, 3136 ffs->ms_os_descs_ext_prop_count); 3137 vla_item_with_sz(d, char, ext_prop_name, 3138 ffs->ms_os_descs_ext_prop_name_len); 3139 vla_item_with_sz(d, char, ext_prop_data, 3140 ffs->ms_os_descs_ext_prop_data_len); 3141 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); 3142 char *vlabuf; 3143 3144 ENTER(); 3145 3146 /* Has descriptors only for speeds gadget does not support */ 3147 if (!(full | high | super)) 3148 return -ENOTSUPP; 3149 3150 /* Allocate a single chunk, less management later on */ 3151 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); 3152 if (!vlabuf) 3153 return -ENOMEM; 3154 3155 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); 3156 ffs->ms_os_descs_ext_prop_name_avail = 3157 vla_ptr(vlabuf, d, ext_prop_name); 3158 ffs->ms_os_descs_ext_prop_data_avail = 3159 vla_ptr(vlabuf, d, ext_prop_data); 3160 3161 /* Copy descriptors */ 3162 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, 3163 ffs->raw_descs_length); 3164 3165 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); 3166 eps_ptr = vla_ptr(vlabuf, d, eps); 3167 for (i = 0; i < ffs->eps_count; i++) 3168 eps_ptr[i].num = -1; 3169 3170 /* Save pointers 3171 * d_eps == vlabuf, func->eps used to kfree vlabuf later 3172 */ 3173 func->eps = vla_ptr(vlabuf, d, eps); 3174 func->interfaces_nums = vla_ptr(vlabuf, d, inums); 3175 3176 /* 3177 * Go through all the endpoint descriptors and allocate 3178 * endpoints first, so that later we can rewrite the endpoint 3179 * numbers without worrying that it may be described later on. 3180 */ 3181 if (full) { 3182 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); 3183 fs_len = ffs_do_descs(ffs->fs_descs_count, 3184 vla_ptr(vlabuf, d, raw_descs), 3185 d_raw_descs__sz, 3186 __ffs_func_bind_do_descs, func); 3187 if (fs_len < 0) { 3188 ret = fs_len; 3189 goto error; 3190 } 3191 } else { 3192 fs_len = 0; 3193 } 3194 3195 if (high) { 3196 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); 3197 hs_len = ffs_do_descs(ffs->hs_descs_count, 3198 vla_ptr(vlabuf, d, raw_descs) + fs_len, 3199 d_raw_descs__sz - fs_len, 3200 __ffs_func_bind_do_descs, func); 3201 if (hs_len < 0) { 3202 ret = hs_len; 3203 goto error; 3204 } 3205 } else { 3206 hs_len = 0; 3207 } 3208 3209 if (super) { 3210 func->function.ss_descriptors = func->function.ssp_descriptors = 3211 vla_ptr(vlabuf, d, ss_descs); 3212 ss_len = ffs_do_descs(ffs->ss_descs_count, 3213 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, 3214 d_raw_descs__sz - fs_len - hs_len, 3215 __ffs_func_bind_do_descs, func); 3216 if (ss_len < 0) { 3217 ret = ss_len; 3218 goto error; 3219 } 3220 } else { 3221 ss_len = 0; 3222 } 3223 3224 /* 3225 * Now handle interface numbers allocation and interface and 3226 * endpoint numbers rewriting. We can do that in one go 3227 * now. 3228 */ 3229 ret = ffs_do_descs(ffs->fs_descs_count + 3230 (high ? ffs->hs_descs_count : 0) + 3231 (super ? ffs->ss_descs_count : 0), 3232 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, 3233 __ffs_func_bind_do_nums, func); 3234 if (ret < 0) 3235 goto error; 3236 3237 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); 3238 if (c->cdev->use_os_string) { 3239 for (i = 0; i < ffs->interfaces_count; ++i) { 3240 struct usb_os_desc *desc; 3241 3242 