1 /* 2 * f_fs.c -- user mode file system API for USB composite function controllers 3 * 4 * Copyright (C) 2010 Samsung Electronics 5 * Author: Michal Nazarewicz <mina86@mina86.com> 6 * 7 * Based on inode.c (GadgetFS) which was: 8 * Copyright (C) 2003-2004 David Brownell 9 * Copyright (C) 2003 Agilent Technologies 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2 of the License, or 14 * (at your option) any later version. 15 */ 16 17 18 /* #define DEBUG */ 19 /* #define VERBOSE_DEBUG */ 20 21 #include <linux/blkdev.h> 22 #include <linux/pagemap.h> 23 #include <linux/export.h> 24 #include <linux/hid.h> 25 #include <linux/module.h> 26 #include <asm/unaligned.h> 27 28 #include <linux/usb/composite.h> 29 #include <linux/usb/functionfs.h> 30 31 #include <linux/aio.h> 32 #include <linux/mmu_context.h> 33 #include <linux/poll.h> 34 35 #include "u_fs.h" 36 #include "u_f.h" 37 #include "u_os_desc.h" 38 #include "configfs.h" 39 40 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ 41 42 /* Reference counter handling */ 43 static void ffs_data_get(struct ffs_data *ffs); 44 static void ffs_data_put(struct ffs_data *ffs); 45 /* Creates new ffs_data object. */ 46 static struct ffs_data *__must_check ffs_data_new(void) __attribute__((malloc)); 47 48 /* Opened counter handling. */ 49 static void ffs_data_opened(struct ffs_data *ffs); 50 static void ffs_data_closed(struct ffs_data *ffs); 51 52 /* Called with ffs->mutex held; take over ownership of data. */ 53 static int __must_check 54 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); 55 static int __must_check 56 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); 57 58 59 /* The function structure ***************************************************/ 60 61 struct ffs_ep; 62 63 struct ffs_function { 64 struct usb_configuration *conf; 65 struct usb_gadget *gadget; 66 struct ffs_data *ffs; 67 68 struct ffs_ep *eps; 69 u8 eps_revmap[16]; 70 short *interfaces_nums; 71 72 struct usb_function function; 73 }; 74 75 76 static struct ffs_function *ffs_func_from_usb(struct usb_function *f) 77 { 78 return container_of(f, struct ffs_function, function); 79 } 80 81 82 static inline enum ffs_setup_state 83 ffs_setup_state_clear_cancelled(struct ffs_data *ffs) 84 { 85 return (enum ffs_setup_state) 86 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); 87 } 88 89 90 static void ffs_func_eps_disable(struct ffs_function *func); 91 static int __must_check ffs_func_eps_enable(struct ffs_function *func); 92 93 static int ffs_func_bind(struct usb_configuration *, 94 struct usb_function *); 95 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); 96 static void ffs_func_disable(struct usb_function *); 97 static int ffs_func_setup(struct usb_function *, 98 const struct usb_ctrlrequest *); 99 static void ffs_func_suspend(struct usb_function *); 100 static void ffs_func_resume(struct usb_function *); 101 102 103 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); 104 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); 105 106 107 /* The endpoints structures *************************************************/ 108 109 struct ffs_ep { 110 struct usb_ep *ep; /* P: ffs->eps_lock */ 111 struct usb_request *req; /* P: epfile->mutex */ 112 113 /* [0]: full speed, [1]: high speed, [2]: super speed */ 114 struct usb_endpoint_descriptor *descs[3]; 115 116 u8 num; 117 118 int status; /* P: epfile->mutex */ 119 }; 120 121 struct ffs_epfile { 122 /* Protects ep->ep and ep->req. */ 123 struct mutex mutex; 124 wait_queue_head_t wait; 125 126 struct ffs_data *ffs; 127 struct ffs_ep *ep; /* P: ffs->eps_lock */ 128 129 struct dentry *dentry; 130 131 char name[5]; 132 133 unsigned char in; /* P: ffs->eps_lock */ 134 unsigned char isoc; /* P: ffs->eps_lock */ 135 136 unsigned char _pad; 137 }; 138 139 /* ffs_io_data structure ***************************************************/ 140 141 struct ffs_io_data { 142 bool aio; 143 bool read; 144 145 struct kiocb *kiocb; 146 const struct iovec *iovec; 147 unsigned long nr_segs; 148 char __user *buf; 149 size_t len; 150 151 struct mm_struct *mm; 152 struct work_struct work; 153 154 struct usb_ep *ep; 155 struct usb_request *req; 156 }; 157 158 struct ffs_desc_helper { 159 struct ffs_data *ffs; 160 unsigned interfaces_count; 161 unsigned eps_count; 162 }; 163 164 static int __must_check ffs_epfiles_create(struct ffs_data *ffs); 165 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count); 166 167 static struct dentry * 168 ffs_sb_create_file(struct super_block *sb, const char *name, void *data, 169 const struct file_operations *fops); 170 171 /* Devices management *******************************************************/ 172 173 DEFINE_MUTEX(ffs_lock); 174 EXPORT_SYMBOL_GPL(ffs_lock); 175 176 static struct ffs_dev *_ffs_find_dev(const char *name); 177 static struct ffs_dev *_ffs_alloc_dev(void); 178 static int _ffs_name_dev(struct ffs_dev *dev, const char *name); 179 static void _ffs_free_dev(struct ffs_dev *dev); 180 static void *ffs_acquire_dev(const char *dev_name); 181 static void ffs_release_dev(struct ffs_data *ffs_data); 182 static int ffs_ready(struct ffs_data *ffs); 183 static void ffs_closed(struct ffs_data *ffs); 184 185 /* Misc helper functions ****************************************************/ 186 187 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 188 __attribute__((warn_unused_result, nonnull)); 189 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 190 __attribute__((warn_unused_result, nonnull)); 191 192 193 /* Control file aka ep0 *****************************************************/ 194 195 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) 196 { 197 struct ffs_data *ffs = req->context; 198 199 complete_all(&ffs->ep0req_completion); 200 } 201 202 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) 203 { 204 struct usb_request *req = ffs->ep0req; 205 int ret; 206 207 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); 208 209 spin_unlock_irq(&ffs->ev.waitq.lock); 210 211 req->buf = data; 212 req->length = len; 213 214 /* 215 * UDC layer requires to provide a buffer even for ZLP, but should 216 * not use it at all. Let's provide some poisoned pointer to catch 217 * possible bug in the driver. 218 */ 219 if (req->buf == NULL) 220 req->buf = (void *)0xDEADBABE; 221 222 reinit_completion(&ffs->ep0req_completion); 223 224 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); 225 if (unlikely(ret < 0)) 226 return ret; 227 228 ret = wait_for_completion_interruptible(&ffs->ep0req_completion); 229 if (unlikely(ret)) { 230 usb_ep_dequeue(ffs->gadget->ep0, req); 231 return -EINTR; 232 } 233 234 ffs->setup_state = FFS_NO_SETUP; 235 return req->status ? req->status : req->actual; 236 } 237 238 static int __ffs_ep0_stall(struct ffs_data *ffs) 239 { 240 if (ffs->ev.can_stall) { 241 pr_vdebug("ep0 stall\n"); 242 usb_ep_set_halt(ffs->gadget->ep0); 243 ffs->setup_state = FFS_NO_SETUP; 244 return -EL2HLT; 245 } else { 246 pr_debug("bogus ep0 stall!\n"); 247 return -ESRCH; 248 } 249 } 250 251 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, 252 size_t len, loff_t *ptr) 253 { 254 struct ffs_data *ffs = file->private_data; 255 ssize_t ret; 256 char *data; 257 258 ENTER(); 259 260 /* Fast check if setup was canceled */ 261 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 262 return -EIDRM; 263 264 /* Acquire mutex */ 265 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 266 if (unlikely(ret < 0)) 267 return ret; 268 269 /* Check state */ 270 switch (ffs->state) { 271 case FFS_READ_DESCRIPTORS: 272 case FFS_READ_STRINGS: 273 /* Copy data */ 274 if (unlikely(len < 16)) { 275 ret = -EINVAL; 276 break; 277 } 278 279 data = ffs_prepare_buffer(buf, len); 280 if (IS_ERR(data)) { 281 ret = PTR_ERR(data); 282 break; 283 } 284 285 /* Handle data */ 286 if (ffs->state == FFS_READ_DESCRIPTORS) { 287 pr_info("read descriptors\n"); 288 ret = __ffs_data_got_descs(ffs, data, len); 289 if (unlikely(ret < 0)) 290 break; 291 292 ffs->state = FFS_READ_STRINGS; 293 ret = len; 294 } else { 295 pr_info("read strings\n"); 296 ret = __ffs_data_got_strings(ffs, data, len); 297 if (unlikely(ret < 0)) 298 break; 299 300 ret = ffs_epfiles_create(ffs); 301 if (unlikely(ret)) { 302 ffs->state = FFS_CLOSING; 303 break; 304 } 305 306 ffs->state = FFS_ACTIVE; 307 mutex_unlock(&ffs->mutex); 308 309 ret = ffs_ready(ffs); 310 if (unlikely(ret < 0)) { 311 ffs->state = FFS_CLOSING; 312 return ret; 313 } 314 315 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); 316 return len; 317 } 318 break; 319 320 case FFS_ACTIVE: 321 data = NULL; 322 /* 323 * We're called from user space, we can use _irq 324 * rather then _irqsave 325 */ 326 spin_lock_irq(&ffs->ev.waitq.lock); 327 switch (ffs_setup_state_clear_cancelled(ffs)) { 328 case FFS_SETUP_CANCELLED: 329 ret = -EIDRM; 330 goto done_spin; 331 332 case FFS_NO_SETUP: 333 ret = -ESRCH; 334 goto done_spin; 335 336 case FFS_SETUP_PENDING: 337 break; 338 } 339 340 /* FFS_SETUP_PENDING */ 341 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { 342 spin_unlock_irq(&ffs->ev.waitq.lock); 343 ret = __ffs_ep0_stall(ffs); 344 break; 345 } 346 347 /* FFS_SETUP_PENDING and not stall */ 348 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 349 350 spin_unlock_irq(&ffs->ev.waitq.lock); 351 352 data = ffs_prepare_buffer(buf, len); 353 if (IS_ERR(data)) { 354 ret = PTR_ERR(data); 355 break; 356 } 357 358 spin_lock_irq(&ffs->ev.waitq.lock); 359 360 /* 361 * We are guaranteed to be still in FFS_ACTIVE state 362 * but the state of setup could have changed from 363 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need 364 * to check for that. If that happened we copied data 365 * from user space in vain but it's unlikely. 366 * 367 * For sure we are not in FFS_NO_SETUP since this is 368 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP 369 * transition can be performed and it's protected by 370 * mutex. 