xref: /openbmc/linux/drivers/usb/gadget/function/f_fs.c (revision 3dc4b6fb)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * f_fs.c -- user mode file system API for USB composite function controllers
4  *
5  * Copyright (C) 2010 Samsung Electronics
6  * Author: Michal Nazarewicz <mina86@mina86.com>
7  *
8  * Based on inode.c (GadgetFS) which was:
9  * Copyright (C) 2003-2004 David Brownell
10  * Copyright (C) 2003 Agilent Technologies
11  */
12 
13 
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16 
17 #include <linux/blkdev.h>
18 #include <linux/pagemap.h>
19 #include <linux/export.h>
20 #include <linux/fs_parser.h>
21 #include <linux/hid.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/scatterlist.h>
25 #include <linux/sched/signal.h>
26 #include <linux/uio.h>
27 #include <linux/vmalloc.h>
28 #include <asm/unaligned.h>
29 
30 #include <linux/usb/ccid.h>
31 #include <linux/usb/composite.h>
32 #include <linux/usb/functionfs.h>
33 
34 #include <linux/aio.h>
35 #include <linux/mmu_context.h>
36 #include <linux/poll.h>
37 #include <linux/eventfd.h>
38 
39 #include "u_fs.h"
40 #include "u_f.h"
41 #include "u_os_desc.h"
42 #include "configfs.h"
43 
44 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
45 
46 /* Reference counter handling */
47 static void ffs_data_get(struct ffs_data *ffs);
48 static void ffs_data_put(struct ffs_data *ffs);
49 /* Creates new ffs_data object. */
50 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
51 	__attribute__((malloc));
52 
53 /* Opened counter handling. */
54 static void ffs_data_opened(struct ffs_data *ffs);
55 static void ffs_data_closed(struct ffs_data *ffs);
56 
57 /* Called with ffs->mutex held; take over ownership of data. */
58 static int __must_check
59 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
60 static int __must_check
61 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
62 
63 
64 /* The function structure ***************************************************/
65 
66 struct ffs_ep;
67 
68 struct ffs_function {
69 	struct usb_configuration	*conf;
70 	struct usb_gadget		*gadget;
71 	struct ffs_data			*ffs;
72 
73 	struct ffs_ep			*eps;
74 	u8				eps_revmap[16];
75 	short				*interfaces_nums;
76 
77 	struct usb_function		function;
78 };
79 
80 
81 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
82 {
83 	return container_of(f, struct ffs_function, function);
84 }
85 
86 
87 static inline enum ffs_setup_state
88 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
89 {
90 	return (enum ffs_setup_state)
91 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
92 }
93 
94 
95 static void ffs_func_eps_disable(struct ffs_function *func);
96 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
97 
98 static int ffs_func_bind(struct usb_configuration *,
99 			 struct usb_function *);
100 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
101 static void ffs_func_disable(struct usb_function *);
102 static int ffs_func_setup(struct usb_function *,
103 			  const struct usb_ctrlrequest *);
104 static bool ffs_func_req_match(struct usb_function *,
105 			       const struct usb_ctrlrequest *,
106 			       bool config0);
107 static void ffs_func_suspend(struct usb_function *);
108 static void ffs_func_resume(struct usb_function *);
109 
110 
111 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
112 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
113 
114 
115 /* The endpoints structures *************************************************/
116 
117 struct ffs_ep {
118 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
119 	struct usb_request		*req;	/* P: epfile->mutex */
120 
121 	/* [0]: full speed, [1]: high speed, [2]: super speed */
122 	struct usb_endpoint_descriptor	*descs[3];
123 
124 	u8				num;
125 
126 	int				status;	/* P: epfile->mutex */
127 };
128 
129 struct ffs_epfile {
130 	/* Protects ep->ep and ep->req. */
131 	struct mutex			mutex;
132 
133 	struct ffs_data			*ffs;
134 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
135 
136 	struct dentry			*dentry;
137 
138 	/*
139 	 * Buffer for holding data from partial reads which may happen since
140 	 * we’re rounding user read requests to a multiple of a max packet size.
141 	 *
142 	 * The pointer is initialised with NULL value and may be set by
143 	 * __ffs_epfile_read_data function to point to a temporary buffer.
144 	 *
145 	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
146 	 * data from said buffer and eventually free it.  Importantly, while the
147 	 * function is using the buffer, it sets the pointer to NULL.  This is
148 	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
149 	 * can never run concurrently (they are synchronised by epfile->mutex)
150 	 * so the latter will not assign a new value to the pointer.
151 	 *
152 	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
153 	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
154 	 * value is crux of the synchronisation between ffs_func_eps_disable and
155 	 * __ffs_epfile_read_data.
156 	 *
157 	 * Once __ffs_epfile_read_data is about to finish it will try to set the
158 	 * pointer back to its old value (as described above), but seeing as the
159 	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
160 	 * the buffer.
161 	 *
162 	 * == State transitions ==
163 	 *
164 	 * • ptr == NULL:  (initial state)
165 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
166 	 *   ◦ __ffs_epfile_read_buffered:    nop
167 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
168 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
169 	 * • ptr == DROP:
170 	 *   ◦ __ffs_epfile_read_buffer_free: nop
171 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
172 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
173 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
174 	 * • ptr == buf:
175 	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
176 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
177 	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
178 	 *                                    is always called first
179 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
180 	 * • ptr == NULL and reading:
181 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
182 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
183 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
184 	 *   ◦ reading finishes and …
185 	 *     … all data read:               free buf, go to ptr == NULL
186 	 *     … otherwise:                   go to ptr == buf and reading
187 	 * • ptr == DROP and reading:
188 	 *   ◦ __ffs_epfile_read_buffer_free: nop
189 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
190 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
191 	 *   ◦ reading finishes:              free buf, go to ptr == DROP
192 	 */
193 	struct ffs_buffer		*read_buffer;
194 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
195 
196 	char				name[5];
197 
198 	unsigned char			in;	/* P: ffs->eps_lock */
199 	unsigned char			isoc;	/* P: ffs->eps_lock */
200 
201 	unsigned char			_pad;
202 };
203 
204 struct ffs_buffer {
205 	size_t length;
206 	char *data;
207 	char storage[];
208 };
209 
210 /*  ffs_io_data structure ***************************************************/
211 
212 struct ffs_io_data {
213 	bool aio;
214 	bool read;
215 
216 	struct kiocb *kiocb;
217 	struct iov_iter data;
218 	const void *to_free;
219 	char *buf;
220 
221 	struct mm_struct *mm;
222 	struct work_struct work;
223 
224 	struct usb_ep *ep;
225 	struct usb_request *req;
226 	struct sg_table sgt;
227 	bool use_sg;
228 
229 	struct ffs_data *ffs;
230 };
231 
232 struct ffs_desc_helper {
233 	struct ffs_data *ffs;
234 	unsigned interfaces_count;
235 	unsigned eps_count;
236 };
237 
238 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
239 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
240 
241 static struct dentry *
242 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
243 		   const struct file_operations *fops);
244 
245 /* Devices management *******************************************************/
246 
247 DEFINE_MUTEX(ffs_lock);
248 EXPORT_SYMBOL_GPL(ffs_lock);
249 
250 static struct ffs_dev *_ffs_find_dev(const char *name);
251 static struct ffs_dev *_ffs_alloc_dev(void);
252 static void _ffs_free_dev(struct ffs_dev *dev);
253 static void *ffs_acquire_dev(const char *dev_name);
254 static void ffs_release_dev(struct ffs_data *ffs_data);
255 static int ffs_ready(struct ffs_data *ffs);
256 static void ffs_closed(struct ffs_data *ffs);
257 
258 /* Misc helper functions ****************************************************/
259 
260 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
261 	__attribute__((warn_unused_result, nonnull));
262 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
263 	__attribute__((warn_unused_result, nonnull));
264 
265 
266 /* Control file aka ep0 *****************************************************/
267 
268 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
269 {
270 	struct ffs_data *ffs = req->context;
271 
272 	complete(&ffs->ep0req_completion);
273 }
274 
275 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
276 	__releases(&ffs->ev.waitq.lock)
277 {
278 	struct usb_request *req = ffs->ep0req;
279 	int ret;
280 
281 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
282 
283 	spin_unlock_irq(&ffs->ev.waitq.lock);
284 
285 	req->buf      = data;
286 	req->length   = len;
287 
288 	/*
289 	 * UDC layer requires to provide a buffer even for ZLP, but should
290 	 * not use it at all. Let's provide some poisoned pointer to catch
291 	 * possible bug in the driver.
292 	 */
293 	if (req->buf == NULL)
294 		req->buf = (void *)0xDEADBABE;
295 
296 	reinit_completion(&ffs->ep0req_completion);
297 
298 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
299 	if (unlikely(ret < 0))
300 		return ret;
301 
302 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
303 	if (unlikely(ret)) {
304 		usb_ep_dequeue(ffs->gadget->ep0, req);
305 		return -EINTR;
306 	}
307 
308 	ffs->setup_state = FFS_NO_SETUP;
309 	return req->status ? req->status : req->actual;
310 }
311 
312 static int __ffs_ep0_stall(struct ffs_data *ffs)
313 {
314 	if (ffs->ev.can_stall) {
315 		pr_vdebug("ep0 stall\n");
316 		usb_ep_set_halt(ffs->gadget->ep0);
317 		ffs->setup_state = FFS_NO_SETUP;
318 		return -EL2HLT;
319 	} else {
320 		pr_debug("bogus ep0 stall!\n");
321 		return -ESRCH;
322 	}
323 }
324 
325 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
326 			     size_t len, loff_t *ptr)
327 {
328 	struct ffs_data *ffs = file->private_data;
329 	ssize_t ret;
330 	char *data;
331 
332 	ENTER();
333 
334 	/* Fast check if setup was canceled */
335 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
336 		return -EIDRM;
337 
338 	/* Acquire mutex */
339 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
340 	if (unlikely(ret < 0))
341 		return ret;
342 
343 	/* Check state */
344 	switch (ffs->state) {
345 	case FFS_READ_DESCRIPTORS:
346 	case FFS_READ_STRINGS:
347 		/* Copy data */
348 		if (unlikely(len < 16)) {
349 			ret = -EINVAL;
350 			break;
351 		}
352 
353 		data = ffs_prepare_buffer(buf, len);
354 		if (IS_ERR(data)) {
355 			ret = PTR_ERR(data);
356 			break;
357 		}
358 
359 		/* Handle data */
360 		if (ffs->state == FFS_READ_DESCRIPTORS) {
361 			pr_info("read descriptors\n");
362 			ret = __ffs_data_got_descs(ffs, data, len);
363 			if (unlikely(ret < 0))
364 				break;
365 
366 			ffs->state = FFS_READ_STRINGS;
367 			ret = len;
368 		} else {
369 			pr_info("read strings\n");
370 			ret = __ffs_data_got_strings(ffs, data, len);
371 			if (unlikely(ret < 0))
372 				break;
373 
374 			ret = ffs_epfiles_create(ffs);
375 			if (unlikely(ret)) {
376 				ffs->state = FFS_CLOSING;
377 				break;
378 			}
379 
380 			ffs->state = FFS_ACTIVE;
381 			mutex_unlock(&ffs->mutex);
382 
383 			ret = ffs_ready(ffs);
384 			if (unlikely(ret < 0)) {
385 				ffs->state = FFS_CLOSING;
386 				return ret;
387 			}
388 
389 			return len;
390 		}
391 		break;
392 
393 	case FFS_ACTIVE:
394 		data = NULL;
395 		/*
396 		 * We're called from user space, we can use _irq
397 		 * rather then _irqsave
398 		 */
399 		spin_lock_irq(&ffs->ev.waitq.lock);
400 		switch (ffs_setup_state_clear_cancelled(ffs)) {
401 		case FFS_SETUP_CANCELLED:
402 			ret = -EIDRM;
403 			goto done_spin;
404 
405 		case FFS_NO_SETUP:
406 			ret = -ESRCH;
407 			goto done_spin;
408 
409 		case FFS_SETUP_PENDING:
410 			break;
411 		}
412 
413 		/* FFS_SETUP_PENDING */
414 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
415 			spin_unlock_irq(&ffs->ev.waitq.lock);
416 			ret = __ffs_ep0_stall(ffs);
417 			break;
418 		}
419 
420 		/* FFS_SETUP_PENDING and not stall */
421 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
422 
423 		spin_unlock_irq(&ffs->ev.waitq.lock);
424 
425 		data = ffs_prepare_buffer(buf, len);
426 		if (IS_ERR(data)) {
427 			ret = PTR_ERR(data);
428 			break;
429 		}
430 
431 		spin_lock_irq(&ffs->ev.waitq.lock);
432 
433 		/*
434 		 * We are guaranteed to be still in FFS_ACTIVE state
435 		 * but the state of setup could have changed from
436 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
437 		 * to check for that.  If that happened we copied data
438 		 * from user space in vain but it's unlikely.
439 		 *
440 		 * For sure we are not in FFS_NO_SETUP since this is
441 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
442 		 * transition can be performed and it's protected by
443 		 * mutex.
444 		 */
445 		if (ffs_setup_state_clear_cancelled(ffs) ==
446 		    FFS_SETUP_CANCELLED) {
447 			ret = -EIDRM;
448 done_spin:
449 			spin_unlock_irq(&ffs->ev.waitq.lock);
450 		} else {
451 			/* unlocks spinlock */
452 			ret = __ffs_ep0_queue_wait(ffs, data, len);
453 		}
454 		kfree(data);
455 		break;
456 
457 	default:
458 		ret = -EBADFD;
459 		break;
460 	}
461 
462 	mutex_unlock(&ffs->mutex);
463 	return ret;
464 }
465 
466 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
467 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
468 				     size_t n)
469 	__releases(&ffs->ev.waitq.lock)
470 {
471 	/*
472 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
473 	 * size of ffs->ev.types array (which is four) so that's how much space
474 	 * we reserve.