desc = func->function.os_desc_table[i].os_desc = 3243 vla_ptr(vlabuf, d, os_desc) + 3244 i * sizeof(struct usb_os_desc); 3245 desc->ext_compat_id = 3246 vla_ptr(vlabuf, d, ext_compat) + i * 16; 3247 INIT_LIST_HEAD(&desc->ext_prop); 3248 } 3249 ret = ffs_do_os_descs(ffs->ms_os_descs_count, 3250 vla_ptr(vlabuf, d, raw_descs) + 3251 fs_len + hs_len + ss_len, 3252 d_raw_descs__sz - fs_len - hs_len - 3253 ss_len, 3254 __ffs_func_bind_do_os_desc, func); 3255 if (ret < 0) 3256 goto error; 3257 } 3258 func->function.os_desc_n = 3259 c->cdev->use_os_string ? ffs->interfaces_count : 0; 3260 3261 /* And we're done */ 3262 ffs_event_add(ffs, FUNCTIONFS_BIND); 3263 return 0; 3264 3265 error: 3266 /* XXX Do we need to release all claimed endpoints here? */ 3267 return ret; 3268 } 3269 3270 static int ffs_func_bind(struct usb_configuration *c, 3271 struct usb_function *f) 3272 { 3273 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); 3274 struct ffs_function *func = ffs_func_from_usb(f); 3275 int ret; 3276 3277 if (IS_ERR(ffs_opts)) 3278 return PTR_ERR(ffs_opts); 3279 3280 ret = _ffs_func_bind(c, f); 3281 if (ret && !--ffs_opts->refcnt) 3282 functionfs_unbind(func->ffs); 3283 3284 return ret; 3285 } 3286 3287 3288 /* Other USB function hooks *************************************************/ 3289 3290 static void ffs_reset_work(struct work_struct *work) 3291 { 3292 struct ffs_data *ffs = container_of(work, 3293 struct ffs_data, reset_work); 3294 ffs_data_reset(ffs); 3295 } 3296 3297 static int ffs_func_set_alt(struct usb_function *f, 3298 unsigned interface, unsigned alt) 3299 { 3300 struct ffs_function *func = ffs_func_from_usb(f); 3301 struct ffs_data *ffs = func->ffs; 3302 int ret = 0, intf; 3303 3304 if (alt != (unsigned)-1) { 3305 intf = ffs_func_revmap_intf(func, interface); 3306 if (intf < 0) 3307 return intf; 3308 } 3309 3310 if (ffs->func) 3311 ffs_func_eps_disable(ffs->func); 3312 3313 if (ffs->state == FFS_DEACTIVATED) { 3314 ffs->state = FFS_CLOSING; 3315 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3316 schedule_work(&ffs->reset_work); 3317 return -ENODEV; 3318 } 3319 3320 if (ffs->state != FFS_ACTIVE) 3321 return -ENODEV; 3322 3323 if (alt == (unsigned)-1) { 3324 ffs->func = NULL; 3325 ffs_event_add(ffs, FUNCTIONFS_DISABLE); 3326 return 0; 3327 } 3328 3329 ffs->func = func; 3330 ret = ffs_func_eps_enable(func); 3331 if (ret >= 0) 3332 ffs_event_add(ffs, FUNCTIONFS_ENABLE); 3333 return ret; 3334 } 3335 3336 static void ffs_func_disable(struct usb_function *f) 3337 { 3338 ffs_func_set_alt(f, 0, (unsigned)-1); 3339 } 3340 3341 static int ffs_func_setup(struct usb_function *f, 3342 const struct usb_ctrlrequest *creq) 3343 { 3344 struct ffs_function *func = ffs_func_from_usb(f); 3345 struct ffs_data *ffs = func->ffs; 3346 unsigned long flags; 3347 int ret; 3348 3349 ENTER(); 3350 3351 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); 3352 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); 3353 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); 3354 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); 3355 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); 3356 3357 /* 3358 * Most requests directed to interface go through here 3359 * (notable exceptions are