371 */ 372 if (ffs_setup_state_clear_cancelled(ffs) == 373 FFS_SETUP_CANCELLED) { 374 ret = -EIDRM; 375 done_spin: 376 spin_unlock_irq(&ffs->ev.waitq.lock); 377 } else { 378 /* unlocks spinlock */ 379 ret = __ffs_ep0_queue_wait(ffs, data, len); 380 } 381 kfree(data); 382 break; 383 384 default: 385 ret = -EBADFD; 386 break; 387 } 388 389 mutex_unlock(&ffs->mutex); 390 return ret; 391 } 392 393 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, 394 size_t n) 395 { 396 /* 397 * We are holding ffs->ev.waitq.lock and ffs->mutex and we need 398 * to release them. 399 */ 400 struct usb_functionfs_event events[n]; 401 unsigned i = 0; 402 403 memset(events, 0, sizeof events); 404 405 do { 406 events[i].type = ffs->ev.types[i]; 407 if (events[i].type == FUNCTIONFS_SETUP) { 408 events[i].u.setup = ffs->ev.setup; 409 ffs->setup_state = FFS_SETUP_PENDING; 410 } 411 } while (++i < n); 412 413 if (n < ffs->ev.count) { 414 ffs->ev.count -= n; 415 memmove(ffs->ev.types, ffs->ev.types + n, 416 ffs->ev.count * sizeof *ffs->ev.types); 417 } else { 418 ffs->ev.count = 0; 419 } 420 421 spin_unlock_irq(&ffs->ev.waitq.lock); 422 mutex_unlock(&ffs->mutex); 423 424 return unlikely(__copy_to_user(buf, events, sizeof events)) 425 ? -EFAULT : sizeof events; 426 } 427 428 static ssize_t ffs_ep0_read(struct file *file, char __user *buf, 429 size_t len, loff_t *ptr) 430 { 431 struct ffs_data *ffs = file->private_data; 432 char *data = NULL; 433 size_t n; 434 int ret; 435 436 ENTER(); 437 438 /* Fast check if setup was canceled */ 439 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 440 return -EIDRM; 441 442 /* Acquire mutex */ 443 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 444 if (unlikely(ret < 0)) 445 return ret; 446 447 /* Check state */ 448 if (ffs->state != FFS_ACTIVE) { 449 ret = -EBADFD; 450 goto done_mutex; 451 } 452 453 /* 454 * We're called from user space, we can use _irq rather then 455 * _irqsave 456 */ 457 spin_lock_irq(&ffs->ev.waitq.lock); 458 459 switch (ffs_setup_state_clear_cancelled(ffs)) { 460 case FFS_SETUP_CANCELLED: 461 ret = -EIDRM; 462 break; 463 464 case FFS_NO_SETUP: 465 n = len / sizeof(struct usb_functionfs_event); 466 if (unlikely(!n)) { 467 ret = -EINVAL; 468 break; 469 } 470 471 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { 472 ret = -EAGAIN; 473 break; 474 } 475 476 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, 477 ffs->ev.count)) { 478 ret = -EINTR; 479 break; 480 } 481 482 return __ffs_ep0_read_events(ffs, buf, 483 min(n, (size_t)ffs->ev.count)); 484 485 case FFS_SETUP_PENDING: 486 if (ffs->ev.setup.bRequestType & USB_DIR_IN) { 487 spin_unlock_irq(&ffs->ev.waitq.lock); 488 ret = __ffs_ep0_stall(ffs); 489 goto done_mutex; 490 } 491 492 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 493 494 spin_unlock_irq(&ffs->ev.waitq.lock); 495 496 if (likely(len)) { 497 data = kmalloc(len, GFP_KERNEL); 498 if (unlikely(!data)) { 499 ret = -ENOMEM; 500 goto done_mutex; 501 } 502 } 503 504 spin_lock_irq(&ffs->ev.waitq.lock); 505 506 /* See ffs_ep0_write() */ 507 if (ffs_setup_state_clear_cancelled(ffs) == 508 FFS_SETUP_CANCELLED) { 509 ret = -EIDRM; 510 break; 511 } 512 513 /* unlocks spinlock */ 514 ret = __ffs_ep0_queue_wait(ffs, data, len); 515 if (likely(ret > 0) && unlikely(__copy_to_user(buf, data, len))) 516 ret = -EFAULT; 517 goto done_mutex; 518 519 default: 520 ret = -EBADFD; 521 break; 522 } 523 524 spin_unlock_irq(&ffs->ev.waitq.lock); 525 done_mutex: 526 mutex_unlock(&ffs->mutex); 527 kfree(data); 528 return ret; 529 } 530 531 static int ffs_ep0_open(struct inode *inode, struct file *file) 532 { 533 struct ffs_data *ffs = inode->i_private; 534 535 ENTER(); 536 537 if (unlikely(ffs->state == FFS_CLOSING)) 538 return -EBUSY; 539 540 file->private_data = ffs; 541 ffs_data_opened(ffs); 542 543 return 0; 544 } 545 546 static int ffs_ep0_release(struct inode *inode, struct file *file) 547 { 548 struct ffs_data *ffs = file->private_data; 549 550 ENTER(); 551 552 ffs_data_closed(ffs); 553 554 return 0; 555 } 556 557 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) 558 { 559 struct ffs_data *ffs = file->private_data; 560 struct usb_gadget *gadget = ffs->gadget; 561 long ret; 562 563 ENTER(); 564 565 if (code == FUNCTIONFS_INTERFACE_REVMAP) { 566 struct ffs_function *func = ffs->func; 567 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; 568 } else if (gadget && gadget->ops->ioctl) { 569 ret = gadget->ops->ioctl(gadget, code, value); 570 } else { 571 ret = -ENOTTY; 572 } 573 574 return ret; 575 } 576 577 static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait) 578 { 579 struct ffs_data *ffs = file->private_data; 580 unsigned int mask = POLLWRNORM; 581 int ret; 582 583 poll_wait(file, &ffs->ev.waitq, wait); 584 585 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 586 if (unlikely(ret < 0)) 587 return mask; 588 589 switch (ffs->state) { 590 case FFS_READ_DESCRIPTORS: 591 case FFS_READ_STRINGS: 592 mask |= POLLOUT; 593 break; 594 595 case FFS_ACTIVE: 596 switch (ffs->setup_state) { 597 case FFS_NO_SETUP: 598 if (ffs->ev.count) 599 mask |= POLLIN; 600 break; 601 602 case FFS_SETUP_PENDING: 603 case FFS_SETUP_CANCELLED: 604 mask |= (POLLIN | POLLOUT); 605 break; 606 } 607 case FFS_CLOSING: 608 break; 609 } 610 611 mutex_unlock(&ffs->mutex); 612 613 return mask; 614 } 615 616 static const struct file_operations ffs_ep0_operations = { 617 .llseek = no_llseek, 618 619 .open = ffs_ep0_open, 620 .write = ffs_ep0_write, 621 .read = ffs_ep0_read, 622 .release = ffs_ep0_release, 623 .unlocked_ioctl = ffs_ep0_ioctl, 624 .poll = ffs_ep0_poll, 625 }; 626 627 628 /* "Normal" endpoints operations ********************************************/ 629 630 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) 631 { 632 ENTER(); 633 if (likely(req->context)) { 634 struct ffs_ep *ep = _ep->driver_data; 635 ep->status = req->status ? req->status : req->actual; 636 complete(req->context); 637 } 638 } 639 640 static void ffs_user_copy_worker(struct work_struct *work) 641 { 642 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 643 work); 644 int ret = io_data->req->status ? io_data->req->status : 645 io_data->req->actual; 646 647 if (io_data->read && ret > 0) { 648 int i; 649 size_t pos = 0; 650 use_mm(io_data->mm); 651 for (i = 0; i < io_data->nr_segs; i++) { 652 if (unlikely(copy_to_user(io_data->iovec[i].iov_base, 653 &io_data->buf[pos], 654 io_data->iovec[i].iov_len))) { 655 ret = -EFAULT; 656 break; 657 } 658 pos += io_data->iovec[i].iov_len; 659 } 660 unuse_mm(io_data->mm); 661 } 662 663 aio_complete(io_data->kiocb, ret, ret); 664 665 usb_ep_free_request(io_data->ep, io_data->req); 666 667 io_data->kiocb->private = NULL; 668 if (io_data->read) 669 kfree(io_data->iovec); 670 kfree(io_data->buf); 671 kfree(io_data); 672 } 673 674 static void ffs_epfile_async_io_complete(struct usb_ep *_ep, 675 struct usb_request *req) 676 { 677 struct ffs_io_data *io_data = req->context; 678 679 ENTER(); 680 681 INIT_WORK(&io_data->work, ffs_user_copy_worker); 682 schedule_work(&io_data->work); 683 } 684 685 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) 686 { 687 struct ffs_epfile *epfile = file->private_data; 688 struct ffs_ep *ep; 689 char *data = NULL; 690 ssize_t ret, data_len; 691 int halt; 692 693 /* Are we still active? */ 694 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) { 695 ret = -ENODEV; 696 goto error; 697 } 698 699 /* Wait for endpoint to be enabled */ 700 ep = epfile->ep; 701 if (!ep) { 702 if (file->f_flags & O_NONBLOCK) { 703 ret = -EAGAIN; 704 goto error; 705 } 706 707 ret = wait_event_interruptible(epfile->wait, (ep = epfile->ep)); 708 if (ret) { 709 ret = -EINTR; 710 goto error; 711 } 712 } 713 714 /* Do we halt? */ 715 halt = (!io_data->read == !epfile->in); 716 if (halt && epfile->isoc) { 717 ret = -EINVAL; 718 goto error; 719 } 720 721 /* Allocate & copy */ 722 if (!halt) { 723 /* 724 * if we _do_ wait above, the epfile->ffs->gadget might be NULL 725 * before the waiting completes, so do not assign to 'gadget' earlier 726 */ 727 struct usb_gadget *gadget = epfile->ffs->gadget; 728 729 spin_lock_irq(&epfile->ffs->eps_lock); 730 /* In the meantime, endpoint got disabled or changed. */ 731 if (epfile->ep != ep) { 732 spin_unlock_irq(&epfile->ffs->eps_lock); 733 return -ESHUTDOWN; 734 } 735 /* 736 * Controller may require buffer size to be aligned to 737 * maxpacketsize of an out endpoint. 738 */ 739 data_len = io_data->read ? 740 usb_ep_align_maybe(gadget, ep->ep, io_data->len) : 741 io_data->len; 742 spin_unlock_irq(&epfile->ffs->eps_lock); 743 744 data = kmalloc(data_len, GFP_KERNEL); 745 if (unlikely(!data)) 746 return -ENOMEM; 747 if (io_data->aio && !io_data->read) { 748 int i; 749 size_t pos = 0; 750 for (i = 0; i < io_data->nr_segs; i++) { 751 if (unlikely(copy_from_user(&data[pos], 752 io_data->iovec[i].iov_base, 753 io_data->iovec[i].iov_len))) { 754 ret = -EFAULT; 755 goto error; 756 } 757 pos += io_data->iovec[i].iov_len; 758 } 759 } else { 760 if (!io_data->read && 761 unlikely(__copy_from_user(data, io_data->buf, 762 io_data->len))) { 763 ret = -EFAULT; 764 goto error; 765 } 766 } 767 } 768 769 /* We will be using request */ 770 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); 771 if (unlikely(ret)) 772 goto error; 773 774 spin_lock_irq(&epfile->ffs->eps_lock); 775 776 if (epfile->ep != ep) { 777 /* In the meantime, endpoint got disabled or changed. */ 778 ret = -ESHUTDOWN; 779 spin_unlock_irq(&epfile->ffs->eps_lock); 780 } else if (halt) { 781 /* Halt */ 782 if (likely(epfile->ep == ep) && !WARN_ON(!ep->ep)) 783 usb_ep_set_halt(ep->ep); 784 spin_unlock_irq(&epfile->ffs->eps_lock); 785 ret = -EBADMSG; 786 } else { 787 /* Fire the request */ 788 struct usb_request *req; 789 790 if (io_data->aio) { 791 req = usb_ep_alloc_request(ep->ep, GFP_KERNEL); 792 if (unlikely(!req)) 793 goto error_lock; 794 795 req->buf = data; 796 req->length = io_data->len; 797 798 io_data->buf = data; 799 io_data->ep = ep->ep; 800 io_data->req = req; 801 802 req->context = io_data; 803 req->complete = ffs_epfile_async_io_complete; 804 805 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 806 if (unlikely(ret)) { 807 usb_ep_free_request(ep->ep, req); 808 goto error_lock; 809 } 810 ret = -EIOCBQUEUED; 811 812 spin_unlock_irq(&epfile->ffs->eps_lock); 813 } else { 814 DECLARE_COMPLETION_ONSTACK(done); 815 816 req = ep->req; 817 req->buf = data; 818 req->length = io_data->len; 819 820 req->context = &done; 821 req->complete = ffs_epfile_io_complete; 822 823 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 824 825 spin_unlock_irq(&epfile->ffs->eps_lock); 826 827 if (unlikely(ret < 0)) { 828 /* nop */ 829 } else if (unlikely( 830 wait_for_completion_interruptible(&done))) { 831 ret = -EINTR; 832 usb_ep_dequeue(ep->ep, req); 833 } else { 834 /* 835 * XXX We may end up silently droping data 836 * here. Since data_len (i.e. req->length) may 837 * be bigger than len (after being rounded up 838 * to maxpacketsize), we may end up with more 839 * data then user space has space for. 840 */ 841 ret = ep->status; 842 if (io_data->read && ret > 0) { 843 ret = min_t(size_t, ret, io_data->len); 844 845 if (unlikely(copy_to_user(io_data->buf, 846 data, ret))) 847 ret = -EFAULT; 848 } 849 } 850 kfree(data); 851 } 852 } 853 854 mutex_unlock(&epfile->mutex); 855 return ret; 856 857 error_lock: 858 spin_unlock_irq(&epfile->ffs->eps_lock); 859 mutex_unlock(&epfile->mutex); 860 error: 861 kfree(data); 862 return ret; 863 } 864 865 static ssize_t 866 ffs_epfile_write(struct file *file, const char __user *buf, size_t len, 867 loff_t *ptr) 868 { 869 struct ffs_io_data io_data; 870 871 ENTER(); 872 873 io_data.aio = false; 874 io_data.read = false; 875 io_data.buf = (char * __user)buf; 876 io_data.len = len; 877 878 return ffs_epfile_io(file, &io_data); 879 } 880 881 static ssize_t 882 ffs_epfile_read(struct file *file, char __user *buf, size_t len, loff_t *ptr) 883 { 884 struct ffs_io_data io_data; 885 886 ENTER(); 887 888 io_data.aio = false; 889 io_data.read = true; 890 io_data.buf = buf; 891 io_data.len = len; 892 893 return ffs_epfile_io(file, &io_data); 894 } 895 896 static int 897 ffs_epfile_open(struct inode *inode, struct file *file) 898 { 899 struct ffs_epfile *epfile = inode->i_private; 900 901 ENTER(); 902 903 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 904 return -ENODEV; 905 906 file->private_data = epfile; 907 ffs_data_opened(epfile->ffs); 908 909 return 0; 910 } 911 912 static int ffs_aio_cancel(struct kiocb *kiocb) 913 { 914 struct ffs_io_data *io_data = kiocb->private; 915 struct ffs_epfile *epfile = kiocb->ki_filp->private_data; 916 int value; 917 918 ENTER(); 919 920 spin_lock_irq(&epfile->ffs->eps_lock); 921 922 if (likely(io_data && io_data->ep && io_data->req)) 923 value = usb_ep_dequeue(io_data->ep, io_data->req); 924 else 925 value = -EINVAL; 926 927 spin_unlock_irq(&epfile->ffs->eps_lock); 928 929 return value; 930 } 931 932 static ssize_t ffs_epfile_aio_write(struct kiocb *kiocb, 933 const struct iovec *iovec, 934 unsigned long nr_segs, loff_t loff) 935 { 936 struct ffs_io_data *io_data; 937 938 ENTER(); 939 940 io_data = kmalloc(sizeof(*io_data), GFP_KERNEL); 941 if (unlikely(!io_data)) 942 return -ENOMEM; 943 944 io_data->aio = true; 945 io_data->read = false; 946 io_data->kiocb = kiocb; 947 io_data->iovec = iovec; 948 io_data->nr_segs = nr_segs; 949 io_data->len = kiocb->ki_nbytes; 950 io_data->mm = current->mm; 951 952 kiocb->private = io_data; 953 954 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 955 956 return ffs_epfile_io(kiocb->ki_filp, io_data); 957 } 958 959 static ssize_t ffs_epfile_aio_read(struct kiocb *kiocb, 960 const struct iovec *iovec, 961 unsigned long nr_segs, loff_t loff) 962 { 963 struct ffs_io_data *io_data; 964 struct iovec *iovec_copy; 965 966 ENTER(); 967 968 iovec_copy = kmalloc_array(nr_segs, sizeof(*iovec_copy), GFP_KERNEL); 969 if (unlikely(!iovec_copy)) 970 return -ENOMEM; 971 972 memcpy(iovec_copy, iovec, sizeof(struct iovec)*nr_segs); 973 974 io_data = kmalloc(sizeof(*io_data), GFP_KERNEL); 975 if (unlikely(!io_data)) { 976 kfree(iovec_copy); 977 return -ENOMEM; 978 } 979 980 io_data->aio = true; 981 io_data->read = true; 982 io_data->kiocb = kiocb; 983 io_data->iovec = iovec_copy; 984 io_data->nr_segs = nr_segs; 985 io_data->len = kiocb->ki_nbytes; 986 io_data->mm = current->mm; 987 988 kiocb->private = io_data; 989 990 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 991 992 return ffs_epfile_io(kiocb->ki_filp, io_data); 993 } 994 995 static int 996 ffs_epfile_release(struct inode *inode, struct file *file) 997 { 998 struct ffs_epfile *epfile = inode->i_private; 999 1000 ENTER(); 1001 1002 ffs_data_closed(epfile->ffs); 1003 1004 return 0; 1005 } 1006 1007 static long ffs_epfile_ioctl(struct file *file, unsigned code, 1008 unsigned long value) 1009 { 1010 struct ffs_epfile *epfile = file->private_data; 1011 int ret; 1012 1013 ENTER(); 1014 1015 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1016 return -ENODEV; 1017 1018 spin_lock_irq(&epfile->ffs->eps_lock); 1019 if (likely(epfile->ep)) { 1020 switch (code) { 1021 case FUNCTIONFS_FIFO_STATUS: 1022 ret = usb_ep_fifo_status(epfile->ep->ep); 1023 break; 1024 case FUNCTIONFS_FIFO_FLUSH: 1025 usb_ep_fifo_flush(epfile->ep->ep); 1026 ret = 0; 1027 break; 1028 case FUNCTIONFS_CLEAR_HALT: 1029 ret = usb_ep_clear_halt(epfile->ep->ep); 1030 break; 1031 case FUNCTIONFS_ENDPOINT_REVMAP: 1032 ret = epfile->ep->num; 1033 break; 1034 case FUNCTIONFS_ENDPOINT_DESC: 1035 { 1036 int desc_idx; 1037 struct usb_endpoint_descriptor *desc; 1038 1039 switch (epfile->ffs->gadget->speed) { 1040 case USB_SPEED_SUPER: 1041 desc_idx = 2; 1042 break; 1043 case USB_SPEED_HIGH: 1044 desc_idx = 1; 1045 break; 1046 default: 1047 desc_idx = 0; 1048 } 1049 desc = epfile->ep->descs[desc_idx]; 1050 1051 spin_unlock_irq(&epfile->ffs->eps_lock); 1052 ret = copy_to_user((void *)value, desc, sizeof(*desc)); 1053 if (ret) 1054 ret = -EFAULT; 1055 return ret; 1056 } 1057 default: 1058 ret = -ENOTTY; 1059 } 1060 } else { 1061 ret = -ENODEV; 1062 } 1063 spin_unlock_irq(&epfile->ffs->eps_lock); 1064 1065 return ret; 1066 } 1067 1068 static const struct file_operations ffs_epfile_operations = { 1069 .llseek = no_llseek, 1070 1071 .open = ffs_epfile_open, 1072 .write = ffs_epfile_write, 1073 .read = ffs_epfile_read, 1074 .aio_write = ffs_epfile_aio_write, 1075 .aio_read = ffs_epfile_aio_read, 1076 .release = ffs_epfile_release, 1077 .unlocked_ioctl = ffs_epfile_ioctl, 1078 }; 1079 1080 1081 /* File system and super block operations ***********************************/ 1082 1083 /* 1084 * Mounting the file system creates a controller file, used first for 1085 * function configuration then later for event monitoring. 1086 */ 1087 1088 static struct inode *__must_check 1089 ffs_sb_make_inode(struct super_block *sb, void *data, 1090 const struct file_operations *fops, 1091 const struct inode_operations *iops, 1092 struct ffs_file_perms *perms) 1093 { 1094 struct inode *inode; 1095 1096 ENTER(); 1097 1098 inode = new_inode(sb); 1099 1100 if (likely(inode)) { 1101 struct timespec current_time = CURRENT_TIME; 1102 1103 inode->i_ino = get_next_ino(); 1104 inode->i_mode = perms->mode; 1105 inode->i_uid = perms->uid; 1106 inode->i_gid = perms->gid; 1107 inode->i_atime = current_time; 1108 inode->i_mtime = current_time; 1109 inode->i_ctime = current_time; 1110 inode->i_private = data; 1111 if (fops) 1112 inode->i_fop = fops; 1113 if (iops) 1114 inode->i_op = iops; 1115 } 1116 1117 return inode; 1118 } 1119 1120 /* Create "regular" file */ 1121 static struct dentry *ffs_sb_create_file(struct super_block *sb, 1122 const char *name, void *data, 1123 const struct file_operations *fops) 1124 { 1125 struct ffs_data *ffs = sb->s_fs_info; 1126 struct dentry *dentry; 1127 struct inode *inode; 1128 1129 ENTER(); 1130 1131 dentry = d_alloc_name(sb->s_root, name); 1132 if (unlikely(!dentry)) 1133 return NULL; 1134 1135 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); 1136 if (unlikely(!inode)) { 1137 dput(dentry); 1138 return NULL; 1139 } 1140 1141 d_add(dentry, inode); 1142 return dentry; 1143 } 1144 1145 /* Super block */ 1146 static const struct super_operations ffs_sb_operations = { 1147 .statfs = simple_statfs, 1148 .drop_inode = generic_delete_inode, 1149 }; 1150 1151 struct ffs_sb_fill_data { 1152 struct ffs_file_perms perms; 1153 umode_t root_mode; 1154 const char *dev_name; 1155 struct ffs_data *ffs_data; 1156 }; 1157 1158 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent) 1159 { 1160 struct ffs_sb_fill_data *data = _data; 1161 struct inode *inode; 1162 struct ffs_data *ffs = data->ffs_data; 1163 1164 ENTER(); 1165 1166 ffs->sb = sb; 1167 data->ffs_data = NULL; 1168 sb->s_fs_info = ffs; 1169 sb->s_blocksize = PAGE_CACHE_SIZE; 1170 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 1171 sb->s_magic = FUNCTIONFS_MAGIC; 1172 sb->s_op = &ffs_sb_operations; 1173 sb->s_time_gran = 1; 1174 1175 /* Root inode */ 1176 data->perms.mode = data->root_mode; 1177 inode = ffs_sb_make_inode(sb, NULL, 1178 &simple_dir_operations, 1179 &simple_dir_inode_operations, 1180 &data->perms); 1181 sb->s_root = d_make_root(inode); 1182 if (unlikely(!sb->s_root)) 1183 return -ENOMEM; 1184 1185 /* EP0 file */ 1186 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs, 1187 &ffs_ep0_operations))) 1188 return -ENOMEM; 1189 1190 return 0; 1191 } 1192 1193 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts) 1194 { 1195 ENTER(); 1196 1197 if (!opts || !*opts) 1198 return 0; 1199 1200 for (;;) { 1201 unsigned long value; 1202 char *eq, *comma; 1203 1204 /* Option limit */ 1205 comma = strchr(opts, ','); 1206 if (comma) 1207 *comma = 0; 1208 1209 /* Value limit */ 1210 eq = strchr(opts, '='); 1211 if (unlikely(!eq)) { 1212 pr_err("'=' missing in %s\n", opts); 1213 return -EINVAL; 1214 } 1215 *eq = 0; 1216 1217 /* Parse value */ 1218 if (kstrtoul(eq + 1, 0, &value)) { 1219 pr_err("%s: invalid value: %s\n", opts, eq + 1); 1220 return -EINVAL; 1221 } 1222 1223 /* Interpret option */ 1224 switch (eq - opts) { 1225 case 5: 1226 if (!memcmp(opts, "rmode", 5)) 1227 data->root_mode = (value & 0555) | S_IFDIR; 1228 else if (!memcmp(opts, "fmode", 5)) 1229 data->perms.mode = (value & 0666) | S_IFREG; 1230 else 1231 goto invalid; 1232 break; 1233 1234 case 4: 1235 if (!memcmp(opts, "mode", 4)) { 1236 data->root_mode = (value & 0555) | S_IFDIR; 1237 data->perms.mode = (value & 0666) | S_IFREG; 1238 } else { 1239 goto invalid; 1240 } 1241 break; 1242 1243 case 3: 1244 if (!memcmp(opts, "uid", 3)) { 1245 data->perms.uid = make_kuid(current_user_ns(), value); 1246 if (!uid_valid(data->perms.uid)) { 1247 pr_err("%s: unmapped value: %lu\n", opts, value); 1248 return -EINVAL; 1249 } 1250 } else if (!memcmp(opts, "gid", 3)) { 1251 data->perms.gid = make_kgid(current_user_ns(), value); 1252 if (!gid_valid(data->perms.gid)) { 1253 pr_err("%s: unmapped value: %lu\n", opts, value); 1254 return -EINVAL; 1255 } 1256 } else { 1257 goto invalid; 1258 } 1259 break; 1260 1261 default: 1262 invalid: 1263 pr_err("%s: invalid option\n", opts); 1264 return -EINVAL; 1265 } 1266 1267 /* Next iteration */ 1268 if (!comma) 1269 break; 1270 opts = comma + 1; 1271 } 1272 1273 return 0; 1274 } 1275 1276 /* "mount -t functionfs dev_name /dev/function" ends up here */ 1277 1278 static struct dentry * 1279 ffs_fs_mount(struct file_system_type *t, int flags, 1280 const char *dev_name, void *opts) 1281 { 1282 struct ffs_sb_fill_data data = { 1283 .perms = { 1284 .mode = S_IFREG | 0600, 1285 .uid = GLOBAL_ROOT_UID, 1286 .gid = GLOBAL_ROOT_GID, 1287 }, 1288 .root_mode = S_IFDIR | 0500, 1289 }; 1290 struct dentry *rv; 1291 int ret; 1292 void *ffs_dev; 1293 struct ffs_data *ffs; 1294 1295 ENTER(); 1296 1297 ret = ffs_fs_parse_opts(&data, opts); 1298 if (unlikely(ret < 0)) 1299 return ERR_PTR(ret); 1300 1301 ffs = ffs_data_new(); 1302 if (unlikely(!ffs)) 1303 return ERR_PTR(-ENOMEM); 1304 ffs->file_perms = data.perms; 1305 1306 ffs->dev_name = kstrdup(dev_name, GFP_KERNEL); 1307 if (unlikely(!ffs->dev_name)) { 1308 ffs_data_put(ffs); 1309 return ERR_PTR(-ENOMEM); 1310 } 1311 1312 ffs_dev = ffs_acquire_dev(dev_name); 1313 if (IS_ERR(ffs_dev)) { 1314 ffs_data_put(ffs); 1315 return ERR_CAST(ffs_dev); 1316 } 1317 ffs->private_data = ffs_dev; 1318 data.ffs_data = ffs; 1319 1320 rv = mount_nodev(t, flags, &data, ffs_sb_fill); 1321 if (IS_ERR(rv) && data.ffs_data) { 1322 ffs_release_dev(data.ffs_data); 1323 ffs_data_put(data.ffs_data); 1324 } 1325 return rv; 1326 } 1327 1328 static void 1329 ffs_fs_kill_sb(struct super_block *sb) 1330 { 1331 ENTER(); 1332 1333 kill_litter_super(sb); 1334 if (sb->s_fs_info) { 1335 ffs_release_dev(sb->s_fs_info); 1336 ffs_data_put(sb->s_fs_info); 1337 } 1338 } 1339 1340 static struct file_system_type ffs_fs_type = { 1341 .owner = THIS_MODULE, 1342 .name = "functionfs", 1343 .mount = ffs_fs_mount, 1344 .kill_sb = ffs_fs_kill_sb, 1345 }; 1346 MODULE_ALIAS_FS("functionfs"); 1347 1348 1349 /* Driver's main init/cleanup functions *************************************/ 1350 1351 static int functionfs_init(void) 1352 { 1353 int ret; 1354 1355 ENTER(); 1356 1357 ret = register_filesystem(&ffs_fs_type); 1358 if (likely(!ret)) 1359 pr_info("file system registered\n"); 1360 else 1361 