475 	 */
476 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
477 	const size_t size = n * sizeof *events;
478 	unsigned i = 0;
479 
480 	memset(events, 0, size);
481 
482 	do {
483 		events[i].type = ffs->ev.types[i];
484 		if (events[i].type == FUNCTIONFS_SETUP) {
485 			events[i].u.setup = ffs->ev.setup;
486 			ffs->setup_state = FFS_SETUP_PENDING;
487 		}
488 	} while (++i < n);
489 
490 	ffs->ev.count -= n;
491 	if (ffs->ev.count)
492 		memmove(ffs->ev.types, ffs->ev.types + n,
493 			ffs->ev.count * sizeof *ffs->ev.types);
494 
495 	spin_unlock_irq(&ffs->ev.waitq.lock);
496 	mutex_unlock(&ffs->mutex);
497 
498 	return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
499 }
500 
501 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
502 			    size_t len, loff_t *ptr)
503 {
504 	struct ffs_data *ffs = file->private_data;
505 	char *data = NULL;
506 	size_t n;
507 	int ret;
508 
509 	ENTER();
510 
511 	/* Fast check if setup was canceled */
512 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
513 		return -EIDRM;
514 
515 	/* Acquire mutex */
516 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
517 	if (unlikely(ret < 0))
518 		return ret;
519 
520 	/* Check state */
521 	if (ffs->state != FFS_ACTIVE) {
522 		ret = -EBADFD;
523 		goto done_mutex;
524 	}
525 
526 	/*
527 	 * We're called from user space, we can use _irq rather then
528 	 * _irqsave
529 	 */
530 	spin_lock_irq(&ffs->ev.waitq.lock);
531 
532 	switch (ffs_setup_state_clear_cancelled(ffs)) {
533 	case FFS_SETUP_CANCELLED:
534 		ret = -EIDRM;
535 		break;
536 
537 	case FFS_NO_SETUP:
538 		n = len / sizeof(struct usb_functionfs_event);
539 		if (unlikely(!n)) {
540 			ret = -EINVAL;
541 			break;
542 		}
543 
544 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
545 			ret = -EAGAIN;
546 			break;
547 		}
548 
549 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
550 							ffs->ev.count)) {
551 			ret = -EINTR;
552 			break;
553 		}
554 
555 		/* unlocks spinlock */
556 		return __ffs_ep0_read_events(ffs, buf,
557 					     min(n, (size_t)ffs->ev.count));
558 
559 	case FFS_SETUP_PENDING:
560 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
561 			spin_unlock_irq(&ffs->ev.waitq.lock);
562 			ret = __ffs_ep0_stall(ffs);
563 			goto done_mutex;
564 		}
565 
566 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
567 
568 		spin_unlock_irq(&ffs->ev.waitq.lock);
569 
570 		if (likely(len)) {
571 			data = kmalloc(len, GFP_KERNEL);
572 			if (unlikely(!data)) {
573 				ret = -ENOMEM;
574 				goto done_mutex;
575 			}
576 		}
577 
578 		spin_lock_irq(&ffs->ev.waitq.lock);
579 
580 		/* See ffs_ep0_write() */
581 		if (ffs_setup_state_clear_cancelled(ffs) ==
582 		    FFS_SETUP_CANCELLED) {
583 			ret = -EIDRM;
584 			break;
585 		}
586 
587 		/* unlocks spinlock */
588 		ret = __ffs_ep0_queue_wait(ffs, data, len);
589 		if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
590 			ret = -EFAULT;
591 		goto done_mutex;
592 
593 	default:
594 		ret = -EBADFD;
595 		break;
596 	}
597 
598 	spin_unlock_irq(&ffs->ev.waitq.lock);
599 done_mutex:
600 	mutex_unlock(&ffs->mutex);
601 	kfree(data);
602 	return ret;
603 }
604 
605 static int ffs_ep0_open(struct inode *inode, struct file *file)
606 {
607 	struct ffs_data *ffs = inode->i_private;
608 
609 	ENTER();
610 
611 	if (unlikely(ffs->state == FFS_CLOSING))
612 		return -EBUSY;
613 
614 	file->private_data = ffs;
615 	ffs_data_opened(ffs);
616 
617 	return 0;
618 }
619 
620 static int ffs_ep0_release(struct inode *inode, struct file *file)
621 {
622 	struct ffs_data *ffs = file->private_data;
623 
624 	ENTER();
625 
626 	ffs_data_closed(ffs);
627 
628 	return 0;
629 }
630 
631 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
632 {
633 	struct ffs_data *ffs = file->private_data;
634 	struct usb_gadget *gadget = ffs->gadget;
635 	long ret;
636 
637 	ENTER();
638 
639 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
640 		struct ffs_function *func = ffs->func;
641 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
642 	} else if (gadget && gadget->ops->ioctl) {
643 		ret = gadget->ops->ioctl(gadget, code, value);
644 	} else {
645 		ret = -ENOTTY;
646 	}
647 
648 	return ret;
649 }
650 
651 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
652 {
653 	struct ffs_data *ffs = file->private_data;
654 	__poll_t mask = EPOLLWRNORM;
655 	int ret;
656 
657 	poll_wait(file, &ffs->ev.waitq, wait);
658 
659 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
660 	if (unlikely(ret < 0))
661 		return mask;
662 
663 	switch (ffs->state) {
664 	case FFS_READ_DESCRIPTORS:
665 	case FFS_READ_STRINGS:
666 		mask |= EPOLLOUT;
667 		break;
668 
669 	case FFS_ACTIVE:
670 		switch (ffs->setup_state) {
671 		case FFS_NO_SETUP:
672 			if (ffs->ev.count)
673 				mask |= EPOLLIN;
674 			break;
675 
676 		case FFS_SETUP_PENDING:
677 		case FFS_SETUP_CANCELLED:
678 			mask |= (EPOLLIN | EPOLLOUT);
679 			break;
680 		}
681 	case FFS_CLOSING:
682 		break;
683 	case FFS_DEACTIVATED:
684 		break;
685 	}
686 
687 	mutex_unlock(&ffs->mutex);
688 
689 	return mask;
690 }
691 
692 static const struct file_operations ffs_ep0_operations = {
693 	.llseek =	no_llseek,
694 
695 	.open =		ffs_ep0_open,
696 	.write =	ffs_ep0_write,
697 	.read =		ffs_ep0_read,
698 	.release =	ffs_ep0_release,
699 	.unlocked_ioctl =	ffs_ep0_ioctl,
700 	.poll =		ffs_ep0_poll,
701 };
702 
703 
704 /* "Normal" endpoints operations ********************************************/
705 
706 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
707 {
708 	ENTER();
709 	if (likely(req->context)) {
710 		struct ffs_ep *ep = _ep->driver_data;
711 		ep->status = req->status ? req->status : req->actual;
712 		complete(req->context);
713 	}
714 }
715 
716 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
717 {
718 	ssize_t ret = copy_to_iter(data, data_len, iter);
719 	if (likely(ret == data_len))
720 		return ret;
721 
722 	if (unlikely(iov_iter_count(iter)))
723 		return -EFAULT;
724 
725 	/*
726 	 * Dear user space developer!
727 	 *
728 	 * TL;DR: To stop getting below error message in your kernel log, change
729 	 * user space code using functionfs to align read buffers to a max
730 	 * packet size.
731 	 *
732 	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
733 	 * packet size.  When unaligned buffer is passed to functionfs, it
734 	 * internally uses a larger, aligned buffer so that such UDCs are happy.
735 	 *
736 	 * Unfortunately, this means that host may send more data than was
737 	 * requested in read(2) system call.  f_fs doesn’t know what to do with
738 	 * that excess data so it simply drops it.
739 	 *
740 	 * Was the buffer aligned in the first place, no such problem would
741 	 * happen.
742 	 *
743 	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
744 	 * by splitting a request into multiple parts.  This splitting may still
745 	 * be a problem though so it’s likely best to align the buffer
746 	 * regardless of it being AIO or not..
747 	 *
748 	 * This only affects OUT endpoints, i.e. reading data with a read(2),
749 	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
750 	 * affected.
751 	 */
752 	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
753 	       "Align read buffer size to max packet size to avoid the problem.\n",
754 	       data_len, ret);
755 
756 	return ret;
757 }
758 
759 /*
760  * allocate a virtually contiguous buffer and create a scatterlist describing it
761  * @sg_table	- pointer to a place to be filled with sg_table contents
762  * @size	- required buffer size
763  */
764 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
765 {
766 	struct page **pages;
767 	void *vaddr, *ptr;
768 	unsigned int n_pages;
769 	int i;
770 
771 	vaddr = vmalloc(sz);
772 	if (!vaddr)
773 		return NULL;
774 
775 	n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
776 	pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
777 	if (!pages) {
778 		vfree(vaddr);
779 
780 		return NULL;
781 	}
782 	for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
783 		pages[i] = vmalloc_to_page(ptr);
784 
785 	if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
786 		kvfree(pages);
787 		vfree(vaddr);
788 
789 		return NULL;
790 	}
791 	kvfree(pages);
792 
793 	return vaddr;
794 }
795 
796 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
797 	size_t data_len)
798 {
799 	if (io_data->use_sg)
800 		return ffs_build_sg_list(&io_data->sgt, data_len);
801 
802 	return kmalloc(data_len, GFP_KERNEL);
803 }
804 
805 static inline void ffs_free_buffer(struct ffs_io_data *io_data)
806 {
807 	if (!io_data->buf)
808 		return;
809 
810 	if (io_data->use_sg) {
811 		sg_free_table(&io_data->sgt);
812 		vfree(io_data->buf);
813 	} else {
814 		kfree(io_data->buf);
815 	}
816 }
817 
818 static void ffs_user_copy_worker(struct work_struct *work)
819 {
820 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
821 						   work);
822 	int ret = io_data->req->status ? io_data->req->status :
823 					 io_data->req->actual;
824 	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
825 
826 	if (io_data->read && ret > 0) {
827 		mm_segment_t oldfs = get_fs();
828 
829 		set_fs(USER_DS);
830 		use_mm(io_data->mm);
831 		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
832 		unuse_mm(io_data->mm);
833 		set_fs(oldfs);
834 	}
835 
836 	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
837 
838 	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
839 		eventfd_signal(io_data->ffs->ffs_eventfd, 1);
840 
841 	usb_ep_free_request(io_data->ep, io_data->req);
842 
843 	if (io_data->read)
844 		kfree(io_data->to_free);
845 	ffs_free_buffer(io_data);
846 	kfree(io_data);
847 }
848 
849 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
850 					 struct usb_request *req)
851 {
852 	struct ffs_io_data *io_data = req->context;
853 	struct ffs_data *ffs = io_data->ffs;
854 
855 	ENTER();
856 
857 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
858 	queue_work(ffs->io_completion_wq, &io_data->work);
859 }
860 
861 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
862 {
863 	/*
864 	 * See comment in struct ffs_epfile for full read_buffer pointer
865 	 * synchronisation story.
866 	 */
867 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
868 	if (buf && buf != READ_BUFFER_DROP)
869 		kfree(buf);
870 }
871 
872 /* Assumes epfile->mutex is held. */
873 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
874 					  struct iov_iter *iter)
875 {
876 	/*
877 	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
878 	 * the buffer while we are using it.  See comment in struct ffs_epfile
879 	 * for full read_buffer pointer synchronisation story.
880 	 */
881 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
882 	ssize_t ret;
883 	if (!buf || buf == READ_BUFFER_DROP)
884 		return 0;
885 
886 	ret = copy_to_iter(buf->data, buf->length, iter);
887 	if (buf->length == ret) {
888 		kfree(buf);
889 		return ret;
890 	}
891 
892 	if (unlikely(iov_iter_count(iter))) {
893 		ret = -EFAULT;
894 	} else {
895 		buf->length -= ret;
896 		buf->data += ret;
897 	}
898 
899 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
900 		kfree(buf);
901 
902 	return ret;
903 }
904 
905 /* Assumes epfile->mutex is held. */
906 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
907 				      void *data, int data_len,
908 				      struct iov_iter *iter)
909 {
910 	struct ffs_buffer *buf;
911 
912 	ssize_t ret = copy_to_iter(data, data_len, iter);
913 	if (likely(data_len == ret))
914 		return ret;
915 
916 	if (unlikely(iov_iter_count(iter)))
917 		return -EFAULT;
918 
919 	/* See ffs_copy_to_iter for more context. */
920 	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
921 		data_len, ret);
922 
923 	data_len -= ret;
924 	buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
925 	if (!buf)
926 		return -ENOMEM;
927 	buf->length = data_len;
928 	buf->data = buf->storage;
929 	memcpy(buf->storage, data + ret, data_len);
930 
931 	/*
932 	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
933 	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
934 	 * in struct ffs_epfile for full read_buffer pointer synchronisation
935 	 * story.
936 	 */
937 	if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
938 		kfree(buf);
939 
940 	return ret;
941 }
942 
943 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
944 {
945 	struct ffs_epfile *epfile = file->private_data;
946 	struct usb_request *req;
947 	struct ffs_ep *ep;
948 	char *data = NULL;
949 	ssize_t ret, data_len = -EINVAL;
950 	int halt;
951 
952 	/* Are we still active? */
953 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
954 		return -ENODEV;
955 
956 	/* Wait for endpoint to be enabled */
957 	ep = epfile->ep;
958 	if (!ep) {
959 		if (file->f_flags & O_NONBLOCK)
960 			return -EAGAIN;
961 
962 		ret = wait_event_interruptible(
963 				epfile->ffs->wait, (ep = epfile->ep));
964 		if (ret)
965 			return -EINTR;
966 	}
967 
968 	/* Do we halt? */
969 	halt = (!io_data->read == !epfile->in);
970 	if (halt && epfile->isoc)
971 		return -EINVAL;
972 
973 	/* We will be using request and read_buffer */
974 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
975 	if (unlikely(ret))
976 		goto error;
977 
978 	/* Allocate & copy */
979 	if (!halt) {
980 		struct usb_gadget *gadget;
981 
982 		/*
983 		 * Do we have buffered data from previous partial read?  Check
984 		 * that for synchronous case only because we do not have
985 		 * facility to ‘wake up’ a pending asynchronous read and push
986 		 * buffered data to it which we would need to make things behave
987 		 * consistently.
988 		 */
989 		if (!io_data->aio && io_data->read) {
990 			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
991 			if (ret)
992 				goto error_mutex;
993 		}
994 
995 		/*
996 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
997 		 * before the waiting completes, so do not assign to 'gadget'
998 		 * earlier
999 		 */
1000 		gadget = epfile->ffs->gadget;
1001 
1002 		spin_lock_irq(&epfile->ffs->eps_lock);
1003 		/* In the meantime, endpoint got disabled or changed. */
1004 		if (epfile->ep != ep) {
1005 			ret = -ESHUTDOWN;
1006 			goto error_lock;
1007 		}
1008 		data_len = iov_iter_count(&io_data->data);
1009 		/*
1010 		 * Controller may require buffer size to be aligned to
1011 		 * maxpacketsize of an out endpoint.
1012 		 */
1013 		if (io_data->read)
1014 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1015 
1016 		io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1017 		spin_unlock_irq(&epfile->ffs->eps_lock);
1018 
1019 		data = ffs_alloc_buffer(io_data, data_len);
1020 		if (unlikely(!data)) {
1021 			ret = -ENOMEM;
1022 			goto error_mutex;
1023 		}
1024 		if (!io_data->read &&
1025 		    !copy_from_iter_full(data, data_len, &io_data->data)) {
1026 			ret = -EFAULT;
1027 			goto error_mutex;
1028 		}
1029 	}
1030 
1031 	spin_lock_irq(&epfile->ffs->eps_lock);
1032 
1033 	if (epfile->ep != ep) {
1034 		/* In the meantime, endpoint got disabled or changed. */
1035 		ret = -ESHUTDOWN;
1036 	} else if (halt) {
1037 		ret = usb_ep_set_halt(ep->ep);
1038 		if (!ret)
1039 			ret = -EBADMSG;
1040 	} else if (unlikely(data_len == -EINVAL)) {
1041 		/*
1042 		 * Sanity Check: even though data_len can't be used
1043 		 * uninitialized at the time I write this comment, some
1044 		 * compilers complain about this situation.
