1 /* 2 * f_fs.c -- user mode file system API for USB composite function controllers 3 * 4 * Copyright (C) 2010 Samsung Electronics 5 * Author: Michal Nazarewicz <mina86@mina86.com> 6 * 7 * Based on inode.c (GadgetFS) which was: 8 * Copyright (C) 2003-2004 David Brownell 9 * Copyright (C) 2003 Agilent Technologies 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2 of the License, or 14 * (at your option) any later version. 15 */ 16 17 18 /* #define DEBUG */ 19 /* #define VERBOSE_DEBUG */ 20 21 #include <linux/blkdev.h> 22 #include <linux/pagemap.h> 23 #include <linux/export.h> 24 #include <linux/hid.h> 25 #include <linux/module.h> 26 #include <asm/unaligned.h> 27 28 #include <linux/usb/composite.h> 29 #include <linux/usb/functionfs.h> 30 31 #include <linux/aio.h> 32 #include <linux/mmu_context.h> 33 #include <linux/poll.h> 34 35 #include "u_fs.h" 36 #include "u_f.h" 37 #include "u_os_desc.h" 38 #include "configfs.h" 39 40 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ 41 42 /* Reference counter handling */ 43 static void ffs_data_get(struct ffs_data *ffs); 44 static void ffs_data_put(struct ffs_data *ffs); 45 /* Creates new ffs_data object. */ 46 static struct ffs_data *__must_check ffs_data_new(void) __attribute__((malloc)); 47 48 /* Opened counter handling. */ 49 static void ffs_data_opened(struct ffs_data *ffs); 50 static void ffs_data_closed(struct ffs_data *ffs); 51 52 /* Called with ffs->mutex held; take over ownership of data. */ 53 static int __must_check 54 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); 55 static int __must_check 56 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); 57 58 59 /* The function structure ***************************************************/ 60 61 struct ffs_ep; 62 63 struct ffs_function { 64 struct usb_configuration *conf; 65 struct usb_gadget *gadget; 66 struct ffs_data *ffs; 67 68 struct ffs_ep *eps; 69 u8 eps_revmap[16]; 70 short *interfaces_nums; 71 72 struct usb_function function; 73 }; 74 75 76 static struct ffs_function *ffs_func_from_usb(struct usb_function *f) 77 { 78 return container_of(f, struct ffs_function, function); 79 } 80 81 82 static inline enum ffs_setup_state 83 ffs_setup_state_clear_cancelled(struct ffs_data *ffs) 84 { 85 return (enum ffs_setup_state) 86 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); 87 } 88 89 90 static void ffs_func_eps_disable(struct ffs_function *func); 91 static int __must_check ffs_func_eps_enable(struct ffs_function *func); 92 93 static int ffs_func_bind(struct usb_configuration *, 94 struct usb_function *); 95 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); 96 static void ffs_func_disable(struct usb_function *); 97 static int ffs_func_setup(struct usb_function *, 98 const struct usb_ctrlrequest *); 99 static void ffs_func_suspend(struct usb_function *); 100 static void ffs_func_resume(struct usb_function *); 101 102 103 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); 104 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); 105 106 107 /* The endpoints structures *************************************************/ 108 109 struct ffs_ep { 110 struct usb_ep *ep; /* P: ffs->eps_lock */ 111 struct usb_request *req; /* P: epfile->mutex */ 112 113 /* [0]: full speed, [1]: high speed, [2]: super speed */ 114 struct usb_endpoint_descriptor *descs[3]; 115 116 u8 num; 117 118 int status; /* P: epfile->mutex */ 119 }; 120 121 struct ffs_epfile { 122 /* Protects ep->ep and ep->req. */ 123 struct mutex mutex; 124 wait_queue_head_t wait; 125 126 struct ffs_data *ffs; 127 struct ffs_ep *ep; /* P: ffs->eps_lock */ 128 129 struct dentry *dentry; 130 131 char name[5]; 132 133 unsigned char in; /* P: ffs->eps_lock */ 134 unsigned char isoc; /* P: ffs->eps_lock */ 135 136 unsigned char _pad; 137 }; 138 139 /* ffs_io_data structure ***************************************************/ 140 141 struct ffs_io_data { 142 bool aio; 143 bool read; 144 145 struct kiocb *kiocb; 146 const struct iovec *iovec; 147 unsigned long nr_segs; 148 char __user *buf; 149 size_t len; 150 151 struct mm_struct *mm; 152 struct work_struct work; 153 154 struct usb_ep *ep; 155 struct usb_request *req; 156 }; 157 158 static int __must_check ffs_epfiles_create(struct ffs_data *ffs); 159 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count); 160 161 static struct inode *__must_check 162 ffs_sb_create_file(struct super_block *sb, const char *name, void *data, 163 const struct file_operations *fops, 164 struct dentry **dentry_p); 165 166 /* Devices management *******************************************************/ 167 168 DEFINE_MUTEX(ffs_lock); 169 EXPORT_SYMBOL_GPL(ffs_lock); 170 171 static struct ffs_dev *_ffs_find_dev(const char *name); 172 static struct ffs_dev *_ffs_alloc_dev(void); 173 static int _ffs_name_dev(struct ffs_dev *dev, const char *name); 174 static void _ffs_free_dev(struct ffs_dev *dev); 175 static void *ffs_acquire_dev(const char *dev_name); 176 static void ffs_release_dev(struct ffs_data *ffs_data); 177 static int ffs_ready(struct ffs_data *ffs); 178 static void ffs_closed(struct ffs_data *ffs); 179 180 /* Misc helper functions ****************************************************/ 181 182 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 183 __attribute__((warn_unused_result, nonnull)); 184 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 185 __attribute__((warn_unused_result, nonnull)); 186 187 188 /* Control file aka ep0 *****************************************************/ 189 190 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) 191 { 192 struct ffs_data *ffs = req->context; 193 194 complete_all(&ffs->ep0req_completion); 195 } 196 197 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) 198 { 199 struct usb_request *req = ffs->ep0req; 200 int ret; 201 202 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); 203 204 spin_unlock_irq(&ffs->ev.waitq.lock); 205 206 req->buf = data; 207 req->length = len; 208 209 /* 210 * UDC layer requires to provide a buffer even for ZLP, but should 211 * not use it at all. Let's provide some poisoned pointer to catch 212 * possible bug in the driver. 213 */ 214 if (req->buf == NULL) 215 req->buf = (void *)0xDEADBABE; 216 217 reinit_completion(&ffs->ep0req_completion); 218 219 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); 220 if (unlikely(ret < 0)) 221 return ret; 222 223 ret = wait_for_completion_interruptible(&ffs->ep0req_completion); 224 if (unlikely(ret)) { 225 usb_ep_dequeue(ffs->gadget->ep0, req); 226 return -EINTR; 227 } 228 229 ffs->setup_state = FFS_NO_SETUP; 230 return req->status ? req->status : req->actual; 231 } 232 233 static int __ffs_ep0_stall(struct ffs_data *ffs) 234 { 235 if (ffs->ev.can_stall) { 236 pr_vdebug("ep0 stall\n"); 237 usb_ep_set_halt(ffs->gadget->ep0); 238 ffs->setup_state = FFS_NO_SETUP; 239 return -EL2HLT; 240 } else { 241 pr_debug("bogus ep0 stall!\n"); 242 return -ESRCH; 243 } 244 } 245 246 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, 247 size_t len, loff_t *ptr) 248 { 249 struct ffs_data *ffs = file->private_data; 250 ssize_t ret; 251 char *data; 252 253 ENTER(); 254 255 /* Fast check if setup was canceled */ 256 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 257 return -EIDRM; 258 259 /* Acquire mutex */ 260 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 261 if (unlikely(ret < 0)) 262 return ret; 263 264 /* Check state */ 265 switch (ffs->state) { 266 case FFS_READ_DESCRIPTORS: 267 case FFS_READ_STRINGS: 268 /* Copy data */ 269 if (unlikely(len < 16)) { 270 ret = -EINVAL; 271 break; 272 } 273 274 data = ffs_prepare_buffer(buf, len); 275 if (IS_ERR(data)) { 276 ret = PTR_ERR(data); 277 break; 278 } 279 280 /* Handle data */ 281 if (ffs->state == FFS_READ_DESCRIPTORS) { 282 pr_info("read descriptors\n"); 283 ret = __ffs_data_got_descs(ffs, data, len); 284 if (unlikely(ret < 0)) 285 break; 286 287 ffs->state = FFS_READ_STRINGS; 288 ret = len; 289 } else { 290 pr_info("read strings\n"); 291 ret = __ffs_data_got_strings(ffs, data, len); 292 if (unlikely(ret < 0)) 293 break; 294 295 ret = ffs_epfiles_create(ffs); 296 if (unlikely(ret)) { 297 ffs->state = FFS_CLOSING; 298 break; 299 } 300 301 ffs->state = FFS_ACTIVE; 302 mutex_unlock(&ffs->mutex); 303 304 ret = ffs_ready(ffs); 305 if (unlikely(ret < 0)) { 306 ffs->state = FFS_CLOSING; 307 return ret; 308 } 309 310 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); 311 return len; 312 } 313 break; 314 315 case FFS_ACTIVE: 316 data = NULL; 317 /* 318 * We're called from user space, we can use _irq 319 * rather then _irqsave 320 */ 321 spin_lock_irq(&ffs->ev.waitq.lock); 322 switch (ffs_setup_state_clear_cancelled(ffs)) { 323 case FFS_SETUP_CANCELLED: 324 ret = -EIDRM; 325 goto done_spin; 326 327 case FFS_NO_SETUP: 328 ret = -ESRCH; 329 goto done_spin; 330 331 case FFS_SETUP_PENDING: 332 break; 333 } 334 335 /* FFS_SETUP_PENDING */ 336 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { 337 spin_unlock_irq(&ffs->ev.waitq.lock); 338 ret = __ffs_ep0_stall(ffs); 339 break; 340 } 341 342 /* FFS_SETUP_PENDING and not stall */ 343 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 344 345 spin_unlock_irq(&ffs->ev.waitq.lock); 346 347 data = ffs_prepare_buffer(buf, len); 348 if (IS_ERR(data)) { 349 ret = PTR_ERR(data); 350 break; 351 } 352 353 spin_lock_irq(&ffs->ev.waitq.lock); 354 355 /* 356 * We are guaranteed to be still in FFS_ACTIVE state 357 * but the state of setup could have changed from 358 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need 359 * to check for that. If that happened we copied data 360 * from user space in vain but it's unlikely. 361 * 362 * For sure we are not in FFS_NO_SETUP since this is 363 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP 364 * transition can be performed and it's protected by 365 * mutex. 