pr_err("failed registering file system (%d)\n", ret); 1362 1363 return ret; 1364 } 1365 1366 static void functionfs_cleanup(void) 1367 { 1368 ENTER(); 1369 1370 pr_info("unloading\n"); 1371 unregister_filesystem(&ffs_fs_type); 1372 } 1373 1374 1375 /* ffs_data and ffs_function construction and destruction code **************/ 1376 1377 static void ffs_data_clear(struct ffs_data *ffs); 1378 static void ffs_data_reset(struct ffs_data *ffs); 1379 1380 static void ffs_data_get(struct ffs_data *ffs) 1381 { 1382 ENTER(); 1383 1384 atomic_inc(&ffs->ref); 1385 } 1386 1387 static void ffs_data_opened(struct ffs_data *ffs) 1388 { 1389 ENTER(); 1390 1391 atomic_inc(&ffs->ref); 1392 atomic_inc(&ffs->opened); 1393 } 1394 1395 static void ffs_data_put(struct ffs_data *ffs) 1396 { 1397 ENTER(); 1398 1399 if (unlikely(atomic_dec_and_test(&ffs->ref))) { 1400 pr_info("%s(): freeing\n", __func__); 1401 ffs_data_clear(ffs); 1402 BUG_ON(waitqueue_active(&ffs->ev.waitq) || 1403 waitqueue_active(&ffs->ep0req_completion.wait)); 1404 kfree(ffs->dev_name); 1405 kfree(ffs); 1406 } 1407 } 1408 1409 static void ffs_data_closed(struct ffs_data *ffs) 1410 { 1411 ENTER(); 1412 1413 if (atomic_dec_and_test(&ffs->opened)) { 1414 ffs->state = FFS_CLOSING; 1415 ffs_data_reset(ffs); 1416 } 1417 1418 ffs_data_put(ffs); 1419 } 1420 1421 static struct ffs_data *ffs_data_new(void) 1422 { 1423 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); 1424 if (unlikely(!ffs)) 1425 return NULL; 1426 1427 ENTER(); 1428 1429 atomic_set(&ffs->ref, 1); 1430 atomic_set(&ffs->opened, 0); 1431 ffs->state = FFS_READ_DESCRIPTORS; 1432 mutex_init(&ffs->mutex); 1433 spin_lock_init(&ffs->eps_lock); 1434 init_waitqueue_head(&ffs->ev.waitq); 1435 init_completion(&ffs->ep0req_completion); 1436 1437 /* XXX REVISIT need to update it in some places, or do we? */ 1438 ffs->ev.can_stall = 1; 1439 1440 return ffs; 1441 } 1442 1443 static void ffs_data_clear(struct ffs_data *ffs) 1444 { 1445 ENTER(); 1446 1447 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags)) 1448 ffs_closed(ffs); 1449 1450 BUG_ON(ffs->gadget); 1451 1452 if (ffs->epfiles) 1453 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count); 1454 1455 kfree(ffs->raw_descs_data); 1456 kfree(ffs->raw_strings); 1457 kfree(ffs->stringtabs); 1458 } 1459 1460 static void ffs_data_reset(struct ffs_data *ffs) 1461 { 1462 ENTER(); 1463 1464 ffs_data_clear(ffs); 1465 1466 ffs->epfiles = NULL; 1467 ffs->raw_descs_data = NULL; 1468 ffs->raw_descs = NULL; 1469 ffs->raw_strings = NULL; 1470 ffs->stringtabs = NULL; 1471 1472 ffs->raw_descs_length = 0; 1473 ffs->fs_descs_count = 0; 1474 ffs->hs_descs_count = 0; 1475 ffs->ss_descs_count = 0; 1476 1477 ffs->strings_count = 0; 1478 ffs->interfaces_count = 0; 1479 ffs->eps_count = 0; 1480 1481 ffs->ev.count = 0; 1482 1483 ffs->state = FFS_READ_DESCRIPTORS; 1484 ffs->setup_state = FFS_NO_SETUP; 1485 ffs->flags = 0; 1486 } 1487 1488 1489 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) 1490 { 1491 struct usb_gadget_strings **lang; 1492 int first_id; 1493 1494 ENTER(); 1495 1496 if (WARN_ON(ffs->state != FFS_ACTIVE 1497 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) 1498 return -EBADFD; 1499 1500 first_id = usb_string_ids_n(cdev, ffs->strings_count); 1501 if (unlikely(first_id < 0)) 1502 return first_id; 1503 1504 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); 1505 if (unlikely(!ffs->ep0req)) 1506 return -ENOMEM; 1507 ffs->ep0req->complete = ffs_ep0_complete; 1508 ffs->ep0req->context = ffs; 1509 1510 lang = ffs->stringtabs; 1511 if (lang) { 1512 for (; *lang; ++lang) { 1513 struct usb_string *str = (*lang)->strings; 1514 int id = first_id; 1515 for (; str->s; ++id, ++str) 1516 str->id = id; 1517 } 1518 } 1519 1520 ffs->gadget = cdev->gadget; 1521 ffs_data_get(ffs); 1522 return 0; 1523 } 1524 1525 static void functionfs_unbind(struct ffs_data *ffs) 1526 { 1527 ENTER(); 1528 1529 if (!WARN_ON(!ffs->gadget)) { 1530 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); 1531 ffs->ep0req = NULL; 1532 ffs->gadget = NULL; 1533 clear_bit(FFS_FL_BOUND, &ffs->flags); 1534 ffs_data_put(ffs); 1535 } 1536 } 1537 1538 static int ffs_epfiles_create(struct ffs_data *ffs) 1539 { 1540 struct ffs_epfile *epfile, *epfiles; 1541 unsigned i, count; 1542 1543 ENTER(); 1544 1545 count = ffs->eps_count; 1546 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); 1547 if (!epfiles) 1548 return -ENOMEM; 1549 1550 epfile = epfiles; 1551 for (i = 1; i <= count; ++i, ++epfile) { 1552 epfile->ffs = ffs; 1553 mutex_init(&epfile->mutex); 1554 init_waitqueue_head(&epfile->wait); 1555 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 1556 sprintf(epfiles->name, "ep%02x", ffs->eps_addrmap[i]); 1557 else 1558 sprintf(epfiles->name, "ep%u", i); 1559 epfile->dentry = ffs_sb_create_file(ffs->sb, epfiles->name, 1560 epfile, 1561 &ffs_epfile_operations); 1562 if (unlikely(!epfile->dentry)) { 1563 ffs_epfiles_destroy(epfiles, i - 1); 1564 return -ENOMEM; 1565 } 1566 } 1567 1568 ffs->epfiles = epfiles; 1569 return 0; 1570 } 1571 1572 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count) 1573 { 1574 struct ffs_epfile *epfile = epfiles; 1575 1576 ENTER(); 1577 1578 for (; count; --count, ++epfile) { 1579 BUG_ON(mutex_is_locked(&epfile->mutex) || 1580 waitqueue_active(&epfile->wait)); 1581 if (epfile->dentry) { 1582 d_delete(epfile->dentry); 1583 dput(epfile->dentry); 1584 epfile->dentry = NULL; 1585 } 1586 } 1587 1588 kfree(epfiles); 1589 } 1590 1591 1592 static void ffs_func_eps_disable(struct ffs_function *func) 1593 { 1594 struct ffs_ep *ep = func->eps; 1595 struct ffs_epfile *epfile = func->ffs->epfiles; 1596 unsigned count = func->ffs->eps_count; 1597 unsigned long flags; 1598 1599 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1600 do { 1601 /* pending requests get nuked */ 1602 if (likely(ep->ep)) 1603 usb_ep_disable(ep->ep); 1604 epfile->ep = NULL; 1605 1606 ++ep; 1607 ++epfile; 1608 } while (--count); 1609 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1610 } 1611 1612 static int ffs_func_eps_enable(struct ffs_function *func) 1613 { 1614 struct ffs_data *ffs = func->ffs; 1615 struct ffs_ep *ep = func->eps; 1616 struct ffs_epfile *epfile = ffs->epfiles; 1617 unsigned count = ffs->eps_count; 1618 unsigned long flags; 1619 int ret = 0; 1620 1621 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1622 do { 1623 struct usb_endpoint_descriptor *ds; 1624 int desc_idx; 1625 1626 if (ffs->gadget->speed == USB_SPEED_SUPER) 1627 desc_idx = 2; 1628 else if (ffs->gadget->speed == USB_SPEED_HIGH) 1629 desc_idx = 1; 1630 else 1631 desc_idx = 0; 1632 1633 /* fall-back to lower speed if desc missing for current speed */ 1634 do { 1635 ds = ep->descs[desc_idx]; 1636 } while (!ds && --desc_idx >= 0); 1637 1638 if (!ds) { 1639 ret = -EINVAL; 1640 break; 1641 } 1642 1643 ep->ep->driver_data = ep; 1644 ep->ep->desc = ds; 1645 ret = usb_ep_enable(ep->ep); 1646 if (likely(!ret)) { 1647 epfile->ep = ep; 1648 epfile->in = usb_endpoint_dir_in(ds); 1649 epfile->isoc = usb_endpoint_xfer_isoc(ds); 1650 } else { 1651 break; 1652 } 1653 1654 wake_up(&epfile->wait); 1655 1656 ++ep; 1657 ++epfile; 1658 } while (--count); 1659 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1660 1661 return ret; 1662 } 1663 1664 1665 /* Parsing and building descriptors and strings *****************************/ 1666 1667 /* 1668 * This validates if data pointed by data is a valid USB descriptor as 1669 * well as record how many interfaces, endpoints and strings are 1670 * required by given configuration. Returns address after the 1671 * descriptor or NULL if data is invalid. 1672 */ 1673 1674 enum ffs_entity_type { 1675 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT 1676 }; 1677 1678 enum ffs_os_desc_type { 1679 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP 1680 }; 1681 1682 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, 1683 u8 *valuep, 1684 struct usb_descriptor_header *desc, 1685 void *priv); 1686 1687 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, 1688 struct usb_os_desc_header *h, void *data, 1689 unsigned len, void *priv); 1690 1691 static int __must_check ffs_do_single_desc(char *data, unsigned len, 1692 ffs_entity_callback entity, 1693 void *priv) 1694 { 1695 struct usb_descriptor_header *_ds = (void *)data; 1696 u8 length; 1697 int ret; 1698 1699 ENTER(); 1700 1701 /* At least two bytes are required: length and type */ 1702 if (len < 2) { 1703 pr_vdebug("descriptor too short\n"); 1704 return -EINVAL; 1705 } 1706 1707 /* If we have at least as many bytes as the descriptor takes? */ 1708 length = _ds->bLength; 1709 if (len < length) { 1710 pr_vdebug("descriptor longer then available data\n"); 1711 return -EINVAL; 1712 } 1713 1714 #define __entity_check_INTERFACE(val) 1 1715 #define __entity_check_STRING(val) (val) 1716 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) 1717 #define __entity(type, val) do { \ 1718 pr_vdebug("entity " #type "(%02x)\n", (val)); \ 1719 if (unlikely(!__entity_check_ ##type(val))) { \ 1720 pr_vdebug("invalid entity's value\n"); \ 1721 return -EINVAL; \ 1722 } \ 1723 ret = entity(FFS_ ##type, &val, _ds, priv); \ 1724 if (unlikely(ret < 0)) { \ 1725 pr_debug("entity " #type "(%02x); ret = %d\n", \ 1726 (val), ret); \ 1727 return ret; \ 1728 } \ 1729 } while (0) 1730 1731 /* Parse descriptor depending on type. */ 1732 switch (_ds->bDescriptorType) { 1733 case USB_DT_DEVICE: 1734 case USB_DT_CONFIG: 1735 case USB_DT_STRING: 1736 case USB_DT_DEVICE_QUALIFIER: 1737 /* function can't have any of those */ 1738 pr_vdebug("descriptor reserved for gadget: %d\n", 1739 _ds->bDescriptorType); 1740 return -EINVAL; 1741 1742 case USB_DT_INTERFACE: { 1743 struct usb_interface_descriptor *ds = (void *)_ds; 1744 pr_vdebug("interface descriptor\n"); 1745 if (length != sizeof *ds) 1746 goto inv_length; 1747 1748 __entity(INTERFACE, ds->bInterfaceNumber); 1749 if (ds->iInterface) 1750 __entity(STRING, ds->iInterface); 1751 } 1752 break; 1753 1754 case USB_DT_ENDPOINT: { 1755 struct usb_endpoint_descriptor *ds = (void *)_ds; 1756 pr_vdebug("endpoint descriptor\n"); 1757 if (length != USB_DT_ENDPOINT_SIZE && 1758 length != USB_DT_ENDPOINT_AUDIO_SIZE) 1759 goto inv_length; 1760 __entity(ENDPOINT, ds->bEndpointAddress); 1761 } 1762 break; 1763 1764 case HID_DT_HID: 1765 pr_vdebug("hid descriptor\n"); 1766 if (length != sizeof(struct hid_descriptor)) 1767 goto inv_length; 1768 break; 1769 1770 case USB_DT_OTG: 1771 if (length != sizeof(struct usb_otg_descriptor)) 1772 goto inv_length; 1773 break; 1774 1775 case USB_DT_INTERFACE_ASSOCIATION: { 1776 struct usb_interface_assoc_descriptor *ds = (void *)_ds; 1777 pr_vdebug("interface association descriptor\n"); 1778 if (length != sizeof *ds) 1779 goto inv_length; 1780 if (ds->iFunction) 1781 __entity(STRING, ds->iFunction); 1782 } 1783 break; 1784 1785 case USB_DT_SS_ENDPOINT_COMP: 1786 pr_vdebug("EP SS companion descriptor\n"); 1787 if (length != sizeof(struct usb_ss_ep_comp_descriptor)) 1788 goto inv_length; 1789 break; 1790 1791 case USB_DT_OTHER_SPEED_CONFIG: 