1045 		 * In order to keep the code clean from warnings, data_len is
1046 		 * being initialized to -EINVAL during its declaration, which
1047 		 * means we can't rely on compiler anymore to warn no future
1048 		 * changes won't result in data_len being used uninitialized.
1049 		 * For such reason, we're adding this redundant sanity check
1050 		 * here.
1051 		 */
1052 		WARN(1, "%s: data_len == -EINVAL\n", __func__);
1053 		ret = -EINVAL;
1054 	} else if (!io_data->aio) {
1055 		DECLARE_COMPLETION_ONSTACK(done);
1056 		bool interrupted = false;
1057 
1058 		req = ep->req;
1059 		if (io_data->use_sg) {
1060 			req->buf = NULL;
1061 			req->sg	= io_data->sgt.sgl;
1062 			req->num_sgs = io_data->sgt.nents;
1063 		} else {
1064 			req->buf = data;
1065 		}
1066 		req->length = data_len;
1067 
1068 		io_data->buf = data;
1069 
1070 		req->context  = &done;
1071 		req->complete = ffs_epfile_io_complete;
1072 
1073 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1074 		if (unlikely(ret < 0))
1075 			goto error_lock;
1076 
1077 		spin_unlock_irq(&epfile->ffs->eps_lock);
1078 
1079 		if (unlikely(wait_for_completion_interruptible(&done))) {
1080 			/*
1081 			 * To avoid race condition with ffs_epfile_io_complete,
1082 			 * dequeue the request first then check
1083 			 * status. usb_ep_dequeue API should guarantee no race
1084 			 * condition with req->complete callback.
1085 			 */
1086 			usb_ep_dequeue(ep->ep, req);
1087 			wait_for_completion(&done);
1088 			interrupted = ep->status < 0;
1089 		}
1090 
1091 		if (interrupted)
1092 			ret = -EINTR;
1093 		else if (io_data->read && ep->status > 0)
1094 			ret = __ffs_epfile_read_data(epfile, data, ep->status,
1095 						     &io_data->data);
1096 		else
1097 			ret = ep->status;
1098 		goto error_mutex;
1099 	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1100 		ret = -ENOMEM;
1101 	} else {
1102 		if (io_data->use_sg) {
1103 			req->buf = NULL;
1104 			req->sg	= io_data->sgt.sgl;
1105 			req->num_sgs = io_data->sgt.nents;
1106 		} else {
1107 			req->buf = data;
1108 		}
1109 		req->length = data_len;
1110 
1111 		io_data->buf = data;
1112 		io_data->ep = ep->ep;
1113 		io_data->req = req;
1114 		io_data->ffs = epfile->ffs;
1115 
1116 		req->context  = io_data;
1117 		req->complete = ffs_epfile_async_io_complete;
1118 
1119 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1120 		if (unlikely(ret)) {
1121 			usb_ep_free_request(ep->ep, req);
1122 			goto error_lock;
1123 		}
1124 
1125 		ret = -EIOCBQUEUED;
1126 		/*
1127 		 * Do not kfree the buffer in this function.  It will be freed
1128 		 * by ffs_user_copy_worker.
1129 		 */
1130 		data = NULL;
1131 	}
1132 
1133 error_lock:
1134 	spin_unlock_irq(&epfile->ffs->eps_lock);
1135 error_mutex:
1136 	mutex_unlock(&epfile->mutex);
1137 error:
1138 	if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1139 		ffs_free_buffer(io_data);
1140 	return ret;
1141 }
1142 
1143 static int
1144 ffs_epfile_open(struct inode *inode, struct file *file)
1145 {
1146 	struct ffs_epfile *epfile = inode->i_private;
1147 
1148 	ENTER();
1149 
1150 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1151 		return -ENODEV;
1152 
1153 	file->private_data = epfile;
1154 	ffs_data_opened(epfile->ffs);
1155 
1156 	return 0;
1157 }
1158 
1159 static int ffs_aio_cancel(struct kiocb *kiocb)
1160 {
1161 	struct ffs_io_data *io_data = kiocb->private;
1162 	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1163 	int value;
1164 
1165 	ENTER();
1166 
1167 	spin_lock_irq(&epfile->ffs->eps_lock);
1168 
1169 	if (likely(io_data && io_data->ep && io_data->req))
1170 		value = usb_ep_dequeue(io_data->ep, io_data->req);
1171 	else
1172 		value = -EINVAL;
1173 
1174 	spin_unlock_irq(&epfile->ffs->eps_lock);
1175 
1176 	return value;
1177 }
1178 
1179 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1180 {
1181 	struct ffs_io_data io_data, *p = &io_data;
1182 	ssize_t res;
1183 
1184 	ENTER();
1185 
1186 	if (!is_sync_kiocb(kiocb)) {
1187 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1188 		if (unlikely(!p))
1189 			return -ENOMEM;
1190 		p->aio = true;
1191 	} else {
1192 		memset(p, 0, sizeof(*p));
1193 		p->aio = false;
1194 	}
1195 
1196 	p->read = false;
1197 	p->kiocb = kiocb;
1198 	p->data = *from;
1199 	p->mm = current->mm;
1200 
1201 	kiocb->private = p;
1202 
1203 	if (p->aio)
1204 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1205 
1206 	res = ffs_epfile_io(kiocb->ki_filp, p);
1207 	if (res == -EIOCBQUEUED)
1208 		return res;
1209 	if (p->aio)
1210 		kfree(p);
1211 	else
1212 		*from = p->data;
1213 	return res;
1214 }
1215 
1216 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1217 {
1218 	struct ffs_io_data io_data, *p = &io_data;
1219 	ssize_t res;
1220 
1221 	ENTER();
1222 
1223 	if (!is_sync_kiocb(kiocb)) {
1224 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1225 		if (unlikely(!p))
1226 			return -ENOMEM;
1227 		p->aio = true;
1228 	} else {
1229 		memset(p, 0, sizeof(*p));
1230 		p->aio = false;
1231 	}
1232 
1233 	p->read = true;
1234 	p->kiocb = kiocb;
1235 	if (p->aio) {
1236 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1237 		if (!p->to_free) {
1238 			kfree(p);
1239 			return -ENOMEM;
1240 		}
1241 	} else {
1242 		p->data = *to;
1243 		p->to_free = NULL;
1244 	}
1245 	p->mm = current->mm;
1246 
1247 	kiocb->private = p;
1248 
1249 	if (p->aio)
1250 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1251 
1252 	res = ffs_epfile_io(kiocb->ki_filp, p);
1253 	if (res == -EIOCBQUEUED)
1254 		return res;
1255 
1256 	if (p->aio) {
1257 		kfree(p->to_free);
1258 		kfree(p);
1259 	} else {
1260 		*to = p->data;
1261 	}
1262 	return res;
1263 }
1264 
1265 static int
1266 ffs_epfile_release(struct inode *inode, struct file *file)
1267 {
1268 	struct ffs_epfile *epfile = inode->i_private;
1269 
1270 	ENTER();
1271 
1272 	__ffs_epfile_read_buffer_free(epfile);
1273 	ffs_data_closed(epfile->ffs);
1274 
1275 	return 0;
1276 }
1277 
1278 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1279 			     unsigned long value)
1280 {
1281 	struct ffs_epfile *epfile = file->private_data;
1282 	struct ffs_ep *ep;
1283 	int ret;
1284 
1285 	ENTER();
1286 
1287 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1288 		return -ENODEV;
1289 
1290 	/* Wait for endpoint to be enabled */
1291 	ep = epfile->ep;
1292 	if (!ep) {
1293 		if (file->f_flags & O_NONBLOCK)
1294 			return -EAGAIN;
1295 
1296 		ret = wait_event_interruptible(
1297 				epfile->ffs->wait, (ep = epfile->ep));
1298 		if (ret)
1299 			return -EINTR;
1300 	}
1301 
1302 	spin_lock_irq(&epfile->ffs->eps_lock);
1303 
1304 	/* In the meantime, endpoint got disabled or changed. */
1305 	if (epfile->ep != ep) {
1306 		spin_unlock_irq(&epfile->ffs->eps_lock);
1307 		return -ESHUTDOWN;
1308 	}
1309 
1310 	switch (code) {
1311 	case FUNCTIONFS_FIFO_STATUS:
1312 		ret = usb_ep_fifo_status(epfile->ep->ep);
1313 		break;
1314 	case FUNCTIONFS_FIFO_FLUSH:
1315 		usb_ep_fifo_flush(epfile->ep->ep);
1316 		ret = 0;
1317 		break;
1318 	case FUNCTIONFS_CLEAR_HALT:
1319 		ret = usb_ep_clear_halt(epfile->ep->ep);
1320 		break;
1321 	case FUNCTIONFS_ENDPOINT_REVMAP:
1322 		ret = epfile->ep->num;
1323 		break;
1324 	case FUNCTIONFS_ENDPOINT_DESC:
1325 	{
1326 		int desc_idx;
1327 		struct usb_endpoint_descriptor *desc;
1328 
1329 		switch (epfile->ffs->gadget->speed) {
1330 		case USB_SPEED_SUPER:
1331 			desc_idx = 2;
1332 			break;
1333 		case USB_SPEED_HIGH:
1334 			desc_idx = 1;
1335 			break;
1336 		default:
1337 			desc_idx = 0;
1338 		}
1339 		desc = epfile->ep->descs[desc_idx];
1340 
1341 		spin_unlock_irq(&epfile->ffs->eps_lock);
1342 		ret = copy_to_user((void __user *)value, desc, desc->bLength);
1343 		if (ret)
1344 			ret = -EFAULT;
1345 		return ret;
1346 	}
1347 	default:
1348 		ret = -ENOTTY;
1349 	}
1350 	spin_unlock_irq(&epfile->ffs->eps_lock);
1351 
1352 	return ret;
1353 }
1354 
1355 #ifdef CONFIG_COMPAT
1356 static long ffs_epfile_compat_ioctl(struct file *file, unsigned code,
1357 		unsigned long value)
1358 {
1359 	return ffs_epfile_ioctl(file, code, value);
1360 }
1361 #endif
1362 
1363 static const struct file_operations ffs_epfile_operations = {
1364 	.llseek =	no_llseek,
1365 
1366 	.open =		ffs_epfile_open,
1367 	.write_iter =	ffs_epfile_write_iter,
1368 	.read_iter =	ffs_epfile_read_iter,
1369 	.release =	ffs_epfile_release,
1370 	.unlocked_ioctl =	ffs_epfile_ioctl,
1371 #ifdef CONFIG_COMPAT
1372 	.compat_ioctl = ffs_epfile_compat_ioctl,
1373 #endif
1374 };
1375 
1376 
1377 /* File system and super block operations ***********************************/
1378 
1379 /*
1380  * Mounting the file system creates a controller file, used first for
1381  * function configuration then later for event monitoring.
1382  */
1383 
1384 static struct inode *__must_check
1385 ffs_sb_make_inode(struct super_block *sb, void *data,
1386 		  const struct file_operations *fops,
1387 		  const struct inode_operations *iops,
1388 		  struct ffs_file_perms *perms)
1389 {
1390 	struct inode *inode;
1391 
1392 	ENTER();
1393 
1394 	inode = new_inode(sb);
1395 
1396 	if (likely(inode)) {
1397 		struct timespec64 ts = current_time(inode);
1398 
1399 		inode->i_ino	 = get_next_ino();
1400 		inode->i_mode    = perms->mode;
1401 		inode->i_uid     = perms->uid;
1402 		inode->i_gid     = perms->gid;
1403 		inode->i_atime   = ts;
1404 		inode->i_mtime   = ts;
1405 		inode->i_ctime   = ts;
1406 		inode->i_private = data;
1407 		if (fops)
1408 			inode->i_fop = fops;
1409 		if (iops)
1410 			inode->i_op  = iops;
1411 	}
1412 
1413 	return inode;
1414 }
1415 
1416 /* Create "regular" file */
1417 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1418 					const char *name, void *data,
1419 					const struct file_operations *fops)
1420 {
1421 	struct ffs_data	*ffs = sb->s_fs_info;
1422 	struct dentry	*dentry;
1423 	struct inode	*inode;
1424 
1425 	ENTER();
1426 
1427 	dentry = d_alloc_name(sb->s_root, name);
1428 	if (unlikely(!dentry))
1429 		return NULL;
1430 
1431 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1432 	if (unlikely(!inode)) {
1433 		dput(dentry);
1434 		return NULL;
1435 	}
1436 
1437 	d_add(dentry, inode);
1438 	return dentry;
1439 }
1440 
1441 /* Super block */
1442 static const struct super_operations ffs_sb_operations = {
1443 	.statfs =	simple_statfs,
1444 	.drop_inode =	generic_delete_inode,
1445 };
1446 
1447 struct ffs_sb_fill_data {
1448 	struct ffs_file_perms perms;
1449 	umode_t root_mode;
1450 	const char *dev_name;
1451 	bool no_disconnect;
1452 	struct ffs_data *ffs_data;
1453 };
1454 
1455 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1456 {
1457 	struct ffs_sb_fill_data *data = fc->fs_private;
1458 	struct inode	*inode;
1459 	struct ffs_data	*ffs = data->ffs_data;
1460 
1461 	ENTER();
1462 
1463 	ffs->sb              = sb;
1464 	data->ffs_data       = NULL;
1465 	sb->s_fs_info        = ffs;
1466 	sb->s_blocksize      = PAGE_SIZE;
1467 	sb->s_blocksize_bits = PAGE_SHIFT;
1468 	sb->s_magic          = FUNCTIONFS_MAGIC;
1469 	sb->s_op             = &ffs_sb_operations;
1470 	sb->s_time_gran      = 1;
1471 
1472 	/* Root inode */
1473 	data->perms.mode = data->root_mode;
1474 	inode = ffs_sb_make_inode(sb, NULL,
1475 				  &simple_dir_operations,
1476 				  &simple_dir_inode_operations,
1477 				  &data->perms);
1478 	sb->s_root = d_make_root(inode);
1479 	if (unlikely(!sb->s_root))
1480 		return -ENOMEM;
1481 
1482 	/* EP0 file */
1483 	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1484 					 &ffs_ep0_operations)))
1485 		return -ENOMEM;
1486 
1487 	return 0;
1488 }
1489 
1490 enum {
1491 	Opt_no_disconnect,
1492 	Opt_rmode,
1493 	Opt_fmode,
1494 	Opt_mode,
1495 	Opt_uid,
1496 	Opt_gid,
1497 };
1498 
1499 static const struct fs_parameter_spec ffs_fs_param_specs[] = {
1500 	fsparam_bool	("no_disconnect",	Opt_no_disconnect),
1501 	fsparam_u32	("rmode",		Opt_rmode),
1502 	fsparam_u32	("fmode",		Opt_fmode),
1503 	fsparam_u32	("mode",		Opt_mode),
1504 	fsparam_u32	("uid",			Opt_uid),
1505 	fsparam_u32	("gid",			Opt_gid),
1506 	{}
1507 };
1508 
1509 static const struct fs_parameter_description ffs_fs_fs_parameters = {
1510 	.name		= "kAFS",
1511 	.specs		= ffs_fs_param_specs,
1512 };
1513 
1514 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1515 {
1516 	struct ffs_sb_fill_data *data = fc->fs_private;
1517 	struct fs_parse_result result;
1518 	int opt;
1519 
1520 	ENTER();
1521 
1522 	opt = fs_parse(fc, &ffs_fs_fs_parameters, param, &result);
1523 	if (opt < 0)
1524 		return opt;
1525 
1526 	switch (opt) {
1527 	case Opt_no_disconnect:
1528 		data->no_disconnect = result.boolean;
1529 		break;
1530 	case Opt_rmode:
1531 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1532 		break;
1533 	case Opt_fmode:
1534 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1535 		break;
1536 	case Opt_mode:
1537 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1538 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1539 		break;
1540 
1541 	case Opt_uid:
1542 		data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1543 		if (!uid_valid(data->perms.uid))
1544 			goto unmapped_value;
1545 		break;
1546 	case Opt_gid:
1547 		data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1548 		if (!gid_valid(data->perms.gid))
1549 			goto unmapped_value;
1550 		break;
1551 
1552 	default:
1553 		return -ENOPARAM;
1554 	}
1555 
1556 	return 0;
1557 
1558 unmapped_value:
1559 	return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
1560 }
1561 
1562 /*
1563  * Set up the superblock for a mount.