366 */ 367 if (ffs_setup_state_clear_cancelled(ffs) == 368 FFS_SETUP_CANCELLED) { 369 ret = -EIDRM; 370 done_spin: 371 spin_unlock_irq(&ffs->ev.waitq.lock); 372 } else { 373 /* unlocks spinlock */ 374 ret = __ffs_ep0_queue_wait(ffs, data, len); 375 } 376 kfree(data); 377 break; 378 379 default: 380 ret = -EBADFD; 381 break; 382 } 383 384 mutex_unlock(&ffs->mutex); 385 return ret; 386 } 387 388 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, 389 size_t n) 390 { 391 /* 392 * We are holding ffs->ev.waitq.lock and ffs->mutex and we need 393 * to release them. 394 */ 395 struct usb_functionfs_event events[n]; 396 unsigned i = 0; 397 398 memset(events, 0, sizeof events); 399 400 do { 401 events[i].type = ffs->ev.types[i]; 402 if (events[i].type == FUNCTIONFS_SETUP) { 403 events[i].u.setup = ffs->ev.setup; 404 ffs->setup_state = FFS_SETUP_PENDING; 405 } 406 } while (++i < n); 407 408 if (n < ffs->ev.count) { 409 ffs->ev.count -= n; 410 memmove(ffs->ev.types, ffs->ev.types + n, 411 ffs->ev.count * sizeof *ffs->ev.types); 412 } else { 413 ffs->ev.count = 0; 414 } 415 416 spin_unlock_irq(&ffs->ev.waitq.lock); 417 mutex_unlock(&ffs->mutex); 418 419 return unlikely(__copy_to_user(buf, events, sizeof events)) 420 ? -EFAULT : sizeof events; 421 } 422 423 static ssize_t ffs_ep0_read(struct file *file, char __user *buf, 424 size_t len, loff_t *ptr) 425 { 426 struct ffs_data *ffs = file->private_data; 427 char *data = NULL; 428 size_t n; 429 int ret; 430 431 ENTER(); 432 433 /* Fast check if setup was canceled */ 434 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 435 return -EIDRM; 436 437 /* Acquire mutex */ 438 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 439 if (unlikely(ret < 0)) 440 return ret; 441 442 /* Check state */ 443 if (ffs->state != FFS_ACTIVE) { 444 ret = -EBADFD; 445 goto done_mutex; 446 } 447 448 /* 449 * We're called from user space, we can use _irq rather then 450 * _irqsave 451 */ 452 spin_lock_irq(&ffs->ev.waitq.lock); 453 454 switch (ffs_setup_state_clear_cancelled(ffs)) { 455 case FFS_SETUP_CANCELLED: 456 ret = -EIDRM; 457 break; 458 459 case FFS_NO_SETUP: 460 n = len / sizeof(struct usb_functionfs_event); 461 if (unlikely(!n)) { 462 ret = -EINVAL; 463 break; 464 } 465 466 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { 467 ret = -EAGAIN; 468 break; 469 } 470 471 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, 472 ffs->ev.count)) { 473 ret = -EINTR; 474 break; 475 } 476 477 return __ffs_ep0_read_events(ffs, buf, 478 min(n, (size_t)ffs->ev.count)); 479 480 case FFS_SETUP_PENDING: 481 if (ffs->ev.setup.bRequestType & USB_DIR_IN) { 482 spin_unlock_irq(&ffs->ev.waitq.lock); 483 ret = __ffs_ep0_stall(ffs); 484 goto done_mutex; 485 } 486 487 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 488 489 spin_unlock_irq(&ffs->ev.waitq.lock); 490 491 if (likely(len)) { 492 data = kmalloc(len, GFP_KERNEL); 493 if (unlikely(!data)) { 494 ret = -ENOMEM; 495 goto done_mutex; 496 } 497 } 498 499 spin_lock_irq(&ffs->ev.waitq.lock); 500 501 /* See ffs_ep0_write() */ 502 if (ffs_setup_state_clear_cancelled(ffs) == 503 FFS_SETUP_CANCELLED) { 504 ret = -EIDRM; 505 break; 506 } 507 508 /* unlocks spinlock */ 509 ret = __ffs_ep0_queue_wait(ffs, data, len); 510 if (likely(ret > 0) && unlikely(__copy_to_user(buf, data, len))) 511 ret = -EFAULT; 512 goto done_mutex; 513 514 default: 515 ret = -EBADFD; 516 break; 517 } 518 519 spin_unlock_irq(&ffs->ev.waitq.lock); 520 done_mutex: 521 mutex_unlock(&ffs->mutex); 522 kfree(data); 523 return ret; 524 } 525 526 static int ffs_ep0_open(struct inode *inode, struct file *file) 527 { 528 struct ffs_data *ffs = inode->i_private; 529 530 ENTER(); 531 532 if (unlikely(ffs->state == FFS_CLOSING)) 533 return -EBUSY; 534 535 file->private_data = ffs; 536 ffs_data_opened(ffs); 537 538 return 0; 539 } 540 541 static int ffs_ep0_release(struct inode *inode, struct file *file) 542 { 543 struct ffs_data *ffs = file->private_data; 544 545 ENTER(); 546 547 ffs_data_closed(ffs); 548 549 return 0; 550 } 551 552 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) 553 { 554 struct ffs_data *ffs = file->private_data; 555 struct usb_gadget *gadget = ffs->gadget; 556 long ret; 557 558 ENTER(); 559 560 if (code == FUNCTIONFS_INTERFACE_REVMAP) { 561 struct ffs_function *func = ffs->func; 562 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; 563 } else if (gadget && gadget->ops->ioctl) { 564 ret = gadget->ops->ioctl(gadget, code, value); 565 } else { 566 ret = -ENOTTY; 567 } 568 569 return ret; 570 } 571 572 static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait) 573 { 574 struct ffs_data *ffs = file->private_data; 575 unsigned int mask = POLLWRNORM; 576 int ret; 577 578 poll_wait(file, &ffs->ev.waitq, wait); 579 580 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 581 if (unlikely(ret < 0)) 582 return mask; 583 584 switch (ffs->state) { 585 case FFS_READ_DESCRIPTORS: 586 case FFS_READ_STRINGS: 587 mask |= POLLOUT; 588 break; 589 590 case FFS_ACTIVE: 591 switch (ffs->setup_state) { 592 case FFS_NO_SETUP: 593 if (ffs->ev.count) 594 mask |= POLLIN; 595 break; 596 597 case FFS_SETUP_PENDING: 598 case FFS_SETUP_CANCELLED: 599 mask |= (POLLIN | POLLOUT); 600 break; 601 } 602 case FFS_CLOSING: 603 break; 604 } 605 606 mutex_unlock(&ffs->mutex); 607 608 return mask; 609 } 610 611 static const struct file_operations ffs_ep0_operations = { 612 .llseek = no_llseek, 613 614 .open = ffs_ep0_open, 615 .write = ffs_ep0_write, 616 .read = ffs_ep0_read, 617 .release = ffs_ep0_release, 618 .unlocked_ioctl = ffs_ep0_ioctl, 619 .poll = ffs_ep0_poll, 620 }; 621 622 623 /* "Normal" endpoints operations ********************************************/ 624 625 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) 626 { 627 ENTER(); 628 if (likely(req->context)) { 629 struct ffs_ep *ep = _ep->driver_data; 630 ep->status = req->status ? req->status : req->actual; 631 complete(req->context); 632 } 633 } 634 635 static void ffs_user_copy_worker(struct work_struct *work) 636 { 637 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 638 work); 639 int ret = io_data->req->status ? io_data->req->status : 640 io_data->req->actual; 641 642 if (io_data->read && ret > 0) { 643 int i; 644 size_t pos = 0; 645 use_mm(io_data->mm); 646 for (i = 0; i < io_data->nr_segs; i++) { 647 if (unlikely(copy_to_user(io_data->iovec[i].iov_base, 648 &io_data->buf[pos], 649 io_data->iovec[i].iov_len))) { 650 ret = -EFAULT; 651 break; 652 } 653 pos += io_data->iovec[i].iov_len; 654 } 655 unuse_mm(io_data->mm); 656 } 657 658 aio_complete(io_data->kiocb, ret, ret); 659 660 usb_ep_free_request(io_data->ep, io_data->req); 661 662 io_data->kiocb->private = NULL; 663 if (io_data->read) 664 kfree(io_data->iovec); 665 kfree(io_data->buf); 666 kfree(io_data); 667 } 668 669 static void ffs_epfile_async_io_complete(struct usb_ep *_ep, 670 struct usb_request *req) 671 { 672 struct ffs_io_data *io_data = req->context; 673 674 ENTER(); 675 676 INIT_WORK(&io_data->work, ffs_user_copy_worker); 677 schedule_work(&io_data->work); 678 } 679 680 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) 681 { 682 struct ffs_epfile *epfile = file->private_data; 683 struct ffs_ep *ep; 684 char *data = NULL; 685 ssize_t ret, data_len; 686 int halt; 687 688 /* Are we still active? */ 689 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) { 690 ret = -ENODEV; 691 goto error; 692 } 693 694 /* Wait for endpoint to be enabled */ 695 ep = epfile->ep; 696 if (!ep) { 697 if (file->f_flags & O_NONBLOCK) { 698 ret = -EAGAIN; 699 goto error; 700 } 701 702 ret = wait_event_interruptible(epfile->wait, (ep = epfile->ep)); 703 if (ret) { 704 ret = -EINTR; 705 goto error; 706 } 707 } 708 709 /* Do we halt? */ 710 halt = (!io_data->read == !epfile->in); 711 if (halt && epfile->isoc) { 712 ret = -EINVAL; 713 goto error; 714 } 715 716 /* Allocate & copy */ 717 if (!halt) { 718 /* 719 * if we _do_ wait above, the epfile->ffs->gadget might be NULL 720 * before the waiting completes, so do not assign to 'gadget' earlier 721 */ 722 struct usb_gadget *gadget = epfile->ffs->gadget; 723 724 spin_lock_irq(&epfile->ffs->eps_lock); 725 /* In the meantime, endpoint got disabled or changed. */ 726 if (epfile->ep != ep) { 727 spin_unlock_irq(&epfile->ffs->eps_lock); 728 return -ESHUTDOWN; 729 } 730 /* 731 * Controller may require buffer size to be aligned to 732 * maxpacketsize of an out endpoint. 733 */ 734 data_len = io_data->read ? 735 usb_ep_align_maybe(gadget, ep->ep, io_data->len) : 736 io_data->len; 737 spin_unlock_irq(&epfile->ffs->eps_lock); 738 739 data = kmalloc(data_len, GFP_KERNEL); 740 if (unlikely(!data)) 741 return -ENOMEM; 742 if (io_data->aio && !io_data->read) { 743 int i; 744 size_t pos = 0; 745 for (i = 0; i < io_data->nr_segs; i++) { 746 if (unlikely(copy_from_user(&data[pos], 747 io_data->iovec[i].iov_base, 748 io_data->iovec[i].iov_len))) { 749 ret = -EFAULT; 750 goto error; 751 } 752 pos += io_data->iovec[i].iov_len; 753 } 754 } else { 755 if (!io_data->read && 756 unlikely(__copy_from_user(data, io_data->buf, 757 io_data->len))) { 758 ret = -EFAULT; 759 goto error; 760 } 761 } 762 } 763 764 /* We will be using request */ 765 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); 766 if (unlikely(ret)) 767 goto error; 768 769 spin_lock_irq(&epfile->ffs->eps_lock); 770 771 if (epfile->ep != ep) { 772 /* In the meantime, endpoint got disabled or changed. */ 773 ret = -ESHUTDOWN; 774 spin_unlock_irq(&epfile->ffs->eps_lock); 775 } else if (halt) { 776 /* Halt */ 777 if (likely(epfile->ep == ep) && !WARN_ON(!ep->ep)) 778 usb_ep_set_halt(ep->ep); 779 spin_unlock_irq(&epfile->ffs->eps_lock); 780 ret = -EBADMSG; 781 } else { 782 /* Fire the request */ 783 struct usb_request *req; 784 785 if (io_data->aio) { 786 req = usb_ep_alloc_request(ep->ep, GFP_KERNEL); 787 if (unlikely(!req)) 788 goto error_lock; 789 790 req->buf = data; 791 req->length = io_data->len; 792 793 io_data->buf = data; 794 io_data->ep = ep->ep; 795 io_data->req = req; 796 797 req->context = io_data; 798 req->complete = ffs_epfile_async_io_complete; 799 800 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 801 if (unlikely(ret)) { 802 usb_ep_free_request(ep->ep, req); 803 goto error_lock; 804 } 805 ret = -EIOCBQUEUED; 806 807 spin_unlock_irq(&epfile->ffs->eps_lock); 808 } else { 809 DECLARE_COMPLETION_ONSTACK(done); 810 811 req = ep->req; 812 req->buf = data; 813 req->length = io_data->len; 814 815 req->context = &done; 816 req->complete = ffs_epfile_io_complete; 817 818 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 819 820 spin_unlock_irq(&epfile->ffs->eps_lock); 821 822 if (unlikely(ret < 0)) { 823 /* nop */ 824 } else if (unlikely( 825 wait_for_completion_interruptible(&done))) { 826 ret = -EINTR; 827 usb_ep_dequeue(ep->ep, req); 828 } else { 829 /* 830 * XXX We may end up silently droping data 831 * here. Since data_len (i.e. req->length) may 832 * be bigger than len (after being rounded up 833 * to maxpacketsize), we may end up with more 834 * data then user space has space for. 835 */ 836 ret = ep->status; 837 if (io_data->read && ret > 0) { 838 ret = min_t(size_t, ret, io_data->len); 839 840 if (unlikely(copy_to_user(io_data->buf, 841 data, ret))) 842 ret = -EFAULT; 843 } 844 } 845 kfree(data); 846 } 847 } 848 849 mutex_unlock(&epfile->mutex); 850 return ret; 851 852 error_lock: 853 spin_unlock_irq(&epfile->ffs->eps_lock); 854 mutex_unlock(&epfile->mutex); 855 error: 856 kfree(data); 857 return ret; 858 } 859 860 static ssize_t 861 ffs_epfile_write(struct file *file, const char __user *buf, size_t len, 862 loff_t *ptr) 863 { 864 struct ffs_io_data io_data; 865 866 ENTER(); 867 868 io_data.aio = false; 869 io_data.read = false; 870 