1792 case USB_DT_INTERFACE_POWER: 1793 case USB_DT_DEBUG: 1794 case USB_DT_SECURITY: 1795 case USB_DT_CS_RADIO_CONTROL: 1796 /* TODO */ 1797 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); 1798 return -EINVAL; 1799 1800 default: 1801 /* We should never be here */ 1802 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); 1803 return -EINVAL; 1804 1805 inv_length: 1806 pr_vdebug("invalid length: %d (descriptor %d)\n", 1807 _ds->bLength, _ds->bDescriptorType); 1808 return -EINVAL; 1809 } 1810 1811 #undef __entity 1812 #undef __entity_check_DESCRIPTOR 1813 #undef __entity_check_INTERFACE 1814 #undef __entity_check_STRING 1815 #undef __entity_check_ENDPOINT 1816 1817 return length; 1818 } 1819 1820 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, 1821 ffs_entity_callback entity, void *priv) 1822 { 1823 const unsigned _len = len; 1824 unsigned long num = 0; 1825 1826 ENTER(); 1827 1828 for (;;) { 1829 int ret; 1830 1831 if (num == count) 1832 data = NULL; 1833 1834 /* Record "descriptor" entity */ 1835 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); 1836 if (unlikely(ret < 0)) { 1837 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", 1838 num, ret); 1839 return ret; 1840 } 1841 1842 if (!data) 1843 return _len - len; 1844 1845 ret = ffs_do_single_desc(data, len, entity, priv); 1846 if (unlikely(ret < 0)) { 1847 pr_debug("%s returns %d\n", __func__, ret); 1848 return ret; 1849 } 1850 1851 len -= ret; 1852 data += ret; 1853 ++num; 1854 } 1855 } 1856 1857 static int __ffs_data_do_entity(enum ffs_entity_type type, 1858 u8 *valuep, struct usb_descriptor_header *desc, 1859 void *priv) 1860 { 1861 struct ffs_desc_helper *helper = priv; 1862 struct usb_endpoint_descriptor *d; 1863 1864 ENTER(); 1865 1866 switch (type) { 1867 case FFS_DESCRIPTOR: 1868 break; 1869 1870 case FFS_INTERFACE: 1871 /* 1872 * Interfaces are indexed from zero so if we 1873 * encountered interface "n" then there are at least 1874 * "n+1" interfaces. 1875 */ 1876 if (*valuep >= helper->interfaces_count) 1877 helper->interfaces_count = *valuep + 1; 1878 break; 1879 1880 case FFS_STRING: 1881 /* 1882 * Strings are indexed from 1 (0 is magic ;) reserved 1883 * for languages list or some such) 1884 */ 1885 if (*valuep > helper->ffs->strings_count) 1886 helper->ffs->strings_count = *valuep; 1887 break; 1888 1889 case FFS_ENDPOINT: 1890 d = (void *)desc; 1891 helper->eps_count++; 1892 if (helper->eps_count >= 15) 1893 return -EINVAL; 1894 /* Check if descriptors for any speed were already parsed */ 1895 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count) 1896 helper->ffs->eps_addrmap[helper->eps_count] = 1897 d->bEndpointAddress; 1898 else if (helper->ffs->eps_addrmap[helper->eps_count] != 1899 d->bEndpointAddress) 1900 return -EINVAL; 1901 break; 1902 } 1903 1904 return 0; 1905 } 1906 1907 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, 1908 struct usb_os_desc_header *desc) 1909 { 1910 u16 bcd_version = le16_to_cpu(desc->bcdVersion); 1911 u16 w_index = le16_to_cpu(desc->wIndex); 1912 1913 if (bcd_version != 1) { 1914 pr_vdebug("unsupported os descriptors version: %d", 1915 bcd_version); 1916 return -EINVAL; 1917 } 1918 switch (w_index) { 1919 case 0x4: 1920 *next_type = FFS_OS_DESC_EXT_COMPAT; 1921 break; 1922 case 0x5: 1923 *next_type = FFS_OS_DESC_EXT_PROP; 1924 break; 1925 default: 1926 pr_vdebug("unsupported os descriptor type: %d", w_index); 1927 return -EINVAL; 1928 } 1929 1930 return sizeof(*desc); 1931 } 1932 1933 /* 1934 * Process all extended compatibility/extended property descriptors 1935 * of a feature descriptor 1936 */ 1937 static int __must_check ffs_do_single_os_desc(char *data, unsigned len, 1938 enum ffs_os_desc_type type, 1939 u16 feature_count, 1940 ffs_os_desc_callback entity, 1941 void *priv, 1942 struct usb_os_desc_header *h) 1943 { 1944 int ret; 1945 const unsigned _len = len; 1946 1947 ENTER(); 1948 1949 /* loop over all ext compat/ext prop descriptors */ 1950 while (feature_count--) { 1951 ret = entity(type, h, data, len, priv); 1952 if (unlikely(ret < 0)) { 1953 pr_debug("bad OS descriptor, type: %d\n", type); 1954 return ret; 1955 } 1956 data += ret; 1957 len -= ret; 1958 } 1959 return _len - len; 1960 } 1961 1962 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ 1963 static int __must_check ffs_do_os_descs(unsigned count, 1964 char *data, unsigned len, 1965 ffs_os_desc_callback entity, void *priv) 1966 { 1967 const unsigned _len = len; 1968 unsigned long num = 0; 1969 1970 ENTER(); 1971 1972 for (num = 0; num < count; ++num) { 1973 int ret; 1974 enum ffs_os_desc_type type; 1975 u16 feature_count; 1976 struct usb_os_desc_header *desc = (void *)data; 1977 1978 if (len < sizeof(*desc)) 1979 return -EINVAL; 1980 1981 /* 1982 * Record "descriptor" entity. 1983 * Process dwLength, bcdVersion, wIndex, get b/wCount. 1984 * Move the data pointer to the beginning of extended 1985 * compatibilities proper or extended properties proper 1986 * portions of the data 1987 */ 1988 if (le32_to_cpu(desc->dwLength) > len) 1989 return -EINVAL; 1990 1991 ret = __ffs_do_os_desc_header(&type, desc); 1992 if (unlikely(ret < 0)) { 1993 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", 1994 num, ret); 1995 return ret; 1996 } 1997 /* 1998 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" 1999 */ 2000 feature_count = le16_to_cpu(desc->wCount); 2001 if (type == FFS_OS_DESC_EXT_COMPAT && 2002 (feature_count > 255 || desc->Reserved)) 2003 return -EINVAL; 2004 len -= ret; 2005 data += ret; 2006 2007 /* 2008 * Process all function/property descriptors 2009 * of this Feature Descriptor 2010 */ 2011 ret = ffs_do_single_os_desc(data, len, type, 2012 feature_count, entity, priv, desc); 2013 if (unlikely(ret < 0)) { 2014 pr_debug("%s returns %d\n", __func__, ret); 2015 return ret; 2016 } 2017 2018 len -= ret; 2019 data += ret; 2020 } 2021 return _len - len; 2022 } 2023 2024 /** 2025 * Validate contents of the buffer from userspace related to OS descriptors. 2026 */ 2027 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, 2028 struct usb_os_desc_header *h, void *data, 2029 unsigned len, void *priv) 2030 { 2031 struct ffs_data *ffs = priv; 2032 u8 length; 2033 2034 ENTER(); 2035 2036 switch (type) { 2037 case FFS_OS_DESC_EXT_COMPAT: { 2038 struct usb_ext_compat_desc *d = data; 2039 int i; 2040 2041 if (len < sizeof(*d) || 2042 d->bFirstInterfaceNumber >= ffs->interfaces_count || 2043 d->Reserved1) 2044 return -EINVAL; 2045 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) 2046 if (d->Reserved2[i]) 2047 return -EINVAL; 2048 2049 length = sizeof(struct usb_ext_compat_desc); 2050 } 2051 break; 2052 case FFS_OS_DESC_EXT_PROP: { 2053 struct usb_ext_prop_desc *d = data; 2054 u32 type, pdl; 2055 u16 pnl; 2056 2057 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) 2058 return -EINVAL; 2059 length = le32_to_cpu(d->dwSize); 2060 type = le32_to_cpu(d->dwPropertyDataType); 2061 if (type < USB_EXT_PROP_UNICODE || 2062 type > USB_EXT_PROP_UNICODE_MULTI) { 2063 pr_vdebug("unsupported os descriptor property type: %d", 2064 type); 2065 return -EINVAL; 2066 } 2067 pnl = le16_to_cpu(d->wPropertyNameLength); 2068 pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl)); 2069 if (length != 14 + pnl + pdl) { 2070 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", 2071 length, pnl, pdl, type); 2072 return -EINVAL; 2073 } 2074 ++ffs->ms_os_descs_ext_prop_count; 2075 /* property name reported to the host as "WCHAR"s */ 2076 ffs->ms_os_descs_ext_prop_name_len += pnl * 2; 2077 ffs->ms_os_descs_ext_prop_data_len += pdl; 2078 } 2079 break; 2080 default: 2081 pr_vdebug("unknown descriptor: %d\n", type); 2082 return -EINVAL; 2083 } 2084 return length; 2085 } 2086 2087 static int __ffs_data_got_descs(struct ffs_data *ffs, 2088 char *const _data, size_t len) 2089 { 2090 char *data = _data, *raw_descs; 2091 unsigned os_descs_count = 0, counts[3], flags; 2092 int ret = -EINVAL, i; 2093 struct ffs_desc_helper helper; 2094 2095 ENTER(); 2096 2097 if (get_unaligned_le32(data + 4) != len) 2098 goto error; 2099 2100 switch (get_unaligned_le32(data)) { 2101 case FUNCTIONFS_DESCRIPTORS_MAGIC: 2102 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; 2103 data += 8; 2104 len -= 8; 2105 break; 2106 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: 2107 flags = get_unaligned_le32(data + 8); 2108 ffs->user_flags = flags; 2109 if (flags & ~(FUNCTIONFS_HAS_FS_DESC | 2110 FUNCTIONFS_HAS_HS_DESC | 2111 FUNCTIONFS_HAS_SS_DESC | 2112 FUNCTIONFS_HAS_MS_OS_DESC | 2113 FUNCTIONFS_VIRTUAL_ADDR)) { 2114 ret = -ENOSYS; 2115 goto error; 2116 } 2117 data += 12; 2118 len -= 12; 2119 break; 2120 default: 2121 goto error; 2122 } 2123 2124 /* Read fs_count, hs_count and ss_count (if present) */ 2125 for (i = 0; i < 3; ++i) { 2126 if (!(flags & (1 << i))) { 2127 counts[i] = 0; 2128 } else if (len < 4) { 2129 goto error; 2130 } else { 2131 counts[i] = get_unaligned_le32(data); 2132 data += 4; 2133 len -= 4; 2134 } 2135 } 2136 if (flags & (1 << i)) { 2137 os_descs_count = get_unaligned_le32(data); 2138 data += 4; 2139 len -= 4; 2140 }; 2141 2142 /* Read descriptors */ 2143 raw_descs = data; 2144 helper.ffs = ffs; 2145 for (i = 0; i < 3; ++i) { 2146 if (!counts[i]) 2147 continue; 2148 helper.interfaces_count = 0; 2149 helper.eps_count = 0; 2150 ret = ffs_do_descs(counts[i], data, len, 2151 __ffs_data_do_entity, &helper); 2152 if (ret < 0) 2153 goto error; 2154 if (!ffs->eps_count && !ffs->interfaces_count) { 2155 ffs->eps_count = helper.eps_count; 2156 ffs->interfaces_count = helper.interfaces_count; 2157 } else { 2158 if (ffs->eps_count != helper.eps_count) { 2159 ret = -EINVAL; 2160 goto error; 2161 } 2162 if (ffs->interfaces_count != helper.interfaces_count) { 2163 ret = -EINVAL; 2164 goto error; 2165 } 2166 } 2167 data += ret; 2168 len -= ret; 2169 } 2170 if (os_descs_count) { 2171 ret = ffs_do_os_descs(os_descs_count, data, len, 2172 __ffs_data_do_os_desc, ffs); 2173 if (ret < 0) 2174 goto error; 2175 data += ret; 2176 len -= ret; 2177 } 2178 2179 if (raw_descs == data || len) { 2180 ret = -EINVAL; 2181 goto error; 2182 } 2183 2184 ffs->raw_descs_data = _data; 2185 ffs->raw_descs = raw_descs; 2186 ffs->raw_descs_length = data - raw_descs; 2187 ffs->fs_descs_count = counts[0]; 2188 ffs->hs_descs_count = counts[1]; 2189 ffs->ss_descs_count = counts[2]; 2190 ffs->ms_os_descs_count = os_descs_count; 2191 2192 return 0; 2193 2194 error: 2195 kfree(_data); 2196 return ret; 2197 } 2198 2199 static int __ffs_data_got_strings(struct ffs_data *ffs, 2200 char *const _data, size_t len) 2201 { 2202 u32 str_count, needed_count, lang_count; 2203 struct usb_gadget_strings **stringtabs, *t; 2204 struct usb_string *strings, *s; 2205 const char *data = _data; 2206 2207 ENTER(); 2208 2209 if (unlikely(get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || 2210 get_unaligned_le32(data + 4) != len)) 2211 goto error; 2212 str_count = get_unaligned_le32(data + 8); 2213 lang_count = get_unaligned_le32(data + 12); 2214 2215 /* if one is zero the other must be zero */ 2216 if (unlikely(!str_count != !lang_count)) 2217 goto error; 2218 2219 /* Do we have at least as many strings as descriptors need? */ 2220 needed_count = ffs->strings_count; 2221 if (unlikely(str_count < needed_count)) 2222 goto error; 2223 2224 /* 2225 * If we don't need any strings just return and free all 2226 * memory. 