1564  */
1565 static int ffs_fs_get_tree(struct fs_context *fc)
1566 {
1567 	struct ffs_sb_fill_data *ctx = fc->fs_private;
1568 	void *ffs_dev;
1569 	struct ffs_data	*ffs;
1570 
1571 	ENTER();
1572 
1573 	if (!fc->source)
1574 		return invalf(fc, "No source specified");
1575 
1576 	ffs = ffs_data_new(fc->source);
1577 	if (unlikely(!ffs))
1578 		return -ENOMEM;
1579 	ffs->file_perms = ctx->perms;
1580 	ffs->no_disconnect = ctx->no_disconnect;
1581 
1582 	ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
1583 	if (unlikely(!ffs->dev_name)) {
1584 		ffs_data_put(ffs);
1585 		return -ENOMEM;
1586 	}
1587 
1588 	ffs_dev = ffs_acquire_dev(ffs->dev_name);
1589 	if (IS_ERR(ffs_dev)) {
1590 		ffs_data_put(ffs);
1591 		return PTR_ERR(ffs_dev);
1592 	}
1593 
1594 	ffs->private_data = ffs_dev;
1595 	ctx->ffs_data = ffs;
1596 	return get_tree_nodev(fc, ffs_sb_fill);
1597 }
1598 
1599 static void ffs_fs_free_fc(struct fs_context *fc)
1600 {
1601 	struct ffs_sb_fill_data *ctx = fc->fs_private;
1602 
1603 	if (ctx) {
1604 		if (ctx->ffs_data) {
1605 			ffs_release_dev(ctx->ffs_data);
1606 			ffs_data_put(ctx->ffs_data);
1607 		}
1608 
1609 		kfree(ctx);
1610 	}
1611 }
1612 
1613 static const struct fs_context_operations ffs_fs_context_ops = {
1614 	.free		= ffs_fs_free_fc,
1615 	.parse_param	= ffs_fs_parse_param,
1616 	.get_tree	= ffs_fs_get_tree,
1617 };
1618 
1619 static int ffs_fs_init_fs_context(struct fs_context *fc)
1620 {
1621 	struct ffs_sb_fill_data *ctx;
1622 
1623 	ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
1624 	if (!ctx)
1625 		return -ENOMEM;
1626 
1627 	ctx->perms.mode = S_IFREG | 0600;
1628 	ctx->perms.uid = GLOBAL_ROOT_UID;
1629 	ctx->perms.gid = GLOBAL_ROOT_GID;
1630 	ctx->root_mode = S_IFDIR | 0500;
1631 	ctx->no_disconnect = false;
1632 
1633 	fc->fs_private = ctx;
1634 	fc->ops = &ffs_fs_context_ops;
1635 	return 0;
1636 }
1637 
1638 static void
1639 ffs_fs_kill_sb(struct super_block *sb)
1640 {
1641 	ENTER();
1642 
1643 	kill_litter_super(sb);
1644 	if (sb->s_fs_info) {
1645 		ffs_release_dev(sb->s_fs_info);
1646 		ffs_data_closed(sb->s_fs_info);
1647 	}
1648 }
1649 
1650 static struct file_system_type ffs_fs_type = {
1651 	.owner		= THIS_MODULE,
1652 	.name		= "functionfs",
1653 	.init_fs_context = ffs_fs_init_fs_context,
1654 	.parameters	= &ffs_fs_fs_parameters,
1655 	.kill_sb	= ffs_fs_kill_sb,
1656 };
1657 MODULE_ALIAS_FS("functionfs");
1658 
1659 
1660 /* Driver's main init/cleanup functions *************************************/
1661 
1662 static int functionfs_init(void)
1663 {
1664 	int ret;
1665 
1666 	ENTER();
1667 
1668 	ret = register_filesystem(&ffs_fs_type);
1669 	if (likely(!ret))
1670 		pr_info("file system registered\n");
1671 	else
1672 		pr_err("failed registering file system (%d)\n", ret);
1673 
1674 	return ret;
1675 }
1676 
1677 static void functionfs_cleanup(void)
1678 {
1679 	ENTER();
1680 
1681 	pr_info("unloading\n");
1682 	unregister_filesystem(&ffs_fs_type);
1683 }
1684 
1685 
1686 /* ffs_data and ffs_function construction and destruction code **************/
1687 
1688 static void ffs_data_clear(struct ffs_data *ffs);
1689 static void ffs_data_reset(struct ffs_data *ffs);
1690 
1691 static void ffs_data_get(struct ffs_data *ffs)
1692 {
1693 	ENTER();
1694 
1695 	refcount_inc(&ffs->ref);
1696 }
1697 
1698 static void ffs_data_opened(struct ffs_data *ffs)
1699 {
1700 	ENTER();
1701 
1702 	refcount_inc(&ffs->ref);
1703 	if (atomic_add_return(1, &ffs->opened) == 1 &&
1704 			ffs->state == FFS_DEACTIVATED) {
1705 		ffs->state = FFS_CLOSING;
1706 		ffs_data_reset(ffs);
1707 	}
1708 }
1709 
1710 static void ffs_data_put(struct ffs_data *ffs)
1711 {
1712 	ENTER();
1713 
1714 	if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1715 		pr_info("%s(): freeing\n", __func__);
1716 		ffs_data_clear(ffs);
1717 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1718 		       waitqueue_active(&ffs->ep0req_completion.wait) ||
1719 		       waitqueue_active(&ffs->wait));
1720 		destroy_workqueue(ffs->io_completion_wq);
1721 		kfree(ffs->dev_name);
1722 		kfree(ffs);
1723 	}
1724 }
1725 
1726 static void ffs_data_closed(struct ffs_data *ffs)
1727 {
1728 	ENTER();
1729 
1730 	if (atomic_dec_and_test(&ffs->opened)) {
1731 		if (ffs->no_disconnect) {
1732 			ffs->state = FFS_DEACTIVATED;
1733 			if (ffs->epfiles) {
1734 				ffs_epfiles_destroy(ffs->epfiles,
1735 						   ffs->eps_count);
1736 				ffs->epfiles = NULL;
1737 			}
1738 			if (ffs->setup_state == FFS_SETUP_PENDING)
1739 				__ffs_ep0_stall(ffs);
1740 		} else {
1741 			ffs->state = FFS_CLOSING;
1742 			ffs_data_reset(ffs);
1743 		}
1744 	}
1745 	if (atomic_read(&ffs->opened) < 0) {
1746 		ffs->state = FFS_CLOSING;
1747 		ffs_data_reset(ffs);
1748 	}
1749 
1750 	ffs_data_put(ffs);
1751 }
1752 
1753 static struct ffs_data *ffs_data_new(const char *dev_name)
1754 {
1755 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1756 	if (unlikely(!ffs))
1757 		return NULL;
1758 
1759 	ENTER();
1760 
1761 	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1762 	if (!ffs->io_completion_wq) {
1763 		kfree(ffs);
1764 		return NULL;
1765 	}
1766 
1767 	refcount_set(&ffs->ref, 1);
1768 	atomic_set(&ffs->opened, 0);
1769 	ffs->state = FFS_READ_DESCRIPTORS;
1770 	mutex_init(&ffs->mutex);
1771 	spin_lock_init(&ffs->eps_lock);
1772 	init_waitqueue_head(&ffs->ev.waitq);
1773 	init_waitqueue_head(&ffs->wait);
1774 	init_completion(&ffs->ep0req_completion);
1775 
1776 	/* XXX REVISIT need to update it in some places, or do we? */
1777 	ffs->ev.can_stall = 1;
1778 
1779 	return ffs;
1780 }
1781 
1782 static void ffs_data_clear(struct ffs_data *ffs)
1783 {
1784 	ENTER();
1785 
1786 	ffs_closed(ffs);
1787 
1788 	BUG_ON(ffs->gadget);
1789 
1790 	if (ffs->epfiles)
1791 		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1792 
1793 	if (ffs->ffs_eventfd)
1794 		eventfd_ctx_put(ffs->ffs_eventfd);
1795 
1796 	kfree(ffs->raw_descs_data);
1797 	kfree(ffs->raw_strings);
1798 	kfree(ffs->stringtabs);
1799 }
1800 
1801 static void ffs_data_reset(struct ffs_data *ffs)
1802 {
1803 	ENTER();
1804 
1805 	ffs_data_clear(ffs);
1806 
1807 	ffs->epfiles = NULL;
1808 	ffs->raw_descs_data = NULL;
1809 	ffs->raw_descs = NULL;
1810 	ffs->raw_strings = NULL;
1811 	ffs->stringtabs = NULL;
1812 
1813 	ffs->raw_descs_length = 0;
1814 	ffs->fs_descs_count = 0;
1815 	ffs->hs_descs_count = 0;
1816 	ffs->ss_descs_count = 0;
1817 
1818 	ffs->strings_count = 0;
1819 	ffs->interfaces_count = 0;
1820 	ffs->eps_count = 0;
1821 
1822 	ffs->ev.count = 0;
1823 
1824 	ffs->state = FFS_READ_DESCRIPTORS;
1825 	ffs->setup_state = FFS_NO_SETUP;
1826 	ffs->flags = 0;
1827 }
1828 
1829 
1830 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1831 {
1832 	struct usb_gadget_strings **lang;
1833 	int first_id;
1834 
1835 	ENTER();
1836 
1837 	if (WARN_ON(ffs->state != FFS_ACTIVE
1838 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1839 		return -EBADFD;
1840 
1841 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1842 	if (unlikely(first_id < 0))
1843 		return first_id;
1844 
1845 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1846 	if (unlikely(!ffs->ep0req))
1847 		return -ENOMEM;
1848 	ffs->ep0req->complete = ffs_ep0_complete;
1849 	ffs->ep0req->context = ffs;
1850 
1851 	lang = ffs->stringtabs;
1852 	if (lang) {
1853 		for (; *lang; ++lang) {
1854 			struct usb_string *str = (*lang)->strings;
1855 			int id = first_id;
1856 			for (; str->s; ++id, ++str)
1857 				str->id = id;
1858 		}
1859 	}
1860 
1861 	ffs->gadget = cdev->gadget;
1862 	ffs_data_get(ffs);
1863 	return 0;
1864 }
1865 
1866 static void functionfs_unbind(struct ffs_data *ffs)
1867 {
1868 	ENTER();
1869 
1870 	if (!WARN_ON(!ffs->gadget)) {
1871 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1872 		ffs->ep0req = NULL;
1873 		ffs->gadget = NULL;
1874 		clear_bit(FFS_FL_BOUND, &ffs->flags);
1875 		ffs_data_put(ffs);
1876 	}
1877 }
1878 
1879 static int ffs_epfiles_create(struct ffs_data *ffs)
1880 {
1881 	struct ffs_epfile *epfile, *epfiles;
1882 	unsigned i, count;
1883 
1884 	ENTER();
1885 
1886 	count = ffs->eps_count;
1887 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1888 	if (!epfiles)
1889 		return -ENOMEM;
1890 
1891 	epfile = epfiles;
1892 	for (i = 1; i <= count; ++i, ++epfile) {
1893 		epfile->ffs = ffs;
1894 		mutex_init(&epfile->mutex);
1895 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1896 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1897 		else
1898 			sprintf(epfile->name, "ep%u", i);
1899 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1900 						 epfile,
1901 						 &ffs_epfile_operations);
1902 		if (unlikely(!epfile->dentry)) {
1903 			ffs_epfiles_destroy(epfiles, i - 1);
1904 			return -ENOMEM;
1905 		}
1906 	}
1907 
1908 	ffs->epfiles = epfiles;
1909 	return 0;
1910 }
1911 
1912 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1913 {
1914 	struct ffs_epfile *epfile = epfiles;
1915 
1916 	ENTER();
1917 
1918 	for (; count; --count, ++epfile) {
1919 		BUG_ON(mutex_is_locked(&epfile->mutex));
1920 		if (epfile->dentry) {
1921 			d_delete(epfile->dentry);
1922 			dput(epfile->dentry);
1923 			epfile->dentry = NULL;
1924 		}
1925 	}
1926 
1927 	kfree(epfiles);
1928 }
1929 
1930 static void ffs_func_eps_disable(struct ffs_function *func)
1931 {
1932 	struct ffs_ep *ep         = func->eps;
1933 	struct ffs_epfile *epfile = func->ffs->epfiles;
1934 	unsigned count            = func->ffs->eps_count;
1935 	unsigned long flags;
1936 
1937 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1938 	while (count--) {
1939 		/* pending requests get nuked */
1940 		if (likely(ep->ep))
1941 			usb_ep_disable(ep->ep);
1942 		++ep;
1943 
1944 		if (epfile) {
1945 			epfile->ep = NULL;
1946 			__ffs_epfile_read_buffer_free(epfile);
1947 			++epfile;
1948 		}
1949 	}
1950 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1951 }
1952 
1953 static int ffs_func_eps_enable(struct ffs_function *func)
1954 {
1955 	struct ffs_data *ffs      = func->ffs;
1956 	struct ffs_ep *ep         = func->eps;
1957 	struct ffs_epfile *epfile = ffs->epfiles;
1958 	unsigned count            = ffs->eps_count;
1959 	unsigned long flags;
1960 	int ret = 0;
1961 
1962 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1963 	while(count--) {
1964 		ep->ep->driver_data = ep;
1965 
1966 		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
1967 		if (ret) {
1968 			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
1969 					__func__, ep->ep->name, ret);
1970 			break;
1971 		}
1972 
1973 		ret = usb_ep_enable(ep->ep);
1974 		if (likely(!ret)) {
1975 			epfile->ep = ep;
1976 			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
1977 			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1978 		} else {
1979 			break;
1980 		}
1981 
1982 		++ep;
1983 		++epfile;
1984 	}
1985 
1986 	wake_up_interruptible(&ffs->wait);
1987 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1988 
1989 	return ret;
1990 }
1991 
1992 
1993 /* Parsing and building descriptors and strings *****************************/
1994 
1995 /*
1996  * This validates if data pointed by data is a valid USB descriptor as
1997  * well as record how many interfaces, endpoints and strings are
1998  * required by given configuration.  Returns address after the
1999  * descriptor or NULL if data is invalid.