io_data.buf = (char * __user)buf; 871 io_data.len = len; 872 873 return ffs_epfile_io(file, &io_data); 874 } 875 876 static ssize_t 877 ffs_epfile_read(struct file *file, char __user *buf, size_t len, loff_t *ptr) 878 { 879 struct ffs_io_data io_data; 880 881 ENTER(); 882 883 io_data.aio = false; 884 io_data.read = true; 885 io_data.buf = buf; 886 io_data.len = len; 887 888 return ffs_epfile_io(file, &io_data); 889 } 890 891 static int 892 ffs_epfile_open(struct inode *inode, struct file *file) 893 { 894 struct ffs_epfile *epfile = inode->i_private; 895 896 ENTER(); 897 898 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 899 return -ENODEV; 900 901 file->private_data = epfile; 902 ffs_data_opened(epfile->ffs); 903 904 return 0; 905 } 906 907 static int ffs_aio_cancel(struct kiocb *kiocb) 908 { 909 struct ffs_io_data *io_data = kiocb->private; 910 struct ffs_epfile *epfile = kiocb->ki_filp->private_data; 911 int value; 912 913 ENTER(); 914 915 spin_lock_irq(&epfile->ffs->eps_lock); 916 917 if (likely(io_data && io_data->ep && io_data->req)) 918 value = usb_ep_dequeue(io_data->ep, io_data->req); 919 else 920 value = -EINVAL; 921 922 spin_unlock_irq(&epfile->ffs->eps_lock); 923 924 return value; 925 } 926 927 static ssize_t ffs_epfile_aio_write(struct kiocb *kiocb, 928 const struct iovec *iovec, 929 unsigned long nr_segs, loff_t loff) 930 { 931 struct ffs_io_data *io_data; 932 933 ENTER(); 934 935 io_data = kmalloc(sizeof(*io_data), GFP_KERNEL); 936 if (unlikely(!io_data)) 937 return -ENOMEM; 938 939 io_data->aio = true; 940 io_data->read = false; 941 io_data->kiocb = kiocb; 942 io_data->iovec = iovec; 943 io_data->nr_segs = nr_segs; 944 io_data->len = kiocb->ki_nbytes; 945 io_data->mm = current->mm; 946 947 kiocb->private = io_data; 948 949 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 950 951 return ffs_epfile_io(kiocb->ki_filp, io_data); 952 } 953 954 static ssize_t ffs_epfile_aio_read(struct kiocb *kiocb, 955 const struct iovec *iovec, 956 unsigned long nr_segs, loff_t loff) 957 { 958 struct ffs_io_data *io_data; 959 struct iovec *iovec_copy; 960 961 ENTER(); 962 963 iovec_copy = kmalloc_array(nr_segs, sizeof(*iovec_copy), GFP_KERNEL); 964 if (unlikely(!iovec_copy)) 965 return -ENOMEM; 966 967 memcpy(iovec_copy, iovec, sizeof(struct iovec)*nr_segs); 968 969 io_data = kmalloc(sizeof(*io_data), GFP_KERNEL); 970 if (unlikely(!io_data)) { 971 kfree(iovec_copy); 972 return -ENOMEM; 973 } 974 975 io_data->aio = true; 976 io_data->read = true; 977 io_data->kiocb = kiocb; 978 io_data->iovec = iovec_copy; 979 io_data->nr_segs = nr_segs; 980 io_data->len = kiocb->ki_nbytes; 981 io_data->mm = current->mm; 982 983 kiocb->private = io_data; 984 985 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 986 987 return ffs_epfile_io(kiocb->ki_filp, io_data); 988 } 989 990 static int 991 ffs_epfile_release(struct inode *inode, struct file *file) 992 { 993 struct ffs_epfile *epfile = inode->i_private; 994 995 ENTER(); 996 997 ffs_data_closed(epfile->ffs); 998 999 return 0; 1000 } 1001 1002 static long ffs_epfile_ioctl(struct file *file, unsigned code, 1003 unsigned long value) 1004 { 1005 struct ffs_epfile *epfile = file->private_data; 1006 int ret; 1007 1008 ENTER(); 1009 1010 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1011 return -ENODEV; 1012 1013 spin_lock_irq(&epfile->ffs->eps_lock); 1014 if (likely(epfile->ep)) { 1015 switch (code) { 1016 case FUNCTIONFS_FIFO_STATUS: 1017 ret = usb_ep_fifo_status(epfile->ep->ep); 1018 break; 1019 case FUNCTIONFS_FIFO_FLUSH: 1020 usb_ep_fifo_flush(epfile->ep->ep); 1021 ret = 0; 1022 break; 1023 case FUNCTIONFS_CLEAR_HALT: 1024 ret = usb_ep_clear_halt(epfile->ep->ep); 1025 break; 1026 case FUNCTIONFS_ENDPOINT_REVMAP: 1027 ret = epfile->ep->num; 1028 break; 1029 default: 1030 ret = -ENOTTY; 1031 } 1032 } else { 1033 ret = -ENODEV; 1034 } 1035 spin_unlock_irq(&epfile->ffs->eps_lock); 1036 1037 return ret; 1038 } 1039 1040 static const struct file_operations ffs_epfile_operations = { 1041 .llseek = no_llseek, 1042 1043 .open = ffs_epfile_open, 1044 .write = ffs_epfile_write, 1045 .read = ffs_epfile_read, 1046 .aio_write = ffs_epfile_aio_write, 1047 .aio_read = ffs_epfile_aio_read, 1048 .release = ffs_epfile_release, 1049 .unlocked_ioctl = ffs_epfile_ioctl, 1050 }; 1051 1052 1053 /* File system and super block operations ***********************************/ 1054 1055 /* 1056 * Mounting the file system creates a controller file, used first for 1057 * function configuration then later for event monitoring. 1058 */ 1059 1060 static struct inode *__must_check 1061 ffs_sb_make_inode(struct super_block *sb, void *data, 1062 const struct file_operations *fops, 1063 const struct inode_operations *iops, 1064 struct ffs_file_perms *perms) 1065 { 1066 struct inode *inode; 1067 1068 ENTER(); 1069 1070 inode = new_inode(sb); 1071 1072 if (likely(inode)) { 1073 struct timespec current_time = CURRENT_TIME; 1074 1075 inode->i_ino = get_next_ino(); 1076 inode->i_mode = perms->mode; 1077 inode->i_uid = perms->uid; 1078 inode->i_gid = perms->gid; 1079 inode->i_atime = current_time; 1080 inode->i_mtime = current_time; 1081 inode->i_ctime = current_time; 1082 inode->i_private = data; 1083 if (fops) 1084 inode->i_fop = fops; 1085 if (iops) 1086 inode->i_op = iops; 1087 } 1088 1089 return inode; 1090 } 1091 1092 /* Create "regular" file */ 1093 static struct inode *ffs_sb_create_file(struct super_block *sb, 1094 const char *name, void *data, 1095 const struct file_operations *fops, 1096 struct dentry **dentry_p) 1097 { 1098 struct ffs_data *ffs = sb->s_fs_info; 1099 struct dentry *dentry; 1100 struct inode *inode; 1101 1102 ENTER(); 1103 1104 dentry = d_alloc_name(sb->s_root, name); 1105 if (unlikely(!dentry)) 1106 return NULL; 1107 1108 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); 1109 if (unlikely(!inode)) { 1110 dput(dentry); 1111 return NULL; 1112 } 1113 1114 d_add(dentry, inode); 1115 if (dentry_p) 1116 *dentry_p = dentry; 1117 1118 return inode; 1119 } 1120 1121 /* Super block */ 1122 static const struct super_operations ffs_sb_operations = { 1123 .statfs = simple_statfs, 1124 .drop_inode = generic_delete_inode, 1125 }; 1126 1127 struct ffs_sb_fill_data { 1128 struct ffs_file_perms perms; 1129 umode_t root_mode; 1130 const char *dev_name; 1131 struct ffs_data *ffs_data; 1132 }; 1133 1134 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent) 1135 { 1136 struct ffs_sb_fill_data *data = _data; 1137 struct inode *inode; 1138 struct ffs_data *ffs = data->ffs_data; 1139 1140 ENTER(); 1141 1142 ffs->sb = sb; 1143 data->ffs_data = NULL; 1144 sb->s_fs_info = ffs; 1145 sb->s_blocksize = PAGE_CACHE_SIZE; 1146 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 1147 sb->s_magic = FUNCTIONFS_MAGIC; 1148 sb->s_op = &ffs_sb_operations; 1149 sb->s_time_gran = 1; 1150 1151 /* Root inode */ 1152 data->perms.mode = data->root_mode; 1153 inode = ffs_sb_make_inode(sb, NULL, 1154 &simple_dir_operations, 1155 &simple_dir_inode_operations, 1156 &data->perms); 1157 sb->s_root = d_make_root(inode); 1158 if (unlikely(!sb->s_root)) 1159 return -ENOMEM; 1160 1161 /* EP0 file */ 1162 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs, 1163 &ffs_ep0_operations, NULL))) 1164 return -ENOMEM; 1165 1166 return 0; 1167 } 1168 1169 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts) 1170 { 1171 ENTER(); 1172 1173 if (!opts || !*opts) 1174 return 0; 1175 1176 for (;;) { 1177 unsigned long value; 1178 char *eq, *comma; 1179 1180 /* Option limit */ 1181 comma = strchr(opts, ','); 1182 if (comma) 1183 *comma = 0; 1184 1185 /* Value limit */ 1186 eq = strchr(opts, '='); 1187 if (unlikely(!eq)) { 1188 pr_err("'=' missing in %s\n", opts); 1189 return -EINVAL; 1190 } 1191 *eq = 0; 1192 1193 /* Parse value */ 1194 if (kstrtoul(eq + 1, 0, &value)) { 1195 pr_err("%s: invalid value: %s\n", opts, eq + 1); 1196 return -EINVAL; 1197 } 1198 1199 /* Interpret option */ 1200 switch (eq - opts) { 1201 case 5: 1202 if (!memcmp(opts, "rmode", 5)) 1203 data->root_mode = (value & 0555) | S_IFDIR; 1204 else if (!memcmp(opts, "fmode", 5)) 1205 data->perms.mode = (value & 0666) | S_IFREG; 1206 else 1207 goto invalid; 1208 break; 1209 1210 case 4: 1211 if (!memcmp(opts, "mode", 4)) { 1212 data->root_mode = (value & 0555) | S_IFDIR; 1213 data->perms.mode = (value & 0666) | S_IFREG; 1214 } else { 1215 goto invalid; 1216 } 1217 break; 1218 1219 case 3: 1220 if (!memcmp(opts, "uid", 3)) { 1221 data->perms.uid = make_kuid(current_user_ns(), value); 1222 if (!uid_valid(data->perms.uid)) { 1223 pr_err("%s: unmapped value: %lu\n", opts, value); 1224 return -EINVAL; 1225 } 1226 } else if (!memcmp(opts, "gid", 3)) { 1227 data->perms.gid = make_kgid(current_user_ns(), value); 1228 if (!gid_valid(data->perms.gid)) { 1229 pr_err("%s: unmapped value: %lu\n", opts, value); 1230 return -EINVAL; 1231 } 1232 } else { 1233 goto invalid; 1234 } 1235 break; 1236 1237 default: 1238 invalid: 1239 pr_err("%s: invalid option\n", opts); 1240 return -EINVAL; 1241 } 1242 1243 /* Next iteration */ 1244 if (!comma) 1245 break; 1246 opts = comma + 1; 1247 } 1248 1249 return 0; 1250 } 1251 1252 /* "mount -t functionfs dev_name /dev/function" ends up here */ 1253 1254 static struct dentry * 1255 ffs_fs_mount(struct file_system_type *t, int flags, 1256 const char *dev_name, void *opts) 1257 { 1258 struct ffs_sb_fill_data data = { 1259 .perms = { 1260 .mode = S_IFREG | 0600, 1261 .uid = GLOBAL_ROOT_UID, 1262 .gid = GLOBAL_ROOT_GID, 1263 }, 1264 .root_mode = S_IFDIR | 0500, 1265 }; 1266 struct dentry *rv; 1267 int ret; 1268 void *ffs_dev; 1269 struct ffs_data *ffs; 1270 1271 ENTER(); 1272 1273 ret = ffs_fs_parse_opts(&data, opts); 1274 if (unlikely(ret < 0)) 1275 return ERR_PTR(ret); 1276 1277 ffs = ffs_data_new(); 1278 if (unlikely(!ffs)) 1279 return ERR_PTR(-ENOMEM); 1280 ffs->file_perms = data.perms; 1281 1282 ffs->dev_name = kstrdup(dev_name, GFP_KERNEL); 1283 if (unlikely(!ffs->dev_name)) { 1284 ffs_data_put(ffs); 1285 return ERR_PTR(-ENOMEM); 1286 } 1287 1288 ffs_dev = ffs_acquire_dev(dev_name); 1289 if (IS_ERR(ffs_dev)) { 1290 ffs_data_put(ffs); 1291 return ERR_CAST(ffs_dev); 1292 } 1293 ffs->private_data = ffs_dev; 1294 data.ffs_data = ffs; 1295 1296 rv = mount_nodev(t, flags, &data, ffs_sb_fill); 1297 if (IS_ERR(rv) && data.ffs_data) { 1298 ffs_release_dev(data.ffs_data); 1299 ffs_data_put(data.ffs_data); 1300 } 1301 return rv; 1302 } 1303 1304 static void 1305 ffs_fs_kill_sb(struct super_block *sb) 1306 { 1307 ENTER(); 1308 1309 kill_litter_super(sb); 1310 if (sb->s_fs_info) { 1311 ffs_release_dev(sb->s_fs_info); 1312 ffs_data_put(sb->s_fs_info); 1313 } 1314 } 1315 1316 static struct file_system_type ffs_fs_type = { 1317 .owner = THIS_MODULE, 1318 .name = "functionfs", 1319 .mount = ffs_fs_mount, 1320 .kill_sb = ffs_fs_kill_sb, 1321 }; 1322 MODULE_ALIAS_FS("functionfs"); 1323 1324 1325 /* Driver's main init/cleanup functions *************************************/ 1326 1327 static int functionfs_init(void) 1328 { 1329 int ret; 1330 1331 ENTER(); 1332 1333 ret = register_filesystem(&ffs_fs_type); 1334 if (likely(!ret)) 1335 pr_info("file system registered\n"); 1336 else 1337 pr_err("failed registering file system (%d)\n", ret); 1338 1339 return ret; 1340 } 1341 1342 static void functionfs_cleanup(void) 1343 { 1344 ENTER(); 1345 1346 pr_info("unloading\n"); 1347 unregister_filesystem(&ffs_fs_type); 1348 } 1349 1350 1351 /* ffs_data and ffs_function construction and destruction code **************/ 1352 1353 static void ffs_data_clear(struct ffs_data *ffs); 1354 static void ffs_data_reset(struct ffs_data *ffs); 1355 1356 static void ffs_data_get(struct ffs_data *ffs) 1357 { 1358 ENTER(); 1359 1360 atomic_inc(&ffs->ref); 1361 } 1362 1363 static void ffs_data_opened(struct ffs_data *ffs) 1364 { 1365 ENTER(); 1366 1367 atomic_inc(&ffs->ref); 1368 atomic_inc(&ffs->opened); 1369 } 1370 1371 static void ffs_data_put(struct ffs_data *ffs) 1372 { 1373 ENTER(); 1374 1375 if (unlikely(atomic_dec_and_test(&ffs->ref))) { 1376 pr_info("%s(): freeing\n", __func__); 1377 ffs_data_clear(ffs); 1378 BUG_ON(waitqueue_active(&ffs->ev.waitq) || 1379 waitqueue_active(&ffs->ep0req_completion.wait)); 1380 kfree(ffs->dev_name); 1381 kfree(ffs); 1382 } 1383 } 1384 1385 static void ffs_data_closed(struct ffs_data *ffs) 1386 { 1387 ENTER(); 1388 1389 if (atomic_dec_and_test(&ffs->opened)) { 1390 ffs->state = FFS_CLOSING; 1391 ffs_data_reset(ffs); 1392 } 1393 1394 ffs_data_put(ffs); 1395 } 1396 1397 static struct ffs_data *ffs_data_new(void) 1398 { 1399 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); 1400 if (unlikely(!ffs)) 1401 return NULL; 1402 1403 ENTER(); 1404 1405 atomic_set(&ffs->ref, 1); 1406 atomic_set(&ffs->opened, 0); 1407 ffs->state = FFS_READ_DESCRIPTORS; 1408 mutex_init(&ffs->mutex); 1409 spin_lock_init(&ffs->eps_lock); 1410 init_waitqueue_head(&ffs->ev.waitq); 1411 init_completion(&ffs->ep0req_completion); 1412 1413 /* XXX REVISIT need to update it in some places, or do we? */ 1414 ffs->ev.can_stall = 1; 1415 1416 return ffs; 1417 } 1418 1419 static void ffs_data_clear(struct ffs_data *ffs) 1420 { 1421 ENTER(); 1422 1423 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags)) 1424 ffs_closed(ffs); 1425 1426 BUG_ON(ffs->gadget); 1427 1428 if (ffs->epfiles) 1429 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count); 1430 1431 kfree(ffs->raw_descs_data); 1432 kfree(ffs->raw_strings); 1433 kfree(ffs->stringtabs); 1434 } 1435 1436 static void ffs_data_reset(struct ffs_data *ffs) 1437 { 1438 ENTER(); 1439 1440 ffs_data_clear(ffs); 1441 1442 ffs->epfiles = NULL; 1443 ffs->raw_descs_data = NULL; 1444 ffs->raw_descs = NULL; 1445 ffs->raw_strings = NULL; 1446 ffs->stringtabs = NULL; 1447 1448 ffs->raw_descs_length = 0; 1449 ffs->fs_descs_count = 0; 1450 ffs->hs_descs_count = 0; 1451 ffs->ss_descs_count = 0; 1452 1453 ffs->strings_count = 0; 1454 ffs->interfaces_count = 0; 1455 ffs->eps_count = 0; 1456 1457 ffs->ev.count = 0; 1458 1459 ffs->state = FFS_READ_DESCRIPTORS; 1460 ffs->setup_state = FFS_NO_SETUP; 1461 ffs->flags = 0; 1462 } 1463 1464 1465 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) 1466 { 1467 struct usb_gadget_strings **lang; 1468 int first_id; 1469 1470 ENTER(); 1471 1472 if (WARN_ON(ffs->state != FFS_ACTIVE 1473 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) 1474 return -EBADFD; 1475 1476 first_id = usb_string_ids_n(cdev, ffs->strings_count); 1477 if (unlikely(first_id < 0)) 1478 return first_id; 1479 1480 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); 1481 if (unlikely(!ffs->ep0req)) 1482 return -ENOMEM; 1483 ffs->ep0req->complete = ffs_ep0_complete; 1484 ffs->ep0req->context = ffs; 1485 1486 lang = ffs->stringtabs; 1487 if (lang) { 1488 for (; *lang; ++lang) { 1489 struct usb_string *str = (*lang)->strings; 1490 int id = first_id; 1491 for (; str->s; ++id, ++str) 1492 str->id = id; 1493 } 1494 } 1495 1496 ffs->gadget = cdev->gadget; 1497 ffs_data_get(ffs); 1498 return 0; 1499 } 1500 1501 static void functionfs_unbind(struct ffs_data *ffs) 1502 { 1503 ENTER(); 1504 1505 if (!WARN_ON(!ffs->gadget)) { 1506 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); 1507 ffs->ep0req = NULL; 1508 ffs->gadget = NULL; 1509 clear_bit(FFS_FL_BOUND, &ffs->flags); 1510 ffs_data_put(ffs); 1511 } 1512 } 1513 1514 static int ffs_epfiles_create(struct ffs_data *ffs) 1515 { 1516 struct ffs_epfile *epfile, *epfiles; 1517 unsigned i, count; 1518 1519 ENTER(); 1520 1521 count = ffs->eps_count; 1522 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); 1523 if (!epfiles) 1524 return -ENOMEM; 1525 1526 epfile = epfiles; 1527 for (i = 1; i <= count; ++i, ++epfile) { 1528 epfile->ffs = ffs; 1529 mutex_init(&epfile->mutex); 1530 init_waitqueue_head(&epfile->wait); 1531 sprintf(epfiles->name, "ep%u", i); 1532 if (!unlikely(ffs_sb_create_file(ffs->sb, epfiles->name, epfile, 1533 &ffs_epfile_operations, 1534 &epfile->dentry))) { 1535 ffs_epfiles_destroy(epfiles, i - 1); 1536 return -ENOMEM; 1537 } 1538 } 1539 1540 ffs->epfiles = epfiles; 1541 return 0; 1542 } 1543 1544 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count) 1545 { 1546 struct ffs_epfile *epfile = epfiles; 1547 1548 ENTER(); 1549 1550 for (; count; --count, ++epfile) { 1551 BUG_ON(mutex_is_locked(&epfile->mutex) || 1552 waitqueue_active(&epfile->wait)); 1553 if (epfile->dentry) { 1554 d_delete(epfile->dentry); 1555 dput(epfile->dentry); 1556 epfile->dentry = NULL; 1557 } 1558 } 1559 1560 kfree(epfiles); 1561 } 1562 1563 1564 static void ffs_func_eps_disable(struct ffs_function *func) 1565 { 1566 struct ffs_ep *ep = func->eps; 1567 struct ffs_epfile *epfile = func->ffs->epfiles; 1568 unsigned count = func->ffs->eps_count; 1569 unsigned long flags; 1570 1571 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1572 do { 1573 /* pending requests get nuked */ 1574 if (likely(ep->ep)) 1575 usb_ep_disable(ep->ep); 1576 epfile->ep = NULL; 1577 1578 ++ep; 1579 ++epfile; 1580 } while (--count); 1581 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1582 } 1583 1584 static int ffs_func_eps_enable(struct ffs_function *func) 1585 { 1586 struct ffs_data *ffs = func->ffs; 1587 struct ffs_ep *ep = func->eps; 1588 struct ffs_epfile *epfile = ffs->epfiles; 1589 unsigned count = ffs->eps_count; 1590 unsigned long flags; 1591 int ret = 0; 1592 1593 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1594 do { 1595 struct usb_endpoint_descriptor *ds; 1596 int desc_idx; 1597 1598 if (ffs->gadget->speed == USB_SPEED_SUPER) 1599 desc_idx = 2; 1600 else if (ffs->gadget->speed == USB_SPEED_HIGH) 1601 desc_idx = 1; 1602 else 1603 desc_idx = 0; 1604 1605 /* fall-back to lower speed if desc missing for current speed */ 1606 do { 1607 ds = ep->descs[desc_idx]; 1608 } while (!ds && --desc_idx >= 0); 1609 1610 if (!ds) { 1611 ret = -EINVAL; 1612 break; 1613 } 1614 1615 ep->ep->driver_data = ep; 1616 ep->ep->desc = ds; 1617 ret = usb_ep_enable(ep->ep); 1618 if (likely(!ret)) { 1619 epfile->ep = ep; 1620 epfile->in = usb_endpoint_dir_in(ds); 1621 epfile->isoc = usb_endpoint_xfer_isoc(ds); 1622 } else { 1623 break; 1624 } 1625 1626 wake_up(&epfile->wait); 1627 1628 ++ep; 1629 ++epfile; 1630 } while (--count); 1631 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1632 1633 return ret; 1634 } 1635 1636 1637 /* Parsing and building descriptors and strings *****************************/ 1638 1639 /* 1640 * This validates if data pointed by data is a valid USB descriptor as 1641 * well as record how many interfaces, endpoints and strings are 1642 * required by given configuration. Returns address after the 1643 * descriptor or NULL if data is invalid. 1644 */ 1645 1646 enum ffs_entity_type { 1647 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT 1648 }; 1649 1650 enum ffs_os_desc_type { 1651 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP 1652 }; 1653 1654 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, 1655 u8 *valuep, 1656 struct usb_descriptor_header *desc, 1657 void *priv); 1658 1659 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, 1660 struct usb_os_desc_header *h, void *data, 1661 unsigned len, void *priv); 1662 1663 static int __must_check ffs_do_single_desc(char *data, unsigned len, 1664 ffs_entity_callback entity, 1665 void *priv) 1666 { 1667 struct usb_descriptor_header *_ds = (void *)data; 1668 u8 length; 1669 int ret; 1670 1671 ENTER(); 1672 1673 /* At least two bytes are required: length and type */ 1674 if (len < 2) { 1675 pr_vdebug("descriptor too short\n"); 1676 return -EINVAL; 1677 } 1678 1679 /* If we have at least as many bytes as the descriptor takes? */ 1680 length = _ds->bLength; 1681 if (len < length) { 1682 pr_vdebug("descriptor longer then available data\n"); 1683 return -EINVAL; 1684 } 1685 1686 #define __entity_check_INTERFACE(val) 1 1687 #define __entity_check_STRING(val) (val) 1688 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) 1689 #define __entity(type, val) do { \ 1690 pr_vdebug("entity " #type "(%02x)\n", (val)); \ 1691 if (unlikely(!