set/get interface) so we need to 3360 * handle them. All other either handled by composite or 3361 * passed to usb_configuration->setup() (if one is set). No 3362 * matter, we will handle requests directed to endpoint here 3363 * as well (as it's straightforward). Other request recipient 3364 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP 3365 * is being used. 3366 */ 3367 if (ffs->state != FFS_ACTIVE) 3368 return -ENODEV; 3369 3370 switch (creq->bRequestType & USB_RECIP_MASK) { 3371 case USB_RECIP_INTERFACE: 3372 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); 3373 if (ret < 0) 3374 return ret; 3375 break; 3376 3377 case USB_RECIP_ENDPOINT: 3378 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); 3379 if (ret < 0) 3380 return ret; 3381 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3382 ret = func->ffs->eps_addrmap[ret]; 3383 break; 3384 3385 default: 3386 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP) 3387 ret = le16_to_cpu(creq->wIndex); 3388 else 3389 return -EOPNOTSUPP; 3390 } 3391 3392 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3393 ffs->ev.setup = *creq; 3394 ffs->ev.setup.wIndex = cpu_to_le16(ret); 3395 __ffs_event_add(ffs, FUNCTIONFS_SETUP); 3396 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3397 3398 return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0; 3399 } 3400 3401 static bool ffs_func_req_match(struct usb_function *f, 3402 const struct usb_ctrlrequest *creq, 3403 bool config0) 3404 { 3405 struct ffs_function *func = ffs_func_from_usb(f); 3406 3407 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP)) 3408 return false; 3409 3410 switch (creq->bRequestType & USB_RECIP_MASK) { 3411 case USB_RECIP_INTERFACE: 3412 return (ffs_func_revmap_intf(func, 3413 le16_to_cpu(creq->wIndex)) >= 0); 3414 case USB_RECIP_ENDPOINT: 3415 return (ffs_func_revmap_ep(func, 3416 le16_to_cpu(creq->wIndex)) >= 0); 3417 default: 3418 return (bool) (func->ffs->user_flags & 3419 FUNCTIONFS_ALL_CTRL_RECIP); 3420 } 3421 } 3422 3423 static void ffs_func_suspend(struct usb_function *f) 3424 { 3425 ENTER(); 3426 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); 3427 } 3428 3429 static void ffs_func_resume(struct usb_function *f) 3430 { 3431 ENTER(); 3432 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); 3433 } 3434 3435 3436 /* Endpoint and interface numbers reverse mapping ***************************/ 3437 3438 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) 3439 { 3440 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; 3441 return num ? num : -EDOM; 3442 } 3443 3444 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) 3445 { 3446 short *nums = func->interfaces_nums; 3447 unsigned count = func->ffs->interfaces_count; 3448 3449 for (; count; --count, ++nums) { 3450 if (*nums >= 0 && *nums == intf) 3451 return nums - func->interfaces_nums; 3452 } 3453 3454 return -EDOM; 3455 } 3456 3457 3458 /* Devices management *******************************************************/ 3459 3460 static LIST_HEAD(ffs_devices); 3461 3462 static struct ffs_dev *_ffs_do_find_dev(const char *name) 3463 { 3464 struct ffs_dev *dev; 3465 3466 if (!name) 3467 return NULL; 3468 3469 list_for_each_entry(dev, &ffs_devices, entry) { 3470 if (strcmp(dev->name, name) == 