2000  */
2001 
2002 enum ffs_entity_type {
2003 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
2004 };
2005 
2006 enum ffs_os_desc_type {
2007 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
2008 };
2009 
2010 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2011 				   u8 *valuep,
2012 				   struct usb_descriptor_header *desc,
2013 				   void *priv);
2014 
2015 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2016 				    struct usb_os_desc_header *h, void *data,
2017 				    unsigned len, void *priv);
2018 
2019 static int __must_check ffs_do_single_desc(char *data, unsigned len,
2020 					   ffs_entity_callback entity,
2021 					   void *priv, int *current_class)
2022 {
2023 	struct usb_descriptor_header *_ds = (void *)data;
2024 	u8 length;
2025 	int ret;
2026 
2027 	ENTER();
2028 
2029 	/* At least two bytes are required: length and type */
2030 	if (len < 2) {
2031 		pr_vdebug("descriptor too short\n");
2032 		return -EINVAL;
2033 	}
2034 
2035 	/* If we have at least as many bytes as the descriptor takes? */
2036 	length = _ds->bLength;
2037 	if (len < length) {
2038 		pr_vdebug("descriptor longer then available data\n");
2039 		return -EINVAL;
2040 	}
2041 
2042 #define __entity_check_INTERFACE(val)  1
2043 #define __entity_check_STRING(val)     (val)
2044 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
2045 #define __entity(type, val) do {					\
2046 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
2047 		if (unlikely(!__entity_check_ ##type(val))) {		\
2048 			pr_vdebug("invalid entity's value\n");		\
2049 			return -EINVAL;					\
2050 		}							\
2051 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
2052 		if (unlikely(ret < 0)) {				\
2053 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
2054 				 (val), ret);				\
2055 			return ret;					\
2056 		}							\
2057 	} while (0)
2058 
2059 	/* Parse descriptor depending on type. */
2060 	switch (_ds->bDescriptorType) {
2061 	case USB_DT_DEVICE:
2062 	case USB_DT_CONFIG:
2063 	case USB_DT_STRING:
2064 	case USB_DT_DEVICE_QUALIFIER:
2065 		/* function can't have any of those */
2066 		pr_vdebug("descriptor reserved for gadget: %d\n",
2067 		      _ds->bDescriptorType);
2068 		return -EINVAL;
2069 
2070 	case USB_DT_INTERFACE: {
2071 		struct usb_interface_descriptor *ds = (void *)_ds;
2072 		pr_vdebug("interface descriptor\n");
2073 		if (length != sizeof *ds)
2074 			goto inv_length;
2075 
2076 		__entity(INTERFACE, ds->bInterfaceNumber);
2077 		if (ds->iInterface)
2078 			__entity(STRING, ds->iInterface);
2079 		*current_class = ds->bInterfaceClass;
2080 	}
2081 		break;
2082 
2083 	case USB_DT_ENDPOINT: {
2084 		struct usb_endpoint_descriptor *ds = (void *)_ds;
2085 		pr_vdebug("endpoint descriptor\n");
2086 		if (length != USB_DT_ENDPOINT_SIZE &&
2087 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
2088 			goto inv_length;
2089 		__entity(ENDPOINT, ds->bEndpointAddress);
2090 	}
2091 		break;
2092 
2093 	case USB_TYPE_CLASS | 0x01:
2094                 if (*current_class == USB_INTERFACE_CLASS_HID) {
2095 			pr_vdebug("hid descriptor\n");
2096 			if (length != sizeof(struct hid_descriptor))
2097 				goto inv_length;
2098 			break;
2099 		} else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2100 			pr_vdebug("ccid descriptor\n");
2101 			if (length != sizeof(struct ccid_descriptor))
2102 				goto inv_length;
2103 			break;
2104 		} else {
2105 			pr_vdebug("unknown descriptor: %d for class %d\n",
2106 			      _ds->bDescriptorType, *current_class);
2107 			return -EINVAL;
2108 		}
2109 
2110 	case USB_DT_OTG:
2111 		if (length != sizeof(struct usb_otg_descriptor))
2112 			goto inv_length;
2113 		break;
2114 
2115 	case USB_DT_INTERFACE_ASSOCIATION: {
2116 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2117 		pr_vdebug("interface association descriptor\n");
2118 		if (length != sizeof *ds)
2119 			goto inv_length;
2120 		if (ds->iFunction)
2121 			__entity(STRING, ds->iFunction);
2122 	}
2123 		break;
2124 
2125 	case USB_DT_SS_ENDPOINT_COMP:
2126 		pr_vdebug("EP SS companion descriptor\n");
2127 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2128 			goto inv_length;
2129 		break;
2130 
2131 	case USB_DT_OTHER_SPEED_CONFIG:
2132 	case USB_DT_INTERFACE_POWER:
2133 	case USB_DT_DEBUG:
2134 	case USB_DT_SECURITY:
2135 	case USB_DT_CS_RADIO_CONTROL:
2136 		/* TODO */
2137 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2138 		return -EINVAL;
2139 
2140 	default:
2141 		/* We should never be here */
2142 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2143 		return -EINVAL;
2144 
2145 inv_length:
2146 		pr_vdebug("invalid length: %d (descriptor %d)\n",
2147 			  _ds->bLength, _ds->bDescriptorType);
2148 		return -EINVAL;
2149 	}
2150 
2151 #undef __entity
2152 #undef __entity_check_DESCRIPTOR
2153 #undef __entity_check_INTERFACE
2154 #undef __entity_check_STRING
2155 #undef __entity_check_ENDPOINT
2156 
2157 	return length;
2158 }
2159 
2160 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2161 				     ffs_entity_callback entity, void *priv)
2162 {
2163 	const unsigned _len = len;
2164 	unsigned long num = 0;
2165 	int current_class = -1;
2166 
2167 	ENTER();
2168 
2169 	for (;;) {
2170 		int ret;
2171 
2172 		if (num == count)
2173 			data = NULL;
2174 
2175 		/* Record "descriptor" entity */
2176 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2177 		if (unlikely(ret < 0)) {
2178 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2179 				 num, ret);
2180 			return ret;
2181 		}
2182 
2183 		if (!data)
2184 			return _len - len;
2185 
2186 		ret = ffs_do_single_desc(data, len, entity, priv,
2187 			&current_class);
2188 		if (unlikely(ret < 0)) {
2189 			pr_debug("%s returns %d\n", __func__, ret);
2190 			return ret;
2191 		}
2192 
2193 		len -= ret;
2194 		data += ret;
2195 		++num;
2196 	}
2197 }
2198 
2199 static int __ffs_data_do_entity(enum ffs_entity_type type,
2200 				u8 *valuep, struct usb_descriptor_header *desc,
2201 				void *priv)
2202 {
2203 	struct ffs_desc_helper *helper = priv;
2204 	struct usb_endpoint_descriptor *d;
2205 
2206 	ENTER();
2207 
2208 	switch (type) {
2209 	case FFS_DESCRIPTOR:
2210 		break;
2211 
2212 	case FFS_INTERFACE:
2213 		/*
2214 		 * Interfaces are indexed from zero so if we
2215 		 * encountered interface "n" then there are at least
2216 		 * "n+1" interfaces.
2217 		 */
2218 		if (*valuep >= helper->interfaces_count)
2219 			helper->interfaces_count = *valuep + 1;
2220 		break;
2221 
2222 	case FFS_STRING:
2223 		/*
2224 		 * Strings are indexed from 1 (0 is reserved
2225 		 * for languages list)
2226 		 */
2227 		if (*valuep > helper->ffs->strings_count)
2228 			helper->ffs->strings_count = *valuep;
2229 		break;
2230 
2231 	case FFS_ENDPOINT:
2232 		d = (void *)desc;
2233 		helper->eps_count++;
2234 		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2235 			return -EINVAL;
2236 		/* Check if descriptors for any speed were already parsed */
2237 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2238 			helper->ffs->eps_addrmap[helper->eps_count] =
2239 				d->bEndpointAddress;
2240 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2241 				d->bEndpointAddress)
2242 			return -EINVAL;
2243 		break;
2244 	}
2245 
2246 	return 0;
2247 }
2248 
2249 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2250 				   struct usb_os_desc_header *desc)
2251 {
2252 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2253 	u16 w_index = le16_to_cpu(desc->wIndex);
2254 
2255 	if (bcd_version != 1) {
2256 		pr_vdebug("unsupported os descriptors version: %d",
2257 			  bcd_version);
2258 		return -EINVAL;
2259 	}
2260 	switch (w_index) {
2261 	case 0x4:
2262 		*next_type = FFS_OS_DESC_EXT_COMPAT;
2263 		break;
2264 	case 0x5:
2265 		*next_type = FFS_OS_DESC_EXT_PROP;
2266 		break;
2267 	default:
2268 		pr_vdebug("unsupported os descriptor type: %d", w_index);
2269 		return -EINVAL;
2270 	}
2271 
2272 	return sizeof(*desc);
2273 }
2274 
2275 /*
2276  * Process all extended compatibility/extended property descriptors
2277  * of a feature descriptor
2278  */
2279 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2280 					      enum ffs_os_desc_type type,
2281 					      u16 feature_count,
2282 					      ffs_os_desc_callback entity,
2283 					      void *priv,
2284 					      struct usb_os_desc_header *h)
2285 {
2286 	int ret;
2287 	const unsigned _len = len;
2288 
2289 	ENTER();
2290 
2291 	/* loop over all ext compat/ext prop descriptors */
2292 	while (feature_count--) {
2293 		ret = entity(type, h, data, len, priv);
2294 		if (unlikely(ret < 0)) {
2295 			pr_debug("bad OS descriptor, type: %d\n", type);
2296 			return ret;
2297 		}
2298 		data += ret;
2299 		len -= ret;
2300 	}
2301 	return _len - len;
2302 }
2303 
2304 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2305 static int __must_check ffs_do_os_descs(unsigned count,
2306 					char *data, unsigned len,
2307 					ffs_os_desc_callback entity, void *priv)
2308 {
2309 	const unsigned _len = len;
2310 	unsigned long num = 0;
2311 
2312 	ENTER();
2313 
2314 	for (num = 0; num < count; ++num) {
2315 		int ret;
2316 		enum ffs_os_desc_type type;
2317 		u16 feature_count;
2318 		struct usb_os_desc_header *desc = (void *)data;
2319 
2320 		if (len < sizeof(*desc))
2321 			return -EINVAL;
2322 
2323 		/*
2324 		 * Record "descriptor" entity.
2325 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2326 		 * Move the data pointer to the beginning of extended
2327 		 * compatibilities proper or extended properties proper
2328 		 * portions of the data
2329 		 */
2330 		if (le32_to_cpu(desc->dwLength) > len)
2331 			return -EINVAL;
2332 
2333 		ret = __ffs_do_os_desc_header(&type, desc);
2334 		if (unlikely(ret < 0)) {
2335 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2336 				 num, ret);
2337 			return ret;
2338 		}
2339 		/*
2340 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2341 		 */
2342 		feature_count = le16_to_cpu(desc->wCount);
2343 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2344 		    (feature_count > 255 || desc->Reserved))
2345 				return -EINVAL;
2346 		len -= ret;
2347 		data += ret;
2348 
2349 		/*
2350 		 * Process all function/property descriptors
2351 		 * of this Feature Descriptor
2352 		 */
2353 		ret = ffs_do_single_os_desc(data, len, type,
2354 					    feature_count, entity, priv, desc);
2355 		if (unlikely(ret < 0)) {
2356 			pr_debug("%s returns %d\n", __func__, ret);
2357 			return ret;
2358 		}
2359 
2360 		len -= ret;
2361 		data += ret;
2362 	}
2363 	return _len - len;
2364 }
2365 
2366 /**
2367  * Validate contents of the buffer from userspace related to OS descriptors.
2368  */
2369 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2370 				 struct usb_os_desc_header *h, void *data,
2371 				 unsigned len, void *priv)
2372 {
2373 	struct ffs_data *ffs = priv;
2374 	u8 length;
2375 
2376 	ENTER();
2377 
2378 	switch (type) {
2379 	case FFS_OS_DESC_EXT_COMPAT: {
2380 		struct usb_ext_compat_desc *d = data;
2381 		int i;
2382 
2383 		if (len < sizeof(*d) ||
2384 		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2385 			return -EINVAL;
2386 		if (d->Reserved1 != 1) {
2387 			/*
2388 			 * According to the spec, Reserved1 must be set to 1
2389 			 * but older kernels incorrectly rejected non-zero
2390 			 * values.  We fix it here to avoid returning EINVAL
2391 			 * in response to values we used to accept.