__entity_check_ ##type(val))) { \ 1692 pr_vdebug("invalid entity's value\n"); \ 1693 return -EINVAL; \ 1694 } \ 1695 ret = entity(FFS_ ##type, &val, _ds, priv); \ 1696 if (unlikely(ret < 0)) { \ 1697 pr_debug("entity " #type "(%02x); ret = %d\n", \ 1698 (val), ret); \ 1699 return ret; \ 1700 } \ 1701 } while (0) 1702 1703 /* Parse descriptor depending on type. */ 1704 switch (_ds->bDescriptorType) { 1705 case USB_DT_DEVICE: 1706 case USB_DT_CONFIG: 1707 case USB_DT_STRING: 1708 case USB_DT_DEVICE_QUALIFIER: 1709 /* function can't have any of those */ 1710 pr_vdebug("descriptor reserved for gadget: %d\n", 1711 _ds->bDescriptorType); 1712 return -EINVAL; 1713 1714 case USB_DT_INTERFACE: { 1715 struct usb_interface_descriptor *ds = (void *)_ds; 1716 pr_vdebug("interface descriptor\n"); 1717 if (length != sizeof *ds) 1718 goto inv_length; 1719 1720 __entity(INTERFACE, ds->bInterfaceNumber); 1721 if (ds->iInterface) 1722 __entity(STRING, ds->iInterface); 1723 } 1724 break; 1725 1726 case USB_DT_ENDPOINT: { 1727 struct usb_endpoint_descriptor *ds = (void *)_ds; 1728 pr_vdebug("endpoint descriptor\n"); 1729 if (length != USB_DT_ENDPOINT_SIZE && 1730 length != USB_DT_ENDPOINT_AUDIO_SIZE) 1731 goto inv_length; 1732 __entity(ENDPOINT, ds->bEndpointAddress); 1733 } 1734 break; 1735 1736 case HID_DT_HID: 1737 pr_vdebug("hid descriptor\n"); 1738 if (length != sizeof(struct hid_descriptor)) 1739 goto inv_length; 1740 break; 1741 1742 case USB_DT_OTG: 1743 if (length != sizeof(struct usb_otg_descriptor)) 1744 goto inv_length; 1745 break; 1746 1747 case USB_DT_INTERFACE_ASSOCIATION: { 1748 struct usb_interface_assoc_descriptor *ds = (void *)_ds; 1749 pr_vdebug("interface association descriptor\n"); 1750 if (length != sizeof *ds) 1751 goto inv_length; 1752 if (ds->iFunction) 1753 __entity(STRING, ds->iFunction); 1754 } 1755 break; 1756 1757 case USB_DT_SS_ENDPOINT_COMP: 1758 pr_vdebug("EP SS companion descriptor\n"); 1759 if (length != sizeof(struct usb_ss_ep_comp_descriptor)) 1760 goto inv_length; 1761 break; 1762 1763 case USB_DT_OTHER_SPEED_CONFIG: 1764 case USB_DT_INTERFACE_POWER: 1765 case USB_DT_DEBUG: 1766 case USB_DT_SECURITY: 1767 case USB_DT_CS_RADIO_CONTROL: 1768 /* TODO */ 1769 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); 1770 return -EINVAL; 1771 1772 default: 1773 /* We should never be here */ 1774 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); 1775 return -EINVAL; 1776 1777 inv_length: 1778 pr_vdebug("invalid length: %d (descriptor %d)\n", 1779 _ds->bLength, _ds->bDescriptorType); 1780 return -EINVAL; 1781 } 1782 1783 #undef __entity 1784 #undef __entity_check_DESCRIPTOR 1785 #undef __entity_check_INTERFACE 1786 #undef __entity_check_STRING 1787 #undef __entity_check_ENDPOINT 1788 1789 return length; 1790 } 1791 1792 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, 1793 ffs_entity_callback entity, void *priv) 1794 { 1795 const unsigned _len = len; 1796 unsigned long num = 0; 1797 1798 ENTER(); 1799 1800 for (;;) { 1801 int ret; 1802 1803 if (num == count) 1804 data = NULL; 1805 1806 /* Record "descriptor" entity */ 1807 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); 1808 if (unlikely(ret < 0)) { 1809 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", 1810 num, ret); 1811 return ret; 1812 } 1813 1814 if (!data) 1815 return _len - len; 1816 1817 ret = ffs_do_single_desc(data, len, entity, priv); 1818 if (unlikely(ret < 0)) { 1819 pr_debug("%s returns %d\n", __func__, ret); 1820 return ret; 1821 } 1822 1823 len -= ret; 1824 data += ret; 1825 ++num; 1826 } 1827 } 1828 1829 static int __ffs_data_do_entity(enum ffs_entity_type type, 1830 u8 *valuep, struct usb_descriptor_header *desc, 1831 void *priv) 1832 { 1833 struct ffs_data *ffs = priv; 1834 1835 ENTER(); 1836 1837 switch (type) { 1838 case FFS_DESCRIPTOR: 1839 break; 1840 1841 case FFS_INTERFACE: 1842 /* 1843 * Interfaces are indexed from zero so if we 1844 * encountered interface "n" then there are at least 1845 * "n+1" interfaces. 1846 */ 1847 if (*valuep >= ffs->interfaces_count) 1848 ffs->interfaces_count = *valuep + 1; 1849 break; 1850 1851 case FFS_STRING: 1852 /* 1853 * Strings are indexed from 1 (0 is magic ;) reserved 1854 * for languages list or some such) 1855 */ 1856 if (*valuep > ffs->strings_count) 1857 ffs->strings_count = *valuep; 1858 break; 1859 1860 case FFS_ENDPOINT: 1861 /* Endpoints are indexed from 1 as well. */ 1862 if ((*valuep & USB_ENDPOINT_NUMBER_MASK) > ffs->eps_count) 1863 ffs->eps_count = (*valuep & USB_ENDPOINT_NUMBER_MASK); 1864 break; 1865 } 1866 1867 return 0; 1868 } 1869 1870 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, 1871 struct usb_os_desc_header *desc) 1872 { 1873 u16 bcd_version = le16_to_cpu(desc->bcdVersion); 1874 u16 w_index = le16_to_cpu(desc->wIndex); 1875 1876 if (bcd_version != 1) { 1877 pr_vdebug("unsupported os descriptors version: %d", 1878 bcd_version); 1879 return -EINVAL; 1880 } 1881 switch (w_index) { 1882 case 0x4: 1883 *next_type = FFS_OS_DESC_EXT_COMPAT; 1884 break; 1885 case 0x5: 1886 *next_type = FFS_OS_DESC_EXT_PROP; 1887 break; 1888 default: 1889 pr_vdebug("unsupported os descriptor type: %d", w_index); 1890 return -EINVAL; 1891 } 1892 1893 return sizeof(*desc); 1894 } 1895 1896 /* 1897 * Process all extended compatibility/extended property descriptors 1898 * of a feature descriptor 1899 */ 1900 static int __must_check ffs_do_single_os_desc(char *data, unsigned len, 1901 enum ffs_os_desc_type type, 1902 u16 feature_count, 1903 ffs_os_desc_callback entity, 1904 void *priv, 1905 struct usb_os_desc_header *h) 1906 { 1907 int ret; 1908 const unsigned _len = len; 1909 1910 ENTER(); 1911 1912 /* loop over all ext compat/ext prop descriptors */ 1913 while (feature_count--) { 1914 ret = entity(type, h, data, len, priv); 1915 if (unlikely(ret < 0)) { 1916 pr_debug("bad OS descriptor, type: %d\n", type); 1917 return ret; 1918 } 1919 data += ret; 1920 len -= ret; 1921 } 1922 return _len - len; 1923 } 1924 1925 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ 1926 static int __must_check ffs_do_os_descs(unsigned count, 1927 char *data, unsigned len, 1928 ffs_os_desc_callback entity, void *priv) 1929 { 1930 const unsigned _len = len; 1931 unsigned long num = 0; 1932 1933 ENTER(); 1934 1935 for (num = 0; num < count; ++num) { 1936 int ret; 1937 enum ffs_os_desc_type type; 1938 u16 feature_count; 1939 struct usb_os_desc_header *desc = (void *)data; 1940 1941 if (len < sizeof(*desc)) 1942 return -EINVAL; 1943 1944 /* 1945 * Record "descriptor" entity. 1946 * Process dwLength, bcdVersion, wIndex, get b/wCount. 1947 * Move the data pointer to the beginning of extended 1948 * compatibilities proper or extended properties proper 1949 * portions of the data 1950 */ 1951 if (le32_to_cpu(desc->dwLength) > len) 1952 return -EINVAL; 1953 1954 ret = __ffs_do_os_desc_header(&type, desc); 1955 if (unlikely(ret < 0)) { 1956 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", 1957 num, ret); 1958 return ret; 1959 } 1960 /* 1961 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" 1962 */ 1963 feature_count = le16_to_cpu(desc->wCount); 1964 if (type == FFS_OS_DESC_EXT_COMPAT && 1965 (feature_count > 255 || desc->Reserved)) 1966 return -EINVAL; 1967 len -= ret; 1968 data += ret; 1969 1970 /* 1971 * Process all function/property descriptors 1972 * of this Feature Descriptor 1973 */ 1974 ret = ffs_do_single_os_desc(data, len, type, 1975 feature_count, entity, priv, desc); 1976 if (unlikely(ret < 0)) { 1977 pr_debug("%s returns %d\n", __func__, ret); 1978 return ret; 1979 } 1980 1981 len -= ret; 1982 data += ret; 1983 } 1984 return _len - len; 1985 } 1986 1987 /** 1988 * Validate contents of the buffer from userspace related to OS descriptors. 1989 */ 1990 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, 1991 struct usb_os_desc_header *h, void *data, 1992 unsigned len, void *priv) 1993 { 1994 struct ffs_data *ffs = priv; 1995 u8 length; 1996 1997 ENTER(); 1998 1999 switch (type) { 2000 case FFS_OS_DESC_EXT_COMPAT: { 2001 struct usb_ext_compat_desc *d = data; 2002 int i; 2003 2004 if (len < sizeof(*d) || 2005 d->bFirstInterfaceNumber >= ffs->interfaces_count || 2006 d->Reserved1) 2007 return -EINVAL; 2008 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) 2009 if (d->Reserved2[i]) 2010 return -EINVAL; 2011 2012 length = sizeof(struct usb_ext_compat_desc); 2013 } 2014 break; 2015 case FFS_OS_DESC_EXT_PROP: { 2016 struct usb_ext_prop_desc *d = data; 2017 u32 type, pdl; 2018 u16 pnl; 2019 2020 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) 2021 return -EINVAL; 2022 length = le32_to_cpu(d->dwSize); 2023 type = le32_to_cpu(d->dwPropertyDataType); 2024 if (type < USB_EXT_PROP_UNICODE || 2025 type > USB_EXT_PROP_UNICODE_MULTI) { 2026 pr_vdebug("unsupported os descriptor property type: %d", 2027 type); 2028 return -EINVAL; 2029 } 2030 pnl = le16_to_cpu(d->wPropertyNameLength); 2031 pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl)); 2032 if (length != 14 + pnl + pdl) { 2033 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", 2034 length, pnl, pdl, type); 2035 return -EINVAL; 2036 } 2037 ++ffs->ms_os_descs_ext_prop_count; 2038 /* property name reported to the host as "WCHAR"s */ 2039 ffs->ms_os_descs_ext_prop_name_len += pnl * 2; 2040 ffs->ms_os_descs_ext_prop_data_len += pdl; 2041 } 2042 break; 2043 default: 2044 pr_vdebug("unknown descriptor: %d\n", type); 2045 return -EINVAL; 2046 } 2047 return length; 2048 } 2049 2050 static int __ffs_data_got_descs(struct ffs_data *ffs, 2051 char *const _data, size_t len) 2052 { 2053 char *data = _data, *raw_descs; 2054 unsigned os_descs_count = 0, counts[3], flags; 2055 int ret = -EINVAL, i; 2056 2057 ENTER(); 2058 2059 if (get_unaligned_le32(data + 4) != len) 2060 goto error; 2061 2062 switch (get_unaligned_le32(data)) { 2063 case FUNCTIONFS_DESCRIPTORS_MAGIC: 2064 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; 2065 data += 8; 2066 len -= 8; 2067 break; 2068 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: 2069 flags = get_unaligned_le32(data + 8); 2070 if (flags & ~(FUNCTIONFS_HAS_FS_DESC | 2071 FUNCTIONFS_HAS_HS_DESC | 2072 FUNCTIONFS_HAS_SS_DESC | 2073 FUNCTIONFS_HAS_MS_OS_DESC)) { 2074 ret = -ENOSYS; 2075 goto error; 2076 } 2077 data += 12; 2078 len -= 12; 2079 break; 2080 default: 2081 goto error; 2082 } 2083 2084 /* Read fs_count, hs_count and ss_count (if present) */ 2085 for (i = 0; i < 3; ++i) { 2086 if (!(flags & (1 << i))) { 2087 counts[i] = 0; 2088 } else if (len < 4) { 2089 goto error; 2090 } else { 2091 counts[i] = get_unaligned_le32(data); 2092 data += 4; 2093 len -= 4; 2094 } 2095 } 2096 if (flags & (1 << i)) { 2097 os_descs_count = get_unaligned_le32(data); 2098 data += 4; 2099 len -= 4; 2100 }; 2101 2102 /* Read descriptors */ 2103 raw_descs = data; 2104 for (i = 0; i < 3; ++i) { 2105 if (!counts[i]) 2106 continue; 2107 ret = ffs_do_descs(counts[i], data, len, 2108 __ffs_data_do_entity, ffs); 2109 if (ret < 0) 2110 goto error; 2111 data += ret; 2112 len -= ret; 2113 } 2114 if (os_descs_count) { 2115 ret = ffs_do_os_descs(os_descs_count, data, len, 2116 __ffs_data_do_os_desc, ffs); 2117 if (ret < 0) 2118 goto error; 2119 data += ret; 2120 len -= ret; 2121 } 2122 2123 if (raw_descs == data || len) { 2124 ret = -EINVAL; 2125 goto error; 2126 } 2127 2128 ffs->raw_descs_data = _data; 2129 ffs->raw_descs = raw_descs; 2130 ffs->raw_descs_length = data - raw_descs; 2131 ffs->fs_descs_count = counts[0]; 2132 ffs->hs_descs_count = counts[1]; 2133 ffs->ss_descs_count = counts[2]; 2134 ffs->ms_os_descs_count = os_descs_count; 2135 2136 return 0; 2137 2138 error: 2139 kfree(_data); 2140 return ret; 2141 } 2142 2143 static int __ffs_data_got_strings(struct ffs_data *ffs, 2144 char *const _data, size_t len) 2145 { 2146 u32 str_count, needed_count, lang_count; 2147 struct usb_gadget_strings **stringtabs, *t; 2148 struct usb_string *strings, *s; 2149 const char *data = _data; 2150 2151 ENTER(); 2152 2153 if (unlikely(get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || 2154 get_unaligned_le32(data + 4) != len)) 2155 goto error; 2156 str_count = get_unaligned_le32(data + 8); 2157 lang_count = get_unaligned_le32(data + 12); 2158 2159 /* if one is zero the other must be zero */ 2160 if (unlikely(!str_count != !lang_count)) 2161 goto error; 2162 2163 /* Do we have at least as many strings as descriptors need? */ 2164 needed_count = ffs->strings_count; 2165 if (unlikely(str_count < needed_count)) 2166 goto error; 2167 2168 /* 2169 * If we don't need any strings just return and free all 2170 * memory. 