0) 3471 return dev; 3472 } 3473 3474 return NULL; 3475 } 3476 3477 /* 3478 * ffs_lock must be taken by the caller of this function 3479 */ 3480 static struct ffs_dev *_ffs_get_single_dev(void) 3481 { 3482 struct ffs_dev *dev; 3483 3484 if (list_is_singular(&ffs_devices)) { 3485 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); 3486 if (dev->single) 3487 return dev; 3488 } 3489 3490 return NULL; 3491 } 3492 3493 /* 3494 * ffs_lock must be taken by the caller of this function 3495 */ 3496 static struct ffs_dev *_ffs_find_dev(const char *name) 3497 { 3498 struct ffs_dev *dev; 3499 3500 dev = _ffs_get_single_dev(); 3501 if (dev) 3502 return dev; 3503 3504 return _ffs_do_find_dev(name); 3505 } 3506 3507 /* Configfs support *********************************************************/ 3508 3509 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) 3510 { 3511 return container_of(to_config_group(item), struct f_fs_opts, 3512 func_inst.group); 3513 } 3514 3515 static void ffs_attr_release(struct config_item *item) 3516 { 3517 struct f_fs_opts *opts = to_ffs_opts(item); 3518 3519 usb_put_function_instance(&opts->func_inst); 3520 } 3521 3522 static struct configfs_item_operations ffs_item_ops = { 3523 .release = ffs_attr_release, 3524 }; 3525 3526 static const struct config_item_type ffs_func_type = { 3527 .ct_item_ops = &ffs_item_ops, 3528 .ct_owner = THIS_MODULE, 3529 }; 3530 3531 3532 /* Function registration interface ******************************************/ 3533 3534 static void ffs_free_inst(struct usb_function_instance *f) 3535 { 3536 struct f_fs_opts *opts; 3537 3538 opts = to_f_fs_opts(f); 3539 ffs_release_dev(opts->dev); 3540 ffs_dev_lock(); 3541 _ffs_free_dev(opts->dev); 3542 ffs_dev_unlock(); 3543 kfree(opts); 3544 } 3545 3546 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) 3547 { 3548 if (strlen(name) >= sizeof_field(struct ffs_dev, name)) 3549 return -ENAMETOOLONG; 3550 return ffs_name_dev(to_f_fs_opts(fi)->dev, name); 3551 } 3552 3553 static struct usb_function_instance *ffs_alloc_inst(void) 3554 { 3555 struct f_fs_opts *opts; 3556 struct ffs_dev *dev; 3557 3558 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 3559 if (!opts) 3560 return ERR_PTR(-ENOMEM); 3561 3562 opts->func_inst.set_inst_name = ffs_set_inst_name; 3563 opts->func_inst.free_func_inst = ffs_free_inst; 3564 ffs_dev_lock(); 3565 dev = _ffs_alloc_dev(); 3566 ffs_dev_unlock(); 3567 if (IS_ERR(dev)) { 3568 kfree(opts); 3569 return ERR_CAST(dev); 3570 } 3571 opts->dev = dev; 3572 dev->opts = opts; 3573 3574 config_group_init_type_name(&opts->func_inst.group, "", 3575 &ffs_func_type); 3576 return &opts->func_inst; 3577 } 3578 3579 static void ffs_free(struct usb_function *f) 3580 { 3581 kfree(ffs_func_from_usb(f)); 3582 } 3583 3584 static void ffs_func_unbind(struct usb_configuration *c, 3585 struct usb_function *f) 3586 { 3587 struct ffs_function *func = ffs_func_from_usb(f); 3588 struct ffs_data *ffs = func->ffs; 3589 struct f_fs_opts *opts = 3590 container_of(f->fi, struct f_fs_opts, func_inst); 3591 struct ffs_ep *ep = func->eps; 3592 unsigned count = ffs->eps_count; 3593 unsigned long flags; 3594 3595 ENTER(); 3596 if (ffs->func == func) { 3597 ffs_func_eps_disable(func); 3598 ffs->func = NULL; 3599 } 3600 3601 /* Drain any pending AIO completions */ 3602 drain_workqueue(ffs->io_completion_wq); 3603 3604 if (!