2227 */ 2228 if (!needed_count) { 2229 kfree(_data); 2230 return 0; 2231 } 2232 2233 /* Allocate everything in one chunk so there's less maintenance. */ 2234 { 2235 unsigned i = 0; 2236 vla_group(d); 2237 vla_item(d, struct usb_gadget_strings *, stringtabs, 2238 lang_count + 1); 2239 vla_item(d, struct usb_gadget_strings, stringtab, lang_count); 2240 vla_item(d, struct usb_string, strings, 2241 lang_count*(needed_count+1)); 2242 2243 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); 2244 2245 if (unlikely(!vlabuf)) { 2246 kfree(_data); 2247 return -ENOMEM; 2248 } 2249 2250 /* Initialize the VLA pointers */ 2251 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2252 t = vla_ptr(vlabuf, d, stringtab); 2253 i = lang_count; 2254 do { 2255 *stringtabs++ = t++; 2256 } while (--i); 2257 *stringtabs = NULL; 2258 2259 /* stringtabs = vlabuf = d_stringtabs for later kfree */ 2260 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2261 t = vla_ptr(vlabuf, d, stringtab); 2262 s = vla_ptr(vlabuf, d, strings); 2263 strings = s; 2264 } 2265 2266 /* For each language */ 2267 data += 16; 2268 len -= 16; 2269 2270 do { /* lang_count > 0 so we can use do-while */ 2271 unsigned needed = needed_count; 2272 2273 if (unlikely(len < 3)) 2274 goto error_free; 2275 t->language = get_unaligned_le16(data); 2276 t->strings = s; 2277 ++t; 2278 2279 data += 2; 2280 len -= 2; 2281 2282 /* For each string */ 2283 do { /* str_count > 0 so we can use do-while */ 2284 size_t length = strnlen(data, len); 2285 2286 if (unlikely(length == len)) 2287 goto error_free; 2288 2289 /* 2290 * User may provide more strings then we need, 2291 * if that's the case we simply ignore the 2292 * rest 2293 */ 2294 if (likely(needed)) { 2295 /* 2296 * s->id will be set while adding 2297 * function to configuration so for 2298 * now just leave garbage here. 2299 */ 2300 s->s = data; 2301 --needed; 2302 ++s; 2303 } 2304 2305 data += length + 1; 2306 len -= length + 1; 2307 } while (--str_count); 2308 2309 s->id = 0; /* terminator */ 2310 s->s = NULL; 2311 ++s; 2312 2313 } while (--lang_count); 2314 2315 /* Some garbage left? */ 2316 if (unlikely(len)) 2317 goto error_free; 2318 2319 /* Done! */ 2320 ffs->stringtabs = stringtabs; 2321 ffs->raw_strings = _data; 2322 2323 return 0; 2324 2325 error_free: 2326 kfree(stringtabs); 2327 error: 2328 kfree(_data); 2329 return -EINVAL; 2330 } 2331 2332 2333 /* Events handling and management *******************************************/ 2334 2335 static void __ffs_event_add(struct ffs_data *ffs, 2336 enum usb_functionfs_event_type type) 2337 { 2338 enum usb_functionfs_event_type rem_type1, rem_type2 = type; 2339 int neg = 0; 2340 2341 /* 2342 * Abort any unhandled setup 2343 * 2344 * We do not need to worry about some cmpxchg() changing value 2345 * of ffs->setup_state without holding the lock because when 2346 * state is FFS_SETUP_PENDING cmpxchg() in several places in 2347 * the source does nothing. 2348 */ 2349 if (ffs->setup_state == FFS_SETUP_PENDING) 2350 ffs->setup_state = FFS_SETUP_CANCELLED; 2351 2352 switch (type) { 2353 case FUNCTIONFS_RESUME: 2354 rem_type2 = FUNCTIONFS_SUSPEND; 2355 /* FALL THROUGH */ 2356 case FUNCTIONFS_SUSPEND: 2357 case FUNCTIONFS_SETUP: 2358 rem_type1 = type; 2359 /* Discard all similar events */ 2360 break; 2361 2362 case FUNCTIONFS_BIND: 2363 case FUNCTIONFS_UNBIND: 2364 case FUNCTIONFS_DISABLE: 2365 case FUNCTIONFS_ENABLE: 2366 /* Discard everything other then power management. */ 2367 rem_type1 = FUNCTIONFS_SUSPEND; 2368 rem_type2 = FUNCTIONFS_RESUME; 2369 neg = 1; 2370 break; 2371 2372 default: 2373 WARN(1, "%d: unknown event, this should not happen\n", type); 2374 return; 2375 } 2376 2377 { 2378 u8 *ev = ffs->ev.types, *out = ev; 2379 unsigned n = ffs->ev.count; 2380 for (; n; --n, ++ev) 2381 if ((*ev == rem_type1 || *ev == rem_type2) == neg) 2382 *out++ = *ev; 2383 else 2384 pr_vdebug("purging event %d\n", *ev); 2385 ffs->ev.count = out - ffs->ev.types; 2386 } 2387 2388 pr_vdebug("adding event %d\n", type); 2389 ffs->ev.types[ffs->ev.count++] = type; 2390 wake_up_locked(&ffs->ev.waitq); 2391 } 2392 2393 static void ffs_event_add(struct ffs_data *ffs, 2394 enum usb_functionfs_event_type type) 2395 { 2396 unsigned long flags; 2397 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 2398 __ffs_event_add(ffs, type); 2399 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 2400 } 2401 2402 /* Bind/unbind USB function hooks *******************************************/ 2403 2404 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address) 2405 { 2406 int i; 2407 2408 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i) 2409 if (ffs->eps_addrmap[i] == endpoint_address) 2410 return i; 2411 return -ENOENT; 2412 } 2413 2414 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, 2415 struct usb_descriptor_header *desc, 2416 void *priv) 2417 { 2418 struct usb_endpoint_descriptor *ds = (void *)desc; 2419 struct ffs_function *func = priv; 2420 struct ffs_ep *ffs_ep; 2421 unsigned ep_desc_id; 2422 int idx; 2423 static const char *speed_names[] = { "full", "high", "super" }; 2424 2425 if (type != FFS_DESCRIPTOR) 2426 return 0; 2427 2428 /* 2429 * If ss_descriptors is not NULL, we are reading super speed 2430 * descriptors; if hs_descriptors is not NULL, we are reading high 2431 * speed descriptors; otherwise, we are reading full speed 2432 * descriptors. 2433 */ 2434 if (func->function.ss_descriptors) { 2435 ep_desc_id = 2; 2436 func->function.ss_descriptors[(long)valuep] = desc; 2437 } else if (func->function.hs_descriptors) { 2438 ep_desc_id = 1; 2439 func->function.hs_descriptors[(long)valuep] = desc; 2440 } else { 2441 ep_desc_id = 0; 2442 func->function.fs_descriptors[(long)valuep] = desc; 2443 } 2444 2445 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) 2446 return 0; 2447 2448 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1; 2449 if (idx < 0) 2450 return idx; 2451 2452 ffs_ep = func->eps + idx; 2453 2454 if (unlikely(ffs_ep->descs[ep_desc_id])) { 2455 pr_err("two %sspeed descriptors for EP %d\n", 2456 speed_names[ep_desc_id], 2457 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); 2458 return -EINVAL; 2459 } 2460 ffs_ep->descs[ep_desc_id] = ds; 2461 2462 ffs_dump_mem(": Original ep desc", ds, ds->bLength); 2463 if (ffs_ep->ep) { 2464 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; 2465 if (!ds->wMaxPacketSize) 2466 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; 2467 } else { 2468 struct usb_request *req; 2469 struct usb_ep *ep; 2470 u8 bEndpointAddress; 2471 2472 /* 2473 * We back up bEndpointAddress because autoconfig overwrites 2474 * it with physical endpoint address. 2475 */ 2476 bEndpointAddress = ds->bEndpointAddress; 2477 pr_vdebug("autoconfig\n"); 2478 ep = usb_ep_autoconfig(func->gadget, ds); 2479 if (unlikely(!ep)) 2480 return -ENOTSUPP; 2481 ep->driver_data = func->eps + idx; 2482 2483 req = usb_ep_alloc_request(ep, GFP_KERNEL); 2484 if (unlikely(!req)) 2485 return -ENOMEM; 2486 2487 ffs_ep->ep = ep; 2488 ffs_ep->req = req; 2489 func->eps_revmap[ds->bEndpointAddress & 2490 USB_ENDPOINT_NUMBER_MASK] = idx + 1; 2491 /* 2492 * If we use virtual address mapping, we restore 2493 * original bEndpointAddress value. 2494 */ 2495 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 2496 ds->bEndpointAddress = bEndpointAddress; 2497 } 2498 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); 2499 2500 return 0; 2501 } 2502 2503 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, 2504 struct usb_descriptor_header *desc, 2505 void *priv) 2506 { 2507 struct ffs_function *func = priv; 2508 unsigned idx; 2509 u8 newValue; 2510 2511 switch (type) { 2512 default: 2513 case FFS_DESCRIPTOR: 2514 /* Handled in previous pass by __ffs_func_bind_do_descs() */ 2515 return 0; 2516 2517 case FFS_INTERFACE: 2518 idx = *valuep; 2519 if (func->interfaces_nums[idx] < 0) { 2520 int id = usb_interface_id(func->conf, &func->function); 2521 if (unlikely(id < 0)) 2522 return id; 2523 func->interfaces_nums[idx] = id; 2524 } 2525 newValue = func->interfaces_nums[idx]; 2526 break; 2527 2528 case FFS_STRING: 2529 /* String' IDs are allocated when fsf_data is bound to cdev */ 2530 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; 2531 break; 2532 2533 case FFS_ENDPOINT: 2534 /* 2535 * USB_DT_ENDPOINT are handled in 2536 * __ffs_func_bind_do_descs(). 2537 */ 2538 if (desc->bDescriptorType == USB_DT_ENDPOINT) 2539 return 0; 2540 2541 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; 2542 if (unlikely(!func->eps[idx].ep)) 2543 return -EINVAL; 2544 2545 { 2546 struct usb_endpoint_descriptor **descs; 2547 descs = func->eps[idx].descs; 2548 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; 2549 } 2550 break; 2551 } 2552 2553 pr_vdebug("%02x -> %02x\n", *valuep, newValue); 2554 *valuep = newValue; 2555 return 0; 2556 } 2557 2558 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, 2559 struct usb_os_desc_header *h, void *data, 2560 unsigned len, void *priv) 2561 { 2562 struct ffs_function *func = priv; 2563 u8 length = 0; 2564 2565 switch (type) { 2566 case FFS_OS_DESC_EXT_COMPAT: { 2567 struct usb_ext_compat_desc *desc = data; 2568 struct usb_os_desc_table *t; 2569 2570 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; 2571 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; 2572 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID, 2573 ARRAY_SIZE(desc->CompatibleID) + 2574 ARRAY_SIZE(desc->SubCompatibleID)); 2575 length = sizeof(*desc); 2576 } 2577 break; 2578 case FFS_OS_DESC_EXT_PROP: { 2579 struct usb_ext_prop_desc *desc = data; 2580 struct usb_os_desc_table *t; 2581 struct usb_os_desc_ext_prop *ext_prop; 2582 char *ext_prop_name; 2583 char *ext_prop_data; 2584 2585 t = &func->function.os_desc_table[h->interface]; 2586 t->if_id = func->interfaces_nums[h->interface]; 2587 2588 ext_prop = func->ffs->ms_os_descs_ext_prop_avail; 2589 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); 2590 2591 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); 2592 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); 2593 ext_prop->data_len = le32_to_cpu(*(u32 *) 2594 usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); 2595 length = ext_prop->name_len + ext_prop->data_len + 14; 2596 2597 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; 2598 func->ffs->ms_os_descs_ext_prop_name_avail += 2599 ext_prop->name_len; 2600 2601 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; 2602 func->ffs->ms_os_descs_ext_prop_data_avail += 2603 ext_prop->data_len; 2604 memcpy(ext_prop_data, 2605 usb_ext_prop_data_ptr(data, ext_prop->name_len), 2606 ext_prop->data_len); 2607 /* unicode data reported to the host as "WCHAR"s */ 2608 switch (ext_prop->type) { 2609 case USB_EXT_PROP_UNICODE: 2610 case USB_EXT_PROP_UNICODE_ENV: 2611 case USB_EXT_PROP_UNICODE_LINK: 2612 case USB_EXT_PROP_UNICODE_MULTI: 2613 ext_prop->data_len *= 2; 2614 break; 2615 } 2616 ext_prop->data = ext_prop_data; 2617 2618 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), 2619 ext_prop->name_len); 2620 /* property name reported to the host as "WCHAR"s */ 2621 ext_prop->name_len *= 2; 2622 ext_prop->name = ext_prop_name; 2623 2624 t->os_desc->ext_prop_len += 2625 ext_prop->name_len + ext_prop->data_len + 14; 2626 ++t->os_desc->ext_prop_count; 2627 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); 2628 } 2629 break; 2630 default: 2631 pr_vdebug("unknown descriptor: %d\n", type); 2632 } 2633 2634 return length; 2635 } 2636 2637 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, 2638 struct usb_configuration *c) 2639 { 2640 struct ffs_function *func = ffs_func_from_usb(f); 2641 struct f_fs_opts *ffs_opts = 2642 container_of(f->fi, struct f_fs_opts, func_inst); 2643 int ret; 2644 2645 ENTER(); 2646 2647 /* 2648 * Legacy gadget triggers binding in functionfs_ready_callback, 2649 * which already uses locking; taking the same lock here would 2650 * cause a deadlock. 