2171 */ 2172 if (!needed_count) { 2173 kfree(_data); 2174 return 0; 2175 } 2176 2177 /* Allocate everything in one chunk so there's less maintenance. */ 2178 { 2179 unsigned i = 0; 2180 vla_group(d); 2181 vla_item(d, struct usb_gadget_strings *, stringtabs, 2182 lang_count + 1); 2183 vla_item(d, struct usb_gadget_strings, stringtab, lang_count); 2184 vla_item(d, struct usb_string, strings, 2185 lang_count*(needed_count+1)); 2186 2187 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); 2188 2189 if (unlikely(!vlabuf)) { 2190 kfree(_data); 2191 return -ENOMEM; 2192 } 2193 2194 /* Initialize the VLA pointers */ 2195 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2196 t = vla_ptr(vlabuf, d, stringtab); 2197 i = lang_count; 2198 do { 2199 *stringtabs++ = t++; 2200 } while (--i); 2201 *stringtabs = NULL; 2202 2203 /* stringtabs = vlabuf = d_stringtabs for later kfree */ 2204 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2205 t = vla_ptr(vlabuf, d, stringtab); 2206 s = vla_ptr(vlabuf, d, strings); 2207 strings = s; 2208 } 2209 2210 /* For each language */ 2211 data += 16; 2212 len -= 16; 2213 2214 do { /* lang_count > 0 so we can use do-while */ 2215 unsigned needed = needed_count; 2216 2217 if (unlikely(len < 3)) 2218 goto error_free; 2219 t->language = get_unaligned_le16(data); 2220 t->strings = s; 2221 ++t; 2222 2223 data += 2; 2224 len -= 2; 2225 2226 /* For each string */ 2227 do { /* str_count > 0 so we can use do-while */ 2228 size_t length = strnlen(data, len); 2229 2230 if (unlikely(length == len)) 2231 goto error_free; 2232 2233 /* 2234 * User may provide more strings then we need, 2235 * if that's the case we simply ignore the 2236 * rest 2237 */ 2238 if (likely(needed)) { 2239 /* 2240 * s->id will be set while adding 2241 * function to configuration so for 2242 * now just leave garbage here. 2243 */ 2244 s->s = data; 2245 --needed; 2246 ++s; 2247 } 2248 2249 data += length + 1; 2250 len -= length + 1; 2251 } while (--str_count); 2252 2253 s->id = 0; /* terminator */ 2254 s->s = NULL; 2255 ++s; 2256 2257 } while (--lang_count); 2258 2259 /* Some garbage left? */ 2260 if (unlikely(len)) 2261 goto error_free; 2262 2263 /* Done! */ 2264 ffs->stringtabs = stringtabs; 2265 ffs->raw_strings = _data; 2266 2267 return 0; 2268 2269 error_free: 2270 kfree(stringtabs); 2271 error: 2272 kfree(_data); 2273 return -EINVAL; 2274 } 2275 2276 2277 /* Events handling and management *******************************************/ 2278 2279 static void __ffs_event_add(struct ffs_data *ffs, 2280 enum usb_functionfs_event_type type) 2281 { 2282 enum usb_functionfs_event_type rem_type1, rem_type2 = type; 2283 int neg = 0; 2284 2285 /* 2286 * Abort any unhandled setup 2287 * 2288 * We do not need to worry about some cmpxchg() changing value 2289 * of ffs->setup_state without holding the lock because when 2290 * state is FFS_SETUP_PENDING cmpxchg() in several places in 2291 * the source does nothing. 2292 */ 2293 if (ffs->setup_state == FFS_SETUP_PENDING) 2294 ffs->setup_state = FFS_SETUP_CANCELLED; 2295 2296 switch (type) { 2297 case FUNCTIONFS_RESUME: 2298 rem_type2 = FUNCTIONFS_SUSPEND; 2299 /* FALL THROUGH */ 2300 case FUNCTIONFS_SUSPEND: 2301 case FUNCTIONFS_SETUP: 2302 rem_type1 = type; 2303 /* Discard all similar events */ 2304 break; 2305 2306 case FUNCTIONFS_BIND: 2307 case FUNCTIONFS_UNBIND: 2308 case FUNCTIONFS_DISABLE: 2309 case FUNCTIONFS_ENABLE: 2310 /* Discard everything other then power management. */ 2311 rem_type1 = FUNCTIONFS_SUSPEND; 2312 rem_type2 = FUNCTIONFS_RESUME; 2313 neg = 1; 2314 break; 2315 2316 default: 2317 BUG(); 2318 } 2319 2320 { 2321 u8 *ev = ffs->ev.types, *out = ev; 2322 unsigned n = ffs->ev.count; 2323 for (; n; --n, ++ev) 2324 if ((*ev == rem_type1 || *ev == rem_type2) == neg) 2325 *out++ = *ev; 2326 else 2327 pr_vdebug("purging event %d\n", *ev); 2328 ffs->ev.count = out - ffs->ev.types; 2329 } 2330 2331 pr_vdebug("adding event %d\n", type); 2332 ffs->ev.types[ffs->ev.count++] = type; 2333 wake_up_locked(&ffs->ev.waitq); 2334 } 2335 2336 static void ffs_event_add(struct ffs_data *ffs, 2337 enum usb_functionfs_event_type type) 2338 { 2339 unsigned long flags; 2340 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 2341 __ffs_event_add(ffs, type); 2342 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 2343 } 2344 2345 2346 /* Bind/unbind USB function hooks *******************************************/ 2347 2348 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, 2349 struct usb_descriptor_header *desc, 2350 void *priv) 2351 { 2352 struct usb_endpoint_descriptor *ds = (void *)desc; 2353 struct ffs_function *func = priv; 2354 struct ffs_ep *ffs_ep; 2355 unsigned ep_desc_id, idx; 2356 static const char *speed_names[] = { "full", "high", "super" }; 2357 2358 if (type != FFS_DESCRIPTOR) 2359 return 0; 2360 2361 /* 2362 * If ss_descriptors is not NULL, we are reading super speed 2363 * descriptors; if hs_descriptors is not NULL, we are reading high 2364 * speed descriptors; otherwise, we are reading full speed 2365 * descriptors. 2366 */ 2367 if (func->function.ss_descriptors) { 2368 ep_desc_id = 2; 2369 func->function.ss_descriptors[(long)valuep] = desc; 2370 } else if (func->function.hs_descriptors) { 2371 ep_desc_id = 1; 2372 func->function.hs_descriptors[(long)valuep] = desc; 2373 } else { 2374 ep_desc_id = 0; 2375 func->function.fs_descriptors[(long)valuep] = desc; 2376 } 2377 2378 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) 2379 return 0; 2380 2381 idx = (ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK) - 1; 2382 ffs_ep = func->eps + idx; 2383 2384 if (unlikely(ffs_ep->descs[ep_desc_id])) { 2385 pr_err("two %sspeed descriptors for EP %d\n", 2386 speed_names[ep_desc_id], 2387 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); 2388 return -EINVAL; 2389 } 2390 ffs_ep->descs[ep_desc_id] = ds; 2391 2392 ffs_dump_mem(": Original ep desc", ds, ds->bLength); 2393 if (ffs_ep->ep) { 2394 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; 2395 if (!ds->wMaxPacketSize) 2396 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; 2397 } else { 2398 struct usb_request *req; 2399 struct usb_ep *ep; 2400 2401 pr_vdebug("autoconfig\n"); 2402 ep = usb_ep_autoconfig(func->gadget, ds); 2403 if (unlikely(!ep)) 2404 return -ENOTSUPP; 2405 ep->driver_data = func->eps + idx; 2406 2407 req = usb_ep_alloc_request(ep, GFP_KERNEL); 2408 if (unlikely(!req)) 2409 return -ENOMEM; 2410 2411 ffs_ep->ep = ep; 2412 ffs_ep->req = req; 2413 func->eps_revmap[ds->bEndpointAddress & 2414 USB_ENDPOINT_NUMBER_MASK] = idx + 1; 2415 } 2416 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); 2417 2418 return 0; 2419 } 2420 2421 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, 2422 struct usb_descriptor_header *desc, 2423 void *priv) 2424 { 2425 struct ffs_function *func = priv; 2426 unsigned idx; 2427 u8 newValue; 2428 2429 switch (type) { 2430 default: 2431 case FFS_DESCRIPTOR: 2432 /* Handled in previous pass by __ffs_func_bind_do_descs() */ 2433 return 0; 2434 2435 case FFS_INTERFACE: 2436 idx = *valuep; 2437 if (func->interfaces_nums[idx] < 0) { 2438 int id = usb_interface_id(func->conf, &func->function); 2439 if (unlikely(id < 0)) 2440 return id; 2441 func->interfaces_nums[idx] = id; 2442 } 2443 newValue = func->interfaces_nums[idx]; 2444 break; 2445 2446 case FFS_STRING: 2447 /* String' IDs are allocated when fsf_data is bound to cdev */ 2448 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; 2449 break; 2450 2451 case FFS_ENDPOINT: 2452 /* 2453 * USB_DT_ENDPOINT are handled in 2454 * __ffs_func_bind_do_descs(). 2455 */ 2456 if (desc->bDescriptorType == USB_DT_ENDPOINT) 2457 return 0; 2458 2459 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; 2460 if (unlikely(!func->eps[idx].ep)) 2461 return -EINVAL; 2462 2463 { 2464 struct usb_endpoint_descriptor **descs; 2465 descs = func->eps[idx].descs; 2466 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; 2467 } 2468 break; 2469 } 2470 2471 pr_vdebug("%02x -> %02x\n", *valuep, newValue); 2472 *valuep = newValue; 2473 return 0; 2474 } 2475 2476 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, 2477 struct usb_os_desc_header *h, void *data, 2478 unsigned len, void *priv) 2479 { 2480 struct ffs_function *func = priv; 2481 u8 length = 0; 2482 2483 switch (type) { 2484 case FFS_OS_DESC_EXT_COMPAT: { 2485 struct usb_ext_compat_desc *desc = data; 2486 struct usb_os_desc_table *t; 2487 2488 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; 2489 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; 2490 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID, 2491 ARRAY_SIZE(desc->CompatibleID) + 2492 ARRAY_SIZE(desc->SubCompatibleID)); 2493 length = sizeof(*desc); 2494 } 2495 break; 2496 case FFS_OS_DESC_EXT_PROP: { 2497 struct usb_ext_prop_desc *desc = data; 2498 struct usb_os_desc_table *t; 2499 struct usb_os_desc_ext_prop *ext_prop; 2500 char *ext_prop_name; 2501 char *ext_prop_data; 2502 2503 t = &func->function.os_desc_table[h->interface]; 2504 t->if_id = func->interfaces_nums[h->interface]; 2505 2506 ext_prop = func->ffs->ms_os_descs_ext_prop_avail; 2507 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); 2508 2509 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); 2510 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); 2511 ext_prop->data_len = le32_to_cpu(*(u32 *) 2512 usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); 2513 length = ext_prop->name_len + ext_prop->data_len + 14; 2514 2515 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; 2516 func->ffs->ms_os_descs_ext_prop_name_avail += 2517 ext_prop->name_len; 2518 2519 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; 2520 func->ffs->ms_os_descs_ext_prop_data_avail += 2521 ext_prop->data_len; 2522 memcpy(ext_prop_data, 2523 usb_ext_prop_data_ptr(data, ext_prop->name_len), 2524 ext_prop->data_len); 2525 /* unicode data reported to the host as "WCHAR"s */ 2526 switch (ext_prop->type) { 2527 case USB_EXT_PROP_UNICODE: 2528 case USB_EXT_PROP_UNICODE_ENV: 2529 case USB_EXT_PROP_UNICODE_LINK: 2530 case USB_EXT_PROP_UNICODE_MULTI: 2531 ext_prop->data_len *= 2; 2532 break; 2533 } 2534 ext_prop->data = ext_prop_data; 2535 2536 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), 2537 ext_prop->name_len); 2538 /* property name reported to the host as "WCHAR"s */ 2539 ext_prop->name_len *= 2; 2540 ext_prop->name = ext_prop_name; 2541 2542 t->os_desc->ext_prop_len += 2543 ext_prop->name_len + ext_prop->data_len + 14; 2544 ++t->os_desc->ext_prop_count; 2545 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); 2546 } 2547 break; 2548 default: 2549 pr_vdebug("unknown descriptor: %d\n", type); 2550 } 2551 2552 return length; 2553 } 2554 2555 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, 2556 struct usb_configuration *c) 2557 { 2558 struct ffs_function *func = ffs_func_from_usb(f); 2559 struct f_fs_opts *ffs_opts = 2560 container_of(f->fi, struct f_fs_opts, func_inst); 2561 int ret; 2562 2563 ENTER(); 2564 2565 /* 2566 * Legacy gadget triggers binding in functionfs_ready_callback, 2567 * which already uses locking; taking the same lock here would 2568 * cause a deadlock. 