--opts->refcnt) 3605 functionfs_unbind(ffs); 3606 3607 /* cleanup after autoconfig */ 3608 spin_lock_irqsave(&func->ffs->eps_lock, flags); 3609 while (count--) { 3610 if (ep->ep && ep->req) 3611 usb_ep_free_request(ep->ep, ep->req); 3612 ep->req = NULL; 3613 ++ep; 3614 } 3615 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 3616 kfree(func->eps); 3617 func->eps = NULL; 3618 /* 3619 * eps, descriptors and interfaces_nums are allocated in the 3620 * same chunk so only one free is required. 3621 */ 3622 func->function.fs_descriptors = NULL; 3623 func->function.hs_descriptors = NULL; 3624 func->function.ss_descriptors = NULL; 3625 func->function.ssp_descriptors = NULL; 3626 func->interfaces_nums = NULL; 3627 3628 ffs_event_add(ffs, FUNCTIONFS_UNBIND); 3629 } 3630 3631 static struct usb_function *ffs_alloc(struct usb_function_instance *fi) 3632 { 3633 struct ffs_function *func; 3634 3635 ENTER(); 3636 3637 func = kzalloc(sizeof(*func), GFP_KERNEL); 3638 if (!func) 3639 return ERR_PTR(-ENOMEM); 3640 3641 func->function.name = "Function FS Gadget"; 3642 3643 func->function.bind = ffs_func_bind; 3644 func->function.unbind = ffs_func_unbind; 3645 func->function.set_alt = ffs_func_set_alt; 3646 func->function.disable = ffs_func_disable; 3647 func->function.setup = ffs_func_setup; 3648 func->function.req_match = ffs_func_req_match; 3649 func->function.suspend = ffs_func_suspend; 3650 func->function.resume = ffs_func_resume; 3651 func->function.free_func = ffs_free; 3652 3653 return &func->function; 3654 } 3655 3656 /* 3657 * ffs_lock must be taken by the caller of this function 3658 */ 3659 static struct ffs_dev *_ffs_alloc_dev(void) 3660 { 3661 struct ffs_dev *dev; 3662 int ret; 3663 3664 if (_ffs_get_single_dev()) 3665 return ERR_PTR(-EBUSY); 3666 3667 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3668 if (!dev) 3669 return ERR_PTR(-ENOMEM); 3670 3671 if (list_empty(&ffs_devices)) { 3672 ret = functionfs_init(); 3673 if (ret) { 3674 kfree(dev); 3675 return ERR_PTR(ret); 3676 } 3677 } 3678 3679 list_add(&dev->entry, &ffs_devices); 3680 3681 return dev; 3682 } 3683 3684 int ffs_name_dev(struct ffs_dev *dev, const char *name) 3685 { 3686 struct ffs_dev *existing; 3687 int ret = 0; 3688 3689 ffs_dev_lock(); 3690 3691 existing = _ffs_do_find_dev(name); 3692 if (!existing) 3693 strlcpy(dev->name, name, ARRAY_SIZE(dev->name)); 3694 else if (existing != dev) 3695 ret = -EBUSY; 3696 3697 ffs_dev_unlock(); 3698 3699 return ret; 3700 } 3701 EXPORT_SYMBOL_GPL(ffs_name_dev); 3702 3703 int ffs_single_dev(struct ffs_dev *dev) 3704 { 3705 int ret; 3706 3707 ret = 0; 3708 ffs_dev_lock(); 3709 3710 if (!list_is_singular(&ffs_devices)) 3711 ret = -EBUSY; 3712 else 3713 dev->single = true; 3714 3715 ffs_dev_unlock(); 3716 return ret; 3717 } 3718 EXPORT_SYMBOL_GPL(ffs_single_dev); 3719 3720 /* 3721 * ffs_lock must be taken by the caller of this function 3722 */ 3723 static void _ffs_free_dev(struct ffs_dev *dev) 3724 { 3725 list_del(&dev->entry); 3726 3727 kfree(dev); 3728 if (list_empty(&ffs_devices)) 3729 functionfs_cleanup(); 3730 } 3731 3732 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data) 