2392 			 */
2393 			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2394 			d->Reserved1 = 1;
2395 		}
2396 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2397 			if (d->Reserved2[i])
2398 				return -EINVAL;
2399 
2400 		length = sizeof(struct usb_ext_compat_desc);
2401 	}
2402 		break;
2403 	case FFS_OS_DESC_EXT_PROP: {
2404 		struct usb_ext_prop_desc *d = data;
2405 		u32 type, pdl;
2406 		u16 pnl;
2407 
2408 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2409 			return -EINVAL;
2410 		length = le32_to_cpu(d->dwSize);
2411 		if (len < length)
2412 			return -EINVAL;
2413 		type = le32_to_cpu(d->dwPropertyDataType);
2414 		if (type < USB_EXT_PROP_UNICODE ||
2415 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2416 			pr_vdebug("unsupported os descriptor property type: %d",
2417 				  type);
2418 			return -EINVAL;
2419 		}
2420 		pnl = le16_to_cpu(d->wPropertyNameLength);
2421 		if (length < 14 + pnl) {
2422 			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2423 				  length, pnl, type);
2424 			return -EINVAL;
2425 		}
2426 		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2427 		if (length != 14 + pnl + pdl) {
2428 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2429 				  length, pnl, pdl, type);
2430 			return -EINVAL;
2431 		}
2432 		++ffs->ms_os_descs_ext_prop_count;
2433 		/* property name reported to the host as "WCHAR"s */
2434 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2435 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2436 	}
2437 		break;
2438 	default:
2439 		pr_vdebug("unknown descriptor: %d\n", type);
2440 		return -EINVAL;
2441 	}
2442 	return length;
2443 }
2444 
2445 static int __ffs_data_got_descs(struct ffs_data *ffs,
2446 				char *const _data, size_t len)
2447 {
2448 	char *data = _data, *raw_descs;
2449 	unsigned os_descs_count = 0, counts[3], flags;
2450 	int ret = -EINVAL, i;
2451 	struct ffs_desc_helper helper;
2452 
2453 	ENTER();
2454 
2455 	if (get_unaligned_le32(data + 4) != len)
2456 		goto error;
2457 
2458 	switch (get_unaligned_le32(data)) {
2459 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2460 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2461 		data += 8;
2462 		len  -= 8;
2463 		break;
2464 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2465 		flags = get_unaligned_le32(data + 8);
2466 		ffs->user_flags = flags;
2467 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2468 			      FUNCTIONFS_HAS_HS_DESC |
2469 			      FUNCTIONFS_HAS_SS_DESC |
2470 			      FUNCTIONFS_HAS_MS_OS_DESC |
2471 			      FUNCTIONFS_VIRTUAL_ADDR |
2472 			      FUNCTIONFS_EVENTFD |
2473 			      FUNCTIONFS_ALL_CTRL_RECIP |
2474 			      FUNCTIONFS_CONFIG0_SETUP)) {
2475 			ret = -ENOSYS;
2476 			goto error;
2477 		}
2478 		data += 12;
2479 		len  -= 12;
2480 		break;
2481 	default:
2482 		goto error;
2483 	}
2484 
2485 	if (flags & FUNCTIONFS_EVENTFD) {
2486 		if (len < 4)
2487 			goto error;
2488 		ffs->ffs_eventfd =
2489 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2490 		if (IS_ERR(ffs->ffs_eventfd)) {
2491 			ret = PTR_ERR(ffs->ffs_eventfd);
2492 			ffs->ffs_eventfd = NULL;
2493 			goto error;
2494 		}
2495 		data += 4;
2496 		len  -= 4;
2497 	}
2498 
2499 	/* Read fs_count, hs_count and ss_count (if present) */
2500 	for (i = 0; i < 3; ++i) {
2501 		if (!(flags & (1 << i))) {
2502 			counts[i] = 0;
2503 		} else if (len < 4) {
2504 			goto error;
2505 		} else {
2506 			counts[i] = get_unaligned_le32(data);
2507 			data += 4;
2508 			len  -= 4;
2509 		}
2510 	}
2511 	if (flags & (1 << i)) {
2512 		if (len < 4) {
2513 			goto error;
2514 		}
2515 		os_descs_count = get_unaligned_le32(data);
2516 		data += 4;
2517 		len -= 4;
2518 	};
2519 
2520 	/* Read descriptors */
2521 	raw_descs = data;
2522 	helper.ffs = ffs;
2523 	for (i = 0; i < 3; ++i) {
2524 		if (!counts[i])
2525 			continue;
2526 		helper.interfaces_count = 0;
2527 		helper.eps_count = 0;
2528 		ret = ffs_do_descs(counts[i], data, len,
2529 				   __ffs_data_do_entity, &helper);
2530 		if (ret < 0)
2531 			goto error;
2532 		if (!ffs->eps_count && !ffs->interfaces_count) {
2533 			ffs->eps_count = helper.eps_count;
2534 			ffs->interfaces_count = helper.interfaces_count;
2535 		} else {
2536 			if (ffs->eps_count != helper.eps_count) {
2537 				ret = -EINVAL;
2538 				goto error;
2539 			}
2540 			if (ffs->interfaces_count != helper.interfaces_count) {
2541 				ret = -EINVAL;
2542 				goto error;
2543 			}
2544 		}
2545 		data += ret;
2546 		len  -= ret;
2547 	}
2548 	if (os_descs_count) {
2549 		ret = ffs_do_os_descs(os_descs_count, data, len,
2550 				      __ffs_data_do_os_desc, ffs);
2551 		if (ret < 0)
2552 			goto error;
2553 		data += ret;
2554 		len -= ret;
2555 	}
2556 
2557 	if (raw_descs == data || len) {
2558 		ret = -EINVAL;
2559 		goto error;
2560 	}
2561 
2562 	ffs->raw_descs_data	= _data;
2563 	ffs->raw_descs		= raw_descs;
2564 	ffs->raw_descs_length	= data - raw_descs;
2565 	ffs->fs_descs_count	= counts[0];
2566 	ffs->hs_descs_count	= counts[1];
2567 	ffs->ss_descs_count	= counts[2];
2568 	ffs->ms_os_descs_count	= os_descs_count;
2569 
2570 	return 0;
2571 
2572 error:
2573 	kfree(_data);
2574 	return ret;
2575 }
2576 
2577 static int __ffs_data_got_strings(struct ffs_data *ffs,
2578 				  char *const _data, size_t len)
2579 {
2580 	u32 str_count, needed_count, lang_count;
2581 	struct usb_gadget_strings **stringtabs, *t;
2582 	const char *data = _data;
2583 	struct usb_string *s;
2584 
2585 	ENTER();
2586 
2587 	if (unlikely(len < 16 ||
2588 		     get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2589 		     get_unaligned_le32(data + 4) != len))
2590 		goto error;
2591 	str_count  = get_unaligned_le32(data + 8);
2592 	lang_count = get_unaligned_le32(data + 12);
2593 
2594 	/* if one is zero the other must be zero */
2595 	if (unlikely(!str_count != !lang_count))
2596 		goto error;
2597 
2598 	/* Do we have at least as many strings as descriptors need? */
2599 	needed_count = ffs->strings_count;
2600 	if (unlikely(str_count < needed_count))
2601 		goto error;
2602 
2603 	/*
2604 	 * If we don't need any strings just return and free all
2605 	 * memory.
2606 	 */
2607 	if (!needed_count) {
2608 		kfree(_data);
2609 		return 0;
2610 	}
2611 
2612 	/* Allocate everything in one chunk so there's less maintenance. */
2613 	{
2614 		unsigned i = 0;
2615 		vla_group(d);
2616 		vla_item(d, struct usb_gadget_strings *, stringtabs,
2617 			lang_count + 1);
2618 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2619 		vla_item(d, struct usb_string, strings,
2620 			lang_count*(needed_count+1));
2621 
2622 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2623 
2624 		if (unlikely(!vlabuf)) {
2625 			kfree(_data);
2626 			return -ENOMEM;
2627 		}
2628 
2629 		/* Initialize the VLA pointers */
2630 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2631 		t = vla_ptr(vlabuf, d, stringtab);
2632 		i = lang_count;
2633 		do {
2634 			*stringtabs++ = t++;
2635 		} while (--i);
2636 		*stringtabs = NULL;
2637 
2638 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2639 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2640 		t = vla_ptr(vlabuf, d, stringtab);
2641 		s = vla_ptr(vlabuf, d, strings);
2642 	}
2643 
2644 	/* For each language */
2645 	data += 16;
2646 	len -= 16;
2647 
2648 	do { /* lang_count > 0 so we can use do-while */
2649 		unsigned needed = needed_count;
2650 
2651 		if (unlikely(len < 3))
2652 			goto error_free;
2653 		t->language = get_unaligned_le16(data);
2654 		t->strings  = s;
2655 		++t;
2656 
2657 		data += 2;
2658 		len -= 2;
2659 
2660 		/* For each string */
2661 		do { /* str_count > 0 so we can use do-while */
2662 			size_t length = strnlen(data, len);
2663 
2664 			if (unlikely(length == len))
2665 				goto error_free;
2666 
2667 			/*
2668 			 * User may provide more strings then we need,
2669 			 * if that's the case we simply ignore the
2670 			 * rest
2671 			 */
2672 			if (likely(needed)) {
2673 				/*
2674 				 * s->id will be set while adding
2675 				 * function to configuration so for
2676 				 * now just leave garbage here.
2677 				 */
2678 				s->s = data;
2679 				--needed;
2680 				++s;
2681 			}
2682 
2683 			data += length + 1;
2684 			len -= length + 1;
2685 		} while (--str_count);
2686 
2687 		s->id = 0;   /* terminator */
2688 		s->s = NULL;
2689 		++s;
2690 
2691 	} while (--lang_count);
2692 
2693 	/* Some garbage left? */
2694 	if (unlikely(len))
2695 		goto error_free;
2696 
2697 	/* Done! */
2698 	ffs->stringtabs = stringtabs;
2699 	ffs->raw_strings = _data;
2700 
2701 	return 0;
2702 
2703 error_free:
2704 	kfree(stringtabs);
2705 error:
2706 	kfree(_data);
2707 	return -EINVAL;
2708 }
2709 
2710 
2711 /* Events handling and management *******************************************/
2712 
2713 static void __ffs_event_add(struct ffs_data *ffs,
2714 			    enum usb_functionfs_event_type type)
2715 {
2716 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2717 	int neg = 0;
2718 
2719 	/*
2720 	 * Abort any unhandled setup
2721 	 *
2722 	 * We do not need to worry about some cmpxchg() changing value
2723 	 * of ffs->setup_state without holding the lock because when
2724 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2725 	 * the source does nothing.
2726 	 */
2727 	if (ffs->setup_state == FFS_SETUP_PENDING)
2728 		ffs->setup_state = FFS_SETUP_CANCELLED;
2729 
2730 	/*
2731 	 * Logic of this function guarantees that there are at most four pending
2732 	 * evens on ffs->ev.types queue.  This is important because the queue
2733 	 * has space for four elements only and __ffs_ep0_read_events function
2734 	 * depends on that limit as well.  If more event types are added, those
2735 	 * limits have to be revisited or guaranteed to still hold.
2736 	 */
2737 	switch (type) {
2738 	case FUNCTIONFS_RESUME:
2739 		rem_type2 = FUNCTIONFS_SUSPEND;
2740 		/* FALL THROUGH */
2741 	case FUNCTIONFS_SUSPEND:
2742 	case FUNCTIONFS_SETUP:
2743 		rem_type1 = type;
2744 		/* Discard all similar events */
2745 		break;
2746 
2747 	case FUNCTIONFS_BIND:
2748 	case FUNCTIONFS_UNBIND:
2749 	case FUNCTIONFS_DISABLE:
2750 	case FUNCTIONFS_ENABLE:
2751 		/* Discard everything other then power management. */
2752 		rem_type1 = FUNCTIONFS_SUSPEND;
2753 		rem_type2 = FUNCTIONFS_RESUME;
2754 		neg = 1;
2755 		break;
2756 
2757 	default:
2758 		WARN(1, "%d: unknown event, this should not happen\n", type);
2759 		return;
2760 	}
2761 
2762 	{
2763 		u8 *ev  = ffs->ev.types, *out = ev;
2764 		unsigned n = ffs->ev.count;
2765 		for (; n; --n, ++ev)
2766 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2767 				*out++ = *ev;
2768 			else
2769 				pr_vdebug("purging event %d\n", *ev);
2770 		ffs->ev.count = out - ffs->ev.types;
2771 	}
2772 
2773 	pr_vdebug("adding event %d\n", type);
2774 	ffs->ev.types[ffs->ev.count++] = type;
2775 	wake_up_locked(&ffs->ev.waitq);
2776 	if (ffs->ffs_eventfd)
2777 		eventfd_signal(ffs->ffs_eventfd, 1);
2778 }
2779 
2780 static void ffs_event_add(struct ffs_data *ffs,
2781 			  enum usb_functionfs_event_type type)
2782 {
2783 	unsigned long flags;
2784 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2785 	__ffs_event_add(ffs, type);
2786 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2787 }
2788 
2789 /* Bind/unbind USB function hooks *******************************************/
2790 
2791 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2792 {
2793 	int i;
2794 
2795 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2796 		if (ffs->eps_addrmap[i] == endpoint_address)
2797 			return i;
2798 	return -ENOENT;
2799 }
2800 
2801 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2802 				    struct usb_descriptor_header *desc,
2803 				    void *priv)
2804 {
2805 	struct usb_endpoint_descriptor *ds = (void *)desc;
2806 	struct ffs_function *func = priv;
2807 	struct ffs_ep *ffs_ep;
2808 	unsigned ep_desc_id;
2809 	int idx;
2810 	static const char *speed_names[] = { "full", "high", "super" };
2811 
2812 	if (type != FFS_DESCRIPTOR)
2813 		return 0;
2814 
2815 	/*
2816 	 * If ss_descriptors is not NULL, we are reading super speed
2817 	 * descriptors; if hs_descriptors is not NULL, we are reading high
2818 	 * speed descriptors; otherwise, we are reading full speed
2819 	 * descriptors.
2820 	 */
2821 	if (func->function.ss_descriptors) {
2822 		ep_desc_id = 2;
2823 		func->function.ss_descriptors[(long)valuep] = desc;
2824 	} else if (func->function.hs_descriptors) {
2825 		ep_desc_id = 1;
2826 		func->function.hs_descriptors[(long)valuep] = desc;
2827 	} else {
2828 		ep_desc_id = 0;
2829 		func->function.fs_descriptors[(long)valuep]    = desc;
2830 	}
2831 
2832 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2833 		return 0;
2834 
2835 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2836 	if (idx < 0)
2837 		return idx;
2838 
2839 	ffs_ep = func->eps + idx;
2840 
2841 	if (unlikely(ffs_ep->descs[ep_desc_id])) {
2842 		pr_err("two %sspeed descriptors for EP %d\n",
2843 			  speed_names[ep_desc_id],
2844 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2845 		return -EINVAL;
2846 	}
2847 	ffs_ep->descs[ep_desc_id] = ds;
2848 
2849 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2850 	if (ffs_ep->ep) {
2851 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2852 		if (!ds->wMaxPacketSize)
2853 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2854 	} else {
2855 		struct usb_request *req;
2856 		struct usb_ep *ep;
2857 		u8 bEndpointAddress;
2858 		u16 wMaxPacketSize;
2859 
2860 		/*
2861 		 * We back up bEndpointAddress because autoconfig overwrites
2862 		 * it with physical endpoint address.
2863 		 */
2864 		bEndpointAddress = ds->bEndpointAddress;
2865 		/*
2866 		 * We back up wMaxPacketSize because autoconfig treats
2867 		 * endpoint descriptors as if they were full speed.
2868 		 */
2869 		wMaxPacketSize = ds->wMaxPacketSize;
2870 		pr_vdebug("autoconfig\n");
2871 		ep = usb_ep_autoconfig(func->gadget, ds);
2872 		if (unlikely(!ep))
2873 			return -ENOTSUPP;
2874 		ep->driver_data = func->eps + idx;
2875 
2876 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2877 		if (unlikely(!req))
2878 			return -ENOMEM;
2879 
2880 		ffs_ep->ep  = ep;
2881 		ffs_ep->req = req;
2882 		func->eps_revmap[ds->bEndpointAddress &
2883 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2884 		/*
2885 		 * If we use virtual address mapping, we restore
2886 		 * original bEndpointAddress value.
2887 		 */
2888 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2889 			ds->bEndpointAddress = bEndpointAddress;
2890 		/*
2891 		 * Restore wMaxPacketSize which was potentially
2892 		 * overwritten by autoconfig.