2651 * 2652 * Configfs-enabled gadgets however do need ffs_dev_lock. 2653 */ 2654 if (!ffs_opts->no_configfs) 2655 ffs_dev_lock(); 2656 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; 2657 func->ffs = ffs_opts->dev->ffs_data; 2658 if (!ffs_opts->no_configfs) 2659 ffs_dev_unlock(); 2660 if (ret) 2661 return ERR_PTR(ret); 2662 2663 func->conf = c; 2664 func->gadget = c->cdev->gadget; 2665 2666 ffs_data_get(func->ffs); 2667 2668 /* 2669 * in drivers/usb/gadget/configfs.c:configfs_composite_bind() 2670 * configurations are bound in sequence with list_for_each_entry, 2671 * in each configuration its functions are bound in sequence 2672 * with list_for_each_entry, so we assume no race condition 2673 * with regard to ffs_opts->bound access 2674 */ 2675 if (!ffs_opts->refcnt) { 2676 ret = functionfs_bind(func->ffs, c->cdev); 2677 if (ret) 2678 return ERR_PTR(ret); 2679 } 2680 ffs_opts->refcnt++; 2681 func->function.strings = func->ffs->stringtabs; 2682 2683 return ffs_opts; 2684 } 2685 2686 static int _ffs_func_bind(struct usb_configuration *c, 2687 struct usb_function *f) 2688 { 2689 struct ffs_function *func = ffs_func_from_usb(f); 2690 struct ffs_data *ffs = func->ffs; 2691 2692 const int full = !!func->ffs->fs_descs_count; 2693 const int high = gadget_is_dualspeed(func->gadget) && 2694 func->ffs->hs_descs_count; 2695 const int super = gadget_is_superspeed(func->gadget) && 2696 func->ffs->ss_descs_count; 2697 2698 int fs_len, hs_len, ss_len, ret, i; 2699 2700 /* Make it a single chunk, less management later on */ 2701 vla_group(d); 2702 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); 2703 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, 2704 full ? ffs->fs_descs_count + 1 : 0); 2705 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, 2706 high ? ffs->hs_descs_count + 1 : 0); 2707 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, 2708 super ? ffs->ss_descs_count + 1 : 0); 2709 vla_item_with_sz(d, short, inums, ffs->interfaces_count); 2710 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, 2711 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2712 vla_item_with_sz(d, char[16], ext_compat, 2713 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2714 vla_item_with_sz(d, struct usb_os_desc, os_desc, 2715 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2716 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, 2717 ffs->ms_os_descs_ext_prop_count); 2718 vla_item_with_sz(d, char, ext_prop_name, 2719 ffs->ms_os_descs_ext_prop_name_len); 2720 vla_item_with_sz(d, char, ext_prop_data, 2721 ffs->ms_os_descs_ext_prop_data_len); 2722 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); 2723 char *vlabuf; 2724 2725 ENTER(); 2726 2727 /* Has descriptors only for speeds gadget does not support */ 2728 if (unlikely(!(full | high | super))) 2729 return -ENOTSUPP; 2730 2731 /* Allocate a single chunk, less management later on */ 2732 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); 2733 if (unlikely(!vlabuf)) 2734 return -ENOMEM; 2735 2736 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); 2737 ffs->ms_os_descs_ext_prop_name_avail = 2738 vla_ptr(vlabuf, d, ext_prop_name); 2739 ffs->ms_os_descs_ext_prop_data_avail = 2740 vla_ptr(vlabuf, d, ext_prop_data); 2741 2742 /* Copy descriptors */ 2743 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, 2744 ffs->raw_descs_length); 2745 2746 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); 2747 for (ret = ffs->eps_count; ret; --ret) { 2748 struct ffs_ep *ptr; 2749 2750 ptr = vla_ptr(vlabuf, d, eps); 2751 ptr[ret].num = -1; 2752 } 2753 2754 /* Save pointers 2755 * d_eps == vlabuf, func->eps used to kfree vlabuf later 2756 */ 2757 func->eps = vla_ptr(vlabuf, d, eps); 2758 func->interfaces_nums = vla_ptr(vlabuf, d, inums); 2759 2760 /* 2761 * Go through all the endpoint descriptors and allocate 2762 * endpoints first, so that later we can rewrite the endpoint 2763 * numbers without worrying that it may be described later on. 2764 */ 2765 if (likely(full)) { 2766 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); 2767 fs_len = ffs_do_descs(ffs->fs_descs_count, 2768 vla_ptr(vlabuf, d, raw_descs), 2769 d_raw_descs__sz, 2770 __ffs_func_bind_do_descs, func); 2771 if (unlikely(fs_len < 0)) { 2772 ret = fs_len; 2773 goto error; 2774 } 2775 } else { 2776 fs_len = 0; 2777 } 2778 2779 if (likely(high)) { 2780 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); 2781 hs_len = ffs_do_descs(ffs->hs_descs_count, 2782 vla_ptr(vlabuf, d, raw_descs) + fs_len, 2783 d_raw_descs__sz - fs_len, 2784 __ffs_func_bind_do_descs, func); 2785 if (unlikely(hs_len < 0)) { 2786 ret = hs_len; 2787 goto error; 2788 } 2789 } else { 2790 hs_len = 0; 2791 } 2792 2793 if (likely(super)) { 2794 func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs); 2795 ss_len = ffs_do_descs(ffs->ss_descs_count, 2796 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, 2797 d_raw_descs__sz - fs_len - hs_len, 2798 __ffs_func_bind_do_descs, func); 2799 if (unlikely(ss_len < 0)) { 2800 ret = ss_len; 2801 goto error; 2802 } 2803 } else { 2804 ss_len = 0; 2805 } 2806 2807 /* 2808 * Now handle interface numbers allocation and interface and 2809 * endpoint numbers rewriting. We can do that in one go 2810 * now. 2811 */ 2812 ret = ffs_do_descs(ffs->fs_descs_count + 2813 (high ? ffs->hs_descs_count : 0) + 2814 (super ? ffs->ss_descs_count : 0), 2815 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, 2816 __ffs_func_bind_do_nums, func); 2817 if (unlikely(ret < 0)) 2818 goto error; 2819 2820 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); 2821 if (c->cdev->use_os_string) 2822 for (i = 0; i < ffs->interfaces_count; ++i) { 2823 struct usb_os_desc *desc; 2824 2825 desc = func->function.os_desc_table[i].os_desc = 2826 vla_ptr(vlabuf, d, os_desc) + 2827 i * sizeof(struct usb_os_desc); 2828 desc->ext_compat_id = 2829 vla_ptr(vlabuf, d, ext_compat) + i * 16; 2830 INIT_LIST_HEAD(&desc->ext_prop); 2831 } 2832 ret = ffs_do_os_descs(ffs->ms_os_descs_count, 2833 vla_ptr(vlabuf, d, raw_descs) + 2834 fs_len + hs_len + ss_len, 2835 d_raw_descs__sz - fs_len - hs_len - ss_len, 2836 __ffs_func_bind_do_os_desc, func); 2837 if (unlikely(ret < 0)) 2838 goto error; 2839 func->function.os_desc_n = 2840 c->cdev->use_os_string ? ffs->interfaces_count : 0; 2841 2842 /* And we're done */ 2843 ffs_event_add(ffs, FUNCTIONFS_BIND); 2844 return 0; 2845 2846 error: 2847 /* XXX Do we need to release all claimed endpoints here? */ 2848 return ret; 2849 } 2850 2851 static int ffs_func_bind(struct usb_configuration *c, 2852 struct usb_function *f) 2853 { 2854 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); 2855 2856 if (IS_ERR(ffs_opts)) 2857 return PTR_ERR(ffs_opts); 2858 2859 return _ffs_func_bind(c, f); 2860 } 2861 2862 2863 /* Other USB function hooks *************************************************/ 2864 2865 static int ffs_func_set_alt(struct usb_function *f, 2866 unsigned interface, unsigned alt) 2867 { 2868 struct ffs_function *func = ffs_func_from_usb(f); 2869 struct ffs_data *ffs = func->ffs; 2870 int ret = 0, intf; 2871 2872 if (alt != (unsigned)-1) { 2873 intf = ffs_func_revmap_intf(func, interface); 2874 if (unlikely(intf < 0)) 2875 return intf; 2876 } 2877 2878 if (ffs->func) 2879 ffs_func_eps_disable(ffs->func); 2880 2881 if (ffs->state != FFS_ACTIVE) 2882 return -ENODEV; 2883 2884 if (alt == (unsigned)-1) { 2885 ffs->func = NULL; 2886 ffs_event_add(ffs, FUNCTIONFS_DISABLE); 2887 return 0; 2888 } 2889 2890 ffs->func = func; 2891 ret = ffs_func_eps_enable(func); 2892 if (likely(ret >= 0)) 2893 ffs_event_add(ffs, FUNCTIONFS_ENABLE); 2894 return ret; 2895 } 2896 2897 static void ffs_func_disable(struct usb_function *f) 2898 { 2899 ffs_func_set_alt(f, 0, (unsigned)-1); 2900 } 2901 2902 static int ffs_func_setup(struct usb_function *f, 2903 const struct usb_ctrlrequest *creq) 2904 { 2905 struct ffs_function *func = ffs_func_from_usb(f); 2906 struct ffs_data *ffs = func->ffs; 2907 unsigned long flags; 2908 int ret; 2909 2910 ENTER(); 2911 2912 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); 2913 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); 2914 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); 2915 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); 2916 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); 2917 2918 /* 2919 * Most requests directed to interface go through here 2920 * (notable exceptions are set/get interface) so we need to 2921 * handle them. All other either handled by composite or 2922 * passed to usb_configuration->setup() (if one is set). No 2923 * matter, we will handle requests directed to endpoint here 2924 * as well (as it's straightforward) but what to do with any 2925 * other request? 