3733 { 3734 int ret = 0; 3735 struct ffs_dev *ffs_dev; 3736 3737 ENTER(); 3738 ffs_dev_lock(); 3739 3740 ffs_dev = _ffs_find_dev(dev_name); 3741 if (!ffs_dev) { 3742 ret = -ENOENT; 3743 } else if (ffs_dev->mounted) { 3744 ret = -EBUSY; 3745 } else if (ffs_dev->ffs_acquire_dev_callback && 3746 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) { 3747 ret = -ENOENT; 3748 } else { 3749 ffs_dev->mounted = true; 3750 ffs_dev->ffs_data = ffs_data; 3751 ffs_data->private_data = ffs_dev; 3752 } 3753 3754 ffs_dev_unlock(); 3755 return ret; 3756 } 3757 3758 static void ffs_release_dev(struct ffs_dev *ffs_dev) 3759 { 3760 ENTER(); 3761 ffs_dev_lock(); 3762 3763 if (ffs_dev && ffs_dev->mounted) { 3764 ffs_dev->mounted = false; 3765 if (ffs_dev->ffs_data) { 3766 ffs_dev->ffs_data->private_data = NULL; 3767 ffs_dev->ffs_data = NULL; 3768 } 3769 3770 if (ffs_dev->ffs_release_dev_callback) 3771 ffs_dev->ffs_release_dev_callback(ffs_dev); 3772 } 3773 3774 ffs_dev_unlock(); 3775 } 3776 3777 static int ffs_ready(struct ffs_data *ffs) 3778 { 3779 struct ffs_dev *ffs_obj; 3780 int ret = 0; 3781 3782 ENTER(); 3783 ffs_dev_lock(); 3784 3785 ffs_obj = ffs->private_data; 3786 if (!ffs_obj) { 3787 ret = -EINVAL; 3788 goto done; 3789 } 3790 if (WARN_ON(ffs_obj->desc_ready)) { 3791 ret = -EBUSY; 3792 goto done; 3793 } 3794 3795 ffs_obj->desc_ready = true; 3796 3797 if (ffs_obj->ffs_ready_callback) { 3798 ret = ffs_obj->ffs_ready_callback(ffs); 3799 if (ret) 3800 goto done; 3801 } 3802 3803 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); 3804 done: 3805 ffs_dev_unlock(); 3806 return ret; 3807 } 3808 3809 static void ffs_closed(struct ffs_data *ffs) 3810 { 3811 struct ffs_dev *ffs_obj; 3812 struct f_fs_opts *opts; 3813 struct config_item *ci; 3814 3815 ENTER(); 3816 ffs_dev_lock(); 3817 3818 ffs_obj = ffs->private_data; 3819 if (!ffs_obj) 3820 goto done; 3821 3822 ffs_obj->desc_ready = false; 3823 3824 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) && 3825 ffs_obj->ffs_closed_callback) 3826 ffs_obj->ffs_closed_callback(ffs); 3827 3828 if (ffs_obj->opts) 3829 opts = ffs_obj->opts; 3830 else 3831 goto done; 3832 3833 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent 3834 || !kref_read(&opts->func_inst.group.cg_item.ci_kref)) 3835 goto done; 3836 3837 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent; 3838 ffs_dev_unlock(); 3839 3840 if (test_bit(FFS_FL_BOUND, &ffs->flags)) 3841 unregister_gadget_item(ci); 3842 return; 3843 done: 3844 ffs_dev_unlock(); 3845 } 3846 3847 /* Misc helper functions ****************************************************/ 3848 3849 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 3850 { 3851 return nonblock 3852 ? mutex_trylock(mutex) ? 0 : -EAGAIN 3853 : mutex_lock_interruptible(mutex); 3854 } 3855 3856 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 3857 { 3858 char *data; 3859 3860 if (!len) 3861 return NULL; 3862 3863 data = memdup_user(buf, len); 3864 if (IS_ERR(data)) 3865 return data; 3866 3867 pr_vdebug("Buffer from user space:\n"); 3868 ffs_dump_mem("", data, len); 3869 3870 return data; 3871 } 3872 3873 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); 3874 MODULE_LICENSE("GPL"); 3875 MODULE_AUTHOR("Michal Nazarewicz"); 3876