2893 		 */
2894 		ds->wMaxPacketSize = wMaxPacketSize;
2895 	}
2896 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2897 
2898 	return 0;
2899 }
2900 
2901 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2902 				   struct usb_descriptor_header *desc,
2903 				   void *priv)
2904 {
2905 	struct ffs_function *func = priv;
2906 	unsigned idx;
2907 	u8 newValue;
2908 
2909 	switch (type) {
2910 	default:
2911 	case FFS_DESCRIPTOR:
2912 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2913 		return 0;
2914 
2915 	case FFS_INTERFACE:
2916 		idx = *valuep;
2917 		if (func->interfaces_nums[idx] < 0) {
2918 			int id = usb_interface_id(func->conf, &func->function);
2919 			if (unlikely(id < 0))
2920 				return id;
2921 			func->interfaces_nums[idx] = id;
2922 		}
2923 		newValue = func->interfaces_nums[idx];
2924 		break;
2925 
2926 	case FFS_STRING:
2927 		/* String' IDs are allocated when fsf_data is bound to cdev */
2928 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2929 		break;
2930 
2931 	case FFS_ENDPOINT:
2932 		/*
2933 		 * USB_DT_ENDPOINT are handled in
2934 		 * __ffs_func_bind_do_descs().
2935 		 */
2936 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2937 			return 0;
2938 
2939 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2940 		if (unlikely(!func->eps[idx].ep))
2941 			return -EINVAL;
2942 
2943 		{
2944 			struct usb_endpoint_descriptor **descs;
2945 			descs = func->eps[idx].descs;
2946 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2947 		}
2948 		break;
2949 	}
2950 
2951 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2952 	*valuep = newValue;
2953 	return 0;
2954 }
2955 
2956 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2957 				      struct usb_os_desc_header *h, void *data,
2958 				      unsigned len, void *priv)
2959 {
2960 	struct ffs_function *func = priv;
2961 	u8 length = 0;
2962 
2963 	switch (type) {
2964 	case FFS_OS_DESC_EXT_COMPAT: {
2965 		struct usb_ext_compat_desc *desc = data;
2966 		struct usb_os_desc_table *t;
2967 
2968 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2969 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2970 		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2971 		       ARRAY_SIZE(desc->CompatibleID) +
2972 		       ARRAY_SIZE(desc->SubCompatibleID));
2973 		length = sizeof(*desc);
2974 	}
2975 		break;
2976 	case FFS_OS_DESC_EXT_PROP: {
2977 		struct usb_ext_prop_desc *desc = data;
2978 		struct usb_os_desc_table *t;
2979 		struct usb_os_desc_ext_prop *ext_prop;
2980 		char *ext_prop_name;
2981 		char *ext_prop_data;
2982 
2983 		t = &func->function.os_desc_table[h->interface];
2984 		t->if_id = func->interfaces_nums[h->interface];
2985 
2986 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2987 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2988 
2989 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2990 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2991 		ext_prop->data_len = le32_to_cpu(*(__le32 *)
2992 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2993 		length = ext_prop->name_len + ext_prop->data_len + 14;
2994 
2995 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2996 		func->ffs->ms_os_descs_ext_prop_name_avail +=
2997 			ext_prop->name_len;
2998 
2999 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
3000 		func->ffs->ms_os_descs_ext_prop_data_avail +=
3001 			ext_prop->data_len;
3002 		memcpy(ext_prop_data,
3003 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
3004 		       ext_prop->data_len);
3005 		/* unicode data reported to the host as "WCHAR"s */
3006 		switch (ext_prop->type) {
3007 		case USB_EXT_PROP_UNICODE:
3008 		case USB_EXT_PROP_UNICODE_ENV:
3009 		case USB_EXT_PROP_UNICODE_LINK:
3010 		case USB_EXT_PROP_UNICODE_MULTI:
3011 			ext_prop->data_len *= 2;
3012 			break;
3013 		}
3014 		ext_prop->data = ext_prop_data;
3015 
3016 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3017 		       ext_prop->name_len);
3018 		/* property name reported to the host as "WCHAR"s */
3019 		ext_prop->name_len *= 2;
3020 		ext_prop->name = ext_prop_name;
3021 
3022 		t->os_desc->ext_prop_len +=
3023 			ext_prop->name_len + ext_prop->data_len + 14;
3024 		++t->os_desc->ext_prop_count;
3025 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3026 	}
3027 		break;
3028 	default:
3029 		pr_vdebug("unknown descriptor: %d\n", type);
3030 	}
3031 
3032 	return length;
3033 }
3034 
3035 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3036 						struct usb_configuration *c)
3037 {
3038 	struct ffs_function *func = ffs_func_from_usb(f);
3039 	struct f_fs_opts *ffs_opts =
3040 		container_of(f->fi, struct f_fs_opts, func_inst);
3041 	int ret;
3042 
3043 	ENTER();
3044 
3045 	/*
3046 	 * Legacy gadget triggers binding in functionfs_ready_callback,
3047 	 * which already uses locking; taking the same lock here would
3048 	 * cause a deadlock.
3049 	 *
3050 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
3051 	 */
3052 	if (!ffs_opts->no_configfs)
3053 		ffs_dev_lock();
3054 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3055 	func->ffs = ffs_opts->dev->ffs_data;
3056 	if (!ffs_opts->no_configfs)
3057 		ffs_dev_unlock();
3058 	if (ret)
3059 		return ERR_PTR(ret);
3060 
3061 	func->conf = c;
3062 	func->gadget = c->cdev->gadget;
3063 
3064 	/*
3065 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3066 	 * configurations are bound in sequence with list_for_each_entry,
3067 	 * in each configuration its functions are bound in sequence
3068 	 * with list_for_each_entry, so we assume no race condition
3069 	 * with regard to ffs_opts->bound access
3070 	 */
3071 	if (!ffs_opts->refcnt) {
3072 		ret = functionfs_bind(func->ffs, c->cdev);
3073 		if (ret)
3074 			return ERR_PTR(ret);
3075 	}
3076 	ffs_opts->refcnt++;
3077 	func->function.strings = func->ffs->stringtabs;
3078 
3079 	return ffs_opts;
3080 }
3081 
3082 static int _ffs_func_bind(struct usb_configuration *c,
3083 			  struct usb_function *f)
3084 {
3085 	struct ffs_function *func = ffs_func_from_usb(f);
3086 	struct ffs_data *ffs = func->ffs;
3087 
3088 	const int full = !!func->ffs->fs_descs_count;
3089 	const int high = !!func->ffs->hs_descs_count;
3090 	const int super = !!func->ffs->ss_descs_count;
3091 
3092 	int fs_len, hs_len, ss_len, ret, i;
3093 	struct ffs_ep *eps_ptr;
3094 
3095 	/* Make it a single chunk, less management later on */
3096 	vla_group(d);
3097 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3098 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3099 		full ? ffs->fs_descs_count + 1 : 0);
3100 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3101 		high ? ffs->hs_descs_count + 1 : 0);
3102 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3103 		super ? ffs->ss_descs_count + 1 : 0);
3104 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3105 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3106 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3107 	vla_item_with_sz(d, char[16], ext_compat,
3108 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3109 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
3110 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3111 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3112 			 ffs->ms_os_descs_ext_prop_count);
3113 	vla_item_with_sz(d, char, ext_prop_name,
3114 			 ffs->ms_os_descs_ext_prop_name_len);
3115 	vla_item_with_sz(d, char, ext_prop_data,
3116 			 ffs->ms_os_descs_ext_prop_data_len);
3117 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3118 	char *vlabuf;
3119 
3120 	ENTER();
3121 
3122 	/* Has descriptors only for speeds gadget does not support */
3123 	if (unlikely(!(full | high | super)))
3124 		return -ENOTSUPP;
3125 
3126 	/* Allocate a single chunk, less management later on */
3127 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3128 	if (unlikely(!vlabuf))
3129 		return -ENOMEM;
3130 
3131 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3132 	ffs->ms_os_descs_ext_prop_name_avail =
3133 		vla_ptr(vlabuf, d, ext_prop_name);
3134 	ffs->ms_os_descs_ext_prop_data_avail =
3135 		vla_ptr(vlabuf, d, ext_prop_data);
3136 
3137 	/* Copy descriptors  */
3138 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3139 	       ffs->raw_descs_length);
3140 
3141 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3142 	eps_ptr = vla_ptr(vlabuf, d, eps);
3143 	for (i = 0; i < ffs->eps_count; i++)
3144 		eps_ptr[i].num = -1;
3145 
3146 	/* Save pointers
3147 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3148 	*/
3149 	func->eps             = vla_ptr(vlabuf, d, eps);
3150 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3151 
3152 	/*
3153 	 * Go through all the endpoint descriptors and allocate
3154 	 * endpoints first, so that later we can rewrite the endpoint
3155 	 * numbers without worrying that it may be described later on.
3156 	 */
3157 	if (likely(full)) {
3158 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3159 		fs_len = ffs_do_descs(ffs->fs_descs_count,
3160 				      vla_ptr(vlabuf, d, raw_descs),
3161 				      d_raw_descs__sz,
3162 				      __ffs_func_bind_do_descs, func);
3163 		if (unlikely(fs_len < 0)) {
3164 			ret = fs_len;
3165 			goto error;
3166 		}
3167 	} else {
3168 		fs_len = 0;
3169 	}
3170 
3171 	if (likely(high)) {
3172 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3173 		hs_len = ffs_do_descs(ffs->hs_descs_count,
3174 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3175 				      d_raw_descs__sz - fs_len,
3176 				      __ffs_func_bind_do_descs, func);
3177 		if (unlikely(hs_len < 0)) {
3178 			ret = hs_len;
3179 			goto error;
3180 		}
3181 	} else {
3182 		hs_len = 0;
3183 	}
3184 
3185 	if (likely(super)) {
3186 		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3187 		ss_len = ffs_do_descs(ffs->ss_descs_count,
3188 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3189 				d_raw_descs__sz - fs_len - hs_len,
3190 				__ffs_func_bind_do_descs, func);
3191 		if (unlikely(ss_len < 0)) {
3192 			ret = ss_len;
3193 			goto error;
3194 		}
3195 	} else {
3196 		ss_len = 0;
3197 	}
3198 
3199 	/*
3200 	 * Now handle interface numbers allocation and interface and
3201 	 * endpoint numbers rewriting.  We can do that in one go
3202 	 * now.
3203 	 */
3204 	ret = ffs_do_descs(ffs->fs_descs_count +
3205 			   (high ? ffs->hs_descs_count : 0) +
3206 			   (super ? ffs->ss_descs_count : 0),
3207 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3208 			   __ffs_func_bind_do_nums, func);
3209 	if (unlikely(ret < 0))
3210 		goto error;
3211 
3212 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3213 	if (c->cdev->use_os_string) {
3214 		for (i = 0; i < ffs->interfaces_count; ++i) {
3215 			struct usb_os_desc *desc;
3216 
3217 			desc = func->function.os_desc_table[i].os_desc =
3218 				vla_ptr(vlabuf, d, os_desc) +
3219 				i * sizeof(struct usb_os_desc);
3220 			desc->ext_compat_id =
3221 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3222 			INIT_LIST_HEAD(&desc->ext_prop);
3223 		}
3224 		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3225 				      vla_ptr(vlabuf, d, raw_descs) +
3226 				      fs_len + hs_len + ss_len,
3227 				      d_raw_descs__sz - fs_len - hs_len -
3228 				      ss_len,
3229 				      __ffs_func_bind_do_os_desc, func);
3230 		if (unlikely(ret < 0))
3231 			goto error;
3232 	}
3233 	func->function.os_desc_n =
3234 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3235 
3236 	/* And we're done */
3237 	ffs_event_add(ffs, FUNCTIONFS_BIND);
3238 	return 0;
3239 
3240 error:
3241 	/* XXX Do we need to release all claimed endpoints here? */
3242 	return ret;
3243 }
3244 
3245 static int ffs_func_bind(struct usb_configuration *c,
3246 			 struct usb_function *f)
3247 {
3248 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3249 	struct ffs_function *func = ffs_func_from_usb(f);
3250 	int ret;
3251 
3252 	if (IS_ERR(ffs_opts))
3253 		return PTR_ERR(ffs_opts);
3254 
3255 	ret = _ffs_func_bind(c, f);
3256 	if (ret && !--ffs_opts->refcnt)
3257 		functionfs_unbind(func->ffs);
3258 
3259 	return ret;
3260 }
3261 
3262 
3263 /* Other USB function hooks *************************************************/
3264 
3265 static void ffs_reset_work(struct work_struct *work)
3266 {
3267 	struct ffs_data *ffs = container_of(work,
3268 		struct ffs_data, reset_work);
3269 	ffs_data_reset(ffs);
3270 }
3271 
3272 static int ffs_func_set_alt(struct usb_function *f,
3273 			    unsigned interface, unsigned alt)
3274 {
3275 	struct ffs_function *func = ffs_func_from_usb(f);
3276 	struct ffs_data *ffs = func->ffs;
3277 	int ret = 0, intf;
3278 
3279 	if (alt != (unsigned)-1) {
3280 		intf = ffs_func_revmap_intf(func, interface);
3281 		if (unlikely(intf < 0))
3282 			return intf;
3283 	}
3284 
3285 	if (ffs->func)
3286 		ffs_func_eps_disable(ffs->func);
3287 
3288 	if (ffs->state == FFS_DEACTIVATED) {
3289 		ffs->state = FFS_CLOSING;
3290 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3291 		schedule_work(&ffs->reset_work);
3292 		return -ENODEV;
3293 	}
3294 
3295 	if (ffs->state != FFS_ACTIVE)
3296 		return -ENODEV;
3297 
3298 	if (alt == (unsigned)-1) {
3299 		ffs->func = NULL;
3300 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3301 		return 0;
3302 	}
3303 
3304 	ffs->func = func;
3305 	ret = ffs_func_eps_enable(func);
3306 	if (likely(ret >= 0))
3307 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3308 	return ret;
3309 }
3310 
3311 static void ffs_func_disable(struct usb_function *f)
3312 {
3313 	ffs_func_set_alt(f, 0, (unsigned)-1);
3314 }
3315 
3316 static int ffs_func_setup(struct usb_function *f,
3317 			  const struct usb_ctrlrequest *creq)
3318 {
3319 	struct ffs_function *func = ffs_func_from_usb(f);
3320 	struct ffs_data *ffs = func->ffs;
3321 	unsigned long flags;
3322 	int ret;
3323 
3324 	ENTER();
3325 
3326 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3327 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3328 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3329 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3330 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3331 
3332 	/*
3333 	 * Most requests directed to interface go through here
3334 	 * (notable exceptions are set/get interface) so we need to
3335 	 * handle them.  All other either handled by composite or
3336 	 * passed to usb_configuration->setup() (if one is set).  No
3337 	 * matter, we will handle requests directed to endpoint here
3338 	 * as well (as it's straightforward).  Other request recipient
3339 	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3340 	 * is being used.