2926 */ 2927 if (ffs->state != FFS_ACTIVE) 2928 return -ENODEV; 2929 2930 switch (creq->bRequestType & USB_RECIP_MASK) { 2931 case USB_RECIP_INTERFACE: 2932 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); 2933 if (unlikely(ret < 0)) 2934 return ret; 2935 break; 2936 2937 case USB_RECIP_ENDPOINT: 2938 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); 2939 if (unlikely(ret < 0)) 2940 return ret; 2941 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 2942 ret = func->ffs->eps_addrmap[ret]; 2943 break; 2944 2945 default: 2946 return -EOPNOTSUPP; 2947 } 2948 2949 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 2950 ffs->ev.setup = *creq; 2951 ffs->ev.setup.wIndex = cpu_to_le16(ret); 2952 __ffs_event_add(ffs, FUNCTIONFS_SETUP); 2953 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 2954 2955 return 0; 2956 } 2957 2958 static void ffs_func_suspend(struct usb_function *f) 2959 { 2960 ENTER(); 2961 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); 2962 } 2963 2964 static void ffs_func_resume(struct usb_function *f) 2965 { 2966 ENTER(); 2967 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); 2968 } 2969 2970 2971 /* Endpoint and interface numbers reverse mapping ***************************/ 2972 2973 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) 2974 { 2975 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; 2976 return num ? num : -EDOM; 2977 } 2978 2979 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) 2980 { 2981 short *nums = func->interfaces_nums; 2982 unsigned count = func->ffs->interfaces_count; 2983 2984 for (; count; --count, ++nums) { 2985 if (*nums >= 0 && *nums == intf) 2986 return nums - func->interfaces_nums; 2987 } 2988 2989 return -EDOM; 2990 } 2991 2992 2993 /* Devices management *******************************************************/ 2994 2995 static LIST_HEAD(ffs_devices); 2996 2997 static struct ffs_dev *_ffs_do_find_dev(const char *name) 2998 { 2999 struct ffs_dev *dev; 3000 3001 list_for_each_entry(dev, &ffs_devices, entry) { 3002 if (!dev->name || !name) 3003 continue; 3004 if (strcmp(dev->name, name) == 0) 3005 return dev; 3006 } 3007 3008 return NULL; 3009 } 3010 3011 /* 3012 * ffs_lock must be taken by the caller of this function 3013 */ 3014 static struct ffs_dev *_ffs_get_single_dev(void) 3015 { 3016 struct ffs_dev *dev; 3017 3018 if (list_is_singular(&ffs_devices)) { 3019 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); 3020 if (dev->single) 3021 return dev; 3022 } 3023 3024 return NULL; 3025 } 3026 3027 /* 3028 * ffs_lock must be taken by the caller of this function 3029 */ 3030 static struct ffs_dev *_ffs_find_dev(const char *name) 3031 { 3032 struct ffs_dev *dev; 3033 3034 dev = _ffs_get_single_dev(); 3035 if (dev) 3036 return dev; 3037 3038 return _ffs_do_find_dev(name); 3039 } 3040 3041 /* Configfs support *********************************************************/ 3042 3043 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) 3044 { 3045 return container_of(to_config_group(item), struct f_fs_opts, 3046 func_inst.group); 3047 } 3048 3049 static void ffs_attr_release(struct config_item *item) 3050 { 3051 struct f_fs_opts *opts = to_ffs_opts(item); 3052 3053 usb_put_function_instance(&opts->func_inst); 3054 } 3055 3056 static struct configfs_item_operations ffs_item_ops = { 3057 .release = ffs_attr_release, 3058 }; 3059 3060 static struct config_item_type ffs_func_type = { 3061 .ct_item_ops = &ffs_item_ops, 3062 .ct_owner = THIS_MODULE, 3063 }; 3064 3065 3066 /* Function registration interface ******************************************/ 3067 3068 static void ffs_free_inst(struct usb_function_instance *f) 3069 { 3070 struct f_fs_opts *opts; 3071 3072 opts = to_f_fs_opts(f); 3073 ffs_dev_lock(); 3074 _ffs_free_dev(opts->dev); 3075 ffs_dev_unlock(); 3076 kfree(opts); 3077 } 3078 3079 #define MAX_INST_NAME_LEN 40 3080 3081 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) 3082 { 3083 struct f_fs_opts *opts; 3084 char *ptr; 3085 const char *tmp; 3086 int name_len, ret; 3087 3088 name_len = strlen(name) + 1; 3089 if (name_len > MAX_INST_NAME_LEN) 3090 return -ENAMETOOLONG; 3091 3092 ptr = kstrndup(name, name_len, GFP_KERNEL); 3093 if (!ptr) 3094 return -ENOMEM; 3095 3096 opts = to_f_fs_opts(fi); 3097 tmp = NULL; 3098 3099 ffs_dev_lock(); 3100 3101 tmp = opts->dev->name_allocated ? opts->dev->name : NULL; 3102 ret = _ffs_name_dev(opts->dev, ptr); 3103 if (ret) { 3104 kfree(ptr); 3105 ffs_dev_unlock(); 3106 return ret; 3107 } 3108 opts->dev->name_allocated = true; 3109 3110 ffs_dev_unlock(); 3111 3112 kfree(tmp); 3113 3114 return 0; 3115 } 3116 3117 static struct usb_function_instance *ffs_alloc_inst(void) 3118 { 3119 struct f_fs_opts *opts; 3120 struct ffs_dev *dev; 3121 3122 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 3123 if (!opts) 3124 return ERR_PTR(-ENOMEM); 3125 3126 opts->func_inst.set_inst_name = ffs_set_inst_name; 3127 opts->func_inst.free_func_inst = ffs_free_inst; 3128 ffs_dev_lock(); 3129 dev = _ffs_alloc_dev(); 3130 ffs_dev_unlock(); 3131 if (IS_ERR(dev)) { 3132 kfree(opts); 3133 return ERR_CAST(dev); 3134 } 3135 opts->dev = dev; 3136 dev->opts = opts; 3137 3138 config_group_init_type_name(&opts->func_inst.group, "", 3139 &ffs_func_type); 3140 return &opts->func_inst; 3141 } 3142 3143 static void ffs_free(struct usb_function *f) 3144 { 3145 kfree(ffs_func_from_usb(f)); 3146 } 3147 3148 static void ffs_func_unbind(struct usb_configuration *c, 3149 struct usb_function *f) 3150 { 3151 struct ffs_function *func = ffs_func_from_usb(f); 3152 struct ffs_data *ffs = func->ffs; 3153 struct f_fs_opts *opts = 3154 container_of(f->fi, struct f_fs_opts, func_inst); 3155 struct ffs_ep *ep = func->eps; 3156 unsigned count = ffs->eps_count; 3157 unsigned long flags; 3158 3159 ENTER(); 3160 if (ffs->func == func) { 3161 ffs_func_eps_disable(func); 3162 ffs->func = NULL; 3163 } 3164 3165 if (!--opts->refcnt) 3166 functionfs_unbind(ffs); 3167 3168 /* cleanup after autoconfig */ 3169 spin_lock_irqsave(&func->ffs->eps_lock, flags); 3170 do { 3171 if (ep->ep && ep->req) 3172 usb_ep_free_request(ep->ep, ep->req); 3173 ep->req = NULL; 3174 ++ep; 3175 } while (--count); 3176 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 3177 kfree(func->eps); 3178 func->eps = NULL; 3179 /* 3180 * eps, descriptors and interfaces_nums are allocated in the 3181 * same chunk so only one free is required. 3182 */ 3183 func->function.fs_descriptors = NULL; 3184 func->function.hs_descriptors = NULL; 3185 func->function.ss_descriptors = NULL; 3186 func->interfaces_nums = NULL; 3187 3188 ffs_event_add(ffs, FUNCTIONFS_UNBIND); 3189 } 3190 3191 static struct usb_function *ffs_alloc(struct usb_function_instance *fi) 3192 { 3193 struct ffs_function *func; 3194 3195 ENTER(); 3196 3197 func = kzalloc(sizeof(*func), GFP_KERNEL); 3198 if (unlikely(!func)) 3199 return ERR_PTR(-ENOMEM); 3200 3201 func->function.name = "Function FS Gadget"; 3202 3203 func->function.bind = ffs_func_bind; 3204 func->function.unbind = ffs_func_unbind; 3205 func->function.set_alt = ffs_func_set_alt; 3206 func->function.disable = ffs_func_disable; 3207 func->function.setup = ffs_func_setup; 3208 func->function.suspend = ffs_func_suspend; 3209 func->function.resume = ffs_func_resume; 3210 func->function.free_func = ffs_free; 3211 3212 return &func->function; 3213 } 3214 3215 /* 3216 * ffs_lock must be taken by the caller of this function 3217 */ 3218 static struct ffs_dev *_ffs_alloc_dev(void) 3219 { 3220 struct ffs_dev *dev; 3221 int ret; 3222 3223 if (_ffs_get_single_dev()) 3224 return ERR_PTR(-EBUSY); 3225 3226 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3227 if (!dev) 3228 return ERR_PTR(-ENOMEM); 3229 3230 if (list_empty(&ffs_devices)) { 3231 ret = functionfs_init(); 3232 if (ret) { 3233 kfree(dev); 3234 return ERR_PTR(ret); 3235 } 3236 } 3237 3238 list_add(&dev->entry, &ffs_devices); 3239 3240 return dev; 3241 } 3242 3243 /* 3244 * ffs_lock must be taken by the caller of this function 3245 * The caller is responsible for "name" being available whenever f_fs needs it 3246 */ 3247 static int _ffs_name_dev(struct ffs_dev *dev, const char *name) 3248 { 3249 struct ffs_dev *existing; 3250 3251 existing = _ffs_do_find_dev(name); 3252 if (existing) 3253 return -EBUSY; 3254 3255 dev->name = name; 3256 3257 return 0; 3258 } 3259 3260 /* 3261 * The caller is responsible for "name" being available whenever f_fs needs it 3262 */ 3263 int ffs_name_dev(struct ffs_dev *dev, const char *name) 3264 { 3265 int ret; 3266 3267 ffs_dev_lock(); 3268 ret = _ffs_name_dev(dev, name); 3269 ffs_dev_unlock(); 3270 3271 return ret; 3272 } 3273 EXPORT_SYMBOL_GPL(ffs_name_dev); 3274 3275 int ffs_single_dev(struct ffs_dev *dev) 3276 { 3277 int ret; 3278 3279 ret = 0; 3280 ffs_dev_lock(); 3281 3282 if (!list_is_singular(&ffs_devices)) 3283 ret = -EBUSY; 3284 else 3285 dev->single = true; 3286 3287 ffs_dev_unlock(); 3288 return ret; 3289 } 3290 EXPORT_SYMBOL_GPL(ffs_single_dev); 3291 3292 /* 3293 * ffs_lock must be taken by the caller of this function 3294 */ 3295 static void _ffs_free_dev(struct ffs_dev *dev) 3296 { 3297 list_del(&dev->entry); 3298 if (dev->name_allocated) 3299 kfree(dev->name); 3300 kfree(dev); 3301 if (list_empty(&ffs_devices)) 3302 functionfs_cleanup(); 3303 } 3304 3305 static void *ffs_acquire_dev(const char *dev_name) 3306 { 3307 struct ffs_dev *ffs_dev; 3308 3309 ENTER(); 3310 ffs_dev_lock(); 3311 3312 ffs_dev = _ffs_find_dev(dev_name); 3313 if (!ffs_dev) 3314 ffs_dev = ERR_PTR(-ENOENT); 3315 else if (ffs_dev->mounted) 3316 ffs_dev = ERR_PTR(-EBUSY); 3317 else if (ffs_dev->ffs_acquire_dev_callback && 3318 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) 3319 ffs_dev = ERR_PTR(-ENOENT); 3320 else 3321 ffs_dev->mounted = true; 3322 3323 ffs_dev_unlock(); 3324 return ffs_dev; 3325 } 3326 3327 static void ffs_release_dev(struct ffs_data *ffs_data) 3328 { 3329 struct ffs_dev *ffs_dev; 3330 3331 ENTER(); 3332 ffs_dev_lock(); 3333 3334 ffs_dev = ffs_data->private_data; 3335 if (ffs_dev) { 3336 ffs_dev->mounted = false; 3337 3338 if (ffs_dev->ffs_release_dev_callback) 3339 ffs_dev->ffs_release_dev_callback(ffs_dev); 3340 } 3341 3342 ffs_dev_unlock(); 3343 } 3344 3345 static int ffs_ready(struct ffs_data *ffs) 3346 { 3347 struct ffs_dev *ffs_obj; 3348 int ret = 0; 3349 3350 ENTER(); 3351 ffs_dev_lock(); 3352 3353 ffs_obj = ffs->private_data; 3354 if (!ffs_obj) { 3355 ret = -EINVAL; 3356 goto done; 3357 } 3358 if (WARN_ON(ffs_obj->desc_ready)) { 3359 ret = -EBUSY; 3360 goto done; 3361 } 3362 3363 ffs_obj->desc_ready = true; 3364 ffs_obj->ffs_data = ffs; 3365 3366 if (ffs_obj->ffs_ready_callback) 3367 ret = ffs_obj->ffs_ready_callback(ffs); 3368 3369 done: 3370 ffs_dev_unlock(); 3371 return ret; 3372 } 3373 3374 static void ffs_closed(struct ffs_data *ffs) 3375 { 3376 struct ffs_dev *ffs_obj; 3377 3378 ENTER(); 3379 ffs_dev_lock(); 3380 3381 ffs_obj = ffs->private_data; 3382 if (!ffs_obj) 3383 goto done; 3384 3385 ffs_obj->desc_ready = false; 3386 3387 if (ffs_obj->ffs_closed_callback) 3388 ffs_obj->ffs_closed_callback(ffs); 3389 3390 if (!ffs_obj->opts || ffs_obj->opts->no_configfs 3391 || !ffs_obj->opts->func_inst.group.cg_item.ci_parent) 3392 goto done; 3393 3394 unregister_gadget_item(ffs_obj->opts-> 3395 func_inst.group.cg_item.ci_parent->ci_parent); 3396 done: 3397 ffs_dev_unlock(); 3398 } 3399 3400 /* Misc helper functions ****************************************************/ 3401 3402 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 3403 { 3404 return nonblock 3405 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN 3406 : mutex_lock_interruptible(mutex); 3407 } 3408 3409 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 3410 { 3411 char *data; 3412 3413 if (unlikely(!len)) 3414 return NULL; 3415 3416 data = kmalloc(len, GFP_KERNEL); 3417 if (unlikely(!data)) 3418 return ERR_PTR(-ENOMEM); 3419 3420 if (unlikely(__copy_from_user(data, buf, len))) { 3421 kfree(data); 3422 return ERR_PTR(-EFAULT); 3423 } 3424 3425 pr_vdebug("Buffer from user space:\n"); 3426 ffs_dump_mem("", data, len); 3427 3428 return data; 3429 } 3430 3431 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); 3432 MODULE_LICENSE("GPL"); 3433 MODULE_AUTHOR("Michal Nazarewicz"); 3434