2569 * 2570 * Configfs-enabled gadgets however do need ffs_dev_lock. 2571 */ 2572 if (!ffs_opts->no_configfs) 2573 ffs_dev_lock(); 2574 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; 2575 func->ffs = ffs_opts->dev->ffs_data; 2576 if (!ffs_opts->no_configfs) 2577 ffs_dev_unlock(); 2578 if (ret) 2579 return ERR_PTR(ret); 2580 2581 func->conf = c; 2582 func->gadget = c->cdev->gadget; 2583 2584 ffs_data_get(func->ffs); 2585 2586 /* 2587 * in drivers/usb/gadget/configfs.c:configfs_composite_bind() 2588 * configurations are bound in sequence with list_for_each_entry, 2589 * in each configuration its functions are bound in sequence 2590 * with list_for_each_entry, so we assume no race condition 2591 * with regard to ffs_opts->bound access 2592 */ 2593 if (!ffs_opts->refcnt) { 2594 ret = functionfs_bind(func->ffs, c->cdev); 2595 if (ret) 2596 return ERR_PTR(ret); 2597 } 2598 ffs_opts->refcnt++; 2599 func->function.strings = func->ffs->stringtabs; 2600 2601 return ffs_opts; 2602 } 2603 2604 static int _ffs_func_bind(struct usb_configuration *c, 2605 struct usb_function *f) 2606 { 2607 struct ffs_function *func = ffs_func_from_usb(f); 2608 struct ffs_data *ffs = func->ffs; 2609 2610 const int full = !!func->ffs->fs_descs_count; 2611 const int high = gadget_is_dualspeed(func->gadget) && 2612 func->ffs->hs_descs_count; 2613 const int super = gadget_is_superspeed(func->gadget) && 2614 func->ffs->ss_descs_count; 2615 2616 int fs_len, hs_len, ss_len, ret, i; 2617 2618 /* Make it a single chunk, less management later on */ 2619 vla_group(d); 2620 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); 2621 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, 2622 full ? ffs->fs_descs_count + 1 : 0); 2623 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, 2624 high ? ffs->hs_descs_count + 1 : 0); 2625 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, 2626 super ? ffs->ss_descs_count + 1 : 0); 2627 vla_item_with_sz(d, short, inums, ffs->interfaces_count); 2628 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, 2629 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2630 vla_item_with_sz(d, char[16], ext_compat, 2631 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2632 vla_item_with_sz(d, struct usb_os_desc, os_desc, 2633 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2634 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, 2635 ffs->ms_os_descs_ext_prop_count); 2636 vla_item_with_sz(d, char, ext_prop_name, 2637 ffs->ms_os_descs_ext_prop_name_len); 2638 vla_item_with_sz(d, char, ext_prop_data, 2639 ffs->ms_os_descs_ext_prop_data_len); 2640 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); 2641 char *vlabuf; 2642 2643 ENTER(); 2644 2645 /* Has descriptors only for speeds gadget does not support */ 2646 if (unlikely(!(full | high | super))) 2647 return -ENOTSUPP; 2648 2649 /* Allocate a single chunk, less management later on */ 2650 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); 2651 if (unlikely(!vlabuf)) 2652 return -ENOMEM; 2653 2654 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); 2655 ffs->ms_os_descs_ext_prop_name_avail = 2656 vla_ptr(vlabuf, d, ext_prop_name); 2657 ffs->ms_os_descs_ext_prop_data_avail = 2658 vla_ptr(vlabuf, d, ext_prop_data); 2659 2660 /* Copy descriptors */ 2661 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, 2662 ffs->raw_descs_length); 2663 2664 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); 2665 for (ret = ffs->eps_count; ret; --ret) { 2666 struct ffs_ep *ptr; 2667 2668 ptr = vla_ptr(vlabuf, d, eps); 2669 ptr[ret].num = -1; 2670 } 2671 2672 /* Save pointers 2673 * d_eps == vlabuf, func->eps used to kfree vlabuf later 2674 */ 2675 func->eps = vla_ptr(vlabuf, d, eps); 2676 func->interfaces_nums = vla_ptr(vlabuf, d, inums); 2677 2678 /* 2679 * Go through all the endpoint descriptors and allocate 2680 * endpoints first, so that later we can rewrite the endpoint 2681 * numbers without worrying that it may be described later on. 2682 */ 2683 if (likely(full)) { 2684 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); 2685 fs_len = ffs_do_descs(ffs->fs_descs_count, 2686 vla_ptr(vlabuf, d, raw_descs), 2687 d_raw_descs__sz, 2688 __ffs_func_bind_do_descs, func); 2689 if (unlikely(fs_len < 0)) { 2690 ret = fs_len; 2691 goto error; 2692 } 2693 } else { 2694 fs_len = 0; 2695 } 2696 2697 if (likely(high)) { 2698 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); 2699 hs_len = ffs_do_descs(ffs->hs_descs_count, 2700 vla_ptr(vlabuf, d, raw_descs) + fs_len, 2701 d_raw_descs__sz - fs_len, 2702 __ffs_func_bind_do_descs, func); 2703 if (unlikely(hs_len < 0)) { 2704 ret = hs_len; 2705 goto error; 2706 } 2707 } else { 2708 hs_len = 0; 2709 } 2710 2711 if (likely(super)) { 2712 func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs); 2713 ss_len = ffs_do_descs(ffs->ss_descs_count, 2714 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, 2715 d_raw_descs__sz - fs_len - hs_len, 2716 __ffs_func_bind_do_descs, func); 2717 if (unlikely(ss_len < 0)) { 2718 ret = ss_len; 2719 goto error; 2720 } 2721 } else { 2722 ss_len = 0; 2723 } 2724 2725 /* 2726 * Now handle interface numbers allocation and interface and 2727 * endpoint numbers rewriting. We can do that in one go 2728 * now. 2729 */ 2730 ret = ffs_do_descs(ffs->fs_descs_count + 2731 (high ? ffs->hs_descs_count : 0) + 2732 (super ? ffs->ss_descs_count : 0), 2733 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, 2734 __ffs_func_bind_do_nums, func); 2735 if (unlikely(ret < 0)) 2736 goto error; 2737 2738 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); 2739 if (c->cdev->use_os_string) 2740 for (i = 0; i < ffs->interfaces_count; ++i) { 2741 struct usb_os_desc *desc; 2742 2743 desc = func->function.os_desc_table[i].os_desc = 2744 vla_ptr(vlabuf, d, os_desc) + 2745 i * sizeof(struct usb_os_desc); 2746 desc->ext_compat_id = 2747 vla_ptr(vlabuf, d, ext_compat) + i * 16; 2748 INIT_LIST_HEAD(&desc->ext_prop); 2749 } 2750 ret = ffs_do_os_descs(ffs->ms_os_descs_count, 2751 vla_ptr(vlabuf, d, raw_descs) + 2752 fs_len + hs_len + ss_len, 2753 d_raw_descs__sz - fs_len - hs_len - ss_len, 2754 __ffs_func_bind_do_os_desc, func); 2755 if (unlikely(ret < 0)) 2756 goto error; 2757 func->function.os_desc_n = 2758 c->cdev->use_os_string ? ffs->interfaces_count : 0; 2759 2760 /* And we're done */ 2761 ffs_event_add(ffs, FUNCTIONFS_BIND); 2762 return 0; 2763 2764 error: 2765 /* XXX Do we need to release all claimed endpoints here? */ 2766 return ret; 2767 } 2768 2769 static int ffs_func_bind(struct usb_configuration *c, 2770 struct usb_function *f) 2771 { 2772 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); 2773 2774 if (IS_ERR(ffs_opts)) 2775 return PTR_ERR(ffs_opts); 2776 2777 return _ffs_func_bind(c, f); 2778 } 2779 2780 2781 /* Other USB function hooks *************************************************/ 2782 2783 static int ffs_func_set_alt(struct usb_function *f, 2784 unsigned interface, unsigned alt) 2785 { 2786 struct ffs_function *func = ffs_func_from_usb(f); 2787 struct ffs_data *ffs = func->ffs; 2788 int ret = 0, intf; 2789 2790 if (alt != (unsigned)-1) { 2791 intf = ffs_func_revmap_intf(func, interface); 2792 if (unlikely(intf < 0)) 2793 return intf; 2794 } 2795 2796 if (ffs->func) 2797 ffs_func_eps_disable(ffs->func); 2798 2799 if (ffs->state != FFS_ACTIVE) 2800 return -ENODEV; 2801 2802 if (alt == (unsigned)-1) { 2803 ffs->func = NULL; 2804 ffs_event_add(ffs, FUNCTIONFS_DISABLE); 2805 return 0; 2806 } 2807 2808 ffs->func = func; 2809 ret = ffs_func_eps_enable(func); 2810 if (likely(ret >= 0)) 2811 ffs_event_add(ffs, FUNCTIONFS_ENABLE); 2812 return ret; 2813 } 2814 2815 static void ffs_func_disable(struct usb_function *f) 2816 { 2817 ffs_func_set_alt(f, 0, (unsigned)-1); 2818 } 2819 2820 static int ffs_func_setup(struct usb_function *f, 2821 const struct usb_ctrlrequest *creq) 2822 { 2823 struct ffs_function *func = ffs_func_from_usb(f); 2824 struct ffs_data *ffs = func->ffs; 2825 unsigned long flags; 2826 int ret; 2827 2828 ENTER(); 2829 2830 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); 2831 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); 2832 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); 2833 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); 2834 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); 2835 2836 /* 2837 * Most requests directed to interface go through here 2838 * (notable exceptions are set/get interface) so we need to 2839 * handle them. All other either handled by composite or 2840 * passed to usb_configuration->setup() (if one is set). No 2841 * matter, we will handle requests directed to endpoint here 2842 * as well (as it's straightforward) but what to do with any 2843 * other request? 