3341 	 */
3342 	if (ffs->state != FFS_ACTIVE)
3343 		return -ENODEV;
3344 
3345 	switch (creq->bRequestType & USB_RECIP_MASK) {
3346 	case USB_RECIP_INTERFACE:
3347 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3348 		if (unlikely(ret < 0))
3349 			return ret;
3350 		break;
3351 
3352 	case USB_RECIP_ENDPOINT:
3353 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3354 		if (unlikely(ret < 0))
3355 			return ret;
3356 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3357 			ret = func->ffs->eps_addrmap[ret];
3358 		break;
3359 
3360 	default:
3361 		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3362 			ret = le16_to_cpu(creq->wIndex);
3363 		else
3364 			return -EOPNOTSUPP;
3365 	}
3366 
3367 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3368 	ffs->ev.setup = *creq;
3369 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3370 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3371 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3372 
3373 	return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3374 }
3375 
3376 static bool ffs_func_req_match(struct usb_function *f,
3377 			       const struct usb_ctrlrequest *creq,
3378 			       bool config0)
3379 {
3380 	struct ffs_function *func = ffs_func_from_usb(f);
3381 
3382 	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3383 		return false;
3384 
3385 	switch (creq->bRequestType & USB_RECIP_MASK) {
3386 	case USB_RECIP_INTERFACE:
3387 		return (ffs_func_revmap_intf(func,
3388 					     le16_to_cpu(creq->wIndex)) >= 0);
3389 	case USB_RECIP_ENDPOINT:
3390 		return (ffs_func_revmap_ep(func,
3391 					   le16_to_cpu(creq->wIndex)) >= 0);
3392 	default:
3393 		return (bool) (func->ffs->user_flags &
3394 			       FUNCTIONFS_ALL_CTRL_RECIP);
3395 	}
3396 }
3397 
3398 static void ffs_func_suspend(struct usb_function *f)
3399 {
3400 	ENTER();
3401 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3402 }
3403 
3404 static void ffs_func_resume(struct usb_function *f)
3405 {
3406 	ENTER();
3407 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3408 }
3409 
3410 
3411 /* Endpoint and interface numbers reverse mapping ***************************/
3412 
3413 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3414 {
3415 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3416 	return num ? num : -EDOM;
3417 }
3418 
3419 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3420 {
3421 	short *nums = func->interfaces_nums;
3422 	unsigned count = func->ffs->interfaces_count;
3423 
3424 	for (; count; --count, ++nums) {
3425 		if (*nums >= 0 && *nums == intf)
3426 			return nums - func->interfaces_nums;
3427 	}
3428 
3429 	return -EDOM;
3430 }
3431 
3432 
3433 /* Devices management *******************************************************/
3434 
3435 static LIST_HEAD(ffs_devices);
3436 
3437 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3438 {
3439 	struct ffs_dev *dev;
3440 
3441 	if (!name)
3442 		return NULL;
3443 
3444 	list_for_each_entry(dev, &ffs_devices, entry) {
3445 		if (strcmp(dev->name, name) == 0)
3446 			return dev;
3447 	}
3448 
3449 	return NULL;
3450 }
3451 
3452 /*
3453  * ffs_lock must be taken by the caller of this function
3454  */
3455 static struct ffs_dev *_ffs_get_single_dev(void)
3456 {
3457 	struct ffs_dev *dev;
3458 
3459 	if (list_is_singular(&ffs_devices)) {
3460 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3461 		if (dev->single)
3462 			return dev;
3463 	}
3464 
3465 	return NULL;
3466 }
3467 
3468 /*
3469  * ffs_lock must be taken by the caller of this function
3470  */
3471 static struct ffs_dev *_ffs_find_dev(const char *name)
3472 {
3473 	struct ffs_dev *dev;
3474 
3475 	dev = _ffs_get_single_dev();
3476 	if (dev)
3477 		return dev;
3478 
3479 	return _ffs_do_find_dev(name);
3480 }
3481 
3482 /* Configfs support *********************************************************/
3483 
3484 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3485 {
3486 	return container_of(to_config_group(item), struct f_fs_opts,
3487 			    func_inst.group);
3488 }
3489 
3490 static void ffs_attr_release(struct config_item *item)
3491 {
3492 	struct f_fs_opts *opts = to_ffs_opts(item);
3493 
3494 	usb_put_function_instance(&opts->func_inst);
3495 }
3496 
3497 static struct configfs_item_operations ffs_item_ops = {
3498 	.release	= ffs_attr_release,
3499 };
3500 
3501 static const struct config_item_type ffs_func_type = {
3502 	.ct_item_ops	= &ffs_item_ops,
3503 	.ct_owner	= THIS_MODULE,
3504 };
3505 
3506 
3507 /* Function registration interface ******************************************/
3508 
3509 static void ffs_free_inst(struct usb_function_instance *f)
3510 {
3511 	struct f_fs_opts *opts;
3512 
3513 	opts = to_f_fs_opts(f);
3514 	ffs_dev_lock();
3515 	_ffs_free_dev(opts->dev);
3516 	ffs_dev_unlock();
3517 	kfree(opts);
3518 }
3519 
3520 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3521 {
3522 	if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name))
3523 		return -ENAMETOOLONG;
3524 	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3525 }
3526 
3527 static struct usb_function_instance *ffs_alloc_inst(void)
3528 {
3529 	struct f_fs_opts *opts;
3530 	struct ffs_dev *dev;
3531 
3532 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3533 	if (!opts)
3534 		return ERR_PTR(-ENOMEM);
3535 
3536 	opts->func_inst.set_inst_name = ffs_set_inst_name;
3537 	opts->func_inst.free_func_inst = ffs_free_inst;
3538 	ffs_dev_lock();
3539 	dev = _ffs_alloc_dev();
3540 	ffs_dev_unlock();
3541 	if (IS_ERR(dev)) {
3542 		kfree(opts);
3543 		return ERR_CAST(dev);
3544 	}
3545 	opts->dev = dev;
3546 	dev->opts = opts;
3547 
3548 	config_group_init_type_name(&opts->func_inst.group, "",
3549 				    &ffs_func_type);
3550 	return &opts->func_inst;
3551 }
3552 
3553 static void ffs_free(struct usb_function *f)
3554 {
3555 	kfree(ffs_func_from_usb(f));
3556 }
3557 
3558 static void ffs_func_unbind(struct usb_configuration *c,
3559 			    struct usb_function *f)
3560 {
3561 	struct ffs_function *func = ffs_func_from_usb(f);
3562 	struct ffs_data *ffs = func->ffs;
3563 	struct f_fs_opts *opts =
3564 		container_of(f->fi, struct f_fs_opts, func_inst);
3565 	struct ffs_ep *ep = func->eps;
3566 	unsigned count = ffs->eps_count;
3567 	unsigned long flags;
3568 
3569 	ENTER();
3570 	if (ffs->func == func) {
3571 		ffs_func_eps_disable(func);
3572 		ffs->func = NULL;
3573 	}
3574 
3575 	if (!--opts->refcnt)
3576 		functionfs_unbind(ffs);
3577 
3578 	/* cleanup after autoconfig */
3579 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3580 	while (count--) {
3581 		if (ep->ep && ep->req)
3582 			usb_ep_free_request(ep->ep, ep->req);
3583 		ep->req = NULL;
3584 		++ep;
3585 	}
3586 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3587 	kfree(func->eps);
3588 	func->eps = NULL;
3589 	/*
3590 	 * eps, descriptors and interfaces_nums are allocated in the
3591 	 * same chunk so only one free is required.
3592 	 */
3593 	func->function.fs_descriptors = NULL;
3594 	func->function.hs_descriptors = NULL;
3595 	func->function.ss_descriptors = NULL;
3596 	func->interfaces_nums = NULL;
3597 
3598 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3599 }
3600 
3601 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3602 {
3603 	struct ffs_function *func;
3604 
3605 	ENTER();
3606 
3607 	func = kzalloc(sizeof(*func), GFP_KERNEL);
3608 	if (unlikely(!func))
3609 		return ERR_PTR(-ENOMEM);
3610 
3611 	func->function.name    = "Function FS Gadget";
3612 
3613 	func->function.bind    = ffs_func_bind;
3614 	func->function.unbind  = ffs_func_unbind;
3615 	func->function.set_alt = ffs_func_set_alt;
3616 	func->function.disable = ffs_func_disable;
3617 	func->function.setup   = ffs_func_setup;
3618 	func->function.req_match = ffs_func_req_match;
3619 	func->function.suspend = ffs_func_suspend;
3620 	func->function.resume  = ffs_func_resume;
3621 	func->function.free_func = ffs_free;
3622 
3623 	return &func->function;
3624 }
3625 
3626 /*
3627  * ffs_lock must be taken by the caller of this function
3628  */
3629 static struct ffs_dev *_ffs_alloc_dev(void)
3630 {
3631 	struct ffs_dev *dev;
3632 	int ret;
3633 
3634 	if (_ffs_get_single_dev())
3635 			return ERR_PTR(-EBUSY);
3636 
3637 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3638 	if (!dev)
3639 		return ERR_PTR(-ENOMEM);
3640 
3641 	if (list_empty(&ffs_devices)) {
3642 		ret = functionfs_init();
3643 		if (ret) {
3644 			kfree(dev);
3645 			return ERR_PTR(ret);
3646 		}
3647 	}
3648 
3649 	list_add(&dev->entry, &ffs_devices);
3650 
3651 	return dev;
3652 }
3653 
3654 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3655 {
3656 	struct ffs_dev *existing;
3657 	int ret = 0;
3658 
3659 	ffs_dev_lock();
3660 
3661 	existing = _ffs_do_find_dev(name);
3662 	if (!existing)
3663 		strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3664 	else if (existing != dev)
3665 		ret = -EBUSY;
3666 
3667 	ffs_dev_unlock();
3668 
3669 	return ret;
3670 }
3671 EXPORT_SYMBOL_GPL(ffs_name_dev);
3672 
3673 int ffs_single_dev(struct ffs_dev *dev)
3674 {
3675 	int ret;
3676 
3677 	ret = 0;
3678 	ffs_dev_lock();
3679 
3680 	if (!list_is_singular(&ffs_devices))
3681 		ret = -EBUSY;
3682 	else
3683 		dev->single = true;
3684 
3685 	ffs_dev_unlock();
3686 	return ret;
3687 }
3688 EXPORT_SYMBOL_GPL(ffs_single_dev);
3689 
3690 /*
3691  * ffs_lock must be taken by the caller of this function
3692  */
3693 static void _ffs_free_dev(struct ffs_dev *dev)
3694 {
3695 	list_del(&dev->entry);
3696 
3697 	/* Clear the private_data pointer to stop incorrect dev access */
3698 	if (dev->ffs_data)
3699 		dev->ffs_data->private_data = NULL;
3700 
3701 	kfree(dev);
3702 	if (list_empty(&ffs_devices))
3703 		functionfs_cleanup();
3704 }
3705 
3706 static void *ffs_acquire_dev(const char *dev_name)
3707 {
3708 	struct ffs_dev *ffs_dev;
3709 
3710 	ENTER();
3711 	ffs_dev_lock();
3712 
3713 	ffs_dev = _ffs_find_dev(dev_name);
3714 	if (!ffs_dev)
3715 		ffs_dev = ERR_PTR(-ENOENT);
3716 	else if (ffs_dev->mounted)
3717 		ffs_dev = ERR_PTR(-EBUSY);
3718 	else if (ffs_dev->ffs_acquire_dev_callback &&
3719 	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3720 		ffs_dev = ERR_PTR(-ENOENT);
3721 	else
3722 		ffs_dev->mounted = true;
3723 
3724 	ffs_dev_unlock();
3725 	return ffs_dev;
3726 }
3727 
3728 static void ffs_release_dev(struct ffs_data *ffs_data)
3729 {
3730 	struct ffs_dev *ffs_dev;
3731 
3732 	ENTER();
3733 	ffs_dev_lock();
3734 
3735 	ffs_dev = ffs_data->private_data;
3736 	if (ffs_dev) {
3737 		ffs_dev->mounted = false;
3738 
3739 		if (ffs_dev->ffs_release_dev_callback)
3740 			ffs_dev->ffs_release_dev_callback(ffs_dev);
3741 	}
3742 
3743 	ffs_dev_unlock();
3744 }
3745 
3746 static int ffs_ready(struct ffs_data *ffs)
3747 {
3748 	struct ffs_dev *ffs_obj;
3749 	int ret = 0;
3750 
3751 	ENTER();
3752 	ffs_dev_lock();
3753 
3754 	ffs_obj = ffs->private_data;
3755 	if (!ffs_obj) {
3756 		ret = -EINVAL;
3757 		goto done;
3758 	}
3759 	if (WARN_ON(ffs_obj->desc_ready)) {
3760 		ret = -EBUSY;
3761 		goto done;
3762 	}
3763 
3764 	ffs_obj->desc_ready = true;
3765 	ffs_obj->ffs_data = ffs;
3766 
3767 	if (ffs_obj->ffs_ready_callback) {
3768 		ret = ffs_obj->ffs_ready_callback(ffs);
3769 		if (ret)
3770 			goto done;
3771 	}
3772 
3773 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3774 done:
3775 	ffs_dev_unlock();
3776 	return ret;
3777 }
3778 
3779 static void ffs_closed(struct ffs_data *ffs)
3780 {
3781 	struct ffs_dev *ffs_obj;
3782 	struct f_fs_opts *opts;
3783 	struct config_item *ci;
3784 
3785 	ENTER();
3786 	ffs_dev_lock();
3787 
3788 	ffs_obj = ffs->private_data;
3789 	if (!ffs_obj)
3790 		goto done;
3791 
3792 	ffs_obj->desc_ready = false;
3793 	ffs_obj->ffs_data = NULL;
3794 
3795 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3796 	    ffs_obj->ffs_closed_callback)
3797 		ffs_obj->ffs_closed_callback(ffs);
3798 
3799 	if (ffs_obj->opts)
3800 		opts = ffs_obj->opts;
3801 	else
3802 		goto done;
3803 
3804 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3805 	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3806 		goto done;
3807 
3808 	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3809 	ffs_dev_unlock();
3810 
3811 	if (test_bit(FFS_FL_BOUND, &ffs->flags))
3812 		unregister_gadget_item(ci);
3813 	return;
3814 done:
3815 	ffs_dev_unlock();
3816 }
3817 
3818 /* Misc helper functions ****************************************************/
3819 
3820 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3821 {
3822 	return nonblock
3823 		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3824 		: mutex_lock_interruptible(mutex);
3825 }
3826 
3827 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3828 {
3829 	char *data;
3830 
3831 	if (unlikely(!len))
3832 		return NULL;
3833 
3834 	data = kmalloc(len, GFP_KERNEL);
3835 	if (unlikely(!data))
3836 		return ERR_PTR(-ENOMEM);
3837 
3838 	if (unlikely(copy_from_user(data, buf, len))) {
3839 		kfree(data);
3840 		return ERR_PTR(-EFAULT);
3841 	}
3842 
3843 	pr_vdebug("Buffer from user space:\n");
3844 	ffs_dump_mem("", data, len);
3845 
3846 	return data;
3847 }
3848 
3849 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3850 MODULE_LICENSE("GPL");
3851 MODULE_AUTHOR("Michal Nazarewicz");
3852