2844 */ 2845 if (ffs->state != FFS_ACTIVE) 2846 return -ENODEV; 2847 2848 switch (creq->bRequestType & USB_RECIP_MASK) { 2849 case USB_RECIP_INTERFACE: 2850 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); 2851 if (unlikely(ret < 0)) 2852 return ret; 2853 break; 2854 2855 case USB_RECIP_ENDPOINT: 2856 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); 2857 if (unlikely(ret < 0)) 2858 return ret; 2859 break; 2860 2861 default: 2862 return -EOPNOTSUPP; 2863 } 2864 2865 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 2866 ffs->ev.setup = *creq; 2867 ffs->ev.setup.wIndex = cpu_to_le16(ret); 2868 __ffs_event_add(ffs, FUNCTIONFS_SETUP); 2869 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 2870 2871 return 0; 2872 } 2873 2874 static void ffs_func_suspend(struct usb_function *f) 2875 { 2876 ENTER(); 2877 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); 2878 } 2879 2880 static void ffs_func_resume(struct usb_function *f) 2881 { 2882 ENTER(); 2883 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); 2884 } 2885 2886 2887 /* Endpoint and interface numbers reverse mapping ***************************/ 2888 2889 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) 2890 { 2891 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; 2892 return num ? num : -EDOM; 2893 } 2894 2895 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) 2896 { 2897 short *nums = func->interfaces_nums; 2898 unsigned count = func->ffs->interfaces_count; 2899 2900 for (; count; --count, ++nums) { 2901 if (*nums >= 0 && *nums == intf) 2902 return nums - func->interfaces_nums; 2903 } 2904 2905 return -EDOM; 2906 } 2907 2908 2909 /* Devices management *******************************************************/ 2910 2911 static LIST_HEAD(ffs_devices); 2912 2913 static struct ffs_dev *_ffs_do_find_dev(const char *name) 2914 { 2915 struct ffs_dev *dev; 2916 2917 list_for_each_entry(dev, &ffs_devices, entry) { 2918 if (!dev->name || !name) 2919 continue; 2920 if (strcmp(dev->name, name) == 0) 2921 return dev; 2922 } 2923 2924 return NULL; 2925 } 2926 2927 /* 2928 * ffs_lock must be taken by the caller of this function 2929 */ 2930 static struct ffs_dev *_ffs_get_single_dev(void) 2931 { 2932 struct ffs_dev *dev; 2933 2934 if (list_is_singular(&ffs_devices)) { 2935 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); 2936 if (dev->single) 2937 return dev; 2938 } 2939 2940 return NULL; 2941 } 2942 2943 /* 2944 * ffs_lock must be taken by the caller of this function 2945 */ 2946 static struct ffs_dev *_ffs_find_dev(const char *name) 2947 { 2948 struct ffs_dev *dev; 2949 2950 dev = _ffs_get_single_dev(); 2951 if (dev) 2952 return dev; 2953 2954 return _ffs_do_find_dev(name); 2955 } 2956 2957 /* Configfs support *********************************************************/ 2958 2959 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) 2960 { 2961 return container_of(to_config_group(item), struct f_fs_opts, 2962 func_inst.group); 2963 } 2964 2965 static void ffs_attr_release(struct config_item *item) 2966 { 2967 struct f_fs_opts *opts = to_ffs_opts(item); 2968 2969 usb_put_function_instance(&opts->func_inst); 2970 } 2971 2972 static struct configfs_item_operations ffs_item_ops = { 2973 .release = ffs_attr_release, 2974 }; 2975 2976 static struct config_item_type ffs_func_type = { 2977 .ct_item_ops = &ffs_item_ops, 2978 .ct_owner = THIS_MODULE, 2979 }; 2980 2981 2982 /* Function registration interface ******************************************/ 2983 2984 static void ffs_free_inst(struct usb_function_instance *f) 2985 { 2986 struct f_fs_opts *opts; 2987 2988 opts = to_f_fs_opts(f); 2989 ffs_dev_lock(); 2990 _ffs_free_dev(opts->dev); 2991 ffs_dev_unlock(); 2992 kfree(opts); 2993 } 2994 2995 #define MAX_INST_NAME_LEN 40 2996 2997 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) 2998 { 2999 struct f_fs_opts *opts; 3000 char *ptr; 3001 const char *tmp; 3002 int name_len, ret; 3003 3004 name_len = strlen(name) + 1; 3005 if (name_len > MAX_INST_NAME_LEN) 3006 return -ENAMETOOLONG; 3007 3008 ptr = kstrndup(name, name_len, GFP_KERNEL); 3009 if (!ptr) 3010 return -ENOMEM; 3011 3012 opts = to_f_fs_opts(fi); 3013 tmp = NULL; 3014 3015 ffs_dev_lock(); 3016 3017 tmp = opts->dev->name_allocated ? opts->dev->name : NULL; 3018 ret = _ffs_name_dev(opts->dev, ptr); 3019 if (ret) { 3020 kfree(ptr); 3021 ffs_dev_unlock(); 3022 return ret; 3023 } 3024 opts->dev->name_allocated = true; 3025 3026 ffs_dev_unlock(); 3027 3028 kfree(tmp); 3029 3030 return 0; 3031 } 3032 3033 static struct usb_function_instance *ffs_alloc_inst(void) 3034 { 3035 struct f_fs_opts *opts; 3036 struct ffs_dev *dev; 3037 3038 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 3039 if (!opts) 3040 return ERR_PTR(-ENOMEM); 3041 3042 opts->func_inst.set_inst_name = ffs_set_inst_name; 3043 opts->func_inst.free_func_inst = ffs_free_inst; 3044 ffs_dev_lock(); 3045 dev = _ffs_alloc_dev(); 3046 ffs_dev_unlock(); 3047 if (IS_ERR(dev)) { 3048 kfree(opts); 3049 return ERR_CAST(dev); 3050 } 3051 opts->dev = dev; 3052 dev->opts = opts; 3053 3054 config_group_init_type_name(&opts->func_inst.group, "", 3055 &ffs_func_type); 3056 return &opts->func_inst; 3057 } 3058 3059 static void ffs_free(struct usb_function *f) 3060 { 3061 kfree(ffs_func_from_usb(f)); 3062 } 3063 3064 static void ffs_func_unbind(struct usb_configuration *c, 3065 struct usb_function *f) 3066 { 3067 struct ffs_function *func = ffs_func_from_usb(f); 3068 struct ffs_data *ffs = func->ffs; 3069 struct f_fs_opts *opts = 3070 container_of(f->fi, struct f_fs_opts, func_inst); 3071 struct ffs_ep *ep = func->eps; 3072 unsigned count = ffs->eps_count; 3073 unsigned long flags; 3074 3075 ENTER(); 3076 if (ffs->func == func) { 3077 ffs_func_eps_disable(func); 3078 ffs->func = NULL; 3079 } 3080 3081 if (!--opts->refcnt) 3082 functionfs_unbind(ffs); 3083 3084 /* cleanup after autoconfig */ 3085 spin_lock_irqsave(&func->ffs->eps_lock, flags); 3086 do { 3087 if (ep->ep && ep->req) 3088 usb_ep_free_request(ep->ep, ep->req); 3089 ep->req = NULL; 3090 ++ep; 3091 } while (--count); 3092 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 3093 kfree(func->eps); 3094 func->eps = NULL; 3095 /* 3096 * eps, descriptors and interfaces_nums are allocated in the 3097 * same chunk so only one free is required. 3098 */ 3099 func->function.fs_descriptors = NULL; 3100 func->function.hs_descriptors = NULL; 3101 func->function.ss_descriptors = NULL; 3102 func->interfaces_nums = NULL; 3103 3104 ffs_event_add(ffs, FUNCTIONFS_UNBIND); 3105 } 3106 3107 static struct usb_function *ffs_alloc(struct usb_function_instance *fi) 3108 { 3109 struct ffs_function *func; 3110 3111 ENTER(); 3112 3113 func = kzalloc(sizeof(*func), GFP_KERNEL); 3114 if (unlikely(!func)) 3115 return ERR_PTR(-ENOMEM); 3116 3117 func->function.name = "Function FS Gadget"; 3118 3119 func->function.bind = ffs_func_bind; 3120 func->function.unbind = ffs_func_unbind; 3121 func->function.set_alt = ffs_func_set_alt; 3122 func->function.disable = ffs_func_disable; 3123 func->function.setup = ffs_func_setup; 3124 func->function.suspend = ffs_func_suspend; 3125 func->function.resume = ffs_func_resume; 3126 func->function.free_func = ffs_free; 3127 3128 return &func->function; 3129 } 3130 3131 /* 3132 * ffs_lock must be taken by the caller of this function 3133 */ 3134 static struct ffs_dev *_ffs_alloc_dev(void) 3135 { 3136 struct ffs_dev *dev; 3137 int ret; 3138 3139 if (_ffs_get_single_dev()) 3140 return ERR_PTR(-EBUSY); 3141 3142 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3143 if (!dev) 3144 return ERR_PTR(-ENOMEM); 3145 3146 if (list_empty(&ffs_devices)) { 3147 ret = functionfs_init(); 3148 if (ret) { 3149 kfree(dev); 3150 return ERR_PTR(ret); 3151 } 3152 } 3153 3154 list_add(&dev->entry, &ffs_devices); 3155 3156 return dev; 3157 } 3158 3159 /* 3160 * ffs_lock must be taken by the caller of this function 3161 * The caller is responsible for "name" being available whenever f_fs needs it 3162 */ 3163 static int _ffs_name_dev(struct ffs_dev *dev, const char *name) 3164 { 3165 struct ffs_dev *existing; 3166 3167 existing = _ffs_do_find_dev(name); 3168 if (existing) 3169 return -EBUSY; 3170 3171 dev->name = name; 3172 3173 return 0; 3174 } 3175 3176 /* 3177 * The caller is responsible for "name" being available whenever f_fs needs it 3178 */ 3179 int ffs_name_dev(struct ffs_dev *dev, const char *name) 3180 { 3181 int ret; 3182 3183 ffs_dev_lock(); 3184 ret = _ffs_name_dev(dev, name); 3185 ffs_dev_unlock(); 3186 3187 return ret; 3188 } 3189 EXPORT_SYMBOL_GPL(ffs_name_dev); 3190 3191 int ffs_single_dev(struct ffs_dev *dev) 3192 { 3193 int ret; 3194 3195 ret = 0; 3196 ffs_dev_lock(); 3197 3198 if (!list_is_singular(&ffs_devices)) 3199 ret = -EBUSY; 3200 else 3201 dev->single = true; 3202 3203 ffs_dev_unlock(); 3204 return ret; 3205 } 3206 EXPORT_SYMBOL_GPL(ffs_single_dev); 3207 3208 /* 3209 * ffs_lock must be taken by the caller of this function 3210 */ 3211 static void _ffs_free_dev(struct ffs_dev *dev) 3212 { 3213 list_del(&dev->entry); 3214 if (dev->name_allocated) 3215 kfree(dev->name); 3216 kfree(dev); 3217 if (list_empty(&ffs_devices)) 3218 functionfs_cleanup(); 3219 } 3220 3221 static void *ffs_acquire_dev(const char *dev_name) 3222 { 3223 struct ffs_dev *ffs_dev; 3224 3225 ENTER(); 3226 ffs_dev_lock(); 3227 3228 ffs_dev = _ffs_find_dev(dev_name); 3229 if (!ffs_dev) 3230 ffs_dev = ERR_PTR(-ENOENT); 3231 else if (ffs_dev->mounted) 3232 ffs_dev = ERR_PTR(-EBUSY); 3233 else if (ffs_dev->ffs_acquire_dev_callback && 3234 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) 3235 ffs_dev = ERR_PTR(-ENOENT); 3236 else 3237 ffs_dev->mounted = true; 3238 3239 ffs_dev_unlock(); 3240 return ffs_dev; 3241 } 3242 3243 static void ffs_release_dev(struct ffs_data *ffs_data) 3244 { 3245 struct ffs_dev *ffs_dev; 3246 3247 ENTER(); 3248 ffs_dev_lock(); 3249 3250 ffs_dev = ffs_data->private_data; 3251 if (ffs_dev) { 3252 ffs_dev->mounted = false; 3253 3254 if (ffs_dev->ffs_release_dev_callback) 3255 ffs_dev->ffs_release_dev_callback(ffs_dev); 3256 } 3257 3258 ffs_dev_unlock(); 3259 } 3260 3261 static int ffs_ready(struct ffs_data *ffs) 3262 { 3263 struct ffs_dev *ffs_obj; 3264 int ret = 0; 3265 3266 ENTER(); 3267 ffs_dev_lock(); 3268 3269 ffs_obj = ffs->private_data; 3270 if (!ffs_obj) { 3271 ret = -EINVAL; 3272 goto done; 3273 } 3274 if (WARN_ON(ffs_obj->desc_ready)) { 3275 ret = -EBUSY; 3276 goto done; 3277 } 3278 3279 ffs_obj->desc_ready = true; 3280 ffs_obj->ffs_data = ffs; 3281 3282 if (ffs_obj->ffs_ready_callback) 3283 ret = ffs_obj->ffs_ready_callback(ffs); 3284 3285 done: 3286 ffs_dev_unlock(); 3287 return ret; 3288 } 3289 3290 static void ffs_closed(struct ffs_data *ffs) 3291 { 3292 struct ffs_dev *ffs_obj; 3293 3294 ENTER(); 3295 ffs_dev_lock(); 3296 3297 ffs_obj = ffs->private_data; 3298 if (!ffs_obj) 3299 goto done; 3300 3301 ffs_obj->desc_ready = false; 3302 3303 if (ffs_obj->ffs_closed_callback) 3304 ffs_obj->ffs_closed_callback(ffs); 3305 3306 if (!ffs_obj->opts || ffs_obj->opts->no_configfs 3307 || !ffs_obj->opts->func_inst.group.cg_item.ci_parent) 3308 goto done; 3309 3310 unregister_gadget_item(ffs_obj->opts-> 3311 func_inst.group.cg_item.ci_parent->ci_parent); 3312 done: 3313 ffs_dev_unlock(); 3314 } 3315 3316 /* Misc helper functions ****************************************************/ 3317 3318 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 3319 { 3320 return nonblock 3321 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN 3322 : mutex_lock_interruptible(mutex); 3323 } 3324 3325 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 3326 { 3327 char *data; 3328 3329 if (unlikely(!len)) 3330 return NULL; 3331 3332 data = kmalloc(len, GFP_KERNEL); 3333 if (unlikely(!data)) 3334 return ERR_PTR(-ENOMEM); 3335 3336 if (unlikely(__copy_from_user(data, buf, len))) { 3337 kfree(data); 3338 return ERR_PTR(-EFAULT); 3339 } 3340 3341 pr_vdebug("Buffer from user space:\n"); 3342 ffs_dump_mem("", data, len); 3343 3344 return data; 3345 } 3346 3347 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); 3348 MODULE_LICENSE("GPL"); 3349 MODULE_AUTHOR("Michal Nazarewicz"); 3350